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OPTIMAL ERROR ESTIMATES TO SMOOTH SOLUTIONS OF THE CENTRAL
DISCONTINUOUS GALERKIN METHODS FOR NONLINEAR SCALAR

CONSERVATION LAWS ⋆

Mengjiao Jiao1, Yan Jiang1,*, Chi-Wang Shu2 and Mengping Zhang1

Abstract. In this paper, we study the error estimates to sufficiently smooth solutions of the nonlin-
ear scalar conservation laws for the semi-discrete central discontinuous Galerkin (DG) finite element
methods on uniform Cartesian meshes. A general approach with an explicitly checkable condition is
established for the proof of optimal 𝐿2 error estimates of the semi-discrete CDG schemes, and this
condition is checked to be valid in one and two dimensions for polynomials of degree up to 𝑘 = 8.
Numerical experiments are given to verify the theoretical results.
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1. Introduction

In this paper, we study the central discontinuous Galerkin (DG) finite element method for solving scalar
conservation laws [10]. The optimal error estimates of the central DG methods have been proved for linear con-
servation laws in Liu et al. [12]. In this paper, we present the optimal error estimates of central DG approximation
based on tensor-product polynomials under suitable assumptions for the general nonlinear scalar conservation
laws ⎧⎪⎨⎪⎩𝑢𝑡 +

𝑑∑︁
𝑖=1

(𝑓𝑖(𝑢))𝑥𝑖
= 0, (x, 𝑡) ∈ Ω× (0, 𝑇 ],

𝑢(x, 0) = 𝑢0(x), x ∈ Ω,

(1.1)

where x = (𝑥1, 𝑥2, . . ., 𝑥𝑑) and Ω is a bounded rectangular domain in R𝑑. Here 𝑢0(x) is a given smooth function.
We do not pay attention to boundary conditions in this paper; hence the exact solution is considered to be either
periodic or compactly supported. We also assume the flux 𝑓(𝑢) is smooth in the variable 𝑢; for example, 𝑓 ∈ 𝐶2

is enough for our proof. The analysis in this paper is for the smooth solutions of (1.1). Discontinuous solutions
with shocks are not considered here. We study the cases with 𝑑 = 1 and 2, but the approach is applicable to
any 𝑑.
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The central scheme of Nessyahu and Tadmor [14] computes hyperbolic conservation laws on a staggered mesh
and avoids the Riemann solver. In [3], Kurganov and Tadmor introduced a new type of central scheme without
the large dissipation error related to the small time step size by using a variable control volume whose size
depends on the time step size. To avoid the excessive numerical dissipation for small time steps, Liu [8] uses
another coupling technique. The overlapping cell approach evolves two independent cell averages on overlapping
cells, which opens up many new possibilities. The advantages of overlapping cells motivate the combination of
the central scheme and the DG method, which results in the central DG methods [7, 9, 10]. The central DG
method evolves two copies of approximating solutions defined on staggered meshes and avoids using numerical
fluxes which can be complicated and costly [4]. Like some previous central schemes, the central DG method also
avoids the excessive numerical dissipation for small time steps by a suitable choice of the numerical dissipation
term. Besides, the central method carries many features of standard DG methods, such as compact stencil,
easy parallel implementation, etc. The central DG method with Runge–Kutta time stepping has a larger CFL
number for stability than the standard Runge–Kutta DG method with the same polynomial order 𝑘. Also the
central DG method has a smaller error than the standard DG method on the same mesh. See Liu et al. [10],
Reyna and Li [15] for more details. Later in Liu et al. [11], the central local discontinuous Galerkin method was
introduced to solve diffusion equations, which is formulated based on the local discontinuous Galerkin scheme
on overlapping cells. Recently, the central DG method has been used to solve systems of conservation laws in
many applications [5, 6, 16,18,22].

In Liu et al. [12], suitable special projections for central DG methods were proposed to yield optimal error
estimates for scalar linear conservation laws. The proper local projections were constructed according to the
superconvergence property and the duality of overlapping cells, which also required uniform Cartesian meshes.
Zhang and Shu firstly presented a priori error estimates for the fully discrete second order Runge–Kutta DG
methods with smooth solutions for scalar nonlinear conservation laws [19] and symmetrizable systems [20]. The
main techniques they used are Taylor expansion and energy estimates. Later these techniques are widely used in
error estimates for DG-type methods of nonlinear equations, like the local DG methods for convection-diffusion
and KdV equations [17], the ultra weak DG methods for equations with higher order derivatives [1], the third
order Runge–Kutta DG methods for scalar conservation laws [21] and for symmetrizable systems [13].

In this paper, we combine the special projections in Liu et al. [12] and the techniques used in Zhang and
Shu [19] to construct new projections to provide the optimal error estimates of the central DG methods on
uniform Cartesian meshes for nonlinear scalar conservation laws with smooth solutions. In one dimension, we
construct a proper local projection P*ℎ similar to Liu et al. [12]. The existence and optimal approximation
properties of this projection are proved by standard finite element techniques. Moreover, this projection has
similar superconvergence property as the projections in Liu et al. [12]. By using this property we develop a general
approach with an explicitly checkable condition, and this condition is checked to be valid in one dimension for
polynomials of degree up to 𝑘 = 8. This condition could also be checked for larger 𝑘 with increased algebraic
complexity, but it is not carried out in this paper. The optimal convergence results is valid for uniform meshes
and for polynomials of degree 𝑘 ≥ 1, while for 𝑘 = 0 we need the convection flux to be linear to get the
optimal results. For two-dimensional conservation laws, we follow the same arguments as in the one-dimensional
case to construct a suitable projection P*ℎ and to analyze its existence and approximation properties. This new
projection utilizes 𝑄𝑘, the space of tensor-product polynomials of degree at most 𝑘 in each variable. Similarly,
the optimal convergence result is valid for uniform meshes and for polynomials of degree 𝑘 ≥ 2 in the two-
dimensional case, while for 𝑘 = 0, 1 we need the convection flux to be linear to get the optimal results. The
superconvergence result of P*ℎ on uniform Cartesian meshes will help to yield optimal convergence results under
some suitable assumptions. Similar approach with an explicitly checkable condition is established, and here we
also check this condition for polynomials of degree up to 𝑘 = 8. Likewise, this condition could also be checked
for larger 𝑘 with increased algebraic complexity, but we will not carried it out. The approach is applicable to
higher dimension 𝑑, but it will not be discussed in this paper.

The rest of the paper is organized as follows. In Section 2, we recall the central DG method for one-dimensional
conservation laws. Then we construct a special projection and study its existence, uniqueness and optimal
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approximation properties. With the help of this projection, we will prove the optimal error estimate for the
semi-discrete central DG methods on uniform meshes for the nonlinear conservation laws in one dimension. In
Section 3, we extend the analysis to two-dimensions. Optimal error estimates are proved by following the same
lines of the one dimensional case. We provide numerical examples to show our theoretical results in Section 4.
In Section 5, we give a few concluding remarks and perspectives for future work. Finally, in the appendix we
provide proofs for some of the more technical results of the error estimates.

2. The central DG method in one dimension

Here we consider the one-dimensional conservation law given by{︂
𝑢𝑡 + 𝑓(𝑢)𝑥 = 0, (𝑥, 𝑡) ∈ [𝑎, 𝑏]× (0, 𝑇 ],
𝑢(𝑥, 0) = 𝑢0(𝑥), 𝑥 ∈ [𝑎, 𝑏],

(2.1)

with periodic boundary condition or compactly supported boundary condition.

2.1. Basic notations

For a given interval 𝐼 = [𝑎, 𝑏], we divide it into 𝑁 cells as follows:

𝑎 = 𝑥0 < 𝑥1 < · · · < 𝑥𝑁 = 𝑏. (2.2)

We denote
𝑥𝑗+ 1

2
=
𝑥𝑗 + 𝑥𝑗+1

2
, 𝐼𝑗+ 1

2
= (𝑥𝑗 , 𝑥𝑗+1), ℎ𝑗+ 1

2
= 𝑥𝑗+1 − 𝑥𝑗 , 𝑗 = 0, . . . 𝑁 − 1, (2.3)

and similarly for the dual mesh

𝐼𝑗 =
(︁
𝑥𝑗− 1

2
, 𝑥𝑗+ 1

2

)︁
, ℎ𝑗 = 𝑥𝑗+ 1

2
− 𝑥𝑗− 1

2
, 𝑗 = 1, . . . 𝑁. (2.4)

We let ℎ = max𝑗 ℎ𝑗+ 1
2

and assume the mesh is regular. Define the approximation space as

𝑉 𝑘
ℎ =

{︀
𝜙ℎ : (𝜙ℎ)|𝐼𝑗

∈ 𝑃 𝑘(𝐼𝑗), 𝑗 = 1, . . ., 𝑁
}︀
,

𝑊 𝑘
ℎ =

{︁
𝜓ℎ : (𝜓ℎ)|𝐼

𝑗+ 1
2
∈ 𝑃 𝑘

(︁
𝐼𝑗+ 1

2

)︁
, 𝑗 = 0, . . ., 𝑁 − 1

}︁
.

(2.5)

Here 𝑃 𝑘(𝐼𝑗) denotes the set of all polynomials of degree at most 𝑘 on 𝐼𝑗 . For a function 𝜙ℎ ∈ 𝑉 𝑘
ℎ , we use (𝜙ℎ)−𝑗+ 1

2

or (𝜙ℎ)+𝑗+ 1
2

to refer to the value of 𝜙ℎ at 𝑥𝑗+ 1
2

from the left cell 𝐼𝑗 and the right cell 𝐼𝑗+1, respectively. For

𝜓ℎ ∈𝑊 𝑘
ℎ , (𝜓ℎ)−𝑗 and (𝜓ℎ)+𝑗 have similar meanings. [𝜙ℎ] or [𝜓ℎ] is used to denote 𝜙+

ℎ −𝜙
−
ℎ or 𝜓+

ℎ −𝜓
−
ℎ , i.e. the

jump of 𝜙ℎ or 𝜓ℎ at cell interfaces. We denote by 𝐶 a positive constant independent of ℎ, which may depend on
the solution of the problem and other parameters. For our analysis, we need the uniform boundedness of 𝑓 ′ and
𝑓 ′′. We shall take this as an assumption for simplicity, although such boundedness can be shown a posteriori by
the eventual boundedness of the numerical solution through the verification of the a priori assumptions at the
end of Sections 2 and 3. Similar to Xu and Shu [17], Zhang and Shu [19], to emphasize the nonlinearity of the
flux 𝑓(𝑢), we use 𝐶* to denote a non-negative constant depending on the maximum of |𝑓 ′′|. We remark 𝐶* = 0
for linear fluxes 𝑓(𝑢) = 𝑐𝑢 with a constant 𝑐.

2.2. The central DG scheme

We propose the following semi-discrete central DG scheme for periodic boundary condition: find 𝑢ℎ ∈ 𝑉 𝑘
ℎ

and 𝑣ℎ ∈𝑊 𝑘
ℎ , such that for any 𝜙ℎ ∈ 𝑉 𝑘

ℎ and 𝜓ℎ ∈𝑊 𝑘
ℎ ,∫︁

𝐼𝑗

(𝑢ℎ)𝑡𝜙ℎ d𝑥 =
1

𝜏max

∫︁
𝐼𝑗

(𝑣ℎ − 𝑢ℎ)𝜙ℎ d𝑥+
∫︁

𝐼𝑗

𝑓(𝑣ℎ)(𝜙ℎ)𝑥 d𝑥
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−
(︀
𝑓(𝑣ℎ)𝜙−ℎ

)︀
𝑗+ 1

2
+
(︀
𝑓(𝑣ℎ)𝜙+

ℎ

)︀
𝑗− 1

2
, (2.6a)∫︁

𝐼
𝑗+ 1

2

(𝑣ℎ)𝑡𝜓ℎ d𝑥 =
1

𝜏max

∫︁
𝐼

𝑗+ 1
2

(𝑢ℎ − 𝑣ℎ)𝜓ℎ d𝑥+
∫︁

𝐼
𝑗+ 1

2

𝑓(𝑢ℎ)(𝜓ℎ)𝑥 d𝑥

−
(︀
𝑓(𝑢ℎ)𝜓−ℎ

)︀
𝑗+1

+
(︀
𝑓(𝑢ℎ)𝜓+

ℎ

)︀
𝑗
, (2.6b)

where 𝜏max is an upper bound for the time step size due to the CFL restriction, that is, 𝜏max = 𝑐 ℎ with
a given constant CFL number 𝑐 dictated by stability. For the initial condition, we simply take 𝑢ℎ(·, 0) =
Pℎ𝑢0(·), 𝑣ℎ(·, 0) = Qℎ𝑢0(·), where Pℎ and Qℎ are the 𝐿2 projections into 𝑉 𝑘

ℎ and 𝑊 𝑘
ℎ , respectively, and we have

‖𝑢0 − Pℎ𝑢0‖𝐿2(𝐼𝑗)
≤ 𝐶ℎ𝑘+1‖𝑢0‖𝐻𝑘+1(𝐼𝑗),

‖𝑢0 −Qℎ𝑢0‖
𝐿2

(︂
𝐼

𝑗+ 1
2

)︂ ≤ 𝐶ℎ𝑘+1‖𝑢0‖
𝐻𝑘+1

(︂
𝐼

𝑗+ 1
2

)︂. (2.7)

2.3. 𝐿2 stability for the linear equation

In Liu et al. [10], the following stability result is proved for this scheme if 𝑓(𝑢) is linear. Without loss of
generality, we take 𝑓(𝑢) = 𝑢. Hence, we have{︂

𝑢𝑡 + 𝑢𝑥 = 0, (𝑥, 𝑡) ∈ [𝑎, 𝑏]× (0, 𝑇 ],
𝑢(𝑥, 0) = 𝑢0(𝑥), 𝑥 ∈ [𝑎, 𝑏],

(2.8)

with periodic boundary condition.

Theorem 2.1. The numerical solutions 𝑢ℎ and 𝑣ℎ of the CDG scheme (2.6) for the equation (2.8) have the
following 𝐿2 stability property

1
2

d
d𝑡

∫︁ 𝑏

𝑎

(︀
𝑢2

ℎ + 𝑣2
ℎ

)︀
d𝑥 = − 1

𝜏max

∫︁ 𝑏

𝑎

(𝑣ℎ − 𝑢ℎ)2d𝑥 ≤ 0. (2.9)

2.4. Optimal 𝐿2 error estimate

It is worth noting that the 𝐿2 stability for CDG scheme for nonlinear problem is generally not available [10].
But under the assumption of the smoothness of the exact solution, we can still get the error estimate of the
nonlinear case. In this subsection, we show a priori 𝐿2 error estimate of the scheme (2.6) for the equation (2.1).

Here and below, we use ‖ · ‖ to denote the standard 𝐿2 norm. For the proof, we recall the classical inverse
and trace inequalities [2]. For any 𝑤ℎ ∈ 𝑉 𝑘

ℎ or 𝑤ℎ ∈ 𝑊 𝑘
ℎ , there exists a positive constant 𝐶 independent of 𝑤ℎ

and ℎ, such that

‖𝜕𝑥𝑤ℎ‖ ≤ 𝐶ℎ−1‖𝑤ℎ‖, ‖𝑤ℎ‖Γ ≤ 𝐶ℎ−
1
2 ‖𝑤ℎ‖, ‖𝑤ℎ‖∞ ≤ 𝐶ℎ−

1
2 ‖𝑤ℎ‖, (2.10)

where Γ is the set of boundary points of all elements 𝐼𝑗 or 𝐼𝑗+ 1
2
.

First we introduce some notations. For the numerical solutions 𝑢ℎ and 𝑣ℎ of the CDG scheme (2.6) for
equation (2.1), we define

𝐵̃𝑗(𝑢ℎ, 𝑣ℎ;𝜙ℎ; 𝑓, 𝑢) :=
1

𝜏max

∫︁
𝐼𝑗

(𝑣ℎ − 𝑢ℎ)𝜙ℎ d𝑥+
∫︁

𝐼𝑗

𝑓 ′(𝑢(𝑥𝑗))𝑣ℎ(𝜙ℎ)𝑥

− 𝑓 ′(𝑢(𝑥𝑗))
(︀
𝑣ℎ𝜙

−
ℎ

)︀
𝑗+ 1

2
+ 𝑓 ′(𝑢(𝑥𝑗))

(︀
𝑣ℎ𝜙

+
ℎ

)︀
𝑗− 1

2
, (2.11)

𝐵̂𝑗+ 1
2
(𝑢ℎ, 𝑣ℎ;𝜓ℎ; 𝑓, 𝑢) :=

1
𝜏max

∫︁
𝐼

𝑗+ 1
2

(𝑢ℎ − 𝑣ℎ)𝜓ℎ d𝑥+
∫︁

𝐼
𝑗+ 1

2

𝑓 ′
(︁
𝑢
(︁
𝑥𝑗+ 1

2

)︁)︁
𝑢ℎ(𝜓ℎ)𝑥
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− 𝑓 ′
(︁
𝑢
(︁
𝑥𝑗+ 1

2

)︁)︁(︀
𝑢ℎ𝜓

−
ℎ

)︀
𝑗+1

+ 𝑓 ′
(︁
𝑢
(︁
𝑥𝑗+ 1

2

)︁)︁(︀
𝑢ℎ𝜓

+
ℎ

)︀
𝑗
, (2.12)

and

𝐵𝑗(𝑢ℎ, 𝑣ℎ;𝜙ℎ, 𝜓ℎ) :=
∫︁

𝐼𝑗

(𝑢ℎ)𝑡𝜙ℎ d𝑥+
∫︁

𝐼
𝑗+ 1

2

(𝑣ℎ)𝑡𝜓ℎ d𝑥

− 1
𝜏max

∫︁
𝐼𝑗

(𝑣ℎ − 𝑢ℎ)𝜙ℎ d𝑥− 1
𝜏max

∫︁
𝐼

𝑗+ 1
2

(𝑢ℎ − 𝑣ℎ)𝜓ℎ d𝑥,
(2.13)

Obviously, we have

𝐵𝑗(𝑢ℎ, 𝑣ℎ;𝜙ℎ, 𝜓ℎ) =
∫︁

𝐼𝑗

𝑓(𝑣ℎ)(𝜙ℎ)𝑥d𝑥+
∫︁

𝐼
𝑗+ 1

2

𝑓(𝑢ℎ)(𝜓ℎ)𝑥d𝑥−
(︀
𝑓(𝑣ℎ)𝜙−ℎ

)︀
𝑗+ 1

2

+
(︀
𝑓(𝑣ℎ)𝜙+

ℎ

)︀
𝑗− 1

2
−
(︀
𝑓(𝑢ℎ)𝜓−ℎ

)︀
𝑗+1

+
(︀
𝑓(𝑢ℎ)𝜓+

ℎ

)︀
𝑗
, ∀𝜙ℎ ∈ 𝑉 𝑘

ℎ , 𝜓ℎ ∈𝑊 𝑘
ℎ .

(2.14)

It is also clear that the exact solution 𝑢 of (2.1) satisfies

𝐵𝑗(𝑢, 𝑢;𝜙ℎ, 𝜓ℎ) =
∫︁

𝐼𝑗

𝑓(𝑢)(𝜙ℎ)𝑥d𝑥+
∫︁

𝐼
𝑗+ 1

2

𝑓(𝑢)(𝜓ℎ)𝑥d𝑥−
(︀
𝑓(𝑢)𝜙−ℎ

)︀
𝑗+ 1

2

+
(︀
𝑓(𝑢)𝜙+

ℎ

)︀
𝑗− 1

2
−
(︀
𝑓(𝑢)𝜓−ℎ

)︀
𝑗+1

+
(︀
𝑓(𝑢)𝜓+

ℎ

)︀
𝑗
, ∀𝜙ℎ ∈ 𝑉 𝑘

ℎ , 𝜓ℎ ∈𝑊 𝑘
ℎ .

(2.15)

Subtracting (2.14) from (2.15), we obtain the error equation

𝐵𝑗(𝑢− 𝑢ℎ, 𝑢− 𝑣ℎ;𝜙ℎ, 𝜓ℎ) =
∫︁

𝐼𝑗

(𝑓(𝑢)− 𝑓(𝑣ℎ))(𝜙ℎ)𝑥d𝑥+
∫︁

𝐼
𝑗+ 1

2

(𝑓(𝑢)− 𝑓(𝑢ℎ))(𝜓ℎ)𝑥d𝑥

−
(︀
(𝑓(𝑢)− 𝑓(𝑣ℎ))𝜙−ℎ

)︀
𝑗+ 1

2
+
(︀
(𝑓(𝑢)− 𝑓(𝑣ℎ))𝜙+

ℎ

)︀
𝑗− 1

2

−
(︀
(𝑓(𝑢)− 𝑓(𝑢ℎ))𝜓−ℎ

)︀
𝑗+1

+
(︀
(𝑓(𝑢)− 𝑓(𝑢ℎ))𝜓+

ℎ

)︀
𝑗

:= 𝐻𝑗(𝑓 ;𝑢, 𝑢ℎ, 𝑣ℎ;𝜙ℎ, 𝜓ℎ), ∀𝜙ℎ ∈ 𝑉 𝑘
ℎ , 𝜓ℎ ∈𝑊 𝑘

ℎ .

(2.16)

Summing over all 𝑗, the error equation becomes∑︁
𝑗

𝐵𝑗(𝑢− 𝑢ℎ, 𝑢− 𝑣ℎ;𝜙ℎ, 𝜓ℎ) =
∑︁

𝑗

𝐻𝑗(𝑓 ;𝑢, 𝑢ℎ, 𝑣ℎ;𝜙ℎ, 𝜓ℎ), ∀𝜙ℎ ∈ 𝑉 𝑘
ℎ , 𝜓ℎ ∈𝑊 𝑘

ℎ . (2.17)

2.4.1. Projection operators

Similar to Liu et al. [12], we define P*ℎ and Q*ℎ as the following projections onto 𝑉 𝑘
ℎ and 𝑊 𝑘

ℎ respectively on
uniform meshes. That is, for a given function 𝑤(𝑥), we define P*ℎ𝑤 ∈ 𝑉 𝑘

ℎ , such that ∀𝑗,∫︁
𝐼𝑗

P*ℎ𝑤 d𝑥 =
∫︁

𝐼𝑗

𝑤 d𝑥, (2.18a)

𝑃ℎ(P*ℎ𝑤;𝜙ℎ; 𝑓, 𝑢)𝑗 = 𝑃ℎ(𝑤;𝜙ℎ; 𝑓, 𝑢)𝑗 , ∀𝜙ℎ ∈ 𝑃 𝑘(𝐼𝑗), (2.18b)

where 𝑃ℎ(𝑤;𝜙ℎ)𝑗 is defined as follows

𝑃ℎ(𝑤;𝜙ℎ; 𝑓, 𝑢)𝑗 =
1

𝜏max

⎛⎝∫︁ 𝑥𝑗

𝑥
𝑗− 1

2

𝑤

(︂
𝑥+

ℎ

2

)︂
𝜙ℎ d𝑥+

∫︁ 𝑥
𝑗+ 1

2

𝑥𝑗

𝑤

(︂
𝑥− ℎ

2

)︂
𝜙ℎ d𝑥−

∫︁ 𝑥
𝑗+ 1

2

𝑥
𝑗− 1

2

𝑤(𝑥)𝜙ℎ d𝑥

⎞⎠
+
∫︁ 𝑥𝑗

𝑥
𝑗− 1

2

𝑓 ′(𝑢(𝑥𝑗))𝑤
(︂
𝑥+

ℎ

2

)︂
(𝜙ℎ)𝑥d𝑥+

∫︁ 𝑥
𝑗+ 1

2

𝑥𝑗

𝑓 ′(𝑢(𝑥𝑗))𝑤
(︂
𝑥− ℎ

2

)︂
(𝜙ℎ)𝑥d𝑥

− 𝑓 ′(𝑢(𝑥𝑗))𝑤(𝑥𝑗)
(︁
𝜙ℎ

(︁
𝑥−

𝑗+ 1
2

)︁
− 𝜙ℎ

(︁
𝑥+

𝑗− 1
2

)︁)︁
.

(2.19)
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Similarly, we define Q*ℎ𝑤 ∈𝑊 𝑘
ℎ , such that ∀𝑗,∫︁

𝐼
𝑗+ 1

2

Q*ℎ𝑤 d𝑥 =
∫︁

𝐼
𝑗+ 1

2

𝑤 d𝑥, (2.20a)

𝑄̃ℎ(Q*ℎ𝑤;𝜓ℎ; 𝑓, 𝑢)𝑗+ 1
2

= 𝑄̃ℎ(𝑤;𝜓ℎ; 𝑓, 𝑢)𝑗+ 1
2
, ∀𝜓ℎ ∈ 𝑃 𝑘

(︁
𝐼𝑗+ 1

2

)︁
, (2.20b)

where 𝑄̃ℎ(𝑤;𝜓ℎ)𝑗+ 1
2

is defined as follows

𝑄̃ℎ(𝑤;𝜙ℎ; 𝑓, 𝑢)𝑗+ 1
2

=
1

𝜏max

⎛⎝∫︁ 𝑥
𝑗+ 1

2

𝑥𝑗

𝑤

(︂
𝑥+

ℎ

2

)︂
𝜓ℎ d𝑥+

∫︁ 𝑥𝑗+1

𝑥
𝑗+ 1

2

𝑤

(︂
𝑥− ℎ

2

)︂
𝜓ℎ d𝑥−

∫︁ 𝑥𝑗+1

𝑥𝑗

𝑤(𝑥)𝜓ℎ d𝑥

⎞⎠
+
∫︁ 𝑥

𝑗+ 1
2

𝑥𝑗

𝑓 ′
(︁
𝑢
(︁
𝑥𝑗+ 1

2

)︁)︁
𝑤

(︂
𝑥+

ℎ

2

)︂
(𝜓ℎ)𝑥d𝑥+

∫︁ 𝑥𝑗+1

𝑥
𝑗+ 1

2

𝑓 ′
(︁
𝑢
(︁
𝑥𝑗+ 1

2

)︁)︁
𝑤

(︂
𝑥− ℎ

2

)︂
(𝜙ℎ)𝑥d𝑥

− 𝑓 ′
(︁
𝑢
(︁
𝑥𝑗+ 1

2

)︁)︁
𝑤
(︁
𝑥𝑗+ 1

2

)︁(︀
𝜙ℎ

(︀
𝑥−𝑗+1

)︀
− 𝜙ℎ

(︀
𝑥+

𝑗

)︀)︀
. (2.21)

Next, we will discuss the properties of the projections P*ℎ and Q*ℎ. Without loss of generality we will only
consider P*ℎ. The equation (2.18a) is required by conservation. Note that 𝑃ℎ(𝑤;𝜙ℎ; 𝑓, 𝑢)𝑗 = 0 for ∀𝑤 when 𝜙ℎ is
a constant, so (2.18b) alone misses one condition which is provided by (2.18a). The following lemma gives the
existence and uniqueness of the special projection P*ℎ.

Lemma 2.2. The projection P*ℎ defined by (2.18) exists and is unique for any smooth function 𝑤(𝑥), and the
following inequality holds

‖P*ℎ𝑤‖ ≤ 𝐶‖𝑤‖∞, (2.22)

for all 𝑘. The positive constant 𝐶 depends on 𝑘, the bound of 𝑓 ′(𝑢), the constant 𝑐 in the scheme (2.6) and is
independent of ℎ and 𝑤.

Proof. The proof of this lemma is given in Appendix A.1. �

Since P*ℎ and Q*ℎ are 𝑘-th degree polynomial preserving local projections, standard approximation theory [2]
implies, for smooth function 𝑤,

‖P*ℎ𝑤 − 𝑤‖+ ℎ‖P*ℎ𝑤 − 𝑤‖∞ + ℎ
1
2 ‖P*ℎ𝑤 − 𝑤‖Γ ≤ 𝐶ℎ𝑘+1‖𝑢‖𝐻𝑘+1([𝑎,𝑏]),

‖Q*ℎ𝑤 − 𝑤‖+ ℎ‖Q*ℎ𝑤 − 𝑤‖∞ + ℎ
1
2 ‖Q*ℎ𝑤 − 𝑤‖Γ ≤ 𝐶ℎ𝑘+1‖𝑢‖𝐻𝑘+1([𝑎,𝑏]),

(2.23)

Besides the standard approximation results (2.23), the special projections P*ℎ and Q*ℎ also have the following
superconvergence result.

Proposition 2.3. For 𝑘 = 0, 1. . ., 8, assume that 𝑢 is a (𝑘 + 1)-th degree polynomial function in 𝑃 𝑘+1([𝑎, 𝑏]).
For a uniform partition on the interval [𝑎, 𝑏], set 𝑢𝐼 = P*ℎ𝑢 ∈ 𝑉 𝑘

ℎ and 𝑣𝐼 = Q*ℎ𝑢 ∈𝑊 𝑘
ℎ ,. Then we have⃒⃒⃒

𝐵̃𝑗(𝑢𝐼 − 𝑢, 𝑣𝐼 − 𝑢;𝜙ℎ; 𝑓, 𝑢)
⃒⃒⃒
≤ 𝐶ℎ2𝑘+3 + 𝐶‖𝜙ℎ‖2𝐿2(𝐼𝑗)

, ∀𝜙ℎ ∈ 𝑃 𝑘(𝐼𝑗)⃒⃒⃒
𝐵̂𝑗+ 1

2
(𝑢𝐼 − 𝑢, 𝑣𝐼 − 𝑢;𝜓ℎ; 𝑓, 𝑢)

⃒⃒⃒
≤ 𝐶ℎ2𝑘+3 + 𝐶‖𝜓ℎ‖2

𝐿2

(︂
𝐼

𝑗+ 1
2

)︂, ∀𝜓ℎ ∈ 𝑃 𝑘
(︁
𝐼𝑗+ 1

2

)︁
. (2.24)

Proof. The proof of this proposition is given in Appendix A.2. �
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2.4.2. A priori 𝐿2 error estimates

Theorem 2.4. For 𝑘 = 0, 1. . ., 8, let 𝑢(·, 𝑡) be the exact solution of equation (2.1), which is sufficiently smooth
with bounded derivatives, and assume 𝑓 ∈ 𝐶2 with bounded 𝑓 ′(𝑢) and 𝑓 ′′(𝑢). The numerical solutions 𝑢ℎ and
𝑣ℎ of the CDG scheme (2.6) using uniform meshes satisfies the following 𝐿2 error estimate

‖𝑢(·, 𝑇 )− 𝑢ℎ(·, 𝑇 )‖2 + ‖𝑢(·, 𝑇 )− 𝑣ℎ(·, 𝑇 )‖2 ≤ 𝐶ℎ2𝑘+2, (2.25)

where 𝑘 is the polynomial degree in the finite element spaces 𝑉 𝑘
ℎ and 𝑊 𝑘

ℎ , and the constant 𝐶 depends on 𝑘, the
final time 𝑇 , ‖𝑢‖𝐻𝑘+2 and the bounds on the derivatives |𝑓𝑚|, 𝑚 = 1, 2, but is independent of the mesh size ℎ.
Here ‖𝑢‖𝐻𝑘+2 is the maximum (𝑘 + 2)-th order Sobolev norm of 𝑢 over time in [0, 𝑇 ]. For 𝑘 = 0 we need 𝑓(𝑢)
to be linear, i.e. 𝑓(𝑢) = 𝑐𝑢.

Proof. Let 𝑒𝑢 = 𝑢− 𝑢ℎ, 𝑒𝑣 = 𝑢− 𝑣ℎ be the error between the numerical and exact solutions. To deal with the
nonlinearity of 𝑓(𝑢), we would like to first make the a priori assumption that, for small enough ℎ, we have

‖𝑢− 𝑢ℎ‖ ≤ 𝐶ℎ
3
2 , ‖𝑢− 𝑣ℎ‖ ≤ 𝐶ℎ

3
2 , (2.26)

which also establishes the Lipschitz continuity of the right-hand side of the method of lines semi-discrete ordinary
differential equation system, hence the very existence of 𝑢ℎ and 𝑣ℎ. By the interpolation property, we then have

‖𝑒𝑢‖∞ ≤ 𝐶ℎ and ‖P*ℎ𝑢− 𝑢ℎ‖∞ ≤ 𝐶ℎ,

‖𝑒𝑣‖∞ ≤ 𝐶ℎ and ‖Q*ℎ𝑢− 𝑢ℎ‖∞ ≤ 𝐶ℎ.
(2.27)

This assumption is not necessary for linear 𝑓 . We will verify this assumption for 𝑘 ≥ 1 later.
By taking

𝜙ℎ = P*ℎ𝑢− 𝑢ℎ, 𝜓ℎ = Q*ℎ𝑢− 𝑣ℎ, 𝜙
𝑒 = P*ℎ𝑢− 𝑢, 𝜓𝑒 = Q*ℎ𝑢− 𝑢, (2.28)

we obtain the energy equality∑︁
𝑗

𝐵𝑗(𝜙ℎ − 𝜙𝑒, 𝜓ℎ − 𝜓𝑒;𝜙ℎ, 𝜓ℎ) =
∑︁

𝑗

𝐻𝑗(𝑓 ;𝑢, 𝑢ℎ, 𝑣ℎ;𝜙ℎ, 𝜓ℎ). (2.29)

From the definition of 𝐵𝑗 , we can obtain∑︁
𝑗

𝐵𝑗(𝜙ℎ, 𝜓ℎ;𝜙ℎ, 𝜓ℎ) =
∑︁

𝑗

𝐵𝑗(𝜙𝑒, 𝜓𝑒;𝜙ℎ, 𝜓ℎ) +
∑︁

𝑗

𝐻𝑗(𝑓 ;𝑢, 𝑢ℎ, 𝑣ℎ;𝜙ℎ, 𝜓ℎ)

=
∑︁

𝑗

∫︁
𝐼𝑗

(𝜓𝑒)𝑡𝜙ℎ d𝑥+
∑︁

𝑗

∫︁
𝐼

𝑗+ 1
2

(𝜙𝑒)𝑡𝜓ℎ d𝑥

−
∑︁

𝑗

1
𝜏max

∫︁
𝐼𝑗

(𝜓𝑒 − 𝜙𝑒)𝜙ℎ d𝑥−
∑︁

𝑗

1
𝜏max

∫︁
𝐼

𝑗+ 1
2

(𝜙𝑒 − 𝜓𝑒)𝜓ℎ d𝑥

+
∑︁

𝑗

∫︁
𝐼𝑗

(𝑓(𝑢)− 𝑓(𝑣ℎ))(𝜙ℎ)𝑥d𝑥+
∑︁

𝑗

((𝑓(𝑢)− 𝑓(𝑣ℎ))[𝜙ℎ])𝑗+ 1
2

+
∑︁

𝑗

∫︁
𝐼

𝑗+ 1
2

(𝑓(𝑢)− 𝑓(𝑢ℎ))(𝜓ℎ)𝑥d𝑥+
∑︁

𝑗

((𝑓(𝑢)− 𝑓(𝑢ℎ))[𝜓ℎ])𝑗 .

(2.30)

For the left-hand side of (2.30), we follow the 𝐿2 stability proof in Theorem 2.1 for linear case to conclude

∑︁
𝑗

𝐵𝑗(𝜙ℎ, 𝜓ℎ;𝜙ℎ, 𝜓ℎ) =
1
2

d
d𝑡

∫︁ 𝑏

𝑎

(︀
𝜙2

ℎ + 𝜓2
ℎ

)︀
d𝑥+

1
𝜏max

∫︁ 𝑏

𝑎

(𝜙ℎ − 𝜓ℎ)2d𝑥. (2.31)
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Similar to Zhang and Shu [19] and Xu and Shu [17], to deal with the nonlinear part of (2.30) we would like to
use the following Taylor expansions:

𝑓(𝑢)− 𝑓(𝑢ℎ) = 𝑓 ′(𝑢)𝜙ℎ − 𝑓 ′(𝑢)𝜙𝑒 − 1
2
𝑓 ′′𝑢 (𝜙ℎ − 𝜙𝑒)2,

𝑓(𝑢)− 𝑓(𝑣ℎ) = 𝑓 ′(𝑢)𝜓ℎ − 𝑓 ′(𝑢)𝜓𝑒 − 1
2
𝑓 ′′𝑣 (𝜓ℎ − 𝜓𝑒)2,

(2.32)

where 𝑓 ′′𝑢 and 𝑓 ′′𝑣 are the mean values. These imply the following representation,∑︁
𝑗

𝐵𝑗(𝜙𝑒, 𝜓𝑒;𝜙ℎ, 𝜓ℎ) +
∑︁

𝑗

𝐻𝑗(𝑓 ;𝑢, 𝑢ℎ, 𝑣ℎ;𝜙ℎ, 𝜓ℎ) = 𝐿+𝑁1 +𝑁2 +𝑁3 +𝑁4, (2.33)

where

𝐿 =
∑︁

𝑗

∫︁
𝐼𝑗

(𝜓𝑒)𝑡𝜙ℎ d𝑥+
∑︁

𝑗

∫︁
𝐼

𝑗+ 1
2

(𝜙𝑒)𝑡𝜓ℎ d𝑥,

𝑁1 = −
∑︁

𝑗

1
𝜏max

∫︁
𝐼𝑗

(𝜓𝑒 − 𝜙𝑒)𝜙ℎ d𝑥−
∑︁

𝑗

∫︁
𝐼𝑗

𝑓 ′(𝑢)𝜓𝑒(𝜙ℎ)𝑥d𝑥−
∑︁

𝑗

(𝑓 ′(𝑢)𝜓𝑒[𝜙ℎ])𝑗+ 1
2
,

𝑁2 = −
∑︁

𝑗

1
𝜏max

∫︁
𝐼

𝑗+ 1
2

(𝜙𝑒 − 𝜓𝑒)𝜓ℎ d𝑥−
∑︁

𝑗

∫︁
𝐼

𝑗+ 1
2

𝑓 ′(𝑢)𝜙𝑒(𝜓ℎ)𝑥d𝑥−
∑︁

𝑗

(𝑓 ′(𝑢)𝜙𝑒[𝜓ℎ])𝑗 ,

𝑁3 =
∑︁

𝑗

∫︁
𝐼𝑗

𝑓 ′(𝑢)𝜓ℎ(𝜙ℎ)𝑥d𝑥+
∑︁

𝑗

(𝑓 ′(𝑢)𝜓ℎ[𝜙ℎ])𝑗+ 1
2

+
∑︁

𝑗

∫︁
𝐼

𝑗+ 1
2

𝑓 ′(𝑢)𝜙ℎ(𝜓ℎ)𝑥d𝑥+
∑︁

𝑗

(𝑓 ′(𝑢)𝜙ℎ[𝜓ℎ])𝑗 ,

𝑁4 = − 1
2

⎛⎝∑︁
𝑗

∫︁
𝐼𝑗

𝑓 ′′𝑣 (𝜓ℎ − 𝜓𝑒)2(𝜙ℎ)𝑥d𝑥+
∑︁

𝑗

∫︁
𝐼

𝑗+ 1
2

𝑓 ′′𝑢 (𝜙ℎ − 𝜙𝑒)2(𝜓ℎ)𝑥d𝑥

+
∑︁

𝑗

(︁
𝑓 ′′𝑣 (𝜓ℎ − 𝜓𝑒)2[𝜙ℎ]

)︁
𝑗+ 1

2

+
∑︁

𝑗

(︁
𝑓 ′′𝑢 (𝜙ℎ − 𝜙𝑒)2[𝜓ℎ]

)︁
𝑗

⎞⎠.
By Young’s inequality and (2.23), we have

𝐿 ≤ 𝐶
(︀
‖𝜙ℎ‖2 + ‖𝜓ℎ‖2

)︀
+ 𝐶ℎ2𝑘+2‖𝑢‖2𝐻𝑘+1([𝑎,𝑏]). (2.34)

Next we estimate the nonlinear part. First for the 𝑁1 term, we can rewrite it in the form

𝑁1 = −
∑︁

𝑗

1
𝜏max

∫︁
𝐼𝑗

(𝜓𝑒 − 𝜙𝑒)𝜙ℎ d𝑥−
∑︁

𝑗

∫︁
𝐼𝑗

𝑓 ′(𝑢(𝑥𝑗))𝜓𝑒(𝜙ℎ)𝑥d𝑥

−
∑︁

𝑗

(𝑓 ′(𝑢(𝑥𝑗))𝜓𝑒[𝜙ℎ])𝑗+ 1
2

+
∑︁

𝑗

∫︁
𝐼𝑗

(𝑓 ′(𝑢(𝑥𝑗))− 𝑓 ′(𝑢))𝜓𝑒(𝜙ℎ)𝑥d𝑥

−
∑︁

𝑗

((𝑓 ′(𝑢(𝑥𝑗))− 𝑓 ′(𝑢))𝜓𝑒[𝜙ℎ])𝑗+ 1
2

=−
∑︁

𝑗

𝐵̃𝑗(𝜙𝑒, 𝜓𝑒;𝜙ℎ) +
∑︁

𝑗

∫︁
𝐼𝑗

(𝑓 ′(𝑢(𝑥𝑗))− 𝑓 ′(𝑢))𝜓𝑒(𝜙ℎ)𝑥d𝑥

−
∑︁

𝑗

((𝑓 ′(𝑢(𝑥𝑗))− 𝑓 ′(𝑢))𝜓𝑒[𝜙ℎ])𝑗+ 1
2
.
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By the inequality in (2.10), (2.23) and ‖𝑓 ′(𝑢(𝑥𝑗))− 𝑓 ′(𝑢)‖𝐿∞(𝐼𝑗) = 𝑂(ℎ), we have

𝑁1 ≤ −
∑︁

𝑗

𝐵̃𝑗(𝜙𝑒, 𝜓𝑒;𝜙ℎ; 𝑓, 𝑢) + 𝐶*‖𝜙ℎ‖2 + 𝐶*ℎ
2𝑘+2‖𝑢‖2𝐻𝑘+1([𝑎,𝑏]). (2.35)

For 𝐵̃𝑗(𝜙𝑒, 𝜓𝑒;𝜙ℎ; 𝑓, 𝑢), let ̂︁𝑢𝐼 be the Taylor polynomial of order 𝑘 + 1 of 𝑢 near 𝑥𝑗 i.e. ̂︁𝑢𝐼
𝑗 =∑︀𝑘+1

𝑖=0
1
𝑖!𝑢

(𝑖)(𝑥𝑗)(𝑥− 𝑥𝑗)𝑖
, 𝑥 ∈ (𝑥𝑗−1, 𝑥𝑗+1). Let 𝑟𝑢 denote the residual term i.e. 𝑟𝑗

𝑢 = 𝑢 − ̂︁𝑢𝐼
𝑗 . Recalling

the Bramble–Hilbert lemma [2], we have

‖𝑟𝑗
𝑢‖𝐿∞(𝐼𝑗) ≤ 𝐶ℎ𝑘+ 3

2 |𝑢|𝐻𝑘+2(𝐼𝑗). (2.36)

Then we rewrite 𝜙𝑒 and 𝜓𝑒

𝜙𝑒 = P*ℎ𝑢− 𝑢 = P*ℎ̂︁𝑢𝐼
𝑗 −̂︁𝑢𝐼

𝑗 + P*ℎ𝑟𝑗
𝑢 − 𝑟𝑗

𝑢,

𝜓𝑒 = Q*ℎ𝑢− 𝑢 = Q*ℎ̂︁𝑢𝐼
𝑗 −̂︁𝑢𝐼

𝑗 + Q*ℎ𝑟𝑗
𝑢 − 𝑟𝑗

𝑢. (2.37)

Hence, using Proposition 2.3, we have

𝐵̃𝑗(𝜙𝑒, 𝜓𝑒;𝜙ℎ; 𝑓, 𝑢) = 𝐵̃𝑗(𝜙𝑒, 𝜓𝑒;𝜙ℎ; 𝑓, 𝑢)

= 𝐵̃𝑗

(︁
P*ℎ̂︁𝑢𝐼

𝑗 −̂︁𝑢𝐼
𝑗 + P*ℎ𝑟𝑗

𝑢 − 𝑟𝑗
𝑢,Q*ℎ̂︁𝑢𝐼

𝑗 −̂︁𝑢𝐼
𝑗 + Q*ℎ𝑟𝑗

𝑢 − 𝑟𝑗
𝑢;𝜙ℎ; 𝑓, 𝑢

)︁
= 𝐵̃𝑗

(︁
P*ℎ̂︁𝑢𝐼

𝑗 −̂︁𝑢𝐼
𝑗
,Q*ℎ̂︁𝑢𝐼

𝑗 −̂︁𝑢𝐼
𝑗 ;𝜙ℎ; 𝑓, 𝑢

)︁
+ 𝐵̃𝑗

(︀
P*ℎ𝑟𝑗

𝑢 − 𝑟𝑗
𝑢,Q*ℎ𝑟𝑗

𝑢 − 𝑟𝑗
𝑢;𝜙ℎ; 𝑓, 𝑢

)︀
= 𝐵̃𝑗

(︀
P*ℎ𝑟𝑗

𝑢 − 𝑟𝑗
𝑢,Q*ℎ𝑟𝑗

𝑢 − 𝑟𝑗
𝑢;𝜙ℎ; 𝑓, 𝑢

)︀
+ 𝐶ℎ2𝑘+3 + 𝐶‖𝜙ℎ‖2𝐿2(𝐼𝑗)

. (2.38)

Therefore, by using Young’s inequality, (2.23), the inequality in (2.10) and (2.36), we have

−
∑︁

𝑗

𝐵̃𝑗(𝜙𝑒, 𝜓𝑒;𝜙ℎ; 𝑓, 𝑢) ≤ 𝐶ℎ2𝑘+2|𝑢|𝐻𝑘+2([𝑎,𝑏]) + 𝐶‖𝜙ℎ‖2. (2.39)

Hence, for 𝑁1 we have
𝑁1 ≤ (𝐶 + 𝐶*)‖𝜙ℎ‖2 + (𝐶 + 𝐶*)ℎ2𝑘+2‖𝑢‖2𝐻𝑘+2([𝑎,𝑏]). (2.40)

Similarly, for 𝑁2 we have

𝑁2 ≤ (𝐶 + 𝐶*)‖𝜓ℎ‖2 + (𝐶 + 𝐶*)ℎ2𝑘+2‖𝑢‖2𝐻𝑘+2([𝑎,𝑏]). (2.41)

The 𝑁3 term can be rewritten as the following form

𝑁3 =
∑︁

𝑗

⎛⎝∫︁ 𝑥
𝑗+ 1

2

𝑥𝑗

𝑓 ′(𝑢)(𝜓ℎ𝜙ℎ)𝑥d𝑥+
∫︁ 𝑥𝑗+1

𝑥
𝑗+ 1

2

𝑓 ′(𝑢)(𝜓ℎ𝜙ℎ)𝑥d𝑥

⎞⎠+
∑︁

𝑗

(𝑓 ′(𝑢)𝜓ℎ[𝜙ℎ])𝑗+ 1
2

+
∑︁

𝑗

(𝑓 ′(𝑢)𝜙ℎ[𝜓ℎ])𝑗

=
∑︁

𝑗

(︁(︀
𝑓 ′(𝑢)𝜓ℎ𝜙

−
ℎ

)︀
𝑗+ 1

2
−
(︀
𝑓 ′(𝑢)𝜙ℎ𝜓

+
ℎ

)︀
𝑗

+
(︀
𝑓 ′(𝑢)𝜙ℎ𝜓

−
ℎ

)︀
𝑗+1

−
(︀
𝑓 ′(𝑢)𝜓ℎ𝜙

+
ℎ

)︀
𝑗+ 1

2
+ (𝑓 ′(𝑢)𝜓ℎ[𝜙ℎ])𝑗+ 1

2
+ (𝑓 ′(𝑢)𝜙ℎ[𝜓ℎ])𝑗

)︁
−
∑︁

𝑗

∫︁ 𝑥𝑗+1

𝑥𝑗

(𝑓 ′(𝑢))𝑥𝜓ℎ𝜙ℎ d𝑥

= −
∑︁

𝑗

∫︁ 𝑥𝑗+1

𝑥𝑗

(𝑓 ′(𝑢))𝑥𝜓ℎ𝜙ℎ d𝑥

≤ 𝐶‖𝜓ℎ‖‖𝜙ℎ‖ ≤ 𝐶
(︀
‖𝜓ℎ‖2 + ‖𝜙ℎ‖2

)︀
.

(2.42)
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𝑁4 is the high order term in Taylor expansion, it is easy to show that

𝑁4 ≤ 𝐶*ℎ
−1(‖𝑒𝑣‖∞‖𝑒𝑣‖‖𝜙ℎ‖+ ‖𝑒𝑢‖∞‖𝑒𝑢‖‖𝜓ℎ‖)

≤ 𝐶*ℎ
−1(‖𝑒𝑣‖∞(‖𝜙ℎ‖‖𝜓ℎ‖+ ‖𝜙ℎ‖‖𝜓𝑒‖) + ‖𝑒𝑣‖∞(‖𝜓ℎ‖‖𝜙ℎ‖+ ‖𝜓ℎ‖‖𝜙𝑒‖))

≤ 𝐶*
(︀
ℎ−1‖𝑒𝑣‖∞ + ℎ−1‖𝑒𝑢‖∞

)︀(︀
‖𝜙ℎ‖2 + ‖𝜓ℎ‖2

)︀
+ 𝐶*

(︀
ℎ−1‖𝑒𝑣‖∞ + ℎ−1‖𝑒𝑢‖∞

)︀
ℎ2𝑘+2‖𝑢‖2𝐻𝑘+1([𝑎,𝑏]).

(2.43)

Hence, combining (2.34), (2.40)–(2.43), (2.31), we obtain from (2.30)

1
2

d
d𝑡

∫︁ 𝑏

𝑎

(︀
𝜙2

ℎ + 𝜓2
ℎ

)︀
d𝑥 ≤

(︀
𝐶 + 𝐶*

(︀
ℎ−1‖𝑒𝑣‖∞ + ℎ−1‖𝑒𝑢‖∞

)︀)︀(︀
‖𝜙ℎ‖2 + ‖𝜓ℎ‖2

)︀
+
(︀
𝐶 + 𝐶*

(︀
ℎ−1‖𝑒𝑣‖∞ + ℎ−1‖𝑒𝑢‖∞

)︀)︀
ℎ2𝑘+2‖𝑢‖2𝐻𝑘+2([𝑎,𝑏]).

(2.44)

When 𝑘 ≥ 1, by using a priori assumption (2.26) we have

1
2

d
d𝑡

∫︁ 𝑏

𝑎

(︀
𝜙2

ℎ + 𝜓2
ℎ

)︀
d𝑥 ≤ (𝐶 + 𝐶*)

(︀
‖𝜙ℎ‖2 + ‖𝜓ℎ‖2

)︀
+ (𝐶 + 𝐶*)ℎ2𝑘+2‖𝑢‖2𝐻𝑘+2([𝑎,𝑏]). (2.45)

Finally, by Gronwall’s inequality and the fact that ‖𝜙ℎ(·, 0)‖ ≤ 𝐶ℎ𝑘+1, ‖𝜓ℎ(·, 0)‖ ≤ 𝐶ℎ𝑘+1 we can get∫︁ 𝑏

𝑎

(︀
𝜙2

ℎ + 𝜓2
ℎ

)︀
d𝑥 ≤ 𝐶ℎ2𝑘+2. (2.46)

This, together with the approximation result (2.23), implies the desired error estimate.
For the case of 𝑘 = 0, we assume that the convection term is linear, namely 𝑓(𝑢) = 𝑐𝑢. This is to avoid the

need of the a priori assumption (2.26) which is no longer justifiable since our 𝐿2 error estimate is only of order
𝑂(ℎ) in this case. The proof is similar to that for 𝑘 ≥ 1 case given above, and the only difference is 𝐶* = 0 in
this case. By similar lines of proof, we have

1
2

d
d𝑡

∫︁ 𝑏

𝑎

(︀
𝜙2

ℎ + 𝜓2
ℎ

)︀
d𝑥 ≤ 𝐶

(︀
‖𝜙ℎ‖2 + ‖𝜓ℎ‖2

)︀
+ 𝐶ℎ2. (2.47)

An application of Gronwall’s inequality give us that∫︁ 𝑏

𝑎

(︀
𝜙2

ℎ + 𝜓2
ℎ

)︀
d𝑥 ≤ 𝐶ℎ2. (2.48)

This, together with the approximation result (2.23), implies the desired error estimate.
Finally, let us justify the a priori assumption (2.26) for 𝑘 ≥ 1. Similar to Zhang and Shu [19] and

Cheng and Shu [1], we can verify this by a proof by contradiction. By (2.25), we can consider ℎ small
enough so that 𝐶ℎ𝑘+1 < 1

2ℎ
3
2 , where 𝐶 is the constant in (2.25) determined by the final time 𝑇 . Define

𝑡* = 𝑠𝑢𝑝
{︁
𝑡 : ‖𝑢(·, 𝑡)− 𝑢ℎ(·, 𝑡)‖+ ‖𝑢(·, 𝑡)− 𝑣ℎ(·, 𝑡)‖ ≤ ℎ

3
2

}︁
, then we have ‖𝑢(·, 𝑡*) − 𝑢ℎ(·, 𝑡*)‖ + ‖𝑢(·, 𝑡*) −

𝑣ℎ(·, 𝑡*)‖ = ℎ
3
2 by continuity if 𝑡* is finite. Clearly, equation (2.25) holds for 𝑡 ≤ 𝑡*, in particular,

‖𝑢(·, 𝑡*)− 𝑢ℎ(·, 𝑡*)‖+ ‖𝑢(·, 𝑡*)− 𝑣ℎ(·, 𝑡*)‖ ≤ 𝐶ℎ𝑘+1 < 1
2ℎ

3
2 . This is a contradiction if 𝑡* < 𝑇 . Hence, 𝑡* ≥ 𝑇 and

our a priori assumption is justified. �

3. The central DG method in multi-dimensions

In this section, we consider the semi-discrete central DG method for multidimensional nonlinear conservation
laws. Without loss of generality, we will show our central DG scheme and prove the optimal a priori error
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Figure 1. 2D overlapping cells formed by collapsing the staggered dual cells on two adjacent
time levels to one time level.

estimates in two dimensions (𝑑 = 2); all the arguments we present in our analysis depend on the tensor product
structure of the mesh and finite element space and can be easily extended to the more general cases 𝑑 > 2. Now
we consider the following two-dimensional problem,{︃

𝑢𝑡 + 𝑓(𝑢)𝑥 + 𝑔(𝑢)𝑦 = 0, (𝑥, 𝑦, 𝑡) ∈ Ω× (0, 𝑇 ],

𝑢(𝑥, 𝑦, 0) = 𝑢0(𝑥, 𝑦), (𝑥, 𝑦) ∈ Ω,
(3.1)

with periodic boundary condition or compactly supported boundary condition.

3.1. Basic notations

Let
{︁
𝐾𝑖,𝑗 =

[︁
𝑥𝑖− 1

2
, 𝑥𝑖+ 1

2

]︁
×
[︁
𝑦𝑗− 1

2
, 𝑦𝑗+ 1

2

]︁}︁
be a partition of Ω into uniform square cells, depicted by the solid

lines in Figure 1, and tagged by their cell centroid at (𝑥𝑖, 𝑦𝑗). Define ℎ = 𝑥𝑖+ 1
2
− 𝑥𝑖− 1

2
= 𝑦𝑗+ 1

2
− 𝑦𝑗− 1

2
. Let

𝑋𝑘
ℎ :=

{︀
𝑣 ∈ 𝐿2(Ω) : 𝑣|𝐾𝑖,𝑗

∈ 𝑄𝑘(𝐾𝑖,𝑗), ∀(𝑖, 𝑗)
}︀

, where 𝑄𝑘(𝐾𝑖,𝑗) is the tensor-product polynomials of degrees
at most 𝑘 in each variable defined on 𝐾𝑖,𝑗 and no continuity is assumed across cell boundaries. Let 𝐾𝑖+ 1

2 ,𝑗+ 1
2

be

the dual mesh which consists of a ℎ
2 shift of the 𝐾𝑖,𝑗 , depicted by the dashed lines in Figure 1. Let

(︁
𝑥𝑖+ 1

2
, 𝑦𝑗+ 1

2

)︁
be the cell centroid of the cell 𝐾𝑖+ 1

2 ,𝑗+ 1
2

and let 𝑌 𝑘
ℎ :=

{︁
𝑣 ∈ 𝐿2(Ω) : 𝑣|𝐾𝑖,𝑗 ∈ 𝑄𝑘

(︁
𝐾𝑖+ 1

2 ,𝑗+ 1
2

)︁
, ∀(𝑖, 𝑗)

}︁
denotes

the space of tensor-product polynomials of degrees at most 𝑘 in each variable defined on 𝐾𝑖+ 1
2 ,𝑗+ 1

2
and no

continuity is assumed across the cell boundary. For a function 𝜙ℎ ∈ 𝑋𝑘
ℎ , we use (𝜙ℎ)+𝑖+ 1

2 ,𝑦 and (𝜙ℎ)−𝑖+ 1
2 ,𝑦

to denote the values of 𝜙ℎ at
(︁
𝑥𝑖+ 1

2
, 𝑦
)︁

from the right cell 𝐾𝑖+1,𝑗 and the left cell 𝐾𝑖,𝑗 , respectively, when

𝑦 ∈ [𝑦𝑗− 1
2
, 𝑦𝑗+ 1

2
] on all vertical edges. And for 𝜓ℎ ∈ 𝑌 𝑘

ℎ , we use (𝜓ℎ)+𝑖,𝑦 and (𝜓ℎ)−𝑖,𝑦 to denote the values of 𝜓ℎ at
(𝑥𝑖, 𝑦) from the right cell 𝐾𝑖+ 1

2 ,𝑗+ 1
2

and the left cell 𝐾𝑖− 1
2 ,𝑗+ 1

2
, respectively, when 𝑦 ∈ [𝑦𝑗 , 𝑦𝑗+1] on all vertical

edges. The notation [𝜙ℎ]𝑖+ 1
2 ,𝑦 or [𝜓ℎ]𝑖+1,𝑦 denote (𝜙ℎ)+𝑖+ 1

2 ,𝑦 − (𝜙ℎ)−𝑖+ 1
2 ,𝑦 or (𝜓ℎ)+𝑖,𝑦 − (𝜓ℎ)−𝑖,𝑦, i.e. the jump of 𝜙ℎ

at
(︁
𝑥𝑖+ 1

2
, 𝑦
)︁

when 𝑦 ∈ [𝑦𝑗− 1
2
, 𝑦𝑗+ 1

2
] or the jump of 𝜓ℎ at (𝑥𝑖, 𝑦) when 𝑦 ∈ [𝑦𝑗 , 𝑦𝑗+1]. Similarly, we can define

(𝜙ℎ)+𝑥,𝑗+ 1
2
, (𝜙ℎ)−𝑥,𝑗+ 1

2
, (𝜓ℎ)+𝑥,𝑗 , (𝜓ℎ)−𝑥,𝑗 , [𝜙ℎ]𝑥,𝑗+ 1

2
and [𝜓ℎ]𝑥,𝑗 .

3.2. The central DG scheme

We propose the following semi-discrete CDG scheme for periodic boundary condition: find 𝑢ℎ ∈ 𝑋𝑘
ℎ and

𝑣ℎ ∈ 𝑌 𝑘
ℎ , such that for any 𝜙ℎ ∈ 𝑋𝑘

ℎ and 𝜓ℎ ∈ 𝑌 𝑘
ℎ ,
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∫︁
𝐾𝑖,𝑗

(𝑢ℎ)𝑡𝜙ℎ d𝑥d𝑦 =
1

𝜏max

∫︁
𝐾𝑖,𝑗

(𝑣ℎ − 𝑢ℎ)𝜙ℎ d𝑥 d𝑦 +
∫︁

𝐾𝑖,𝑗

(︁
𝑓(𝑣ℎ)(𝜙ℎ)𝑥 + 𝑔(𝑣ℎ)(𝜙ℎ)𝑦

)︁
d𝑥d𝑦

−
∫︁ 𝑦

𝑗+ 1
2

𝑦
𝑗− 1

2

(︁(︀
𝑓(𝑣ℎ)𝜙−ℎ

)︀
𝑖+ 1

2 ,𝑦
−
(︀
𝑓(𝑣ℎ)𝜙+

ℎ

)︀
𝑖− 1

2 ,𝑦

)︁
d𝑦

−
∫︁ 𝑥

𝑖+ 1
2

𝑥
𝑖− 1

2

(︁(︀
𝑔(𝑣ℎ)𝜙−ℎ

)︀
𝑥,𝑗+ 1

2
−
(︀
𝑔(𝑣ℎ)𝜙+

ℎ

)︀
𝑥,𝑗+ 1

2

)︁
d𝑥, (3.2a)∫︁

𝐾
𝑖+ 1

2 ,𝑗+ 1
2

(𝑣ℎ)𝑡𝜓ℎ d𝑥d𝑦 =
1

𝜏max

∫︁
𝐾

𝑖+ 1
2 ,𝑗+ 1

2

(𝑢ℎ − 𝑣ℎ)𝜓ℎ d𝑥d𝑦 +
∫︁

𝐾
𝑖+ 1

2 ,𝑗+ 1
2

(︁
𝑓(𝑢ℎ)(𝜓ℎ)𝑥 + 𝑔(𝑢ℎ)(𝜓ℎ)𝑦

)︁
d𝑥d𝑦

−
∫︁ 𝑦𝑗+1

𝑦𝑗

(︁(︀
𝑓(𝑢ℎ)𝜓−ℎ

)︀
𝑖+1,𝑦

−
(︀
𝑓(𝑢ℎ)𝜓+

ℎ

)︀
𝑖,𝑦

)︁
d𝑦

−
∫︁ 𝑥𝑖+1

𝑥𝑖

(︁(︀
𝑔(𝑢ℎ)𝜓−ℎ

)︀
𝑥,𝑗+1

−
(︀
𝑔(𝑢ℎ)𝜓+

ℎ

)︀
𝑥,𝑗

)︁
d𝑥, (3.2b)

where 𝜏max is a max step size, determined by 𝜏max = (CFL factor) × ℎ/(maximum characteristic speed), in
which the CFL constant should be less than 1/2. Similarly, for the initial condition we simply take 𝑢ℎ(·, ·, 0) =
Pℎ𝑢0(·, ·), 𝑣ℎ(·, ·, 0) = Qℎ𝑢0(·, ·), where Pℎ and Qℎ are the 𝐿2 projections into 𝑉 𝑘

ℎ and 𝑊 𝑘
ℎ , respectively, and we

have
‖𝑢0 − Pℎ𝑢0‖𝐿2(𝐾𝑖,𝑗) ≤ 𝐶ℎ𝑘+1‖𝑢0‖𝐻𝑘+1(𝐾𝑖,𝑗),

‖𝑢0 −Qℎ𝑢0‖
𝐿2

(︂
𝐾

𝑖+ 1
2 ,𝑗+ 1

2

)︂ ≤ 𝐶ℎ𝑘+1‖𝑢0‖
𝐻𝑘+1

(︂
𝐾

𝑖+ 1
2 ,𝑗+ 1

2

)︂. (3.3)

3.3. 𝐿2 Stability for linear equation

The 𝐿2-stability is proved for the CDG scheme (3.2) in Liu et al. [10] if 𝑓(𝑢) and 𝑔(𝑢) are linear. Without
loss of generality, we take 𝑓(𝑢) = 𝑔(𝑢) = 𝑢. Hence, we have{︂

𝑢𝑡 + 𝑢𝑥 + 𝑢𝑦 = 0, (𝑥, 𝑦, 𝑡) ∈ Ω× (0, 𝑇 ],
𝑢(𝑥, 𝑦, 0) = 𝑢0(𝑥, 𝑦), (𝑥, 𝑦) ∈ Ω,

(3.4)

with periodic boundary condition.

Theorem 3.1. The numerical solutions 𝑢ℎ and 𝑣ℎ of the semi-discrete CDG scheme (3.2) for the equation
(3.4) have the following 𝐿2 stability property

‖𝑢ℎ(·, ·, 𝑇 )‖2𝐿2(Ω) + ‖𝑣ℎ(·, ·, 𝑇 )‖2𝐿2(Ω) ≤ ‖𝑢ℎ(·, ·, 0)‖2𝐿2(Ω) + ‖𝑣ℎ(·, ·, 0)‖2𝐿2(Ω). (3.5)

3.4. Optimal 𝐿2 error estimate

In this subsection, we show the a priori 𝐿2 error estimate of the scheme (3.2) for the equation (3.1).
Here and below, we again use ‖ · ‖ to denote the standard 𝐿2 norm. Similar to the one-dimensional case,

we recall the classical inverse and trace inequalities [2]. For any 𝑤ℎ ∈ 𝑋𝑘
ℎ or 𝑤ℎ ∈ 𝑌 𝑘

ℎ , there exists a positive
constant 𝐶 independent of 𝑤ℎ and ℎ, such that

‖𝜕𝑥𝑤ℎ‖ ≤ 𝐶ℎ−1‖𝑤ℎ‖, ‖𝑤ℎ‖Γ ≤ 𝐶ℎ−
1
2 ‖𝑤ℎ‖, ‖𝑤ℎ‖∞ ≤ 𝐶ℎ−1‖𝑤ℎ‖, (3.6)

where Γ is the set of boundaries of all elements 𝐾𝑖,𝑗 or 𝐾𝑖+ 1
2 ,𝑗+ 1

2
.
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Similar to the one-dimensional case, we first introduce some notations. Assume 𝑢ℎ and 𝑣ℎ are the numerical
solutions of CDG scheme (3.2) for equation (3.1), we define

𝐵̃𝑖,𝑗(𝑢ℎ, 𝑣ℎ;𝜙ℎ; 𝑓, 𝑔, 𝑢) :=
1

𝜏max

∫︁
𝐾𝑖,𝑗

(𝑣ℎ − 𝑢ℎ)𝜙ℎ d𝑥 d𝑦

+
∫︁

𝐾𝑖,𝑗

(︁
𝑓 ′(𝑢(𝑥𝑖, 𝑦𝑗))(𝜙ℎ)𝑥 + 𝑔′(𝑢(𝑥𝑖, 𝑦𝑗))(𝜙ℎ)𝑦

)︁
𝑣ℎ d𝑥d𝑦

−
∫︁ 𝑦

𝑗+ 1
2

𝑦
𝑗− 1

2

𝑓 ′(𝑢(𝑥𝑖, 𝑦𝑗))
(︁(︀
𝑣ℎ𝜙

−
ℎ

)︀
𝑖+ 1

2 ,𝑦
−
(︀
𝑣ℎ𝜙

+
ℎ

)︀
𝑖− 1

2 ,𝑦

)︁
d𝑦

−
∫︁ 𝑥

𝑖+ 1
2

𝑥
𝑖− 1

2

𝑔′(𝑢(𝑥𝑖, 𝑦𝑗))
(︁(︀
𝑣ℎ𝜙

−
ℎ

)︀
𝑥,𝑗+ 1

2
−
(︀
𝑣ℎ𝜙

+
ℎ

)︀
𝑥,𝑗+ 1

2

)︁
d𝑥, (3.7a)

𝐵̂𝑖+ 1
2 ,𝑗+ 1

2
(𝑢ℎ, 𝑣ℎ;𝜓ℎ; 𝑓, 𝑔, 𝑢) :=

1
𝜏max

∫︁
𝐾

𝑖+ 1
2 ,𝑗+ 1

2

(𝑢ℎ − 𝑣ℎ)𝜓ℎ d𝑥d𝑦 +
∫︁

𝐾
𝑖+ 1

2 ,𝑗+ 1
2

(︁
𝑓 ′
(︁
𝑢
(︁
𝑥𝑖+ 1

2
, 𝑦𝑗+ 1

2

)︁)︁
(𝜓ℎ)𝑥

+ 𝑔′
(︁
𝑢
(︁
𝑥𝑖+ 1

2
, 𝑦𝑗+ 1

2

)︁)︁
(𝜓ℎ)𝑦

)︁
𝑢ℎ d𝑥d𝑦

−
∫︁ 𝑦𝑗+1

𝑦𝑗

𝑓 ′
(︁
𝑢
(︁
𝑥𝑖+ 1

2
, 𝑦𝑗+ 1

2

)︁)︁(︁(︀
𝑢ℎ𝜓

−
ℎ

)︀
𝑖+1,𝑦

−
(︀
𝑢ℎ𝜓

+
ℎ

)︀
𝑖,𝑦

)︁
d𝑦

−
∫︁ 𝑥𝑖+1

𝑥𝑖

𝑔′
(︁
𝑢
(︁
𝑥𝑖+ 1

2
, 𝑦𝑗+ 1

2

)︁)︁(︁(︀
𝑢ℎ𝜓

−
ℎ

)︀
𝑥,𝑗+1

−
(︀
𝑢ℎ𝜓

+
ℎ

)︀
𝑥,𝑗

)︁
d𝑥, (3.7b)

and

𝐵𝑖,𝑗(𝑢ℎ, 𝑣ℎ;𝜙ℎ, 𝜓ℎ) =
∫︁

𝐾𝑖,𝑗

(𝑢ℎ)𝑡𝜙ℎ d𝑥 d𝑦 +
∫︁

𝐾
𝑖+ 1

2 ,𝑗+ 1
2

(𝑣ℎ)𝑡𝜓ℎ d𝑥d𝑦

− 1
𝜏max

∫︁
𝐾𝑖,𝑗

(𝑣ℎ − 𝑢ℎ)𝜙ℎ d𝑥 d𝑦 − 1
𝜏max

∫︁
𝐾

𝑖+ 1
2 ,𝑗+ 1

2

(𝑢ℎ − 𝑣ℎ)𝜓ℎ d𝑥,
(3.8)

Obviously, we have

𝐵𝑖,𝑗(𝑢ℎ, 𝑣ℎ;𝜙ℎ, 𝜓ℎ) =
∫︁

𝐾𝑖,𝑗

(︁
𝑓(𝑣ℎ)(𝜙ℎ)𝑥 + 𝑔(𝑣ℎ)(𝜙ℎ)𝑦

)︁
d𝑥d𝑦

+
∫︁

𝐾
𝑖+ 1

2 ,𝑗+ 1
2

(︁
𝑓(𝑢ℎ)(𝜓ℎ)𝑥 + 𝑔(𝑢ℎ)(𝜓ℎ)𝑦

)︁
d𝑥 d𝑦

−
∫︁ 𝑦

𝑗+ 1
2

𝑦
𝑗− 1

2

(︁(︀
𝑓(𝑣ℎ)𝜙−ℎ

)︀
𝑖+ 1

2 ,𝑦
−
(︀
𝑓(𝑣ℎ)𝜙+

ℎ

)︀
𝑖− 1

2 ,𝑦

)︁
d𝑦

−
∫︁ 𝑥

𝑖+ 1
2

𝑥
𝑖− 1

2

(︁(︀
𝑔(𝑣ℎ)𝜙−ℎ

)︀
𝑥,𝑗+ 1

2
−
(︀
𝑔(𝑣ℎ)𝜙+

ℎ

)︀
𝑥,𝑗+ 1

2

)︁
d𝑥 (3.9)

−
∫︁ 𝑦𝑗+1

𝑦𝑗

(︁(︀
𝑓(𝑢ℎ)𝜓−ℎ

)︀
𝑖+1,𝑦

−
(︀
𝑓(𝑢ℎ)𝜓+

ℎ

)︀
𝑖,𝑦

)︁
d𝑦

−
∫︁ 𝑥𝑖+1

𝑥𝑖

(︁(︀
𝑔(𝑢ℎ)𝜓−ℎ

)︀
𝑥,𝑗+1

−
(︀
𝑔(𝑢ℎ)𝜓+

ℎ

)︀
𝑥,𝑗

)︁
d𝑥,

∀𝜙ℎ ∈ 𝑄𝑘(𝐾𝑖,𝑗), ∀𝜓ℎ ∈ 𝑄𝑘
(︁
𝐾𝑖+ 1

2 ,𝑗+ 1
2

)︁
.
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Let 𝑢 be the exact solution of equation (3.1), clearly we have

𝐵𝑖,𝑗(𝑢, 𝑢;𝜙ℎ, 𝜓ℎ) =
∫︁

𝐾𝑖,𝑗

(︁
𝑓(𝑢)(𝜙ℎ)𝑥 + 𝑔(𝑢)(𝜙ℎ)𝑦

)︁
d𝑥d𝑦

+
∫︁

𝐾
𝑖+ 1

2 ,𝑗+ 1
2

(︁
𝑓(𝑢)(𝜓ℎ)𝑥 + 𝑔(𝑢)(𝜓ℎ)𝑦

)︁
d𝑥d𝑦

−
∫︁ 𝑦

𝑗+ 1
2

𝑦
𝑗− 1

2

(︁(︀
𝑓(𝑢)𝜙−ℎ

)︀
𝑖+ 1

2 ,𝑦
−
(︀
𝑓(𝑢)𝜙+

ℎ

)︀
𝑖− 1

2 ,𝑦

)︁
d𝑦

−
∫︁ 𝑥

𝑖+ 1
2

𝑥
𝑖− 1

2

(︁(︀
𝑔(𝑢)𝜙−ℎ

)︀
𝑥,𝑗+ 1

2
−
(︀
𝑔(𝑢)𝜙+

ℎ

)︀
𝑥,𝑗+ 1

2

)︁
d𝑥

−
∫︁ 𝑦𝑗+1

𝑦𝑗

(︁(︀
𝑓(𝑢)𝜓−ℎ

)︀
𝑖+1,𝑦

−
(︀
𝑓(𝑢)𝜓+

ℎ

)︀
𝑖,𝑦

)︁
d𝑦

−
∫︁ 𝑥𝑖+1

𝑥𝑖

(︁(︀
𝑔(𝑢)𝜓−ℎ

)︀
𝑥,𝑗+1

−
(︀
𝑔(𝑢)𝜓+

ℎ

)︀
𝑥,𝑗

)︁
d𝑥,

∀𝜙ℎ ∈ 𝑄𝑘(𝐾𝑖,𝑗), ∀𝜓ℎ ∈ 𝑄𝑘
(︁
𝐾𝑖+ 1

2 ,𝑗+ 1
2

)︁
.

(3.10)

Subtracting (3.9) from (3.10), we get the error equation for two-dimensional case,

𝐵𝑖,𝑗(𝑢− 𝑢ℎ, 𝑢− 𝑣ℎ;𝜙ℎ, 𝜓ℎ) =
∫︁

𝐾𝑖,𝑗

(𝑓(𝑢)− 𝑓(𝑣ℎ))(𝜙ℎ)𝑥 + (𝑔(𝑢)− 𝑔(𝑣ℎ))(𝜙ℎ)𝑦 d𝑥 d𝑦

+
∫︁

𝐾
𝑖+ 1

2 ,𝑗+ 1
2

(𝑓(𝑢)− 𝑓(𝑢ℎ))(𝜓ℎ)𝑥 + (𝑔(𝑢)− 𝑔(𝑢ℎ))(𝜓ℎ)𝑦 d𝑥d𝑦

−
∫︁ 𝑦

𝑗+ 1
2

𝑦
𝑗− 1

2

[︁(︀
(𝑓(𝑢)− 𝑓(𝑣ℎ))𝜙−ℎ

)︀
𝑖+ 1

2 ,𝑦
−
(︀
(𝑓(𝑢)− 𝑓(𝑣ℎ))𝜙+

ℎ

)︀
𝑖− 1

2 ,𝑦

]︁
d𝑦

−
∫︁ 𝑥

𝑖+ 1
2

𝑥
𝑖− 1

2

[︁(︀
(𝑔(𝑢)− 𝑔(𝑣ℎ))𝜙−ℎ

)︀
𝑥,𝑗+ 1

2
−
(︀
(𝑔(𝑢)− 𝑔(𝑣ℎ))𝜙+

ℎ

)︀
𝑥,𝑗+ 1

2

]︁
d𝑥

−
∫︁ 𝑦𝑗+1

𝑦𝑗

[
(︀
(𝑓(𝑢)− 𝑓(𝑢ℎ))𝜓−ℎ

)︀
𝑖+1,𝑦

−
(︀
(𝑓(𝑢)− 𝑓(𝑢ℎ))𝜓+

ℎ

)︀
𝑖,𝑦

]d𝑦

−
∫︁ 𝑥𝑖+1

𝑥𝑖

[
(︀
(𝑔(𝑢)− 𝑔(𝑢ℎ))𝜓−ℎ

)︀
𝑥,𝑗+1

−
(︀
(𝑔(𝑢)− 𝑔(𝑢ℎ))𝜓+

ℎ

)︀
𝑥,𝑗

]d𝑥

:= 𝐻𝑖,𝑗(𝑓 ;𝑢, 𝑢ℎ, 𝑣ℎ;𝜙ℎ, 𝜓ℎ), ∀𝜙ℎ ∈ 𝑄𝑘(𝐾𝑖,𝑗), ∀𝜓ℎ ∈ 𝑄𝑘
(︁
𝐾𝑖+ 1

2 ,𝑗+ 1
2

)︁
.

(3.11)

Summing over all 𝑖 and 𝑗, the error equation becomes∑︁
𝑖,𝑗

𝐵𝑖,𝑗(𝑢− 𝑢ℎ, 𝑢− 𝑣ℎ;𝜙ℎ, 𝜓ℎ) =
∑︁
𝑖,𝑗

𝐻𝑖,𝑗(𝑓 ;𝑢, 𝑢ℎ, 𝑣ℎ;𝜙ℎ, 𝜓ℎ), ∀𝜙ℎ ∈ 𝑄𝑘(𝐾𝑖,𝑗), ∀𝜓ℎ ∈ 𝑄𝑘
(︁
𝐾𝑖+ 1

2 ,𝑗+ 1
2

)︁
.

(3.12)

3.4.1. Projection operators

To prove the error estimates for two-dimensional problems in uniform Cartesian meshes, we need two suitable
projections P*ℎ and Q*ℎ similar to the one-dimensional case. By applying the shifting technique in the two-
dimensional case, for 𝑥 and 𝑦 variables respectively, for a given function 𝑤(𝑥) we define P*ℎ𝑤 ∈ 𝑄𝑘(𝐾𝑖,𝑗) over
𝐾𝑖,𝑗 satisfying the following two equations,∫︁

𝐾𝑖,𝑗

P*ℎ𝑤 d𝑥 d𝑦 =
∫︁

𝐾𝑖,𝑗

𝑤 d𝑥d𝑦, (3.13a)
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𝑃ℎ(P*ℎ𝑤;𝜙ℎ; 𝑓, 𝑔, 𝑢)𝑖,𝑗 = 𝑃ℎ(𝑤;𝜙ℎ; 𝑓, 𝑔, 𝑢)𝑖,𝑗 , ∀𝜙ℎ ∈ 𝑄𝑘(𝐾𝑖,𝑗) (3.13b)

where 𝑃ℎ(𝑤;𝜙ℎ; 𝑓, 𝑔, 𝑢)𝑖,𝑗 is defined as follows,

𝑃ℎ(𝑤;𝜙ℎ; 𝑓, 𝑔, 𝑢)𝑖,𝑗 =
1

𝜏max

⎛⎝∫︁ 𝑦𝑗

𝑦
𝑗− 1

2

∫︁ 𝑥𝑖

𝑥
𝑖− 1

2

𝑤

(︂
𝑥+

ℎ

2
, 𝑦 +

ℎ

2

)︂
𝜙ℎ d𝑥d𝑦 +

∫︁ 𝑦𝑗

𝑦
𝑗− 1

2

∫︁ 𝑥
𝑖+ 1

2

𝑥𝑖

𝑤

(︂
𝑥− ℎ

2
, 𝑦 +

ℎ

2

)︂
𝜙ℎ d𝑥d𝑦

+
∫︁ 𝑦

𝑗+ 1
2

𝑦𝑗

∫︁ 𝑥𝑖

𝑥
𝑖− 1

2

𝑤

(︂
𝑥+

ℎ

2
, 𝑦 − ℎ

2

)︂
𝜙ℎ d𝑥d𝑦 +

∫︁ 𝑦
𝑗+ 1

2

𝑦𝑗

∫︁ 𝑥
𝑖+ 1

2

𝑥𝑖

𝑤

(︂
𝑥− ℎ

2
, 𝑦 − ℎ

2

)︂
𝜙ℎ d𝑥d𝑦

−
∫︁ 𝑦

𝑗+ 1
2

𝑦
𝑗− 1

2

∫︁ 𝑥
𝑖+ 1

2

𝑥
𝑖− 1

2

𝑤(𝑥, 𝑦)𝜙ℎ d𝑥d𝑦

⎞⎠
+
∫︁ 𝑦𝑗

𝑦
𝑗− 1

2

∫︁ 𝑥𝑖

𝑥
𝑖− 1

2

𝑤

(︂
𝑥+

ℎ

2
, 𝑦 +

ℎ

2

)︂
(𝑓 ′(𝑢(𝑥𝑖, 𝑦𝑗))𝜕𝑥𝜙ℎ + 𝑔′(𝑢(𝑥𝑖, 𝑦𝑗))𝜕𝑦𝜙ℎ) d𝑥d𝑦

+
∫︁ 𝑦𝑗

𝑦
𝑗− 1

2

∫︁ 𝑥
𝑖+ 1

2

𝑥𝑖

𝑤

(︂
𝑥− ℎ

2
, 𝑦 +

ℎ

2

)︂
(𝑓 ′(𝑢(𝑥𝑖, 𝑦𝑗))𝜕𝑥𝜙ℎ + 𝑔′(𝑢(𝑥𝑖, 𝑦𝑗))𝜕𝑦𝜙ℎ) d𝑥 d𝑦

+
∫︁ 𝑦

𝑗+ 1
2

𝑦𝑗

∫︁ 𝑥𝑖

𝑥
𝑖− 1

2

𝑤

(︂
𝑥+

ℎ

2
, 𝑦 − ℎ

2

)︂
(𝑓 ′(𝑢(𝑥𝑖, 𝑦𝑗))𝜕𝑥𝜙ℎ + 𝑔′(𝑢(𝑥𝑖, 𝑦𝑗))𝜕𝑦𝜙ℎ) d𝑥 d𝑦

+
∫︁ 𝑦

𝑗+ 1
2

𝑦𝑗

∫︁ 𝑥
𝑖+ 1

2

𝑥𝑖

𝑤

(︂
𝑥− ℎ

2
, 𝑦 − ℎ

2

)︂
(𝑓 ′(𝑢(𝑥𝑖, 𝑦𝑗))𝜕𝑥𝜙ℎ + 𝑔′(𝑢(𝑥𝑖, 𝑦𝑗))𝜕𝑦𝜙ℎ) d𝑥 d𝑦

−
∫︁ 𝑦𝑗

𝑦
𝑗− 1

2

𝑓 ′(𝑢(𝑥𝑖, 𝑦𝑗))𝑤
(︂
𝑥𝑖, 𝑦 +

ℎ

2

)︂(︁
𝜙ℎ

(︁
𝑥−

𝑖+ 1
2
, 𝑦
)︁
− 𝜙ℎ

(︁
𝑥+

𝑖− 1
2
, 𝑦
)︁)︁

d𝑦

−
∫︁ 𝑦

𝑗+ 1
2

𝑦𝑗

𝑓 ′(𝑢(𝑥𝑖, 𝑦𝑗))𝑤
(︂
𝑥𝑖, 𝑦 −

ℎ

2

)︂(︁
𝜙ℎ

(︁
𝑥−

𝑖+ 1
2
, 𝑦
)︁
− 𝜙ℎ

(︁
𝑥+

𝑖− 1
2
, 𝑦
)︁)︁

d𝑦

−
∫︁ 𝑥𝑖

𝑥
𝑖− 1

2

𝑔′(𝑢(𝑥𝑖, 𝑦𝑗))𝑤
(︂
𝑥+

ℎ

2
, 𝑦𝑗

)︂(︁
𝜙ℎ

(︁
𝑥, 𝑦−

𝑗+ 1
2

)︁
− 𝜙ℎ

(︁
𝑥, 𝑦+

𝑗− 1
2

)︁)︁
d𝑥

−
∫︁ 𝑥

𝑖+ 1
2

𝑥𝑖

𝑔′(𝑢(𝑥𝑖, 𝑦𝑗))𝑤
(︂
𝑥− ℎ

2
, 𝑦𝑗

)︂(︁
𝜙ℎ

(︁
𝑥, 𝑦−

𝑗+ 1
2

)︁
− 𝜙ℎ

(︁
𝑥, 𝑦+

𝑗− 1
2

)︁)︁
d𝑥. (3.14)

Similarly, we can define the projection Q*ℎ from 𝑤 ∈ 𝐿∞
(︁
𝐾𝑖+ 1

2 ,𝑗+ 1
2

)︁
into Q*ℎ𝑤 ∈ 𝑄𝑘

(︁
𝐾𝑖+ 1

2 ,𝑗+ 1
2

)︁
over 𝐾𝑖+ 1

2 ,𝑗+ 1
2
.

Next we will discuss the properties of these two special projections. Without loss of generality we will only
consider P*ℎ. The equation (3.13a) is required by conservation. Note that 𝑃ℎ(𝑤;𝜙ℎ)𝑖,𝑗 = 0 for ∀𝑤 when 𝜙ℎ is a
constant, so (3.13b) alone misses one condition which is provided by (3.13a), just like the one-dimensional case.
Existence and optimal approximate property of the projection P*ℎ are established in the following lemma.

Lemma 3.2. The projection P*ℎ defined by (3.13) exists and is unique for any smooth function 𝑤(𝑥), and the
following inequality holds

‖P*ℎ𝑤 − 𝑤‖+ ℎ‖P*ℎ𝑤 − 𝑤‖∞ + ℎ
1
2 ‖P*ℎ𝑤 − 𝑤‖Γ ≤ 𝐶ℎ𝑘+1‖𝑤‖𝐻𝑘+1(Ω), (3.15)

for all 𝑘. The positive constant 𝐶 depends on 𝑘, the bound of 𝑓 ′(𝑢), 𝑔′(𝑢), the constant 𝑐 and is independent of
ℎ and 𝑤.

Proof. The proof of this lemma is given in Appendix A.3. �
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Similarly, for Q*ℎ we have

‖Q*ℎ𝑤 − 𝑤‖+ ℎ‖Q*ℎ𝑤 − 𝑤‖∞ + ℎ
1
2 ‖Q*ℎ𝑤 − 𝑤‖Γ ≤ 𝐶ℎ𝑘+1‖𝑤‖𝐻𝑘+1(Ω), (3.16)

if 𝑤 is a smooth function.
Again, the projections P*ℎ and Q*ℎ satisfy the following superconvergence result.

Lemma 3.3. For 𝑚 = 0, 1. . ., 8, assume that 𝑢 = 𝑥𝑘+1 or 𝑦𝑘+1, let 𝑢𝐼 = P*ℎ𝑢 and 𝑣𝐼 = Q*ℎ𝑢 then⃒⃒⃒
𝐵̃𝑖,𝑗(𝑢𝐼 − 𝑢, 𝑣𝐼 − 𝑢;𝜙ℎ; 𝑓, 𝑔, 𝑢)

⃒⃒⃒
≤ 𝐶ℎ2𝑘+4 + 𝐶‖𝜙ℎ‖2𝐿2(𝐾𝑖,𝑗)

, (3.17)⃒⃒⃒
𝐵̂𝑖+ 1

2 ,𝑗+ 1
2
(𝑢𝐼 − 𝑢, 𝑣𝐼 − 𝑢;𝜓ℎ; 𝑓, 𝑔, 𝑢)

⃒⃒⃒
≤ 𝐶ℎ2𝑘+4 + 𝐶‖𝜓ℎ‖2

𝐿2

(︂
𝐾

𝑖+ 1
2 ,𝑗+ 1

2

)︂. (3.18)

Proof. The proof of this lemma is given in Appendix A.4. �

3.5. A priori 𝐿2 error estimates

Now let us give the a priori error estimate for the two-dimensional case.

Theorem 3.4. For 𝑘 = 0, 1. . ., 8, let 𝑢(·, ·, 𝑡) be the exact solution of equation (3.1), which is sufficiently smooth
with bounded derivatives, and assume 𝑓 ∈ 𝐶2 with bounded 𝑓 ′(𝑢) and 𝑓 ′′(𝑢). The numerical solutions 𝑢ℎ and
𝑣ℎ of the CDG scheme (3.2) using uniform meshes satisfies the following 𝐿2 error estimate

‖𝑢(·, ·, 𝑇 )− 𝑢ℎ(·, ·, 𝑇 )‖2 + ‖𝑢(·, ·, 𝑇 )− 𝑣ℎ(·, ·, 𝑇 )‖2 ≤ 𝐶ℎ2𝑘+2, (3.19)

where 𝑘 is the polynomial degree in the finite element spaces 𝑋𝑘
ℎ and 𝑌 𝑘

ℎ , and the constant 𝐶 depends on 𝑘,
the final time 𝑇 , ‖𝑢‖𝐻𝑘+2 and the bounds on the derivatives |𝑓 (𝑚)|, |𝑔(𝑚)|, 𝑚 = 1, 2, but is independent of the
mesh size ℎ. Here ‖𝑢‖𝐻𝑘+2 is the maximum (𝑘 + 2)-th order Sobolev norm of 𝑢 over time in [0, 𝑇 ]. For 𝑘 = 0
and 1 we need 𝑓(𝑢) and 𝑔(𝑢) to be linear, i.e. 𝑓(𝑢) = 𝑐1𝑢 and 𝑔(𝑢) = 𝑐2𝑢 with constants 𝑐1 and 𝑐2.

Proof. Let 𝑒𝑢 = 𝑢−𝑢ℎ, 𝑒𝑣 = 𝑢−𝑣ℎ be the error between the numerical and exact solutions. Similar to the one-
dimensional case, to deal with the nonlinearity of 𝑓(𝑢) and 𝑔(𝑢), we would like first make a priori assumption
that, for small enough ℎ, we have

‖𝑢− 𝑢ℎ‖ ≤ 𝐶ℎ2, ‖𝑢− 𝑣ℎ‖ ≤ 𝐶ℎ2, (3.20)

which also establishes the Lipschitz continuity of the right-hand side of the method of lines semi-discrete ordinary
differential equation system, hence the very existence of 𝑢ℎ and 𝑣ℎ. By the interpolation property, we then have

‖𝑒𝑢‖∞ ≤ 𝐶ℎ and ‖P*ℎ𝑢− 𝑢ℎ‖∞ ≤ 𝐶ℎ,

‖𝑒𝑣‖∞ ≤ 𝐶ℎ and ‖Q*ℎ𝑢− 𝑢ℎ‖∞ ≤ 𝐶ℎ.
(3.21)

This assumption is not necessary for linear 𝑓 and 𝑔. We will verify this assumption for 𝑘 ≥ 2 later.
By taking

𝜙ℎ = P*ℎ𝑢− 𝑢ℎ, 𝜓ℎ = Q*ℎ𝑢− 𝑣ℎ, 𝜙
𝑒 = P*ℎ𝑢− 𝑢, 𝜓𝑒 = Q*ℎ𝑢− 𝑢, (3.22)

we obtain the energy equality∑︁
𝑖,𝑗

𝐵𝑖,𝑗(𝜙ℎ − 𝜙𝑒, 𝜓ℎ − 𝜓𝑒;𝜙ℎ, 𝜓ℎ) =
∑︁
𝑖,𝑗

𝐻𝑖,𝑗(𝑓 ;𝑢, 𝑢ℎ, 𝑣ℎ;𝜙ℎ, 𝜓ℎ). (3.23)

From the definition of 𝐵𝑖,𝑗 , we can obtain∑︁
𝑖,𝑗

𝐵𝑖,𝑗(𝜙ℎ, 𝜓ℎ;𝜙ℎ, 𝜓ℎ) =
∑︁
𝑖,𝑗

𝐵𝑖,𝑗(𝜙𝑒, 𝜓𝑒;𝜙ℎ, 𝜓ℎ) +
∑︁
𝑖,𝑗

𝐻𝑖,𝑗(𝑓 ;𝑢, 𝑢ℎ, 𝑣ℎ;𝜙ℎ, 𝜓ℎ)
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=
∑︁
𝑖,𝑗

∫︁
𝐾𝑖,𝑗

(𝜓𝑒)𝑡𝜙ℎ d𝑥d𝑦 +
∑︁
𝑖,𝑗

∫︁
𝐾

𝑖+ 1
2 ,𝑗+ 1

2

(𝜙𝑒)𝑡𝜓ℎ d𝑥d𝑦

−
∑︁
𝑖,𝑗

1
𝜏max

∫︁
𝐾𝑖,𝑗

(𝜓𝑒 − 𝜙𝑒)𝜙ℎ d𝑥 d𝑦 −
∑︁
𝑖,𝑗

1
𝜏max

∫︁
𝐾

𝑖+ 1
2 ,𝑗+ 1

2

(𝜙𝑒 − 𝜓𝑒)𝜓ℎ d𝑥 d𝑦

+
∑︁
𝑖,𝑗

∫︁
𝐾𝑖,𝑗

(𝑓(𝑢)− 𝑓(𝑣ℎ))(𝜙ℎ)𝑥 + (𝑔(𝑢)− 𝑔(𝑣ℎ))(𝜙ℎ)𝑦 d𝑥d𝑦

+
∑︁
𝑖,𝑗

∫︁
𝐾

𝑖+ 1
2 ,𝑗+ 1

2

(𝑓(𝑢)− 𝑓(𝑢ℎ))(𝜓ℎ)𝑥 + (𝑔(𝑢)− 𝑔(𝑢ℎ))(𝜓ℎ)𝑦 d𝑥 d𝑦

+
∑︁
𝑖,𝑗

∫︁ 𝑦
𝑗+ 1

2

𝑦
𝑗− 1

2

((𝑓(𝑢)− 𝑓(𝑣ℎ))[𝜙ℎ])𝑖+ 1
2 ,𝑦d𝑦 +

∑︁
𝑖,𝑗

∫︁ 𝑥
𝑖+ 1

2

𝑥
𝑖− 1

2

((𝑔(𝑢)− 𝑔(𝑣ℎ))[𝜙ℎ])𝑥,𝑗+ 1
2
d𝑥

+
∑︁
𝑖,𝑗

∫︁ 𝑦𝑗+1

𝑦𝑗

((𝑓(𝑢)− 𝑓(𝑢ℎ))[𝜓ℎ])𝑖,𝑦d𝑦 +
∑︁
𝑖,𝑗

∫︁ 𝑥𝑖+1

𝑥𝑖

((𝑔(𝑢)− 𝑔(𝑢ℎ))[𝜓ℎ])𝑥,𝑗d𝑥. (3.24)

For the left-hand side of (3.24), we follow the 𝐿2 stability proof in Theorem 3.1 for linear case to conclude∑︁
𝑖,𝑗

𝐵𝑖,𝑗(𝜙ℎ, 𝜓ℎ;𝜙ℎ, 𝜓ℎ) =
1
2

d
d𝑡

∫︁
Ω

(︀
𝜙2

ℎ + 𝜓2
ℎ

)︀
d𝑥+

1
𝜏max

∫︁
Ω

(𝜙ℎ − 𝜓ℎ)2d𝑥. (3.25)

Similar to the proof in Zhang and Shu [19] and Xu and Shu [17], to deal with the nonlinear part of (3.24) we
would like to use the following Taylor expansions:

𝑓(𝑢)− 𝑓(𝑢ℎ) = 𝑓 ′(𝑢)𝜙ℎ − 𝑓 ′(𝑢)𝜙𝑒 − 1
2
𝑓 ′′𝑢 (𝜙ℎ − 𝜙𝑒)2,

𝑓(𝑢)− 𝑓(𝑣ℎ) = 𝑓 ′(𝑢)𝜓ℎ − 𝑓 ′(𝑢)𝜓𝑒 − 1
2
𝑓 ′′𝑣 (𝜓ℎ − 𝜓𝑒)2,

𝑔(𝑢)− 𝑔(𝑢ℎ) = 𝑔′(𝑢)𝜙ℎ − 𝑔′(𝑢)𝜙𝑒 − 1
2
𝑔′′𝑢(𝜙ℎ − 𝜙𝑒)2,

𝑔(𝑢)− 𝑔(𝑣ℎ) = 𝑔′(𝑢)𝜓ℎ − 𝑔′(𝑢)𝜓𝑒 − 1
2
𝑔′′𝑣 (𝜓ℎ − 𝜓𝑒)2,

(3.26)

where 𝑓 ′′𝑢 , 𝑓
′′
𝑣 and 𝑔′′𝑢, 𝑔

′′
𝑣 are the mean values. These imply the following representation,∑︁

𝑖,𝑗

𝐵𝑖,𝑗(𝜙𝑒, 𝜓𝑒;𝜙ℎ, 𝜓ℎ) +
∑︁
𝑖,𝑗

𝐻𝑖,𝑗(𝑓 ;𝑢, 𝑢ℎ, 𝑣ℎ;𝜙ℎ, 𝜓ℎ) = ℒ+𝒩1 +𝒩2 +𝒩3 +𝒩4, (3.27)

where

ℒ =
∑︁
𝑖,𝑗

∫︁
𝐾𝑖,𝑗

(𝜓𝑒)𝑡𝜙ℎ d𝑥d𝑦 +
∑︁
𝑖,𝑗

∫︁
𝐾

𝑖+ 1
2 ,𝑗+ 1

2

(𝜙𝑒)𝑡𝜓ℎ d𝑥d𝑦,

𝒩1 = −
∑︁
𝑖,𝑗

1
𝜏max

∫︁
𝐾𝑖,𝑗

(𝜓𝑒 − 𝜙𝑒)𝜙ℎ d𝑥 d𝑦 −
∑︁
𝑖,𝑗

∫︁
𝐾𝑖,𝑗

(︁
𝑓 ′(𝑢)𝜓𝑒(𝜙ℎ)𝑥 + 𝑔′(𝑢)𝜓𝑒(𝜙ℎ)𝑦

)︁
d𝑥 d𝑦

−
∑︁
𝑖,𝑗

∫︁ 𝑦
𝑗+ 1

2

𝑦
𝑗− 1

2

(𝑓 ′(𝑢)𝜓𝑒[𝜙ℎ])𝑖+ 1
2 ,𝑦d𝑦 −

∑︁
𝑖,𝑗

∫︁ 𝑥
𝑖+ 1

2

𝑥
𝑖− 1

2

(𝑔′(𝑢)𝜓𝑒[𝜙ℎ])𝑥,𝑗+ 1
2
d𝑥,

𝒩2 = −
∑︁
𝑖,𝑗

1
𝜏max

∫︁
𝐾

𝑖+ 1
2 ,𝑗+ 1

2

(𝜙𝑒 − 𝜓𝑒)𝜓ℎ d𝑥 d𝑦 −
∑︁
𝑖,𝑗

∫︁
𝐾

𝑖+ 1
2 ,𝑗+ 1

2

(︁
𝑓 ′(𝑢)𝜙𝑒(𝜓ℎ)𝑥 + 𝑔′(𝑢)𝜙𝑒(𝜓ℎ)𝑦

)︁
d𝑥d𝑦
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−
∑︁
𝑖,𝑗

∫︁ 𝑦𝑗+1

𝑦𝑗

(𝑓 ′(𝑢)𝜙𝑒[𝜓ℎ])𝑖,𝑦d𝑦 −
∑︁
𝑖,𝑗

∫︁ 𝑥𝑖+1

𝑥𝑖

(𝑔′(𝑢)𝜙𝑒[𝜓ℎ])𝑥,𝑗d𝑥,

𝒩3 =
∑︁
𝑖,𝑗

∫︁
𝐾𝑖,𝑗

(︁
𝑓 ′(𝑢)𝜓ℎ(𝜙ℎ)𝑥 + 𝑔′(𝑢)𝜓ℎ(𝜙ℎ)𝑦

)︁
d𝑥 d𝑦 +

∑︁
𝑖,𝑗

∫︁
𝐾

𝑖+ 1
2 ,𝑗+ 1

2

(︁
𝑓 ′(𝑢)𝜙ℎ(𝜓ℎ)𝑥 + 𝑔′(𝑢)𝜙ℎ(𝜓ℎ)𝑦

)︁
d𝑥d𝑦

+
∑︁
𝑖,𝑗

∫︁ 𝑦
𝑗+ 1

2

𝑦
𝑗− 1

2

(𝑓 ′(𝑢)𝜓ℎ[𝜙ℎ])𝑖+ 1
2 ,𝑦d𝑦 +

∑︁
𝑖,𝑗

∫︁ 𝑥
𝑖+ 1

2

𝑥
𝑖− 1

2

(𝑔′(𝑢)𝜓ℎ[𝜙ℎ])𝑥,𝑗+ 1
2
d𝑥

+
∑︁
𝑖,𝑗

∫︁ 𝑦𝑗+1

𝑦𝑗

(𝑓 ′(𝑢)𝜙ℎ[𝜓ℎ])𝑖,𝑦d𝑦 +
∑︁
𝑖,𝑗

∫︁ 𝑥𝑖+1

𝑥𝑖

(𝑔′(𝑢)𝜙ℎ[𝜓ℎ])𝑥,𝑗d𝑥,

𝒩4 = − 1
2

⎛⎝∑︁
𝑖,𝑗

∫︁
𝐾𝑖,𝑗

(︁
𝑓 ′′𝑣 (𝜓ℎ − 𝜓𝑒)2(𝜙ℎ)𝑥 + 𝑔′′𝑣 (𝜓ℎ − 𝜓𝑒)2(𝜙ℎ)𝑦

)︁
d𝑥 d𝑦

+
∑︁
𝑖,𝑗

∫︁
𝐾

𝑖+ 1
2 ,𝑗+ 1

2

(︁
𝑓 ′′𝑢 (𝜙ℎ − 𝜙𝑒)2(𝜓ℎ)𝑥 + 𝑔′′𝑢(𝜙ℎ − 𝜙𝑒)2(𝜓ℎ)𝑦

)︁
d𝑥d𝑦

+
∑︁
𝑖,𝑗

∫︁ 𝑦
𝑗+ 1

2

𝑦
𝑗− 1

2

(︁
𝑓 ′′𝑣 (𝜓ℎ − 𝜓𝑒)2[𝜙ℎ]

)︁
𝑖+ 1

2 ,𝑦
d𝑦 +

∑︁
𝑖,𝑗

∫︁ 𝑥
𝑖+ 1

2

𝑥
𝑖− 1

2

(︁
𝑔′′𝑣 (𝜓ℎ − 𝜓𝑒)2[𝜙ℎ]

)︁
𝑥,𝑗+ 1

2

d𝑥

+
∑︁
𝑖,𝑗

∫︁ 𝑦𝑗+1

𝑦𝑗

(︁
𝑓 ′′𝑢 (𝜙ℎ − 𝜙𝑒)2[𝜓ℎ]

)︁
𝑖,𝑦

d𝑦 +
∑︁
𝑖,𝑗

∫︁ 𝑥𝑖+1

𝑥𝑖

(︁
𝑔′′𝑢(𝜙ℎ − 𝜙𝑒)2[𝜓ℎ]

)︁
𝑥,𝑗

d𝑥

⎞⎠.
By Young’s inequality and (3.15), (3.16) we have

ℒ ≤ 𝐶
(︀
‖𝜙ℎ‖2 + ‖𝜓ℎ‖2

)︀
+ 𝐶ℎ2𝑘+2‖𝑢‖2𝐻𝑘+1(Ω). (3.28)

Next we estimate the nonlinear part. First for the 𝒩1 term, we can rewrite it as

𝒩1 = −
∑︁
𝑖,𝑗

1
𝜏max

∫︁
𝐾𝑖,𝑗

(𝜓𝑒 − 𝜙𝑒)𝜙ℎ d𝑥 d𝑦 −
∑︁
𝑖,𝑗

∫︁
𝐾𝑖,𝑗

(︁
𝑓 ′(𝑢(𝑥𝑖, 𝑦𝑗))𝜓𝑒(𝜙ℎ)𝑥 + 𝑔′(𝑢(𝑥𝑖, 𝑦𝑗))𝜓𝑒(𝜙ℎ)𝑦

)︁
d𝑥d𝑦

−
∑︁
𝑖,𝑗

∫︁ 𝑦
𝑗+ 1

2

𝑦
𝑗− 1

2

(𝑓 ′(𝑢(𝑥𝑖, 𝑦𝑗))𝜓𝑒[𝜙ℎ])𝑖+ 1
2 ,𝑦d𝑦 −

∑︁
𝑖,𝑗

∫︁ 𝑥
𝑖+ 1

2

𝑥
𝑖− 1

2

(𝑔′(𝑢(𝑥𝑖, 𝑦𝑗))𝜓𝑒[𝜙ℎ])𝑥,𝑗+ 1
2
d𝑥

+
∑︁
𝑖,𝑗

∫︁
𝐾𝑖,𝑗

(︁
(𝑓 ′(𝑢(𝑥𝑖, 𝑦𝑗))− 𝑓 ′(𝑢))𝜓𝑒(𝜙ℎ)𝑥 + (𝑔′(𝑢(𝑥𝑖, 𝑦𝑗))− 𝑔′(𝑢))𝜓𝑒(𝜙ℎ)𝑦

)︁
d𝑥d𝑦

+
∑︁
𝑖,𝑗

∫︁ 𝑦
𝑗+ 1

2

𝑦
𝑗− 1

2

((𝑓 ′(𝑢(𝑥𝑖, 𝑦𝑗))− 𝑓 ′(𝑢))𝜓𝑒[𝜙ℎ])𝑖+ 1
2 ,𝑦d𝑦 +

∑︁
𝑖,𝑗

∫︁ 𝑥
𝑖+ 1

2

𝑥
𝑖− 1

2

((𝑔′(𝑢(𝑥𝑖, 𝑦𝑗))− 𝑔′(𝑢))𝜓𝑒[𝜙ℎ])𝑥,𝑗+ 1
2
d𝑥

= −
∑︁
𝑖,𝑗

𝐵̃𝑖,𝑗(𝜙𝑒, 𝜓𝑒;𝜙ℎ) +
∑︁
𝑖,𝑗

∫︁
𝐾𝑖,𝑗

(︁
(𝑓 ′(𝑢(𝑥𝑖, 𝑦𝑗))− 𝑓 ′(𝑢))𝜓𝑒(𝜙ℎ)𝑥 + (𝑔′(𝑢(𝑥𝑖, 𝑦𝑗))− 𝑔′(𝑢))𝜓𝑒(𝜙ℎ)𝑦

)︁
d𝑥d𝑦

+
∑︁
𝑖,𝑗

∫︁ 𝑦
𝑗+ 1

2

𝑦
𝑗− 1

2

((𝑓 ′(𝑢(𝑥𝑖, 𝑦𝑗))− 𝑓 ′(𝑢))𝜓𝑒[𝜙ℎ])𝑖+ 1
2 ,𝑦d𝑦 +

∑︁
𝑖,𝑗

∫︁ 𝑥
𝑖+ 1

2

𝑥
𝑖− 1

2

((𝑔′(𝑢(𝑥𝑖, 𝑦𝑗))− 𝑔′(𝑢))𝜓𝑒[𝜙ℎ])𝑥,𝑗+ 1
2
d𝑥.

By using the inequality in (3.6), (3.15), (3.16) and ‖𝑓 ′(𝑢(𝑥𝑖, 𝑦𝑗))− 𝑓 ′(𝑢)‖𝐿∞(𝐾𝑖,𝑗)
= 𝑂(ℎ), ‖𝑔′(𝑢(𝑥𝑖, 𝑦𝑗)) −

𝑔′(𝑢)‖𝐿∞(𝐾𝑖,𝑗) = 𝑂(ℎ), we have

𝑁1 ≤ −
∑︁

𝑗

𝐵̃𝑖,𝑗(𝜙𝑒, 𝜓𝑒;𝜙ℎ) + 𝐶*‖𝜙ℎ‖2 + 𝐶*ℎ
2𝑘+2‖𝑢‖2𝐻𝑘+1([𝑎,𝑏]). (3.29)
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For 𝐵̃𝑖,𝑗(𝜙𝑒, 𝜓𝑒;𝜙ℎ), we know that for an arbitrary element 𝐾𝑖,𝑗 , we can obtain the following results from
Lemma 3.3, for ∀𝑢 ∈ 𝑃 𝑘+1([𝑥𝑖−1, 𝑥𝑖+1]× [𝑦𝑗−1, 𝑦𝑗+1]), ∀𝜙ℎ ∈ 𝑄𝑘(𝐾𝑖,𝑗)⃒⃒⃒

𝐵̃𝑖,𝑗(P*ℎ𝑢− 𝑢,Q*ℎ𝑢− 𝑢;𝜙ℎ; 𝑓, 𝑔, 𝑢)
⃒⃒⃒
≤ 𝐶ℎ2𝑘+4 + 𝐶‖𝜙ℎ‖2𝐿2(𝐾𝑖,𝑗)

, (3.30)

On each element 𝐾𝑖,𝑗 we consider the following Taylor expansion of 𝑢 around (𝑥𝑖, 𝑦𝑗),

𝑢 = 𝑇𝑢+𝑅𝑢, (3.31)

where

𝑇𝑢 =
𝑘+1∑︁
𝑙=0

𝑙∑︁
𝑚=0

1
𝑚!(𝑙 −𝑚)!

𝜕𝑙𝑢(𝑥𝑖, 𝑦𝑗)
𝜕𝑥𝑙−𝑚𝜕𝑦𝑚

(𝑥− 𝑥𝑖)
𝑙−𝑚(𝑦 − 𝑦𝑗)𝑚

, (3.32)

𝑅𝑢 =
𝑘+2∑︁
𝑚=0

(𝑘 + 2)(𝑥− 𝑥𝑖)
𝑘+2−𝑚(𝑦 − 𝑦𝑗)𝑚

𝑚!(𝑘 + 2−𝑚)!

∫︁ 1

0

(1− 𝑠)𝑘+1
𝜕𝑘+2𝑢

(︁
𝑥

(𝑠)
𝑖 , 𝑦

(𝑠)
𝑗

)︁
𝜕𝑥𝑘+2−𝑚𝜕𝑦𝑚

d𝑠. (3.33)

with 𝑥
(𝑠)
𝑖 = 𝑥𝑖 + 𝑠(𝑥− 𝑥𝑖), 𝑦

(𝑠)
𝑗 = 𝑦𝑗 + 𝑠(𝑦 − 𝑦𝑗). It is obvious that 𝑇𝑢 ∈ 𝑃 𝑘([𝑥𝑖−1, 𝑥𝑖+1]× [𝑦𝑗−1, 𝑦𝑗+1]). Note

that the operator P*ℎ is a linear operator and P*ℎ𝑢 = P*ℎ𝑇𝑢+ P*ℎ𝑅𝑢, we obtain from (3.30) that

𝐵̃𝑖,𝑗(𝜙𝑒, 𝜓𝑒;𝜙ℎ; 𝑓, 𝑔, 𝑢) = 𝐵̃𝑖,𝑗(P*ℎ𝑇𝑢− 𝑇𝑢+ P*ℎ𝑅𝑢−𝑅𝑢,Q*ℎ𝑇𝑢− 𝑇𝑢+ Q*ℎ𝑅𝑢−𝑅𝑢;𝜙ℎ; 𝑓, 𝑔, 𝑢)

= 𝐵̃𝑖,𝑗(P*ℎ𝑇𝑢− 𝑇𝑢,Q*ℎ𝑇𝑢− 𝑇𝑢;𝜙ℎ; 𝑓, 𝑔, 𝑢) + 𝐵̃𝑖,𝑗(P*ℎ𝑅𝑢−𝑅𝑢,Q*ℎ𝑅𝑢−𝑅𝑢;𝜙ℎ; 𝑓, 𝑔, 𝑢)

= 𝐵̃𝑖,𝑗(P*ℎ𝑅𝑢−𝑅𝑢,Q*ℎ𝑅𝑢−𝑅𝑢;𝜙ℎ; 𝑓, 𝑔, 𝑢) + 𝐶ℎ2𝑘+4 + 𝐶‖𝜙ℎ‖2𝐿2(𝐾𝑖,𝑗)
. (3.34)

Recalling the Bramble–Hilbert lemma [2], we have

‖𝑅𝑢‖𝐿∞(𝐾𝑖,𝑗) ≤ 𝐶ℎ𝑘+1|𝑢|𝐻𝑘+2(𝐾𝑖,𝑗). (3.35)

Therefore, by using Young’s inequality, (3.15), (3.16), (3.6) and (3.35), we have

−
∑︁
𝑖,𝑗

𝐵̃𝑖,𝑗(𝜙𝑒, 𝜓𝑒;𝜙ℎ; 𝑓, 𝑔, 𝑢) ≤ 𝐶ℎ2𝑘+2‖𝑢‖𝐻𝑘+2(Ω) + 𝐶‖𝜙ℎ‖2. (3.36)

Hence, for 𝑁1 we have
𝒩1 ≤ (𝐶 + 𝐶*)‖𝜙ℎ‖2 + (𝐶 + 𝐶*)ℎ2𝑘+2‖𝑢‖2𝐻𝑘+2(Ω). (3.37)

Similarly, for 𝑁2 we have

𝒩2 ≤ (𝐶 + 𝐶*)‖𝜓ℎ‖2 + (𝐶 + 𝐶*)ℎ2𝑘+2‖𝑢‖2𝐻𝑘+2(Ω). (3.38)

Similar to the one-dimensional case, the 𝒩3 term can be rewritten as

𝒩3 =
∑︁
𝑖,𝑗

∫︁ 𝑦
𝑗+ 1

2

𝑦
𝑗− 1

2

∫︁ 𝑥𝑖

𝑥
𝑖− 1

2

𝑓 ′(𝑢)(𝜓ℎ𝜙ℎ)𝑥 d𝑥 d𝑦 +
∑︁
𝑖,𝑗

∫︁ 𝑦
𝑗+ 1

2

𝑦
𝑗− 1

2

∫︁ 𝑥
𝑖+ 1

2

𝑥𝑖

𝑓 ′(𝑢)(𝜓ℎ𝜙ℎ)𝑥 d𝑥d𝑦

+
∑︁
𝑖,𝑗

∫︁ 𝑥
𝑖+ 1

2

𝑥
𝑖− 1

2

∫︁ 𝑦𝑗

𝑦
𝑗− 1

2

𝑔′(𝑢)(𝜓ℎ𝜙ℎ)𝑦 d𝑦 d𝑥+
∑︁
𝑖,𝑗

∫︁ 𝑥
𝑖+ 1

2

𝑥
𝑖− 1

2

∫︁ 𝑦
𝑗+ 1

2

𝑦𝑗

𝑔′(𝑢)(𝜓ℎ𝜙ℎ)𝑦𝑑𝑦𝑑𝑥

+
∑︁
𝑖,𝑗

∫︁ 𝑦
𝑗+ 1

2

𝑦
𝑗− 1

2

(𝑓 ′(𝑢)𝜓ℎ[𝜙ℎ])𝑖+ 1
2 ,𝑦d𝑦 +

∑︁
𝑖,𝑗

∫︁ 𝑥
𝑖+ 1

2

𝑥
𝑖− 1

2

(𝑔′(𝑢)𝜓ℎ[𝜙ℎ])𝑥,𝑗+ 1
2
d𝑥

+
∑︁
𝑖,𝑗

∫︁ 𝑦𝑗+1

𝑦𝑗

(𝑓 ′(𝑢)𝜙ℎ[𝜓ℎ])𝑖,𝑦d𝑦 +
∑︁
𝑖,𝑗

∫︁ 𝑥𝑖+1

𝑥𝑖

(𝑔′(𝑢)𝜙ℎ[𝜓ℎ])𝑥,𝑗d𝑥
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=
∑︁
𝑖,𝑗

⎛⎝∫︁ 𝑦
𝑗+ 1

2

𝑦
𝑗− 1

2

(︁(︀
𝑓 ′(𝑢)𝜓ℎ𝜙

−
ℎ

)︀
𝑖+ 1

2 ,𝑦
−
(︀
𝑓 ′(𝑢)𝜓ℎ𝜙

+
ℎ

)︀
𝑖− 1

2 ,𝑦

+
(︀
𝑓 ′(𝑢)𝜙ℎ𝜓

−
ℎ

)︀
𝑖,𝑦
−
(︀
𝑓 ′(𝑢)𝜙ℎ𝜓

+
ℎ

)︀
𝑖,𝑦

+ (𝑓 ′(𝑢)𝜓ℎ[𝜙ℎ])𝑖+ 1
2 ,𝑦

)︁
d𝑦

+
∫︁ 𝑥

𝑖+ 1
2

𝑥
𝑖− 1

2

(︁(︀
𝑔′(𝑢)𝜓ℎ𝜙

−
ℎ

)︀
𝑥,𝑗+ 1

2
−
(︀
𝑔′(𝑢)𝜓ℎ𝜙

+
ℎ

)︀
𝑥,𝑗− 1

2

+
(︀
𝑔′(𝑢)𝜙ℎ𝜓

−
ℎ

)︀
𝑥,𝑗
−
(︀
𝑔′(𝑢)𝜙ℎ𝜓

+
ℎ

)︀
𝑥,𝑗

+ (𝑔′(𝑢)𝜓ℎ[𝜙ℎ])𝑥,𝑗+ 1
2

)︁
d𝑥

+
∫︁ 𝑦𝑗+1

𝑦𝑗

(𝑓 ′(𝑢)𝜙ℎ[𝜓ℎ])𝑖,𝑦d𝑦 +
∫︁ 𝑥𝑖+1

𝑥𝑖

(𝑔′(𝑢)𝜙ℎ[𝜓ℎ])𝑥,𝑗d𝑥−
∫︁

𝐾𝑖,𝑗

(︁
(𝑓 ′(𝑢))𝑥 + (𝑔′(𝑢))𝑦

)︁
𝜙ℎ𝜓ℎ d𝑥d𝑦

)︃

= −
∑︁
𝑖,𝑗

∫︁
𝐾𝑖,𝑗

(︁
(𝑓 ′(𝑢))𝑥 + (𝑔′(𝑢))𝑦

)︁
𝜙ℎ𝜓ℎ d𝑥 d𝑦

≤ 𝐶*‖𝜙ℎ‖‖𝜓ℎ‖ ≤ 𝐶*
(︀
‖𝜙ℎ‖2 + ‖𝜓ℎ‖2

)︀
. (3.39)

𝒩4 is the high order term in Taylor expansion, it’s easy to show that

𝒩4 ≤ 𝐶*ℎ
−1(‖𝑒𝑣‖∞‖𝑒𝑣‖‖𝜙ℎ‖+ ‖𝑒𝑢‖∞‖𝑒𝑢‖‖𝜓ℎ‖)

≤ 𝐶*ℎ
−1(‖𝑒𝑣‖∞(‖𝜙ℎ‖‖𝜓ℎ‖+ ‖𝜙ℎ‖‖𝜓𝑒‖) + ‖𝑒𝑣‖∞(‖𝜓ℎ‖‖𝜙ℎ‖+ ‖𝜓ℎ‖‖𝜙𝑒‖))

≤ 𝐶*
(︀
ℎ−1‖𝑒𝑣‖∞ + ℎ−1‖𝑒𝑢‖∞

)︀(︀
‖𝜙ℎ‖2 + ‖𝜓ℎ‖2

)︀
+ 𝐶*

(︀
ℎ−1‖𝑒𝑣‖∞ + ℎ−1‖𝑒𝑢‖∞

)︀
ℎ2𝑘+2‖𝑢‖2𝐻𝑘+1(Ω).

(3.40)

Then by combining (3.28), (3.37)–(3.40), (3.25), we obtain from (3.24)

1
2

d
d𝑡

∫︁
Ω

(︀
𝜙2

ℎ + 𝜓2
ℎ

)︀
d𝑥d𝑦 ≤

(︀
𝐶 + 𝐶*

(︀
ℎ−1‖𝑒𝑣‖∞ + ℎ−1‖𝑒𝑢‖∞

)︀)︀(︀
‖𝜙ℎ‖2 + ‖𝜓ℎ‖2

)︀
+
(︀
𝐶 + 𝐶*

(︀
ℎ−1‖𝑒𝑣‖∞ + ℎ−1‖𝑒𝑢‖∞

)︀)︀
ℎ2𝑘+2‖𝑢‖2𝐻𝑘+2(Ω).

(3.41)

When 𝑘 ≥ 2, by using a priori assumption (3.21) we have

1
2

d
d𝑡

∫︁
Ω

(︀
𝜙2

ℎ + 𝜓2
ℎ

)︀
d𝑥d𝑦 ≤ (𝐶 + 𝐶*)

(︀
‖𝜙ℎ‖2 + ‖𝜓ℎ‖2

)︀
+ (𝐶 + 𝐶*)ℎ2𝑘+2‖𝑢‖2𝐻𝑘+2(Ω). (3.42)

Finally, by Gronwall’s inequality and the fact that ‖𝜙ℎ(·, ·, 0)‖ ≤ 𝐶ℎ𝑘+1, ‖𝜓ℎ(·, ·, 0)‖ ≤ 𝐶ℎ𝑘+1 we can get

1
2

d
d𝑡

∫︁
Ω

(︀
𝜙2

ℎ + 𝜓2
ℎ

)︀
d𝑥d𝑦 ≤ 𝐶ℎ2𝑘+2. (3.43)

This, together with the approximation result (3.15), (3.16) implies the desired error estimate.
For the case of 𝑘 = 0 or 1, we assume that 𝑓(𝑢) and 𝑔(𝑢) are linear fluxes, namely 𝑓(𝑢) = 𝑐1𝑢, 𝑔(𝑢) = 𝑐2𝑢

with constants 𝑐1, 𝑐2. This is to avoid the need of the a priori assumption (3.20) which is no longer justifiable
in this case. By similar lines of proof and noting that 𝐶* = 0 in this case, we can obtain

1
2

d
d𝑡

∫︁
Ω

(︀
𝜙2

ℎ + 𝜓2
ℎ

)︀
d𝑥 d𝑦 ≤ 𝐶

(︀
‖𝜙ℎ‖2 + ‖𝜓ℎ‖2

)︀
+ 𝐶ℎ2𝑘+2, 𝑘 = 0, 1. (3.44)

By using the Gronwall’s inequality we have∫︁
Ω

(︀
𝜙2

ℎ + 𝜓2
ℎ

)︀
d𝑥 d𝑦 ≤ 𝐶ℎ2𝑘+2, 𝑘 = 0, 1. (3.45)
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This, together with the approximation result (3.15), (3.16), implies the desired error estimate for 𝑘 = 0, 1 with
linear fluxes.

Just like the one-dimensional case, let us justify the a priori assumption (3.20) with 𝑘 ≥ 2. Similar to Zhang
and Shu [19] and Cheng and Shu [1], we can verify this by a proof by contradiction. By (3.19), we can consider
ℎ small enough so that 𝐶ℎ𝑘+1 < 1

2ℎ
2, where 𝐶 is the constant in (3.19) determined by the final time 𝑇 .

Define 𝑡* = 𝑠𝑢𝑝
{︀
𝑡 : ‖𝑢(·, ·, 𝑡)− 𝑢ℎ(·, ·, 𝑡)‖+ ‖𝑢(·, ·, 𝑡)− 𝑣ℎ(·, ·, 𝑡)‖ ≤ ℎ2

}︀
, then we have ‖𝑢(·, ·, 𝑡*)− 𝑢ℎ(·, ·, 𝑡*)‖+

‖𝑢(·, ·, 𝑡*)− 𝑣ℎ(·, ·, 𝑡*)‖ = ℎ2 by continuity if 𝑡* is finite. Clearly, equation (3.19) holds for 𝑡 ≤ 𝑡*, in particular,
‖𝑢(·, ·, 𝑡*) − 𝑢ℎ(·, ·, 𝑡*)‖ + ‖𝑢(·, ·, 𝑡*) − 𝑣ℎ(·, ·, 𝑡*)‖ ≤ 𝐶ℎ𝑘+1 < 1

2ℎ
2. This is a contradiction if 𝑡* < 𝑇 . Hence,

𝑡* ≥ 𝑇 and our a priori assumption is justified. �

4. Numerical examples

In this section, we present numerical examples to verify our theoretical findings. Uniform meshes are used in
all examples. The schemes are integrated in time with the third order SSP Runge–Kutta method. We would
like to compute on elements of degree 𝑘 = 0, 1, 2, 3. We set the CFL number to be 0.05. For 𝑘 = 0, 1, 2 we let
∆𝑡 = CFL · ℎ and ∆𝑡 = CFL · ℎ 4

3 for 𝑘 = 3 where ℎ is the characteristic length of the mesh, so that the time
error will be dominated by the spatial error.

Example 4.1. We solve the one-dimensional Burgers equation given by⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑢𝑡 +

(︂
𝑢2

2

)︂
𝑥

= 0, 𝑥 ∈ [−𝜋, 𝜋],

𝑢(𝑥, 0) = sin(𝑥), 𝑥 ∈ [−𝜋, 𝜋],
𝑢(−𝜋, 𝑡) = 𝑢(𝜋, 𝑡).

(4.1)

The exact solution is obtained by Newton iteration. In this example, we use 𝜏max = ℎ
2𝑘+1 , ℎ = 2𝜋

𝑁 to test the
numerical schemes. The errors and numerical order of accuracy at 𝑇 = 0.5 with 0 ≤ 𝑘 ≤ 3 are listed in Tables 1.

Table 1 shows that the order of convergence of the error achieves the expected (𝑘 + 1)-th order of accuracy.

Example 4.2. We solve the two-dimensional Burgers equation given by⎧⎪⎨⎪⎩𝑢𝑡 +
(︂
𝑢2

2

)︂
𝑥

+
(︂
𝑢2

2

)︂
𝑦

= 0, (𝑥, 𝑦) ∈ [−𝜋, 𝜋]2,

𝑢(𝑥, 𝑦, 0) = sin(𝑥+ 𝑦), (𝑥, 𝑦) ∈ [−𝜋, 𝜋]2,

(4.2)

with periodic boundary condition. The exact solution follows from the solution of one-dimensional Burgers
equation with 𝜉 = 𝑥 + 𝑦. In this example, we use 𝜏max = ℎ

2𝑘+1 , ℎ = 2𝜋
𝑁 to test the numerical schemes. The

central DG scheme is evolved up to 𝑇 = 0.2 when the solution is still smooth. The errors and numerical order
of accuracy with 0 ≤ 𝑘 ≤ 3 are listed in Table 2.

Table 2 shows that the order of convergence of the error achieves the expected (𝑘 + 1)-th order of accuracy.

5. Concluding remarks

In this paper, a priori optimal 𝐿2 error estimates to central DG methods on uniform meshes applied to
nonlinear conservation laws with smooth solutions are proved with polynomial degrees of 𝑘 ≤ 8. The main
techniques used in this paper are special projections and Taylor expansions. Our analysis is carried out both
in one dimension and in two-dimensions for uniform Cartesian meshes and tensor-product polynomial spaces.
We also give some numerical examples to verify the results of our theoretical analysis. The error estimates for
nonlinear conservation laws in this paper were obtained using stability for the linear case and the smoothness
of the exact solution. It is not clear whether stability holds for the scalar nonlinear conservation laws with
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Table 1. Errors and numerical orders of accuracy for Example 4.1 on a uniform mesh of 𝑁
cells. Here 𝜏max = ℎ

2𝑘+1 and final time 𝑇 = 0.5.

𝑘 𝑁 𝐿1 error Order 𝐿2 error Order 𝐿∞ error Order

0

10 6.73E-001 – 3.65E-001 – 5.60E-001 –
20 3.34E-001 1.01 1.83E-001 0.99 3.04E-001 0.88
40 1.66E-001 1.00 9.19E-002 1.00 1.56E-001 0.97
80 8.31E-002 1.00 4.60E-002 1.00 7.90E-002 0.98
160 4.15E-002 1.00 2.30E-002 1.00 3.97E-002 0.99

1

10 6.90E-002 – 4.40E-002 – 8.69E-002 –
20 1.86E-002 1.89 1.25E-002 1.81 2.58E-002 1.75
40 4.73E-003 1.98 3.21E-003 1.97 7.34E-003 1.81
80 1.19E-003 1.99 8.11E-004 1.98 1.95E-003 1.92
160 2.98E-004 2.00 2.04E-004 1.99 4.94E-004 1.98

2

10 9.68E-003 – 8.58E-003 – 2.53E-002 –
20 8.97E-004 3.43 9.29E-004 3.21 4.24E-003 2.58
40 1.13E-004 2.99 1.14E-004 3.02 6.03E-004 2.82
80 1.42E-005 2.99 1.44E-005 2.98 7.87E-005 2.94
160 1.78E-006 3.00 1.81E-006 2.99 9.99E-006 2.98

3

10 6.06E-04 – 6.47E-04 – 3.26E-03 –
20 6.17E-05 3.30 6.91E-05 3.23 2.73E-04 3.58
40 4.54E-06 3.77 5.54E-06 3.64 3.21E-05 3.09
80 2.86E-07 3.99 3.49E-07 3.99 2.06E-06 3.96
160 1.79E-08 4.00 2.19E-08 4.00 1.30E-07 3.99

Table 2. Errors and numerical orders of accuracy for Example 4.2 on a uniform mesh of 𝑁×𝑁
cells. Here 𝜏max = ℎ

2𝑘+1 and final time 𝑇 = 0.2.

𝑘 𝑁 ×𝑁 𝐿1 error Order 𝐿2 error Order 𝐿∞ error Order

0

10× 10 5.57E+00 – 1.22E+00 – 8.16E-01 –
20× 20 2.76E+00 1.01 6.17E-01 0.98 4.87E-01 0.74
40× 40 1.37E+00 1.01 3.09E-01 1.00 2.57E-01 0.92
80× 80 6.81E-01 1.01 1.54E-01 1.00 1.30E-01 0.98
160× 160 3.40E-01 1.00 7.72E-02 1.00 6.54E-02 0.99

1

10× 10 9.12E-01 – 2.34E-01 – 2.60E-01 –
20× 20 2.37E-01 1.94 6.25E-02 1.90 8.19E-02 1.67
40× 40 5.99E-02 1.99 1.60E-02 1.97 2.19E-02 1.90
80× 80 1.50E-02 2.00 4.02E-03 1.99 5.71E-03 1.94
160× 160 3.75E-03 2.00 1.01E-03 2.00 1.45E-03 1.98

2

10× 10 1.49E-01 – 5.03E-02 – 1.22E-01 –
20× 20 1.91E-02 2.97 6.44E-03 2.97 2.14E-02 2.52
40× 40 2.38E-03 3.00 8.33E-04 2.95 3.00E-03 2.83
80× 80 3.00E-04 2.99 1.05E-04 2.98 3.87E-04 2.96
160× 160 3.77E-05 2.99 1.33E-05 2.99 4.87E-05 2.99

3

10× 10 2.06E-02 – 7.45E-03 – 2.20E-02 –
20× 20 2.04E-03 3.33 8.72E-04 3.09 3.30E-03 2.74
40× 40 1.48E-04 3.79 6.09E-05 3.84 2.50E-04 3.72
80× 80 9.70E-06 3.93 4.02E-06 3.92 1.78E-05 3.81
160× 160 6.19E-07 3.97 2.62E-07 3.94 1.17E-06 3.92
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general non-smooth solutions. Such a stability proof for the central DG schemes and the extension of this work
to non-uniform meshes and unstructured triangular meshes are interesting and challenging, and constitutes our
ongoing work.

Appendix A. Collection of technical proofs

In this appendix, we collect the proofs of some technical lemmas and propositions.

A.1. Proof of Lemma 2.2

Proof. We only consider P*ℎ, while the proof for Q*ℎ follows similar lines. For ∀𝑗, we let 𝜉 = 2(𝑥−𝑥𝑗)
ℎ on 𝐼𝑗 , for a

smooth function 𝜔(𝑥) and a 𝑘-th order polynomial 𝜙ℎ(𝑥) on 𝐼𝑗 , and define

𝜔̃(𝜉) = 𝜔

(︂
ℎ

2
𝜉 + 𝑥𝑗

)︂
= 𝜔(𝑥),

𝜑ℎ(𝜉) = 𝜙ℎ

(︂
ℎ

2
𝜉 + 𝑥𝑗

)︂
= 𝜙ℎ(𝑥).

(A.1)

Note that the procedure to find the P*ℎ𝜔̃ ∈ P𝑘([−1, 1]) is to solve for a linear system, so existence of the
projection can be proved by proving its uniqueness. Thus, we only need to prove the uniqueness of the projection
P*ℎ. We set 𝜔𝐼(𝜉) = P*ℎ𝜔̃(𝜉) = P*ℎ𝜔(𝑥) with 𝜔̃(𝜉) = 𝜔(𝑥) = 0, and would like to prove 𝜔𝐼(𝜉) = 0. Then by the
definition of the projection P*ℎ, we have:

𝑃ℎ(𝜔𝐼 ;𝜑ℎ; 𝑓, 𝑢)𝑗 =
ℎ

2𝜏max

(︂∫︁ 0

−1

𝜔𝐼(𝜉 + 1)𝜑ℎ(𝜉) d𝜉 +
∫︁ 1

0

𝜔𝐼(𝜉 − 1)𝜑ℎ(𝜉) d𝜉 −
∫︁ 1

−1

𝜔𝐼(𝜉)𝜑ℎ(𝜉) d𝜉
)︂

+
∫︁ 0

−1

𝑓 ′(𝑢(𝑥𝑗))𝜔𝐼(𝜉 + 1)(𝜑ℎ(𝜉))𝜉 d𝜉 +
∫︁ 1

0

𝑓 ′(𝑢(𝑥𝑗))𝜔𝐼(𝜉 − 1)(𝜑ℎ(𝜉))𝜉 d𝜉

− 𝑓 ′(𝑢(𝑥𝑗))𝜔𝐼(0)(𝜑ℎ(1)− 𝜑ℎ(−1))
= 0, (A.2a)

ℎ

2

∫︁ 1

−1

𝜔𝐼(𝜉) d𝜉 = 0. (A.2b)

Let 𝜑ℎ(𝜉) = 𝜔𝐼(𝜉) ∈ P𝑘([−1, 1]), we get

𝑃ℎ(𝜔𝐼 ;𝜔𝐼 ; 𝑓, 𝑢)𝑗 =
ℎ

2𝜏max

(︂∫︁ 0

−1

𝜔𝐼(𝜉 + 1)𝜔𝐼(𝜉) d𝜉 +
∫︁ 1

0

𝜔𝐼(𝜉 − 1)𝜔𝐼(𝜉) d𝜉 −
∫︁ 1

−1

𝜔𝐼(𝜉)2 d𝜉
)︂

+
∫︁ 0

−1

𝑓 ′(𝑢(𝑥𝑗))𝜔𝐼(𝜉 + 1)(𝜔𝐼(𝜉))𝜉 d𝜉 +
∫︁ 1

0

𝑓 ′(𝑢(𝑥𝑗))𝜔𝐼(𝜉 − 1)(𝜔𝐼(𝜉))𝜉 d𝜉

− 𝑓 ′(𝑢(𝑥𝑗))𝜔𝐼(0)(𝜔𝐼(1)− 𝜔𝐼(−1)) = 0. (A.3)

We rewrite 𝑃ℎ(𝜔𝐼 ;𝜔𝐼 ; 𝑓, 𝑢)𝑗 by a change of variable 𝜉 → 𝜉 + 1 for the integrations over [−1, 0] to get

𝑃ℎ(𝜔𝐼 ;𝜔𝐼 ; 𝑓, 𝑢)𝑗 =
ℎ

2𝜏max

(︂
2
∫︁ 1

0

𝜔𝐼(𝜉 − 1)𝜔𝐼(𝜉) d𝜉 −
∫︁ 1

0

𝜔𝐼(𝜉 − 1)2 d𝜉 −
∫︁ 1

0

𝜔𝐼(𝜉)2 d𝜉
)︂

+
∫︁ 1

0

𝑓 ′(𝑢(𝑥𝑗))𝜔𝐼(𝜉)(𝜔𝐼(𝜉 − 1))𝜉 d𝜉 +
∫︁ 1

0

𝑓 ′(𝑢(𝑥𝑗))𝜔𝐼(𝜉 − 1)(𝜔𝐼(𝜉))𝜉 d𝜉

− 𝑓 ′(𝑢(𝑥𝑗))𝜔𝐼(0)(𝜔𝐼(1)− 𝜔𝐼(−1))
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=− ℎ

2𝜏max

∫︁ 1

0

(𝜔𝐼(𝜉)− 𝜔𝐼(𝜉 − 1))2 d𝜉 = 0. (A.4)

Thus,
𝜔𝐼(𝜉) = 𝜔𝐼(𝜉 − 1), ∀𝜉 ∈ (0, 1). (A.5)

Next we will show that 𝜔𝐼(𝜉) is a constant on [−1, 1]. Let 𝜔𝐼(𝜉) =
∑︀𝑘

𝑖=0 𝑎𝑖𝜉
𝑖, 𝜉 ∈ [−1, 1]. For 𝑘 = 0 it clearly

holds. For 𝑘 ≥ 1, now from (A.5) we have

𝐺(𝜉) := 𝜔𝐼(𝜉)− 𝜔𝐼(𝜉 − 1) =
𝑘∑︁

𝑖=1

𝑎𝑖

(︁
𝜉𝑖 − (𝜉 − 1)𝑖

)︁
= 0, ∀𝜉 ∈ (0, 1). (A.6)

Assume 𝑎𝑖, 1 ≤ 𝑖 ≤ 𝑘 are not all zeros, then 𝐺(𝜉) is a non-zero polynomial of degree at most 𝑘 − 1, thus it has
at most 𝑘− 1 roots, which is a contradiction to (A.6). Hence, we have 𝑎𝑖 = 0, ∀1 ≤ 𝑖 ≤ 𝑘, which indicates that
𝜔𝐼(𝜉) is a constant on [−1, 1]. Hence, by (A.2b), we have

ℎ

2

∫︁ 1

−1

𝜔𝐼(𝜉) d𝜉 = ℎ𝜔𝐼(𝜉) = 0, (A.7)

which implies 𝜔𝐼(𝜉) ≡ 0 on [−1, 1].
We have now finished the proof of uniqueness. Next we move to prove the boundedness. Let 𝜔𝐼(𝑥) = P*ℎ𝜔(𝑥) =∑︀𝑘
𝑖=0 𝑎𝑖𝑥

𝑖 and set the test functions 𝜙ℎ = 𝑥, 𝑥2, . . ., 𝑥𝑘. Then we have

𝑃ℎ

(︀
𝜔𝐼 ;𝑥𝑙; 𝑓, 𝑢

)︀
𝑗

=
𝑘∑︁

𝑖−0

𝛼𝑖𝑙𝑎𝑖, 1 ≤ 𝑙 ≤ 𝑘, (A.8)

∫︁ 1

−1

𝑤𝐼(𝑥) d𝑥 =
𝑘∑︁

𝑖=0

1𝑖+1 − (−1)𝑖+1

𝑖+ 1
𝑎𝑖 =

𝑘∑︁
𝑖=0

𝛼𝑖0𝑎𝑖. (A.9)

By calculation, for 1 ≤ 𝑙 ≤ 𝑘 we have

𝛼𝑖𝑙 =
ℎ

2𝜏max

⎡⎣ 𝑖!𝑙!
(︁

(−1)𝑖 + (−1)𝑙
)︁

(𝑖+ 𝑙 + 1)!
+

(−1)𝑖+𝑙 + 1
𝑖+ 𝑙 + 1

⎤⎦+ 𝑓 ′(𝑢(𝑥𝑗))
𝑙𝑖!(𝑙 − 1)!

(︁
(−1)𝑖 + (−1)𝑙+1

)︁
(𝑖+ 𝑙)!

=
ℎ

2𝜏max
𝜇𝑖𝑙 + 𝑓 ′(𝑢(𝑥𝑗))𝜂𝑖𝑙,

(A.10)

where

𝜇𝑖𝑙 =
𝑖!𝑙!
(︁

(−1)𝑖 + (−1)𝑙
)︁

(𝑖+ 𝑙 + 1)!
+

(−1)𝑖+𝑙 + 1
𝑖+ 𝑙 + 1

,

𝜂𝑖𝑙 =
𝑙𝑖!(𝑙 − 1)!

(︁
(−1)𝑖 + (−1)𝑙+1

)︁
(𝑖+ 𝑙)!

·

(A.11)

We denote 𝛽 = (𝑎0, . . ., 𝑎𝑘)𝑇
, 𝐴(𝑖, 𝑙) = 𝛼𝑖𝑙, 0 ≤ 𝑖 ≤ 𝑘, 0 ≤ 𝑙 ≤ 𝑘 and 𝑏0 =

∫︀ 1

−1
𝑤(𝑥) d𝑥, 𝑏𝑙 = 𝑃ℎ

(︀
𝑤;𝑥𝑙; 𝑓, 𝑢

)︀
, 1 ≤

𝑙 ≤ 𝑘, 𝐵 = (𝑏0, . . ., 𝑏𝑘)𝑇
. We will solve the following linear system to get the coefficients 𝛽,

𝐴𝑇𝛽 = 𝐵. (A.12)

We can rewrite 𝐴 as the following form,

𝐴 =
ℎ

2𝜏max
ℳ+ 𝑓 ′(𝑢(𝑥𝑗))ℋ+ 𝒞, (A.13)
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where

ℳ(𝑖, 𝑙) =
{︂
𝜇𝑖𝑙, 0 ≤ 𝑖 ≤ 𝑘, 1 ≤ 𝑙 ≤ 𝑘,

0, 0 ≤ 𝑖 ≤ 𝑘, 𝑙 = 0,
(A.14)

ℋ(𝑖, 𝑙) =
{︂
𝜂𝑖𝑙, 0 ≤ 𝑖 ≤ 𝑘, 1 ≤ 𝑙 ≤ 𝑘,

0, 0 ≤ 𝑖 ≤ 𝑘, 𝑙 = 0,
(A.15)

𝒞(𝑖, 𝑙) =
{︂

0, 0 ≤ 𝑖 ≤ 𝑘, 1 ≤ 𝑙 ≤ 𝑘,

𝛼𝑖0, 0 ≤ 𝑖 ≤ 𝑘, 𝑙 = 0.
(A.16)

From the formulation of the scheme (2.6) we have 𝜏max = 𝑐 ℎ, here 𝑐 is a constant dictated by stability. Then
we have

𝐴𝑇 =
1
2𝑐
ℳ𝑇 + 𝑓 ′(𝑢(𝑥𝑗))ℋ𝑇 + 𝒞𝑇 . (A.17)

From (A.11) we know that

𝜇𝑖𝑙 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

2((𝑖+ 𝑙)! + 𝑖!𝑙!)
(𝑖+ 𝑙 + 1)!

, if 𝑖 and 𝑙 are even,

2((𝑖+ 𝑙)!− 𝑖!𝑙!)
(𝑖+ 𝑙 + 1)!

, if 𝑖 and 𝑙 are odd,

0, if (𝑖+ 𝑙) is odd,

(A.18)

𝜂𝑖𝑙 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−2𝑙𝑖!(𝑙 − 1)!
(𝑖+ 𝑙)!

, if 𝑖 is odd and 𝑙 is even,

2𝑙𝑖!(𝑙 − 1)!
(𝑖+ 𝑙)!

, if 𝑖 is even and 𝑙 is odd,

0, if (𝑖+ 𝑙) is even,

(A.19)

and from (A.9) we have

𝛼𝑖0 =

⎧⎨⎩
2

𝑖+ 1
, if 𝑖 is even,

0, if 𝑖 is odd.
(A.20)

Hence, we can estimate the infinity norm of 𝐴𝑇 ,

⃦⃦
𝐴𝑇
⃦⃦
∞ =

⃦⃦⃦⃦
1
2𝑐
ℳ𝑇 + 𝑓 ′(𝑢(𝑥𝑗))ℋ𝑇 + 𝒞𝑇

⃦⃦⃦⃦
∞

= max

{︃
𝑘∑︁

𝑖=0

|𝛼𝑖0|, max
1≤𝑙≤𝑘

𝑘∑︁
𝑖=0

(︂
1
2𝑐
|𝜇𝑖𝑙|+ |𝑓 ′(𝑢(𝑥𝑗))𝜂𝑖𝑙|

)︂}︃
.

(A.21)

Since 𝜇𝑖𝑙 > 0 for (𝑖+ 𝑙) is even and 𝑓 ′(𝑢(𝑥𝑗)) is bounded, then we have⃦⃦
𝐴𝑇
⃦⃦
∞ ≤ ℰ , (A.22)

where ℰ is a constant which depends on polynomial degree 𝑘, the bound of 𝑓 ′(𝑢(𝑥𝑗)) and constant 𝑐. Since the
first row of the matrix 𝐴𝑇 are constants 𝛼𝑖0 which only depends on degree 𝑘 and the other elements of 𝐴𝑇

either only contain 1
2𝑐 or only 𝑓 ′(𝑢(𝑥𝑗)), the by the definition of determinant we have

det
(︀
𝐴𝑇
)︀

=
𝑘∑︁

𝑖=0

𝒟𝑖(𝑘)
(︂

1
2𝑐

)︂𝑖

(𝑓 ′(𝑢(𝑥𝑗)))𝑘−𝑖
, (A.23)
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where 𝒟𝑖(𝑘) is a constant which only depends on degree 𝑘. Notice that if 𝑓 ′(𝑢(𝑥𝑗)) = 0 in (A.23), then
det
(︀
𝐴𝑇
)︀

= 𝒟𝑘(𝑘)
(︀

1
2𝑐

)︀𝑘. From the previous proof of the existence and uniqueness of the projection, we know
that 𝐴𝑇 is always invertible which means det

(︀
𝐴𝑇
)︀
̸= 0 holds for any value of 𝑓 ′(𝑢(𝑥𝑗)). Hence, here we have

𝒟𝑘(𝑘) ̸= 0. Therefore, we can take 𝑐 small enough so that⃒⃒⃒⃒
⃒
𝑘−1∑︁
𝑖=0

𝒟𝑖(𝑘)
(︂

1
2𝑐

)︂𝑖

(𝑓 ′(𝑢(𝑥𝑗)))𝑘−𝑖

⃒⃒⃒⃒
⃒ ≤ |𝒟𝑘(𝑘)|

2

(︂
1
2𝑐

)︂𝑘

. (A.24)

We emphasize that this choice of 𝑐 is only a sufficient condition for our proof, in numerical computation 𝑐 should
be chosen as the largest CFL number for linear stability to avoid excessive numerical dissipation. We now have

⃒⃒
det
(︀
𝐴𝑇
)︀⃒⃒
≥ |𝒟𝑘(𝑘)|

2

(︂
1
2𝑐

)︂𝑘

> 0, (A.25)

holds for all 𝑓 ′(𝑢(𝑥𝑗)). Next let 𝜎𝑖

(︀
𝐴𝑇
)︀

denotes the 𝑖-th singular value of 𝐴𝑇 which are in descending order
from 0 to 𝑘, 𝜎max

(︀
𝐴𝑇
)︀

and 𝜎min

(︀
𝐴𝑇
)︀

represent the largest and smallest singular value of matrix 𝐴𝑇 . Then we
have ⃦⃦

𝐴−𝑇
⃦⃦

2
=

1
𝜎min(𝐴𝑇 )

≤ 1
𝜎min(𝐴𝑇 )

·

(︃
𝑘−1∏︁
𝑖=0

𝜎max

(︀
𝐴𝑇
)︀

𝜎𝑖(𝐴𝑇 )

)︃

=

(︀
𝜎max

(︀
𝐴𝑇
)︀)︀𝑘∏︀𝑘

𝑖=0 𝜎𝑖(𝐴𝑇 )

=

⃦⃦
𝐴𝑇
⃦⃦𝑘

2

|det(𝐴𝑇 )|

≤ 2(2𝑐)𝑘

𝒟𝑘(𝑘)

⃦⃦
𝐴𝑇
⃦⃦𝑘

2
.

(A.26)

By the equivalence of norms ⃦⃦
𝐴𝑇
⃦⃦

2
≤
√
𝑘 + 1

⃦⃦
𝐴𝑇
⃦⃦
∞, (A.27)⃦⃦

𝐴−𝑇
⃦⃦
∞ ≤

√
𝑘 + 1

⃦⃦
𝐴−𝑇

⃦⃦
2
, (A.28)

we have ⃦⃦
𝐴−𝑇

⃦⃦
∞ ≤ 2(2𝑐)𝑘(𝑘 + 1)

𝑘+1
2

𝒟𝑘(𝑘)
ℰ𝑘. (A.29)

It is obvious that ‖𝐵‖∞ ≤ 𝐶‖𝑤‖∞ due to the boundedness of 𝑓 ′(𝑢(𝑥𝑗)). Here 𝐶 is a constant which depends
on degree 𝑘 and the bound of 𝑓 ′(𝑢(𝑥𝑗)). Hence, for the coefficients 𝛽 we have

‖𝛽‖∞ ≤
⃦⃦
𝐴−𝑇

⃦⃦
∞‖𝐵‖∞ ≤ 2(2𝑐)𝑘(𝑘 + 1)

𝑘+1
2

𝒟𝑘(𝑘)
ℰ𝑘𝐶‖𝑤‖∞. (A.30)

which immediately results in the boundedness of P*ℎ𝑤. �
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A.2. Proof of Proposition 2.3

Let 𝑢𝐼 = P*ℎ𝑢 ∈ 𝑉 𝑘
ℎ , 𝑣𝐼 = Q*ℎ𝑢 ∈ 𝑊 𝑘

ℎ , 𝑎𝑗 = 𝑓 ′(𝑢(𝑥𝑗)), 𝑎𝑗+ 1
2

= 𝑓 ′
(︁
𝑢
(︁
𝑥𝑗+ 1

2

)︁)︁
, by the definition of 𝐵̃𝑗 and

𝐵̂𝑗+ 1
2
, we have

𝐵̃𝑗(𝑢𝐼 , 𝑣𝐼 ;𝜙ℎ; 𝑓, 𝑢)− 𝐵̃𝑗(𝑢, 𝑢;𝜙ℎ; 𝑓, 𝑢)

=
1

𝜏max

∫︁ 𝑥
𝑗+ 1

2

𝑥
𝑗− 1

2

(𝑣𝐼 − 𝑢𝐼)𝜙ℎd𝑥+ 𝑎𝑗

⎡⎣∫︁ 𝑥
𝑗+ 1

2

𝑥
𝑗− 1

2

(𝑣𝐼 − 𝑢)(𝜙ℎ)𝑥

−
(︁
𝑣𝐼

(︁
𝑥𝑗+ 1

2

)︁
− 𝑢
(︁
𝑥𝑗+ 1

2

)︁)︁
𝜙ℎ

(︁
𝑥−

𝑗+ 1
2

)︁
+
(︁
𝑣𝐼

(︁
𝑥𝑗− 1

2

)︁
− 𝑢
(︁
𝑥𝑗− 1

2

)︁)︁
𝜙ℎ

(︁
𝑥+

𝑗− 1
2

)︁⎤⎦
= 𝑃ℎ(𝑢𝐼 − 𝑢;𝜙ℎ; 𝑓, 𝑢)𝑗 +

1
𝜏max

[︃∫︁ 𝑥
𝑗+ 1

2

𝑥𝑗

(︂
𝑣𝐼 − 𝑢− 𝑢𝐼

(︂
𝑥− ℎ

2

)︂
+ 𝑢

(︂
𝑥− ℎ

2

)︂)︂
𝜙ℎ d𝑥

+
∫︁ 𝑥𝑗

𝑥
𝑗− 1

2

(︂
𝑣𝐼 − 𝑢− 𝑢𝐼

(︂
𝑥+

ℎ

2

)︂
+ 𝑢

(︂
𝑥+

ℎ

2

)︂)︂
𝜙ℎ d𝑥

⎤⎦
+ 𝑎𝑗

[︃∫︁ 𝑥
𝑗+ 1

2

𝑥𝑗

(︂
𝑣𝐼 − 𝑢− 𝑢𝐼

(︂
𝑥− ℎ

2

)︂
+ 𝑢

(︂
𝑥− ℎ

2

)︂)︂
(𝜙ℎ)𝑥 d𝑥

+
∫︁ 𝑥𝑗

𝑥
𝑗− 1

2

(︂
𝑣𝐼 − 𝑢− 𝑢𝐼

(︂
𝑥+

ℎ

2

)︂
+ 𝑢

(︂
𝑥+

ℎ

2

)︂)︂
(𝜙ℎ)𝑥 d𝑥

−
(︁
𝑣𝐼

(︁
𝑥𝑗+ 1

2

)︁
− 𝑢
(︁
𝑥𝑗+ 1

2

)︁
− 𝑢𝐼(𝑥𝑗) + 𝑢(𝑥𝑗)

)︁
𝜙ℎ

(︁
𝑥−

𝑗+ 1
2

)︁
+
(︁
𝑣𝐼

(︁
𝑥𝑗− 1

2

)︁
− 𝑢
(︁
𝑥𝑗− 1

2

)︁
− 𝑢𝐼(𝑥𝑗) + 𝑢(𝑥𝑗)

)︁
𝜙ℎ

(︁
𝑥+

𝑗− 1
2

)︁⎤⎦, (A.31)

and

𝐵̂𝑗+ 1
2
(𝑢𝐼 , 𝑣𝐼 ;𝜓ℎ; 𝑓, 𝑢)− 𝐵̂𝑗+ 1

2
(𝑢, 𝑢;𝜓ℎ; 𝑓, 𝑢)

=
1

𝜏max

∫︁ 𝑥𝑗+1

𝑥𝑗

(𝑢𝐼 − 𝑣𝐼)𝜓ℎd𝑥+ 𝑎𝑗+ 1
2

[︃∫︁ 𝑥𝑗+1

𝑥𝑗

(𝑢𝐼 − 𝑢)(𝜓ℎ)𝑥

− (𝑢𝐼(𝑥𝑗+1)− 𝑢(𝑥𝑗+1))𝜓ℎ

(︀
𝑥−𝑗+1

)︀
+ (𝑢𝐼(𝑥𝑗)− 𝑢(𝑥𝑗))𝜓ℎ

(︀
𝑥+

𝑗

)︀⎤⎦
= 𝑄̃ℎ(𝑣𝐼 − 𝑢;𝜓ℎ; 𝑓, 𝑢)𝑗+ 1

2
+

1
𝜏max

⎡⎣∫︁ 𝑥𝑗+1

𝑥
𝑗+ 1

2

(︂
𝑢𝐼 − 𝑢− 𝑣𝐼

(︂
𝑥− ℎ

2

)︂
+ 𝑢

(︂
𝑥− ℎ

2

)︂)︂
𝜓ℎ d𝑥

+
∫︁ 𝑥

𝑗+ 1
2

𝑥𝑗

(︂
𝑢𝐼 − 𝑢− 𝑣𝐼

(︂
𝑥+

ℎ

2

)︂
+ 𝑢

(︂
𝑥+

ℎ

2

)︂)︂
𝜓ℎ d𝑥

⎤⎦
+ 𝑎𝑗+ 1

2

⎡⎣∫︁ 𝑥𝑗+1

𝑥
𝑗+ 1

2

(︂
𝑢𝐼 − 𝑢− 𝑣𝐼

(︂
𝑥− ℎ

2

)︂
+ 𝑢

(︂
𝑥− ℎ

2

)︂)︂
(𝜓ℎ)𝑥 d𝑥
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+
∫︁ 𝑥

𝑗+ 1
2

𝑥𝑗

(︂
𝑢𝐼 − 𝑢− 𝑣𝐼

(︂
𝑥+

ℎ

2

)︂
+ 𝑢

(︂
𝑥+

ℎ

2

)︂)︂
(𝜓ℎ)𝑥 d𝑥

−
(︁
𝑢𝐼(𝑥𝑗+1)− 𝑢(𝑥𝑗+1)− 𝑣𝐼

(︁
𝑥𝑗+ 1

2

)︁
+ 𝑢
(︁
𝑥𝑗+ 1

2

)︁)︁
𝜓ℎ

(︀
𝑥−𝑗+1

)︀
+
(︁
𝑢𝐼(𝑥𝑗)− 𝑢(𝑥𝑗)− 𝑣𝐼

(︁
𝑥𝑗+ 1

2

)︁
+ 𝑢
(︁
𝑥𝑗+ 1

2

)︁)︁
𝜓ℎ

(︀
𝑥+

𝑗

)︀⎤⎦. (A.32)

For 𝑢 = 𝑥𝑘+1, to get the desired result we need to estimate⃦⃦⃦
𝑣𝐼 − 𝑥𝑘+1 − 𝑢𝐼

(︀
𝑥+ ℎ

2

)︀
+
(︀
𝑥+ ℎ

2

)︀𝑘+1
⃦⃦⃦

𝐿2

(︂
𝑥

𝑗− 1
2

,𝑥𝑗

)︂,
⃦⃦⃦
𝑣𝐼 − 𝑥𝑘+1 − 𝑢𝐼

(︀
𝑥− ℎ

2

)︀
+
(︀
𝑥− ℎ

2

)︀𝑘+1
⃦⃦⃦

𝐿2

(︂
𝑥𝑗 ,𝑥

𝑗+ 1
2

)︂

and
⃦⃦⃦
𝑢𝐼 − 𝑥𝑘+1 − 𝑣𝐼

(︀
𝑥+ ℎ

2

)︀
+
(︀
𝑥+ ℎ

2

)︀𝑘+1
⃦⃦⃦

𝐿2

(︂
𝑥𝑗 ,𝑥

𝑗+ 1
2

)︂,
⃦⃦⃦
𝑢𝐼 − 𝑥𝑘+1 − 𝑣𝐼

(︀
𝑥− ℎ

2

)︀
+
(︀
𝑥− ℎ

2

)︀𝑘+1
⃦⃦⃦

𝐿2

(︂
𝑥

𝑗+ 1
2

,𝑥𝑗+1

)︂.

We will only show that
⃦⃦⃦
𝑣𝐼 − 𝑥𝑘+1 − 𝑢𝐼

(︀
𝑥− ℎ

2

)︀
+
(︀
𝑥− ℎ

2

)︀𝑘+1
⃦⃦⃦

𝐿2

(︂
𝑥𝑗 ,𝑥

𝑗+ 1
2

)︂ ≤ 𝐶ℎ2𝑘+5 with 𝑘 = 0, 1. . ., 8, as the

other cases are similar.
For 𝑘 = 0, 1. . ., 8, by using the definition of the projection and the property that

⃦⃦⃦
𝑎𝑗 − 𝑎𝑗+ 1

2

⃦⃦⃦
𝐿∞(𝐼𝑗)

=⃦⃦⃦
𝑎𝑗 − 𝑎𝑗− 1

2

⃦⃦⃦
𝐿∞(𝐼𝑗)

= 𝑂(ℎ) we have the following results. For 𝑢 = 𝑥𝑘+1, by the definition (for 𝑘 = 0 we only

have the first equation in the definition),∫︁ 𝑥
𝑗+ 1

2

𝑥
𝑗− 1

2

𝑢𝐼 d𝑥 =
∫︁ 𝑥

𝑗+ 1
2

𝑥
𝑗− 1

2

𝑥𝑘+1d𝑥,

𝑃ℎ

(︀
𝑢𝐼 ;𝑥𝑙; 𝑓, 𝑢

)︀
𝑗

= 𝑃ℎ

(︀
𝑥𝑘+1;𝑥𝑙; 𝑓, 𝑢

)︀
𝑗
, 𝑙 = 1, . . ., 𝑘,∫︁ 𝑥𝑗+1

𝑥𝑗

𝑣𝐼 d𝑥 =
∫︁ 𝑥𝑗+1

𝑥𝑗

𝑥𝑘+1d𝑥,

𝑄̃ℎ

(︀
𝑣𝐼 ;𝑥𝑙; 𝑓, 𝑢

)︀
𝑗+ 1

2
= 𝑄̃ℎ

(︀
𝑥𝑘+1;𝑥𝑙; 𝑓, 𝑢

)︀
𝑗+ 1

2
, 𝑙 = 1, . . ., 𝑘,

(A.33)

then we have

𝑢𝐼 =
𝑘∑︁

𝑙=0

𝛼𝑙𝑥
𝑙, ∀𝑥 ∈ 𝐼𝑗 ,

𝑣𝐼 =
𝑘∑︁

𝑙=0

𝛽𝑙𝑥
𝑙, ∀𝑥 ∈ 𝐼𝑗+ 1

2
.

(A.34)

Here 𝛼𝑙 and 𝛽𝑙 are the coefficients obtained by solving the local linear system (A.33). We leave the detailed
calculations and formulas for 𝑘 up to 8 in a separate file, as a supplement to this paper, since they are too
lengthy. We then have, 𝑘 = 0, 1, . . . , 8, that

∫︁ 𝑥
𝑗+ 1

2

𝑥𝑗

(︃
𝑣𝐼 − 𝑥2 − 𝑢𝐼

(︂
𝑥− ℎ

2

)︂
+
(︂
𝑥− ℎ

2

)︂2
)︃2

d𝑥 = 𝑂
(︀
ℎ2𝑘+5

)︀
, (A.35)

and therefore we can prove that⃦⃦⃦⃦
⃦𝑣𝐼 − 𝑥𝑘+1 − 𝑢𝐼

(︂
𝑥− ℎ

2

)︂
+
(︂
𝑥− ℎ

2

)︂𝑘+1
⃦⃦⃦⃦
⃦

2

𝐿2

(︂
𝑥𝑗 ,𝑥

𝑗+ 1
2

)︂ ≤ 𝐶ℎ2𝑘+5. (A.36)
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Then by using Holder’s inequality and Young’s inequality, we obtain from (A.31)⃒⃒⃒
𝐵̃𝑗(𝑢𝐼 , 𝑣𝐼 ;𝜙ℎ; 𝑓, 𝑢)− 𝐵̃𝑗(𝑢, 𝑢;𝜙ℎ; 𝑓, 𝑢)

⃒⃒⃒
≤ 𝐶ℎ2𝑘+3 + 𝐶‖𝜙ℎ‖2𝐿2(𝐼𝑗)

. (A.37)

Similarly, for 𝐵̂𝑗+ 1
2

we have⃒⃒⃒
𝐵̂𝑗+ 1

2
(𝑢𝐼 , 𝑣𝐼 ;𝜓ℎ; 𝑓, 𝑢)− 𝐵̂𝑗+ 1

2
(𝑢, 𝑢;𝜓ℎ; 𝑓, 𝑢)

⃒⃒⃒
≤ 𝐶ℎ2𝑘+3 + 𝐶‖𝜓ℎ‖2

𝐿2

(︂
𝐼

𝑗+ 1
2

)︂. (A.38)

A.3. Proof of Lemma 3.2

Proof. Let 𝑢𝐼 denote P*ℎ𝑢. Assume that 𝑢 ≡ 0. Take 𝜙ℎ = 𝑢𝐼 in (3.14), we get

0 = 𝑃ℎ(𝑢𝐼 , 𝑢𝐼)𝑖,𝑗 =
1

𝜏max

⎛⎝∫︁ 𝑦𝑗

𝑦
𝑗− 1

2

∫︁ 𝑥𝑖

𝑥
𝑖− 1

2

2𝑢𝐼

(︂
𝑥+

ℎ

2
, 𝑦 +

ℎ

2

)︂
𝑢𝐼(𝑥, 𝑦)

+ 2𝑢𝐼

(︂
𝑥+

ℎ

2
, 𝑦

)︂
𝑢𝐼

(︂
𝑥, 𝑦 +

ℎ

2

)︂
d𝑥d𝑦

−
∫︁ 𝑦𝑗

𝑦
𝑗− 1

2

∫︁ 𝑥𝑖

𝑥
𝑖− 1

2

𝑢𝐼(𝑥, 𝑦)2 + 𝑢𝐼

(︂
𝑥, 𝑦 +

ℎ

2

)︂2

+ 𝑢𝐼

(︂
𝑥+

ℎ

2
, 𝑦

)︂2

+ 𝑢𝐼

(︂
𝑥+

ℎ

2
, 𝑦 +

ℎ

2

)︂2

d𝑥d𝑦

)︃

=− 1
𝜏max

⎛⎝∫︁ 𝑦𝑗

𝑦
𝑗− 1

2

∫︁ 𝑥𝑖

𝑥
𝑖− 1

2

(︂
𝑢𝐼

(︂
𝑥+

ℎ

2
, 𝑦 +

ℎ

2

)︂
− 𝑢𝐼(𝑥, 𝑦)

)︂2

d𝑥 d𝑦

+
∫︁ 𝑦𝑗

𝑦
𝑗− 1

2

∫︁ 𝑥𝑖

𝑥
𝑖− 1

2

(︂
𝑢𝐼

(︂
𝑥+

ℎ

2
, 𝑦

)︂
− 𝑢𝐼

(︂
𝑥, 𝑦 +

ℎ

2

)︂)︂2

d𝑥d𝑦

⎞⎠, (A.39)

where we have again used change of variable to shift all the integration regions to the same subcell
(︁
𝑥𝑖− 1

2
, 𝑥𝑖

)︁
×(︁

𝑦𝑗− 1
2
, 𝑦𝑗

)︁
to simplify the formulation. Then

𝑢𝐼(𝑥, 𝑦) = 𝑢𝐼

(︂
𝑥+

ℎ

2
, 𝑦 +

ℎ

2

)︂
, 𝑢𝐼

(︂
𝑥+

ℎ

2
, 𝑦

)︂
= 𝑢𝐼

(︂
𝑥, 𝑦 +

ℎ

2

)︂
,∀(𝑥, 𝑦) ∈

(︁
𝑥𝑖− 1

2
, 𝑥𝑖

)︁
×
(︁
𝑦𝑗− 1

2
, 𝑦𝑗

)︁
.

Thus 𝑢𝐼(𝑥, 𝑦) ≡ 𝑐0 on 𝐾𝑖,𝑗 , 𝑐0 is a constant. By (3.13) we immediately get 𝑢𝐼 ≡ 0, and we have finished the
proof of uniqueness, hence also existence. We note that this projection is a local projection, hence we can make
a change of variables to the reference element [−1, 1]× [−1, 1] by taking 𝜉 = 2(𝑥−𝑥𝑖)

ℎ and 𝜂 = 2(𝑦−𝑦𝑗)
ℎ . Taking a

similar derivation as in the proof (Sect. A.1), we obtain

‖𝑢𝐼‖𝐿∞(𝐾𝑖,𝑗) ≤ 𝐶(𝑘)‖𝑢‖𝐿∞(𝐾𝑖,𝑗). (A.40)

Again standard approximation theory [2] implies the optimal approximating estimates. �

A.4. Proof of Lemma 3.3

Proof. Let 𝑢𝐼 = P*ℎ𝑢 ∈ 𝑋𝑘
ℎ , 𝑣𝐼 = Q*ℎ𝑢 ∈ 𝑌 𝑘

ℎ , and 𝑎𝑖,𝑗 = 𝑓 ′(𝑢(𝑥𝑖, 𝑦𝑗)), 𝑏𝑖,𝑗 = 𝑔′(𝑢(𝑥𝑖, 𝑦𝑗)), 𝑎𝑖+ 1
2 ,𝑗+ 1

2
=

𝑓 ′
(︁
𝑢
(︁
𝑥𝑖+ 1

2
, 𝑦𝑗+ 1

2

)︁)︁
, 𝑏𝑖+ 1

2 ,𝑗+ 1
2

= 𝑔′
(︁
𝑢
(︁
𝑥𝑖+ 1

2
, 𝑦𝑗+ 1

2

)︁)︁
, then by the definition of 𝐵̃𝑖,𝑗 and 𝐵̂𝑖+ 1

2 ,𝑗+ 1
2
, we have
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𝐵̃𝑖,𝑗(𝑢𝐼 , 𝑣𝐼 ;𝜙ℎ; 𝑓, 𝑔, 𝑢)− 𝐵̃𝑖,𝑗(𝑢, 𝑢;𝜙ℎ; 𝑓, 𝑔, 𝑢)

=
1

𝜏max

∫︁
𝐾𝑖,𝑗

(𝑣𝐼 − 𝑢𝐼)𝜙ℎ d𝑥 d𝑦 + 𝑎𝑖,𝑗

[︃∫︁
𝐾𝑖,𝑗

(𝑣𝐼 − 𝑢)(𝜙ℎ)𝑥 d𝑥d𝑦

−
∫︁ 𝑦

𝑗+ 1
2

𝑦
𝑗− 1

2

(︁
(𝑣𝐼 − 𝑢)

(︁
𝑥𝑖+ 1

2
, 𝑦
)︁
𝜙ℎ

(︁
𝑥−

𝑖+ 1
2
, 𝑦
)︁
− (𝑣𝐼 − 𝑢)

(︁
𝑥𝑖− 1

2
, 𝑦
)︁
𝜙ℎ

(︁
𝑥+

𝑖− 1
2
, 𝑦
)︁)︁]︃

+ 𝑏𝑖,𝑗

[︃∫︁
𝐾𝑖,𝑗

(𝑣𝐼 − 𝑢)(𝜙ℎ)𝑦 d𝑥 d𝑦 −
∫︁ 𝑥

𝑖+ 1
2

𝑥
𝑖− 1

2

(︁
(𝑣𝐼 − 𝑢)

(︁
𝑥, 𝑦𝑗+ 1

2

)︁
𝜙ℎ

(︁
𝑥, 𝑦−

𝑗+ 1
2

)︁

− (𝑣𝐼 − 𝑢)
(︁
𝑥, 𝑦𝑗− 1

2

)︁
𝜙ℎ

(︁
𝑥, 𝑦+

𝑗− 1
2

)︁)︁]︃
= 𝑃ℎ(𝑢𝐼 − 𝑢;𝜙ℎ; 𝑓, 𝑔, 𝑢)𝑖,𝑗

+
1

𝜏max

[︃∫︁ 𝑥
𝑖+ 1

2

𝑥𝑖

∫︁ 𝑦
𝑗+ 1

2

𝑦𝑗

(︂
𝑣𝐼(𝑥, 𝑦)− 𝑢(𝑥, 𝑦)− 𝑢𝐼

(︂
𝑥− ℎ

2
, 𝑦 − ℎ

2

)︂
+ 𝑢

(︂
𝑥− ℎ

2
, 𝑦 − ℎ

2

)︂)︂
𝜙ℎ d𝑥 d𝑦

+
∫︁ 𝑥𝑖

𝑥
𝑖− 1

2

∫︁ 𝑦
𝑗+ 1

2

𝑦𝑗

(︂
𝑣𝐼(𝑥, 𝑦)− 𝑢(𝑥, 𝑦)− 𝑢𝐼

(︂
𝑥+

ℎ

2
, 𝑦 − ℎ

2

)︂
+ 𝑢

(︂
𝑥+

ℎ

2
, 𝑦 − ℎ

2

)︂)︂
𝜙ℎ d𝑥d𝑦

+
∫︁ 𝑥

𝑖+ 1
2

𝑥𝑖

∫︁ 𝑦𝑗

𝑦
𝑗− 1

2

(︂
𝑣𝐼(𝑥, 𝑦)− 𝑢(𝑥, 𝑦)− 𝑢𝐼

(︂
𝑥− ℎ

2
, 𝑦 +

ℎ

2

)︂
+ 𝑢

(︂
𝑥− ℎ

2
, 𝑦 +

ℎ

2

)︂)︂
𝜙ℎ d𝑥d𝑦

+
∫︁ 𝑥𝑖

𝑥
𝑖− 1

2

∫︁ 𝑦𝑗

𝑦
𝑗− 1

2

(︂
𝑣𝐼(𝑥, 𝑦)− 𝑢(𝑥, 𝑦)− 𝑢𝐼

(︂
𝑥+

ℎ

2
, 𝑦 +

ℎ

2

)︂
+ 𝑢

(︂
𝑥+

ℎ

2
, 𝑦 +

ℎ

2

)︂)︂
𝜙ℎ d𝑥d𝑦

]︃

+ 𝑎𝑖,𝑗

[︃∫︁ 𝑥
𝑖+ 1

2

𝑥𝑖

∫︁ 𝑦
𝑗+ 1

2

𝑦𝑗

(︂
𝑣𝐼(𝑥, 𝑦)− 𝑢(𝑥, 𝑦)− 𝑢𝐼

(︂
𝑥− ℎ

2
, 𝑦 − ℎ

2

)︂
+ 𝑢

(︂
𝑥− ℎ

2
, 𝑦 − ℎ

2

)︂)︂
(𝜙ℎ)𝑥 d𝑥d𝑦

+
∫︁ 𝑥𝑖

𝑥
𝑖− 1

2

∫︁ 𝑦
𝑗+ 1

2

𝑦𝑗

(︂
𝑣𝐼(𝑥, 𝑦)− 𝑢(𝑥, 𝑦)− 𝑢𝐼

(︂
𝑥+

ℎ

2
, 𝑦 − ℎ

2

)︂
+ 𝑢

(︂
𝑥+

ℎ

2
, 𝑦 − ℎ

2

)︂)︂
(𝜙ℎ)𝑥 d𝑥d𝑦

+
∫︁ 𝑥

𝑖+ 1
2

𝑥𝑖

∫︁ 𝑦𝑗

𝑦
𝑗− 1

2

(︂
𝑣𝐼(𝑥, 𝑦)− 𝑢(𝑥, 𝑦)− 𝑢𝐼

(︂
𝑥− ℎ

2
, 𝑦 +

ℎ

2

)︂
+ 𝑢

(︂
𝑥− ℎ

2
, 𝑦 +

ℎ

2

)︂)︂
(𝜙ℎ)𝑥 d𝑥d𝑦

+
∫︁ 𝑥𝑖

𝑥
𝑖− 1

2

∫︁ 𝑦𝑗

𝑦
𝑗− 1

2

(︂
𝑣𝐼(𝑥, 𝑦)− 𝑢(𝑥, 𝑦)− 𝑢𝐼

(︂
𝑥+

ℎ

2
, 𝑦 +

ℎ

2

)︂
+ 𝑢

(︂
𝑥+

ℎ

2
, 𝑦 +

ℎ

2

)︂)︂
(𝜙ℎ)𝑥 d𝑥d𝑦

−
∫︁ 𝑦

𝑗+ 1
2

𝑦𝑗

(︂
𝑣𝐼

(︁
𝑥𝑖+ 1

2
, 𝑦
)︁
− 𝑢
(︁
𝑥𝑖+ 1

2
, 𝑦
)︁
− 𝑢𝐼

(︂
𝑥𝑖, 𝑦 −

ℎ

2

)︂
+ 𝑢

(︂
𝑥𝑖, 𝑦 −

ℎ

2

)︂)︂
𝜙ℎ

(︁
𝑥−

𝑖+ 1
2
, 𝑦
)︁

d𝑦

−
∫︁ 𝑦𝑗

𝑦
𝑗− 1

2

(︂
𝑣𝐼

(︁
𝑥𝑖+ 1

2
, 𝑦
)︁
− 𝑢
(︁
𝑥𝑖+ 1

2
, 𝑦
)︁
− 𝑢𝐼

(︂
𝑥𝑖, 𝑦 +

ℎ

2

)︂
+ 𝑢

(︂
𝑥𝑖, 𝑦 +

ℎ

2

)︂)︂
𝜙ℎ

(︁
𝑥−

𝑖+ 1
2
, 𝑦
)︁

d𝑦

+
∫︁ 𝑦

𝑗+ 1
2

𝑦𝑗

(︂
𝑣𝐼

(︁
𝑥𝑖− 1

2
, 𝑦
)︁
− 𝑢
(︁
𝑥𝑖− 1

2
, 𝑦
)︁
− 𝑢𝐼

(︂
𝑥𝑖, 𝑦 −

ℎ

2

)︂
+ 𝑢

(︂
𝑥𝑖, 𝑦 −

ℎ

2

)︂)︂
𝜙ℎ

(︁
𝑥+

𝑖− 1
2
, 𝑦
)︁

d𝑦

+
∫︁ 𝑦𝑗

𝑦
𝑗− 1

2

(︂
𝑣𝐼

(︁
𝑥𝑖− 1

2
, 𝑦
)︁
− 𝑢
(︁
𝑥𝑖− 1

2
, 𝑦
)︁
− 𝑢𝐼

(︂
𝑥𝑗 , 𝑦 +

ℎ

2

)︂
+ 𝑢

(︂
𝑥𝑗 , 𝑦 +

ℎ

2

)︂)︂
𝜙ℎ

(︁
𝑥+

𝑖− 1
2
, 𝑦
)︁

d𝑦

]︃

+ 𝑏𝑖,𝑗

[︃∫︁ 𝑥
𝑖+ 1

2

𝑥𝑖

∫︁ 𝑦
𝑗+ 1

2

𝑦𝑗

(︂
𝑣𝐼(𝑥, 𝑦)− 𝑢(𝑥, 𝑦)− 𝑢𝐼

(︂
𝑥− ℎ

2
, 𝑦 − ℎ

2

)︂
+ 𝑢

(︂
𝑥− ℎ

2
, 𝑦 − ℎ

2

)︂)︂
(𝜙ℎ)𝑦 d𝑥d𝑦
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+
∫︁ 𝑥𝑖

𝑥
𝑖− 1

2

∫︁ 𝑦
𝑗+ 1

2

𝑦𝑗

(︂
𝑣𝐼(𝑥, 𝑦)− 𝑢(𝑥, 𝑦)− 𝑢𝐼

(︂
𝑥+

ℎ

2
, 𝑦 − ℎ

2

)︂
+ 𝑢

(︂
𝑥+

ℎ

2
, 𝑦 − ℎ

2

)︂)︂
(𝜙ℎ)𝑦 d𝑥d𝑦

+
∫︁ 𝑥

𝑖+ 1
2

𝑥𝑖

∫︁ 𝑦𝑗

𝑦
𝑗− 1

2

(︂
𝑣𝐼(𝑥, 𝑦)− 𝑢(𝑥, 𝑦)− 𝑢𝐼

(︂
𝑥− ℎ

2
, 𝑦 +

ℎ

2

)︂
+ 𝑢

(︂
𝑥− ℎ

2
, 𝑦 +

ℎ

2

)︂)︂
(𝜙ℎ)𝑦 d𝑥d𝑦

+
∫︁ 𝑥𝑖

𝑥
𝑖− 1

2

∫︁ 𝑦𝑗

𝑦
𝑗− 1

2

(︂
𝑣𝐼(𝑥, 𝑦)− 𝑢(𝑥, 𝑦)− 𝑢𝐼

(︂
𝑥+

ℎ

2
, 𝑦 +

ℎ

2

)︂
+ 𝑢

(︂
𝑥+

ℎ

2
, 𝑦 +

ℎ

2

)︂)︂
(𝜙ℎ)𝑦 d𝑥 d𝑦

−
∫︁ 𝑥

𝑖+ 1
2

𝑥𝑖

(︂
𝑣𝐼

(︁
𝑥, 𝑦𝑗+ 1

2

)︁
− 𝑢
(︁
𝑥, 𝑦𝑗+ 1

2

)︁
− 𝑢𝐼

(︂
𝑥− ℎ

2
, 𝑦𝑗

)︂
+ 𝑢

(︂
𝑥− ℎ

2
, 𝑦𝑗

)︂)︂
𝜙ℎ

(︁
𝑥, 𝑦−

𝑗+ 1
2

)︁
d𝑥

−
∫︁ 𝑥𝑖

𝑥
𝑖− 1

2

(︂
𝑣𝐼

(︁
𝑥, 𝑦𝑗+ 1

2

)︁
− 𝑢
(︁
𝑥, 𝑦𝑗+ 1

2

)︁
− 𝑢𝐼

(︂
𝑥+

ℎ

2
, 𝑦𝑗

)︂
+ 𝑢

(︂
𝑥+

ℎ

2
, 𝑦𝑗

)︂)︂
𝜙ℎ

(︁
𝑥, 𝑦−

𝑗+ 1
2

)︁
d𝑥

+
∫︁ 𝑥

𝑖+ 1
2

𝑥𝑖

(︂
𝑣𝐼

(︁
𝑥, 𝑦𝑗− 1

2

)︁
− 𝑢
(︁
𝑥, 𝑦𝑗− 1

2

)︁
− 𝑢𝐼

(︂
𝑥− ℎ

2
, 𝑦𝑗

)︂
+ 𝑢

(︂
𝑥− ℎ

2
, 𝑦𝑗

)︂)︂
𝜙ℎ

(︁
𝑥, 𝑦+

𝑗− 1
2

)︁
d𝑥

+
∫︁ 𝑥𝑖

𝑥
𝑖− 1

2

(︂
𝑣𝐼

(︁
𝑥, 𝑦𝑗− 1

2

)︁
− 𝑢
(︁
𝑥, 𝑦𝑗− 1

2

)︁
− 𝑢𝐼

(︂
𝑥+

ℎ

2
, 𝑦𝑗

)︂
+ 𝑢

(︂
𝑥+

ℎ

2
, 𝑦𝑗

)︂)︂
𝜙ℎ

(︁
𝑥, 𝑦+

𝑗− 1
2

)︁
d𝑥

]︃
, (A.41)

𝐵̂𝑖+ 1
2 ,𝑗+ 1

2
(𝑢𝐼 , 𝑣𝐼 ;𝜓ℎ; 𝑓, 𝑢)− 𝐵̂𝑖+ 1

2 ,𝑗+ 1
2
(𝑢, 𝑢;𝜓ℎ; 𝑓, 𝑢)

=
1

𝜏max

∫︁
𝐾

𝑖+ 1
2 ,𝑗+ 1

2

(𝑢𝐼 − 𝑣𝐼)𝜓ℎ d𝑥d𝑦 + 𝑎𝑖+ 1
2 ,𝑗+ 1

2

[︃∫︁
𝐾

𝑖+ 1
2 ,𝑗+ 1

2

(𝑣𝐼 − 𝑢)(𝜓ℎ)𝑥 d𝑥d𝑦

−
∫︁ 𝑦𝑗+1

𝑦𝑗

(︁
(𝑢𝐼 − 𝑢)

(︁
𝑥𝑖+ 1

2
, 𝑦
)︁
𝜓ℎ

(︁
𝑥−

𝑖+ 1
2
, 𝑦
)︁
− (𝑢𝐼 − 𝑢)

(︁
𝑥𝑖− 1

2
, 𝑦
)︁
𝜓ℎ

(︁
𝑥+

𝑖− 1
2
, 𝑦
)︁)︁]︃

+ 𝑏𝑖,𝑗

[︃∫︁
𝐾𝑖,𝑗

(𝑢𝐼 − 𝑢)(𝜓ℎ)𝑦 d𝑥d𝑦 −
∫︁ 𝑥𝑖+1

𝑥𝑖

(︁
(𝑢𝐼 − 𝑢)

(︁
𝑥, 𝑦𝑗+ 1

2

)︁
𝜓ℎ

(︁
𝑥, 𝑦−

𝑗+ 1
2

)︁
− (𝑢𝐼 − 𝑢)

(︁
𝑥, 𝑦𝑗− 1

2

)︁
𝜓ℎ

(︁
𝑥, 𝑦+

𝑗− 1
2

)︁)︁]︃
= 𝑄̃ℎ(𝑣𝐼 − 𝑢;𝜓ℎ; 𝑓, 𝑔, 𝑢)𝑖+ 1

2 ,𝑗+ 1
2

+
1

𝜏max

[︃∫︁ 𝑥𝑖+1

𝑥
𝑖+ 1

2

∫︁ 𝑦𝑗+1

𝑦
𝑗+ 1

2

(︂
𝑢𝐼(𝑥, 𝑦)− 𝑢(𝑥, 𝑦)− 𝑣𝐼

(︂
𝑥− ℎ

2
, 𝑦 − ℎ

2

)︂
+ 𝑢

(︂
𝑥− ℎ

2
, 𝑦 − ℎ

2

)︂)︂
𝜓ℎ d𝑥d𝑦

+
∫︁ 𝑥

𝑖+ 1
2

𝑥𝑖

∫︁ 𝑦𝑗+1

𝑦
𝑗+ 1

2

(︂
𝑢𝐼(𝑥, 𝑦)− 𝑢(𝑥, 𝑦)− 𝑣𝐼

(︂
𝑥+

ℎ

2
, 𝑦 − ℎ

2

)︂
+ 𝑢

(︂
𝑥+

ℎ

2
, 𝑦 − ℎ

2

)︂)︂
𝜓ℎ d𝑥 d𝑦

+
∫︁ 𝑥𝑖+1

𝑥
𝑖+ 1

2

∫︁ 𝑦
𝑗+ 1

2

𝑦𝑗

(︂
𝑢𝐼(𝑥, 𝑦)− 𝑢(𝑥, 𝑦)− 𝑣𝐼

(︂
𝑥− ℎ

2
, 𝑦 +

ℎ

2

)︂
+ 𝑢

(︂
𝑥− ℎ

2
, 𝑦 +

ℎ

2

)︂)︂
𝜓ℎ d𝑥 d𝑦

+
∫︁ 𝑥

𝑖+ 1
2

𝑥𝑖

∫︁ 𝑦
𝑗+ 1

2

𝑦𝑗

(︂
𝑢𝐼(𝑥, 𝑦)− 𝑢(𝑥, 𝑦)− 𝑣𝐼

(︂
𝑥+

ℎ

2
, 𝑦 +

ℎ

2

)︂
+ 𝑢

(︂
𝑥+

ℎ

2
, 𝑦 +

ℎ

2

)︂)︂
𝜓ℎ d𝑥 d𝑦

]︃

+ 𝑎𝑖+ 1
2 ,𝑗+ 1

2

[︃∫︁ 𝑥𝑖+1

𝑥
𝑖+ 1

2

∫︁ 𝑦𝑗+1

𝑦
𝑗+ 1

2

(︂
𝑢𝐼(𝑥, 𝑦)− 𝑢(𝑥, 𝑦)− 𝑣𝐼

(︂
𝑥− ℎ

2
, 𝑦 − ℎ

2

)︂
+ 𝑢

(︂
𝑥− ℎ

2
, 𝑦 − ℎ

2

)︂)︂
(𝜓ℎ)𝑥 d𝑥d𝑦

+
∫︁ 𝑥

𝑖+ 1
2

𝑥𝑖

∫︁ 𝑦𝑗+1

𝑦
𝑗+ 1

2

(︂
𝑢𝐼(𝑥, 𝑦)− 𝑢(𝑥, 𝑦)− 𝑣𝐼

(︂
𝑥+

ℎ

2
, 𝑦 − ℎ

2

)︂
+ 𝑢

(︂
𝑥+

ℎ

2
, 𝑦 − ℎ

2

)︂)︂
(𝜓ℎ)𝑥 d𝑥d𝑦
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+
∫︁ 𝑥𝑖+1

𝑥
𝑖+ 1

2

∫︁ 𝑦
𝑗+ 1

2

𝑦𝑗

(︂
𝑢𝐼(𝑥, 𝑦)− 𝑢(𝑥, 𝑦)− 𝑣𝐼

(︂
𝑥− ℎ

2
, 𝑦 +

ℎ

2

)︂
+ 𝑢

(︂
𝑥− ℎ

2
, 𝑦 +

ℎ

2

)︂)︂
(𝜓ℎ)𝑥 d𝑥d𝑦

+
∫︁ 𝑥

𝑖+ 1
2

𝑥𝑖

∫︁ 𝑦
𝑗+ 1

2

𝑦𝑗

(︂
𝑢𝐼(𝑥, 𝑦)− 𝑢(𝑥, 𝑦)− 𝑣𝐼

(︂
𝑥+

ℎ

2
, 𝑦 +

ℎ

2

)︂
+ 𝑢

(︂
𝑥+

ℎ

2
, 𝑦 +

ℎ

2

)︂)︂
(𝜓ℎ)𝑥 d𝑥d𝑦

−
∫︁ 𝑦

𝑗+ 1
2

𝑦𝑗

(︂
𝑢𝐼(𝑥𝑖+1, 𝑦)− 𝑢(𝑥𝑖+1, 𝑦)− 𝑣𝐼

(︂
𝑥𝑖+ 1

2
, 𝑦 − ℎ

2

)︂
+ 𝑢

(︂
𝑥𝑖+ 1

2
, 𝑦 − ℎ

2

)︂)︂
𝜓ℎ

(︀
𝑥−𝑖+1, 𝑦

)︀
d𝑦

−
∫︁ 𝑦𝑗

𝑦
𝑗− 1

2

(︂
𝑢𝐼(𝑥𝑖+1, 𝑦)− 𝑢(𝑥𝑖+1, 𝑦)− 𝑣𝐼

(︂
𝑥𝑖+ 1

2
, 𝑦 +

ℎ

2

)︂
+ 𝑢

(︂
𝑥𝑖+ 1

2
, 𝑦 +

ℎ

2

)︂)︂
𝜓ℎ

(︀
𝑥−𝑖+1, 𝑦

)︀
d𝑦

+
∫︁ 𝑦

𝑗+ 1
2

𝑦𝑗

(︂
𝑢𝐼(𝑥𝑖, 𝑦)− 𝑢(𝑥𝑖, 𝑦)− 𝑣𝐼

(︂
𝑥𝑖+ 1

2
, 𝑦 − ℎ

2

)︂
+ 𝑢

(︂
𝑥𝑖+ 1

2
, 𝑦 − ℎ

2

)︂)︂
𝜓ℎ

(︀
𝑥+

𝑖 , 𝑦
)︀

d𝑦

+
∫︁ 𝑦𝑗

𝑦
𝑗− 1

2

(︂
𝑢𝐼(𝑥𝑖, 𝑦)− 𝑢(𝑥𝑖, 𝑦)− 𝑣𝐼

(︂
𝑥𝑖+ 1

2
, 𝑦 +

ℎ

2

)︂
+ 𝑢

(︂
𝑥𝑖+ 1

2
, 𝑦 +

ℎ

2

)︂)︂
𝜓ℎ

(︀
𝑥+

𝑖 , 𝑦
)︀

d𝑦

]︃

+ 𝑏𝑖+ 1
2 ,𝑗+ 1

2

[︃∫︁ 𝑥𝑖+1

𝑥
𝑖+ 1

2

∫︁ 𝑦𝑗+1

𝑦
𝑗+ 1

2

(︂
𝑢𝐼(𝑥, 𝑦)− 𝑢(𝑥, 𝑦)− 𝑣𝐼

(︂
𝑥− ℎ

2
, 𝑦 − ℎ

2

)︂
+ 𝑢

(︂
𝑥− ℎ

2
, 𝑦 − ℎ

2

)︂)︂
(𝜓ℎ)𝑦 d𝑥 d𝑦

+
∫︁ 𝑥

𝑖+ 1
2

𝑥𝑖

∫︁ 𝑦𝑗+1

𝑦
𝑗+ 1

2

(︂
𝑢𝐼(𝑥, 𝑦)− 𝑢(𝑥, 𝑦)− 𝑣𝐼

(︂
𝑥+

ℎ

2
, 𝑦 − ℎ

2

)︂
+ 𝑢

(︂
𝑥+

ℎ

2
, 𝑦 − ℎ

2

)︂)︂
(𝜓ℎ)𝑦 d𝑥d𝑦

+
∫︁ 𝑥𝑖+1

𝑥
𝑖+ 1

2

∫︁ 𝑦
𝑗+ 1

2

𝑦𝑗

(︂
𝑢𝐼(𝑥, 𝑦)− 𝑢(𝑥, 𝑦)− 𝑣𝐼

(︂
𝑥− ℎ

2
, 𝑦 +

ℎ

2

)︂
+ 𝑢

(︂
𝑥− ℎ

2
, 𝑦 +

ℎ

2

)︂)︂
(𝜓ℎ)𝑦 d𝑥d𝑦

+
∫︁ 𝑥

𝑖+ 1
2

𝑥𝑖

∫︁ 𝑦
𝑗+ 1

2

𝑦𝑗

(︂
𝑢𝐼(𝑥, 𝑦)− 𝑢(𝑥, 𝑦)− 𝑣𝐼

(︂
𝑥+

ℎ

2
, 𝑦 +

ℎ

2

)︂
+ 𝑢

(︂
𝑥+

ℎ

2
, 𝑦 +

ℎ

2

)︂)︂
(𝜓ℎ)𝑦 d𝑥d𝑦

−
∫︁ 𝑥𝑖+1

𝑥
𝑖+ 1

2

(︂
𝑢𝐼(𝑥, 𝑦𝑗+1)− 𝑢(𝑥, 𝑦𝑗+1)− 𝑣𝐼

(︂
𝑥− ℎ

2
, 𝑦𝑗+ 1

2

)︂
+ 𝑢

(︂
𝑥− ℎ

2
, 𝑦𝑗+ 1

2

)︂)︂
𝜓ℎ

(︀
𝑥, 𝑦−𝑗+1

)︀
d𝑥

−
∫︁ 𝑥

𝑖+ 1
2

𝑥𝑖

(︂
𝑢𝐼(𝑥, 𝑦𝑗+1)− 𝑢(𝑥, 𝑦𝑗+1)− 𝑣𝐼

(︂
𝑥+

ℎ

2
, 𝑦𝑗+ 1

2

)︂
+ 𝑢

(︂
𝑥+

ℎ

2
, 𝑦𝑗+ 1

2

)︂)︂
𝜓ℎ

(︀
𝑥, 𝑦−𝑗+1

)︀
d𝑥

+
∫︁ 𝑥𝑖+1

𝑥
𝑖+ 1

2

(︂
𝑢𝐼(𝑥, 𝑦𝑗)− 𝑢(𝑥, 𝑦𝑗)− 𝑣𝐼

(︂
𝑥− ℎ

2
, 𝑦𝑗+ 1

2

)︂
+ 𝑢

(︂
𝑥− ℎ

2
, 𝑦𝑗+ 1

2

)︂)︂
𝜓ℎ

(︀
𝑥, 𝑦+

𝑗

)︀
d𝑥

+
∫︁ 𝑥

𝑖+ 1
2

𝑥𝑖

(︂
𝑢𝐼(𝑥, 𝑦𝑗)− 𝑢(𝑥, 𝑦𝑗)− 𝑣𝐼

(︂
𝑥+

ℎ

2
, 𝑦𝑗+ 1

2

)︂
+ 𝑢

(︂
𝑥+

ℎ

2
, 𝑦𝑗+ 1

2

)︂)︂
𝜓ℎ

(︀
𝑥, 𝑦+

𝑗

)︀
d𝑥

]︃
. (A.42)

For 𝑢(𝑥, 𝑦) = 𝑥𝑘+1 𝑜𝑟 𝑦𝑘+1, we only need to estimate
⃦⃦⃦
𝑣𝐼(𝑥, 𝑦)− 𝑥𝑘+1 − 𝑢𝐼

(︀
𝑥− ℎ

2 , 𝑦 −
ℎ
2

)︀
+
(︀
𝑥− ℎ

2

)︀𝑘+1
⃦⃦⃦

𝐿2

(︂(︂
𝑥𝑖,𝑥𝑖+ 1

2

)︂
×
(︂

𝑦𝑗 ,𝑦
𝑗+ 1

2

)︂)︂ and
⃦⃦⃦
𝑣𝐼(𝑥, 𝑦)− 𝑦𝑘+1 − 𝑢𝐼

(︀
𝑥− ℎ

2 , 𝑦 −
ℎ
2

)︀
+
(︀
𝑦 − ℎ

2

)︀𝑘+1
⃦⃦⃦

𝐿2

(︂(︂
𝑥𝑖,𝑥𝑖+ 1

2

)︂
×
(︂

𝑦𝑗 ,𝑦
𝑗+ 1

2

)︂)︂ as

the other cases are similar.
For 𝑘 = 0, 1. . ., 8, by using the definition of the projection and the property that

⃦⃦⃦
𝑎𝑖,𝑗 − 𝑎𝑖+ 1

2 ,𝑗+ 1
2

⃦⃦⃦
𝐿∞(𝐾𝑖,𝑗)

=

𝑂(ℎ),
⃦⃦⃦
𝑏𝑖,𝑗 − 𝑏𝑖+ 1

2 ,𝑗+ 1
2

⃦⃦⃦
𝐿∞(𝐾𝑖,𝑗)

= 𝑂(ℎ) we have the following results:
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(1) 𝑢 = 𝑥𝑘+1, by the definition of the projection (for 𝑘 = 0 we only have the first equation in the definition),∫︁ 𝑥
𝑖+ 1

2

𝑥
𝑖− 1

2

∫︁ 𝑦
𝑗+ 1

2

𝑦
𝑗− 1

2

𝑢𝐼 d𝑥d𝑦 =
∫︁ 𝑥

𝑖+ 1
2

𝑥
𝑖− 1

2

∫︁ 𝑦
𝑗+ 1

2

𝑦
𝑗− 1

2

𝑥𝑘+1 d𝑥d𝑦,

𝑃ℎ(𝑢𝐼 ;𝑥𝑚𝑦𝑛; 𝑓, 𝑔, 𝑢)𝑖,𝑗 = 𝑃ℎ

(︀
𝑥𝑘+1;𝑥𝑚𝑦𝑛; 𝑓, 𝑔, 𝑢

)︀
𝑖,𝑗
, 𝑚, 𝑛 = 0, . . ., 𝑘,∫︁ 𝑥𝑖+1

𝑥𝑖

∫︁ 𝑦𝑗+1

𝑦𝑗

𝑣𝐼 d𝑥d𝑦 =
∫︁ 𝑥𝑖+1

𝑥𝑖

∫︁ 𝑦𝑗+1

𝑦𝑗

𝑥𝑘+1 d𝑥d𝑦,

𝑄̃ℎ(𝑣𝐼 ;𝑥𝑚𝑦𝑛; 𝑓, 𝑔, 𝑢)𝑖+ 1
2 ,𝑗+ 1

2
= 𝑄̃ℎ

(︀
𝑥𝑘+1;𝑥𝑚𝑦𝑛; 𝑓, 𝑔, 𝑢

)︀
𝑖+ 1

2 ,𝑗+ 1
2
, 𝑚, 𝑛 = 0, . . ., 𝑘,

(A.43)

then we have

𝑢𝐼 =
𝑘∑︁

𝑚=0

𝑘∑︁
𝑛=0

𝛼𝑚,𝑛𝑥
𝑚𝑦𝑛, ∀(𝑥, 𝑦) ∈ 𝐾𝑖,𝑗 , (A.44)

𝑣𝐼 =
𝑘∑︁

𝑚=0

𝑘∑︁
𝑛=0

𝛽𝑚,𝑛𝑥
𝑚𝑦𝑛, ∀(𝑥, 𝑦) ∈ 𝐾𝑖+ 1

2 ,𝑗+ 1
2
. (A.45)

Here 𝛼𝑚,𝑛 and 𝛽𝑚,𝑛 are the coefficients obtained by solving the local linear system (A.43). We leave the
detailed calculations and formulas for 𝑘 up to 8 in a separate file, as a supplement to this paper, since they
are too lengthy. We then have, for 𝑘 = 0, 1, . . . , 8, that∫︁ 𝑥

𝑖+ 1
2

𝑥𝑖

∫︁ 𝑦
𝑗+ 1

2

𝑦𝑗

(︃
𝑣𝐼(𝑥, 𝑦)− 𝑥𝑘+1 − 𝑢𝐼

(︂
𝑥− ℎ

2
, 𝑦 − ℎ

2

)︂
+
(︂
𝑥− ℎ

2

)︂𝑘+1
)︃2

d𝑥d𝑦 = 𝑂
(︀
ℎ2𝑘+6

)︀
. (A.46)

(2) 𝑢 = 𝑦𝑘+1, by the definition of the projection (for 𝑘 = 0 we only have the first equation in the definition),∫︁ 𝑥
𝑖+ 1

2

𝑥
𝑖− 1

2

∫︁ 𝑦
𝑗+ 1

2

𝑦
𝑗− 1

2

𝑢𝐼 d𝑥d𝑦 =
∫︁ 𝑥

𝑖+ 1
2

𝑥
𝑖− 1

2

∫︁ 𝑦
𝑗+ 1

2

𝑦
𝑗− 1

2

𝑦𝑘+1 d𝑥d𝑦,

𝑃ℎ(𝑢𝐼 ;𝑥𝑚𝑦𝑛; 𝑓, 𝑔, 𝑢)𝑖,𝑗 = 𝑃ℎ

(︀
𝑥𝑘+1;𝑥𝑚𝑦𝑛; 𝑓, 𝑔, 𝑢

)︀
𝑖,𝑗
, 𝑚, 𝑛 = 0, . . ., 𝑘,∫︁ 𝑥𝑖+1

𝑥𝑖

∫︁ 𝑦𝑗+1

𝑦𝑗

𝑣𝐼 d𝑥d𝑦 =
∫︁ 𝑥𝑖+1

𝑥𝑖

∫︁ 𝑦𝑗+1

𝑦𝑗

𝑦𝑘+1 d𝑥d𝑦,

𝑄̃ℎ(𝑣𝐼 ;𝑥𝑚𝑦𝑛; 𝑓, 𝑔, 𝑢)𝑖+ 1
2 ,𝑗+ 1

2
= 𝑄̃ℎ

(︀
𝑦𝑘+1;𝑥𝑚𝑦𝑛; 𝑓, 𝑔, 𝑢

)︀
𝑖+ 1

2 ,𝑗+ 1
2
, 𝑚, 𝑛 = 0, . . ., 𝑘,

(A.47)

then we have

𝑢𝐼 =
𝑘∑︁

𝑚=0

𝑘∑︁
𝑛=0

𝛼𝑚,𝑛𝑥
𝑚𝑦𝑛, ∀(𝑥, 𝑦) ∈ 𝐾𝑖,𝑗 , (A.48)

𝑣𝐼 =
𝑘∑︁

𝑚=0

𝑘∑︁
𝑛=0

𝛽𝑚,𝑛𝑥
𝑚𝑦𝑛, ∀(𝑥, 𝑦) ∈ 𝐾𝑖+ 1

2 ,𝑗+ 1
2
. (A.49)

Here 𝛼𝑚,𝑛, 𝛽𝑚,𝑛 are the coefficients obtained by solving the local linear system (A.47). We do not give
detailed calculations here since for 𝑢 = 𝑦𝑘+1 in two-dimensional case the formulas are symmetric to those
of 𝑢 = 𝑥𝑘+1 by switching 𝑥 and 𝑦 (𝑖 and 𝑗). Hence, by some calculation we have∫︁ 𝑥

𝑖+ 1
2

𝑥𝑖

∫︁ 𝑦
𝑗+ 1

2

𝑦𝑗

(︃
𝑣𝐼(𝑥, 𝑦)− 𝑦𝑘+1 − 𝑢𝐼

(︂
𝑥− ℎ

2
, 𝑦 − ℎ

2

)︂
+
(︂
𝑦 − ℎ

2

)︂𝑘+1
)︃2

d𝑥d𝑦 = 𝑂
(︀
ℎ2𝑘+6

)︀
. (A.50)
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Hence, for 𝑘 = 0, 1, . . ., 8 we have proved that⃦⃦⃦⃦
⃦𝑣𝐼(𝑥, 𝑦)− 𝑥𝑘+1 − 𝑢𝐼

(︂
𝑥− ℎ

2
, 𝑦 − ℎ

2

)︂
+
(︂
𝑥− ℎ

2

)︂𝑘+1
⃦⃦⃦⃦
⃦

2

𝐿2

(︂(︂
𝑥𝑖,𝑥𝑖+ 1

2

)︂
×
(︂

𝑦𝑗 ,𝑦
𝑗+ 1

2

)︂)︂ ≤ 𝐶ℎ2𝑘+6, (A.51)

⃦⃦⃦⃦
⃦𝑣𝐼(𝑥, 𝑦)− 𝑦𝑘+1 − 𝑢𝐼

(︂
𝑥− ℎ

2
, 𝑦 − ℎ

2

)︂
+
(︂
𝑦 − ℎ

2

)︂𝑘+1
⃦⃦⃦⃦
⃦

2

𝐿2

(︂(︂
𝑥𝑖,𝑥𝑖+ 1

2

)︂
×
(︂

𝑦𝑗 ,𝑦
𝑗+ 1

2

)︂)︂ ≤ 𝐶ℎ2𝑘+6. (A.52)

Then by using Holder’s inequality and Young’s inequality, we obtain from (A.41)⃒⃒⃒
𝐵̃𝑖,𝑗(𝑢𝐼 , 𝑣𝐼 ;𝜙ℎ; 𝑓, 𝑔, 𝑢)− 𝐵̃𝑖,𝑗(𝑢, 𝑢;𝜙ℎ; 𝑓, 𝑔, 𝑢)

⃒⃒⃒
≤ 𝐶ℎ2𝑘+4 + 𝐶‖𝜙ℎ‖2𝐿2(𝐾𝑖,𝑗)

. (A.53)

Similarly, for 𝐵̂𝑖+ 1
2 ,𝑗+ 1

2
we have⃒⃒⃒

𝐵̂𝑖+ 1
2 ,𝑗+ 1

2
(𝑢𝐼 , 𝑣𝐼 ;𝜓ℎ; 𝑓, 𝑔, 𝑢)− 𝐵̂𝑖+ 1

2 ,𝑗+ 1
2
(𝑢, 𝑢;𝜓ℎ; 𝑓, 𝑔, 𝑢)

⃒⃒⃒
≤ 𝐶ℎ2𝑘+4 + 𝐶‖𝜓ℎ‖2

𝐿2

(︂
𝐾

𝑖+ 1
2 ,𝑗+ 1

2

)︂. (A.54)
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