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OPTIMAL ERROR ESTIMATES TO SMOOTH SOLUTIONS OF THE CENTRAL
DISCONTINUOUS GALERKIN METHODS FOR NONLINEAR SCALAR
CONSERVATION LAWS*

MENGJIAO J1AO!, YAN JIANGY*, CHI-WANG SHU? AND MENGPING ZHANG!

Abstract. In this paper, we study the error estimates to sufficiently smooth solutions of the nonlin-
ear scalar conservation laws for the semi-discrete central discontinuous Galerkin (DG) finite element
methods on uniform Cartesian meshes. A general approach with an explicitly checkable condition is
established for the proof of optimal L? error estimates of the semi-discrete CDG schemes, and this
condition is checked to be valid in one and two dimensions for polynomials of degree up to k = 8.
Numerical experiments are given to verify the theoretical results.
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1. INTRODUCTION

In this paper, we study the central discontinuous Galerkin (DG) finite element method for solving scalar
conservation laws [10]. The optimal error estimates of the central DG methods have been proved for linear con-
servation laws in Liu et al. [12]. In this paper, we present the optimal error estimates of central DG approximation
based on tensor-product polynomials under suitable assumptions for the general nonlinear scalar conservation
laws

d
ug + ;(fi(u))m =0, (x,t)€Qx(0,T] )

u(x,0) = up(x), x € Q,

where x = (1, 22, ...,24) and  is a bounded rectangular domain in R¢. Here ug (x) is a given smooth function.
We do not pay attention to boundary conditions in this paper; hence the exact solution is considered to be either
periodic or compactly supported. We also assume the flux f(u) is smooth in the variable u; for example, f € C?
is enough for our proof. The analysis in this paper is for the smooth solutions of (1.1). Discontinuous solutions
with shocks are not considered here. We study the cases with d = 1 and 2, but the approach is applicable to
any d.
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The central scheme of Nessyahu and Tadmor [14] computes hyperbolic conservation laws on a staggered mesh
and avoids the Riemann solver. In [3], Kurganov and Tadmor introduced a new type of central scheme without
the large dissipation error related to the small time step size by using a variable control volume whose size
depends on the time step size. To avoid the excessive numerical dissipation for small time steps, Liu [8] uses
another coupling technique. The overlapping cell approach evolves two independent cell averages on overlapping
cells, which opens up many new possibilities. The advantages of overlapping cells motivate the combination of
the central scheme and the DG method, which results in the central DG methods [7,9, 10]. The central DG
method evolves two copies of approximating solutions defined on staggered meshes and avoids using numerical
fluxes which can be complicated and costly [4]. Like some previous central schemes, the central DG method also
avoids the excessive numerical dissipation for small time steps by a suitable choice of the numerical dissipation
term. Besides, the central method carries many features of standard DG methods, such as compact stencil,
easy parallel implementation, etc. The central DG method with Runge-Kutta time stepping has a larger CFL
number for stability than the standard Runge-Kutta DG method with the same polynomial order k. Also the
central DG method has a smaller error than the standard DG method on the same mesh. See Liu et al. [10],
Reyna and Li [15] for more details. Later in Liu et al. [11], the central local discontinuous Galerkin method was
introduced to solve diffusion equations, which is formulated based on the local discontinuous Galerkin scheme
on overlapping cells. Recently, the central DG method has been used to solve systems of conservation laws in
many applications [5,6,16, 18, 22].

In Liu et al. [12], suitable special projections for central DG methods were proposed to yield optimal error
estimates for scalar linear conservation laws. The proper local projections were constructed according to the
superconvergence property and the duality of overlapping cells, which also required uniform Cartesian meshes.
Zhang and Shu firstly presented a priori error estimates for the fully discrete second order Runge—Kutta DG
methods with smooth solutions for scalar nonlinear conservation laws [19] and symmetrizable systems [20]. The
main techniques they used are Taylor expansion and energy estimates. Later these techniques are widely used in
error estimates for DG-type methods of nonlinear equations, like the local DG methods for convection-diffusion
and KdV equations [17], the ultra weak DG methods for equations with higher order derivatives [1], the third
order Runge-Kutta DG methods for scalar conservation laws [21] and for symmetrizable systems [13].

In this paper, we combine the special projections in Liu et al. [12] and the techniques used in Zhang and
Shu [19] to construct new projections to provide the optimal error estimates of the central DG methods on
uniform Cartesian meshes for nonlinear scalar conservation laws with smooth solutions. In one dimension, we
construct a proper local projection P; similar to Liu et al. [12]. The existence and optimal approximation
properties of this projection are proved by standard finite element techniques. Moreover, this projection has
similar superconvergence property as the projections in Liu et al. [12]. By using this property we develop a general
approach with an explicitly checkable condition, and this condition is checked to be valid in one dimension for
polynomials of degree up to k = 8. This condition could also be checked for larger k with increased algebraic
complexity, but it is not carried out in this paper. The optimal convergence results is valid for uniform meshes
and for polynomials of degree k& > 1, while for £ = 0 we need the convection flux to be linear to get the
optimal results. For two-dimensional conservation laws, we follow the same arguments as in the one-dimensional
case to construct a suitable projection P} and to analyze its existence and approximation properties. This new
projection utilizes QF, the space of tensor-product polynomials of degree at most k in each variable. Similarly,
the optimal convergence result is valid for uniform meshes and for polynomials of degree k£ > 2 in the two-
dimensional case, while for £ = 0, 1 we need the convection flux to be linear to get the optimal results. The
superconvergence result of P; on uniform Cartesian meshes will help to yield optimal convergence results under
some suitable assumptions. Similar approach with an explicitly checkable condition is established, and here we
also check this condition for polynomials of degree up to k = 8. Likewise, this condition could also be checked
for larger k with increased algebraic complexity, but we will not carried it out. The approach is applicable to
higher dimension d, but it will not be discussed in this paper.

The rest of the paper is organized as follows. In Section 2, we recall the central DG method for one-dimensional
conservation laws. Then we construct a special projection and study its existence, uniqueness and optimal
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approximation properties. With the help of this projection, we will prove the optimal error estimate for the
semi-discrete central DG methods on uniform meshes for the nonlinear conservation laws in one dimension. In
Section 3, we extend the analysis to two-dimensions. Optimal error estimates are proved by following the same
lines of the one dimensional case. We provide numerical examples to show our theoretical results in Section 4.
In Section 5, we give a few concluding remarks and perspectives for future work. Finally, in the appendix we
provide proofs for some of the more technical results of the error estimates.

2. THE CENTRAL DG METHOD IN ONE DIMENSION

Here we consider the one-dimensional conservation law given by

U + f(u)m =0, (CL’,t) € [a7 b] X (07T]7 (2 1)
u(z,0) = up(z), x € [a,b], ’
with periodic boundary condition or compactly supported boundary condition.
2.1. Basic notations
For a given interval I = [a,b], we divide it into N cells as follows:
a=x90<x1<---<zN =0 (2.2)
We denote n
(Ej+%:%7 Ij+%:(mj’xj+1)7 hj+%:xj+1_xj7 jZO,...N—L (23)
and similarly for the dual mesh
L= (2o gomy)s b=y — 2y G=1...N. (2.4)
We let h = max; h, 1 and assume the mesh is regular. Define the approximation space as
Vit = {en: (pn)ls, € PE(IG),j =1, N, .
2.5

Wk = {wh (W)l € P’“(Ifr%),j —0,...,N— 1}.

Here P*(I;) denotes the set of all polynomials of degree at most k on I;. For a function ¢, € V¥, we use (90}1)]-1;
2

or (cph);r 1 to refer to the value of ¢y at ;. 1 from the left cell I; and the right cell I;,;, respectively. For
vy, € WE, (@/}h); and (wh);r have similar meanings. [¢p] or [¢y] is used to denote go}f — ¢}, or 'l/)ft — 1, , i.e. the
jump of ¢y, or ¥y, at cell interfaces. We denote by C' a positive constant independent of h, which may depend on
the solution of the problem and other parameters. For our analysis, we need the uniform boundedness of f’ and
f”. We shall take this as an assumption for simplicity, although such boundedness can be shown a posteriori by
the eventual boundedness of the numerical solution through the verification of the a priori assumptions at the
end of Sections 2 and 3. Similar to Xu and Shu [17], Zhang and Shu [19], to emphasize the nonlinearity of the
flux f(u), we use C, to denote a non-negative constant depending on the maximum of |f”|. We remark C\, =0
for linear fluxes f(u) = cu with a constant c.

2.2. The central DG scheme

We propose the following semi-discrete central DG scheme for periodic boundary condition: find uy, € th
and v, € W/, such that for any ¢, € V¥ and ¢, € Wk,

/_(Uh)t% de = T:ax /1 (vn — up)pn dz + /1 f(wn)(en), do

I; J
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[ nde= o [ e [ ), i
= (Fn)y) o + (Flun)vy]) (2.6b)

where Tyax 18 an upper bound for the time step size due to the CFL restriction, that is, Thax = ¢ h with
a given constant CFL number ¢ dictated by stability. For the initial condition, we simply take wup(-,0) =
Pruo(-), vi(-,0) = Quuo(-), where Pj, and Qy, are the L? projections into V,ZC and W,’f7 respectively, and we have

[[uo — PhuOHLz(Ij) < Cth”UOHHkH(I )

J

[[uo @hu0||L2<I_ 1)7Ch ||u0||Hk+l<Ij+%>

it3

2.3. L? stability for the linear equation

In Liu et al. [10], the following stability result is proved for this scheme if f(u) is linear. Without loss of
generality, we take f(u) = u. Hence, we have

fromon  hehixon o

U(l’,O):Uo(l‘), T E [aab]a
with periodic boundary condition.

Theorem 2.1. The numerical solutions up and vy, of the CDG scheme (2.6) for the equation (2.8) have the
following L? stability property

b
%%/ (up +vp)dz = —

2.4. Optimal L? error estimate

1

7—Il’l ax

/ b(vh —up)?da < 0. (2.9)

It is worth noting that the L? stability for CDG scheme for nonlinear problem is generally not available [10].
But under the assumption of the smoothness of the exact solution, we can still get the error estimate of the
nonlinear case. In this subsection, we show a priori L? error estimate of the scheme (2.6) for the equation (2.1).

Here and below, we use || - || to denote the standard L? norm. For the proof, we recall the classical inverse
and trace inequalities [2]. For any wy, € th or wp € W}’f, there exists a positive constant C' independent of wy,
and h, such that

10zwnll < Ch™YJwnl, [lwallr < Ch™% lwpll, [lwnlleo < Ch™2 |Jwy ], (2.10)

where I' is the set of boundary points of all elements [; or Ij+%.

First we introduce some notations. For the numerical solutions w; and v, of the CDG scheme (2.6) for
equation (2.1), we define

Bj(un, vn; on; fou) = 7_1. /I_(’Uh — Un)Phn d$+/1_ f(u(z;))on(en),

= f'(u(;)) (oney, ) ;o + f (wl@;)) (oner) ;s
1

By 1 (wn,vn; ¥n; fru) = / (un —vn)n dIJr/ f'(U(Ij+%))Uh(¢h)x

-
max JI; 1 Tl

(2.11)
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-f (“(IH%)) (wnty ) jr + F (u (%*%)) (unty),
and

Bj(un, vn; ©n, Yn) = / (“h)t‘Phdx—i-/I (vn),¥on d

L it3

1
/ (vp, — up)pp doe —
I

J

1

/ (Uh — ’Uh)T/Jh dl’,
Tl

Tmax Tmax

Obviously, we have

Bj(un, vns; on, ¥n) = : f(on)(on),dz +/I Flun)(@on),dz — (F(vn)ey) ;4 s

+ (f(vn)er) .

=z

It is also clear that the exact solution u of (2.1) satisfies

Bwuson i) = [ fen.de+ [ fw,de = (),

+(Fwey); s = (Fvy), 4+ (Fey), Von € Vi, dn € Wi
Subtracting (2.14) from (2.15), we obtain the error equation
B (1 — st — vni ohy Gn) = - ),d
(= ensin i) = ()= fn) ), + / ) (),

Nl

1
2

N

— ((f@) = for)en) ;pa + ((F(@) = Fon))e))
= ((F ) = fun))y, )y + ((F ) = flun))f)
= Hj(f;uaumvh;()ohawh)a Yo EVh,¢h S W}’f

Summing over all j, the error equation becomes

> Bj(w—up,w—vn; on, n) = > H(f3u,wn,vn;0n,00),  Von € Vit € Wi

2.4.1. Projection operators

s = (Flan)yy )y + (Flun)dy) ;s Von € Vi, tn € Wi

1405

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)

Similar to Liu et al. [12], we define P} and Qj as the following projections onto th and W}’f respectively on

uniform meshes. That is, for a given function w(x), we define P;w € V,{“7 such that Vj,

/ ;‘Lwd:c:/ wdzx,
I I

J J

ph(PszDh;f,U)j :Ph(w;@h;f,u)j, VQDhEPk(Ij),

where Py, (w; ¢p) ; is defined as follows

h T., 1 h T, 1
w(az—l—)gphdx—i—/ HZw(m—)(phdx—/ e w(x)pp dz
2 . 2 .

~ 1 Tj
Pr(w; ops fou); = /
x

[T patpe(es ). [ (o g .

= J'twlay)ytes) (on(25,4) = on (o7 4))

(2.18a)

(2.18D)

(2.19)
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Similarly, we define Qjw € W,f, such that Vj,

/ Qruwdx = / wdez, (2.20a)
I.Jrl I.+1
5 J

J

2

OQn(Qwsthn; fru) ;41 = Qnlwsvn; fou);p1, Vi € P (Ij+%)7 (2.20b)

where Qp, (w; ¢h)j+% is defined as follows

. R AL h T4 h T
Qn(w; on; fru); 11 = - / w($+2>¢hd$+/ w($2)1/)hd117/ w(z)yp dz

T, ;
J .7+% J

o[ el g e [ (o) e Y

— £ (u(iy) Jw(es0y) (on @70) = on(a]))- (2.21)

Next, we will discuss the properties of the projections P} and Q. Without loss of generality we will only
consider P . The equation (2.18a) is required by conservation. Note that P, (w; ¢p; f, u)j = 0 for Yw when ¢y, is
a constant, so (2.18b) alone misses one condition which is provided by (2.18a). The following lemma gives the

existence and uniqueness of the special projection PP .

Lemma 2.2. The projection P} defined by (2.18) exists and is unique for any smooth function w(x), and the
following inequality holds

[Prw| < Cllwlle, (2.22)

for all k. The positive constant C depends on k, the bound of f'(u), the constant ¢ in the scheme (2.6) and is
independent of h and w.

Proof. The proof of this lemma is given in Appendix A.1. O

Since P} and Qj, are k-th degree polynomial preserving local projections, standard approximation theory [2]
implies, for smooth function w,

15w — wl| + hl|Pjw — w]leo + hZ||Bjw — wlle < CHM flufl s (0., (2.23)
* * 1 * :
Q5w — w]| + ~|Qhw — wllos + 72 [|Qfw — wlr < CRE ]| grss (o).

Besides the standard approximation results (2.23), the special projections P} and Qj, also have the following
superconvergence result.

Proposition 2.3. For k =0,1...,8, assume that u is a (k + 1)-th degree polynomial function in P**1(|a,b]).
For a uniform partition on the interval [a,b], set uy = Pju € V,f and v = Qju € W}’f,. Then we have

’Bj(ul —u,vr — u;pn; f, U)‘ < CR**2 4 Cllonll 72,y Vion € PH(I)

)7 Vi, € P* (Ij+%). (2.24)

By (ur = w,vr — wiains )| < O 4 Ol (s

s 1
it+3

Proof. The proof of this proposition is given in Appendix A.2. O
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2.4.2. A priori L? error estimates

Theorem 2.4. For k =0,1...,8, let u(-,t) be the exact solution of equation (2.1), which is sufficiently smooth
with bounded derivatives, and assume f € C? with bounded f'(u) and f”(u). The numerical solutions uj, and
vy, of the CDG scheme (2.6) using uniform meshes satisfies the following L? error estimate

lu(-,T) —up (-, T)||* + |u(-, T) — vp (-, T)||> < Ch?+2, (2.25)

where k is the polynomial degree in the finite element spaces th and W,’f, and the constant C depends on k, the
final time T, ||u||gr+2 and the bounds on the derivatives |f™|, m = 1,2, but is independent of the mesh size h.
Here ||u|| gr+2 is the mazimum (k + 2)-th order Sobolev norm of w over time in [0,T]. For k =0 we need f(u)
to be linear, i.e. f(u) = cu.

Proof. Let e, = u — up, €, = u — vy be the error between the numerical and exact solutions. To deal with the
nonlinearity of f(u), we would like to first make the a priori assumption that, for small enough h, we have

= up| < Ch?, |lu— || < Ch2, (2.26)

which also establishes the Lipschitz continuity of the right-hand side of the method of lines semi-discrete ordinary
differential equation system, hence the very existence of uj and vj,. By the interpolation property, we then have

leulloe < Ch - and  [[Bju — uplloo < Ch,

2.27
llex]loc < Ch and || Qpu — uplleo < Ch. (227)
This assumption is not necessary for linear f. We will verify this assumption for k£ > 1 later.
By taking
Ph = qu — Up, wh = Q;U — VUh, 4106 = P;kzu —u, 1/)6 = QZU —u, (228)
we obtain the energy equality
Z Bﬂ(goh - @67 wh - ¢67 Ph, 1/}h) = Z Hj(fa U, Uh, Vh; Ph, 1/%) (229)
J J
From the definition of B;, we can obtain
> Bj(n, ¥n; on, ¥n) = ZB' ©°, V% n, ) +ZH‘ fiu,un, vn; on, ¢n)
J
—Z/ t@hd$+2/ ) n da
Yo /] ) hdx—zw/ (s

+ z / F)en) d + 3 ((F ) - f<vh>>[wh]>j+%
+ Z / F(un)) () o + Z Fun) ),

For the left-hand side of (2.30), we follow the L? stability proof in Theorem 2.1 for linear case to conclude

1d [?
J a

/ (on — tn)2da. (2.31)

max
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Similar to Zhang and Shu [19] and Xu and Shu [17], to deal with the nonlinear part of (2.30) we would like to
use the following Taylor expansions:

Flu) — flun) = £/ w)on — ()" = 3 T2 on — 9",

1 (2.32)
flu) = Fon) = f' ()b = £ ()® = S £ (Yn — ¢)’,
where f!/ and f/’ are the mean values. These imply the following representation,
> B¢ 0% ontn) + Y Hy(f3w, wn, v o, tbn) = L+ Ny + Ny + N3 + Ny, (2.33)

where

L= Z/ t(phderZ/ b da,
- Y- f =) hdx—z / £ (o) — SO (o Lenl) .

ZTmax /[ SO B '(/)hda?—Z/ d$—2(f/(u)@e[¢h])j’

J

Ng—Z/f )¥n(en) dx—i—z w)¥nlen)) J+1+Z/ w)pn(vn) d$+z w)en[tn]);;

:_(Z/f"w — %)% (¢n) dw—i—Z/ Fil(on — %) (¥n),d
+Z< I (bn — <Ph)+ +Z( filon — ¢° w]))-

By Young’s inequality and (2.23), we have
L < C(llenl® + 1¥nll?) + CR**2[[ulfnis (q,1)- (2.34)

Next we estimate the nonlinear part. First for the N7 term, we can rewrite it in the form

- Z / (¥ — ¢*)pn dz Z / £ () (on) da

- Tm ax

G CANEDY / 7@)6 (o), da
*Z z;)) = f'(u >>Wh1>j+%
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By the inequality in (2.10), (2.23) and || f'(u(x;)) — f'(u)||Le(1,) = O(h), we have

Ny <= Bj(9°, 0 om; £ou) + Cullon® + Cuh® 2 {|ull}iir q.0))- (2.35)

For é (¢, 0% @n; fou), let ur be the Taylor polynomial of order k + 1 of w near z; i.e. ul =
ZerOl ll,u(’)( (@ —x;)", = € (xj_1,xj41). Let r, denote the residual term i.e. ) = u — u;’. Recalling
the Bramble-Hilbert lemma [2], we have

Pz () < CRET2 [l gresa g (2.36)
Then we rewrite ¢ and ¥°
0 =Piu—u="Piar —ar + Pyl —rd,
V¢ =Qiu—u=Qiur —up +Qirl —ri. (2.37)
Hence, using Proposition 2.3, we have
Bi(#%, 9% on; fru) = ;(we,we,wh;f,U)
PZUI —uyr’ +Ph7"j Ti,(@ﬁﬂ}j —ay + Qs —rhions [ U)

l

it
J(Phuf _UI thuI —’LL[ 790h7f7 >+B]( ZTi_Tia@zri_Ti§¢h§fau)
( Tia@/*ﬁju - Tfﬁ on; [ U) + Ch*F3 4 CH‘PhHQLz(m (2.38)

J

Therefore, by using Young’s inequality, (2.23), the inequality in (2.10) and (2.36), we have

= Bi(¢°, ¥ ons fou) < ChP 2 [ul g q ) + Cllonl|*- (2.39)
Hence, for N; we have
Ny < (C+ C)lenll? + (C + COR™ 2 ||ulFsa gy 4)- (2.40)
Similarly, for No we have
Nz < (C+ C[¢nll* + (C + COR™ 2 |fulFusa gy 49)- (2.41)

The N3 term can be rewritten as the following form

Ns=3 /mﬁ% F(W)(nen),dz + /Ij+1 f'(w)(Wnepn) ,da | + Z w)nlen])jy 1 + Z(f/(“)‘#’h[wh])j

- ) z,, 1
J 7 its

Z((f'(u)W%?)jJr% - (f'(u)%l/)}f)j + (J”(u)@hlb{)j+1

J

= () + (@l + (7 enlinl),) = 3 [ (@) da

FRREZ]
%+1
- Z/ )o¥nen da

< Cllenlllent < C(Ilenl* + llenll?)-

(2.42)
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Ny is the high order term in Taylor expansion, it is easy to show that

Ny < Cuh™ (Jlewlloollewllllonll + llewlloo llewll1vnl)
< Cuh™H (llewlloo (lenlllnll + llonlllel) + llewlloo (Neonllllenll + llnlllef])

_ _ 2.43
< Cu (1 eulloe + 57 lewllo) (il + ) 249
+ Cu(h™ eolloo + A lewlloo) A2 [[ullFpicen (q,0))-
Hence, combining (2.34), (2.40)—(2.43), (2.31), we obtain from (2.30)
L[ (i) ar < (€ €l el + A el (nl + L)
2 dt . Phn h >~ * v |[oo u || oo Ph h (244)
+(C+ Cu(hHlewlloo + R lewlloo) )R [ullpsz fa)-
When k > 1, by using a priori assumption (2.26) we have
1d [
s [ () de < (04 COllonl? + 1) + (€ + COR 2l o (2.45)
Finally, by Gronwall’s inequality and the fact that || (-,0)|| < Ch**L || (-, 0)|] < Ch¥*! we can get
b
/ (o7 +¥7)dz < CRP*H2. (2.46)

This, together with the approximation result (2.23), implies the desired error estimate.

For the case of k = 0, we assume that the convection term is linear, namely f(u) = cu. This is to avoid the
need of the a priori assumption (2.26) which is no longer justifiable since our L? error estimate is only of order
O(h) in this case. The proof is similar to that for £ > 1 case given above, and the only difference is C, = 0 in
this case. By similar lines of proof, we have

1d [
53 | (6 uR) do < Cllonll + [nl?) + Cr (247)

An application of Gronwall’s inequality give us that

b
/ (5 + vp)de < CR?. (2.48)

This, together with the approximation result (2.23), implies the desired error estimate.

Finally, let us justify the a priori assumption (2.26) for & > 1. Similar to Zhang and Shu [19] and
Cheng and Shu [1], we can verify this by a proof by contradiction. By (2.25), we can consider h small
enough so that ChF+! < %h%7 where C is the constant in (2.25) determined by the final time T. Define

r= S“p{t= [ul-s8) = un( O + lul,t) = on ()] < h%} then we have [u(, ") — up (- )| + [lu(-,t") -

vp ()| = h3 by continuity if ¢* is finite. Clearly, equation (2.25) holds for ¢ < ¢*, in particular,
N, t*) —up (-, )| + [|u(-, ) —vp (-, t9)]] < ChFHL < %h% This is a contradiction if t* < T'. Hence, t* > T and
our a priori assumption is justified. (]

3. THE CENTRAL DG METHOD IN MULTI-DIMENSIONS

In this section, we consider the semi-discrete central DG method for multidimensional nonlinear conservation
laws. Without loss of generality, we will show our central DG scheme and prove the optimal a priori error



OPTIMAL ERROR ESTIMATES TO SMOOTH SOLUTIONS 1411

FI1GURE 1. 2D overlapping cells formed by collapsing the staggered dual cells on two adjacent
time levels to one time level.

estimates in two dimensions (d = 2); all the arguments we present in our analysis depend on the tensor product
structure of the mesh and finite element space and can be easily extended to the more general cases d > 2. Now
we consider the following two-dimensional problem,

{Ut + f(u), +9(w), =0,  (,9,1) € 2x(0,T],

U(.T, yvo) = uo(x,y), (Jj’y) c Q’ (31)

with periodic boundary condition or compactly supported boundary condition.

3.1. Basic notations

Let {Ki,j = {xF% , xH%} X {yJ;% , ijr%} } be a partition of €2 into uniform square cells, depicted by the solid
lines in Figure 1, and tagged by their cell centroid at (z;,y;). Define h = Tipl =i 1 = Y1 — Y. Let
Xp = {veLl?(Q):vlk,, € Q"(K;;), V(i,j)}, where Q*(K;;) is the tensor-product polynomials of degrees
at most k in each variable defined on K j and no continuity is assumed across cell boundaries. Let K 1 ;.1 be
the dual mesh which consists of a % shift of the K; ;, depicted by the dashed lines in Figure 1. Let (xH_% , yj+%)
be the cell centroid of the cell K, 1 ;1 and let Y, := {v € L*(Q):v|k,, € QF (Ki+%7j+%), V(i,j)} denotes

the space of tensor-product polynomials of degrees at most k in each variable defined on K; 14l and no

continuity is assumed across the cell boundary. For a function ¢, € XF, we use (@h);:_ 1y and (<Ph)l-_+ 1y
27 2

to denote the values of @) at (xl 41 ,y) from the right cell K11 ; and the left cell K ;, respectively, when
Yy € [yj_%,yﬂ_%] on all vertical edges. And for ¢y, € Y}¥, we use (ﬂ’h):y and (z/;h)z_y to denote the values of v, at
(24,y) from the right cell Ky 43 and the left cell K; 1 ;. 1, respectively, when y € [yj,yj+1] on all vertical
edges. The notation [@al;, 1, or [4it1, denote (goh);;%,y - (goh);%ﬂ or (wh):y — (¥n);,,» i€ the jump of pp
at (xH%,y) when y € [y];%,yj#%] or the jump of vy, at (z;,y) when y € [y;,y;+1]. Similarly, we can define
(‘Ph):,j+%a (‘Ph);ﬁéa (wh>:,ja (wh);,j’ [‘Ph]a:7j+é and [Yp]z ;-

3.2. The central DG scheme

We propose the following semi-discrete CDG scheme for periodic boundary condition: find uw, € X ,’; and
v, € Y}F, such that for any ¢, € XF and 9, € Y},
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1 /
Tmax Ki,j

. / ((F@n)en)iss, = (Foh), s ) dy

/ (Uh)tQDh drdy =
K .

@7

(vp, — up)pp dedy + /

(£ en), +9(n)(en), ) drdy
K, j

- / h ((Q(Uh)saﬁ)m,j+% B (g(vh)@)nfré) o, 322
/I(i+1,j+1 (Uh)twh drdy = T:ax /K,i+1.j+1 (uh - Uh)wh dzdy + /I(i+1,j+1 (f(Uh)(¢h)m + g(Uh)(wh)y) d dy
Yi+1
=[G, - Fne),,) d

Yi

_ /:if ((Q(Uh)lﬁ;)m,jﬂ - (g(Uh)l/)?f)x,j) de, (3.2b)

i

where Tax is a max step size, determined by Tax = (CFL factor) x h/(maximum characteristic speed), in
which the CFL constant should be less than 1/2. Similarly, for the initial condition we simply take up(-,-,0) =
Pruo(-,+), vu(sy+,0) = Quuo(-, ), where P, and Qj, are the L? projections into V;¥ and W}, respectively, and we
have

luo — Pruollze(x, ;) < CR*H|uoll s (),

) < Chk+1||u0||H’f+l<K.+l .+;>' (3.3)
2Ty

[[uo — Qruo| (
L2( K

it3.a+3
3.3. L? Stability for linear equation

The L2-stability is proved for the CDG scheme (3.2) in Liu et al. [10] if f(u) and g(u) are linear. Without
loss of generality, we take f(u) = g(u) = u. Hence, we have

{ut+uw+uy207 (xayat)EQX(O7T]7 (34)

U(%?J’O) :’U/o(l',y), (xay) € Q7
with periodic boundary condition.

Theorem 3.1. The numerical solutions uy, and vy, of the semi-discrete CDG scheme (3.2) for the equation
(3.4) have the following L? stability property

[Jwn (- '7T)||2L2(Q) + [l (- 'aT)||2L2(Q) < flun(, 'aO)HiQ(Q) + |lon(, 'a0)||2L2(Q)- (3.5)

3.4. Optimal L? error estimate

In this subsection, we show the a priori L? error estimate of the scheme (3.2) for the equation (3.1).

Here and below, we again use || - || to denote the standard L? norm. Similar to the one-dimensional case,
we recall the classical inverse and trace inequalities [2]. For any wp, € X ;f or wy € Y;{“ , there exists a positive
constant C independent of w;, and h, such that

10z wll < Ch Jwnlls wnlle < Ch™2 |[wpll, llwhlloe < Ch™Hlwnl (3.6)

where I is the set of boundaries of all elements K;; or K; 1 ;1.
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Similar to the one-dimensional case, we first introduce some notations. Assume uy and vy are the numerical
solutions of CDG scheme (3.2) for equation (3.1), we define

: 1
Bi j(un, vn; n; fr9,u) =

/ (v — up)pn dz dy
K

7—II’IB‘X i,

[ (F ) on). + o () on), Jonda dy

1,7

y].:_% ,
*/ / (u(xiayj))((”h‘p}:)i+%,y - (Uh¢2)i—%,y) dy
Yy

T 1 _
_/J 12 g’(u(mi,yj))((vh(ph)m,j+% - (tht)r7j+%) dz, (3.7a)
i3
. 1
Bi_,'_;,j_,'_i(uh,vh;q/}h;fag?u) — / (Uh — vh)d)h dz dy +/ (f/ (u(xi—&-layj-‘rl))(’l/}h)w
2 2 Tmax KH—%,H—% Ki+%=j+% ’ 2

+9 (u(xi+%’yj+%)>(¢h)y>uh dzdy
- /;Hl f (u($i+%’yj+%>) ((uh%:)iﬂ,y - (Uh%/f;f)ly) dy
_ /:“’1 g (U(xi+%’yj+%)) ((thg)x’jjrl - (“hw;)z]) dzx, (3.7b)

and

B; j(un, vn; on, n) = / (un) on dl‘dy+/ (vn) b dx dy
Ki Ki+%,j+%
1
- [ - w)endedy -
K

Tm ax i 7'l’l’laX

(3.8)

/ (uh — ’Uh)’(/Jh dl‘7
K, 1 1

i+da+d

Obviously, we have

K

Bustunonion i) = [ (Fon)en, + a(enen), ) doy
+

() (Wn), + glun)(wn), ) dwdy

o
¥
[N

&,
+
Nl

((f(vh)@ﬁ)H%,y - (f(vh)ﬁ)i_%,y) dy
Hownen), s — (owel), 5,y ) da (39)
(

_ /z;l ((g(uhw;:)mﬂ - (g(uh)w;[)x’j) dz,

T4

Von € QU(Kig), Von € Q% (Kiy iy ):
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Let u be the exact solution of equation (3.1), clearly we have

Bos(uusonn) = [ (1en), +ow)en),) dedy
_|_

I

(F) @), + gw)(wn), ) dedy

_ /yh (PR 14y, — @),y ) dy
_/IH% ((9(U)‘P;)x7j+% (g(u)(p;{)ijrl) dax

Von € QX (Kig), Vin € Q(Kipyihy)-

Subtracting (3.9) from (3.10), we get the error equation for two-dimensional case,

B j(u — up, u—vp; pn, ¥n) = / (Fu) = flon))(pn)y + (9(w) = g(vn))(on), dody

+/ (f () = f(un))(@n), + (9(u) = g(un))(Pn), dz dy
K.

—~
—~

@) = FEn)eR) s, — (F@) = F@n)eh),_y |y
((9(u) ~ 9021 ), 11y — (9(0) = g0))ei), 1,y |d

() = FCan)r) o, — () = Flun))ey), My

[((gw) = g(un))by ),y — ((9(w) = glun))isy), da

= Hi j(f3u, un, ons o1y ¥n), Ve € QF(Kij), Vo, € QF (KH%,J-JF%)-

Summing over all i and j, the error equation becomes

(3.10)

(3.11)

ZBM‘(U — Up, U — Vp; Ph, Y1) = ZHi,j(fQUauhyth ©nbn), VYeon € QY(K,;), Vi, € QF (Ki-',-%,j—i-%)'
%]

(2%

3.4.1. Projection operators

(3.12)

To prove the error estimates for two-dimensional problems in uniform Cartesian meshes, we need two suitable
projections P} and Qj similar to the one-dimensional case. By applying the shifting technique in the two-
dimensional case, for z and y variables respectively, for a given function w(z) we define Pjw € Q*(K; ;) over

K; ; satisfying the following two equations,

/ ;‘Lwdxdy:/ wdzx dy,
K K

@5 (2%

(3.13a)
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Ph(]P);;w;(Ph;fvgvu) P (’U} Sphafaga )zjv V@h S Qk(Ki,j) (313b)

where Py, (w; pp; f:9:u); ; is defined as follows,

- Yj h Yj wi+% h h
Pr(wion; fog,u), ;= / ,y+ ppdzdy +/ / wlz—5,y+ 5 |Jepdedy
’ Tmax 1 2 1 2 2

7+1 Ti 7+2 h
_|_/ / w<1‘—|— > hdxdy+/ / < 7y_2>§0hdxdy
Yj T, 1
Yi+d [T+l
—/ / w(z,y)pn dzdy
Y. T, 1
Yj z; h h , ,
wlz+ 5.y + 5 ) (F(uli )00 0n + g (ulzi, y5))0ypn) do dy
/ w(x —
yjj% T
, /I w(w—i— 2,y

m

Nl

h
7ay+7
h h

3 ) 0100+ s )0y)
- ) s + o )0y
o
Tu(e-gu-g

h _
f(u(wi, y;))w (x y+ 2) (‘Ph (xi+;,y) — %n (xj_;,y)) dy
2 2
, h _ N
Py ( vy — 5 ) (en (o7 409) = on (el 4.0) ) d
2 it3 =3
/ h - +
g (ulzi,y;))wl =+ 5,95 (sah(:c,yj+;) ‘Ph( ;))d
1 2 2
2
+3 h _
9 (ulzi,y;))wlz = 5.y (% ('rayj+%> - Wh(
Similarly, we can define the projection Q; from w € L™ (Ki+%7j+%) into Q;w € Qk( i1t ) over Ki+%,j+%'
Next we will discuss the properties of these two special projections. Without loss of generality we will only
consider PP;. The equation (3.13a) is required by conservation. Note that Py (w;¢y); ; = 0 for Vw when ¢y, is a

constant, so (3.13b) alone misses one condition which is provided by (3.13a), just like the one-dimensional case.
Existence and optimal approximate property of the projection P} are established in the following lemma.

) (f'(u(zs,y5))0uon + 9 (ulzi, y5))0yen) de dy
y

Yy
z,y" )) dz. (3.14)

i=3

Lemma 3.2. The projection P} defined by (3.13) exists and is unique for any smooth function w(x), and the
following inequality holds

* * l *
P w — wl|| + h|[Pjw — wl|, + 72 [Bjw — w]p < CREF|w]| grs g, (3.15)

for all k. The positive constant C' depends on k, the bound of f'(u), ¢'(u), the constant ¢ and is independent of
h and w.

Proof. The proof of this lemma is given in Appendix A.3. |
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Similarly, for Qj we have
Q5w — w]| + A Qhw — wl, + b2 |Qw — wllp < CHF Y [wl| grsr gy, (3.16)

if w is a smooth function.
Again, the projections P; and Qj satisfy the following superconvergence result.

k+1

Lemma 3.3. Form =0,1...,8, assume that u =z or Yyl let uy = Pru and vy = Qju then

‘Bi,j(w — w,vr — u; n; £ 9, U)‘ < CR*** 4 Cllonll72 k. ) (3.17)
By jr(ur —u,vr —usihns 9, U)‘ < CR?FH 4 Ol : (3.18)
L (KH%,H%)
Proof. The proof of this lemma is given in Appendix A.4. a

3.5. A priori L? error estimates
Now let us give the a priori error estimate for the two-dimensional case.

Theorem 3.4. Fork =0,1...,8, let u(-,-,t) be the exact solution of equation (3.1), which is sufficiently smooth
with bounded derivatives, and assume f € C? with bounded f'(u) and f"(u). The numerical solutions uj, and
vy, of the CDG scheme (3.2) using uniform meshes satisfies the following L? error estimate

||u(7 ',T) - uh('a ’7T)H2 + Hu(> '>T) - Uh(', 'aT)”z < Ch2k+2a (319)

where k is the polynomial degree in the finite element spaces X,’f and th, and the constant C depends on k,
the final time T, |lu|| gr+> and the bounds on the derivatives ||, |g(™|, m = 1,2, but is independent of the
mesh size h. Here ||u| gr+2 is the mazimum (k + 2)-th order Sobolev norm of u over time in [0,T]. For k =0
and 1 we need f(u) and g(u) to be linear, i.e. f(u) = cru and g(u) = cou with constants ¢1 and ca.

Proof. Let e, = u—up, e, = u— vy be the error between the numerical and exact solutions. Similar to the one-
dimensional case, to deal with the nonlinearity of f(u) and g(u), we would like first make a priori assumption
that, for small enough h, we have

|u—up| < Ch?, |Ju—vs| < Ch?, (3.20)

which also establishes the Lipschitz continuity of the right-hand side of the method of lines semi-discrete ordinary
differential equation system, hence the very existence of uj and v,. By the interpolation property, we then have

leulloe < Ch and [[Bju — uplloo < Ch,

leslloo < Ch and || Qfu — upllso < Ch. (3:21)
This assumption is not necessary for linear f and g. We will verify this assumption for k£ > 2 later.
By taking
on =Pru—up, ¥n =Qiu —vp, ¢ =Pru —u, ¥v°=Qju—u, (3.22)
we obtain the energy equality
> Bij(on — 0% n — 0% onn) = Y Hi i (3, tn, vni ons n)- (3:23)
i,j 4,J

From the definition of B; ;, we can obtain

1,5

ZBi7j(<Pha"/1h§ ©On,n) = ZBz‘,j(we,l/)e;SOhﬂﬂh) + ZHi,j(f§uauh7UhHPhawh)

.3 4] .3
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= Z/ )i dxdy+2/ (0°) b da dy

K

P /K”(w — ¢)n dzdy — ;Tmax/ s (¢ — )y, dz dy

+ ZJ /Ki.j(f(w — f(wn))(@n), + (g(u) = g(vn))(pn), da dy

+XJ:/K+ +1(f(“)—f(uh))wh)m-ﬁ-(g(u)—g(uh))(wh)ydxdy

+3 / 0 - Ty AL / u) = g(on)lon)y s 5o
+Z/:M((f( ) = f(un))[n]) lydy+2/_ml ((9(u) = g(un))[¥n]), ;dz. (3.24)

For the left-hand side of (3.24), we follow the L? stability proof in Theorem 3.1 for linear case to conclude

1d
ZB,J @h7¢ha¢h7¢h) th/( %L+z/}}zl)dm+

0,J

/(‘Ph — ) da. (3.25)
Q

Tmax

Similar to the proof in Zhang and Shu [19] and Xu and Shu [17], to deal with the nonlinear part of (3.24) we
would like to use the following Taylor expansions:

Flu) — Flun) = F'(ulon — F'(w)e* — 3 T2 on — ),
Flu) — Fom) = £/ (b — £ — 3 F o — ),

: (3.26)
g(u) = g(un) = g'(w)on — g'(u)p® — 59;’(% - ),
g9(u) = g(vn) = ¢'(w)ibn — g' ()9 - fgv (U — )%,
where f/ ! and ¢!/, g./ are the mean values. These imply the following representation,
Z Bi (0,9 on,n) + Z H; i (f;u,up, vp; on,¥n) = L+ N1+ Na + N3 + Ny, (3.27)

,J 2%

where

L= Z/ twhdzdy—V—Z/ Un dz dy,

Nl = _ZT _90 (Phdxdy Z/ )m+g/(u>we<Wh)y) dmdy
i,j
_E:/ J+2(f( )1/16[‘Ph i+l ydy Z/ ‘Ph])zj+1dl‘
i “Yi-1
1 €
Ny= — 0 o /K%j+ (¢ — ) pp da dy — Z/l+ - @ (Un), + 9 ()¢ (en), ) dw dy
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*Z/ym ©°[¥n]); , dy — Z/ ¥nl), A,

,j Yi

Ny = Z / Won(en), + o (W)n(on) )dxdy+z / (e,
+Z/ J+2 w)bnlenl)iy 1 ydy+2/ % u)n soh])xg+1d93
+Z/

4,9 Yi

1
2

w)on[vn] zydy+Z/ w)on[¥nl),

y]+1

No= -3 (Z/ £ (b = 9°) (), + 9o (Wn — W)z(@h)y) dzdy
(£ton = (@), + ilon — )2 (n), ) dady

+Z/y"+%(f;’(wh—w)soh ldy+§j/ CHEON

- . +3
2,] yJ*% *%

By Young’s inequality and (3.15), (3.16) we have

%]) )H%d
+ Z/ o (on — @ wh dy+2/ gu on — o )2[¢h]>$’jdx>~

+ g/(u)@hwh)y) dz dy

X

£ < O(llenll® + lnll*) + ChZ**2 |lullfps - (3.28)
Next we estimate the nonlinear part. First for the N} term, we can rewrite it as
N = - Z — ¢ )pndady — Z/ u(i, ;) (en), +g’(U(xi,yj))¢e(<ph)y) dz dy

~ Tmax
1’ 7

_Z/”z f'(uli, )0 len]) g,y — Z/ g ey NV*len])s iy do

1
2

+ Z / Wi y)) — F )6 (on), + (g (i, ) — g’(u»wewh)y) da dy

+Z/ﬁ w(wi, 7)) — £ () o Hlydwz/ (g () -

1
2

- —ZB” o o +Z / w(@i, ;) — £ ) (en), + (g (u(ai, )

+Z/m w(ziyy)) — 1) on] ,+1ydy+2/ 2 (¢ ) —

1
2

g (W)elen]), jy1de
— g W) (pr), ) drdy

9 W)V [en), ;41 da.

By using the inequality in (3.6), (3.15), (3.16) and || f"(u(z;,y;)) — /(u)||Loc(Kiyj) = O(h), lg’ (u(zs, y;)) —

g'(u)||L=(k, ;) = O(h), we have

Ny < - Zéi,j(¢e7 ¥e o) + Cullonll® + C*h2k+2||u”%{k+1([a,b])'

J

(3.29)
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For Bi,j(ape,z/ze;goh), we know that for an arbitrary element Kj;;, we can obtain the following results from
Lemma 3.3, for Vu € PP ([2;_1, 2i41]) X [yj-1,Y+1]), Vo € QF(K; ;)

B j(Phu— u,Qju — u; @ f, g, 1) SChzkHJFCH(PhH%z(KM), (3.30)

On each element K; ; we consider the following Taylor expansion of u around (z;,y;),

u=Tu+ Ru, (3.31)
where
k+1 1 1
1 0 U(Ii’ yj) l—m m
T — . Ly 3.32
U e WIZZO m'(l _ m)' axl_maym (I xl) (y y]) ) ( )
k+2 —m m k42 (S) (S)
Ru — + (k+2)($_xz)k+2 (y_yj) /1(1_8)k+16 u(xl 7yJ ) ds (3 33)
— m!(k +2—m)! o Qxkt2—moym ' ’
with x(s) =z; + s(x — ), yj(s) =y; + s(y — y;). It is obvious that Tu € P*([x;_1,%i41] X [yj-1,Yj+1]). Note

that the operator P} is a linear operator and Pju = P} T'u + P} Ru, we obtain from (3.30) that

Bi j (¢, %% on; f.9,u)

Bi’j (P Tu — Tu+ P;, Ru — Ru,Q;Tu — Tu + Q) Ru — Ru; ¢n; f, g, u)
Bij(PrTu — Tu, Q;Tu — Tu; gn; f,9,u) + B; j(Pj Ru — Ru, Qj Ru — Ru;gp; f, g,u)
Bi,j( ZRU' - RU, QZRU - RU, ©@hs f7g7 U) + Ch2k+4 + CH(‘O}LH%Q(IQJ) (334)

Recalling the Bramble-Hilbert lemma [2], we have
HRuHLoe(Kiyj) < Chk+1‘u|Hk+2(Ki’j). (3.35)

Therefore, by using Young’s inequality, (3.15), (3.16), (3.6) and (3.35), we have

= B j (% 4% ons frg,u) < ChPFT2 ||| ise oy + Cllonl|*. (3.36)
()
Hence, for Ny we have
N1 < (C+ C)llenll® + (C + COR 2 [ Fisz - (3.37)
Similarly, for No we have
Ny < (C+ COllUnll? + (C + CORP*2 a2 (3.38)

Similar to the one-dimensional case, the A3 term can be rewritten as

Nz = Z/ B / w)(Ynen) dwdy—kZ/HQ/ u)(Ynen), do dy
/ o), s + 3 / / o () (son) dyda

H N\*—‘

ij “Timy TYieg
Yiss
+y / (f'(w)vnlen))i i ydy+§j / w)gnln]), ;1 do
i YYi-d

+Z/yj+1(f( )on[¥n] Zydy-l-Z/ W w)on[nl),
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Yi+}
=S| )y )y,
%,

-3

+ (F@enty),, — (1 @enti),, + (P @nlen)y, ) dy
+ /mH% ((9/(U)T/)h90;)z,j+% ~ G 0neh) sy

+ (g @enty), ;= (o @entif), ; + (6 Wnlen), sy ) do

Ti+1

i

[T et [ G el a0 - [ ((f'(um+<g'<u>>y)whdxdy>

= =2 [ (0 + g w),) e dedy

< Cullenllllvnll < Cu(llenl® + [lvnll?)- (3.39)

Ny is the high order term in Taylor expansion, it’s easy to show that

Ni < b7 (llewllsollewlllon ]l + llewlloollewll 1)
< Cuh™H(llewlloo (lenlllvnll + lenllllvl) + llewlloo Unlllenll + llnlllle€()) (3.40)
< Cu(h™Mewlloo +h ™ ewlloo) (lonll* + 10nl1%) + C (B M lewlloo + A Hlewlloo) B2 lull Fpusr -

Then by combining (3.28), (3.37)—(3.40), (3.25), we obtain from (3.24)

lg 2 2 -1 —1 2 2
R T Q(¢h+wh) dzdy < (C+ Co(h™Yewlloo + 2 lewlloo)) (lenll® + 19n?) (3.41)

+ (C + C. (ifl||ev\|Oo + hfl||euHoo))h2k+2Hu||%,k+2(m.
When k > 2, by using a priori assumption (3.21) we have

1d
53 | (4R dedy < (C+ CO(Ionll + [0nl) + (€ + CORPulfney: (342)

Finally, by Gronwall’s inequality and the fact that ||ox(-,-,0)[| < Ch* L, [|¢n(-,-,0)|| < Ch*+1 we can get

1d
5T Q(gai +¢7) dedy < CRP*2. (3.43)

This, together with the approximation result (3.15), (3.16) implies the desired error estimate.

For the case of k = 0 or 1, we assume that f(u) and g(u) are linear fluxes, namely f(u) = ciu, g(u) = cau
with constants ¢1, co. This is to avoid the need of the a priori assumption (3.20) which is no longer justifiable
in this case. By similar lines of proof and noting that C, = 0 in this case, we can obtain

1d

q Q(sﬁi%ﬁ) dzdy < C(llenll + lnl®) + CR**2, k=0, 1. (3.44)

By using the Gronwall’s inequality we have

/@%w%mwsmﬁﬂ k=0, 1. (3.45)
Q
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This, together with the approximation result (3.15), (3.16), implies the desired error estimate for k = 0, 1 with
linear fluxes.

Just like the one-dimensional case, let us justify the a priori assumption (3.20) with & > 2. Similar to Zhang
and Shu [19] and Cheng and Shu [1], we can verify this by a proof by contradiction. By (3.19), we can consider
h small enough so that ChF*1 < 1h2 where C is the constant in (3.19) determined by the final time 7.
Define t* = sup{t : |[u(,-,t) — up(-, - t)|| + [[u(-, -, t) — vn(-,-,t)|| < h?}, then we have [[u(-,-, t*) — up(-, -, t*)|| +
llu(-, 5 t*) — vp(-, -, t*)|| = h? by continuity if ¢* is finite. Clearly, equation (3.19) holds for ¢ < ¢*, in particular,
(- t*) = un (o )|+ flul, - t*) — vp(, - t%)]] < CRFH1 < 1h2. This is a contradiction if t* < 7. Hence,
t* > T and our a priori assumption is justified. (I

4. NUMERICAL EXAMPLES

In this section, we present numerical examples to verify our theoretical findings. Uniform meshes are used in
all examples. The schemes are integrated in time with the third order SSP Runge-Kutta method. We would
like to compute on elements of degree k = 0,1,2,3. We set the CFL number to be 0.05. For k£ = 0,1,2 we let
At = CFL - h and At = CFL - h5 for k = 3 where h is the characteristic length of the mesh, so that the time
error will be dominated by the spatial error.

Example 4.1. We solve the one-dimensional Burgers equation given by

u2
ug + (2) =0, z¢€]l-mm,

4.1
u(z,0) = sin(x), z € [—m, 7, (41)
u(—m,t) = u(m,t).
The exact solution is obtained by Newton iteration. In this example, we use Tnax = ﬁ, h = %’T to test the

numerical schemes. The errors and numerical order of accuracy at T'= 0.5 with 0 < k < 3 are listed in Tables 1.
Table 1 shows that the order of convergence of the error achieves the expected (k + 1)-th order of accuracy.

Example 4.2. We solve the two-dimensional Burgers equation given by

e (U;)L i (U;)y =0 @y elma, (4.2)
u(z,y,0) = sin(z + y), (z,y) € [, 7]?,

with periodic boundary condition. The exact solution follows from the solution of one-dimensional Burgers
equation with & = x + y. In this example, we use Tnax = Thﬂ, h = ZW’T to test the numerical schemes. The
central DG scheme is evolved up to T' = 0.2 when the solution is still smooth. The errors and numerical order

of accuracy with 0 < k < 3 are listed in Table 2.

Table 2 shows that the order of convergence of the error achieves the expected (k + 1)-th order of accuracy.

5. CONCLUDING REMARKS

In this paper, a priori optimal L? error estimates to central DG methods on uniform meshes applied to
nonlinear conservation laws with smooth solutions are proved with polynomial degrees of £k < 8. The main
techniques used in this paper are special projections and Taylor expansions. Our analysis is carried out both
in one dimension and in two-dimensions for uniform Cartesian meshes and tensor-product polynomial spaces.
We also give some numerical examples to verify the results of our theoretical analysis. The error estimates for
nonlinear conservation laws in this paper were obtained using stability for the linear case and the smoothness
of the exact solution. It is not clear whether stability holds for the scalar nonlinear conservation laws with
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TABLE 1. Errors and numerical orders of accuracy for Example 4.1 on a uniform mesh of N
cells. Here mpayx = ﬁ and final time T = 0.5.

k N L error Order L? error Order L error Order

10 6.73E-001 - 3.65E-001 - 5.60E-001 -
20 3.34E-001 1.01 1.83E-001  0.99 3.04E-001 0.88

0 40 1.66E-001  1.00 9.19E-002 1.00 1.56E-001  0.97
80 8.31E-002  1.00 4.60E-002  1.00 7.90E-002 0.98
160 4.15E-002 1.00 2.30E-002  1.00 3.97E-002  0.99
10 6.90E-002 -~ 4.40E-002 -~ 8.69E-002 -

1 20 1.86E-002 1.89 1.25E-002 1.81 2.58E-002 1.75
40 4.73E-003  1.98 3.21E-003 1.97 7.34E-003 1.81
80 1.19E-003  1.99 8.11E-004 1.98 1.95E-003 1.92
160 2.98E-004 2.00 2.04E-004 1.99 4.94E-004 1.98
10 9.68E-003 — 8.58E-003 — 2.53E-002 -

9 20 8.97E-004 3.43 9.29E-004 3.21 4.24E-003  2.58
40 1.13E-004 2.99 1.14E-004 3.02 6.03E-004 2.82
80 1.42E-005 2.99 1.44E-005 2.98 7.87E-005 2.94
160 1.78E-006 3.00 1.81E-006 2.99 9.99E-006  2.98
10 6.06E-04 - 6.47E-04 - 3.26E-03 -

3 20 6.17E-05 3.30 6.91E-05 3.23 2.73E-04 3.58

40 4.54E-06 3.77 5.54E-06 3.64 3.21E-05 3.09
80 2.86E-07 3.99 3.49E-07 3.99 2.06E-06 3.96
160  1.79E-08 4.00 2.19E-08 4.00 1.30E-07 3.99

TABLE 2. Errors and numerical orders of accuracy for Example 4.2 on a uniform mesh of N x N
cells. Here Tyax = ﬁ and final time T = 0.2.

k NxN L' error Order L? error Order L error Order
10 x 10 5.57E4+00 — 1.22E400 — 8.16E-01 —
20 x 20 2.76E4+00 1.01 6.17E-01 0.98 4.87E-01 0.74

0 40 x 40 1.37E400 1.01 3.09E-01 1.00 2.57E-01  0.92
80 x 80 6.81E-01 1.01 1.54E-01 1.00 1.30E-01  0.98
160 x 160  3.40E-01 1.00 7.72E-02 1.00 6.54E-02  0.99
10 x 10 9.12E-01 - 2.34E-01 - 2.60E-01 -

1 20 x 20 2.37E-01 1.94 6.25E-02 1.90 8.19E-02  1.67
40 x 40 5.99E-02 1.99 1.60E-02 1.97 2.19E-02  1.90
80 x 80 1.50E-02 2.00 4.02E-03 1.99 5.71E-03 1.94
160 x 160  3.75E-03 2.00 1.01E-03 2.00 1.45E-03  1.98
10 x 10 1.49E-01 - 5.03E-02 - 1.22E-01 -

9 20 x 20 1.91E-02 2.97 6.44E-03 2.97 2.14E-02  2.52
40 x 40 2.38E-03 3.00 8.33E-04 2.95 3.00E-03 2.83
80 x 80 3.00E-04 2.99 1.05E-04 2.98 3.87E-04  2.96
160 x 160  3.77E-05 2.99 1.33E-05 2.99 4.87E-05  2.99
10 x 10 2.06E-02 - 7.45E-03 - 2.20E-02 -

3 20 x 20 2.04E-03 3.33 8.72E-04 3.09 3.30E-03  2.74

40 x 40 1.48E-04 3.79 6.09E-05 3.84 2.50E-04 3.72
80 x 80 9.70E-06 3.93 4.02E-06 3.92 1.78E-05 3.81
160 x 160  6.19E-07 3.97 2.62E-07  3.94 1.17E-06  3.92
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general non-smooth solutions. Such a stability proof for the central DG schemes and the extension of this work
to non-uniform meshes and unstructured triangular meshes are interesting and challenging, and constitutes our
ongoing work.

APPENDIX A. COLLECTION OF TECHNICAL PROOFS

In this appendix, we collect the proofs of some technical lemmas and propositions.

A.1. Proof of Lemma 2.2

Proof. We only consider P}, while the proof for Q; follows similar lines. For Vj, we let § = @

smooth function w(z) and a k-th order polynomial ¢, (x) on I;, and define

on I;, for a

(A1)

Note that the procedure to find the Pi@ € P*([—1,1]) is to solve for a linear system, so existence of the
projection can be proved by proving its uniqueness. Thus, we only need to prove the uniqueness of the projection
P;. We set wr(§) = Pro(€) = Prw(z) with ©(§) = w(z) = 0, and would like to prove w;(§) = 0. Then by the
definition of the projection P}, we have:

0 1 1
Pulwrs ons fou), = — (/1w1(£+1>¢h(£>d§+/0 w(&—1>¢h<§>dé—/_1w1<£)¢h<5>ds)

27—max

+f (o€ + D€ e+ / P (ul;))wor (€ — 1)(@n(6)) dé
— P/ (ue3))wr 0)(6n(1) — n(-1))

0, (A.22)
g [ 11 wi(€)de = 0. (A.2b)
Let 6n(€) = wr(€) € PA([-1,1]), we get
Ao, = o ([ wrte s var@ae s [ wrte-Dortera - [ wrierae)

0 1
+ /_1 f'(ula;))wr(§ + 1) (wr(§))e d§ +/O f(u(zg))wr (€ = 1) (wi(§))e dg
= f'(u(@;)wr (0)(wr (1) = wr(=1)) = 0. (A.3)

We rewrite Py (wr;wr; f, u); by a change of variable { — £ 41 for the integrations over [—1,0] to get

Pulwrswrs fou), = — (2 /Olmg—l)wf(é)dg— /Olmg—l)zdg— /OlwI@)ng)

- 2Tmax
1 1
+ / £ () )wr(€) @i (€ — 1)) dé + / £ (uay)wr (€ = 1)(wr(€)), dé
— f'(u(z;))wr (0)(wr(1) — wr(-1))
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— oo [ i) — e - )P ag—o. (A4)
0

2Tmax

Thus,
wi(€) = wil€—1), V€ (0,1). (A.5)

Next we will show that w;(€) is a constant on [—1,1]. Let wy(§) = Zf:o a;&', € € [-1,1]. For k = 0 it clearly
holds. For k > 1, now from (A.5) we have

k

G(E) =wr(§) —wiE—1) =S a6 =€~ 1)) =0, vee(©1). (A.6)
i=1

Assume a;, 1 <14 < k are not all zeros, then G(£) is a non-zero polynomial of degree at most k — 1, thus it has

at most k — 1 roots, which is a contradiction to (A.6). Hence, we have a; = 0, V1 <4 < k, which indicates that

wr(€) is a constant on [—1, 1]. Hence, by (A.2b), we have

h

5 | @r©de=hor() =0, (A7)

which implies w;(§) =0 on [—1,1].
We have now finished the proof of uniqueness. Next we move to prove the boundedness. Let wy(z) = Piw(z) =

Zf:o a;xz* and set the test functions ¢, = 2, 22,...,2%. Then we have
. k
Py(wrsals fou), = agas, 1<1<k, (A.8)
i—0
1 k1 it1 k
1t — (=1)
[1w1(x) z ; — ;aoa (A.9)

By calculation, for 1 <[ < k we have

h i!l!((—l)i + (—l)l) (_1)i+l i1

W | Gl i | ) i+ (A.10)
= iuu + f(u(z))na,
where :
- i!l!((—l)’ + (—1)1) (-1 41
priy = (z‘+l+1)!v i+l+1 (A.11)
i1~ D! ((-1) + (-
it = (i +1)! '

VVedenoteﬁ:(ao,...,ak)T7 A ) =ay, 0<i <k, 0<I]<kandby = f Jw(z)de, b = Ph(w;:cl;f,u), 1<
1<k, B=(bg,..., bk)T. We will solve the following linear system to get the coefﬁc1ents 0,

ATB = B. (A.12)

We can rewrite A as the following form,

A= M+ f'(u(z;))H +C, (A.13)

2Tmax
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where

GD=00<i<k 1=0, (4.14)
iy, 0<i <k, 1<1<k,

H(i 1) = { 0 0<ich i_o (A.15)

0,0<i<k 1<I<Ek,

C(i,l) = { (A.16)

aio,Ogigk, [=0.

From the formulation of the scheme (2.6) we have Ty,.x = ¢ h, here ¢ is a constant dictated by stability. Then
we have

AT = %MT + £ (u(z;))HT + 7. (A.17)

From (A.11) we know that

) | 1!
w, if 7 and [ are even,
(t+1+1)!
— ; 11
Hit = —2((Z_+ ) Z'l'), if ¢ and [ are odd, (A-18)
(t+14+1)!
0, if (i 4+1) is odd,
—203!(1 — 1)!
M, if 4 is odd and [ is even,
(i41)!
a= < 201 —1)! .
i y, if ¢ is even and [ is odd, (A.19)
(i41)!
0, if (i +1) is even,
and from (A.9) we have
2
- , if 7 is even,
Q0 = t+1 (AQO)
0, if 4 is odd.
Hence, we can estimate the infinity norm of A7,
1
14" = H%MT + ' (u(a; )R + "
k k (A.21)
= maxd Y lasol, max 3 ( o lpal + 17 (ules)mal ) -
= i<k 2=\ 2¢ I
Since p;; > 0 for (i +1) is even and f’(u(z;)) is bounded, then we have
4% <€ (A.22)

where £ is a constant which depends on polynomial degree k, the bound of f’(u(x;)) and constant c. Since the

first row of the matrix A7 are constants ajo which only depends on degree k and the other elements of AT
1

either only contain 5 or only f’(u(x;)), the by the definition of determinant we have

., k I\ / -
det(A):Zw)() (F (), (4.23)

. 2c
1=0
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where D;(k) is a constant which only depends on degree k. Notice that if f’(u(z;)) = 0 in (A.23), then
det (AT) = Dk(k)(%c)k. From the previous proof of the existence and uniqueness of the projection, we know
that A" is always invertible which means det(A”) # 0 holds for any value of f’(u(x;)). Hence, here we have

Di.(k) # 0. Therefore, we can take ¢ small enough so that

]:Z:é@i(k)(;cy(f’(uwj)))“

We emphasize that this choice of ¢ is only a sufficient condition for our proof, in numerical computation ¢ should
be chosen as the largest CFL number for linear stability to avoid excessive numerical dissipation. We now have

= 2 2¢

<”%%”<1)5 (A.24)

k
|det(AT)] > |,Dk72(k)| <2lc> >0, (A.25)

holds for all f’(u(x;)). Next let o;(A”) denotes the i-th singular value of A” which are in descending order
from 0 to k, omax (AT) and omin (AT) represent the largest and smallest singular value of matrix A”. Then we
have

|
HA H2 - Urnin(AT)
1 ' k=1 G‘max(AT)
Omin(AT) (E) o;(AT) )
(max (AT))"
_ (A.26)
ITi—o 0:(AT)
_ 1A%l
| det(AT)]
2(2¢)" :
Do 147

IN

<

By the equivalence of norms

1471, < vE+ 1] A%],, (A.27)
147" < VE+T[AT ], (A.28)

we have
k+1
2

2(2¢)* (k +1)
Dy(k)

A7), < Er. (A.29)

It is obvious that ||B|/ec < C|lw|ee due to the boundedness of f'(u(z;)). Here C is a constant which depends
on degree k and the bound of f’(u(z;)). Hence, for the coefficients 3 we have

2(20)" (k +1)"F
Dy, (k)

which immediately results in the boundedness of P w. O

1Blloe < [[A™]| JIIBllso < E*Cllw]se- (A.30)
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A.2. Proof of Proposition 2.3

Let uy = PZU c V}f’ v = Q;‘Lu c Wf?’ aj; = f’(u(zj)), ajp1 = f’(u(zj+%)), by the definition of Bj and

BjJr%, we have

Bj(ur,vr; on; fou) — Bj(u, us on; fou)

1 i+l i+l
= / (v[ 7ul)(phd(L’+aj / (U] 7U)(g0h)x

Tmax
.

[

+CL]'

- (UI (IJ—&-%) - “(l’ﬁ%) —ur(zy) +U(Ij))<ﬁh (wﬁé)
+ (v[(mjfé) —u(:cjfé) —ur(xj) —&—u(xj))cph(x;r_%) , (A.31)

and

Bjy s (ur,ortn; fru) = Bjy g (u,ws s fw)
1 Tjpa
= / (ur —U])¢hdx+aj+%

Tmax

[ =,

J

J

— (ur(j1) — u(i))n (27, ) + (ur(zy) — ula;)yn(z))

= Qn(vr —U;T/)h;fau)j% + Trjax [/mj+1 <u1 —u—v1<x— Z) +u(x— Z))%dx

1
it+3

+ /J:Hé <u1 uv1<x+ ;L> +u<x+ Z))T,/)hdx]
O e e R | e

r., 1
it3
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+/rj+% (UI _u_yl(gg+ Z) —|—u(x—|— i2l>>(wh)rdx

- (uz (Zj+1) = ul@jer) —vr (%‘ﬁ) + “(%’%))d’h (@751)

+ (uI(xj) —u(z;) —vr (xﬂ%) + U(HUH%))TM ()] (A.32)
For U = kTt to get the desired result we need to estimate
k k
for =2t —ur(e+ ) + @+ ) N A ICE RN R
e (x'*%’%) L <$f’xj+%)
ond o =40 o4 4) ¢ (o ) Jor =t e =+ - ) .
L2 (zj-%—%’ijrl)

2 )
L (ZL’J ,x]._*_%

We will only show that Hvl —ah (35 - %) + ( - %)kH‘

< Ch?¢t5 with k =0,1...,8, as the
L2<:1;j,l'j+%>

For £k = 0,1...,8, by using the definition of the projection and the property that Haj a3, 0
j

have the first equation in the definition),

T., 1 xT., 1
it3 it3
/ urde = / g,
T . xT

other cases are similar.
= O(h) we have the following results. For u = z**1, by the definition (for k¥ = 0 we only

aj —aj_%

7 o (A.33)

then we have .
ur = Zalxl, Vx € I,
o (A.34)
vy = Zﬁlajl, Vr € Ij+%.
1=0
Here oy and §; are the coefficients obtained by solving the local linear system (A.33). We leave the detailed

calculations and formulas for k£ up to 8 in a separate file, as a supplement to this paper, since they are too
lengthy. We then have, k =0,1,...,8, that

1 h 2\’
it
/ (UI —a® —uy (a; - 2) + (a? - 2) ) dz = O(th+5)7 (A.35)

J

and therefore we can prove that

< Oh?k+5, (A.36)
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Then by using Holder’s inequality and Young’s inequality, we obtain from (A.31)
‘Bj(ubvﬁ on; fru) = Bju,u; s f, U)‘ < CR**3 4+ CllgnlTa ) (A.37)

Similarly, for Bj 41 owe have
]Bﬁ%(uf,m; Uns fru) = By (u,us s f, u>] < R0 4 Cllal?, (1) (A.38)
itg

A.3. Proof of Lemma 3.2
Proof. Let u; denote Pju. Assume that u = 0. Take ¢, = uy in (3.14), we get

. 2 ho ok
0=DP , 2 =, — ,
w(ur,ur),; = / 1 /w 1 u[(x+ 5y T Z)UI(CU Y)
i-3
h

-2

h
+2u1<x+2,y>u1(x v+ >d:£dy
Yi h 2
Y; 2

_1
2

o\’ h h\ >
+ us x+§,y +us x+§,y+§ dz dy

1 Ys h h 2
- — drd
i\ / < < +toyt 2) uz(%@/)) rdy

_1
2

vi [ h A\ \ 2
+/ / <u1<x+,y>—u[<x7y+>> dedy |, (A.39)
by e 2 2

2

where we have again used change of variable to shift all the integration regions to the same subcell (acF 1 xz> X

(yj, 1 yj) to simplify the formulation. Then

h h h h
u[(x,y)zuj x+§,y+§ , ur x+§,y =uy xay+§ 7v(x7y)€(mi7%,xi)x(yjfévyj)'

Thus us(x,y) = ¢o on K; j, ¢o is a constant. By (3.13) we immediately get u; = 0, and we have finished the
proof of uniqueness, hence also existence. We note that this projection is a local projection, hence we can make
a change of variables to the reference element [—1,1] x [—1, 1] by taking £ = 2(17;:1:) and n = Q(y 2y=ys) . Taking a
similar derivation as in the proof (Sect. A.1), we obtain

lurllze(x, ;) < CR)lullL=(x. ) (A.40)
Again standard approximation theory [2] implies the optimal approximating estimates. (]
A.4. Proof of Lemma 3.3
Proof. Let uy = Piu € X,lf, vy = Qju € Y,f, and a;; = f'(u(zi,y;)), bi; = ¢ (u(zi,y5)), Ayl gyl =
f’(u(mH%,ijr%)), bi+%’j+% = g’(u(mi+%,yj+%)), then by the definition of Bi,j and BH%JJF%, we have
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Bi,j(ulvvl;SDh;f7g7u) _Bi,j(uau; @h;fmg?u)

1
= / (vr —ur)ppdedy +a; ; / (vr — u)(¢n), dzdy
Tmax Ki,j Ki.j
Yj+1 _ n
*/ (('01 *U)(x%,y)cph(wi%,y) (vr fU)< Z_f,y)soh( N %y))
N

T

+ bi,; / (v — u)(¢n), dedy — / ’ ((UI —u) (%yjur%)wh (a?,y;r;)

Ki j Tl :

e Yoo,

= Py(u; —uion; fr9,u);

Tmax[/ /yHl( U(x,y)m(x};,yg)+u(zZ,yZ))whdzdy
L (-t B B) ool 2)
A ;)

o dzdy

+ m\»-‘

h h h
< r(z, y)—U(x,y)—uz<w—2,y+2>+U( z—5.y+5 ) endrdy

Ti (Vs h h h
+/ / vr(z,y) —u(x,y) — ur T+ 5yt | tu ,y+ onp da dy
xii% Y

; Yitd h h h
. // 2<v1(x,y)—u(x,y)—u1<x—2,y—2 +U<£L’ Zvy_2>>(50h)xdxdy

h
279
N vr(z,y) —u(x,y) — ur h —l—h +u h + =
\r, Yy Y 27y 2 2,11
S h h
+/ / (vz(w,y)—u(w,y)—uz( +2)+u( ,y+2> ), dx dy
r. 1 Y.
2
Yi+3 h h
[ (o) = n(iego) - ) (= 2) (o)
3
Yj h h _
(v1($i+;7y) - u(wi+%,y) —ur (xi,er 3 +u(:c¢,y+ 2)>wh(sci+;7y> dy
1
2
it% h h
’ 2<U[($ié,y)_u( >y)_ul(xiay 2>+u(‘rzay_2>>§0h<mj_éuy)dy
h h
(vz(wi;,y)—U( ,y)—uf<ﬂcj,y+2>+U<wj,y+2))%(%?;@/)@]
Tied [Yied o h ho h
/ z/j 2<v1(x,y)—u(w,y)—u1<x—2,y—2>+U<x—z,y—2>)(<ph)ydwdy

+
S~
3
‘S\
=
i
(S
7N
<
~
8
NS
N~—
—
8
S
|
<
~
/N
8
+
N
<@

)
N~
+
<

> L, drdy

> L drdy
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+/: /:‘ﬁ% (w(m,y)—u(x,y)—uf (:c—kZ,y Z) +u( )> ), d dy

vi h h h
(vr(%y)—U(m,y)—w(m—2,y+2>+u( 5 U+ )> ), d dy

i Yi h h h h
+/ / (vf(x,y)—uwy)—uz(ﬁ,y+)+u( .U+ )) , dzdy
e 1y 2 2 2
2
%ir} h h
_/ ’ (Uf(xuyj+é> _U(ffyyj+%> —ur ((E - 27yj> < - 7y]> ‘Ph( z,y d.’L'
_/ (W(%?Jj+§> _U(%yﬁ_%) _U1($+27yy) +u( ’y7>)§0h($7y dx

—&-/9:”% (UI(x,yjé) —u(m,yj,%) —uI( ;L,yj> ( _ ,y;))
+/£ (Uf(ivvyjé) _U<x,yj—§> _UI<x+Zvyj) +u( 73/]))@ Yy, % x], (A.41)

Bi+%7j+%(ul,vl§7/}h;fa u) - BH—%,]‘-&-%(uvu;wh;fv u)
1

= / (ul—vj)whdxdy—i—aH%,H% [/ (vr — u)(¥n), drdy
K. 1 1

Tmax
ittty i+5. 0ty

/1/%*1((1&1u)(xH;vy)wh(x;é,y) (u I—u)( )d)h( j;’y))]
/K (uy u)(d’h)ydxdy/:i“ ((UI7U)(l’,yj+%)1/1h<z7yj_+%>

2%

— (ur — ) (a:,yj_%ﬂh (myf;)ﬂ

= Qh(vI 7u;¢h;fagvu)i+l j+,l

| S I\D\D

dw

to\»—-

+bij

s

Yi+d h h h h
+/ / : (urxy —U(x,y)—v1<x+27y+2>+U<x+2,y+ ))%dxdy]

vj

Tit1 Y+l h h h h
+az+2j+2l/ / (ul(xy)—u(xy) vl(x—2,y—2)+u(x—2,y—2>>(1/)h)zdxdy
Yjrd
:t,i+2

-/

Yj+1 h h) ( h h))
) - ) - +77 — a + +77 - a w g;d d
Z /y (u;(m y) — u(x,y) 111(30 5 Yy 5 ul z 5 Yy 5 (¥n),, da dy

i+

N



1432 M. JIAO ET AL.

|

Yith h h
+/ ur(zi,y) — w(wi,y) —vr Tipr¥ — 5 ) Tul T,y — Un (2], y) dy
»

Yi h h
+/ (uf(xhy)_u(x’hy)_’Uf(xi+;7y+2)+u( 7,+ Y+ ))wh( Zay)dy]
Y._1

itz

Titl (Uit h h h h
+0i41 441 / / <UI($ay)U($>y)W($27y2) +U<x 50U~ >)(wh)ydxdy
., 1 Y., 1
i+35 it+3
Tipl Yi+1 h h h h
+/ 2/ <U1($7y)u($,y)vj<$+ Y — >+U<I’+,y>) dxdy
. o 2 2 2 2
Titl (Yl h h h h
+/ / 2(U1(I7y) (z,y)w(»’c 7y+>+U< y+>) ), dz dy
e 1 Sy, 2 2 2 2

h h
+ (ul z,Y;) — (a:,yj)—m(a:—I— Q’yj+§> +u(ﬂ?+2ayj+§))1/’h(x,y;') dx]. (A.42)
For u(z,y) = 2Pt or y*t1 we only need to estimate Hvl(x,y) — gkt — (:E - %,y - g) + (33 — %)kHH

k+1
A N IR U

2((mn )5 (my)) Jor.m) —y

as
() o)
the other cases are similar.

For k =0,1...,8, by using the definition of the projection and the property that ‘
O(h),

R T | P

bi; —b

i 40+ H | e i,y = O(h) we have the following results:
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(1) u = 2**1, by the definition of the projection (for & = 0 we only have the first equation in the definition),

Tl Y; 1
/ +2/ +3 ujdxdy—/ / " dz dy,

j—1 1
2 2

Ph(uhx y fvga ) :Ph( k+1 1‘ y fvga ) m7n:O,.-~7ka

. (A.43)
i+l Y+l i+l Y41
/ / vrdedy = / / 2 dz dy,
Quuna™y" frg )y sy = Q@™ ha™y" fgu) sy mn =0,k
then we have
k ok
ur = Z Zam,n:cmyn’ v(x’y) c Ki7j7 (A.44)
m=0n=0
k k
vr = Zﬁmx"xmyn’ V(z,y) € Kivij+i- (A.45)
m=0n=0

Here oy, and B, are the coefficients obtained by solving the local linear system (A.43). We leave the
detailed calculations and formulas for k£ up to 8 in a separate file, as a supplement to this paper, since they
are too lengthy. We then have, for £k =0,1,...,8, that

ot s k41 2
R L
Ti Yi

(2) u = y**1 by the definition of the projection (for k = 0 we only have the first equation in the definition),

z, % Yipl
/+ / i u;dxdy—/ / y* 1 dz dy,

-1 1
2 2

Ph(U[,J) y f?g7 ) P(k+1x y f7g7 ) m,n=0,...k, AAT
it1 Yj+1 it1 Yi+1 ( . )
/ / vydedy = / / Y"1 dz dy,
Tq Yi
Qulorsa™y"s fog.u)iy sy = Qu( ™™ o)y ye mon =0,k
then we have
kK
ur = Z Zam,nxmynv V(x,y) € Ki,j7 (A48)
m=0n=0
k k
vr = Zﬁm’nanyn? v(w7y) € KZ+%]+% (A'49)
m=0n=0

Here oy n, Omn are the coeflicients obtained by solving the local linear system (A.47). We do not give
detailed calculations here since for u = y**1 in two-dimensional case the formulas are symmetric to those
of u = z**+1 by switching = and y (i and 5). Hence, by some calculation we have

2
x'i+l y,-+; h h h Rl
/ 2 / - (Uz(:c,y) — gyt — (93 Y- 2) + (y - 2) dzdy = O(h***°). (A.50)
Zq Yj



1434 M. JIAO ET AL.

Hence, for £k =0,1,...,8 we have proved that

2
k+1 h h AN 2k+6
vr(z,y) — " —ug T-5Y =5 + -3 < Ch , (A.51)
(o))
2
h o h h\
vr(z,y) —y* T —ug <w — 5l 2> + <y - 2> < Ch?k+6, (A.52)

T(CEMU )

Then by using Holder’s inequality and Young’s inequality, we obtain from (A.41)

‘B’z‘,j(ul, vr;¢n; fr.9,w) = Bij(u, us ons f 9, u)‘ < CR*** 4 Cllonll 72k, - (A.53)
Similarly, for Bi+%7j+% we have
Bi+%’j+%(u1avf;wh;f7gau) _Bi+%’j+%(uau;wh;f7gau)‘ S Ch2k+4+c|1/}h||i2<K ) 1) <A54)
i+1.5+3
O
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