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A COUNTEREXAMPLE TO ANALYTICITY IN FRICTIONAL DYNAMICS*

CHRISTOPHER R. DANCE*

Abstract. We consider the motion of a particle acted on by dry friction and a force that is an analytic
function of time. We give a counterexample to the claim that such motions are given by analytic func-
tions of time. Several published arguments concerning existence and uniqueness in unilateral dynamics
with friction rely on the analyticity of such motions. The counterexample invalidates those arguments
for motions in three or more dimensions.
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1. INTRODUCTION

Contact and impact are typically modelled with unilateral constraints: inequalities involving the coordinates
of some bodies, which are satisfied when those bodies do not interpenetrate. Such constraints are essential
components of models of robots [7,10] and other systems [6], and it is natural to enquire about the existence
and uniqueness of solutions to initial value problems for such models [3]. In the 1960s, it was discovered that
the motion of a unilaterally constrained particle acted on by an external force is in general non-unique, even
if the force is an infinitely differentiable function of time [1, 4, 14]. However, in the 1990s, it was shown that
such motions are unique if there is no friction and the force is an analytic function [1,13]. (A function f is
analytic if for every point xg of its domain, the Taylor series of f at x¢ converges to f(x) for all points x in
some neighbourhood of zg.)

Several authors have explored how such results might be extended to models involving friction. Ballard and
Basseville [2] presented arguments for the existence and uniqueness of solutions to initial value problems for a
unilaterally constrained particle acted on by an analytic force and dry friction. Charles and Ballard [5] extended
those arguments to finite collections of particles. A key step of those arguments is to derive a local solution
given by a power series, and to claim that it corresponds to an analytic function.

In this paper, we present a simple counterexample to that claim. The counterexample invalidates the existence
and uniqueness arguments presented in Ballard and Basseville [2] and Charles and Ballard [5] for unilaterally
constrained particles in dimension d > 2, although those arguments are correct for d = 2 to the best of our
knowledge. Consequently for d > 2, the only general existence result about unilateral dynamics with friction is
that of Monteiro Marques [11], which only addresses situations with a single constraint and perfectly inelastic
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FIGURE 1. The tangential force and reaction acting on the particle in Counterexample 1.

impacts (zero restitution coefficient); and the question of finding sufficient conditions for uniqueness is largely
open.
1.1. Counterexample

Consider a particle in contact with a flat surface, acted on by a force and friction. The particle’s position is an
element of R%, but a normal force holds it in contact with the surface, so we describe its motion in R%~! using
an orthogonal coordinate system tangent to that surface. The particle’s tangential velocity v : [0,T] — R4~}
satisfies Newton’s second law:

mv =F + R,

where m is the particle’s mass, the dot denotes the time derivative, F : [0,7] — R%! is the tangential force,
and R : [0,7] — R?~! is the tangential reaction. This reaction satisfies Coulomb’s law of friction:

ROIv®) = —uN(@E)v(t)  and R[] < pN (),

where p1 > 0 is the friction coefficient, and N (t) is the magnitude of the force normal to the surface. As discussed
in Moreau [12], Ballard and Charles [3], we may write this compactly as

R(t) € —=uN (@) 9|v(D),

where 0f denotes the subdifferential of a convex function f. For simplicity, we assume the particle has unit
mass and that uN(t) = 1. The velocity then satisfies the differential inclusion

v EF —a|vl. (1.1)

(This is equivalent to requiring that the differential equation v(t) = F(t) — (v(¢)/||v(¢)]]) holds at times when
v(t) # 0, and that the constraint ||v(¢) — F(¢)|| < 1 holds at times when v(¢) = 0.)

The following counterexample shows that even if the force F is an analytic function of time and the final
time T > 0 is tiny, differential inclusion (1.1) need not have an analytic solution v. The force appearing in this
counterexample is illustrated in Figure 1. The magnitude of this force initially equals the friction limit, but a
component of the force orthogonal to its initial direction increases, causing the particle to slip.

Counterexample 1. Suppose the dimension is d > 2, the final time is T > 0, and the velocity v : [0, 7] — R4~}
is an absolutely continuous function with v(0) = 0 that satisfies differential inclusion (1.1) for the force

F(t)=(1,¢0,...,0) e R¥1

for almost all ¢ € [0,T]. Then v is not an analytic function.
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To prove the velocity v(t) is not analytic, we derive its Taylor series at ¢ = 0 and show that this series diverges
for any ¢t > 0.

Remark 1.1. Tt is not uncommon for differential equations to have divergent series solutions [9]. However, the
initial condition v(0) = 0 is necessary for a series solution of differential inclusion (1.1) to diverge for all ¢ > 0,
when F is analytic. Indeed, if v(0) # 0 then the tangential reaction is R(t) = —v(t)/||v(¢)|| on a neighbourhood
of ¢ = 0, and this is an analytic function of v(¢) on a neighbourhood of v(0), so the Cauchy—Kovalevskaya
theorem [8] guarantees the existence of a unique analytic solution v(¢) on a neighbourhood of ¢ = 0.

Remark 1.2. When working with unilateral constraints, the velocity must in general be formulated as a dis-
continuous function, so as to allow for impacts [2,5]. Such formulations simplify to ours in the special case
that a normal force holds the particle in contact with a surface. In this special case, the unilateral constraint
is equivalent to a bilateral constraint: an equality constraint on the particle’s coordinates. The existence and
uniqueness of a solution to Counterexample 1 therefore follow from general results about bilaterally constrained
problems with friction — specifically, Proposition 3.3 of [2] or Proposition 3.1 of [5].

1.2. Outline

First, we derive an algorithm to compute the Taylor series of v (Sect. 2). We provide numerical evidence
that this series diverges (Fig. 2) and explain the divergence intuitively. Then we discuss the specific results
that our counterexample invalidates, and pinpoint the error in the arguments leading to those results (Sect. 3).
Appendix A gives a proof of divergence, and the supplementary material contains a Python implementation of
our algorithm and Maxima code to verify our algebra.

2. COMPUTING THE TAYLOR SERIES

In this section, we derive an algorithm for computing the Taylor series of the velocity in Counterexample 1,
and provide evidence and an intuitive argument for the divergence of that series. We restrict attention to
dimension d = 3. (We may obtain the velocity for d > 3 from that for d = 3, simply by setting the d — 3
additional components to zero.) We write the Taylor series at ¢ = 0 of the velocity v in the form

v(t) = (Zﬁég) where u(t) == gount", v(t) := govnt" (2.1)

for some real coefficients u,,, v,, with ug, vg # 0, and some non-negative integers p, q.

2.1. Solving for the leading orders

First we show that p = 3 and ¢ = 4. It follows from the initial condition v(0) = 0 that p,q > 1. Also, for
v(t) # 0 differential inclusion (1.1) reads

d tPu

tPy)=1— ———— 2.2
3 ") T (2.2)
d tdv
— (4 frd _—_— .
dt () =1 t2Pu? + t2a02 (2:3)

Substituting the series expansions (2.1) and matching the coefficients of tV in (2.3) gives

Vo Vo

1, —— —1,~¢—
2 T vl

1q:11)0 = —
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where 1. is the indicator function. If p = ¢, then this expression cannot be satisfied for vy # 0. Thus, we have
p # q. Using this fact, matching the coefficients of t¥ in (2.2) gives
ug
1, =1-1 _—
p—luo p<q |u0|
If p > ¢ > 1, then this expression cannot be satisfied. So, we must have p < ¢, in which case this expression
reads 1,=1up = 1 — ug/|up|- As this cannot be satisfied for p = 1, it follows that p > 1 and ug > 0. Matching
the coefficients of ¢! in (2.3), and using 1 < p < ¢ (so that q # 2) gives
v
0 == ]. - 1q:p+170

|uol’
which is only satisfied if ¢ = p+ 1 and vg = |ug|. As ¢ = p+ 1, Taylor expanding each side of (2.2) gives
U _ %
VaZ + 202 2ud
As the terms involving t?~! and t? have non-zero coefficients, they must be equal, and we conclude that

1
p=3, q=4, and Uo = o = & (2.4)

d
— (tPu) = pt? " tug + O(1P) and 1-—

m t2+0(t*) ast—0.

2.2. Algorithm

For the values of p,q in (2.4), functions u,v should satisfy the differential equations

i(t?»u):l_# i(t%):t_ti“.
dt /u? + 292’ dt Vu? F 202
We write these equations in the form
d+e=1, f+g=t, (2.5)

in terms of the intermediate functions

a=u?+t*?, b= +a, c=1/b,

d d
d = uc, e= &(t?’u), f = tue, g= &(t‘lv).
By the Cauchy product formula, the coefficients of the formal power series Y ant™, ..., > oo, gnt™ of these

intermediate functions satisfy

an = Z Uplg + Z VpUyq, d, = 2: UpCq,
p+g=n p+g=n—2 pra=n

1, § n = Dup—2,
bn = 1/(101”:0 + B) = <an - bpbq>7 € (n + )u 2 (26)
0 pt+g=n,p,q>0 fn= E UpCq»

1L,—o 1,>1 prg=n—1
= —_ — b 5
T bo D bty gn = (n+ 1)vn_s

p+g=n,p>0

for n > 0. (In our notation, we sum over pairs of non-negative integers p,q, so that pr:n’pw bpeq =
-1 . . L .
D ope1 DoCn—p = D00 bn—qCq, and coefficients with negative indices vanish, so that ag = ud and eg = 0.)

Moreover, matching the coefficients of t" and t"~! in (2.5) gives

dn +en = 1n:0a fnfl + 9n-1= 1,—2. (27)
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The idea of our algorithm is to treat w,_o,un_1, Un, Vn_o as unknowns, having already determined values for
Up, Up for p < m — 2. Equation (2.6) then provides expressions for a,, by, ¢, for p = n —2,n — 1,n and hence
for d,,, en, fn—1,gn—1 in terms of those unknowns. Substituting these expressions in (2.7) gives a linear equation
for w,—2,v,_2, which has a unique solution. (As the intermediate expressions for ¢,, ¢,—1 involve u,_1, uy, it is
interesting that the linear equation does not involve those variables.)

We now apply the idea of the previous paragraph, treating n = 3,4 and n > 5 separately, as the formulas
have “special cases” for small n. (For instance, the sum »_ . _ u,u, involves the term u2_, for n = 4 but the
corresponding term is 2ugu, o for n > 5.) Full details of the following derivations are given in algebra.txt in
the supplementary material. For n = 3 and 4, we get the linear equations

ds+es\ (10 —6\[ur\ (O di+es\ (11 =6\ [usg n 3/8\ (0
fatge) -6 6 J\vi) \0)’ Jst+gs) -6 6 )J\va 1/6) — \0
with the unique solutions

w =0, v;=0, uy=—13/120, vy = —49/360. (2.8)

dn + en +7 —6 . w0
(e )= (57 D)) - ()= 0) 20

mi = ~Rj — (R2_,/2) + Re + (8/5)(Ry, _, — Ri, ) +18(R:, ~ Rp.),

For n > 5, we get

where

+18<R3n7 — Ry ) (210

v n mn
My 2= —NUn—q — Log, + R 2 br—2

n Cn—2

in which the terms R" are the parts of the sums in (2.6) that depend neither on the unknowns
Up—2, Up—1, Un, Un—2, NOT On the quantities by, ¢, for p =n — 2,n — 1,n that involve those unknowns:

n _ n _ n —
R, _,= E Uplg + E , vpvg, Ry, = E , bpbg, R, = E bpcqs
p+g=n—2 p+g=n—4 p+g=n—2 ptq=n—2
p,q>0 p,q>0 p,q>0
noo__ n n oo
Ran - Z Uplq + Z UpUq;, Rbn - Z bpbq’ ch - Z bpcqv (2 11)
p+q=n pt+q=n—2 pF+q=n ptq=n ’
p,q>2 p,g>0 p,q>2 P,q>2
n n —
Rdn = E UpCq, anfl = E VpCy-
p+q=n pHg=n—2
p,q>2 p,q>0

It turns out that wu,, vy, ayn, by, ¢, vanish for all odd n. We show this by induction. In the base case, equation
(2.8) gives u1 = v1 = 0, s0 (2.6) gives a1 = by = ¢ = 0. Otherwise, suppose n—2 is odd and that u,, vy, ap, by, ¢p
vanish for all all odd p < n — 2. Consider any term of any of the sums R™ in (2.11). This term is of the form
xpy, for appropriate sequences x,y € {u,v,b, c}, where one of p,q is odd and less than n — 2. It follows from
the induction hypothesis that one of the factors x, or y, vanishes. Thus all the sums R" vanish. It also follows
from the induction hypothesis that v,_4 = 0. Thus, equation (2.10) gives m%» = m¢ = 0, so the linear equation
(2.9) has the unique solution u,,_s = v,—2 = 0. Examining the sums giving a,_2,b,_2,¢,—2 in (2.6), we see
that their terms are also of the form x,y,, where one of the factors x, or y, vanishes. Therefore a,,—2,bn—2, ch—2
also vanish. This completes the induction.

In the light of the above discussion, Algorithm 1 computes the coefficients of the Taylor series of the velocity
appearing in Counterexample 1.
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Algorithm 1. Determining the coefficients of the Taylor series defined in (2.1).

1: function TAYLORCOEFFICIENTS(Nmax) > Assume nmax > 2 is even
2 Ug, Vo, b, co — 1/6,1/6,1/6,6 > By (2.4) and (2.6)
3 ug, v — —13/120,—49/360 > By (2.8)
4: U, Upy by € < 0 for odd n < nmax

5: for n =6,8,...,Nmax + 2 do

6: An—4 < Dt gmn g UpUq T Dt g 6 UpTlq > By (2.6)
7 bn74 — 3(an,4 — Zp+q=n_47p7q>0 bpbq)

8

: Cn—a = =63 14 pnobrca
9: Compute the sums R defined in (2.11)

10: Compute my;, m,, as defined in (2.10)

11: Un—2 «— (Mg +mp)/(n+ 1), vp—2 «— Upn—2 + (M} /6) > This solves (2.9)
12: end for

13: return uo, vo, . - -, Unpax s Unmax

14: end function

0 ~_
.\\\
~
C\‘, —20 - \.\.
g ..
IS \\\
™~ —40 1 S
.
\,\
—60 ~.
\\.
T T T
0 100 200 300 400

FIGURE 2. The ratio v, /v,—_2 for even n.

2.3. Intuitive argument and numerical evidence for divergence

If v,, does not vanish for all large enough n, and each of the sums in (2.11) satisfies R"/v,,_4 = constant +
O(1/n) for even n as n — oo, then (2.9) gives

i 1
In=2 _ T4 constant + O <) (2.12)
Un—4 6 n

For such a sequence, there is no ¢t > 0 such that ZZOZO v,t" converges.

We implemented the above algorithm using Python’s fractions module, which provides exact arithmetic
for rational numbers, and provide the resulting implementation as series.py in the supplementary material.
We find the following initial terms of the series:

1o 13, 79, 7439 o 1289987 o 370576091
= 20 242, Y4 6 8 A0 L (412
ul) =" 10" T 70’ ~sisan’ t 57024000  ssoszason’ ¢ O
o) = Lo A9 2B G127 o TITO69 o 772992080
T 6 360 144 250200 171072000 889574400

+ 0 (t12)
as t — 0. Figure 2 plots the ratio v, /v,_2, which does indeed decrease nearly linearly, as suggested by (2.12).

3. RELATION TO PREVIOUS WORK

Ballard and Basseville [2] argued for the analyticity of the motion of a single particle, under the action of
an analytic force and Coulomb friction, and Charles and Ballard [5] extended those arguments to multiple
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particles. Both papers apply Lemma 3.4 of [2] to draw this conclusion. This lemma involves a function G that
is hypothesized to be analytic in a neighbourhood of the origin. While both papers claim that the function to
which they apply this lemma (G in [2], p. 70 and g’ in [5], p. 13) is analytic in a neighbourhood of the origin, this
claim is false in dimension d > 2, as illustrated in the example below. Moreover, Counterexample 1 shows that it
is not possible to circumvent this error: the counterexample directly contradicts the results about the existence
of a local analytic solution presented in Proposition 3.5 and Theorem 4.1 of [2] and Proposition 4.1 of [5]. As
these existence results are central to the uniqueness arguments presented in Theorem 4.2 of [2] and Theorem 4.2
of [5], the counterexample also invalidates those arguments in dimension d > 2.

Example 3.1. For a single particle ¢ that is initially at rest but slides immediately thereafter, which is acted

on by a tangential force F(¢) € R%~! and normal force N(t), the function in Charles and Ballard [5], p. 13 is

i - 1 .. S, 42(t) 4+ trotly
&' (1,8,9) = g | (1) = Sposalt) — uIN(D)] -2 — |
HSpOJr2(t) + t”"“VH

te0,7], a,v € RI1,

where S, 12(t) = Zﬁ‘):JBQ u,t* is the truncated Taylor series for the tangential position of the particle for suitable
coefficients 1, € R?~1, and pg is the integer such that Spo+2(t) has a single non-zero term. Now, if the force
satisfies F(t) = (2,0)T and p|N(t)| = 1, then the solution for the tangential velocity is v(¢) = (¢,0) T, so the

truncated Taylor series satisfies S, 12(t) = (t,0) " with py = 0. It follows that

1 -
N A

)

which has a simple pole at t = 0 whenever the second component of ¥ does not vanish. Thus g’ is not analytic
on any neighbourhood of the origin.

APPENDIX A. PROOF OF COUNTEREXAMPLE 1

The proof is based on Algorithm 1. It is straightforward, but laborious as the algorithm involves many
intermediate sums, each of which must be bounded. The file algebra.txt in the supplementary material
contains computer algebra code for all calculations involved.

Let B, := |by|,Cp :=|cpl, Up := |up| and V,, := |v,|. The proof proceeds by induction with the hypothesis:

|bp—2/vp—¢ +1/6] < ky/(p —2), where k; := 20, if p > 6,

lep—2/vp—6 — 6] < k¢/(p—2), where k. := 746, if p> 6,

By 2 <V, 2/4, if p>6,

. Cps < 8V,_s, if p > 6,
P [up/vp—o + 1| < K/p?, where K := 60, ifp>2,
|vp/vp—2 + (p+2.9)/6| < K, /p, where K, := 5, ifp>2,

U, <Vp, and

Voo /Vp—a <V, / Vo ifp>4.

We refer to the four lines concerning b,_2, cp—2, Bp—2,Cp—2 as HSC, and we define the hypothesis
H<,: mniseven and Hy holds for all even p with 0 <p < n.

Before giving the proof itself, we present three lemmas: Lemmas A.1 and A.2 are simple bounds on ratios
involving V,,; and Lemma A.3 gives upper bounds of the form %ntant on the sums defining a,,, b,, ¢, and R".
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Lemma A.1. Suppose k > 6 and n > k+ 10 are even integers and that H<,_4 holds. Then

k—2
V- 6
7 k< H — =:p(n, k).

_ n—
4 q=4, q even q

Proof. As H<,_4 holds, for even p with 2 <p <n —4, we have VL: > % - %. For p > 12, the right-hand

side is greater than p/6. As 12 <n — k+ 2 < n — 4, it follows that

ank o ank ank+2 anﬁ < 6 6 6
Vi—a B Vn—k+2 Vn—k+4 Vi—a = n—k+2n—k+4 n—4

as claimed. O
Lemma A.2. Suppose p > 182 is even and H, holds. Then V,/V,_2 < p/5.9.

Proof. As H,, holds, we have VL: < % + %. The result follows as (ﬁ — é)p > 29 4

The following lemma involves the function

8
z x Nmin
Sjib ,Y,y(n) = (y(nmin - 6 - 18)V10p(nminv ﬂ + 10) + Z (xYp + yXp)p(nmin7 6 + p)) T?

2
p=a+2

in which X, Y are real sequences, z, y are real numbers, «, 3, n are even integers, and p(n, k) is as in Lemma A.1.
We used ni, = 200 to obtain numerical values.

Lemma A.3. Suppose that (X, z),(Y,y) € {(U,1),(V,1),(B,1/4),(C,8)}, that o, B € {0,2,4,6} with a+p > 4,
that n — 4 > 200, and that H<,_4 holds. Then

X, Y, X 2V
Z Vp_: < Soz,; y(n)
ptg=n—B,p,qg>a "

Proof. As H<,,_4 holds, we have B,,_g < V,,_¢/4, and more generally for 4 < p < n — 6, we have
X, <V, Y, <yV,.
For the hypothesized «, 3, n, it follows that
Z XpYq < Z (Xplp<s +2Vplpss)(Yolecs +yVolgss).
pt+q=n—0,p,¢>a p+q=n—3,p,¢>a

As H<,_4 holds, we have V,,/V,_o < V,12/V, for any even integers 2 < p < ¢ +2 < n — 4. So for any even
integers 8 < p < g + 2 appearing in this sum, we have

VoV S VpaVyqro <o < VioVi_p_10.

Asthesum 37, _ 5 g involves (n — 3 —18)/2 terms with even p, it follows that
8
XY, xy VioVa—s-10 Va—p—p
<—=Mn-p4-18)—F—— X Y,)—— Al
Z Vn_4 = 9 (n 5 8) Vn_4 + Z ( Py +z P) Vn_4 ( )

p+g=n—F,p,q>a p=a+2
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By Lemma A.1, we have

Vi s .
Viipgp(n,ﬁ—&—p) for even S+ p with 6 < 8+ p < n —10.

As o+ 8 > 4, the condition 6 < 8+ p applies to all appearances of V,,_g_, in (A.1), giving

8
3 XpYy %(n —B—=18)Viop(n, B+10)+ > (Xpy +2Yy)p(n, B+ p). (A.2)

ptg=n—0,p,q>a p=a+2

Let f be any of the functions n — p(n, 8+p) for a+2 < p <8, orn — (n—LF—18)p(n, 3+ 10). By the definition
of p and the hypotheses on «, 3, the function nf(n) is decreasing for n > ny,in. Therefore, f(n) < Nmin f (Rmin) /7
for n > npin. Applying this to (A.2) completes the proof. a

Proof of Counterezample 1. First, we consider the base case, H<20o (in Step 1). Next, we show that if n—4 > 200
and H<,_4 holds, then HY , and H,,_» hold (Steps 2 and 3) Finally, we conclude (Step 4).

Step 1: Base case (H<200). Our implementation of Algorithm 1, which uses exact arithmetic for rational
numbers from Python’s fractions module, gives

6<r;12<u2<00(p 2)|bp—2/vp— +1/6] = 1.466--- < ky, [ Jnax P ?luy/vp—o + 1| =10.913--- < K,
(0= Dlep /vy o — 6| = 37089 Sk max plup/op s+ (p+29)/6] = 1881 < K,
6<12§>2<00(p 2)By_2/Vp—2 =0.043--- < 1/4, OgggzgooU o/ Vo =1,

6<r;12<1>2<00(p 2)Cp_2/Vp_o =1.073--- <8, 432)2(001/ "o/ (VpVp—a) = 0.990-

in which each maximum is taken only over even values of p. Therefore H<ogo holds. (While one might find
a proof involving a “smaller” base case, for instance H<sg, we do not pursue this as we believe it would still
require computer algebra.)

Step 2: Showing that H<,,_4 = Hflc_z. Suppose that H<,, holds where m :=n —4 > 200. As H,, holds,
we have [, /vy _2 + 1| < K/m?, so Lemma A.2 gives

[0t + VU —2] Uy, Vi—o UK m—2  UyK
< 1) — < < =Ty .
Vm—4 = %o Um—2 + o + vo Vm_4 - m + |U0 | 5.9 — 5.9m Tt
Similarly, we have
us—"=2 4 vy + i ek + |v2 + L uz| = & =:r
vmea 236 T m—22 " [T 36 T (m—2p2 v

and Lemma A.1 gives

_ _ UK
|U4um 4+ v4avm, 6| < <( 4 Jr|v4u4|>p(m,6) =Ty,

Vm,4 m — 4)2
So the definition of ay, in (2.6), Lemma A.3, and the fact that m — m(ry,, + 74, _, + Tu,,_,) is decreasing
give
am 1 |[Uotm + VoUm—2| U —2 1 |ugtim—4 + V4Vm—g|
—| <2 2 2 —|+2
Um—4 + 18‘ - Vin—a + ‘ 12 Um—4 + vz 18 + Vin—a
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Loy U,y Wh

Vi— Vi—
pta=m,p,g>4 " prg=m—2,pg>4 M4

2 6.5
S . [m(’rurn + Tu'm72 + runL—4)]m 200 SU717U 1( ) + SV,17V1( ) S — (A'3)
m m
As H,, and H,, 5 hold, Lemma A.1 gives
B2 1 kb B4 1 kb
< | = 6) =: <|= 8) =: .
pet < (G om0 = rm gt s (G )t =
So the definition of b,,, inequality (A.3), and Lemma A.3 give
bm 1 m 1 B — B - B,B
+‘<3 Im_ 4= ‘+232 2 peB ey e
Um—4 6 Um—4 18 Vin—a Vin—a ptg=m. p.g>4 Vin—a
6.5 1 B,1,B,1 19.8--- kK
< 3( T m —[m(2Barp,,_, +2Bar5,, )] 900 T St (m)) = < m (A4)

As H,, and H,,_5 hold, Lemma A.1 gives

Crm—2 ke Cr-a ke
= < =
2t < (00 Yptm0) et (6 Y ptms) = e

m—4
so that
Cm CObm Cm—Q Bm—2 Cm m 4 Bqu
—6/<6 ~-1/+B +C +B +C - £
Um—4 ’ < Um—4 ‘ ? Vm74 ? Vm74 * Vm * Vm 4 p+q:mzp g>4 Vm74
6kyp 1 B,1.c8
=6{ -+ [m(Bare,, , + Carp,, , + Barc,, s +Carp, .)], o0+ Suo" (m)
_ 745.2 - - - < E (A5)
m m
Applying Lemma A.1 to inequalities (A.4) and (A.5) gives
B 1 . 1 1.
=< ,+@L Egoﬁg,) Cﬂg 6+&L ESESS- (A.G)
Vin 6 m/m-—=2]__o450m m 4 Vin m)m-—2|__o4M m

Together inequalities (A.4)—(A.6) imply that H%¢ , holds.
Step 3: Showing that H<,,_4 = H,_2. Suppose n — 4 > 200 and that H<, 4 holds. We now bound the
sums R" defined in (2.11). Lemma A.1 gives

1 K K 6 6
n— n— n— < — Uy— +Us| 1 =17,
[Ustp—a + V4Vn—6 + UsU 6‘/71_4_(|U4 va| + 4(n—4)2+ 6( +(n6)2>n6>n4 1
[U2tn 4 + VoUn 6 + Usly 6\
n 4

K K 6 6
— —_— 1 =T
('“2 “2'+U2<n—4>2+U4<+<n—6>2>n—6>n—4 >
Un 4

_ K 6
<14+ -—7 =17
Vn—4_( +(n—4)2>n—4 3
and the penultimate steps of (A.6) give
B,_4 < 0.05 Ch—a < 1.8 L
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Applying Lemma A.3 to the sums in the following expressions, we obtain

n
Ran

Un—4

RTL

an—2

49

49 UpUy
180

< 2T + 7
n—4

>

p+q=n,p,q>6

D

ptg=n—2,p,q>4

>

1

3
Ry

Ublh
V%74

<273 +

Un—4

<2B,T) +

+’2U2%

Bqu <

49 VioVq
v%—4

>

180
p+q=n—2,p,q>4
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D

v, =
pra=n—a,p,q>2 "4

Ve
n—4 ptq=n,p,g>4

>

ptg=n—2,p,q>2

>

p+q=n,p,q>4

>

n
bn72

B,B
< 2B Ty +

< B3 + CaTy +

< BoTy + CoTy +

< CT3 + ULTE +

>

p+q=n,p,q>4

>

p+g=n-2,

R,

Un—4

9

10

or_ D
2710

‘+V§T?/+

As the solution to linear equation (2.9) for u,_o is
my +m;,

n+1
1 1
<m’n—4 — Ry _, — Ry, + 3R

Up—2 =

n 4+ 1 Cn—2

9
10

and we have = 3

9

n n
Up—2 fn—1 Rdn

v%—4 -

p+q=n—2,p,q>2

0.024

p Q<
D%74 -

n

B,Cy _ 123

V%—4 n

B,Cy _ 0-645---
V%—4 o

U,Cy _ 12765

n

Vi—a — n

V,Cy _ 9.205---
n

v, S
pa>2 4

72
_ Agflzbn_g _

Rn
+ It 5

+ % = 1, substituting the above bounds on R gives

1 RZL,,L,Q R?ﬂ B RZLn—Z

1

—i—l‘é
n+1
72

(

R’I’L

An—2

Un—4 10 VUnp—

T

Un—4 4

1
5 Un—4 3
 56.06- - - K

Tnn+1) T (n—2)2

Rt

Similarly, the solution for v, _s is

v

m
n v
Un—2 = Up—2 + 6’

where .

m

49

n
= ~NUn-—4 — fn-1

2 Un—4 Un—4 5 Un—4

)

n
+ ch72 2

+18(Ri,

and substituting the above bounds on R"™ and u,,_o into this expression gives

n—2+4+29
6

1
1+ =
N 6
fas

Un—4

Un—2 Up—2

E

1)+

(

Un—4 Un—4
K

et

=

<m

Un—4

v
n

+n+0.9)‘

n
Cn—2

n
An—2

9

1
10 + 18

+

Un—4 Un—4

18R}, + =R, + 18Ran>

_‘Rg

n—2

)

n
bpn—2

)

Un—4
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3.59. .- K
= < - A8
n T n—2 (A-8)
Coupling inequalities (A.7) and (A.8) gives
U,—2 K n—24+29 K, Vi—o
<1 < — < . A9
V:n—4 =4 (Tl - 2)2 - 6 n—2" Vn—4 ( )
As inequality (A.8) holds, we may argue as in Lemmas A.2 and A.1 to get
Vn,Q n—2 n—4 Vn,4
> > > . A.10
Vs = 59 — 6 — V,_g ( )

As Hbe

n—

5 holds (Step 2), inequalities (A.7)—(A.10) imply H,,_o holds, completing the induction.
Step 4: Conclusion. As Hj, holds for all even p, we have

vpt? P+ 2.9t2 _

p—oo 6

lim
p—o00, p even

e.¢]

Vp—2tP™

for any ¢ # 0. By d’Alembert’s ratio test, it follows that the series Z;O:O » even Upt’ diverges for all non-zero
t. Therefore this series is not the Taylor series at ¢ = 0 of an analytic function. This completes the proof.

]
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