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A COUNTEREXAMPLE TO ANALYTICITY IN FRICTIONAL DYNAMICS ⋆

Christopher R. Dance*

Abstract. We consider the motion of a particle acted on by dry friction and a force that is an analytic
function of time. We give a counterexample to the claim that such motions are given by analytic func-
tions of time. Several published arguments concerning existence and uniqueness in unilateral dynamics
with friction rely on the analyticity of such motions. The counterexample invalidates those arguments
for motions in three or more dimensions.
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1. Introduction

Contact and impact are typically modelled with unilateral constraints: inequalities involving the coordinates
of some bodies, which are satisfied when those bodies do not interpenetrate. Such constraints are essential
components of models of robots [7, 10] and other systems [6], and it is natural to enquire about the existence
and uniqueness of solutions to initial value problems for such models [3]. In the 1960s, it was discovered that
the motion of a unilaterally constrained particle acted on by an external force is in general non-unique, even
if the force is an infinitely differentiable function of time [1, 4, 14]. However, in the 1990s, it was shown that
such motions are unique if there is no friction and the force is an analytic function [1, 13]. (A function 𝑓 is
analytic if for every point 𝑥0 of its domain, the Taylor series of 𝑓 at 𝑥0 converges to 𝑓(𝑥) for all points 𝑥 in
some neighbourhood of 𝑥0.)

Several authors have explored how such results might be extended to models involving friction. Ballard and
Basseville [2] presented arguments for the existence and uniqueness of solutions to initial value problems for a
unilaterally constrained particle acted on by an analytic force and dry friction. Charles and Ballard [5] extended
those arguments to finite collections of particles. A key step of those arguments is to derive a local solution
given by a power series, and to claim that it corresponds to an analytic function.

In this paper, we present a simple counterexample to that claim. The counterexample invalidates the existence
and uniqueness arguments presented in Ballard and Basseville [2] and Charles and Ballard [5] for unilaterally
constrained particles in dimension 𝑑 > 2, although those arguments are correct for 𝑑 = 2 to the best of our
knowledge. Consequently for 𝑑 > 2, the only general existence result about unilateral dynamics with friction is
that of Monteiro Marques [11], which only addresses situations with a single constraint and perfectly inelastic
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Figure 1. The tangential force and reaction acting on the particle in Counterexample 1.

impacts (zero restitution coefficient); and the question of finding sufficient conditions for uniqueness is largely
open.

1.1. Counterexample

Consider a particle in contact with a flat surface, acted on by a force and friction. The particle’s position is an
element of R𝑑, but a normal force holds it in contact with the surface, so we describe its motion in R𝑑−1 using
an orthogonal coordinate system tangent to that surface. The particle’s tangential velocity v : [0, 𝑇 ] → R𝑑−1

satisfies Newton’s second law:

𝑚v̇ = F + R,

where 𝑚 is the particle’s mass, the dot denotes the time derivative, F : [0, 𝑇 ] → R𝑑−1 is the tangential force,
and R : [0, 𝑇 ] → R𝑑−1 is the tangential reaction. This reaction satisfies Coulomb’s law of friction:

R(𝑡)‖v(𝑡)‖ = −𝜇𝑁(𝑡)v(𝑡) and ‖R(𝑡)‖ ≤ 𝜇𝑁(𝑡),

where 𝜇 > 0 is the friction coefficient, and 𝑁(𝑡) is the magnitude of the force normal to the surface. As discussed
in Moreau [12], Ballard and Charles [3], we may write this compactly as

R(𝑡) ∈ −𝜇𝑁(𝑡) 𝜕‖v(𝑡)‖,

where 𝜕𝑓 denotes the subdifferential of a convex function 𝑓 . For simplicity, we assume the particle has unit
mass and that 𝜇𝑁(𝑡) = 1. The velocity then satisfies the differential inclusion

v̇ ∈ F− 𝜕‖v‖. (1.1)

(This is equivalent to requiring that the differential equation v̇(𝑡) = F(𝑡) − (v(𝑡)/‖v(𝑡)‖) holds at times when
v(𝑡) ̸= 0, and that the constraint ‖v̇(𝑡)− F(𝑡)‖ ≤ 1 holds at times when v(𝑡) = 0.)

The following counterexample shows that even if the force F is an analytic function of time and the final
time 𝑇 > 0 is tiny, differential inclusion (1.1) need not have an analytic solution v. The force appearing in this
counterexample is illustrated in Figure 1. The magnitude of this force initially equals the friction limit, but a
component of the force orthogonal to its initial direction increases, causing the particle to slip.

Counterexample 1. Suppose the dimension is 𝑑 > 2, the final time is 𝑇 > 0, and the velocity v : [0, 𝑇 ] → R𝑑−1

is an absolutely continuous function with v(0) = 0 that satisfies differential inclusion (1.1) for the force

F(𝑡) = (1, 𝑡, 0, . . . , 0)⊤ ∈ R𝑑−1,

for almost all 𝑡 ∈ [0, 𝑇 ]. Then v is not an analytic function.
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To prove the velocity v(𝑡) is not analytic, we derive its Taylor series at 𝑡 = 0 and show that this series diverges
for any 𝑡 > 0.

Remark 1.1. It is not uncommon for differential equations to have divergent series solutions [9]. However, the
initial condition v(0) = 0 is necessary for a series solution of differential inclusion (1.1) to diverge for all 𝑡 > 0,
when F is analytic. Indeed, if v(0) ̸= 0 then the tangential reaction is R(𝑡) = −v(𝑡)/‖v(𝑡)‖ on a neighbourhood
of 𝑡 = 0, and this is an analytic function of v(𝑡) on a neighbourhood of v(0), so the Cauchy–Kovalevskaya
theorem [8] guarantees the existence of a unique analytic solution v(𝑡) on a neighbourhood of 𝑡 = 0.

Remark 1.2. When working with unilateral constraints, the velocity must in general be formulated as a dis-
continuous function, so as to allow for impacts [2, 5]. Such formulations simplify to ours in the special case
that a normal force holds the particle in contact with a surface. In this special case, the unilateral constraint
is equivalent to a bilateral constraint : an equality constraint on the particle’s coordinates. The existence and
uniqueness of a solution to Counterexample 1 therefore follow from general results about bilaterally constrained
problems with friction – specifically, Proposition 3.3 of [2] or Proposition 3.1 of [5].

1.2. Outline

First, we derive an algorithm to compute the Taylor series of v (Sect. 2). We provide numerical evidence
that this series diverges (Fig. 2) and explain the divergence intuitively. Then we discuss the specific results
that our counterexample invalidates, and pinpoint the error in the arguments leading to those results (Sect. 3).
Appendix A gives a proof of divergence, and the supplementary material contains a Python implementation of
our algorithm and Maxima code to verify our algebra.

2. Computing the Taylor series

In this section, we derive an algorithm for computing the Taylor series of the velocity in Counterexample 1,
and provide evidence and an intuitive argument for the divergence of that series. We restrict attention to
dimension 𝑑 = 3. (We may obtain the velocity for 𝑑 > 3 from that for 𝑑 = 3, simply by setting the 𝑑 − 3
additional components to zero.) We write the Taylor series at 𝑡 = 0 of the velocity v in the form

v(𝑡) =
(︂

𝑡𝑝𝑢(𝑡)
𝑡𝑞𝑣(𝑡)

)︂
where 𝑢(𝑡) :=

∞∑︁
𝑛=0

𝑢𝑛𝑡𝑛, 𝑣(𝑡) :=
∞∑︁

𝑛=0

𝑣𝑛𝑡𝑛 (2.1)

for some real coefficients 𝑢𝑛, 𝑣𝑛 with 𝑢0, 𝑣0 ̸= 0, and some non-negative integers 𝑝, 𝑞.

2.1. Solving for the leading orders

First we show that 𝑝 = 3 and 𝑞 = 4. It follows from the initial condition v(0) = 0 that 𝑝, 𝑞 ≥ 1. Also, for
v(𝑡) ̸= 0 differential inclusion (1.1) reads

d
d𝑡

(𝑡𝑝𝑢) = 1− 𝑡𝑝𝑢√
𝑡2𝑝𝑢2 + 𝑡2𝑞𝑣2

, (2.2)

d
d𝑡

(𝑡𝑞𝑣) = 𝑡− 𝑡𝑞𝑣√
𝑡2𝑝𝑢2 + 𝑡2𝑞𝑣2

· (2.3)

Substituting the series expansions (2.1) and matching the coefficients of 𝑡0 in (2.3) gives

1𝑞=1𝑣0 = −1𝑝=𝑞
𝑣0√︀

𝑢2
0 + 𝑣2

0

− 1𝑝>𝑞
𝑣0

|𝑣0|
,
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where 1· is the indicator function. If 𝑝 = 𝑞, then this expression cannot be satisfied for 𝑣0 ̸= 0. Thus, we have
𝑝 ̸= 𝑞. Using this fact, matching the coefficients of 𝑡0 in (2.2) gives

1𝑝=1𝑢0 = 1− 1𝑝<𝑞
𝑢0

|𝑢0|
·

If 𝑝 > 𝑞 ≥ 1, then this expression cannot be satisfied. So, we must have 𝑝 < 𝑞, in which case this expression
reads 1𝑝=1𝑢0 = 1 − 𝑢0/|𝑢0|. As this cannot be satisfied for 𝑝 = 1, it follows that 𝑝 > 1 and 𝑢0 > 0. Matching
the coefficients of 𝑡1 in (2.3), and using 1 < 𝑝 < 𝑞 (so that 𝑞 ̸= 2) gives

0 = 1− 1𝑞=𝑝+1
𝑣0

|𝑢0|
,

which is only satisfied if 𝑞 = 𝑝 + 1 and 𝑣0 = |𝑢0|. As 𝑞 = 𝑝 + 1, Taylor expanding each side of (2.2) gives

d
d𝑡

(𝑡𝑝𝑢) = 𝑝𝑡𝑝−1𝑢0 + 𝑂(𝑡𝑝) and 1− 𝑢√
𝑢2 + 𝑡2𝑣2

=
𝑣2
0

2𝑢2
0

𝑡2 + 𝑂(𝑡3) as 𝑡 → 0.

As the terms involving 𝑡𝑝−1 and 𝑡2 have non-zero coefficients, they must be equal, and we conclude that

𝑝 = 3, 𝑞 = 4, and 𝑢0 = 𝑣0 =
1
6
· (2.4)

2.2. Algorithm

For the values of 𝑝, 𝑞 in (2.4), functions 𝑢, 𝑣 should satisfy the differential equations

d
d𝑡

(︀
𝑡3𝑢
)︀

= 1− 𝑢√
𝑢2 + 𝑡2𝑣2

,
d
d𝑡

(︀
𝑡4𝑣
)︀

= 𝑡− 𝑡𝑣√
𝑢2 + 𝑡2𝑣2

·

We write these equations in the form

𝑑 + 𝑒 = 1, 𝑓 + 𝑔 = 𝑡, (2.5)

in terms of the intermediate functions

𝑎 = 𝑢2 + 𝑡2𝑣2, 𝑏 =
√

𝑎, 𝑐 = 1/𝑏,

𝑑 = 𝑢𝑐, 𝑒 =
d
d𝑡

(︀
𝑡3𝑢
)︀
, 𝑓 = 𝑡𝑣𝑐, 𝑔 =

d
d𝑡

(︀
𝑡4𝑣
)︀
.

By the Cauchy product formula, the coefficients of the formal power series
∑︀∞

𝑛=0 𝑎𝑛𝑡𝑛, . . . ,
∑︀∞

𝑛=0 𝑔𝑛𝑡𝑛 of these
intermediate functions satisfy⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑎𝑛 =
∑︁

𝑝+𝑞=𝑛

𝑢𝑝𝑢𝑞 +
∑︁

𝑝+𝑞=𝑛−2

𝑣𝑝𝑣𝑞,

𝑏𝑛 =
√

𝑎01𝑛=0 +
1𝑛≥1

2𝑏0

(︃
𝑎𝑛 −

∑︁
𝑝+𝑞=𝑛, 𝑝,𝑞>0

𝑏𝑝𝑏𝑞

)︃
,

𝑐𝑛 =
1𝑛=0

𝑏0
− 1𝑛≥1

𝑏0

∑︁
𝑝+𝑞=𝑛, 𝑝>0

𝑏𝑝𝑐𝑞,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑑𝑛 =
∑︁

𝑝+𝑞=𝑛

𝑢𝑝𝑐𝑞,

𝑒𝑛 = (𝑛 + 1)𝑢𝑛−2,

𝑓𝑛 =
∑︁

𝑝+𝑞=𝑛−1

𝑣𝑝𝑐𝑞,

𝑔𝑛 = (𝑛 + 1)𝑣𝑛−3

(2.6)

for 𝑛 ≥ 0. (In our notation, we sum over pairs of non-negative integers 𝑝, 𝑞, so that
∑︀

𝑝+𝑞=𝑛, 𝑝>0 𝑏𝑝𝑐𝑞 =∑︀𝑛
𝑝=1 𝑏𝑝𝑐𝑛−𝑝 =

∑︀𝑛−1
𝑞=0 𝑏𝑛−𝑞𝑐𝑞, and coefficients with negative indices vanish, so that 𝑎0 = 𝑢2

0 and 𝑒0 = 0.)
Moreover, matching the coefficients of 𝑡𝑛 and 𝑡𝑛−1 in (2.5) gives

𝑑𝑛 + 𝑒𝑛 = 1𝑛=0, 𝑓𝑛−1 + 𝑔𝑛−1 = 1𝑛=2. (2.7)
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The idea of our algorithm is to treat 𝑢𝑛−2, 𝑢𝑛−1, 𝑢𝑛, 𝑣𝑛−2 as unknowns, having already determined values for
𝑢𝑝, 𝑣𝑝 for 𝑝 < 𝑛 − 2. Equation (2.6) then provides expressions for 𝑎𝑝, 𝑏𝑝, 𝑐𝑝 for 𝑝 = 𝑛 − 2, 𝑛 − 1, 𝑛 and hence
for 𝑑𝑛, 𝑒𝑛, 𝑓𝑛−1, 𝑔𝑛−1 in terms of those unknowns. Substituting these expressions in (2.7) gives a linear equation
for 𝑢𝑛−2, 𝑣𝑛−2, which has a unique solution. (As the intermediate expressions for 𝑐𝑛, 𝑐𝑛−1 involve 𝑢𝑛−1, 𝑢𝑛, it is
interesting that the linear equation does not involve those variables.)

We now apply the idea of the previous paragraph, treating 𝑛 = 3, 4 and 𝑛 ≥ 5 separately, as the formulas
have “special cases” for small 𝑛. (For instance, the sum

∑︀
𝑝+𝑞=𝑛 𝑢𝑝𝑢𝑞 involves the term 𝑢2

𝑛−2 for 𝑛 = 4 but the
corresponding term is 2𝑢2𝑢𝑛−2 for 𝑛 ≥ 5.) Full details of the following derivations are given in algebra.txt in
the supplementary material. For 𝑛 = 3 and 4, we get the linear equations(︂

𝑑3 + 𝑒3

𝑓2 + 𝑔2

)︂
=
(︂

10 −6
−6 6

)︂(︂
𝑢1

𝑣1

)︂
=
(︂

0
0

)︂
,

(︂
𝑑4 + 𝑒4

𝑓3 + 𝑔3

)︂
=
(︂

11 −6
−6 6

)︂(︂
𝑢2

𝑣2

)︂
+
(︂

3/8
1/6

)︂
=
(︂

0
0

)︂
with the unique solutions

𝑢1 = 0, 𝑣1 = 0, 𝑢2 = −13/120, 𝑣2 = −49/360. (2.8)

For 𝑛 ≥ 5, we get (︂
𝑑𝑛 + 𝑒𝑛

𝑓𝑛−1 + 𝑔𝑛−1

)︂
=
(︂

𝑛 + 7 −6
−6 6

)︂(︂
𝑢𝑛−2

𝑣𝑛−2

)︂
−
(︂

𝑚𝑢
𝑛

𝑚𝑣
𝑛

)︂
=
(︂

0
0

)︂
, (2.9)

where ⎧⎪⎨⎪⎩
𝑚𝑢

𝑛 := −𝑅𝑛
𝑑𝑛
−
(︁
𝑅𝑛

𝑐𝑛−2
/2
)︁

+ 𝑅𝑛
𝑐𝑛

+ (18/5)
(︁
𝑅𝑛

𝑏𝑛−2
−𝑅𝑛

𝑎𝑛−2

)︁
+ 18

(︀
𝑅𝑛

𝑎𝑛
−𝑅𝑛

𝑏𝑛

)︀
,

𝑚𝑣
𝑛 := −𝑛𝑣𝑛−4 −𝑅𝑛

𝑓𝑛−1
+ 𝑅𝑛

𝑐𝑛−2
+ 18

(︁
𝑅𝑛

𝑎𝑛−2
−𝑅𝑛

𝑏𝑛−2

)︁
,

(2.10)

in which the terms 𝑅𝑛
· are the parts of the sums in (2.6) that depend neither on the unknowns

𝑢𝑛−2, 𝑢𝑛−1, 𝑢𝑛, 𝑣𝑛−2, nor on the quantities 𝑏𝑝, 𝑐𝑝 for 𝑝 = 𝑛− 2, 𝑛− 1, 𝑛 that involve those unknowns:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑅𝑛
𝑎𝑛−2

=
∑︁

𝑝+𝑞=𝑛−2
𝑝,𝑞>0

𝑢𝑝𝑢𝑞 +
∑︁

𝑝+𝑞=𝑛−4

𝑣𝑝𝑣𝑞, 𝑅𝑛
𝑏𝑛−2

=
∑︁

𝑝+𝑞=𝑛−2
𝑝,𝑞>0

𝑏𝑝𝑏𝑞, 𝑅𝑛
𝑐𝑛−2

=
∑︁

𝑝+𝑞=𝑛−2
𝑝,𝑞>0

𝑏𝑝𝑐𝑞,

𝑅𝑛
𝑎𝑛

=
∑︁

𝑝+𝑞=𝑛
𝑝,𝑞>2

𝑢𝑝𝑢𝑞 +
∑︁

𝑝+𝑞=𝑛−2
𝑝,𝑞>0

𝑣𝑝𝑣𝑞, 𝑅𝑛
𝑏𝑛

=
∑︁

𝑝+𝑞=𝑛
𝑝,𝑞>2

𝑏𝑝𝑏𝑞, 𝑅𝑛
𝑐𝑛

=
∑︁

𝑝+𝑞=𝑛
𝑝,𝑞>2

𝑏𝑝𝑐𝑞,

𝑅𝑛
𝑑𝑛

=
∑︁

𝑝+𝑞=𝑛
𝑝,𝑞>2

𝑢𝑝𝑐𝑞, 𝑅𝑛
𝑓𝑛−1

=
∑︁

𝑝+𝑞=𝑛−2
𝑝,𝑞>0

𝑣𝑝𝑐𝑞.

(2.11)

It turns out that 𝑢𝑛, 𝑣𝑛, 𝑎𝑛, 𝑏𝑛, 𝑐𝑛 vanish for all odd 𝑛. We show this by induction. In the base case, equation
(2.8) gives 𝑢1 = 𝑣1 = 0, so (2.6) gives 𝑎1 = 𝑏1 = 𝑐1 = 0. Otherwise, suppose 𝑛−2 is odd and that 𝑢𝑝, 𝑣𝑝, 𝑎𝑝, 𝑏𝑝, 𝑐𝑝

vanish for all all odd 𝑝 < 𝑛 − 2. Consider any term of any of the sums 𝑅𝑛
· in (2.11). This term is of the form

𝑥𝑝𝑦𝑞 for appropriate sequences 𝑥, 𝑦 ∈ {𝑢, 𝑣, 𝑏, 𝑐}, where one of 𝑝, 𝑞 is odd and less than 𝑛 − 2. It follows from
the induction hypothesis that one of the factors 𝑥𝑝 or 𝑦𝑞 vanishes. Thus all the sums 𝑅𝑛

· vanish. It also follows
from the induction hypothesis that 𝑣𝑛−4 = 0. Thus, equation (2.10) gives 𝑚𝑢

𝑛 = 𝑚𝑣
𝑛 = 0, so the linear equation

(2.9) has the unique solution 𝑢𝑛−2 = 𝑣𝑛−2 = 0. Examining the sums giving 𝑎𝑛−2, 𝑏𝑛−2, 𝑐𝑛−2 in (2.6), we see
that their terms are also of the form 𝑥𝑝𝑦𝑞, where one of the factors 𝑥𝑝 or 𝑦𝑞 vanishes. Therefore 𝑎𝑛−2, 𝑏𝑛−2, 𝑐𝑛−2

also vanish. This completes the induction.
In the light of the above discussion, Algorithm 1 computes the coefficients of the Taylor series of the velocity

appearing in Counterexample 1.
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Algorithm 1. Determining the coefficients of the Taylor series defined in (2.1).
1: function TaylorCoefficients(𝑛max) ◁ Assume 𝑛max ≥ 2 is even
2: 𝑢0, 𝑣0, 𝑏0, 𝑐0 ← 1/6, 1/6, 1/6, 6 ◁ By (2.4) and (2.6)
3: 𝑢2, 𝑣2 ← −13/120,−49/360 ◁ By (2.8)
4: 𝑢𝑛, 𝑣𝑛, 𝑏𝑛, 𝑐𝑛 ← 0 for odd 𝑛 < 𝑛max

5: for 𝑛 = 6, 8, . . . , 𝑛max + 2 do
6: 𝑎𝑛−4 ←

∑︀
𝑝+𝑞=𝑛−4 𝑢𝑝𝑢𝑞 +

∑︀
𝑝+𝑞=𝑛−6 𝑣𝑝𝑣𝑞 ◁ By (2.6)

7: 𝑏𝑛−4 ← 3
(︀
𝑎𝑛−4 −

∑︀
𝑝+𝑞=𝑛−4, 𝑝,𝑞>0 𝑏𝑝𝑏𝑞

)︀

8: 𝑐𝑛−4 ← −6
∑︀

𝑝+𝑞=𝑛−4, 𝑝>0 𝑏𝑝𝑐𝑞

9: Compute the sums 𝑅𝑛
· defined in (2.11)

10: Compute 𝑚𝑢
𝑛, 𝑚𝑣

𝑛 as defined in (2.10)
11: 𝑢𝑛−2 ← (𝑚𝑢

𝑛 + 𝑚𝑣
𝑛)/(𝑛 + 1), 𝑣𝑛−2 ← 𝑢𝑛−2 + (𝑚𝑣

𝑛/6) ◁ This solves (2.9)
12: end for
13: return 𝑢0, 𝑣0, . . . , 𝑢𝑛max , 𝑣𝑛max

14: end function

Figure 2. The ratio 𝑣𝑛/𝑣𝑛−2 for even 𝑛.

2.3. Intuitive argument and numerical evidence for divergence

If 𝑣𝑛 does not vanish for all large enough 𝑛, and each of the sums in (2.11) satisfies 𝑅𝑛
· /𝑣𝑛−4 = constant +

𝑂(1/𝑛) for even 𝑛 as 𝑛 →∞, then (2.9) gives

𝑣𝑛−2

𝑣𝑛−4
= −𝑛

6
+ constant + 𝑂

(︂
1
𝑛

)︂
· (2.12)

For such a sequence, there is no 𝑡 > 0 such that
∑︀∞

𝑛=0 𝑣𝑛𝑡𝑛 converges.
We implemented the above algorithm using Python’s fractions module, which provides exact arithmetic

for rational numbers, and provide the resulting implementation as series.py in the supplementary material.
We find the following initial terms of the series:

𝑢(𝑡) =
1
6
𝑡0 − 13

120
𝑡2 +

79
720

𝑡4 − 7439
51 840

𝑡6 +
1 289 987
5 702 400

𝑡8 − 370 576 091
889 574 400

𝑡10 + 𝑂
(︀
𝑡12
)︀

𝑣(𝑡) =
1
6
𝑡0 − 49

360
𝑡2 +

23
144

𝑡4 − 61 297
259 200

𝑡6 +
7 176 649
17 107 200

𝑡8 − 772 992 989
889 574 400

𝑡10 + 𝑂
(︀
𝑡12
)︀

as 𝑡 → 0. Figure 2 plots the ratio 𝑣𝑛/𝑣𝑛−2, which does indeed decrease nearly linearly, as suggested by (2.12).

3. Relation to previous work

Ballard and Basseville [2] argued for the analyticity of the motion of a single particle, under the action of
an analytic force and Coulomb friction, and Charles and Ballard [5] extended those arguments to multiple



A COUNTEREXAMPLE TO ANALYTICITY IN FRICTIONAL DYNAMICS 1443

particles. Both papers apply Lemma 3.4 of [2] to draw this conclusion. This lemma involves a function 𝐺 that
is hypothesized to be analytic in a neighbourhood of the origin. While both papers claim that the function to
which they apply this lemma (𝐺̃ in [2], p. 70 and g̃𝑖 in [5], p. 13) is analytic in a neighbourhood of the origin, this
claim is false in dimension 𝑑 > 2, as illustrated in the example below. Moreover, Counterexample 1 shows that it
is not possible to circumvent this error: the counterexample directly contradicts the results about the existence
of a local analytic solution presented in Proposition 3.5 and Theorem 4.1 of [2] and Proposition 4.1 of [5]. As
these existence results are central to the uniqueness arguments presented in Theorem 4.2 of [2] and Theorem 4.2
of [5], the counterexample also invalidates those arguments in dimension 𝑑 > 2.

Example 3.1. For a single particle 𝑖 that is initially at rest but slides immediately thereafter, which is acted
on by a tangential force F(𝑡) ∈ R𝑑−1 and normal force 𝑁(𝑡), the function in Charles and Ballard [5], p. 13 is

g̃𝑖(𝑡, ũ, ṽ) :=
1

𝑡𝑝0+1

⎡⎣F(𝑡)− S̈𝑝0+2(𝑡)− 𝜇|𝑁(𝑡)| Ṡ𝑝0+2(𝑡) + 𝑡𝑝0+1ṽ⃦⃦⃦
Ṡ𝑝0+2(𝑡) + 𝑡𝑝0+1ṽ

⃦⃦⃦
⎤⎦, 𝑡 ∈ [0, 𝑇 ], ũ, ṽ ∈ R𝑑−1,

where S𝑝0+2(𝑡) =
∑︀𝑝0+2

𝑘=0 u𝑘𝑡𝑘 is the truncated Taylor series for the tangential position of the particle for suitable
coefficients u𝑘 ∈ R𝑑−1, and 𝑝0 is the integer such that Ṡ𝑝0+2(𝑡) has a single non-zero term. Now, if the force
satisfies F(𝑡) = (2, 0)⊤ and 𝜇|𝑁(𝑡)| = 1, then the solution for the tangential velocity is v(𝑡) = (𝑡, 0)⊤, so the
truncated Taylor series satisfies Ṡ𝑝0+2(𝑡) = (𝑡, 0)⊤ with 𝑝0 = 0. It follows that

g̃𝑖(𝑡, ũ, ṽ) =
1
𝑡

⎡⎢⎢⎣(︂1
0

)︂
−

(︂
1
0

)︂
+ ṽ⃦⃦⃦⃦(︂

1
0

)︂
+ ṽ

⃦⃦⃦⃦
⎤⎥⎥⎦,

which has a simple pole at 𝑡 = 0 whenever the second component of ṽ does not vanish. Thus g̃𝑖 is not analytic
on any neighbourhood of the origin.

Appendix A. Proof of Counterexample 1

The proof is based on Algorithm 1. It is straightforward, but laborious as the algorithm involves many
intermediate sums, each of which must be bounded. The file algebra.txt in the supplementary material
contains computer algebra code for all calculations involved.

Let 𝐵𝑝 := |𝑏𝑝|, 𝐶𝑝 := |𝑐𝑝|, 𝑈𝑝 := |𝑢𝑝| and 𝑉𝑝 := |𝑣𝑝|. The proof proceeds by induction with the hypothesis:

𝐻𝑝 :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

|𝑏𝑝−2/𝑣𝑝−6 + 1/6| ≤ 𝑘𝑏/(𝑝− 2), where 𝑘𝑏 := 20, if 𝑝 ≥ 6,
|𝑐𝑝−2/𝑣𝑝−6 − 6| ≤ 𝑘𝑐/(𝑝− 2), where 𝑘𝑐 := 746, if 𝑝 ≥ 6,

𝐵𝑝−2 ≤ 𝑉𝑝−2/4, if 𝑝 ≥ 6,
𝐶𝑝−2 ≤ 8𝑉𝑝−2, if 𝑝 ≥ 6,

|𝑢𝑝/𝑣𝑝−2 + 1| ≤ 𝐾/𝑝2, where 𝐾 := 60, if 𝑝 ≥ 2,
|𝑣𝑝/𝑣𝑝−2 + (𝑝 + 2.9)/6| ≤ 𝐾𝑣/𝑝, where 𝐾𝑣 := 5, if 𝑝 ≥ 2,

𝑈𝑝 ≤ 𝑉𝑝, and
𝑉𝑝−2/𝑉𝑝−4 ≤ 𝑉𝑝/𝑉𝑝−2 if 𝑝 ≥ 4.

We refer to the four lines concerning 𝑏𝑝−2, 𝑐𝑝−2, 𝐵𝑝−2, 𝐶𝑝−2 as 𝐻𝑏𝑐
𝑝 , and we define the hypothesis

𝐻≤𝑛 : 𝑛 is even and 𝐻𝑝 holds for all even 𝑝 with 0 ≤ 𝑝 ≤ 𝑛.

Before giving the proof itself, we present three lemmas: Lemmas A.1 and A.2 are simple bounds on ratios
involving 𝑉𝑛; and Lemma A.3 gives upper bounds of the form constant

𝑛 on the sums defining 𝑎𝑛, 𝑏𝑛, 𝑐𝑛 and 𝑅𝑛
· .
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Lemma A.1. Suppose 𝑘 ≥ 6 and 𝑛 ≥ 𝑘 + 10 are even integers and that 𝐻≤𝑛−4 holds. Then

𝑉𝑛−𝑘

𝑉𝑛−4
≤

𝑘−2∏︁
𝑞=4, 𝑞 even

6
𝑛− 𝑞

=: 𝜌(𝑛, 𝑘).

Proof. As 𝐻≤𝑛−4 holds, for even 𝑝 with 2 ≤ 𝑝 ≤ 𝑛− 4, we have 𝑉𝑝

𝑉𝑝−2
≥ 𝑝+2.9

6 − 𝐾𝑣

𝑝 . For 𝑝 ≥ 12, the right-hand
side is greater than 𝑝/6. As 12 ≤ 𝑛− 𝑘 + 2 ≤ 𝑛− 4, it follows that

𝑉𝑛−𝑘

𝑉𝑛−4
=

𝑉𝑛−𝑘

𝑉𝑛−𝑘+2

𝑉𝑛−𝑘+2

𝑉𝑛−𝑘+4
· · · 𝑉𝑛−6

𝑉𝑛−4
≤ 6

𝑛− 𝑘 + 2
6

𝑛− 𝑘 + 4
· · · 6

𝑛− 4

as claimed. �

Lemma A.2. Suppose 𝑝 ≥ 182 is even and 𝐻𝑝 holds. Then 𝑉𝑝/𝑉𝑝−2 ≤ 𝑝/5.9.

Proof. As 𝐻𝑝 holds, we have 𝑉𝑝

𝑉𝑝−2
≤ 𝑝+2.9

6 + 𝐾𝑣

𝑝 . The result follows as
(︀

1
5.9 −

1
6

)︀
𝑝 ≥ 2.9

6 + 5
𝑝 for 𝑝 ≥ 182. �

The following lemma involves the function

𝑆𝑋,𝑥,𝑌,𝑦
𝛼,𝛽 (𝑛) :=

(︃
𝑥𝑦

2
(𝑛min − 𝛽 − 18)𝑉10𝜌(𝑛min, 𝛽 + 10) +

8∑︁
𝑝=𝛼+2

(𝑥𝑌𝑝 + 𝑦𝑋𝑝)𝜌(𝑛min, 𝛽 + 𝑝)

)︃
𝑛min

𝑛
,

in which 𝑋, 𝑌 are real sequences, 𝑥, 𝑦 are real numbers, 𝛼, 𝛽, 𝑛 are even integers, and 𝜌(𝑛, 𝑘) is as in Lemma A.1.
We used 𝑛min = 200 to obtain numerical values.

Lemma A.3. Suppose that (𝑋,𝑥), (𝑌, 𝑦) ∈ {(𝑈, 1), (𝑉, 1), (𝐵, 1/4), (𝐶, 8)}, that 𝛼, 𝛽 ∈ {0, 2, 4, 6} with 𝛼+𝛽 ≥ 4,
that 𝑛− 4 ≥ 200, and that 𝐻≤𝑛−4 holds. Then∑︁

𝑝+𝑞=𝑛−𝛽, 𝑝,𝑞>𝛼

𝑋𝑝𝑌𝑞

𝑉𝑛−4
≤ 𝑆𝑋,𝑥,𝑌,𝑦

𝛼,𝛽 (𝑛).

Proof. As 𝐻≤𝑛−4 holds, we have 𝐵𝑛−6 ≤ 𝑉𝑛−6/4, and more generally for 4 ≤ 𝑝 ≤ 𝑛− 6, we have

𝑋𝑝 ≤ 𝑥𝑉𝑝, 𝑌𝑝 ≤ 𝑦𝑉𝑝.

For the hypothesized 𝛼, 𝛽, 𝑛, it follows that∑︁
𝑝+𝑞=𝑛−𝛽, 𝑝,𝑞>𝛼

𝑋𝑝𝑌𝑞 ≤
∑︁

𝑝+𝑞=𝑛−𝛽, 𝑝,𝑞>𝛼

(𝑋𝑝1𝑝≤8 + 𝑥𝑉𝑝1𝑝>8)(𝑌𝑞1𝑞≤8 + 𝑦𝑉𝑞1𝑞>8).

As 𝐻≤𝑛−4 holds, we have 𝑉𝑝/𝑉𝑝−2 ≤ 𝑉𝑞+2/𝑉𝑞 for any even integers 2 ≤ 𝑝 ≤ 𝑞 + 2 ≤ 𝑛 − 4. So for any even
integers 8 < 𝑝 ≤ 𝑞 + 2 appearing in this sum, we have

𝑉𝑝𝑉𝑞 ≤ 𝑉𝑝−2𝑉𝑞+2 ≤ · · · ≤ 𝑉10𝑉𝑛−𝛽−10.

As the sum
∑︀

𝑝+𝑞=𝑛−𝛽, 𝑝,𝑞>8 · · · involves (𝑛− 𝛽 − 18)/2 terms with even 𝑝, it follows that

∑︁
𝑝+𝑞=𝑛−𝛽, 𝑝,𝑞>𝛼

𝑋𝑝𝑌𝑞

𝑉𝑛−4
≤ 𝑥𝑦

2
(𝑛− 𝛽 − 18)

𝑉10𝑉𝑛−𝛽−10

𝑉𝑛−4
+

8∑︁
𝑝=𝛼+2

(𝑋𝑝𝑦 + 𝑥𝑌𝑝)
𝑉𝑛−𝛽−𝑝

𝑉𝑛−4
· (A.1)
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By Lemma A.1, we have

𝑉𝑛−𝛽−𝑝

𝑉𝑛−4
≤ 𝜌(𝑛, 𝛽 + 𝑝) for even 𝛽 + 𝑝 with 6 ≤ 𝛽 + 𝑝 ≤ 𝑛− 10.

As 𝛼 + 𝛽 ≥ 4, the condition 6 ≤ 𝛽 + 𝑝 applies to all appearances of 𝑉𝑛−𝛽−𝑝 in (A.1), giving

∑︁
𝑝+𝑞=𝑛−𝛽, 𝑝,𝑞>𝛼

𝑋𝑝𝑌𝑞

𝑉𝑛−4
≤ 𝑥𝑦

2
(𝑛− 𝛽 − 18)𝑉10𝜌(𝑛, 𝛽 + 10) +

8∑︁
𝑝=𝛼+2

(𝑋𝑝𝑦 + 𝑥𝑌𝑝)𝜌(𝑛, 𝛽 + 𝑝). (A.2)

Let 𝑓 be any of the functions 𝑛 ↦→ 𝜌(𝑛, 𝛽+𝑝) for 𝛼+2 ≤ 𝑝 ≤ 8, or 𝑛 ↦→ (𝑛−𝛽−18)𝜌(𝑛, 𝛽+10). By the definition
of 𝜌 and the hypotheses on 𝛼, 𝛽, the function 𝑛𝑓(𝑛) is decreasing for 𝑛 ≥ 𝑛min. Therefore, 𝑓(𝑛) ≤ 𝑛min𝑓(𝑛min)/𝑛
for 𝑛 ≥ 𝑛min. Applying this to (A.2) completes the proof. �

Proof of Counterexample 1. First, we consider the base case, 𝐻≤200 (in Step 1). Next, we show that if 𝑛−4 ≥ 200
and 𝐻≤𝑛−4 holds, then 𝐻𝑏𝑐

𝑛−2 and 𝐻𝑛−2 hold (Steps 2 and 3). Finally, we conclude (Step 4).

Step 1: Base case (𝐻≤200). Our implementation of Algorithm 1, which uses exact arithmetic for rational
numbers from Python’s fractions module, gives

max
6≤𝑝≤200

(𝑝− 2)|𝑏𝑝−2/𝑣𝑝−6 + 1/6| = 1.466 · · · ≤ 𝑘𝑏,

max
6≤𝑝≤200

(𝑝− 2)|𝑐𝑝−2/𝑣𝑝−6 − 6| = 37.089 · · · ≤ 𝑘𝑐,

max
6≤𝑝≤200

(𝑝− 2)𝐵𝑝−2/𝑉𝑝−2 = 0.043 · · · ≤ 1/4,

max
6≤𝑝≤200

(𝑝− 2)𝐶𝑝−2/𝑉𝑝−2 = 1.073 · · · ≤ 8,

max
2≤𝑝≤200

𝑝2|𝑢𝑝/𝑣𝑝−2 + 1| = 10.913 · · · ≤ 𝐾,

max
2≤𝑝≤200

𝑝|𝑣𝑝/𝑣𝑝−2 + (𝑝 + 2.9)/6| = 1.881 · · · ≤ 𝐾𝑣,

max
0≤𝑝≤200

𝑈𝑝/𝑉𝑝 = 1,

max
4≤𝑝≤200

𝑉 2
𝑝−2/(𝑉𝑝𝑉𝑝−4) = 0.990 · · · ≤ 1,

in which each maximum is taken only over even values of 𝑝. Therefore 𝐻≤200 holds. (While one might find
a proof involving a “smaller” base case, for instance 𝐻≤50, we do not pursue this as we believe it would still
require computer algebra.)

Step 2: Showing that 𝐻≤𝑛−4 ⇒ 𝐻𝑏𝑐
𝑛−2. Suppose that 𝐻≤𝑚 holds where 𝑚 := 𝑛− 4 ≥ 200. As 𝐻𝑚 holds,

we have |𝑢𝑚/𝑣𝑚−2 + 1| ≤ 𝐾/𝑚2, so Lemma A.2 gives

|𝑢0𝑢𝑚 + 𝑣0𝑣𝑚−2|
𝑉𝑚−4

≤
⃒⃒⃒⃒
𝑢0

(︂
𝑢𝑚

𝑣𝑚−2
+ 1
)︂
− 𝑢0 + 𝑣0

⃒⃒⃒⃒
𝑉𝑚−2

𝑉𝑚−4
≤
(︂

𝑈0𝐾

𝑚2
+ |𝑣0 − 𝑢0|

)︂
𝑚− 2

5.9
≤ 𝑈0𝐾

5.9𝑚
=: 𝑟𝑢𝑚 .

Similarly, we have⃒⃒⃒⃒
𝑢2

𝑢𝑚−2

𝑣𝑚−4
+ 𝑣2 +

1
36

⃒⃒⃒⃒
≤ 𝑈2𝐾

(𝑚− 2)2
+
⃒⃒⃒⃒
𝑣2 +

1
36
− 𝑢2

⃒⃒⃒⃒
=

𝑈2𝐾

(𝑚− 2)2
=: 𝑟𝑢𝑚−2

and Lemma A.1 gives

|𝑢4𝑢𝑚−4 + 𝑣4𝑣𝑚−6|
𝑉𝑚−4

≤
(︂

𝑈4𝐾

(𝑚− 4)2
+ |𝑣4 − 𝑢4|

)︂
𝜌(𝑚, 6) =: 𝑟𝑢𝑚−4 .

So the definition of 𝑎𝑚 in (2.6), Lemma A.3, and the fact that 𝑚 ↦→ 𝑚(𝑟𝑢𝑚 + 𝑟𝑢𝑚−2 + 𝑟𝑢𝑚−4) is decreasing
give ⃒⃒⃒⃒

𝑎𝑚

𝑣𝑚−4
+

1
18

⃒⃒⃒⃒
≤ 2

|𝑢0𝑢𝑚 + 𝑣0𝑣𝑚−2|
𝑉𝑚−4

+
⃒⃒⃒⃒
2𝑢2

𝑢𝑚−2

𝑣𝑚−4
+ 2𝑣2 +

1
18

⃒⃒⃒⃒
+ 2

|𝑢4𝑢𝑚−4 + 𝑣4𝑣𝑚−6|
𝑉𝑚−4
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+
∑︁

𝑝+𝑞=𝑚, 𝑝,𝑞>4

𝑈𝑝𝑈𝑞

𝑉𝑚−4
+

∑︁
𝑝+𝑞=𝑚−2, 𝑝,𝑞>4

𝑉𝑝𝑉𝑞

𝑉𝑚−4

≤ 2
𝑚

[︀
𝑚
(︀
𝑟𝑢𝑚

+ 𝑟𝑢𝑚−2 + 𝑟𝑢𝑚−4

)︀]︀
𝑚=200

+ 𝑆𝑈,1,𝑈,1
4,0 (𝑚) + 𝑆𝑉,1,𝑉,1

4,2 (𝑚) ≤ 6.5
𝑚
· (A.3)

As 𝐻𝑚 and 𝐻𝑚−2 hold, Lemma A.1 gives

𝐵𝑚−2

𝑉𝑚−4
≤
(︂

1
6

+
𝑘𝑏

𝑚− 2

)︂
𝜌(𝑚, 6) =: 𝑟𝐵𝑚−2 ,

𝐵𝑚−4

𝑉𝑚−4
≤
(︂

1
6

+
𝑘𝑏

𝑚− 4

)︂
𝜌(𝑚, 8) =: 𝑟𝐵𝑚−4 ·

So the definition of 𝑏𝑚, inequality (A.3), and Lemma A.3 give⃒⃒⃒⃒
𝑏𝑚

𝑣𝑚−4
+

1
6

⃒⃒⃒⃒
≤ 3

(︃⃒⃒⃒⃒
𝑎𝑚

𝑣𝑚−4
+

1
18

⃒⃒⃒⃒
+ 2𝐵2

𝐵𝑚−2

𝑉𝑚−4
+ 2𝐵4

𝐵𝑚−4

𝑉𝑚−4
+

∑︁
𝑝+𝑞=𝑚, 𝑝,𝑞>4

𝐵𝑝𝐵𝑞

𝑉𝑚−4

)︃

≤ 3
(︂

6.5
𝑚

+
1
𝑚

[︀
𝑚
(︀
2𝐵2𝑟𝐵𝑚−2 + 2𝐵4𝑟𝐵𝑚−4

)︀]︀
𝑚=200

+ 𝑆
𝐵, 1

4 ,𝐵, 1
4

4,0 (𝑚)
)︂

=
19.8 · · ·

𝑚
≤ 𝑘𝑏

𝑚
· (A.4)

As 𝐻𝑚 and 𝐻𝑚−2 hold, Lemma A.1 gives

𝐶𝑚−2

𝑉𝑚−4
≤
(︂

6 +
𝑘𝑐

𝑚− 2

)︂
𝜌(𝑚, 6) =: 𝑟𝐶𝑚−2 ,

𝐶𝑚−4

𝑉𝑚−4
≤
(︂

6 +
𝑘𝑐

𝑚− 4

)︂
𝜌(𝑚, 8) =: 𝑟𝐶𝑚−4 ,

so that⃒⃒⃒⃒
𝑐𝑚

𝑣𝑚−4
− 6
⃒⃒⃒⃒
≤ 6

(︃⃒⃒⃒⃒
𝑐0𝑏𝑚

𝑣𝑚−4
− 1
⃒⃒⃒⃒

+ 𝐵2
𝐶𝑚−2

𝑉𝑚−4
+ 𝐶2

𝐵𝑚−2

𝑉𝑚−4
+ 𝐵4

𝐶𝑚−4

𝑉𝑚−4
+ 𝐶4

𝐵𝑚−4

𝑉𝑚−4
+

∑︁
𝑝+𝑞=𝑚, 𝑝,𝑞>4

𝐵𝑝𝐶𝑞

𝑉𝑚−4

)︃

≤ 6
(︂

6𝑘𝑏

𝑚
+

1
𝑚

[︀
𝑚
(︀
𝐵2𝑟𝐶𝑚−2 + 𝐶2𝑟𝐵𝑚−2 + 𝐵4𝑟𝐶𝑚−4 + 𝐶4𝑟𝐵𝑚−4

)︀]︀
𝑚=200

+ 𝑆
𝐵, 1

4 ,𝐶,8
4,0 (𝑚)

)︂
=

745.2 · · ·
𝑚

≤ 𝑘𝑐

𝑚
· (A.5)

Applying Lemma A.1 to inequalities (A.4) and (A.5) gives

𝐵𝑚

𝑉𝑚
≤
[︂(︂

1
6

+
𝑘𝑏

𝑚

)︂
6

𝑚− 2

]︂
𝑚=200

6
𝑚
≤ 0.05

𝑚
≤ 1

4
,

𝐶𝑚

𝑉𝑚
≤
[︂(︂

6 +
𝑘𝑐

𝑚

)︂
6

𝑚− 2

]︂
𝑚=200

6
𝑚
≤ 1.8

𝑚
≤ 8. (A.6)

Together inequalities (A.4)–(A.6) imply that 𝐻𝑏𝑐
𝑛−2 holds.

Step 3: Showing that 𝐻≤𝑛−4 ⇒ 𝐻𝑛−2. Suppose 𝑛 − 4 ≥ 200 and that 𝐻≤𝑛−4 holds. We now bound the
sums 𝑅𝑛

· defined in (2.11). Lemma A.1 gives

|𝑢4𝑢𝑛−4 + 𝑣4𝑣𝑛−6 + 𝑢6𝑢𝑛−6|
1

𝑉𝑛−4
≤
(︂
|𝑢4 − 𝑣4|+ 𝑈4

𝐾

(𝑛− 4)2
+ 𝑈6

(︂
1 +

𝐾

(𝑛− 6)2

)︂
6

𝑛− 6

)︂
6

𝑛− 4
=: 𝑇𝑛

1 ,

|𝑢2𝑢𝑛−4 + 𝑣2𝑣𝑛−6 + 𝑢4𝑢𝑛−6|
1

𝑉𝑛−4
≤
(︂
|𝑢2 − 𝑣2|+ 𝑈2

𝐾

(𝑛− 4)2
+ 𝑈4

(︂
1 +

𝐾

(𝑛− 6)2

)︂
6

𝑛− 6

)︂
6

𝑛− 4
=: 𝑇𝑛

2 ,

𝑈𝑛−4

𝑉𝑛−4
≤
(︂

1 +
𝐾

(𝑛− 4)2

)︂
6

𝑛− 4
=: 𝑇𝑛

3 ,

and the penultimate steps of (A.6) give

𝐵𝑛−4

𝑉𝑛−4
≤ 0.05

𝑛− 4
=: 𝑇𝑛

4 ,
𝐶𝑛−4

𝑉𝑛−4
≤ 1.8

𝑛− 4
=: 𝑇𝑛

5 .
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Applying Lemma A.3 to the sums in the following expressions, we obtain⃒⃒⃒⃒
𝑅𝑛

𝑎𝑛

𝑣𝑛−4
+

49
180

⃒⃒⃒⃒
≤ 2𝑇𝑛

1 +
∑︁

𝑝+𝑞=𝑛, 𝑝,𝑞>6

𝑈𝑝𝑈𝑞

𝑉𝑛−4
+
⃒⃒⃒⃒
2𝑣2 +

49
180

⃒⃒⃒⃒
+

∑︁
𝑝+𝑞=𝑛−2, 𝑝,𝑞>4

𝑉𝑝𝑉𝑞

𝑉𝑛−4
≤ 1.33 · · ·

𝑛
,⃒⃒⃒⃒

𝑅𝑛
𝑎𝑛−2

𝑣𝑛−4
− 1

3

⃒⃒⃒⃒
≤ 2𝑇𝑛

2 +
∑︁

𝑝+𝑞=𝑛−2, 𝑝,𝑞>4

𝑈𝑝𝑈𝑞

𝑉𝑛−4
+
⃒⃒⃒⃒
2𝑣0 −

1
3

⃒⃒⃒⃒
+

∑︁
𝑝+𝑞=𝑛−4, 𝑝,𝑞>2

𝑉𝑝𝑉𝑞

𝑉𝑛−4
≤ 0.519 · · ·

𝑛
,⃒⃒⃒⃒

𝑅𝑛
𝑏𝑛

𝑣𝑛−4

⃒⃒⃒⃒
≤ 2𝐵4𝑇

𝑛
4 +

∑︁
𝑝+𝑞=𝑛, 𝑝,𝑞>4

𝐵𝑝𝐵𝑞

𝑉𝑛−4
≤ 0.035 · · ·

𝑛⃒⃒⃒⃒
𝑅𝑛

𝑏𝑛−2

𝑣𝑛−4

⃒⃒⃒⃒
≤ 2𝐵2𝑇

𝑛
4 +

∑︁
𝑝+𝑞=𝑛−2, 𝑝,𝑞>2

𝐵𝑝𝐵𝑞

𝑉𝑛−4
≤ 0.024

𝑛⃒⃒⃒⃒
𝑅𝑛

𝑐𝑛

𝑣𝑛−4

⃒⃒⃒⃒
≤ 𝐵4𝑇

𝑛
5 + 𝐶4𝑇

𝑛
4 +

∑︁
𝑝+𝑞=𝑛, 𝑝,𝑞>4

𝐵𝑝𝐶𝑞

𝑉𝑛−4
≤ 1.23 · · ·

𝑛⃒⃒⃒⃒
𝑅𝑛

𝑐𝑛−2

𝑣𝑛−4

⃒⃒⃒⃒
≤ 𝐵2𝑇

𝑛
5 + 𝐶2𝑇

𝑛
4 +

∑︁
𝑝+𝑞=𝑛−2, 𝑝,𝑞>2

𝐵𝑝𝐶𝑞

𝑉𝑛−4
≤ 0.645 · · ·

𝑛⃒⃒⃒⃒
𝑅𝑛

𝑑𝑛

𝑣𝑛−4

⃒⃒⃒⃒
≤ 𝐶4𝑇

𝑛
3 + 𝑈4𝑇

𝑛
5 +

∑︁
𝑝+𝑞=𝑛, 𝑝,𝑞>4

𝑈𝑝𝐶𝑞

𝑉𝑛−4
≤ 12.765 · · ·

𝑛⃒⃒⃒⃒
𝑅𝑛

𝑓𝑛−1

𝑣𝑛−4
− 9

10

⃒⃒⃒⃒
≤
⃒⃒⃒⃒
𝑐2 −

9
10

⃒⃒⃒⃒
+ 𝑉2𝑇

𝑛
5 +

∑︁
𝑝+𝑞=𝑛−2, 𝑝,𝑞>2

𝑉𝑝𝐶𝑞

𝑉𝑛−4
≤ 9.295 · · ·

𝑛
·

As the solution to linear equation (2.9) for 𝑢𝑛−2 is

𝑢𝑛−2 =
𝑚𝑢

𝑛 + 𝑚𝑣
𝑛

𝑛 + 1

=
1

𝑛 + 1

(︂
−𝑛𝑣𝑛−4 −𝑅𝑛

𝑓𝑛−1
−𝑅𝑛

𝑑𝑛
+

1
2
𝑅𝑛

𝑐𝑛−2
+ 𝑅𝑛

𝑐𝑛
− 72

5
𝑅𝑛

𝑏𝑛−2
− 18𝑅𝑛

𝑏𝑛
+

72
5

𝑅𝑛
𝑎𝑛−2

+ 18𝑅𝑛
𝑎𝑛

)︂
and we have 9

10 −
72
5 ×

1
3 + 49

10 = 1, substituting the above bounds on 𝑅𝑛
· gives⃒⃒⃒⃒

𝑢𝑛−2

𝑣𝑛−4
+ 1
⃒⃒⃒⃒
≤ 1

𝑛 + 1

(︂⃒⃒⃒⃒
𝑅𝑛

𝑓𝑛−1

𝑣𝑛−4
− 9

10

⃒⃒⃒⃒
+
⃒⃒⃒⃒
𝑅𝑛

𝑑𝑛

𝑣𝑛−4

⃒⃒⃒⃒
+

1
2

⃒⃒⃒⃒
𝑅𝑛

𝑐𝑛−2

𝑣𝑛−4

⃒⃒⃒⃒
+
⃒⃒⃒⃒
𝑅𝑛

𝑐𝑛

𝑣𝑛−4

⃒⃒⃒⃒
+

72
5

⃒⃒⃒⃒
𝑅𝑛

𝑏𝑛−2

𝑣𝑛−4

⃒⃒⃒⃒
+ 18

⃒⃒⃒⃒
𝑅𝑛

𝑏𝑛

𝑣𝑛−4

⃒⃒⃒⃒
+

72
5

⃒⃒⃒⃒
𝑅𝑛

𝑎𝑛−2

𝑣𝑛−4
− 1

3

⃒⃒⃒⃒
+ 18

⃒⃒⃒⃒
𝑅𝑛

𝑎𝑛

𝑣𝑛−4
+

49
180

⃒⃒⃒⃒)︂
=

56.06 · · ·
𝑛(𝑛 + 1)

≤ 𝐾

(𝑛− 2)2
· (A.7)

Similarly, the solution for 𝑣𝑛−2 is

𝑣𝑛−2 = 𝑢𝑛−2 +
𝑚𝑣

𝑛

6
, where 𝑚𝑣

𝑛 = −𝑛𝑣𝑛−4 −𝑅𝑛
𝑓𝑛−1

+ 𝑅𝑛
𝑐𝑛−2

+ 18
(︁
𝑅𝑛

𝑎𝑛−2
−𝑅𝑛

𝑏𝑛−2

)︁
,

and substituting the above bounds on 𝑅𝑛
· and 𝑢𝑛−2 into this expression gives⃒⃒⃒⃒

𝑣𝑛−2

𝑣𝑛−4
+

𝑛− 2 + 2.9
6

⃒⃒⃒⃒
≤
⃒⃒⃒⃒
𝑢𝑛−2

𝑣𝑛−4
+ 1
⃒⃒⃒⃒
+
⃒⃒⃒⃒
−1 +

1
6

(︂
𝑚𝑣

𝑛

𝑣𝑛−4
+ 𝑛 + 0.9

)︂⃒⃒⃒⃒
≤ 𝐾

(𝑛− 2)2
+

1
6

(︂⃒⃒⃒⃒
𝑅𝑛

𝑓𝑛−1

𝑣𝑛−4
− 9

10

⃒⃒⃒⃒
+
⃒⃒⃒⃒
𝑅𝑛

𝑐𝑛−2

𝑣𝑛−4

⃒⃒⃒⃒
+ 18

⃒⃒⃒⃒
𝑅𝑛

𝑎𝑛−2

𝑣𝑛−4
− 1

3

⃒⃒⃒⃒
+ 18

⃒⃒⃒⃒
𝑅𝑛

𝑏𝑛−2

𝑣𝑛−4

⃒⃒⃒⃒)︂
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=
3.59 · · ·

𝑛
≤ 𝐾𝑣

𝑛− 2
· (A.8)

Coupling inequalities (A.7) and (A.8) gives

𝑈𝑛−2

𝑉𝑛−4
≤ 1 +

𝐾

(𝑛− 2)2
≤ 𝑛− 2 + 2.9

6
− 𝐾𝑣

𝑛− 2
≤ 𝑉𝑛−2

𝑉𝑛−4
· (A.9)

As inequality (A.8) holds, we may argue as in Lemmas A.2 and A.1 to get

𝑉𝑛−2

𝑉𝑛−4
≥ 𝑛− 2

5.9
≥ 𝑛− 4

6
≥ 𝑉𝑛−4

𝑉𝑛−6
· (A.10)

As 𝐻𝑏𝑐
𝑛−2 holds (Step 2), inequalities (A.7)–(A.10) imply 𝐻𝑛−2 holds, completing the induction.

Step 4: Conclusion. As 𝐻𝑝 holds for all even 𝑝, we have

lim
𝑝→∞, 𝑝 even

⃒⃒⃒⃒
𝑣𝑝𝑡

𝑝

𝑣𝑝−2𝑡𝑝−2

⃒⃒⃒⃒
= lim

𝑝→∞

𝑝 + 2.9
6

𝑡2 = ∞

for any 𝑡 ̸= 0. By d’Alembert’s ratio test, it follows that the series
∑︀∞

𝑝=0, 𝑝 even 𝑣𝑝𝑡
𝑝 diverges for all non-zero

𝑡. Therefore this series is not the Taylor series at 𝑡 = 0 of an analytic function. This completes the proof.
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