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NEW FORMULATIONS AND CONVERGENCE ANALYSIS FOR REDUCED
TRACER MASS FRAGMENTATION MODEL: AN APPLICATION TO
DEPOLYMERIZATION

1,2,%

MEHAKPREET SINGH , GAVIN WALKER! AND VIVEK RANDADE!

Abstract. In this work, two discrete formulations based on the finite volume approach for a reduced
fragmentation model are developed. The important features such as mass conservation and accurate
prediction of the zeroth order moments are accomplished by the modification of the selection function.
The new schemes can compute the second order moment, which plays a significant role in predicting
the area of the particles in real life applications, with high accuracy without taking any specific mea-
sures. A thorough convergence analysis of both schemes including Lipschitz condition and consistency
is presented and exhibit second order convergence. The accuracy and efficiency of both schemes is
demonstrated by applying them to the depolymerization problem which commonly arises in polymer
sciences and chemical engineering. It is demonstrated that the new schemes are easy to implement,
computationally efficient and able to compute the numerical results with higher precision even on a
coarser grid.
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1. INTRODUCTION

Several processes like crystallization and granulation where particle size distributions evolve with space and
time are widely used in the pharmaceutical industry. Population balance equations are used to track the par-
ticles having different properties such as size, shape, porosity, mass and volume. One-dimensional PBEs are
routinely used to simulate particle size distributions in crystallization. However, such 1D PBEs do not account
for other important properties like tracer mass fractions, liquid content, porosity. Many applications related to
the pharmaceutical industry such as sprayed fluidized bed granulator [27,46,47] and twin-screw wet granulator
[17] require the information of tracer mass distribution besides particle size. Multi-dimensional PBEs [42, 44]
have been developed to simultaneously track different intrinsic properties of particles such as tracer mass frac-
tion in addition to particle size distribution. These two PBEs are quite difficult to solve and computationally
expensive. Many authors have proposed various numerical techniques in order to solve the complete two dimen-
sional fragmentation equation for tracking a distribution involving two internal properties [31,39] and references
therein.
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FIGURE 1. Schematic representation of the fragmentation processes in 2D space.

Hounslow et al. [14] have reduced a 2D population balance equation to two 1D population balance equations
for easing computational demands. There are only few numerical studies are available in the literature which
describe the accurate prediction of the tracer mass distribution [14,23,33]. The reduced tracer mass fraction
equation also has applications in polymer reaction engineering. For example, reduced tracer mass distribution
equation for fragmentation process can be used to simulate depolymerization process. It is essential to develop
better methods to solve reduced 2D population balance models, particularly to solve reduced tracer mass
fraction equations to encourage application of the reduced 2D PBEs to simulate practically relevant systems
like granulations [38] and depolymerizations [1]. Such an attempt is presented here.

In this work, our main objective is to develop new methods for solving the reduced tracer mass distribution.
For illustrating the methods, a case of a pure fragmentation process is considered in this work. The fragmentation
process leads to increase in number of particles and the total mass remains unchanged in the system. The binary
and multiple fragmentation processes in two dimensional space having two internal coordinates is depicted in
Figure 1. In this work we develop two methods for solving reduced tracer mass fragmentation model.

1.1. Reduced fragmentation model

The complete two dimensional fragmentation equation for tracking the dynamics of number density function
corresponding to two internal properties of the particles [5,9,40] can be written as

on(t, u,v)

5 :/ / S(t, w1, v1)b(u, v, ur, v1)n(t, w1, v1)durdoy — S(¢, u, v)n(t, u,v). (1.1)

subject to a initial conditions
n(0, u, v) = Nini(u, v), (1.2)

where n, S, and b represent number density function, selection rate and breakage distribution function, respec-
tively. Due to non availability of the experimental technique to extract the complete two dimensional distribution,
Hounslow et al. [14] developed a reduced model from the complete 2D fragmentation equation by assuming that
the fraction of tracer in the fragment remain unchanged during the fragmentation process, that is, % = 2 and

the separation of tracer-dependence in b from the size dependence can be done as

b(u, v, u1,v1) = b(u, u1)s <v - “"’1) : (1.3)

U1
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Using the aforementioned notations and relation (1.3), the equation (1.1) can be rewritten as

t oo u1
W = / / S(t, u1)b(u, v, uy,v1)n(t, ur,v1)durdo; — S(t, w)n(t, u,v),
= / S(t,ur)b(u, up)n (t,u1, %) %dul — S(t,u)n(t, u,v). (1.4)

Integrate both side with respect to v from limits 0 to u, then the equation (1.1) can be reformulated to a reduced
model for capturing the tracer mass distribution

om(t,u) (" [ uIvy up b
T_/0 v/u S(t, u1)b(u, ur)n (t,u77> ;duldv—/o vS(t, u)n(t, u, uy )dv,

= /uoo S(t,u1)b(u, uq) /uoo un (t,u, %) d (w) duy — S(t, u)m(t, u)

u

= / S(t, ur)b(u, ul)uilm(t, ur)duy — S(t, w)ym(t, u). (1.5)

Similarly, the standard equation of 1D fragmentation equation use to track the size distribution function can
be also derived who has many real life applications such as twin screw granulation [16], sprayed fluidized bed
granulation [19,20] and depolymerization [1]. Different studies including existence and uniqueness [2,12,29,30,36],
analytical solutions [21,48,49], numerical methods [4,8,24,25,41,43,45], scattering and self similarity [7,11,13]
for standard 1D fragmentation equation can be found in these references. Whereas, the equation (1.5) is handled
to capture the tracer mass distribution for high shear granulation [14] and twin screw granulation [38]. The
detailed derivation of equation (1.5) is provided in Hounslow et al. [14].

1.2. State of the art and motivation

Due to the complex nature of these equations, few numerical methods are available in literature only for
solving a fragmentation mass tracer PBE. The first numerical methods to approximate the tracer PBE (1.5)
was developed by Hounslow et al. [14]. Later, Peglow et al. [33] modified the numerical approximation of the
Hounslow et al. [14]. The major drawback of both numerical methods is that they are highly accurate in
predicting the numerical results only for a size independent kernel. Moreover, the other limitation of these
methods is related to the grids as these methods can only implemented to specific type of grids. Recently,
Kumar et al. [23] presented a numerical method for solving a tracer mass aggregation PBE well known as cell
average technique which overcome all issues of the existing methods. The idea of cell average is based on finding
the average of all new born particles within the cell and then redistribute them to the neighboring nodes in
such a way that pre-chosen properties are exactly preserved. This leads to the recalculation of the birth terms
which makes this method computationally very expensive.

In addition, the equation (1.5) has been also intensively used for modeling the grinding process [3, 6, 34].
Reid [35] convert the original equation into the cumulative form to solve it analytically for a simpler structured
selection function and breakage kernel. In addition, Kapur and Agrawal [18] developed a Cauchy- Picard method
for approximating a tracer mass equation whose formulation is very complex. To the best of our knowledge, only
few numerical methods are available in the literature for solving a fragmentation mass tracer PBE [14,18,35]. In
this work, our aim is propose two new frameworks based on the finite volume scheme (FVS) for approximating
a fragmentation mass tracer PBE. The mathematical formulations of these methods are simpler and robust to
apply on any kind of grids as well as breakage functions. The new methods have the tendency to predict the
integral properties, tracer mass distribution and average size particles with higher precision by consuming lesser
CPU time.



946 M. SINGH ET AL.

O Representative of a cell

Boundary of a cell
Ui-1 Ui Uit Ui+2
(i— 1D cell ith cell @i+ D" cell (i +2)" cell
Ui-3/2 Ui—1/2 Uitr1/2 Ui+3/2 Uits)2

FIGURE 2. Discretization of continuous one dimensional domain.

2. NEW FINITE VOLUME APPROACHES

The mathematical derivation of the formulation of the finite volume schemes is began by discretizing the
continuous computational domain [tmin Umax] into I nonuniform cell as demonstrated in Figure 2. The ith has
representative, lower and upper boundaries denoted by u;, u;_1/2 and u;1/2, respectively. Moreover, for the ith
cell, step size can be calculated by Au; = u;41/2 —u;_1 /2. For the non uniform grids, we denote Au = max; Au,
du = min; du,, and suppose that there exist a non-negative constant H (independent of the grid considered for
discretization) in such a way that

Au
— < H. 2.1
ou — (2.1)

In order to approximate the integral present in equation (1.5), it is pre-assumed that the particle properties

(mass in this case) are accommodated on the representative of each cell, that is,

1
m(t,u) ~ Z ujn;o(u — uj). (2.2)
j=1

Suppose that the average value of mass m in ith cell at any time ¢" is m? which is the approximation of a
function m (¢, u;). Further, consider the function m to be sufficiently smooth and can be expanded as m;(t) =
win(t,u;)Au; + O(Au?). The whole idea of the numerical scheme is to obtain set of ODE’s by converting the
equation (1.5) with integration over the bounds of the ith cell and using the relation (2.2) leads to

dmi (t)
dt

= B;(t) — D;(t), (2.3)

with subject to the initial data

1 Uit1/2
m;(0) = Au‘/ m(0, u)du.

i—1/2

Here the particle population corresponding to the birth and death terms are given as

Uijt1/2 Uit1/2
Bi(t):/ / b(u, up)S(t, uy) —m(t, uy)dudu, (2.4)
Uj—1/2

u
u U1

and

D;(t) = / S(t, u)m(t, w)du. (2.5)
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Let us first simplify the birth term (2.4) by changing the order of integration, we have

Uiy1/2 U ul
Bi(¥) :/ S(t,ul)u—lm(t,ul)/ b(u, uy )dudu,

i—1/2 i—1/2
uk+1/2 U Uit1/2
+ E / S(t ul)—m(t,ul)/ b(u, uq)dudus .
k=i+1" Yk—1/2 u1 Ui—1/2

Now use the application of a midpoint quadrature approximation (MDA) on integrals of above equation w.r.t
u leads to

Us 1 Uj+1/2
Bl(t> = S;m; / b(u, uz)du + Z Sjmj / b(u, uj)du + O(A’U,Q)
i—1/2 j=i+1 Uj—1/2
Again implement MDA to obtain the discretize form of the death term (2.5) as follows:
Dl(t) =S;m; + O(AUQ) (26)

Further, let us denote the numerical approximation ri2;, then the discrete equations (2.3) can be written as

dm R
! ZS mj 771] Si m;. (27)
Here
;
M = / b(u, uj)du,
Uij—1/2
and (bé- can be defined as
i Us, when j =1,
¢j = .
Ujy1/2, Otherwise.
The above formulation does not satisfy the mass conservation law which is a necessary condition for any numer-

ical method. The numerical scheme holds the mass conservation law when it satisfies the following condition:

1

% > mi=0. (2.8)

i=1

For proving the result, take a summation Zle on both sides the equation (2.7) which gives

I
dz i ZZS Sy~ Y S (2.9)
i=1

=1 j=1

Change the order of the first summation, we have

dZ 1 m; Z S (Z iy — > £ 0. (2.10)

i=1

Hence, the formulation (2.7) do not satisfy the mass conservation law.
In order to show these results, the comparison of normalized moments and number of particles in each cell
obtained from the formulation (2.7) are compared numerically and analytically for linear selection function

(S(u) = w) and binary breakage kernel (b(u,uq) = u%) For the comparison, the exponential initial condition

m(0,u) = e~ is considered. The computational domain [10~9 200] are divided into 30 nonuniform cells and
the simulation is run from time 0 to 10.
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F1GURE 3. Normalized moments and number of particles using linear selection function and
binary breakage kernel obtained from formulation (2.7). (a) Zeroth and first order moments.
(b) Number of particles.

2.1. Mass conserving scheme (OOM)

It can be seen that the formulation (2.7) neither conserve the total mass in the system nor predicts the
zeroth order moment accurately. In addition, this formulation fails to predict the number of particles in each
cell accurately. In order to achieve the mass conservation property, the selection function in the second term of
the formulation (2.7) is modified, hence can be read as

d i &
i ZS mj n” Sy, (2.11)
where
LS
= — Z UjMj,55 (212)
U; —
J

We call this method one order moment conserving method (OOM).

Proposition 2.1. The proposed numerical scheme (2.11) holds the mass conservation law if S, =

S
w; 2ai=1 Willij-

Proof. Take a summation Zle on both sides the equation (2.11), we have

d21 1 M Z Z S; Us m]m,] ZS ;. (2.13)

=1 j=1

Replace the index i to k in the second term of the RHS, we get

dz[ s I I ” I
—=l— = > Zsju%mjm,j =Y Sy (2.14)
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Now change the order of the first summation, leads to

dZ 1m7, ij (ZS g — ) ) (2.15)

By introducing the value of S’j from equation (2.12), it gives

dZZ 1mL Zs m; (Z e nw Zs nm>- (2.16)

Hence

de:1 mi

a %

which implies that the first order moment is conserved, that is, the formulation (2.11) holds the mass conservation
property. Here, OOM refers to a finite volume scheme which conserves one order moment. O

2.2. Number consistent and mass conserving scheme (TOM)

It is important to note that the OOM finite volume scheme merely focuses on conserving the total mass in
the system, however, do not give any account for the accurate prediction of the zeroth order moment. But it
will be interesting to observe that to what extend this scheme predicts the zeroth order moment accurately.
The zeroth order moment plays a very significant role in predicting the average size of the particles u = /“1 in
the particulate processes such as crystallization, deploymerization and granulation [20,32,38]. This implies the
accurate prediction of the zeroth order moment is very crucial and leads to the higher accuracy of the average
size of particles in the system. Therefore, next our aim will be to develop a finite volume scheme whose features
include the accurate prediction of both zeroth and first order moments. In addition, it will be interested to
observe that to what extent this scheme captures the second order moment accurately which is significant to
calculate the total area of the particles. We named this approach two order moments (TOM) conserving finite
volume scheme.

To achieve this two order moment conserving method, the selection functions in the first and second term of
equation (2.7) are modified as follows:

dm
mz ZSbmJu M5 — S§m;. (2.17)
Jj=i
Here
ap s N1
J
1= 1(“’ )77747]
and
St
d__ 7)) S
S] - EZUWITIJ’“ 1_253,"'ala (219)

where v(u;) denotes the number of particles formed from the fragmentation of particle property u; and the
values of S and S{ are considered to be zero. Let us now prove the mass conservation law and preservation
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of zeroth order moment for the finite volume scheme (2.17). The numerical scheme is consistent with number
preservation property if it satisfies the follows relation:

I I
%Z ]Zj = ZS’j—?(v(uj) —1). (2.20)

where N; = 22,
o

J
Proposition 2.2. The proposed numerical scheme (2.17) holds the mass conservation law, that is, no mass

b _Sjus(v(uy) d _ SLyi
leave the system if S} = % and S§ = 3+ Z;:1 Ui, -

Proof. Take a summation Zle on both sides the equation (2.17), we have

I
dm? = Z Z Sbmj i mg > S, (2.21)
=1

1=1 j=1

Change the order of summation in the first term, interchange the index i to j in the second terms and substituting
the values of S;? and S¢, the above expression becomes

I . 7 I J
dzd 1My _ Z m;Siuj(v(u;) — 1) U; Ui Z m]S u] (uj) —1) Z“ﬂ?m (2.22)
t j= I (= )y PP 1 (g — w4

After simplification, we get

dz -1 mz i mlS uj (Z J )
= UjMi,j — Z UjMij |
d j=1 Zz 1(“] )Uw i=1 i=1

=0.

This further implies
m; = constant. (2.23)

Hence the total mass in the system remains constant with the evolution of time, that is, the mass conservation
property holds for the formulation (2.17). O

Proposition 2.3. The proposed numerical scheme (2.17) is consistent with the zeroth order moment if S’;? =

_Sjuy(w(ug)=1) d_ 5§ i o
ZZ 11(uJ_u1)777g and SZ T oug ZjZl UjMi,j -

Proof. Divide both side of equation (2.17) by u; and take a summation Z _ gives

I

I 1

dm; 1 b Wi 1y

T Z W Z Sy o i T E ;Si m. (2.24)
i=1 " j=i J

i=1
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Change the order of summation and substituting the values of S? and S¢ leads to

dzz_l N; ! m; S uJ 1 Sju;(v
=1y }:1 }: / E:” ;- 2.2
dt uj 331 (uj Ty > e (229)

j=1 _ul)nm i=1 j=1 Mg i=1

After simplification, we get

1

de:I N; riy  Siug(v(u; ’ 2 u;
S Li=17h — i
dt Z Uj Z] Uz)??u Z Z 1 Wi !

j=1 () —
= Z j('U(UJ (Z U5 — Zumm>

i=1 ]Z (Uj—u,’r]”uz i—1 —

—Z (v() ~ 1) ( n)

-1 W Zz 1(“1 — )M,

=1 =1

Mu

= ZS — —1). (2.26)

The above expression is same as the relation provided in equation (2.20). Therefore, the formulation (2.17)
shows consistency with the zeroth order moment. O

3. CONVERGENCE ANALYSIS

The convergence analysis of the both finite volume schemes are carrying out by writing the equations in
vector form. Suppose that vectors m and m represent the exact average and numerical values, respectively. The
vector form of the discrete equations (2.11) and (2.17) can be written as

Oom N .
2 =79, m(0) =m(0). (3.1)

Here, J € R! are the functions of 7 with the components of one order moment conserving methods are

A OOM
ZS mJ m,J, (3.2)

and

D" i) = S, (3.3)

and the components of two order moment conserving methods are

I
~ TOM , . 1%
Bi (m) = ;’mj 71 Mi,j5 (34)
— U
Jj=t
and
~ TOM ~
zT () = S, (3.5)

Therefore, the final form of equation is
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The convergence of the discrete system will be conducted with the help of theorem provided in the further
section. Firstly, the define the norm L' considered for convergence as

I

lm()l = D fmi(t)| Au;. (3.7)

i=1

Some important definitions required for discussing the convergence analysis of the numerical schemes are pro-
vided in A. Following from the Theorem A.3, if the equations (2.11) and (2.17) follow the Lipschitz Condition
and shows consistency. Then using the Theorem A.4, the convergence of both finite volume schemes can be
obtained.

3.1. Lipschitz condition for OOM FVS

Let us assume that the kernels S and b are twice continuously differentiable functions over [0, umax] and
[0, Umax] X [0, umax], respectively, then there exist a constant

C= max Siv(u) < oo,
Ue(oyumax]

such that the Lipschitz condition on J is satisfied for all m and m € R’, that is,
[J(m) — J(m)|| < L||jm — m].
Let us consider
I

[9(m) = J(m)|| = Z Z 77m — 1ig) = Si(mi — 1)

Since the daughter particle (u;) is always smaller than the mother particle (u;), that is, u; < u; for all i =
1,2,3,...,j implies

I I I
[J(m) — J(m)]| SZZ ﬂ?m my = 1| + > S [mi — 1] (3.8)

i=1

Changing the order in the first summation and substitute the value of S;, we have

I J I J
. . S; .
13 (m) — ()| <85 [my — | > miy+ Y — > wini g Imi — 1l (3.9)
j=1 i=1 i=1 7 =1
Using again u; < u;, we have 5'1 5 ZZ L Wity <O j 1M = Sjv(u;) and replacing this value in above

equation leads to

I I

|J(m) —J Z w(ui) [mi — |+ Siv(u;) [mi — 1l (3.10)

i=1 i=1

This further implies
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I
19 (m) = I(m)|| <2 Siv(ui) [m; — il

i=1

I
= 2; (mlax Sw(ui)) [mi; — 1

=2 max S(u)v(u)||m — m||
wE (0, Umax]

< Clm — . (3.11)

Here C' = 2maxye(0,u,,,] S(w)v(u) < oo and the Lipschitz constant does not dependent on Au. Hence, it proves
the Lipschitz condition on J. Let us now proceed to discuss that the formulation (2.11) shows consistency or
not.

3.2. Consistency of the OOM FVS

Theorem 3.1. Suppose that the selection function S and breakage kernel b are twice continuously differentiable
functions over (0, umax] and (0, umax] X (0, umax], respectively. Then, the numerical solution of the formula-
tion (2.11) is non-negative and consistent, with a truncation error of order 2, independently of the type of grid
consider for continuous domain discretization. Moreover, the scheme is convergent and the order of convergence
is the same as the order of consistency.

Proof. For establishing the above theorem, the necessary property which numerical scheme has to follow is the
nonnegativity, consistency, and convergence. The nonnegativity of the numerical scheme is given below:

Nonnegativity. Since the mass of system cannot negative, therefore for any nonnegative mass distribution
m € RI, (for all ;m > 0 which has ith component equals to zero). So, equations (3.2) and (3.3) gives

~ OOM ~ OOM

~ OOM ~ OOM
The equation (3.6) implies J;(m) = B; (m) — D; (m) > 0. Moreover, for any ¢ = 1,2,...,1, Theo-
rem A.3 and Proposition A.4 imply the nonnegativity of the solution.
Consistency. The ith component of the spatial truncation error (From Def. A.1) is

ity = 0

Using (2.4), (2.5), (3.2)and (3.3), the above equation becomes

— Ji(m(1)).

4 OOM ~ OOM
I . ~ OOM L
Substituting the values from equations (2.4) and (3.2), the B; — B; can be simplified as follows:
OOM ! !
Bi—B; =) Simymiy— Y Symym; + O(Au). (3.13)
j=i j=i
5 OOM
This implies that B; — B; = O(Au?).

~ OOM
Use the values from equations (2.5) and (3.3), now let us discuss the order of consistency of D; — D;

term similar to birth term given as below

~ OOM

D, — D; = (Sz — Sz)ml + O(Aug) (314)
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Replacing the value of S; in the above equation, we get

. 1 J
D; — DiOOM = (1 T Z“iﬁiu‘) Sim; + O(AUQ),
J =1
1 J
— (“j - Z%‘Ui,j) Sim; + O(Au?). (3.15)

Wi
J i=1

Using u; = [, ub(u,u;)du, we have

J
D; — _DiOOM _ i (/ ub u u])du — Zumm) Sim; + O(AUQ)
- \Jo i=1

<

_ 1 / (w —u;)b(u, u;)du
Uj =17 uj—1/2
1 Uj+1/2 Ui
=— </ (w — u;)b(u, u;)du + / (u — u;)b(u, ui)du> . (3.16)
J Uj—1/2 Ui—1/2

Further implement the MDA to first summation for j = 1,2,3,...,7¢ — 1 and right end approximation (REP)
for j = ¢ in the above equation gives second order accuracy for the numerator of above equation.
Hence we have

D — DM = o(au?). (3.17)
Replacing the values from equations (3.13) and (3.17) in equation (3.12), we get
oi(t) = O(Au?). (3.18)
This further gives
o)l = O(A?), (3.19)

which do not show any dependency on any grid or step size.

Convergence. It is demonstrated that the numerical solution satisfies the Lipschitz condition and also shows
second order consistency. Using these results and Theorem A.4 imply that the order of convergence for the
numerical scheme is same as the order of consistency, that is, the numerical scheme exhibits second order
accuracy. O

3.3. Lipschitz condition for TOM FVS

Let us consider

I

I
|J(m) — Z Z ;ﬁnw ;=) — S m; — ).

The above equation further simplifies to

M, M

||J(II1)— H<Zzsb Zﬁz]|mg—mj|+25d|mz—ml .

=1 j=1i
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Let us now solve the summations M; and M separately.

Simplification of My term. To simplify the term M, first change the order of the summation, we get

ZZS " Imj — 1] . (3.20)

i=1 j=1

Using u; < u; and substituting the value of S;’ with Sf = 0 in the above equation, it gives

L w;v(uy) u;
Z 1771,] my — mk‘ [ 7 J J - = j ‘|
=2 i=1 i (g —wi)mig i (uy — wi)ni
L . (uj — ui)v(uy) ujv(u - J77w|mJ m|uy
= Z 1i,51mg — 1| v =y Z - (3.21)
o e i1 (uj — ui)mi, 11 (uy — )m,] oD i (wg —ui)n

Simplification and rearranging gives the following equation

I

Z v(u;)Sj|m; — 1yl —I—Z S]m,] — 1| [Zumm ] (3.22)

j=2 =2 i= 1(“J*U1)771J i=1

Since b(u,u;) is twice continuously differentiable function and further using the midpoint and the right end
approximation of the integrals, we obtain

w J
u; = / ub(u, u;)du = Z/ b(u, uj)du = Zumi,j + O(Au)*.
0 u

j—1/2 i=1

This further gives

)2 < C1(Au)?, where C} < oo is a constant. (3.23)

J
- Z Willi, 5| = O(Au
i=1

Additionally, for j = 2,3,...,I, we have

J i1 Uj—1/2
Z(Uj - ui)m,j > (Uj - ui,l) Zni’j > A’U,j/ b(u7uj)du > 02(5’11,), (324)
i=1 i=1 0
where Cs is a constant, satisfying
Uj—1/2
0<Cy= i b(u,uj)dul|. 3.25
o= | [ b (3.25)

Using equation (2.1) and above relations in equation (3.22), we reaches to

I
C .
Z v(u;)Sjlm; — mJH‘Z Au)? C’; v(u;)Sjlm; — my

j=2
c I
1 .
< [1 + O—QHumax} Zv(uj)5j|mj — 1| Au; (3.26)
j=1
< [1 + gHumax} max [v(u)S(u)] Z |mj —m; (3.27)
B Cy Je{2,3,.., , ! !
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Here du = min; Au;. The above relation can further be simplified to
M; < Cs)jm — m]|. (3.28)
where

5=Q ey, Sl <o

and Q = [1+ %Humax].

Simplification of Ms term. Let us further simplify the second term My given in equation (3.8)

I I gt J
My = |mj — 1,;|S¢ = |mj — |-~
2 mj —mjjo; mj —mj W UiNi,j5-
j=1 j=1 J =1

Using the fact that u; <wu; Vi=1,2,3,...,,

I b
J
My < E |m; — ;| — g (T
i=1 7 j=1

Now change the order of the integration, we have

I I Sb
My < |m; — ;| —Luin;; = M
2> J i iTli,j 1-
i=1 j=i J

This gives
My < Csl[m — mml|. (3.29)
Using the equations (3.28) and (3.29), the equation (3.8) takes the following form:
[9(m) = J(m)|| < M|jm — ]|, (3.30)
where M = 2C3 < oo is a Lipschitz constant.

3.4. Consistency of the TOM FVS

Similar to the OOM, the consistency of the TOM is discussed using the Theorem 3.1 to derive the order of
convergence of the scheme.

Nonnegativity. Since the total mass in the system is always positive, therefore for any non-negative mass dis-
tribution m € RI, (for all /7 > 0 which has ith component equals to zero). So, equations (3.4) and (3.5)
gives

B, M) >0 and DO () = 0.

~ TOM ~ TOM
The equation (3.6) implies J;(r) = B; (m) — D; (m) > 0. Moreover, for any ¢ = 1,2,...,I, Theo-

rem A.3 and Proposition A.4 imply the nonnegativity of the solution.

Consistency. Using the Definition A.1, the jth component of the spatial truncation error can be written as

m@:mﬂﬂfummy
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Using (2.4), (2.5), (3.4)and (3.5), the above equation becomes

Py Py

O'i(t) = Bi - BiTOM - (Dz - ljiTOM) . (331)

Simplification of Py term. Now consider the first term P; of the equation (3.31),

P, = B; B—[Z%Smm” Zujn” S”}JrO(Au) (3.32)

J=1 Jj=t

Combining the terms, we get

Zm]nm Sb) + O(Au?)

i 1(“J ui)nm’

_ [ZSjmJ‘”i,jZ< Zuj(v(uj)—l) )} +O(Aw)

{ZS Mty <§J — (Zu:z__l ZJ;;] > } + O(Au?). (3.33)

Using the application of midpoint and right end quadrature approximations, the numerator of above equation
can be shown of the order 2 whereas the denominator is of order 0. This gives

= O(Ay?). (3.34)
Simplification of Py term. Let us now obtain the order of consistency for the P term of equation (3.12)
Py = (S; — SHym; + O(Au?). (3.35)

Replace the value of S 4 from equation (2.19) in above equation, we get

( ;- Zujn”> m; + O(Au?), (3.36)
1

= < = Squjnm> S;mj + O(Au?). (3.37)
i=1
It can be noted that

uj ¢ p; J
uj = / ub(u, uj)du = Z/ ub(u, ug)du = Z“ﬂh‘,j +0(Au?).
O u

=17 uj-1/2 i=1

Using u; from the above equation in (3.36) leads to

SJ“J((j)*l)
P2 = Sj — i,5 | Ty O AU 3.38
(s el =) (153 ) + o0 339

’U”L)TI’LJ =1

As proved earlier that 1 — —=)=D__ — 9(Ay?), we have
2oy (ug—ui)na

Py = O(Au?). (3.39)
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Hence, from equation (3.31) using equations (3.34) and (3.39), we get

7;(t) = O(Au?) = ||o(t)]| = O(Au?).

Convergence. From Theorem A.4 and the above results on consistency prove that the TOM also converges to
the second order same as the order of convergence of OOM.

4. NUMERICAL TESTING AND DISCUSSION

The accuracy and efficiency of the numerical methods is tested by comparing the numerical results with
analytical solutions for various combination of selection functions and breakage kernels.For the testing two initial
conditions (ICs) are considered (a) monodisperse (m(0,u) = é(u—1)), and (b) exponential (m(0,u) = exp(—u))
initial conditions. Following combinations of ICs, selection functions and breakage kernels are used to compare
the results:

Case 1. Binary breakage kernel and linear selection function with monodisperse IC.
Case 2. Binary breakage kernel and linear selection function with exponential IC.
Case 3. Binary breakage kernel and constant selection function with monodisperse IC.
Case 4. Binary breakage kernel and constant selection function with exponential IC.

The theoretical (analytical) solutions for the number density functions and integral moments corresponding to
the Cases 1 and 2 can be found in Ziff [48]. However, for the Cases 3 and 4, no theoretical solutions for the
number density functions are available in the literature, however, the numerical results are compared against
the theoretical results in terms of integral moments and average size particles. In order to observe the errors
in each cell of the computational domain, the weighted sectional error in the number density functions are also
estimated using the following relation:

S

I exc Y
D NFCAU U

Ai(t) = , (4.1)

where \;(t) for i = 0 and \;(¢) for i = 1 compute the relative weighted sectional errors in zeroth and first order
moments, respectively.

4.1. Test Case 1

we began the exercise of comparison by taking into consideration the binary breakage kernel (b(u,v) = %) and
linear selection function (S(u) = u) with monodisperse IC. The computational domain [107° 1] is discretized
into 30 nonuniform cells and the simulations are run from time 0 to 100.

Figure 4 demonstrates the comparison of numerical results against the theoretical results. The zeroth order
moment is approximated well by TOM FVS, however, the OOM FVS shows underpredicton from the theoretical
result (refer to Fig. 4a). Furthermore, both methods conserved the total mass in the system as expected. The
second order moment which signifies the total area of the particles is more accurately predicted by the TOM
FVS than the OOM FVS as it shows more deviation from the theoretical result. It can be noticed that no
specific measure has been taken for the accuracy of the second order moment, still the TOM FVS tends to
produce this result with higher precision.

In addition, the plots of number of particles in each cell and the number density function versus the representa-
tive of cell are calculated with higher accuracy by the TOM FVS than OOM FVS as shown in Figures 4b and 4c.
The average size of particles which signifies the ratio of the first order moment to the zeroth order moment
is also plotted in Figure 4d. The TOM shows higher precision than the OOM in calculating the average size
particles obtained in the system due to the fragmentation process. In order to observe the deviation of numerical
results from the theoretical result in each cell, the sectional errors in the number density function are estimated
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FIGURE 4. Comparison of normalized moments, number of particles, number density function
and average particle size using Case 1. (a) Normalized moments. (b) Number of particles. (c)
Number density function. (d) Average size particles.

using the expression (4.1) are listed in Table 1. Table reveals that the TOM FVS predicted the results with
more accuracy than the OOM FVS. Furthermore, the sectional errors reduce to 70% once a grid consists of 60

nonunifrom cells is used to solve the reduced fragmentation model. However, still the TOM FVS performs much
better than the OOM FVS.

4.2. Test Case 2

Now the testing of the numerical methods is conducted using the linear selection function and binary breakage
kernel for a exponential initial condition. The computational domain [10~7 10] is divided into 30 nonuniform
cells and the simulations are run till time ¢ = 10.

Analogous to previous case, the zeroth, first and second order moments are well predicted by the TOM
FVS for the Case 2 whereas the OOM FVS deviates significantly from the theoretical results as depicted in
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TABLE 1. Weighted sectional errors in the number density function for Test Case 1.

A OOM TOM OOM TOM
30 cells 30 cells 60 cells 60 cells

Ao 0.23110 0.07290 0.06545 0.01854
A1 0.21010 0.09234 0.05581  0.02430
Az 0.28413 0.11698 0.07008  0.03200

10 O Tom
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F1GURE 5. Comparison of normalized moments, number of particles, number density function
and average particle size using Case 2. (a) Normalized moments. (b) Number of particles. (c)
Number density function. (d) Average size particles.
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TABLE 2. Weighted sectional errors in the number density function for Test Case 2.

A OOM TOM OOM TOM
30 cells 30 cells 60 cells 60 cells

Ao 0.15338 0.09318 0.04401 0.02398
A1 0.15750  0.05709 0.04364 0.01668
A2 0.25707 0.05750 0.06626 0.01790

Figure 5a. The particle size distribution (number of particles in each cell) and number density function plotted in
Figures 5b and 5c¢ affirm the accuracy of the TOM FVS whereas the OOM FVS shows over prediction for these
results. The average size particle obtained in the system is predicted by the TOM FVS with higher precision and
agrees well with the theoretical results. However, the OOM FVS shows overprediction for this results as shown
in Figure 5d. Additionally, the sectional errors in the number density functions shown in Table 2 acknowledges
the accuracy of the TOM FVS over the OOM FVS. One can observe that the sectional errors can be scale down
to desired level by considering a more dense grid.

4.3. Test Cases 3 and 4

In this part of the article, the comparison is enhanced by testing the numerical methods against the theoretical
results corresponding to Cases 3 and 4. It is worth noting that the theoretical results for the number density
functions for these cases are not available in the literature. Therefore, the accuracy of both finite volume
approaches are measured by comparing with the theoretical integral moments. The computational domain
consists of particle properties ranges from 1079 to 2 is discretized into 30 nonuniform cells. Both numerical
methods are run till time ¢ = 2 for monodisperse and exponential ICs.

Different order moments are computed with excellent precision by the TOM FVS corresponding to both
monodisperse and exponential ICs as shown in Figures 6a and 6¢c. In addition, the average size of particles
formed in the system obtained by the TOM FVS also match well with the theoretical results for both cases (see
Figs. 6b and 6d). However, the OOM FVS shows overproduction for these results.

From the above discussion, it can be concluded that the mathematical formulations of both finite volume
approaches are very simple and robust to implement of any kind of grid, selection function and breakage
kernel. However, the validation exhibits that the TOM FVS is much more accurate in predicting the number
density functions, integral moments and average size particles than the OOM FVS. In terms of efficiency, both
approaches take almost same computational time to approximate all numerical results.

4.4. Application to depolymerization problem

Now our next aim is to implement these numerical methods real-life application in the area of polymerization
sciences [22,28] in order to check the accuracy of these methods. Chain-end scission problem is solved which in
the polymer context refers to the removal of one monomer unit from the end of the polymer chain. Recently,
Ahamed et al. [1] implemented cell average technique and fixed pivot technique to check their performances for
the case of depolymerization on a discrete continuous grid. A standard case of the starch polymer with glucose
as the monomer similar to Saito [37] is considered corresponding to the following initial distribution:

Woun(u)
1 1(162u + 18) — 180)n(w)du’

m(0,u) = (4.2)
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FIGURE 6. Comparison of normalized moments and average size particles using Cases 3 and 4.
(a) Normalized moments for exponential IC. (b) Average size particles for exponential IC. (c)
Normalized moments for monodisperse IC. (d) Average size particles for monodisperse IC.

where Wy is the initial mass concentration of the polymer considered and R is the maximum degree of poly-
merization (DP) of the polymer. The function n(u) is defined as follows:

Av=Lexp(—A)
pr(v)

n(u) = (4.3)

(u—1)

where A = , V= %, 0 =Wy —W; and T' (v) denotes the gamma function. The values of parameters are
provided by [10] which are listed here as the number-average DP W, = 4100, weight-average DP W5 = 5430,

1
U | 71
Um+1

used corresponding to m = 10 and r = 30. Detailed description of the depolymerization problem and knowledge

R = 22496 and Wy = 10g/L. For this case study, a geometric grid with a common ratio of r = is
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FiGURE 7. Comparison of normalized moments and average size particles for linear and
quadratic selection function corresponding to the depolymerization problem. (a) Normalized
moments for S(u) = u. (b) Average size particles for S(u) = u. (¢) Normalized moments for

S(u) = u?. (d) Average size particles for S(u) = u?.

of the grid can be found in [1]. The numerical results are compared against the theoretical results for linear and
quadratic selection functions.

From Figure 7a, it can be seen that the zeroth and first order moments obtained by TOM FVS and OOM FVS
are well matched with the theoretical results for linear selection function. The second order moments deviate
from the theoretical result, however, the accuracy of this particular moment can be improved by considering a
dense grid. Similar to the linear selection function, the zeroth and first order moments obtained by TOM FVS
and OOM FVS show equal accuracy and coincide with the theoretical results for a quadratic selection function
(see Fig. 7c). In addition, both methods also compute the second order moment with equal precision in contrast
to the linear selection function. In both cases, the average size particles are predicted with equal accuracy by the
OOM FVS and TOM FVS as both methods match well with the theoretical results (refer to Figs. 7b and 7d).



964 M. SINGH ET AL.

TABLE 3. Absolute maximum errors in different order moments for quadratic selection function
in case of depolymerization problem.

A FPT CAT OOM TOM FPT CAT OOM TOM
For m = r = 100 For m = 100, » = 200

Ao 0.011 0.011 5.10 x 107% 2.69 x 1074 3.49 x 10~ 3.49 x 1074 1.32x 107% 1.12x 1074

A1 0.011 0.011 5.10 x 107* 2.69 x 10™% 3.49 x 10™* 3.49 x 1074 1.32x 1074 1.12x 107*

X2 0.011 0.011 50x107% 3.0x107* 3.49x 1074 3.49 x 107* 1.0 x107* 1.0x107*

TABLE 4. CPU time taken by numerical methods for quadratic selection function in case of
depolymerization problem.

Method Cells Time taken Cells Time taken
(in seconds) (in seconds)
FPT m =17 =100 4.8 m = 100, r» = 200 10.9
CAT m =r = 100 9.7 m = 100, r = 200 18.1
OOM m =r = 100 2.9 m = 100, » = 200 3.4
TOM m =r = 100 3.5 m = 100, r = 200 4.7

In order to observe the errors in the moments, the maximum relative order errors (4.4) computed using
fixed pivot technique (FPT), cell average technique (CAT), OOM and TOM finite volume schemes are listed in
Table 2.

heor num
gy (t) — (1)
’u/lEheOry (t)

?

Ailt) =

(4.4)

Here, ,uzheory(t) and p™(t) denote the values of theoretical and numerical moment at time ¢, respectively.

It reveals that the FPT and CAT predict these errors with equal accuracy. However, both FPT and CAT show
more errors than the OOM FVS and TOM FVS. Moreover, among OOM FVS and TOM FVS, the TOM FVS
exhibits more accuracy than the OOM FVS as it computes all integral moments with lesser errors. These errors
can be reduced to desired level by adding more grid points in the domain. However, still the TOM performs
much better than the other methods. In terms of computational time, both OOM FVS and TOM FVS take
lesser CPU time to compute all numerical results as shown in Table 4 whereas other methods consume more

computational time than the ROM FVS.

5. CONCLUDING REMARK

In this paper, two finite volume approaches have been proposed for solving a reduced fragmentation models.
The first scheme (OOM) focuses on conserving the total mass in the system, however, the second method
(TOM) also shows consistency with the zeroth order moment and total mass in the system. Both methods
have important features including simple mathematical formulations, easy to code, faster to run and robust to
implement on any kind of grid. The formulations have been further supported well by conducting the convergence
analysis and show second order convergence for both methods. By testing against theoretical results for various
combinations of selection function and binary breakage function, it has been demonstrated that the TOM FVS
is more accurate than the OOM FVS. In order to demonstrate the accuracy of both methods, the sectional errors
in the number density functions have been estimated and compared. The TOM FVS shows approximately 50%
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more accuracy than the OOM FVS. It has been also demonstrated that both proposed numerical methods are
second order convergent independently of the kind of discretization used.

Finally, both proposed approaches have been used to solve real-life application well known as chain end
depolymerization arises in the area of chemical sciences. The new schemes show equal accuracy in terms of com-
puting the integral moments and average size particles, however, the TOM takes lesser CPU time to approximate
all numerical results than the other numerical methods.

APPENDIX A. IMPORTANT DEFINITIONS AND THEOREMS FOR CONVERGENCE

Now, let us provide some definitions of the errors which will be used in conducting the convergence analysis
of the numerical scheme.

Definition A.1. The residual left by substituting the exact solution m = [mq(t), ma(t),...,ms(t)] in the
discrete system of equations is known as spatial truncation error. The mathematical expression for the spatial
truncation error is given by

o(t) = drgt(t) — J(m).

The numerical scheme is said to be consistent of order p, if Au — 0

lo(t)|| = O(AuP), uniformly for all ¢, 0 <t <T.
Now, let us define another type of discretization error which will be used to find the order of convergence.

Definition A.2. The global discretization error for the numerical scheme is the difference between the exact
and numerical solution €(t) = m(t) — m(t). The numerical scheme is said to be convergent of order p if, for
Au — 0,

lle(®)|| = O(AuP), uniformly for all ¢, 0 <¢ <T. (A1)
At this point of time, let us state the theorem for the convergence of the numerical scheme.
Theorem A.3. Let us consider that J is continuous and satisfies the Lipschitz condition
|J(m) — J(m)|| < C|/m — m|| for all m,m cR!, C < . (A.2)

Then the solution of semidiscrete system m/ = J(m) is non-negative iff for any vector m € R and all
1=1,2,....1, and t >0,

Proof. The generalized proof of the above theorem can be seen in [15] (Thm. 7.1 in Chap. 1). O

Theorem A.4. Let us suppose that a Lipschitz condition on J(m) is satisfied for 0 < t < T and for all
m,m € R, That is, J satisfies

[J(m) = J(m)| < Ljm — ||, L <oo. (A3)

Then a consistent discretization scheme is also convergent and the convergent order is the same as the order of
consistency.

Proof. The detailed proof of this theorem is given in [26]. O
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