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HIGH ORDER LINEARLY IMPLICIT METHODS FOR EVOLUTION
EQUATIONS

GUILLAUME DUJARDIN!® AND INGRID LACROIX-VIOLET?*

Abstract. This paper introduces a new class of numerical methods for the time integration of evolution
equations set as Cauchy problems of ODEs or PDEs. The systematic design of these methods mixes
the Runge-Kutta collocation formalism with collocation techniques, in such a way that the methods
are linearly implicit and have high order. The fact that these methods are implicit allows to avoid
CFL conditions when the large systems to integrate come from the space discretization of evolution
PDESs. Moreover, these methods are expected to be efficient since they only require to solve one linear
system of equations at each time step, and efficient techniques from the literature can be used to do
so. After the introduction of the methods, we set suitable definitions of consistency and stability for
these methods. This allows for a proof that arbitrarily high order linearly implicit methods exist and
converge when applied to ODEs. Eventually, we perform numerical experiments on ODEs and PDEs
that illustrate our theoretical results for ODESs, and compare our methods with standard methods for
several evolution PDEs.
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1. INTRODUCTION

The goal of this paper is to introduce a new class of methods for the time integration of evolution problems,
set as (systems of) deterministic ODEs or PDEs. This class consists in methods of arbitrarily high order that
require only the solution of one linear problem at each time step: no nonlinear system is to be solved. As is
usual in the litterature, we call these methods linearly implicit. They rely on the combination of a classical
collocation Runge-Kutta method with a specific treatment for the nonlinearity.

In particular, we show that, using the methods developed in this paper, one can solve numerically virtually
any ODE, up to any order, by solving only linear systems at each time step. Moreover, we believe that this new
class of methods can help dramatically reducing the computational time in several cases of time integration
of evolution PDEs. Indeed, after space discretization of an evolution PDE, if one uses, say, an implicit (for
stability reasons) Runge-Kutta method, then one needs to solve a nonlinear problem in high dimension at
each time step (and one may use a fixed-point method or a Newton method to do so, for example). With
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the methods introduced in this paper, the integration over any time step can be carried out using only the
solutions of linear systems in high dimension, and one can rely on very efficient techniques, either direct (LU
factorization, Choleski factorization, etc.) or iterative (Jacobi method, Gauss—Seidel method, conjugate gradient,
Krylov subspace method, etc. [32]), depending on the structure of the problem at hand, to do so.

Of course, high order one step methods in time exist in the literature since the pioneer work of Runge [31]
and Kutta [26]. The interested reader may refer to [19] for the integration of nonstiff problems and [18] for the
integration of stiff problems, and to [10] for historical notes and references. Some methods are explicit, and lead,
for PDE problems, to restrictive CFL conditions in general. Some methods are fully implicit and require the
solution of nonlinear systems that are high dimensional in the PDE approximation context. Other high order
methods have been developed for PDEs. For example, high order exponential integrators have been used for
parabolic problems [22,23] and for NLS equations [6,16]. Beyond the analysis presented in this paper in an ODE
context, one of the goals of this paper is to convince the reader that, in a PDE context, linearly implicit methods
such as that developed below can outperform classical methods from the literature with the same order. This
means that they require less CPU time to compute an approximation of the solution with a given (small) error.

The methods introduced in this paper are not linear multistep methods (see [14] or Chapter III of [19]).
Indeed, for a general vector field, linear multistep methods are either explicit or fully implicit, while the methods
introduced in this paper are only linearly implicit. Let us mention, however, that linearly implicit linear multistep
methods have been developed and analysed, for example in [1] for nonlinear parabolic equations (see also [2]).
In this paper, we shall introduce suitable concepts of consistency, stability and convergence for our methods,
and we sometimes borrow the vocabulary to that of linear multistep methods, but the definitions are indeed
different. Note that the methods introduced in this paper are not one-step methods either. Therefore, one
cannot use composition techniques (see [29, 36, 38]) directly to build up high order methods from lower order
ones: deriving a linearly implicit high order method (that is convergent in a reasonable sense) is a challenge
per se, that we tackle in this paper. Another important class of high order methods, introduced by J. Butcher,
not to be confused with the one introduced in this paper, is that of DIMSIMs (Diagonally Implicit MultiStep
Integration Methods) [8], where the word “implicit” does not refer at all to “linearly implicit” but rather to
“fully implicit” (meaning: nonlinearly, even if diagonally). These methods have been later generalised in a class
called General Linear Methods (GLM) [9], that does not contain the methods introduced in this paper either.

The methods introduced in this paper are not classical linearly implicit methods either. Indeed, such methods
have a long history, which dates back at least to the work of Rosenbrock [30]. They have been developped and
analysed on several evolution equations in several contexts by numerous authors. For example, the work of
Rosenbrock was revisited in [24] where Rosenbrock-Wanner (ROW) methods are introduced. The concept of
B-convergence has been developed in [17], analysed in [34, 35] for linearly implicit one step methods (see also
[3]). These methods have been applied to multibody systems in [37], to nonlinear parabolic equations in [28], to
advection-reaction-diffusion equations in [11] and more recently to surface evolution in [25]. Indeed, such methods
always involve derivatives of the vector field (or part of the vector field), or (sometimes crude) approximations to
this derivative. In contrast, the methods developed in this paper do not: They rely on an accurate interpolation
procedure in time for the nonlinear terms.

The methods introduced in this paper use additional variables to take care of the nonlinear terms with high
order accuracy, while making it possible to solve only linear systems at each time step. Numerical methods
using additional variables are not new. Indeed, such methods have been developped in different contexts in
order to achieve qualitative properties of the methods. For example, the relaxation method introduced by C.
Besse [5] for the nonlinear Schrodinger (NLS) equation is a second order scheme [7] which preserves a discrete
energy. That relaxation method [5] uses one additional variable to approximate part of the nonlinearity in the
NLS equation and is linearly implicit. In this sense, the methods developped in this paper may be seen as
generalizations of this relaxation method. However, our goal is now to develop high order methods. To do so,
we use a higher order collocation approximation of part of the nonlinear terms in the equation. Another class
of numerical methods using additional variables is that of scalar auxiliary variable methods (SAV) [33] and
multiple scalar auxiliary variable (MSAV) [12]. This class was introduced to produce unconditionnaly stable
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schemes for dissipative problems with gradient flow structure. The auxiliary variable in this context is used to
ensure discrete energy decay. The order of the methods (1 or 2 in the references above) is not the main issue.

Let us mention two additional goals that the authors aim at tackling with the methods introduced in this
paper. First, the authors would like to be able to develop a stability (and convergence) analysis for stiff problems,
i.e. an analysis with constants that depend only on the class of the linear part of the vector field (later referred to
as L, see (2.1)) and not on that linear part itself. This would allow for the numerical treatment of evolution PDE
problems, as well as their space discretizations. This will be achieved in a forthcoming work, even if numerical
examples of PDE problems are presented in Section 3. Second, the authors would like to build up high order
linearly implicit methods with suitable qualitative properties (e.g. energy decay for dissipative problems, or
energy preservation for hamiltonian problems). For example, the relaxation method [5], which belongs to the
class of linearly implicit methods described in this paper, preserves an energy when applied to the nonlinear
Schrédinger equation. For this reason, this paper only deals with constant time step methods.

The outline of this paper is as follows. In Section 2, we introduce the methods for a general semilinear evolution
problem (ODE or PDE) and we introduce specific notions of stability, consistency and convergence for our class
of methods. Morover, we show, in a constructive way, that stable methods of arbitrarily high order exist in
Theorem 2.5 and Corollary 2.6. The main theoretical result of this paper is that one can build up arbitrarily
high order convergent linearly implicit methods for ODEs (Thm. 2.9). We conclude Section 2 with examples of
methods of order 1, 2, 4 and 6. In Section 3, we provide numerical examples of solutions of ODEs and PDEs.
These numerical experiments illustrate the convergence result of Theorem 2.9 for evolution ODEs. Moreover,
they indicate that the result of Theorem 2.9 is still valid in several PDE contexts. We consider for example a
NLS equation in 1d and 2d and nonlinear heat equation in 1d. The main result of the numerical experiments
of Section 3 is that, for ODEs, the linearly implicit methods do not dramatically outperform classical methods
from the literature with the same order, no matter whether they are implicit or explicit (see Sect. 3.1). However,
for the approximation of evolution PDEs in 1d (see Sect. 3.2.1), with moderate space discretization, the linearly
implicit methods show performances comparable to that of explicit methods. Moreover, for the approximation of
evolution PDEs in 2d (see Sect. 3.2.2) with precise space discretization (leading to high number of unknowns), the
linearly implicit methods developed in this paper manage to outperform standard methods from the literature
with the same order.

2. LINEARLY IMPLICIT METHODS OF ARBITRARILY HIGH ORDER

2.1. Introduction of the methods

We consider a semilinear autonomous evolution equation of the form
Oyu = Lu + N(u)u, (2.1)

where L is a linear differential operator and IV is a nonlinear function of u. One can think for examples of the
NLS equation, the nonlinear heat equation, or a simple ODE (see Sect. 3 for actual examples). We start at time
t = 0 with an initial datum u° (with 0 in superscript) in some functional space so that the Cauchy problem is
well-posed on some interval [0, 7*) with T* > 0. We choose h > 0 and set ¢,, = nh for n € N as long as t,, < T™*.

Let us now start with the presentation of the new class of methods. Assume a collocation Runge-Kutta
method with s > 1 stages is given with coefficients 0 < ¢; < -+ <¢s <1, (a4,j)1<i,j<s and (b;)1<i<s- We denote
by ¢ the vector (¢;)1<i<s and by 1 the vector of size s with all entries equal to one.

We denote by u the exact solution of (2.1) and we set y(t) = N(u(t,-)). We assume we are given s approxi-
mations

Tn—14c; ~ ’Y(tn—l + Cih) I<i<s,

and another approximation u,, ~ u(t,, ). For possible ways of computing the s first approximations, we refer to
Remark 2.11. For the numerical initial datum wuy (with subscript 0), we consider an approximation of the exact
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initial datum u® (with superscript 0) of equation (2.1) or its exact value. For (6y,...,605) € R® and D € M4(R)

to be chosen later, we define explicitly (Vnieys-- - Ynte,) With the relation
'Yn+(:1 7n—1+c1 01
: =D : + | | N(un). (2.2)
Yn+cs Yn—1+cs 0
Then, we define, linearly implicitly (w1, ..., %, s) as the solution of the Runge-Kutta like system
S
Un; = Up + D 2 i (L + Ynie; ) Un,; 1<i<s. (2.3)
j=1

Last, we set explicitly

s
Un+1 = Up + h Z bz(L + 7n+ci)un7i. (24)
=1

The steps (2.2)—(2.4) define a linearly implicit method

(un+177n+01 P 57n+cs) = (bh(unv Yn—1+cyy--- 7771—1-5-03)'
Remark 2.1. The relaxation method introduced for the NLS equation
i0pu + Au = Nul?u,

in [5] writes
Ony1/2 + On1/2 9
- 5 = |un| b
Z%Lhun =(-A+ A¢n+1/2)%
This corresponds to taking L = iA and N(u) = —iA|u> in (2.1) and s = 1, 17 = 3, by = 1, ¢ =
Yrt1/2 = —iAPpi1/2, D = [~1] and 6; = 2 in the numerical method (2.2)—(2.4).
In order to achieve order 2 with the relaxation method, C. Besse introduced a single auxiliary unknown ¢ on
a staggered grid, corresponding to the relation ¢ = |u|?. Since we want to achieve higher orders, we decide to
introduce several auxiliary unknowns on a staggered grid with s points, corresponding to the relation v = N (u).
Note that the convergence of order 2 of the relaxation method for the NLS equation is a difficult result and
is mot a consequence of the results of this paper, which only deals with ODEs in the theoretical part (Sect. 2)
and allows for PDEs for illustration purposes (Sect. 3). Indeed, proving the convergence of a numerical time
integration method applied to a PDE requires a functional analysis framework adapted to the PDE at hand
and cannot in general be done once and for all. For the relaxation method applied to the NLS equation, the
convergence of order 2 is proved in [7].

2.2. Consistency and stability of the step (2.2)

Let us denote by p(D) the spectral radius of the matrix D, i.e. the biggest modulus of its complex eigenvalues.
In view of relation (2.2), we decide to set the following definitions for the stability and consistency of the step
(2.2).

Definition 2.2. The step (2.2) is said to be stable if

sup | D"|| < 400,

neN

for some norm on M (R). The step (2.2) is said to be strongly stable if p(D) < 1.
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Remark 2.3. In the definition of the stability above, the boundedness of the sequence (D"),,>¢ is independant
of the norm chosen on M (R). Moreover, it is equivalent to the fact that p(D) < 1 or p(D) = 1 with simple
Jordan blocks for D for all eigenvalues of modulus 1. In particular, if the step (2.2) is strongly stable, then it is
stable. The converse is not true in general. For example, the classical relaxation method of Remark 2.1 is stable
but not strongly stable.

In order to define the consistency of step (2.2), we introduce the s x s square matrices V.., V._1 and © defined
by

— for all ¢ and j

Sl =1, (V) = (ehp,
—foralli>1and j>1, (Vc}in)ij = ((¢; — 1)h)j_17
=1 =2, (©)n =206, (0);=

Definition 2.4. We say that the step (2.2) is consistent of order s if for all h > 0,

e

— for all ¢ and j

V=DV, +e. (2.6)

This relation holds for all A > 0 if and only if it holds for h = 1, as we show below. Indeed, introducing the
diagonal matrix G(h) with coefficients 1,h,h? ... h*~! one has V! = V!G(h) and V! | = V! ;G(h). Since
the ¢; are distinct, the Vandermonde matrices V. and V" ; are invertible. By the relation (2.6) and using the
matrix G(h), we have

oyl (V1 D eyt v T @2
Since O is zero except maybe on its first column, we have ©(G(h))~*

The definition of the step (2.2) of the method (2.2)—(2.4) depends on the 52 coefficients of the matrix D
and the s coefficients 01, ..., 0,. Requiring that the step (2.2) is of order s provides us with s? linear equations
between these unknowns (see relation (2.7)). In Theorem 2.5, we prove that we can add s equations involving
these unknows by imposing the spectrum of the matrix D and that the system that we obtain has indeed a
unique solution. This will allow in particular to prove the existence of stable and strongly stable steps (2.2)
with order s (see Cor. 2.6).

D= (VI —0)(VlL) " = (V)G —e)Gn) (Vi)
o(

Theorem 2.5. Assume cy,...,cs are fived and distinct as above. For all disctinct A\y,..., s € C\{1}, there
exists a unique ((61,...,0s),D) € C° x M(C) such that the step (2.2) is of order s and the spectrum of the
matriz D is exactly {A1,...,As}. If moreover the set {\1,...,As} is stable under complex conjugation, then

(91‘)1<Z<5 eR® and D € MS(R>

Proof. We set M = (‘/—61_]1)*1%1. Note that M is in fact independant of the choice of the (¢;)1<i<s- Indeed, it
is the matrix of the linear mapping P(X) — P(X + 1) in the canonical basis of Rs_1[X]. This means that the
coefficients (M;;)1<i,j<s of M are given by M;; = 0if j < ¢ and M;; = (Z 1) otherwise. In particular, it is upper
triangular and its diagonal elements are equal to 1. Assuming step (2.2) is consistent of order s, with (2.7), w
obtain

D=V (Vi) TV = (Vi) e (v T (2:8)

so that the matrix D is similar to M — Y, where Y is the matrix (Vcl_]l)ﬂ@. Note that all the coeflicients of
Y are equal to 0, except maybe on the first column. We shall denote by ¥1,...,ys the coefficients in the first
column of Y and by Y] the first column of Y. Given distinct Aq, ..., A; € C\{1}, the existence and uniqueness
of D and O such that step (2.2) has order s and the spectrum of D is exactly {\1,...,As} is equivalent to the
existence and uniqueness of y1,...,ys € C such that M — Y has spectrum {\1,..., s}

Let us fix k € {1,...,s}. The existence of an eigenvector for M — Y for the eigenvalue \j is exactly the
existence of a nontrivial vector Zy € C* such that (M — Y)Zy, = A\, Zk. Let us denote by I the identity matrix
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of size s and U the upper triangular matrix such that M = I — U. Observe that, in view of the definition
of M, the entries above the diagonal of U are negative. The relation (M — Y)Z, = A\.Zj is equivalent to
(1=Xg)Zp = (Y +U)Z. Since Y Z, = z§k)Y1 where zgk) is the first component of Zj, we infer that the relation
(M —Y)Z, = M\, Zy, is also equivalent to

1
=)z =21 0 | + U2z (2.9)
Ys

If z§k) = 0, then, because the matrix U is strictly upper triangular and Ay # 1, we have Z;, = 0 and hence Zj

is not an eigenvector. Therefore, if Z is an eigenvector, z%k) # 0 and we can impose without loss of generality

that zik) = 1. Together with (2.9), this implies, by recursion, that

s—1 1 Y1
Zy = (Z MWU?’) . (2.10)

=0
P Ys

The equation on the first line in (2.10) is of the form

1 |
=P P —— )y, 2.11
1(1—>\k>y1+ * (1—)\k)y (2.11)

where for all ¢ € {1,..., s}, P; is a polynomial of degree exactly ¢ (remind that the matrix U is strictly upper tri-
angular with negative entries above the diagonal). Moreover, if the relation (2.11) is verified for some (y1, ..., ys),
then there exists a solution Zj, of (2.9) with z%k) = 1: one just has to compute the components of Z; in (2.10)
one after the other to obtain an eigenvector of M — Y for the eigenvalue \p. As a summary, we have proved
that, for all k € {1,...,s}, Ay is an eigenvalue of M — Y if and only if (2.11) holds. Therefore, the fact that the

spectrum of M — Y is {A1, -+, s} is equivalent to the linear system

P1<ﬁ)"'PS(1%A1> Y1
P1(ﬁ) Ps(ﬁ) ys

Since for all i € {1, ..., s}, the polynomial P; has degree i and the (\;)1<;j<s € (C\{1})" are distinct, the system
above is invertible, so that it has a unique solution. Since (2.12) has a unique solution in C* and the polynomials
(P;)1<i<s have real coefficients, it is easy to check that, if the set {A1, ..., As} is moreover stable under complex
conjugation, then yi,...,ys are real numbers, and so are 61, ...,60s and the matrix D has real coefficients using
(2.8). This proves the theorem. O

- 1. (2.12)

Corollary 2.6. Assume cq,...,cs are fived and distinct as above. Then

— There exists D € M4(R) and 01, ...,05 € R such that the step (2.2) is stable and has order s.
— There exists D € Ms(R) and 61, ...,05 € R such that the step (2.2) is strongly stable and has order s.

Proof. Choose A1,...,As € C\{1} distinct such that for all 4, |A\;] < 1 to obtain a stable method (or for all i,
|[Ai] < 1 to obtain a strongly stable method) in such a way that the set {\1,..., s} is stable under complex
conjugation and apply Theorem 2.5. O
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Remark 2.7. In order to actually build the matrix D and the coefficients 61, ..., 0, that define step (2.2) so
that this step is stable (respectively strongly stable) and has order s, it is sufficient to fix distinct ¢q,...,cs as
above, and choose distinct Aq, ..., As € C\{1} with modulus less (respectively strictly less) than 1, and in such
a way that the set {A1,..., As} is stable under complex conjugation. Then, one forms system (2.12), the rows of
which are the first rows of the right-hand side of (2.10) for different values of A\g, and one solves it for y1, .. ., ys.
One easily computes © from Y using the fact that © = V! ;Y. In the end, the matrix D is computed using
(2.7). Examples are provided in Section 2.4.

2.3. Convergence of the method (2.2)—(2.4)

In this section, we prove that the methods presented above, provided that they involve a step (2.2) with
strong stability and order s, and a Runge-Kutta collocation method of order at least s, are indeed convergent in
finite time, with order s, when applied to an ODE with sufficiently smooth vector field. We assume the unknown
u of equation (2.1) is scalar and that L = 0. In fact, up to a change of unknown, any ODE with an equilibrium
can be cast into this form:

u'(t) = N(u(t))u(t). (2.13)

Our methods and results extend to systems of ODEs of the form (2.13) where the unknown u is vector-valued
and N is a given smooth matrix-valued function. Similarly, our methods and results extend to the case of
complex-valued functions. But for the sake of simplicity we focus on the real valued scalar case.

We assume N is defined and smooth on some open subset ) of R. We fix u® € Q. There exists a unique
maximal solution to the Cauchy problem (2.13) for u(0) = u°. This solution is defined on an open interval of
the form (7,,7™) with —0 < Ty < 0 < T* < 4+00. We fix T € (0,T*). Since the maximal solution is smooth,
we have supe(o, 7 |V (u(t))| < +c0. Since it is defined on the compact interval [0,T'], one can choose > 0 such
that

V=A{u(t)+v|te[0,T], veR, |v|<r}cQ. (2.14)

We set M = supeo 77 |V (u(t))| and we choose m > 0 such that M +m > sup,ey [N (u)].
We discretize the time as in Section 2.1, with h small enough to ensure that T, < t_;. We start by focusing
on the consistency of the method. Namely, we set for all n € N such that ¢, < T,

N(u(ty, + c1h)) N(u(tp—1 + c1h)) 01
Rl = : -D : = N(u(t,)| |- (2.15)
N(u(ty, + csh)) N(u(tn—1 + csh)) 05

Similarly, we define R? as the vector of R® with entry number i equal to

(Ri)i = u(t, +c;h) —u(ty) —h j ai; N (u(t, + cjh))u(ty, + cjh), (2.16)
j=1
and .
RS = u(tni1) — ultn) — h Y biN (u(ty + cih))u(tn + cih). (2.17)

Lemma 2.8. Assume that the function N is sufficiently smooth, u® € Q and T € (0,T*). Suppose moreover
that the numerical coefficients (¢;)i1<i<s, (@i j)1<i,j<s and (b;)1<i<s define a Runge-Kutta collocation method of
order s and that the step (2.2) is of order s. For any norm on R®, there exists a constant C' > 0 such that for
a sufficiently small h > 0,

max __|R}| < Ch®, (2.18)
n=0, tp41<T
max _[R2| < Ch**, (2.19)

n=0, tn41<T
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max _|Ry| < Ch**. (2.20)

n>0, tn+1 <T

Proof. Let us start with the estimate on R!. First of all we use a Taylor expansion and write for all 1 <i < s

(c;h)k cih (cih — o)t
W ou) () + [ =T

o (-1 (N ou)®)(t, + 0)do.

N(u(t, + ¢;ih)) = 2
k=0

Let us denote by X (t,) the vector of R® with (N ou)*~1(t,)/(k — 1)! as component number k. The relation
above allows to write

c1h _ \s—1
J M(Nou)(s)(tn +o)do

N(u(t, + c1h)) 0 (s—1)!
: =V X(tn) + : = VeX(tn) +77 5. (2.21)
N(u(t, + csh csh (o b — )51
e Jo (<hs_1)>!<N ou)® (t, +0)do

Similarly, we have

J(Cl_l)h ((cp —1)h — o)1 (No u)(s) (t, +0)do

N(u(tp—1 + c1h)) . o1
= C—llX(tn) + :
N(u(tn-1+ csh)) (=D ((¢y — 1)h — )51 .
) G Wewt +o)do
= Vo1 X(tn) + 175 (2.22)
Moreover we have
th
N(u(ta))| 1 | = ©X(ta). (2.23)
05

Mutiplying (2.22) by D and substracting the result and (2.23) to (2.21), we infer that
R} = VeX(tn) — DVeo1X(tn) — OX(tn) + 11y — Dris.

Since the step (2.2) is of order s, we have using (2.6)

Moreover with (2.7) we have

D=V}Vi) T el

so that D does not depend on h. Let | - | be a norm on R®. The vectors r{'; and 77, satisfy

max __([ri 1]+ [ri]) < OB,
n=0, tpp1 <T ' ’

for some C' > 0 and all sufficiently small A > 0. This proves (2.18). Since the Runge-Kutta method with
coefficients a; ; and b; is a collocation method of order at least s at points ¢;, the bounds (2.19) and (2.20) are
classical (see e.g. [20], Sect. 11.1.2).
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Theorem 2.9. Assume that the function N is sufficiently smooth, u® € Q and T € (0,T*). Suppose moreover
that the numerical coefficients (¢;)1<i<ss (@i j)1<ij<s ond (b))1<i<s define a Runge—Kutta collocation method
of order s and that the step (2.2) is strongly stable and of order s. Provided that r is fized as in (2.14) and
M and m accordingly, there exists constants C > 0 and hg > 0, such that, for all h € (0, hg), if the initial
data ug € Q (respectively (Y—14c¢,, " sV—1+c.) € N(V)?) is sufficiently close to its exvact analogues u’ € Q
(respectively (N (u(t—1 + c1h)), -+, N(u(t—1 + ¢csh))) € N(V)*?) in the sense of relations (2.38) and (2.39), then
for all n € N such that t,—1 < T, the step (2.3) has a unique solution in R® and for all n € N such that t, < T,

Vn—1t+e] S M+m,  Vie[l,s] (2.24)
max |u(ty) — ug| < eC™h [|u0 — up| + C( max |[y_14¢, — N(u(t_1 + ¢;h))| + hs)]. (2.25)
ke[0,n] i€[[1,s]

Let us first introduce all the notations we use in the proof. We denote by I';, the vector of R® with component
i equal to Yp4e,. Let us define the convergence errors P, € R® with component number i equal to (P,); =
N(u(ty + cih)) — Ynte;, @Qn € R® with component number i equal to @y ; = u(t, + ¢;h) — up,; (provided u, ; is
well defined), and e,, € R with e, = u(t,) — u,. We set z, = maxo<i<n |€x|. We denote by |- |, the norm on R®
defined as the maximum of the absolute values of the components of the vectors. Moreover, we denote by | - [«
the norm on M (R) induced by |- |. In the following proof, the letter C' denotes a positive real number which
does not depend on h (but depends on M and r in particular) and whose value may vary from one line to the
other.

Proof. Since step (2.2) is strongly stable we have p(D) < 1. Therefore, there exists a norm |-|p on R® such that
the norm || - | p induced by this norm on M (R) satisfies |D||p < 1. In the following we set § = |D|p. Since R®

is of dimension s, there exists a x € (0, 1] such that for all z in R®, |z|p < |z|w < —|z|p.
We divide the proof in two parts. First we assume an a priori bound for the numerical solution. Namely we
assume that for all n such that ¢, < T
~ (H1) [Tl < M +m,
— (H2) the step (2.3) has a unique solution (u, ;)1<i<s in R?,
- (H3) u, e V.

We show that, in this case, we have an explicit bound for the convergence errors P, and z, (see
Egs. (2.35) and (2.37)).

Second, we assume that hg and the initial errors P_; and eg are small enough and we show that the bounds
of the first part of the proof are indeed satisfied.

First part. In addition to the bounds above, we assume that h € (0,1) and n satisfy ¢,+1 < T. Substracting
(2.2) from (2.15) we obtain

01
P, =DP,_1 + (N(u(ty)) — N(un))| : | + R;.. (2.26)
0
We infer that
|Palp < [D]p|Pa-i1lp + Clen| + | Ry b, (2.27)
where the constant C is the product of the Lipschitz constant of N over the compact V times |(01,--- ,05)p

(recall that N is a smooth function over the open set 2, hence it is Lipschitz-continuous on the compact V' < Q).
Substracting (2.3) from (2.16) we obtain

Qn,i =e,+h Z Qi j (N(u(tn + th))u(tn + th) - ’7n+cjun,j) + (-R,QL)Z
j=1
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=e,+h 2 a” n+cjh)) — 'ynJrcj)u(tn +cjh)+h Z @i jVnte; (U(tn + cjh) — Un ;) + (Ri)i

=1
S
=enth Z ai j P jultn + cjh) + 0 Y. i jYnie, Quy + (R2),-
j=1 j=1

We infer that

|@Qnloo < len| + Ch|Py|w + Ch|ly 00| Qnlo +

which gives with the first point of the assumptions above
|Qnlowo < len] + Ch|Py|w + Ch(M + m)|Qy]
Provided that Ch(M + m) < 1/2, we have

o0

L

o

+ |Rzl-

|Qnloo < 2len| + Ch|P,|o + 2|R2| (2.28)
Substracting (2.4) from (2.17) we obtain
ent1 =€n+h Z bi(N(u(ty + cih)) — Ynte;, )u(tn + c;h) + h Z bivYnte; (u(tn + cih) — up ) + RS
i=1 i=1
= en +h Y biPogulty + cih) + h Y bivnse,Qni + R,
i=1 i=1
We infer that
lent1] < len] + Ch|Py o + ChITy|o0|Qnlo + |Rj |,
which gives with the first point of the assumptions above
lent1] < len| + Ch|Pylo + Ch(M + 1)|Qnlo + | R3]
Using (2.28), we have
lens1] < (L+ Ch)len| + Ch| Pyl + ChIRY| + |RD). (2.29)
From (2.27) we have by induction
|Polp < 8" P_y|p+C ) 6" F(lex| + | RiID). (2.30)
k=0
Using the norm equivalence and (2.30) in (2.29) we obtain
| | < (1+Ch)| |+ Ch S Py +CZ<S” *(lex| + | R} )_ +Ch|RZ| + |R}| (2.31)
€n+1 €n 1|D €k klD n | oo nl .
k=0 _
which gives with Lemma 2.8
lent1] < (14 Ch)ley| L Ch 5"“\13_ p+C Z 6" *(lex| + |Ri|p) | + Ch*T2 + Ch5 L. (2.32)
k=0 _

Using the maximal error defined previously and the fact that 6 < 1 since the step (2.2) is strongly stable, we

have

lent1] < (1 +Ch)z, + Ch

k=0

§" Py |p + (20 + h%) ), 6778 | + OB
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1
< (1+Ch)z, + Ch[6”+1|P 1p+ (zn +h° ) — |+t Ch*+,

and then
lent1] < (14 Ch)z, + Ch5”+1|P_1|D + Ch*HL. (2.33)

Using that 2,41 = max{z,, |e,+1|} and é € (0,1), we infer
Znt1 < (1+ Ch)z, + Ch|P_i|p + Ch**?, (2.34)

By induction it follows that for all n in N such that ¢, < T,

< (1+ Ch)"z0 + Ch(|P_1|p + *) Z (14 Ch)*
k=0

1+ Ch

< €Cnh20 + Ch(‘P_1|D + hs)]_(—l—cvih—)]_

eCnh(ZO + C(|P_1|D + hs))

eCM (20 + O(|P-i | + 1)) (2.35)

NN

Using (2.30) and the same estimations as above, we have moreover
|Palp < [P-1]p + C(2n + h%). (2.36)

We infer
|Prlon < Cecnh(zo +|P-1]eo + h*). (2.37)

Second part. From now on, we denote by C the maximum of the constants appearing in the right hand sides
of (2.35) and (2.37). Choose hg € (0, 1) sufficiently small to have hg < min{—7.,T*} and Ce“Ths < r and
Ce“Th < m and ho|Alls(M +m) < 1. Assume ug, Y—_14¢,5---,Y—1+c, € R and h € (0, hg) satisfy

cr (|u0 — ug| + C<lnﬁxxﬂ [V=14e; — N(u(t—1 + ¢;h))| + hg)) <r, (2.38)
ie[[1,
and
Ce® <|u —ug| + rﬁ{l&xﬂ [V—14¢; — N(u(t—1 + c;h))| + hg) <m. (2.39)

First, with (2.37) and (2.39), we have

|Poloo = nﬁaxﬂ [Y01¢; — N(u(to + ¢;h))| < m.

Therefore by triangle inequality we have
IToleo < |[Poloo + [(N(u(to + cih)))1<i<s|n < M +m.

And then, the hypothesis (H1) of the first part is satisfied for n = 0.

Moreover, with (2.38), we have |[u® — ug| < r so that up € V and the hypothesis (H3) of the first part is
satisfied with n = 0. We infer that the system (2.3) (with L = 0) has a unique solution in R?® since we assumed
h < ho <1/(|Alw(M + m)). This implies that the hypothesis (H2) of the first part is satisfied for n = 0. Then
we can apply the analysis of the first part to obtain (2.35) and (2.37) with n = 1. Using (2.38) and (2.39), we
infer that hypotheses (H1)-(H3) are satisfied with n = 1 and the result follows by induction on n.
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Remark 2.10. The proof may look like following the usual strategy for the proof of convergence of a numerical
method. However, note that the definition of strong stability (Def. 2.2) plays a central role in the proof, and
this is not the case in classical theory. Moreover, estimations such as (2.30) in (2.29) to obtain (2.31) are not
classical.

Remark 2.11. Given ug € Q close to u’ € Q, before starting the time-stepping method (2.3) and (2.4),
one needs to first compute the s approximations (v_14¢,;)1<ics Of (N(u((—1 + ¢;)h)))1<i<s. These quantities
enter the error estimate (2.25). This computation can be done efficiently by determinating s approximations of
(u((—1 + ¢;)h))1<i<s using a sufficiently high order method for (2.1) backwards in time, provided the equation
makes sense. Alternatively, for example for the nonlinear heat equation, for which running (2.1) backwards in
time makes no sense, one can use a sufficiently high order method from wuy to compute s + 1 approximations
of (u(c;h))1<i<s and u(h) over one time step, and then start the linearly implicit method (2.3) and (2.4) from
time h until time 7.

2.4. Examples of linearly implicit methods

In this section we present possible choices of methods of order 1, 2, 4 and 6. The general building procedure
is the following: We choose s € N*, we fix 0 < ¢1 < cp <--- < ¢s < 1 and we compute a; j and b; for 1 <4,j < s

using the formulas
1

aij = LI L;(r)dr and b, = L Li(r)dr,

where £;(7) = ij;él ((Z_ikk)) is the ith Lagrange polynomial at points ci, ..., c,. This way, the coefficients a; j,
b; and ¢; are those of a Runge—Kutta collocation method. Next we choose A1, ..., Ay € C\{1} with moduli strictly
less than 1, all distincts and in such a way that the set {\1,...,\s} is invariant under complex conjugation.
We compute the polynomials Py, ..., Ps appearing in (2.11) defined using (2.10) in the proof of Theorem 2.5.
We solve (2.12) for y1,...,ys and compute 64, ...,05 using © = (VCLH)Y. Finally, we compute the matrix D
using (2.7). This way, we define a step (2.2) that is strongly stable and of order s (see Defs. 2.2 and 2.4). Using

Theorem 2.9, the numerical method (2.2)-(2.4) is convergent of order s.

A linearly implicit method of order 1. we choose s = 1 and ¢; = 1 so as to rely on the implicit Euler method.
Then a11 =1 and b; = 1. Choosing A\; = 1/2, we have y; = 1/2 and 6; = 1/2.

Two linearly implicit methods of order 2:

1 — With Gauss points: for s = 2 and the Gauss points ¢; =
collocation method has Butcher tableau

% - %, cy = % + %. Then the Runge-Kutta

1_V3] 1 1_y8

2 6 4 4 6

1, 431 /3

st%lats 1A
I 1
2 2

2 — With uniform points: for s = 2 and the uniform points ¢; = 0, ¢y = 1. Then the Runge-Kutta collocation
method has Butcher tableau

For the two cases, we choose \y = 1/2, Ay = —1/2. This leads to y; = 2,y2 = 3/4 and 61 = y1 +(c1 —1)y2,02 =
Y1+ (ca — 1)yo.
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A linearly implicit method of order 4: we choose s =4 and ¢; = 0,¢co = 1/3,¢3 = 2/3,¢4 = 1. Then the Runge—
Kutta collocation method has Butcher tableau

0o 0 0 0
1/3|1/8 1972 —5/72 1/72
2/311/9  4/9  1/9 0
1|18 3/8  3/8 1/8
1/8 3/8  3/8 18

Choosing A\; = 0,y = 1/4, A3 = 1/2, \y = 3/4 for we have

Y1 5/2 01 1

" 117/64 0 1235/864
s |~ | 11/32 and 0, |~ | 833/432
Ui 1/64 0, 5/2

A linearly implicit method of order 6: we choose s = 6 and (¢;)1<i<¢ a uniform subdivision of [0, 1]. Then the
Runge-Kutta collocation method has Butcher tableau

0] o 0 0 0 0 0
1/5(19/288  1427/7200 —133/1200 241/3600 —173/7200  3/800
9/5(14/225  43/150 7/225 7/225 ~1/75  1/450
3/5/51/800  219/800  57/400  57/400  —21/800  3/800 -
4/5/14/225  64/225 8/75 64/225  14/225 0

1[19/288  25/96 25/144  25/144 25/96 19288

19/288  25/96 95/144  25/144 25/96 19288
pilk—1)F
Choosing A\, = — for k=1,...,6, we have
”i 6 0, 65/64
ya 2783/320 6, 193389/125000
ys 1239/256 0 1133667/500000
e |~ | 6597512 and 6, |~ | 1608733/500000 |
ys 43/256 0 1111047/250000
v 21/2560 06 6

Remark 2.12. In the linearly implicit methods given as examples above, the choice of (\;)1<i<s is somehow
arbitrary, and the only condition we impose is that they ensure that step (2.2) is strongly stable (see Def. 2.2).
This implies that these methods are convergent for ODEs (see Thm. 2.9). In order to ensure additional features of
a linearly implicit method, this choice has to be made carefully (see e.g. Sect. 3.3 a linearly implicit method that
preserves non-negativity and energy-dissipation for a nonlinear heat equation). For a general class of evolution
PDE, the choice of the collocation method as well as that of (\;)1<i<s has to be made carefully, in particular
to ensure a taylored stability property of the linearly implicit method. This question will be investigated in a
forthcoming paper.
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3. NUMERICAL EXPERIMENTS

In this section, we illustrate the properties of the methods described in Section 2.1 and analysed in Section 2.3.
We first present numerical examples on ODEs, with a scalar case in Section 3.1. In particular, we illustrate the
results above, such as Theorem 2.9, for several methods introduced above, and we compare the results we obtain
with that obtained using other classical numerical methods. Then, we present numerical experiments for PDEs
that fit the framework used in Section 2.1 but do not fit stricto sensu the framework of the analysis carried out in
Section 2.3. This allows for comparison with classical methods for the same problems anyway. We first focus on
a nonlinear Schrodinger equation in Section 3.2 and then move to a nonlinear heat equation in Section 3.3. The
methods described and analysed in this paper would also be relevant for several other examples of semilinear
evolution equation of the form (2.1).

When comparing the efficiency of numerical methods in this section, we consider as a measure of performance
the (lowest possible) CPU time required to achieve a given precision on the numerical result. This CPU time
has indeed disadvantages since it depends on the algorithms used to solve the problems, the software used to
implement the algorithms and the machine on which the software is run. However, we believe one cannot talk
about efficiency whithout taking into account some form of CPU time. And, for reproducibility issues, we detail
below as much as possible which discretizations and algorithms are used to implement the numerical methods
that we consider. Moreover, we try to be as fair as possible when implementing methods from the litterature to
compare them with the linearly implicit methods introduced in this paper.

As we shall see in this section, the efficiency of the linearly implicit methods introduced in this paper is
similar to that of classical one-step methods with constant step size from the literature (see Sect. 3.1).

In contrast, the linealy implicit methods sometimes outperform standard methods when applied to sev-
eral evolution PDE problems, that we consider, once discretized, as high dimensional systems of ODEs (see
Sects. 3.2 and 3.3). In the following, the computations are carried out using MATLAB and the linear systems
are solved using the backslash MATLAB command. In particular, we do not build a taylored method to solve the
linear systems numerically and the gain in computational time one can obtain using linearly implicit methods
can surely be improved using taylored methods depending on the matrix structures. This choice is not optimal
in terms of efficiency, but is fairly similarly done for all the methods below.

3.1. Application to a scalar nonlinear ODE

We consider the scalar ODE
u'(t) = —u(t) — u?(t). (3.1)

This corresponds to taking L as minus the identity operator and N(u) = —u in (2.1). The exact maximal
solution starting from ug > 0 at ¢ = 0 is given for ¢ > 0 by

1
(L +1)er—1
ug

We start with methods of order 1. We use the linearly implicit method of order 1 introduced in Section 2.4.
We compare the results we obtain on the problem above with the Euler implicit and explicit schemes as well
as the Lie splitting method. We choose u® = ug = 1/3, v_11¢, = 70 = N(u®) and the final time 7" = 2. The
results are displayed in Figure 1. The global error is defined as zy (with the notations of the proof of Thm. 2.9)
at final time T" with N such that Nh = T, where h is the time step. Numerical experiments indicate that the
four schemes are of order 1. For the linearly implicit scheme, this is a consequence of Theorem 2.9. Moreover
the CPU time required to reach a given numerical error is much lower for the Lie splitting than for the linearly
implicit method and for the linearly implicit method than for the explicit Euler scheme and the implicit Euler
scheme.

u(t) =
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FIGURE 1. Comparison of methods of order 1 applied to (3.1): On the left hand side: maximal
numerical error as a function of the time step (logarithmic scales); on the right hand side: CPU
time (in seconds) as a function of the maximal numerical error.

We then consider methods of order 2. We compare the linearly implicit method of order 2 defined in Section 2.4
for Gauss points with other methods of the literature: the midpoint method with Butcher tableau

1/2|1/2
T

the RK2 method with Butcher tableau

and the Strang splitting method. We choose u° = ug = 0.9, y_14¢, = N(u((=1 4+ ¢1)h)), Y-14e, = N(u((—=1 +
c2)h)) and the final time T = 2.

The results are displayed in Figure 2. Once again the four methods are of order 2. This is a consequence of
Theorem 2.9 for the linearly implicit method. The CPU time required for a given numerical error is much lower
for the Strang splitting scheme than for the other three methods which perform similarly.

Similar results are obtained (but not displayed here) for methods of order four and six which illustrate
Theorem 2.9 for the corresponding linearly implicit methods introduced in Section 2.4. Moreover the CPU time
required to reach a given numerical error is always higher for the linearly implicit schemes than for other classical
methods of the same order for the ODE (3.1).

3.2. Application to the nonlinear Schrédinger equation

3.2.1. One dimensional nonlinear Schridinger equation: The soliton case

In this section, we consider the nonlinear one dimensional Schrodinger equation:
A A2 2
10 = —0su — qlu|*u, (3.2)

which corresponds to the evolution problem (2.1) with L = i02 and N(u) = iglu|>. We consider the initial

condition
2a
up(z) = 4 /?sech(\/&x),
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FIGURE 2. Comparison of methods of order 2 applied to (3.1): On the left hand side: maximal
numerical error as a function of the time step (logarithmic scales); on the right hand side: CPU
time (in seconds) as a function of the maximal numerical error.

where ¢ > 0 and a = ¢?/16, so that the corresponding exact solution of (3.2) is the zero speed soliton and reads

u(t,r) = ﬁsech(ﬁ:r) exp(iat). (3.3)

We use ¢ = 4 and a = 1 for the numerical simulations. The final time is set to 7" = 5. For the space discretization,
we consider the interval [—50, 50] with homogeneous Dirichlet boundary conditions since the exact solution (3.3)
decays very fast when |z| tends to +00. We use 24 equispaced points in space for methods of order 1 in time
and 2'8 equispaced points in space for methods of order 2 in time. For splitting methods, one has to integrate
numerically equation (3.2) with ¢ = 0. This is done wvia the approximation

exp(ihB) = (I - z’ZB) (1 — z’ZB) - + O(h?), (3.4)

where I denotes the identity matrix, B the Laplacian with Dirichlet boundary conditions matrix, and h > 0 the
small time step. In particular, the splitting methods we use below are also linearly implicit (the nonlinear part
of the equation is integrated exactly). The numerical error we consider for all numerical methods is the discrete
L2-norm of the difference between the numerical solution and the projection of the exact solution (3.3) on the
space grid at final time 7.

First we compare methods of order one. We consider the linearly implicit method of order 1 introduced in
Section 2.4, the implicit Euler scheme and the Lie splitting scheme. For the linearly implicit method, we initialize
the scheme with 4% = ug = u(0,), 7_14¢, = N(u((=1 + ¢1)h,-)). The results are given in Figure 3. The figure
on the left hand side shows that the three methods are of order 1. This illustrates the fact that the conclusion of
Theorem 2.9 for the linearly implicit method holds numerically in this PDE context. For such a simulation, we
can see, on the figure on the right hand side, that now the CPU time required to reach a given error is smaller
for the linearly implicit method than for the fully implicit Euler method. However the Lie splitting method is
the least time consuming method since it is explicit (in fact our implementation of the Lie splitting method
makes it linearly implicit, see (3.4)) and has a good error constant.

We then consider methods of order 2. For this experiment we use the linearly implicit method of order 2
introduced in Section 2.4 for the uniform points, the Crank-Nicolson scheme [13,15] (for which we solve the
nonlinear system using a fixed point algorithm) and the Strang splitting method [27]. For the implementation



HIGH ORDER LINEARLY IMPLICIT METHODS

—0.5 200
%% Linearly implicit 180 & Linearly implicit
—1| |“=implicit Euler - implicit Euler
) A Lie splitting <> 160 | |4 Lie splitting
£-15 O 140
R o g 120
0 P
2 > 100
= 25 6 80
io -3 o 60
- = 40
-35 A ,
A 0
4

S34 32 -3 28 26 -—24
log10 of the time step

-3.5 -3

log10 of the global error

759

FIGURE 3. Comparison of methods of order 1 applied to (3.2): On the left hand side: maximal
numerical error as a function of the time step (logarithmic scales); on the right hand side: CPU
time (in seconds) as a function of the maximal numerical error.

of the Strang splitting method, we use the classical conjugation with the Lie splitting method which we recall
briefly below and relies on the identity

h AV h ok h
exp 153 o @y, o exp Z§B = exp Z§B o (P, o exp(ihB))" o exp —Z§B , (3.5)

where ®@;, denotes the numerical flow of the nonlinear part of (3.2) defined componentwise using the function
v+ exp(ihqlv|?)v, and k is any nonnegative integer. The numerical flow of the Lie splitting method is ®Fi¢ =
®), o exp(ihB) and that of the Strang splitting method is @itrang = exp(ihB/2) o @, o exp(ihB/2). Therefore,
relation (3.5) also reads

k- .
((I)itrang) — exp (’L;LB) o (@%le)k o exp <—7,}2LB>7 (36)

for all nonnegative integer k. The implementation of the Strang splitting method we use for numerical simulations
uses both the right hand side of the equation (3.6) and the approximation formula (3.4). For the linearly
implicit method, we initialize the scheme with u® = ug = u(0,-), Y_14¢, = N(u((=1 + c1)h,")), V-14e, =
N(u((=1 + ¢2)h,-)). The results are displayed in Figure 4. The numerical order of each method is the one
expected i.e. 2. This illustrates once again the numerical relevance of Theorem 2.9 beyond the ODE context.
As we can see on the figure on the right hand side, the CPU time required to reach a given error for the
Crank-Nicolson method is higher than the one for the linearly implicit method of order 2 which is also a little
higher than the one for the Strang splitting method.

Remark 3.1. For this example, if instead of using the linearly implicit method of order 2 with uniform points,
we use the linearly implicit method of order 2 with Gauss points, we numerically obtain the superconvergence
of the method and a numerical order equal to 4. This is due to the fact that in this particular case the modulus
of the solution is constant in time as it can be seen on (3.3).

8.2.2. Two dimensional nonlinear Schrédinger equation

In this section, we consider the following 2D nonlinear Schrédinger equation:

i0u = —Au — |ul?u, (3.7)
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FIGURE 4. Comparison of methods of order 2 applied to (3.2): On the left hand side: maximal
numerical error as a function of the time step (logarithmic scales); on the right hand side: CPU
time (in seconds) as a function of the maximal numerical error.
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FiGURE 5. Comparison of methods of order 2 for mass and energy conservations: On the left
hand side: variation of the mass with respect to time; on the right hand side: variation of the
energy with respect to time.

with homogeneous Dirichlet boundary conditions on the domain represented in gray in the Figure 6 with
lg =1y =1, pr =2 and p, = 3. The initial datum we chose reads

uo(x,y) = sin(2mz) sin(2my) exp(2inw), (3.8)

when (z,y) belongs to the domain. In this particular case, the spectrum of the Laplace operator is not accessible
and one cannot use efficiently spectral methods such as exponential Runge-Kutta methods or Lawson methods
[6].

We use a finite differences discretization in space with, for J € N* p,J + 1 points in the z-direction and
pyJ + 1 points in the y-direction in such a way that the step is the same in the two directions. This way, the
numerical unknown u,, at time ¢, is a vector of N' = ((py —1)J — 1) x (pzJ — 1) + J x ((py — 1)J — 1) complex
numbers. No matter the way we label the unkowns, the matrix B of the Laplace operator with homogeneous
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FIGURE 6. 2D domain used in the simulation of the nonlinear Schrédinger equation (3.7).
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FIGURE 7. Comparison of methods of order 2 applied to (3.7): On the left hand side: maximal
numerical error as a function of the time step (logarithmic scales); on the right hand side: CPU
time (in seconds) as a function of the maximal numerical error.

Dirichlet boundary conditions is a sparse matrix of size N’ x N. For the numerical simulations we use J = 50
which gives AN/ = 12251 unknowns. Moreover, we consider T" = 0.5 as a final time. The methods we consider
are the two linearly implicit methods of order 2 introduced in Section 2.4 (one with Gauss points, the other one
with uniform points), the Crank-Nicolson scheme and the Strang splitting method. As one has no direct access
to the exact solution of (3.7) with initial condition (3.8), we precompute as a reference solution the numerical
solution provided by a Runge-Kutta method at Gauss points with 5 stages (which therefore has order 10) with
a time step of 1073. We initialize the linearly implicit methods with y_1,., and y_14., computed using one
step of a backward Crank-Nicolson scheme. Our numerical results are displayed in Figure 7. As expected, the
order of each method above is 2. For the two linearly implicit methods, this again illustrates that the results
of Theorem 2.9 extend numerically to this PDE case. Note that, the constant of order is really better for the
linearly implicit method with Gauss points than all the other ones. Moreover the CPU time required to achieve a
given precision is also smaller for the linearly implicit method with Gauss points. This is the first example where
a linearly implicit method developped in this paper clearly outperforms implicit as well as explicit standard
methods from the literature.
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Remark 3.2 (Preservation of mass in NLS equations by linearly implicit methods). If we consider a linearly
implicit method defined by a Runge-Kutta collocation method of order s satisfying the Cooper condition

V(Z,]) € {L T 75}27 bzb] = bia'i,j + bja’j,i? (39)

that is to say a Runge—Kutta collocation method at Gauss’ points, then this linearly implicit method preserves
the mass (i.e. the squared L?-norm) for the NLS equation, regardless of the physical dimension of the problem.
This property does not depend on the choice of the matrix D and vector (61, - , ;) in step (2.2) as long as they
are real-valued. This preservation property relies on the fact that, provided the initial (y_14¢,)1<i<s are purely
imaginary, so will be all the (v4¢,;)1<i<s- This property will be detailed further in a forthcoming paper dealing
with the time integration of PDEs using linearly implicit methods. For example, the linearly implicit methods
of order 1, 4 and 6 from Section 2.4 do not satisfy the Cooper condition (3.9), hence they do not preserve the
mass for the NLS equation. In contrast, the first method of order 2 of Section 2.4, which uses Gauss’ points,
preserves the mass of the solution of the NLS equation (and the second method of order 2 does not).

3.3. Application to the nonlinear heat equation

In the previous sections, we have proved and illustrated that the linearly implicit methods developed in this
paper have good quantitative properties. The goal of this section is to illustrate that they can indeed also have
good qualitative properties. Indeed, on some nonlinear heat equation with gradient-flow structure, we give an
example below of a linearly implicit fully discrete scheme which preserves the nonnegativity of the solution (just
as the exact flow does) as well as the decay of a discrete energy which is consistent with the continuous energy
of the problem.

Let us consider the one dimensional nonlinear heat equation given by

Opu = 02u + u®, (3.10)

with homogeneous Dirichlet boundary conditions on = (—50,50). This corresponds to equation (2.1) with
L = 0% and N(u) = u?. Equation (3.10) is the L?-gradient flow equation for the energy:

E(u) = % Jg(axu)de — i J‘Q uldz, (3.11)

defined for u € H} (). It is well-known in the literature (see e.g. [21]) that

Theorem 3.3. For all ug € H}(Q), uy # 0, the equation (3.10) has a unique mazimal solution u in
CO([0,Tx), HE(Q)) n CH((0,Ty), L?(R2)) with uw(0) = wug for some Ty > 0. Moreover this solution u satisfies
dE(u(t))
dt
Finally if ug = 0 on Q then for all t € [0,T), u(t) =0 on Q.

Ve (0,Ty), <0. (3.12)

In order to give an example with good qualitative properties, we consider a modified version of the fully
discrete one stage method presented in Section 2.4 with s = 1, ¢; = 1/2 so that a; ;1 = 1/2 and b; = 1/2, and
with A; = 1/2 so that y; = 1/2 and 6; = 1/2.

Let us denote by A/ the number of unknowns, so that dz = 100/(N +1). We denote by (-, - the scalar product
on RY defined for v, w € RN by (v, w) = dz ij\[:l v(k)w(k) and by | - |2 the associated norm. Moreover, for all
ve RV, we denote by v°2 the vector of RN with component k equal to v°%(k) = v(k)?.

Then, the stage (2.2) reads here

1 1
Tnt1/2 = 5n-1/2 + §Un27 (3.13)
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and the stages (2.3), and (2.4) can be summarized by

Up+1 — Up

h

Up4+1 + Un

e (3.14)

(B + diag(vn41/2))
where B denotes the matrix of the Laplacian operator with homogeneous Dirichlet boundary conditions on €2
on the equispaced grid, with space step size dz, as defined after (3.4). We still denote by ug the evaluation of
the initial datum wug on the equispaced grid. In addition, we choose for v_;, the evaluation of N (ug) on the
same grid.

The fully discrete energy associated to the numerical scheme is defined for u,y € RV by

1 1 o 1
Erla:(ua ,Y) = —§<U, BU> - §<’Ya u 2> + 1<’77 ’Y> (315)
Note that this formula is consistent with the continuous energy F defined in (3.11).

Theorem 3.4. Let us assume ug € H}(Q). Still denote by ug the projection of ug onto the equispaced grid with
N interior points. Choose T € (0,Ty).

(1) Let us assume that there exists ho,dzo > 0 such that for all h € (0,hg) and all 6x € (0,8x¢) with h < §x2,
the sequence (’yn+1/2)n>0 is bounded in RN with the mazimum norm as long as (n + 1/2)h < T. Then,
for all h € (0,hg), 6z € (0,0x0) and n such that (n +1/2)h < T and h/6x* < 1, 4,412 is a nonnegative
real-valued vector. Moreover assuming ug = 0, there exists a constant hy € (0, hg) such that for all h < hq
and dz € (0,0z0) with h/6x? < 1, the sequence (up)n>o0 is a sequence of nonnegative vectors as long as
nh <T.

(2) For all he (0,ho) and for all n € N such that (n 4+ 1)h < T, the sequence (Un,Yn—1/2)n=0 Satisfies

Erlm(un+17’7n+1/2) < Erlﬂ?(un”yn—l/Q)' (316)

Proof. We will use M, P and Z matrices as defined for example in the Chapter 10 of [4]. Let us give the main
ideas of the proof of Proposition 3.4.

(1) The sign of 7,412 is a direct consequence of (3.13) and the choice of the initial condition y_;/5 = N(uo):
it is a convex combination of vectors with same signs. Moreover assuming uy = 0, the nonnegativity of u,,
can be obtained by induction using the following arguments. The equation (3.14) can be written

h h .. h h .
(1 - §B - 2d1ag(’7n+1/2)>un+1 = <1 + 53 + 2d1ag(%,+1/2)>un~ (3.17)

h
Since h/d2% < 1 and u, = 0, one has <1 + 2B>un > 0. Since up = 0 and 7,112 = 0, one has that

diag('ym_l /Q)Un > 0, so that the right-hand side of (3.17) is nonnegative componentwise. Moreover, the
operator in the left-hand side of (3.17) has nonnegative inverse since it is an M-matrix for hy € (0, ho)
small enough (depending on the bound on the maximum norm of the sequence (V,41/2)n>0). Indeed, one
can check that it is a Z-matrix since its off-diagonal coefficients are nonpositive, and it is also a P-matrix
(for h € (0, hy)).

(2) Taking the scalar product of (3.14) with w41 — u, we obtain

1 1 1 1 o o
EHU"H - Un”% = §<un+hBun+1> - §<un,Bun> + §<’Yn+1/2a’un2+1 - Un2>’

which gives

1
EHUnJrl - Un”g = _Erlz(un+1a’7n+1/2) + Erlz(un;’Yn—l/Q)
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1 1 02 1 1 02
+ nt1/2s P12 = U ) F Y1z = ez U ).

Then, using (3.13), a straightforward computation leads to

1 3 2
E”un-&-l - UnH; + 1”%“/2 - %4/2”2 = — Lz (un+177n+1/2) + Erlx(un77n71/2)a (3.18)
which implies the result (3.16). O

We display in Figure 8 the comparison of the method above with the Lie splitting method, with the linear
part approximated by a formula similar to (3.4), and with the implicit Euler method. We compute the L?
numerical errors using a reference solution obtained by a standard method of order 10 with a very small time
step. Unsurprisingly, the three methods are of order 1 numerically. Moreover, the linearly implicit method is
faster than the implicit Euler method for a given error, but slower than the Lie splitting method. Note that all
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the methods preserve the nonnegativity of the solution (as long as one has a bound on |u, |2 and h is sufficiently
small with respect to this bound, and under an additional CFL condition for the Lie splitting method).

We display in Figure 9 the plots of the initial datum and the final time solution obtained at T = 1 with the
same linearly implicit method of order 1 (for h = 1/(5 x 2!1)) (left hand side) and the plot of the evolution
of F; (right hand side). This illustrates the results of Proposition 3.4: the numerical solution starting from a
nonnegative initial datum stays nonnegative, and the discrete energy does not increase with time (see (3.16)).

4. CONCLUSION AND PERSPECTIVES

This paper introduces a new class of methods for the time integration of evolution problems set as systems of
ODE:s (or PDEs after space discretization). This class contains methods that are only linearly implicit, no matter
the evolution equation. Moreover, the paper describes a specific way to design linearly implicit methods of any
arbitrarily high order. Using suitable definitions of consistency and stability, we prove that such methods are
actually of high order for ODEs, and the proof extends to finite systems of ODEs. We illustrate numerically that
some of these methods are of the expected order for two examples of PDEs (nonlinear Schrédinger equation
in 1d and 2d and a nonlinear heat equation in 1d), and discuss some of their qualitative properties. Our
numerical results show that the linearly implicit methods introduced in this paper behave rather poorly in
terms of efficiency for simple small systems of ODEs. In contrast, they illustrate numerically that a linearly
implicit method of order 2 outperforms standard methods of order 2 from the litterature for a NLS equation on
a domain where no spectral method can be applied.

Perspectives of this work include a rigorous analysis of these linearly implicit methods in PDE contexts (i.e.
before discretization in space). In this direction, a recent result [7] proves that the relaxation method (2.5),
which belongs to the class of methods presented here (see Rem. 2.1), is of order 2 when applied to the NLS
equation. Another question is that of the possibility to design, in a systematic way, linearly implicit methods of
high order with some qualitative properties adapted to the PDE problem (e.g. preservation of mass or energy
for NLS equation, energy decrease for parabolic problems).
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