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THE ADAPTIVE BIASING FORCE ALGORITHM WITH NON-CONSERVATIVE
FORCES AND RELATED TOPICS

ToNY LELIEVRE!, LISE MAURIN?3* AND PIERRE MONMARCHE??

Abstract. We propose a study of the Adaptive Biasing Force method’s robustness under generic
(possibly non-conservative) forces. We first ensure the flat histogram property is satisfied in all cases.
We then introduce a fixed point problem yielding the existence of a stationary state for both the
Adaptive Biasing Force and Projected Adapted Biasing Force algorithms, relying on generic bounds on
the invariant probability measures of homogeneous diffusions. Using classical entropy techniques, we
prove the exponential convergence of both biasing force and law as time goes to infinity, for both the
Adaptive Biasing Force and the Projected Adaptive Biasing Force methods.
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1. INTRODUCTION

After presenting in Sections 1.1, 1.2 and 1.3 the motivation and well-known results on the Adaptive Biasing
Force (ABF) method applied to the overdamped Langevin dynamics with conservative forces, we present in
Section 1.4 the dynamics we are interested in, namely the ABF method applied to the overdamped Langevin
dynamics with non-conservative forces.

1.1. Setting

Let us work within the so-called canonical ensemble (or NVT ensemble), where a system of N particles is
contained in a fixed volume V, and is in contact with a thermostat of constant temperature 7. Denote by
q¢=(qi,...,qn) € D the positions, p = (p1,...,pny) € R¥ the momenta, and (my,...,my) € RV the masses
of the particles, where D is the configuration space and d € {1,2,3} is the space dimension. Usually, D is
an open subset of R (or TN, where the dN-dimensional torus is viewed as the cube [0, 1]V with opposite
sides identified, in other words, TN = R4 /ZN). Interactions between particles are taken into account via a
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potential function V : D — R, so that the system’s total energy is given by the following Hamiltonian:

H(q,p) =V(a) + %pTM*lp,
with M = diag(mi1g,...,mnI;) being the mass matrix. Since this Hamiltonian is separable, the positions and
the momenta are independent variables in the canonical ensemble, namely under the probability distribution
Z~te=PH(@P) dqdp where 8 = 1/(kpT), with kp being the Boltzmann constant, and Z = [, pav e 7 (@P) dgdp
is the normalization constant, or partition function. The momenta p being distributed according to a Gaussian
measure, the main issue resides in sampling the positions ¢, which are distributed according to the Boltzmann-
Gibbs measure:

p(dg) = Z;le—ﬁv(”dq, Z, :/ e BV (@) dq.
D

Thermodynamic properties are obtained by averaging functions of the microstate g which are called observables.
Given an observable 1, one would like to compute the following thermodynamic quantity:

Bl = [ wan
D
One of the simplest dynamics to sample the Boltzmann-Gibbs measure is the overdamped Langevin dynamics:

dQ, = —VV(Q,) dt + /23~ 1AW, (1.1)

where (W;)¢>0 is a dN-dimensional standard Brownian motion, and —VV : D — RN is the interaction force.
Notice that here, the interaction force is conservative, namely it is the gradient of a function (here, minus the
gradient of the potential energy V'). Under reasonable assumptions on the potential V' (see [19] for more details),
the process (Q¢)¢>o is ergodic with respect to u. In other words, for any observable ¢ € C§°(D), the average
over a trajectory of the process converges to the canonical average:

. 1
lim —
T—+00 T

/OTw(Qt)dt _E, ). (1.2)

1.2. Metastability, reaction coordinate and free-energy profiles

Computing thermodynamic averages can be troublesome, as microscopic and macroscopic timescales can
violently differ. Typical microscopic phenomena occur on timescales of the order of 10~!s, while macroscopic
ones can take up to 1 h [18]. Furthermore, N needs to be sufficiently large so that the targeted macroscopic
phenomena can emerge from the collective, microscopic behaviour of the system.

Such timescales differences are linked to the system’s metastability: low-energy regions of the configuration
space are separated by either high-energy or high-entropy barriers. These regions are called metastable: the
process (1.1) remains trapped in a metastable region and occasionally jumps to another one after a long period
of time. From a probabilistic point of view, metastability is linked to the multimodality of the measure u: likely
regions are separated by low probability regions. The exploration of the state space by the process and the
convergence of the trajectorial averages (1.2) can thus take a considerably long time.

One way of avoiding metastability is to capture some slow components of the dynamics (Q¢):;>o. To do so,
we cousider transition coordinates (also called reaction coordinates or collective variables), namely mappings
£ :D — M, where M is a manifold of dimension m < dN. Transition coordinates are designed to provide a
coarse-grained information on the system’s state (for example, the dihedral angle of a molecule, in which case
M =T, or the signed distance to a hypersurface of D, in which case M = R). In other words, £(q) € M is
the macroscopic state of a microscopic state ¢ € D. Designing a good reaction coordinate is a difficult problem,
that will not be discussed further in the present work (see [12] for a recent review on the question of automatic
learning of transition coordinates).
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Decomposing

D= || %= [ |{9eDllg) ==},

zeM zeM

and denoting by s, the measure on X, induced by the Lebesgue measure on D, one can define the measure
5f(q)—z(dQ) by

S -+(40) = o, (d0),
where G = (Vﬁ)—r V¢, in other words,
Gi;=V& Vg, forall (i,5) € [1,m]>
The free energy associated to £ is then expressed as follows: for every z € M,

A(z)zféln(zzg, Zs, = / eV D5y (dg), (1.3)

assuming V' and ¢ are such that Zy. < 400. As can be seen using the co-area formula [19], this definition
ensures that the image of p by & is given by

z

e—BA(2)
Exp(dz) = ———.
/ e BAMW) 4y,
M

1.3. The Adaptive Biasing Force method

(1.4)

Introducing a reaction coordinate allows us to construct a less metastable dynamics, the idea being to
substitute the potential V in (1.1) for a biased potential V' — A o £. The new equilibrium measure is then

pa(dg) = Z, fe PV =40 qq, (1.5)

where Z,, = [, e #V-4°0@dq. Given the expression (1.4), the image of 4 by ¢ is the uniform measure:
Ex g = A(M) "oy, with A(M) being the Lebesgue measure of M (which is here assumed to be compact).
Since, contrary to the initial probability measure £ * u, the uniform measure is no longer multimodal, we expect
a faster sampling of the phase space, provided ¢ is well chosen so that 4 is less multimodal than p.

Although this change of potential can accelerate the phase space sampling, the free-energy A is a priori
unknown. The main idea to get round this issue will be to approximate on the fly A, or VA, its derivative
with respect to the reaction coordinate. To do so, we will consider the Adaptive Biasing Force (ABF) algorithm
[7,13]:

{ dQ; = (=VV(Q:) + B: (§(Qr)) VE(Qr)) dt + /287 1dW, (1.6)
Bi(2) =E[F(Q)) [£(Q1) =2]  VzeM, '

where —VV is the conservative interaction force, and F' is the so-called local mean force, which is the vector
with components (F});c[1,m] given by:

Fy=) G;1V&-VV —p~div | Y GV |,
j=1 j=1

where G;; denotes the (4, j)-component of the inverse of the matrix G defined above.
This process is motivated by the fact that the aforementioned free energy satisfies:

VA(z) =E[F(Q)E(Q) = 2], VzeM i X ~pa,
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so that p4 is a fixed point of the Fokker-Planck equation associated to the process. In other words, if Q¢ ~ p4,
then Q; ~ pa for all t > 0 and (Q¢)i>0 is exactly the diffusion (1.1) with the biased potential V — Ao ¢&.

Starting from another initial distribution, using entropy estimates and functionnal inequalities, it has been
proven in [19], under mild assumptions, that this fixed point is in fact an attractor of the dynamics, in the sense
that B; converges to VA in the long-time limit, and the law of Q; converges to p4.

Remark 1.1.

> In some cases M is not bounded, for example when ¢ is a distance. If so, an additional confining potential
W o £ is needed in the drift [19].

> As discussed in [19], the algorithm (1.6) can be modified in order to obtain a diffusive behaviour for the
law of £(Q¢). Additional terms depending on ¢ are added to obtain the following variant:

{ dQ; = (=VV + By o & = VW o £+ 871V In(|VE[72)) [VE|72(Q1) dt + /2671 |VE[H Q) AW,
By(z) = E[F(Q) |£(Qs) = 2], Vze M.

In this case the longtime convergence of B, towards VA is stronger than in the case of (1.6), in that it
requires less hypothesis.

We might also consider a variant of the ABF method, namely the Projected Adaptive Biasing Force (PABF)
algorithm, introduced in [1]:

dQ: = (=VV(Q:) + B: (£(Q¢)) VE(Qy)) dt + /26~ 1dW;
By = P2y (Gy)
Gi(2) = E[F(Q+) | £(Q:) = 2] Vz e M,

where Pp2(5)(f) stands for the Helmholtz projection with respect to the Lebesgue measure X of a vector field
f on an open bounded set M C R? with Lipschitz boundary M [2]. In other words, it is the gradient of the
minimizer on {g € H'(M), [,,gdz =0} of

— X)) — x2x.
p /le() Vg(x)[2d

More generally, if v is a continuous positive measure on M, the Helmholtz projection with respect to v is the
minimizer on {g € H'(M), [, gdz =0} of g — [, |f(z) — Vg(z)]*v(dz).

1.4. The non-conservative case

From now on, we only consider periodic boundary conditions and reaction coordinates that are Euclidean coor-
dinates of the system, namely D = T" = R"/Z" for some n € N*, M = T™ for m € N* such that m < n and
&(z,y) = x, where we decomposed the position as ¢ = (z,y) € D, with € T™ and y € T ™. Note that the con-
sidered process (Q¢)¢>0 can now beread as (X, Y;);>0. This latter restriction may seem quite narrow: nevertheless,
it is the generic case used for alchemical reactions [16]. Besides, more general reaction coordinates can be reduced
to this setting by adding extended variables [11]. Here, such restriction is made only for the sake of clarity: most
arguments could be extended (at the price of heavier computations) to the general case £(q) € M.

We are interested in the case where the force in (1.1) is not necessarily conservative, namely is not the
gradient of some potential energy V. There are several motivations for this approach, one of them being that
the numerical computation of conservative forces —VV sometimes relies on approximations which make the
force a priori not conservative, in particular in the context of ab initio molecular dynamics, see e.g., [6,24,26].
In this case, one is interested in knowing if, by controlling the error made on the force —VV, one can deduce
an estimation of the error made on the system’s free energy. The robustness of a diffusion’s invariant measure
with respect to the perturbation of its drift is a classical problem (see e.g., Sect. 4.3), but note that in the ABF
case, the adaptive procedure makes the question more subtle. Moreover, the convergence of the ABF method
in such a context cannot be deduced from the aforementionned convergence analysis. We consequently consider
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the ABF algorithm in the case where —VV is replaced by a general force field F € C'(D,R") that we rewrite
as F(z,y) = (Fi(z,y), Fa(z,y)) € R™ x R"™ ™. The local mean force is simply F' = —F;, and the corresponding
process is thus, for all t > 0:

{dXt = F1(Xy, Yy)dt + By(Xy)dt 4 /28— 1dW}

1.7
dY;g = fQ(Xt,Yt)dt‘F \/26_1th2 ( )

where W = (W' W?) is a standard Brownian motion on T™ x T"~™, and, given the average mean force
Gi(z) = -E[FA (X, ) | Xe =z], VE>0,VzeT™,
one has for all ¢t > 0 and = € T™, in the case of the ABF method,
By(z) = Gi(x),
or, in the case of the PABF method,
By(x) = Pr2n)(Ge)(z) := VHy ().

In either case, denoting by m; the law of Z; = (X¢,Y;) and 7rt an w Tt(2,y)dy the density of X; = £(Z,),

then (z.5)
Gila) = | —ﬂ(:c,yf”gﬂdy,
s ()

so that 7, is a weak solution of the Fokker-Planck equation associated to (1.7), that is

atﬂ't = ﬁilATf’t -V (fﬁt) - Vx . (Bt ’7Tt)
B — Gy in the ABF case
t {VHt = Ppr2(»)(Gy) in the PABF case (1.8)
Gi(x) = [pn-m —F1(2,y) ’”é“(” i)dy Vo e T™.

For a given initial condition 7y, the existence of the process and the proof that it admits a density with
respect to the Lebesgue measure, being a strong solution of (1.8), can be established by fixed point arguments
or by the convergence of an interacting particles system [15]. We will not address this question here. As a
consequence, we would like to emphasize that our arguments will be partially formal, in the sense that we work
under the assumption that a density m; that solves (1.8) exists and is sufficiently regular so that the algebraic
computations in the proofs are valid.

Let us emphasize that the bias B; in (1.8) (i.e., either Gy or VH; = Pr2(3)(G¢)) depends on 7z, which makes
(1.8) a non-linear PDE.

Remark 1.2. In the conservative case, where F = —VV, and p oc eV, up to an additive constant, the free
energy A is characterized by either one of these properties:

1. € p oc e P4 (distribution of the reaction coordinate at equilibrium).
2. VA=E[V1V(Z)|¢(Z) = -] with Z ~ p (average local mean force at equilibrium).
3. VA=EV1V(2)|¢(Z) = -] with Z ~ p (fixed point of the ABF algorithm).

In the non-conservative case, there is no reason for these various definitions to coincide. Besides, x +—
E[-F1(Z)|¢€(Z) = =] is a priori not a gradient. Denoting by pz the invariant measure of the non-biased,
out-of-equilibrium dynamics d;m; = 3~ 1Am, — V - (Fm), we are then led to consider the (in general different)
functions Hy, Hy and Hs given, up to an additive constant, by

1. & pr oc e PHL
2. VHQ = PLZ()\) (]E[—fl(Z”f(Z) = ]) with Z ~ HF.
3. VHz = P2y (E[-F1(2)|6(Z) = -]) with Z ~ wZ, an equilibrium of the (P)ABF algorithm.
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In other words, in the non-conservative case, an equilibrium of an adaptive algorithm yields an alternative
generalization of the notion of free energy that does not coincide in general with the log-density of the law of
the reaction coordinates at (unbiased) equilibrium, and whose gradient is not in general the average local mean
force at (unbiased) equilibrium.

Outline of this paper. Section 2 introduces several preliminary notions, before stating the main results.
Section 3 focuses on the law 7 of the process (Xt)i>0 = (&(Zt));>(- More precisely, we show that ¢ satisfies

a particular Fokker-Planck equation, which differs depending on the method considered, and that wf converges

in the long-time limit towards the Lebesgue measure A. Section 4 then states several results on the invariant
measure of a generic diffusion, in order to adress the issue of the existence of both stationary measure and
stationary biais to equation (1.8), and later handles the robustness of the conservative equilibrium to non-
conservative perturbations. Eventually, Section 5 is devoted to the long-time convergence of both the ABF and
PABF methods, in the conservative case, with a force F = —VV (generalizing in particular results from [1]),
and in the non-conservative case, with a generic force F.

2. MAIN RESULTS

2.1. Relative entropy and preliminary inequalities

Let us first introduce several tools that will be used in the following. For u, v two probability measures on the
same space, we will denote by pu < v the absolute continuity of u with respect to v. Now consider the relative

entropy of p with respect to v:
dp
In{ — ) dpif
H(plv) = / n (du) plp<y,

+o00 otherwise.

Recall the Csiszar-Kullback inequality:

lw—=virv < V2H(plv), (2.1)

where || - ||y stands for the total variation norm. In particular, while the relative entropy is not a distance (it
lacks the symmetry property), its convergence towards zero implies the convergence in total variance norm of
 towards v.

Similarly, let us define the Fisher information: for p < v,

o) = [ 19w () P

The probability measure v is said to satisfy a Logarithmic Sobolev Inequality LSI(p) of constant p > 0 if:
1
Vp <y,  Hply) < %I(MV)-

From [25], if v satisfies a log-Sobolev inequality with constant p > 0, then it also satisfies the so-called Talagrand
inequality 7 (p) with constant p > 0:

2
V/J' <, W;(,U,, V) < ;H(/u'h/)’ (22)

where Wa(u, v) is the Wasserstein distance with quadratic cost between the probability measures p and v. More
precisely, if © and v are defined on a general Riemannian manifold €:

W2(uv)= inf / w(z,y)? dn(x,y),
mell(p,v) JoxQ

where w is the geodesic distance on Q, and TI(p,v) is the set of coupling probability measures, i.e probability
measures on {2 X 2 whose marginals are p and v respectively.

In the following, we will slightly abuse notations and denote I(u|v), H(u|v) or Wa(u|v) both in the case
where p and v are probability measures, or probability density functions.
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2.2. Precise statements of the results

In all this section, m; satisfies (1.8). First of all, let us consider the equation satisfied by the density wf in the
general case where F is either conservative or non-conservative.

Lemma 2.1. The density ﬂ'f satisfies the following Fokker-Planck equation:
dré = Aré— V. ((Bt - Gt)wf) . (2.3)

Proof. Take a test function ¢ € C*°(T™). Then, using an integration by parts,
d e_d
At Jou 77T AL S
— [ (Baple) + (Frlaw) + Bila)) Vag@) m(da.dy)
7 (x,
= / (Amw(x)ﬂf(w) + (/ - Aley) t(g Dy + Bt(l‘)?ff(%)) VM(JC)) dz

my (z)

o(x)m (7, y)dzdy

— [ ot (B— GVt
(Il

Remark that in Proposition 2 from [1], the Helmoltz projection is done in L2(x%), so that V- ((B; — G¢)7) =0
and one ends up with the heat equation. Here, we get the heat equation in the ABF case (B; = G¢) and, in the
PABF case (B; = Pr2(»)(G¢)), an additional time-dependent divergence-free drift.

Remark 2.2. Since the density 7%, as well as constants, satisfies the Fokker-Planck equation (2.3) which
preserves positivity, provided there exists mg > 0 such that 775 > mg, one can show that ﬂf > mg for allt >0
on the torus T™. Note that if wg was to be zero at some points or not sufficiently smooth, the conditional mean
Gy given in (1.8) might not be well defined.

In view of Remark 2.2, from now on, assume the following;:

Assumption 2.3. The initial condition my admits a smooth density with respect to the Lebesgue measure, such
that 7r§ is positive.

As a consequence, the conditional means G; are well defined for all ¢ > 0, along with the entropy H(mg | A),
which is ensured to be finite. Furthermore, WS belongs to L?(T™).

Both the ABF and PABF algorithms are designed in order to ensure that all the values of the transition
coordinate have been visited. In other words, the density of £(X, Y;) should converge to a flat histogram, namely
the Lebesgue measure A. In the conservative case, this is known to hold in both the ABF case [20] and the
PABEF case [1]. We now extend the flat histogram property to the general —possibly non-conservative— case.

Proposition 2.4. For both the ABF and PABF algorithm, under Assumption 2.3, 7rf converges towards the
Lebesgue measure as t — oo. More precisely, for allt > 0:

H(rEA) < e80T tH(x§|N) .

Furthermore, the entropic convergence of the density can be strengthened to an L°° one, that will prove
useful in the rest of the study:
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Proposition 2.5. For both the ABF and PABF algorithm, under Assumption 2.3, there exists C' > 0 such that
for all initial distribution 7§ € L*(T™), for all t > 1:

—-1_2
Irf = Lloo < Ce™ T |m§ — 1]l2.

As detailed in [1,19], in the conservative case F = —VV, o = pa is a stationary state of (1.8). In the
non-conservative case, the existence of such a stationary state may be unclear, and this issue will be treated in
Theorem 2.7 below, which will pe proved in Section 4.2. For now, let us consider the following assumption:

Assumption 2.6. The interaction force F is in C*(T™,R™), and we denote by M > 0 a constant such that
for ally € T"= ™, &+ Fy(x,y) is M-Lipschitz.

Theorem 2.7. For the ABF (resp. PABF) algorithm, under Assumption 2.6, there exists a couple of stationary
measure and bias (7L, BL) (resp. (72, VHZL)) to (1.8), such that 7%, € C°(T"™) is stricly positive. As a
consequence,

i) 7 satisfies a log-Sobolev inequality for some constant R > 0,
oo
(ii) the conditional density y — w7, ,(y) = L (x,y)/mL* (x) satisfies a log-Sobolev inequality for some constant
p >0, for allz € T™.

Remark 2.8. Note that there is no reason whatsoever for 77 to be the same in both the ABF and PABF case.
Nevertheless, as shown in Proposition 2.4, 75, =1 in all cases.

Remark 2.9. An important remark is that, at small temperatures (i.e., 3 > 1), the optimal log-Sobolev con-
stant of a probability measure with density proportional to exp(8W) for some W, roughly scales like exp(Sdw )
where dyy is the so-called critical depth of W [21] (the critical depth is the highest energy barrier to overcome
in order to reach a global minimum of W). If the transition coordinate is well-chosen, the metastability in the
orthogonal space should be small, meaning that for all € T™ the critical depth of W (z, -) should be small with
respect to the critical depth of W. As a consequence, as a function of (3, p is expected to be much larger than
the log-Sobolev constant of y oc e™#V| which is the convergence rate to equilibrium of the original (unbiased)
dynamics (1.1).

The following result deals with the robustness of the conservative equilibrium to non-conservative perturba-
tions, and will be proved in Section 4.3.

Proposition 2.10. For the PABF algorithm, under Assumption 2.3 and Assumption 2.6, for all V € C?(T")
and p > 1, there exists Ky > 0 and K, > 0 such that the following holds. Denote by A the free energy associated
to V (see Eq. (1.3) for the definition of A). For all F € CY(T™) satisfying ||F + VV|le < 1, for all equilibrium
measure 7, of (1.8), considering the corresponding bias VHZ , one has

IVA=VHL||orm) < KyKp|F+ V],

and, for all ¥ € L>®(T"™), considering

I, o= fqrn1/’(%y)efﬁHi(“:)?Tofo(x,y)dxdy
YT e PIEERZ (2, y)dady

one has

wdufw‘ < Ky [l |F + VV]w.
’]T'Vl,
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The first point of Proposition 2.10 states that, if the error on the forces VV is small, then the bias of the
free energy estimation is small. The second point states that similarly, the bias on the computations of averages
with respect to p is small if the error on the forces is small. Indeed, in practice, in order to compute averages
with respect to the initial target law p from the biased trajectory, two strategies are available: either standard
importance sampling re-weighting, or estimation of the conditional expectations given £(X,Y) = z and then
average with respect to exp(—Hz(x)). In both cases, if —VV is replaced by F due to some numerical errors
and the process converges in large time towards an equilibrium Wfo, then a quantity of the form an Pdp is
approximated by an estimator that converges in large time towards the quantity IAw defined in Proposition 2.10.

Finally, we turn to the long-time convergence of the density m; on the whole space. The first theorem concerns
the classical, conservative case, whereas the second concerns the general case, where the force F can be non
conservative. These will respectively be proved in Sections 5.2 and 5.3.

Theorem 2.11. Let us consider (m, By) solution of (1.8) for either the ABF or PABF algorithm, under
Assumption 2.3 and Assumption 2.6. Let us suppose moreover that F = —VV , with V. € C?(T™). Then, there
exists K > 0 such that, for all e > 0 and for allt > 0:

1
H (melpa) < K (1 + 52> e~(A-ot

with pa being given by (1.5), A = (8772 /\2p) B~1 in the ABF case, A = (47r2 A 2p) B~1 in the PABF case,
and p is the log-Sobolev constant of the conditional density y — pa o (y) := MA(x,y)/ui(x). Furthermore, (1.8)

consequently admits a unique stationary state: using the notations of Theorem 2.7, (ﬂ'o’ovv, B(;OVV) = (pua, VA).

This extends Theorem 1 from [19], which is restricted to the ABF algorithm with m = 1. Besides, for the
PABF algorithm, Theorem 1 [1] is a similar convergence result but for a variant of the algorithm where the
classical Helmholtz projection in L2?()) is replaced by the Helmholtz projection in the weighted space L? (ﬂf ).
This variant is motivated in [1] by some cancellations in the computations of the proofs. Nevertheless, as already
noted in [1], the classical Helmholtz projection is used in practice. Theorem 2.11 in the PABF case is thus a
new result which fills a gap between the existing theoretical convergence results and the practical algorithm.

Remark 2.12. For ¢ > 0, applying Theorem 2.11 with € = 1/t yields
H (me|pa) < Ke(1+t2)e .
The next results address the general —possibly non-conservative— case, and as such are new.

Theorem 2.13. Let us consider (my, Bt) solution of (1.8) for either the ABF or PABF algorithm, under
Assumption 2.3 and Assumption 2.6. Let 72, R,p be a stationary measure for (1.8) and the two associated
constants, as introduced in Theorem 2.7. Suppose moreover that M3 < 2p, where M is the constant introduced
in Assumption 2.6. Then there exists K > 0 such that, for all t > 0:

H (7rt|7r0};) < Ke ™™,
with A = 2R(1 — A;[—pﬁ)ﬁ_l. As a consequence, the dynamics (1.8) admits a unique stationary state.

Remark 2.14. The condition M3 < 2p is a technical restriction in our proof, we do not think that it is
necessary for the result to hold. Notice that p depends on 3 in a non-trivial way. At high temperature, the
conditional densities wfo’x are bounded above and below by constants which are uniform in 8 < 1 (it is easily
seen that they converge to the uniform density as 8 — 0) which, by classical perturbation results for log-Sobolev
inequalities, implies that p is bounded uniformly in 5 < 1, and thus the condition is satisfied for [ small enough.

To fix some ideas in the low temperature case, consier the conservative case where F = —VV. If y — V(z,y) is
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strongly convex uniformly in x, by the Bakry-Emery curvature criterion (see e.g., [3]), p > finf Hessy (V). The
assumption is thus implied by M < 2inf Hess,(V'), which simply means that the force should be ”flatter” in
the direction of £(x,y) = = than in the orthogonal direction y. This is somehow the ideal situation for the use
of ABF, namely a fast contraction orthogonally to the reaction coordinate.

Eventually, one has the following result, which will be proved in Section 5.4.

Corollary 2.15. Under the settings of either Theorem 2.11 or 2.13, there exists a unique stationary state
(Wfo,Bfo) for the dynamics (1.8). Furthermore, there exists K > 0 such that for all t > 0,

/ |B, — BZ|?dz < Ke ™,
where A is given by either Theorem 2.11 (where F = —VV ) or 2.13 (where F is general).

Remark 2.16. A direct consequence of the Csizar-Kullback inequality (2.1) combined with either Theorem 2.11
or Theorem 2.13 is that for all £ > 0

Im — 7l |l py < V2Ke 30

where K, A > 0 are given by either Theorem 2.11 (where F = —VV) or 2.13 (where F is general).

Theorem 2.13 shows the exponential convergence to a unique stationary state for the ABF and PABF
algorithms even for non-conservative forces. Notice that the rate of convergence obtained in Theorem 2.11 for
conservative forces is better than the rate of convergence in Theorem 2.13. It would be interesting to further
investigate the sharpness of these rates.

The rest of this paper is devoted to the proofs of the results stated in this section. From now on, and
without loss of generality, we will assume that 8 = 1. Note that the assumption of Theorem 2.13 now becomes
M < 2p. An adequate change of variable to then deduce the results for § # 1 is: t = 37, F(x,y) = BF (x,y),
Wh(z) = BW'(z), W2(y) = BW?3(y), and 7,(z,y) = m(z,y), for all t > 0 and for all (z,y) € T".

3. LAW OF THE TRANSITION COORDINATE

After proving in Section 3.1 the long-time entropic convergence of the density wf towards the Lebesgue

measure A, we prove in Section 3.2 its long-time L°°-convergence, by relying on a Nash inequality on the
n-dimensional torus and on the proof of ([3], Thm 6.3.1).

3.1. Proof of Proposition 2.4
Proof. One has:

Considering Lipp =V - (Vi — (B — Gy)p):
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One gets, using integration by parts,

%H(ﬂ'ﬂ)\) / Inws Lot + Lymt

’]I‘m
€2
= —/ |V7T£t‘ +/ (Bt - Gt)VTl'f
m ’]Tt m
€2
— _/ |V7Tg‘ (since V- (B, — G;) = 0)
m Ty
13
= —/ |V In <7i\t> 2 ¢
= —I(n|)). (3.1)

Since the Lebesgue measure \ satisfies a log-Sobolev inequality of constant 472 Proposition 5.7.5(ii) from [3],
we have:

OrH(m;|A) < =24 H(rg | N),
which concludes the proof of Proposition 2.4, denoting by 7§, = A the long-time limit of ﬂf . O

3.2. Proof of Proposition 2.5

We first state a Nash inequality on the n-dimensional torus.

Lemma 3.1. For all n € N*, there exists a = a(n) > 0 such that for all function uw € H'(T™):

2n_ _4
ull3 < 2[lullf + allVull3* |ully 7. (3-2)

Proof. Let us recall that T" = R"/Z". We consider L*(T") equipped with the inner product (u,v) :=
Jpn w(z)0(z) dz. The sequence {€?™*7}, c7. is an orthonormal basis of L?(T"). Now given a function u € L*(T")
and its Fourier coefficients

ok = / u(x)e 2™ d, VkeZ",
denoting by k = (k1,...,k,) a vector in Z", and [k| = ,/>°7_, |k;|?, the Parseval identity yields
lall3 =D lewl®s  IVullz = D [k el
kezn kezn

Let p > 0 to be fixed later on. One has, considering ||k|/c = ‘Hﬁx]]ﬂkjl}:
JEe|l,n

lall3= D" lexl?= >0 el + >0 el

kezn ko <p lklloo>p

1
< D el Y0 kel

[Iklloo <p [Iklloo>p

1
< > alP+= D0 kel

%lloo<p lklloo>p

1
< D el ;HWH%-

lklloe <p
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And:
) 2
Soolal= > /U(w)e’zm’”dw < ulf >0 1< @p+ D) ul}
k]l oo <p Iklloo<p ' T" [kl e <p
Consequently:
[ull3 < 3™(p v 1)™[Jullf + IIVUIIS- (3.3)

We now distinguish between two cases:

(i) T¢ 3" [ull? < [[Vul3, by choosing
||n+2

p= >1,

|| 17

inequality (3.3) yields:

Jul} < 3377 |Vl i

1L+2 Hu

I 4 37 | Va3 ul
o (3.4)

=2.3%2 (IVull4

n+2 ||

(ii) If 3™||lul|? > ||Vul|3, one wishes to rely on the Poincaré-Wirtinger inequality on the torus T™. The optimal
Poincaré constant in Hg (T™) being equal to A\[!, where A\; = 472 is the first non trivial eigenvalue of the
negative Laplacian —A, one can consider the following Poincaré-Wirtinger inequality:

_ 1 n
Ju—alf < 5IVulg,  Vue H(T), (35)

where @ = / u(x) dz. One consequently gets:

lull3 < 2a® + 2fju — ﬁ\l%

<2flulf +2 5 HVU||2

= 2lfullf + 5 QIIVUIIQ”HWH"”

1
< 2J[ullf + 3"“ 19ull3 % 777 (3.6)
Combining (3.4) and (3.6), one obtains:

n+2

n.+2 ||v

n 1
ull3 < 2||ul)? + 372 ( = v2)|[Vu
2

which yields (3.2), with a = 2 - 3712 O
We are now in position to prove Proposition 2.5.

Proof of Proposition 2.5. We will rely on the idea of the proof of ([3], Thm. 6.3.1). Let us start with two
preliminary results. Let ¢ € C*°(T™) be a test function and consider:

VzeT™,  ¢u(z) = E.[p(Z0)] = Elp(Z1) | Zo = 2],
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where (Z;)¢>0 satisfies the following dynamics:
dZ; = (B; — Gy) (Z;)dt + v2dW,

where (W})>0 is a n-dimensional Brownian motion and V - (B, — G;) = 0. Let vz be the invariant measure of
this dynamics, £ = (B; — G;) - V + A its infinitesimal generator, and £L* = —V - (B; — Gt) + A its adjoint in
L?(vz). Using It6 calculus, ¢, satisfies:

Yo =, Oppr =0y + (B —Gy) -V (3.7)
which is equivalent to
0o =1, Owpr=~2¢p+V-((Br—Gr)pr)-

Given the result of Lemma 2.1, 75 — 1 satisfies:

o (mf —1) =a(mf —1) = V- (B - Go)(xf - 1)). (3.8)

For a fixed t > 0, one as, for all 0 < s < t:

— Ot_s (7r§ — 1) = — Lo (7T§ — 1) +/ s L* (7r§ — 1) =0.
dS Tn Tn n

Integrating between s = 0 and s =t yields

/ @t(wg—l)z/ orE—1),  vt>o0. (3.9)

Second, for all ¢t > 0,
leelln < el (3.10)

Indeed, one has on the torus T™:

lpelle < [ w(t,2)dz
Tm

where, for all ¢ > 0 and z € T, (t,2) = E[|o(Z:)|| Zo = z] > 0 satisfies (3.7) with initial condition
¥(0,.) = |p(.)| > 0 on T™. Integrating by parts and using that V-(B;—G¢) = 0 one can check that % me 1 =0,
so that:

(b, 2)dz = / $(0,2)dz = |gl1, V>0,
T’VVL

Tm

hence the result.
Step 1: Now let us show that there exists C > 0 such that, for all ¢ > 0,

m

leellz < (Ct7% +2) el

A0 = [ el

Since V - (By — G) = 0 one can show from (3.7) that:

To do so, consider for all ¢ > 0,

N =-2[ Vol
']I‘TrL
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Knowing that [|¢¢|]1 < ||¢|l1 for all time ¢ > 0, we use the inequality (3.2) given by Lemma 3.1 to obtain:

m

1 miiQ %
MO < 2ol +a|-500] T 167

Consider for all t > 0, g(t) = A(t) —2a, where a = ||¢||?. By construction, g is decreasing on R*. We distinguish
between three cases:

(i) Assume that g(0) < 0. In this case, g(¢) <0 for all ¢ > 0 and, for all ¢ > 0:

leel3 < 2llll2.

(ii) Assume that g(¢) > 0 for all ¢ > 0. Then:

1 w2 m 1 m
o) < 0o [~ 5g 0] T g0 < - ad (0

Integrating between 0 and ¢ yields:

Eventually for all ¢ > 0:
leell3 < (CE7% +2) [lll}

m+2

withC =2"™a"2 m% > 0.

(iii) Assume that g(0) > 0 and let us assume that ¢* > 0 is the smallest time ¢ such that ¢g(¢*) < 0. In this case,
using the above reasonings, one obtains:

a) For all t > t*, g(t) < g(t*) < 0 and thus

llpell3 < 2llll3-

b) For all ¢ € [0,¢*[, g(¢) > 0 and thus:

leell3 < (€% +2) flellf.
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Hence, for all ¢t > 0, [|¢]|3 < (Ct=2 +2) [|¢]|3.

Step 2: Now, for all ¢ > 0, equation (3.9) yields:

JRACED

2 2

/ Ot (ﬂ'g—l)

Hence, for all t > 0:

[t

2
< lleeli3llms — 1113

< (Ct™ % +2) loll?l7§ — 1]2  (using Inequality (3.10))

Since this is true for any function ¢ € L1(T™), by duality, for all ¢ > 0:
I = leo < 4/ (CE™% +2) 175 — 1l2- (3.11)

Step 3: Considering the equation satisfied by ﬂf given in Lemma 2.1, with initial condition 7$ with s > 0, and
using inequality (3.11) over the time interval [s, s 4+ 1], there exists = K(m) > 0 such that:

741 = Uloo < Klm§ = 12

Denote by H}(T™) the closure of the space C5°(T™) of indefinitely differentiable functions with compact support,
with respect to the Sobolev norm || - ||g1. Using the same reasoning as in the proof of Proposition 2.4, since
Jpm (78 —1) = 0, (7% — 1) belongs in H}(T™), and, using equation (3.8) and the Poincaré-Wirtinger inequality
(3.5), one has:

I — 1lla < flm§ — 1oc™, vt > 0. (3.12)

Eventually, for all ¢ > 1:
p— 2 —
s = Uloo < Kllmg_y = Lo < Ke™*™ 0D s — 1)),

which concludes the proof with C = e, (]

Remark 3.2. Note that one could use the maximum principle for times ¢ € [0, 1] in order to replace the right-
hand term H7r§ — 1||2 by the L*°-norm ||7T§ — 1]|co- Indeed, since by Assumption 2.3, 778 is continuous on T™,
one has a uniform bound on 775 — 1. Nevertheless, considering an L2-bound highlights the fact that the uniform
bound at time 0 is not essential to the proof of Proposition 2.5, which could be useful for possible generalizations

to non-bounded state space cases.

4. EXISTENCE OF A STATIONARY MEASURE

In Section 4.1 we state and prove preliminary estimates on the invariant probability measures of homogeneous
diffusions. We then proceed in Section 4.2 to prove Theorem 2.7, which gives the existence of a stationary state
to (1.8) in the general case, where the force F can be non-conservative. Eventually, one can find in Section 4.3
the proof of Proposition 2.10 where one establishes bounds on the bias of the free energy estimation and on the
bias on the computations of averages with respect to .
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4.1. Preliminary estimates for homogeneous diffusions

The next section is concerned with the sensitivity of the equilibrium measure of a diffusion with respect to
its drift, when this drift is in L? for some p. Consider the following process on T", with n > 1:

dX, = a(X,)dt + V2dW; (4.1)

with (W})>0 a classical n-dimensional Brownian motion on the torus T" and a € LP(T",R"™) for p > 2 with
p > n. We refer to [17] for a probabilist study of this SDE (existence, strong Markov and Feller properties,
existence and Hlder continuity of the transition kernel, etc.). In the following we take a PDE point of view,
namely we are interested in the existence, uniqueness and properties of a solution v in H'(T™) such that
Jpn v(x) dzz = 1 of the following equation:

Vo € HY(T™), / (ale) - Vp(z)w(z) — Viplz) - Tw(2) dz = 0. (4.2)

This implies in particular that [i.,(Le)r = 0 for all ¢ € C?(T™) with £ being the generator of (4.1).

Remark 4.1. Note that the Sobolev embedding H! — L9 for some ¢ such that % > % - % and the assumption

that p > n ensure that the integrals in (4.2) are well defined for all v, p in H'(T") and all @ € LP(T", R"™).

Proposition 4.2. Let M > 0 and p > n > 1 with p > 2. There exists C > 0 which depends solely on 9, p
and n, such that the following holds. For all a € LP(T",R™) such that ||a||z»rry < M, there evists a unique
probability density v, € H*(T™) that solves (4.2), and which is such that

[Valloo + 11/¥alloo + IWallg1(zmy < C-
Moreover, if vy is the solution of (4.2) with a replaced by b € LP(T™,R"™) with ||b]|z»(pny < DM, then
lva = vbll2(rny < Clla = bl L2(Tn).

Remark 4.3. In the case of a gradient drift a = —V A, the invariant measure v, is explicit: for all z € T"™,

1
vo(2) = Z—Ae*A(z), Za= / e A3 dz,

and the £>°-bound of Proposition 4.2 amounts to the continuous injection given by Morrey’s inequality Theo-
rem IX.12 from [5],
WLP(T™) — L>®(T™),  Vp>n. (4.3)

Indeed, if A € W1P(T"), then A € L*(T") and v, is bounded from above and below (and conversely if v, is
bounded above and below then A is bounded). In particular, since this injection is false for p < n, we see that
the condition p > n is necessary in Proposition 4.2 .

Proof. Step 1: R
First assume that a € C*°(T",R"). By Theorem 5.11 from [8], there exists a Markov process (Xi):>0

on R™ whose transition probability density is given by the fundamental solution of the equation 0;f; =
—div (a fi—V ft), where a is seen as a l-periodic function on R". Note that by Theorem 0.5 and Condi-

tion 0.24.A1 from [9], the density f; is strictly positive and depends continuously on the initial condition.
Moreover, ([8], Thms. 11.4 and 11.5) yield that (X;);>0 solves the stochastic differential equation (4.1) on R”.
Now, consider (X;);>o the image of (Xt)t>0 by the canonical projection from R™ to T™. Since a is periodic,
(Xt)t>0 solves (4.1) as an equation on T, and thus, using It’s formula, it is a Markov process (the proof is
the same as Theorems 11.5 from [8] in R™). Denote by (P;);>¢ the associated Markov semigroup on L (T").



THE ADAPTIVE BIASING FORCE ALGORITHM WITH NON-CONSERVATIVE FORCES AND RELATED TOPICS 545

The positivity and continuity in the initial condition of f~t implies that, for all ¢ > 0, there exists r; > 0 such
that for all z € T™ and all Borel set A of T, P,(X; € A) > rA(A), namely the process satisfies a uniform
Doeblin condition. In particular, for a fixed ¢ > 0, the Markov chain with transition operator P, is recurrent
and irreducible and thus, by Theorem 10.0.1 from [22], it admits a unique invariant measure v,. Now, for s > 0,
(Vo Ps) Py = (Vo P)Ps = v, Ps, which means that v, P is an invariant measure for P;. Hence by uniqueness,
Ve Ps = v, for all s > 0. In other words, v, is the unique invariant measure for the semigroup (P;);>o.

Now, let ¢ € C%(T"). Denoting by £ = a -V + A the infinitesimal generator of (4.1) and using It’s formula,
one gets for all t > 0

t
0 = vo (Pip) —¢) = / VP Lipds = tv,(Ly).
0
In other words, v, is a solution of the weak equation
Yo € C3(T™), Vo (Ly) = 0. (4.4)

By elliptic regularity (e.g., [14] applied to v, seen as a periodic measure on R™), v, has then a C*> density (that
we still denote by v,) and, integrating by parts, we can write (4.4) as

[ @) Veloma() - V(o) Vra()) dz = 0

for all ¢ € C?(T™) and thus, by density, for all ¢ € H*(T"). This is (4.2).
Define 7, on R™ by 7,(x + k) = v,(x) for all k € Z™ and = € T™ (seen as [0, 1]™). It is such that

Vo € H'(RY), / (a2) - Ve(u(z) — Volz) - V(z)) dz = 0,

where, again, a is seen as a 1-periodic function. Since p > n, using the notations of [4] and applying the Harnack
inequality Corollary 1.7.2 from [4], with the operator Lj, 40 (I, being the identity matrix of size n) and the
domain Q = [—1,2]™ which stricly contains [0, 1], we get that there exists C; > 0 depending only on M, p and
n such that:

sup 7g(z) < Cy inf  7g(2).
26[0,1]" ZE[O,I]"

Using that / v, = 1, this implies that
’H"n

1< sup vy, <Cq inf v, <C1. (4.5)
2€Tn z€Tn

Taking ¢ = v, in (4.2) and using the Cauchy-Schwarz inequality yields

[ownl = [ Vv < alelole
Tn Tn

VVa”LZ(’]I‘n),

hence ||Vvg| p2(rny < MCy. Consequently, using the Poincaré-Wirtinger inequality (3.5), ||vallg1(rny < Co for
some Cy > 0 that depends only on 90, p, n.

Step 2: Now we consider a € LP(T",R"), with ||a||zs(rn)y < 9, and proceed to prove the existence of a
solution v, to equation (4.2). Let (ax)ren be a sequence of C*° functions that converges to a in LP(T™) and
such that |lag|/zs(rny < MM for all k& € N. Let (v, )ren be the associated solutions of (4.2) given in Step 1.
From Step 1, (Va, )ken is bounded in H'(T™), and thus we can consider a subsequence that converges weakly
in H' and strongly in L? to some v, € H!(T"). The weak convergence in H! implies that v, solves (4.2) and
|Vall 11 (rn) < C. The L2-convergence implies that v, is a probability density.



546 T. LELIEVRE ET AL.

Step 3: Let us now consider any solution and establish bounds similar to the previous step and a Poincaré
inequality. For a € LP(T",R"), let v, € H'(T™) be any probability density solution of (4.2). Using again ([4],
Cor. 1.7.2) and the fact that the mass of v, is 1, we get that 1/C; < v, < C; with the same constant C.
From this, as in Step 1, we also get that ||v,]| mi(tn) < Co, with the same constant Cy. The Poincaré-Wirtinger
inequality (3.5), together with the lower and upper bounds on v, classically yields a Poincaré inequality for v,.
Indeed, for any » € H'(v,), an @V, is the minimizer in R of ¢ — an(ap —¢)?v,, so that

[ (o fon)rs [ (o[ e)neaf (o[ e)

c ,
< \Y
4772 /’[;n ‘ <p|

Ct

< 472

: IVe|?v, . (4.6)

Step 4: We now proceed to the proof of the last part of the proposition, from which the uniqueness of v,
immediately follows. Let a,b € LP(T",R") with LP norms less than 9 and v,,v, € H*(T") be probability
densities solutions of (4.2) (with respective drift a and b). From the L*°-bounds on v,, 1/v,, vy and 1/v,
obtained in Step 3, we get that v}, /v, and (v,/v,)? are in H1(T"). Applying (4.2) for b with ¢ = v3,/v, as a test

v ()m-v ()
:/Tnb-V(Vb> v(") v(ua)
v (@)nlo G2 |
)@ ((2))-
()

S
|
<
SES

SEES

/ b-V(Vb>Vb— v
n Vg

where the last term of the above equality stems from (4.2) with drift a and test function ¢ = (1,/v,)%/2. As a
consequence, using the Cauchy-Schwarz’s inequality and the uniform bounds on v, and v, one gets:

() ")

< CFlIb = all L2 (om).- (4.7
L2(v,)

SIS

2

1%
=./<b—@-v<b)ub<(ﬁw—aqu>
L2(v,) n Vg

)

L2(Va)

i.e

Now, since

)

L2 (va)

2
19 = ValZaceny < IValloo /
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using the Poincaré inequality (4.6) with ¢ = v3,/v, (so that [L, pr, = 1) yields:

v(:2)

ol 2 .
ﬁ”b —allz(pny  (using (4.7)).

3 2
2 Ol
llve — VaHL?('Jrn) )

L2(Va)

Hence ,
CE
HVb _VaHLz(']I‘n) < i”b—aHLz(Tn) .

In the particular case a = b, we get that there is only one probability density v € H'(T") that
solves (4.2). O

4.2. Proof of Theorem 2.7

Proof. Let us recall that one can assume, without loss of generality, that 8 = 1 (see the change of variables at
the begining of Sect. 5). From now on, let us fix p = n + 1. Consider P+ the set of probability densities on T™
that are lower bounded by a positive constant.

Given a probability measure © € P, let

m(2,y)
(@)

Gr(x) = / —Fi(z,y) dy, VxeT™,

n—m

where 7¢(.) = / 7(.,y)dy. In the ABF case, set B, = G, and, in the PABF case, consider the Helmholtz

projection
Br = VH; = Pr20(Gr).

In both cases, given Lemma 15.13 from [2], for all p > 2, there exists a constant ¢* > 0 such that,
Bzl Lo (rm) < *|Grllprrm) < [ Flloo, (4.8)

in other words, for every 7 € P*, B belongs to the L? ball E = {f € L?(T™), ||f|lrrrm) < ¢*[|Flloc}. In
return, given B € E, consider the infinitesimal generator L = (F 4+ B) - V + A and denote by 7p its invariant
measure, such as given in Proposition 4.2 (in particular 7z € PT). Composing these two steps, we obtain an

application from FE to itself,
T:-F— FE
fr— B,,Tf'

The link with Theorem 2.7 is that a probability measure 7 is a stationary state for the non-linear dynamics (1.8)
if and only if the associated bias B is a fixed point of T". Proving Theorem 2.7 is thus equivalent to prove that
T admits a fixed point. This will be established thanks to the Schauders fixed point theorem ([10], Part 9.2.2
Thm. 3). One thus have to prove that 7" is continuous on (£, ||| z»(r=)) and that the family T'(E) := {T(B), B €
E} has compact closure in LP. We have already seen that T'(E) C E, which is a bounded subset of LP. From
the Frchet-Kolmogorov theorem Theorem IV.25 from [5], compactness follows from the following condition :

sup  sup |7 f — fllperm) — 0, (4.9)
2ER™,|2|<5 FET(E) =0

where 7, is the translation operator, namely 7, f(x) = f(z + z) for all x € T™.
Let us recall that from Proposition 4.2 there exists a constant C' > 0 such that for all B € F,

175l () + [7Blloo + 11/7Bll0 < C (4.10)
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and for all By,Bs € E,
||7‘(‘B1 — 7TBz||L2(Tn) S CHBl — BQ||L2(']1~m) . (4.11)

Continuity of T. Let B;, By € E and to alleviate notations, denote by 71 = 7p,, ma = mp, the associated
invariant measures. In both the ABF and PABF cases, using the same arguments as in (4.8) one gets:
IT(B1) — T(B2)lle(rm) < |Gy — Gyl Lo(Tm)-

Moreover, relying on inequalities (4.10) and (4.11), one has, for all € T™,

n—m fn'l x 7T2 T
m(x,y) — ma(x, (2, WEx—ng
g“ﬂ'm/”-m' | yif@c;( oo %(;)(Wg)(x) e

< IFInC® [ ma(oy) - male)| + [nf(e) ~ w(o)ldy

n—m

<2 FC [ i) - malzy)ldy
S 2”]:”0003”71'1 — 7T2||L2(Tn)
< 2/|FllooCHIB1 — Ballzz(rm) -
As a consequence, since p > 2, by Sobolev embedding,
IT(By) — T(B2)|lLorm) < |Gy — Grollowm)y < 26| F ||l CH By — Ba|lporm) ,
which proves that T is a Lipschitz function on (E, | - ||Le(1m))-

Remark 4.4. In the particular case where || F || is small enough so that 2¢*||F |l C* < 1, we directly get that
T is a contraction of the LP-norm, which yields the existence and uniqueness of a fixed-point.

Compactness. Fix B € E and let m = mp to alleviate notations. For z € R™, 7, commutes with the Helmholtz
projection so that, using Lemma 15.13 from [2],

||TZPL2()\)(G7‘-) - PLQ(/\)(G,T)”Lp(Tm) = ||PL2()\)(TzG7r - Gﬂ-)HLp('ﬂ-m) S C*HTZGﬂ- - Gﬂ—”Lp(Tm) .
Hence, in both the ABF and PABF cases, for all z € R™,
HTzT(B) — T(B)HLp(jan) < C*”TZGﬂ— — GTFHLP(T"L) .

Now, for all z € T™ and z € R™, using the same argument as in the proof of the continuity of T,

N T(@+zy) B m(z,y)
/ Fletzy) ey W /, Filey)Zey @

|G+ 2) = Gr(2)| =

< /nim (=F1(z+ z,9) + Fi(z,y)) M
7T(£L'+Z, ) 7T(£L', )
+ /n_m ~Fi(z.9) ( 7r5(:c+zy) - W5($y) ) dy‘

m(@+zy)  w(zy)
€(z+z)  wé(x) dy

< IV Flloo + [ Flloc /

Tn—m

< 2|V F e + 2] FlloeC? / (e + 2,9) — m(z, y)|dy

—m

< 2lIVFlloo + 2 FllocCPlTem — 7| 2y,
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where C' stems from (4.10) and (4.11). To bound the last term, write

2

1
/ |T(z + 2,y) — 7(z,y)Pdedy = / / z V(x4 sz,y)ds| dzdy
n O

n

1
S/ / |2|2|Vor (2 + s2,y)|*dadyds
O mn
= |2 Var3
< [z Vrl;-
As a conclusion, using (4.10):
I17.Gx = Grlliony < 12l (IVF Il + 2] FllC?)

so that (4.9) holds.

Consequently, there exists an equilibrium measure 77, which is continuous and positive, along with an asso-
ciated bias BZ. By Proposition 4.2, one has positive upper and lower bounds on 7% and, relying on the

Holley-Stroock perturbation result Proposition 5.1.6 from [3], 77 satisfies LSI(R) for some R > 0 and the
conditional densities y — 77, . (y) := L (z,y)/7L* (x) satisfy LSI(p) with some p > 0 uniform with respect to

x e Tm. O

4.3. Proof of Proposition 2.10
Let us conclude Section 4 with the proof of Proposition 2.10.

Proof. Let us consider the PABF algorithm. Again, without loss of generality, we suppose that 3 = 1. Fix
V € C%(T™), and define

§={(F,7L) e CH(T",R™) x P(T™)|||F + VV |l < 1, 7L stationary state for (1.8)}.

In particular, for (F,7nZ) € §, nZ is the invariant measure of the diffusion (4.1) on T" with drift a = F +
V(Hg o &). Moreover,

[+ VV]eo 1= || Flloo <14 [|VV]|oo

= [|GFlloe <1+ [VV]c.
By Lemma 15.13 from [2], for all p > 2, there exists ¢* > 0 such that
IVHE| Lo (zm) < CNGFlLrerm) < (A4 [[VV o),
which yields, by Minkowski’s inequality, for all p > 2
IF+V(Hzo&)llrn < (¢ +1) (1 +[VV]). (4.12)
Note on the other hand, that for all p > 2
| =VV +V(Hzo&)||rrirny < (14 )[[VV oo + " (4.13)

Denote by vz the invariant measure of the diffusion (4.1) on T™ with drift a = —VV + V(Hg o ), in other
words

1
V]-'(l’ay) = Te—V(m,y)+Hf(m) ) Zyy = / eV (w)+HF () qydy
vE n



550 T. LELIEVRE ET AL.

In the rest of the proof (F, 7)) € § is fixed and we are careful to give bounds which are uniform over §. Besides,
to alleviate notations, we simply denote by 7 = 72, v = vz, H = Hr and G = G .

Given the bounds (4.12) and (4.13), one can apply Proposition 4.2 with a drift a equal to either F+V(Hzo¢)
or —VV + V(Hgz o), which are both bounded in LP(T") for all p > 1 as shown above. As a consequence, there

exists a constant C' > 0 such that for all (F,n) € §,
[lloe + 11/¥lloo + Wl (zmy + 1T lloc + 111/7lloe + 17l z2(zny < C,

and
H?T — V||L2(Tn) < C”]:-‘r VVHL?(T") < C||f+ VVHoo . (4.14)

Notice that v has the same conditional laws (given z) than the Gibbs measure p, so that

f n—m vwv(x, y)e_v(377y)dy

v(z,y)
A = — .
VA(x) fwim e V@) dy /nim V. V(x,y) (@) dy
As a consequence,
IVA(z) — G(x)| = / V.V (e y)”(f’y)dw/ Fuog) MEY g
) om0 R ()

v(z,y)  7(z,y)

vé(z) wé(x)

<|F+ YV oo + ||VV||OO/

Tn—m

Using the same argument as in the proof of the continuity of 7" in Theorem 2.7 and (4.14),

/ n—m

l/(x, ) 7'('(33, )
<) e 'dygwg fo o )= ol

<2C%|lv = 7| L2(1my
<20 F 4+ VV s -

We have thus obtained that, uniformly over §,
IVA = Gllunmy < (14 2]V O F + TV |
Which yields, given ([2], Lem. 15.13):
IVA =V H||zom) = [[Pr2x) (VA= G) [lLoem) < [VA=Gllirm) < Kv[|F + VV]|oo. (4.15)

with Ky = ¢*(1 +2||[VV||xC*). This concludes the proof of the first point of Proposition 2.10. Concerning the
second point, first note that

i e b@y)e T On(@y)dedy [y Yz y)e” "z, y)dedy
v S e H@ w (2, y)dady B Jpm 7@ da ’

where we used Proposition 2.4 to see that since 7 is a stationary state of (1.8), 7 is necessarily the uniform
measure on T™. Notice that this expression is unchanged if H is replaced by H + ¢ for some constant ¢ > 0. As
a consequence, for the remainder of the proof and without loss of generality, we suppose that H is normalised
so that [p,, e " =1.

Using that

Zy
pdp = Z4 | ey,
Tn ZM Tn
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we are led to

‘ / vdp — Lp‘ z/Je Hotdqy — | wpe Ho%dr
’]I‘n
Ry (|2

< e (| 2

' + Hl/ — 7r||L1(T” )

' + v = L2 > . (4.16)

Besides,

Z, JpneVEvdady [l e AWda

Again, this expression is unchanged if A is replaced by A + ¢ for some constant ¢ > 0. In the remaining of the
proof and without loss of generality, we suppose that A is normalized so that me A— H = 0. As a consequence,
by the Poincaré-Wirtinger inequality Part 5.8.1 Theorem 1 from [10], there exists a constant K > 0 (that
depends only on m and p) such that:

ZV an e*(V(w,y)*H(I))dxdy me e*(A(w)*H(z))dx

|A = H|rormy < K|VA = VH| o (rm).
Thus, using (4.15):
A= Hlwreamy = [|A = Hl orm) + [VA = VH|[ o (m)
< (K+ 1)Ky |[F + VV|l.
Now, (4.3) yields the existence of K > 0 such that [|[A — H| . < K||A — H|lw1.»(Tm), hence

|4 = Hlloo < Kv[|F + VV o,

where Ky 1= K(K + 1)Ky = K(K 4 1)c*(1 + 2||VV || o C*). Then, using that |e® — 1| < |alel?! for all a € R, for
all z € T™,
|6—A($)+H(w) _ 1| < f(v”f—i- vaOOGKVH}_-i-VVHOO ,

so that, using the fact that / e =1,
’Zl’l’ |f1rm 7A+H_1|+’f11‘m _1|
n Jpm e A
me ‘e A+H _ 1| _|_me 7H|e A+H 1|
o € H-TH=A]

< 2Ky ||F + VV |02 EVIF+V VI
< 2Ky | F + VV | KV
Combining this with (4.14) in (4.16), we have obtained that

Jm e AtH

Jom e -

N

. H e—Hof |OO N _
Tn wd:u - Iw‘ < Tm B_H (2Kve2KV + C) ||F + VVHOO
e Hoo APV (2?7 1 C) [IF + TV o
Jmet

< Wl lle™ e o

S (2Kve* 7 4 C) IF + TV oo
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which yields the conclusion.

5. LONG-TIME CONVERGENCE

In Section 5.1 one can find the proof of intermediate results that will prove useful for the proofs of Theo-
rem 2.11, Theorem 2.13, and Corollary 2.15. Said proofs can respectively be found in Sections 5.2, 5.3 and 5.4.
In all this section, to alleviate notations, we will denote by 7, (dropping the F superscript) a stationary measure
given by Theorem 2.7. First and foremost, let us introduce the concept of total entropy and its macroscopic-
microscopic decomposition. We define the total entropy as:

E(t) = H(m|moo)-
In the same manner, the entropy between the marginals in « € T™ (called macroscopic entropy henceforth) is
given by:

Ea(t) = H(mfns,).
Note that accordingly, one can define the macroscopic Fisher information:

Tn(t) = I(mg|ms,).
The entropy between the conditional measures at a given x € T™ (called local entropy in the following) is:

em(t, x) = H(mt 2|Too 2),

m(x,.) and e () = Too (2, )
fw T

(T T30 (T

E,.(t) = /m em (t, ) (z)dz.

One has for all ¢ > 0, E(t) = E,,(t) + Ep(f) (see [19], Lem. 1).

where 7 ,(.) =

. Now, let us introduce the so-called microscopic entropy:

Note that we have the following bound on the microscopic entropy:

Ep(t) = / em(t,x) 7t (@) de = [ H(Te|Toow) 78 () da
m T7T2r

1
<5 I(7y 2| Tooe) 75 (2) dzz (using Thm. 2.7 (ii)).
pPJrm

Since V, In ( Mt ) =V,In <7Tt>, this leads to
Too,x Too
Enlt) < - / V,In [ —-
=20 e | Y Moo

The proofs of both Theorems 2.11 and 2.13 will rely on the following intermediate results. Assumptions 2.3
and 2.6 are enforced. Here, F can be either conservative (F = —VV) or not, and (7so, Boo, Goo) denotes a
stationary state of (1.8), with R, p the corresponding constants given by Theorem 2.7.

2
Tt (51)

5.1. Intermediate results

Lemma 5.1 (Bound on Gi(z) — Goo(2)). For allt >0 and x € T™:

|Gi(z) — Goo(z)| < M %em(t,x).
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Proof. Note that, given Theorem 2.7 (ii), since 7 , satisfies a log-Sobolev inequality with constant p > 0, it
also satisfies a Talagrand inequality with constant p. Now, let x € T™ and v, € II(m 4, Too,) be a coupling
measure. Then, one has:

Gy() — Goo(2) = / (~Fi(a.y) + Fila.y)) va(dy, dy)

n—m

<M ly —v'| vo(dy,dy’) (by Assumption 2.6)

Tn—m

§M</ ) Iyy’lzvz(dy,dy'))

Taking the infinimum over II(7m; ;, Too z) yields:

1
2

Gt(.ﬁ) — G (1') < MWQ(TFt,l'a 7700,7;)

2
<M ;H(m)ﬂﬂ'o@,x) (by the Talagrand inequality (2.2)).

This yields the conclusion, since H (7 z|Too,z) = em(t, ). O

Lemma 5.2 (Total entropy). One has,

dF _ e 9 Tt
E = /Tn |Vln (71’00> | Tt +/]Tn (Bt Boo) (a?) Vm In <ﬂ_00> Tt.

Proof. If £, denotes the infinitesimal generator of (1.7) and L} its formal adjoint in L?(T") then the Fokker-
Planck equation (1.8) can be rewritten as follows:

8t7rt = E; (7Tt).

Denote by Lo, = F -V + By -V, + A the infinitesimal generator associated to the stationary state (oo, Boo)-
One has:

dE
—_— = 8t7rt + at’ﬂ't In (7Tt>
de Tn Tn Too

Uy

= [ Li(m)ln ( ) (since Oy = 0)
™ Too ™

= / ‘Ct <1I1 <7rt)> Tt
n Too
- / (Loo + Lt — Loo) (m (“)) -
n Too
= / Lo (ln (ﬂ-t>> Tt —|—/ (Et — Eoo) (ln <7Tt)> T¢.
n Too n Too
Since L, is the infinitesimal generator of a diffusion, it follows that, for any given functions a and f:

Lo(a(f)) = ' (Loo(f) +a” (HIVII,
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as mentioned in ([23], Part 2.3). Applying this with a(.) = In(.) and f = Tt e respectively obtain:

Too
T T, Vs T 2 Vs
fooe (m () [ (e () - () [
n oo n Tt Too Tt Too
T T 2
:/ Lo (t) woc—/ vm(t)
Too Too
T 2
Vin <t>
s Too

T (since 7o, is invariant for L)
/ (L — Loo) (m (”t)) = / (B; — Bso) - Vo In (“) -
n Too n Too

which concludes the proof. (Il

and

5.2. Proof of Theorem 2.11

Let us prove the convergence of the ABF and PABF algorithms in the conservative case, namely when
F = —VV. In that case moo = pa is invariant by (1.8) (recall p4 is given by (1.5)), with a corresponding
Goo = VA, so that B, = VA in both the ABF and PABF case.

Lemma 5.3. In the conservative case (F = —VV and 7oo = pa), for allt >0 and x € T™:

_ ) = n m(z,y) \ m(zy) N 7 (z)
Gellr) = VA )_/"*mvwl (”oo(zvy)) i (2) vl (wgo(:c)>.

Proof. Knowing that 75, = 1, one has, for a fixed z in T™:

3
/ V. In (“) Ty~ V.In (2)
n—m Moo / ¢ Too

3
:/ V”t-ﬂdy—/ Volee | Tt gy~ Yo L g, n(1)

n—m Tt ﬂf Moo ﬂf Trf
_ Vﬂrf ViToo T q Vxﬂ'f
=T F T e YT T
’n't n—m [e'e) ’]Tt ’]'['t
s
—— [ Ve View) + A Ty
n—m ’]Tt
— [ Ve Ty [ VA Ty
n—m ’ﬂ't Tn—m 7Tt

]

In the following proofs, an integral over T™ is with respect to (x,y) € T™ x T"~™  an integral over T™ is with
respect to x € T™, and an integral over T"~" is with respect to y € T"~™.
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Proof of Theorem 2.11.
Step 1: Since for all ¢t > 0, E(t) = E,,,(t) + Eam(t), using (3.1) and Lemma 5.2, one has:

dE—m:f/ vm(“) m+/ (BtVA)~Vxln<7rt) 7rt+/
dt n Too n Too m
:—/ Vln(:t) 7Tt+/ (Gt—VA)VI1H<T?—t) 7Tt+/

Jt = / (Bt — Gt) . VT In (:) Tt

2

2

where

Now, using Lemma 5.3, one gets:

dE,,
W**/n Vl“( >
5
_ VzIn E Vln( )7Tt+/
Tn Moo Too m

7Tf+// Vln(ﬂt)dyVhl( )ﬂt
n n—m OO 7TOO

7T§ ’ I3
Vzln 7.‘.75 7Tt +Jt

555

On the one hand, using Cauchy-Schwarz’s inequality, the first terms in the right-hand side can be bounded as

follows:

2

// Vln( )dyVln( )Wt:/
n JTn—m Too Too
<),

/ V. In () o
n—m Too

T 2
V:In (t>

Too

1
my

Tt

On the other hand, factorising the two next terms in the right-hand side, and using again Lemma 5.3 gives:

s S\
— V.In 5 -V ln< )m—l—/ Veln Tt
Tn T30 Too m o
7T§ 71'5 Tt T I3
= Veln| — | - | Voln| —/— | — Veln | — | — | 7;
m ﬂ'go 7]'50 n—m 7TOO ﬂ'f
5
- / Voln [ 2L} (VA - Gy
m T30

Using once again the Cauchy-Schwarz’s inequality, one gets:

dE Tt
1 -
At /n Vy n(woc>

V]
W=

2 1

T + (/ |VA—Gt|27Tf> /

Wf + Jt.
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‘:\
I+

Eventually, recalling that [, |V, In (
e>0andallt>0:

) |28 = In(t) and relying on (5.1) and Lemma 5.1, one has, for all

gm

s

f?<—%ﬂdw+MVE¢&ﬁhﬁm®+L

M2
S 72pEm(t) + 2 V EpEm(t) 2p2<€IM(t) =+ Jt

MJM@+L. (5.2)

Step 2: In order to set the idea of the proof, let us first treat the case of the ABF algorithm, where one simply
has J; = 0 for all ¢ > 0. Inequality (5.2) yields, for all € > 0 and all ¢ > 0:

dE,, M?
a < —(2-¢e)pEn(l) + %IM(I%)’

and using Gronwall’s lemma, one has, for all e > 0 for all ¢ > 0, :

2 ot
/ In(s)e=(B=ort=s) g,
0

E.(t) < E,, —(2—¢e)pt ; 7
(1) < En0) 0+ 2

Remark 5.4. Note that in the ABF case Lemma 12 from [19] or the PABF case with a Helmholtz projection
done with respect to the marginal density 7rf Corollary 1 from [1], one has the exponential convergence towards
zero of the macroscopic Fisher information Ins(t). This is not the case when one considers the classical Helmholtz
projection with respect to the Lebesgue measure: indeed, the density wf does not satisfy the heat equation
anymore, but an elliptic equation (2.3) with a null-divergence drift. Having no additional information about the
regularity of the drift, one cannot prove the convergence of I/(t) towards zero in the long-time limit as done
in [1,19].

By Proposition 2.4, for all t > 0, Ep(t) < Epr(0)e=87t. Since Iy (t) = —E4,(t), one gets:
0<F(t):= / Ini(s)ds < En(t) < Epr(0)e 87t vt > 0. (5.3)
t
Consequently, relying on (5.3) one has, for all £ > 0, for all ¢t > 0:
¢ ¢
/ Ing(s)e=(3=9rt=9) 45 — —e_(2_8)pt/ F'(s)e=9)rs 4
0 0
t t
= e (2—e)pt (/ F(s)(2 - 6),06(276)‘75 ds — [F(s)e@*s)’)s} 0)
0
t
< e~ (et ((2 - g)pEM(O)/ e~ (BT —(2=€)p)s qg F(t)e?=o)rt 4 F(O))
0
t
< e (@t ((2 - s)pEM(O)/ e~ B =(2=9)p)s g F(t)e=2rt ¢ EM(O))
0
t
< Ep(0)e—e)et ((2 - a)p/ e~ 87 =(2=2)p)s qg 4 1)

0

We distinguish between two case:
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(i) If 872 = (2 — €)p, one gets:
/t Ing(s)e@=ort=9) 45 < EM(O)e_S’th (8mt+1).
0
Since for all § > 0 and all £ > 0, one has t < %e‘”, choosing § = ¢ yields, for all ¢ > 0:

' 82 5
/ _[M(S)e_(2—5)ﬂ(t—s) ds < E]V[(O) (8 v 1> e—(87r —a)t.
0 e
(ii) If 872 # (2 — €)p, one gets, in all cases (872 > (2 —&)p or 872 < (2 —¢€)p):

/t Ing(s)e=2=9P(=9) 45 < E3,(0) _ @2=ep V1) e BT A@=e)0)
0 - 872 — (2 — €)p| :

Which yields,

2 ot
Em(t) < Em(o)e—(2—s)pt+£/ IM(S)e—(Q—E)p(t—s) ds

2p%e Jo
2

M 872 (2—¢e)p (872 —e)A(2—
20 (v V1)) e-(@r-ane-anr,
2p%e 2(0) ( ee |87 —(2—¢)p| ¢

< <Em(0) v

Conclusion: for the ABF algorithm, we have obtained that for all € > 0, there exists K = K(¢) > 0 such that
for all t > 0,

B (t) < K:e—((87r2/\2p)—5)t7

M2 872p (2p—¢)
where K ( (O)v2p5 M(O)< ee v|87T2—(2P—5)|v >)

Step 3: Let us now concentrate on the PABF case, and let us prove an upper bound on J;. For ¢t > 0, recall
the notation VH; := Pp2(,)(G¢), so that B; = VH;. Similarly, let us introduce, for all ¢ > 0,

Vﬁt = PL2(7Tf)(Gt)'

Recall that Pr2(,(f) stands for the Helmholtz projection of a vector field f with respect to the measure v. In
the conservative case one has 7o o¢ e~V 14, so that G = VA. Since G+ is a gradient, one has:

VHoo = Pr2(3)(Goo) = VA =P 5 | (Goo) = Voo,

On the contrary, there is no reason for VH; and VH, to be equal at a fixed time ¢ > 0. Let us decompose

Jr = / (VH; — Vﬁt) Vg In (:) e +/ (Vﬁt —Gy)-ViIn (;T.t) .

e} oo

As proven in Lemma 6 from [1], relying on the fact that since V, In (7o) = =V (V — A), 75, = 1 and VH, =
P,. (Ws)(Gt), one can show that the last right-hand term is negative. One consequently has:

Tt

/H(VHt ~VH,)V,In ( > T = /n(vm —VH,) -V In(m;) mp — / (VH, — VH,) -V, In(r.) m

e} n

:/ (VHt—vFIt).vwa—/ (VH; — VH,) -V, In(mo) 7

n

N £ -
=/ (VH, — VH,) - V,In (”g) m —/ (VH, — VH,) -V, In(mo0) .
T™ n

o
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Hence, in the PABF case,

Ls/’Wm—vmwum( )ﬁ—/ﬂvm—vmwuw%wt

3
ERAEN

= / (VH, — VH,)V,In ( ) ¢ —/ (VH, — VH,) (VA — Gy) ¢
m T, Tm

RS WAL )
< (/ |VHt—VHt27rf> / len<7r§t> | + (/ |VA—Gt|27rf)
m m T30 m

< (/ |VHt—VI~{t27rf>% (me\/f\/M). (5.4)

s

Step 4: We will now consider times such that ¢ > 1. Since VH, = PLQ(Wg)(Gt), one has:

/ |VHt — Gt‘zﬂ'f = / |Vﬁt — thgﬂ'f +/ |V}~It - VHt‘ZTFf,
Tm Tm T™

which yields:

/|VHt—VfIt|27rf:/ |VHt—Gt|27r§—/ \VH, — Gy|*n;
™ Tm Tm
<lnflle [ IVH =GP~ [ |V~ GiPrf
Tm Tm™
<lnflle [ IVH =GP~ [ |V~ Gifrf
Tm Tm
< lnflle ([m] 1) [ 198 - Gt
< Inflloe ([ 1) [ 168

< et (o] 1) e

where we used that, under Assumption 2.6, ||Gtlloc < ||[VaV]loo < M. Now, from Proposition 2.5, there exists
C' > 0 such that, for all ¢t > 1:

780 <1+ Ce™™t  and  |[1/75]lc0 <14 Ce 4t

This yields the existence of a constant C' > 0 such that, for all ¢ > 1:

(/ \VH, — VH,|? Wf) < Ce 2,
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and, for all e > 0, for all t > 1:

Jy < Ce 2t <\/E(t) + M\/z\/Em(t)>
< Ce2mt <\/E(t) + 24/ ;j;\/spEm(t)>

C? M?C?\ .2
SEpEm(t)-i-I]V[(t)-F <4+ 2[)26 > e .

Hence one gets:

dE 2
d—t’” < —(2—=28)pEm(t) + K1In(t) + Koe™ ™, Wt > 1,
with 2 ~2 272
M c?  M*C
K =Ki(e) =14 — Ky = Ky(e) = — + ——.
! 1) + 2p%¢’ 2 2(8) s 2p%e
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From now on, let us fix € € (0,1) and denote by r. := 2(1 — ). Using Gronwall’s lemma yields, for all ¢ > 1:

t
Ep(t) < Ep(1)e™ e " + / Kyl (s)e mPt) 4 e im s -rer(t=9) g,
1

t
e Let us first consider, for all t > 1, [ := Kl/ Ini(s)e7=P=%)  As done in Step 2, relying on (5.3), one has,
1

for all t > 1:
t
L = —K1e_"5pt/ F'(s)e™r* ds
1
t
= Kje Pt (rep/ F(s)e"™*ds — F(t)e"="" + F(l)e“p>
1

t
< K1 Ep(0)e =Pt <r5p/ e~ (B —re)s g5 4 e‘<8ﬂ2_r€p)> )
1

We distinguish between two cases:

(i) If 872 = r.p, one gets, for all ¢ > 1:

I < Ky Ex(0)e ™8 (872 (£ — 1) + 1)

—1-6

and, since (t —1) < %

—1—¢
I < K1 Ep(0)e 87t (87#6@“ + 1>
S

—1—¢

e

< K1 Ep(0) <87r2 .

v 1> et
(i) If 872 # r.p, one gets, for all t > 1:

I; < KlEM(O) <|87T2T€—p'rp v e(STrerp)) 67(8772/\7"5;;)15'

edt for all § > 0, considering § = ¢, one gets that, for all ¢t > 1:
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In any case one has, for all ¢t > 1
I < ,Clef((&njfe)/\rsp)t

)
2

2p%e

—1—¢

En(0) (8m2S— v TP e 1) S,
€ |872 — 7 p

where ’Cl = ]Cl(€) = <1 +

t
e Now consider, for all t > 1, Iy := Kg/ e~4m s —rep(t=9) 45 We distinguish between two cases:
1

(i) If rep # 472 then, for all t > 1:

t
KZ/ e—47r2s—r5p(t—s) ds < Ky 67(47r2/\7‘5p)t.
1 T |4n? —repl

(i) If rep = 472 then, for all t > 1:

t
KQ/ 6747r257r5p(t75) ds = K267471—2t(t _ 1)’
1

—1-5

and, since (t — 1) < ¢—5—e° for all § > 0, considering § = ¢, one gets that, for all ¢ > 1

—1—¢

t
KZ/ e—47r23—r5p(t—s) ds < K2€ 67(471’275)15'
1 g

In any case one has, for all ¢ > 1:
I < K:2€—((47r2—5)/\rep)t’

Ci,g M2C~¢2 1 6_1_5
here Ky = Ka(e) = [ = Y >
where Ky = K5 (e) ( 17 2p2¢e ) <|47T2 —rep) € ) -

Hence, recalling that r. = 2(1 — €) one gets that for all € > 0, for all ¢t > 1,

Em(t) < Em(l)erap e Tept + Kle—((swz—a)/\rsp)t + K2e—((4ﬂ'2—6)/\'f’5p)t

Kse™ ((47r2/\2p)75)t7

for some K3 = K3(e) = (Em(l)ezp’a VKV l@g) > 0, where

3 |872 — (2p — €)]

- c?  M?C? 1 2pe_(1+%
Ko=|—+ \%
4 pE [472 — (2p —€)| 5
Step 5: It remains to treat the case where ¢ € [0, 1]. We have:

1
_ z 1
< [ - vm%f) < 1§ Eagomy

1
From (3.12), there exists Cy > 0 such that for all ¢ € [0, 1], ||7rf||z2(Tm) < (3, and, using Lemma 15.13 from [2],
there exists Cy > 0 such that for all ¢ € [0, 1],

B M2 1 2 *(lJrzip) 20 —
Ky = (1 + ) En(0) Om7p v (20 —¢) Ve~ B7=(20-9)) /1
pe

VH;, — VH|pamy, Vte[0,1].

IVH;||Larmy < Cal|GellLarmy < Cul|Flloo < Ca|[VV]loo < 00.
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Similarly, one has ||V.E[tHL4(T7n) < C4|IVV ||oo- Hence inequality (5.4) becomes, for all € > 0 and for all ¢ € [0,1]:

Ty < 20504 VV ]| s (@(t) +M\/§\/m>
< 20,0419V (mw = m)

9 2M?
SEpEm(t)'i‘IM(t)-F(CQC4HVVHOO) 1+ €p2 .

It yields, from inequality (5.2), for all € > 0 and for all ¢ € [0, 1]:

dE,,
dt <S —TepEm(t)+K1IM(t)+K2,
with ) )
M 2M
K, = K1(€) =1+ 2§p2, Ky = KQ(E) = (CQC4||VVHOO)2 (1 + €p2 > .

The Gronwall’s lemma yields, for all € > 0 and for all ¢ € [0,1]:

t

t
En(t) < Ep(0)e Pt + Kl/ IM(s)ef’“Ep(tfs) ds + KQ/ e TeP(t=5) g
0 0

oo K
S Em(o) + Kleo/ IM(S) ds —+ 72 (1 _ e—rgpt)
0 Tep

K
< Ep(0) + K1 Ep(0) + . z,

g

where we used (5.3). Hence, for all € > 0 and for all ¢ € [0, 1]

K2> o(Ur*A20)—¢) 4 oo

Em(t)e((‘“f“?f’)’f) < (Em(o) + K1 Ep(0) +
Tep

Conclusion: for the PABF algorithm, we have obtained that for all € > 0, there exists C = C(g) > 0 such

that, for all ¢ > 0,
Em(t) < Ce—((47r2/\2p)—a)t.

Recall that by Proposition 2.4, Ey(t) < En(0)e=87¢ for all ¢ > 0. The decomposition E(t) = Ep(t) + En(t)

concludes the proof.

5.3. Proof of Theorem 2.13
Let us prove Theorem 2.13.

Proof. Using Lemma 5.2 one gets:
e _ _ / Vin (Wt)
dt n Moo
ey
" Too

2

m+/ (B, — B)-V,In (f) o

2 :
m+(/ |Bt—B|27rf> (/ vxln(“)
™ n Too

1
2
Tt

d

(5.5)
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Step 1: Let us first consider ¢ > 1. In the PABF case, since an orthogonal projection contracts the corresponding
norm, for all ¢ > 1:

/ VH, — VHa[*r§ < || / VH, — VHa[?
Tm Tm
suwfuoo/ Gy — Go?
'JI“"L
< I loclt/7f o | 1Gs = GoclPf
< (1+ce*4’f"‘t)/ Gy — Goo|?,

for some C > 0 according to Proposition 2.5. Together with Lemma 5.1 and the microscopic log-Sobolev
inequality (5.1), we have thus obtained for all ¢ > 1, in both the ABF case (where B; = Gy and By, = G ) and
PABF case (where B, = VH; and Boo = VHy),

</ |B; — Boo|27'(f> <V1+4 C’e47r2tM\/§\/Em(t)
m p
<V1+Ce 4™t M 2 L (/

Tt
Vyln | —
p2p \ oo | * <7TOO>
m \ |2 M
Vln(t> T+ —V 1+ Ce4m% (/
Too p

2
7Tt>
M
< (—1 +—+ c’e%gf) / IV In <7”> 2.
2p T Too

with C' = M+/C/(2p). Since we assumed M < 2p, there exists ty > 1 such that for all ¢ > ¢,, the right hand
side is negative:

1
2 2
71't> .

As a consequence,

n

[N
N
T

Tt

M
—1+ oY Cle= 2™t = —a(t) <0, Vt>tp.
0

And, given the logarithmic-Sobolec inequality of constant R > 0 satisfied by m:

%f < —2a(ORE(t) Vi > to.

Hence by Gronwall’s lemma, for all ¢ > #g:

E(t) < E(ty)exp (—QR t:a(s)ds> = FE(top) exp <—2R (1 - gﬁ) (t—to) + gf)

Step 2: As for times ¢ € [0,%o], as in the third step of the proof of Theorem 2.11, there exists Cy > 0 and
C4 > 0 such that for all ¢t € [0, t]:

1
2
(/ |BtBoo2w§) < IS 1allBe — Bl < 2C5C4 ] Fe.
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Inequality (5.5) becomes, for all ¢ € [0, %o):

< [on(2)

< C3CEIIF )%

Nl

2 2

Tt

o+ 20504 || Flloc / ’vxln<“)
T T

oo

Hence, for all t € [0, to]
E(t) < E(0) + (CoC4|| Flle) t,

and
M M

EWROH) < (B(0) + (CoCall Fll) to) 2R 8)0
which concludes the proof, relying on the same argument as in the proof of Theorem 2.11. O

5.4. Proof of Corollary 2.15

Proof. Similarly to the previous proofs, using Lemma 5.1 and Proposition 2.5, there exists C' > 0 such that, for
all t > 1:

/ Gy — GooPde < [|1/mS / Gy — G|

21

< (1+Ce ™) B, (1)
P

2M
< (1 + Ce—4ﬂ2t)7Ke—At’
p

where we used either Theorem 2.11 or 2.13.
For ¢ € [0, 1], we simply bound

/ G- Glde <2 |72

This concludes the ABF case, for which B; = G; and Bss = Goo. Besides, the L?-norm is decreased by the
Helmholtz projection, which concludes the PABF case. O
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