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ON OPTIMAL CLOAKING-BY-MAPPING TRANSFORMATIONS

YVES CAPDEBOSCQ!*® AND MICHAEL S. VOGELIUS?

Abstract. A central ingredient of cloaking-by-mapping is the diffecomorphism which transforms an
annulus with a small hole into an annulus with a finite size hole, while being the identity on the
outer boundary of the annulus. The resulting meta-material is anisotropic, which makes it difficult to
manufacture. The problem of minimizing anisotropy among radial transformations has been studied
in Griesmaier and Vogelius [Inverse Prob. 30 (2014) 17]. In this work, as in Griesmaier and Vogelius
[Inverse Prob. 30 (2014) 17], we formulate the problem of minimizing anisotropy as an energy mini-
mization problem. Our main goal is to provide strong evidence for the conjecture that for cloaks with
circular boundaries, non-radial transformations do not lead to lower degree of anisotropy. In the final
section, we consider cloaks with non-circular boundaries and show that in this case, non-radial cloaks
may be advantageous, when it comes to minimizing anisotropy.
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1. INTRODUCTION

A central ingredient in the construction of (approximate) cloaks by the passive cloaking technique, known
as “cloaking by mapping”, is the diffeomorphism, which transforms an annulus with a small hole into an
annulus with a finite size hole, and which is the identity on the outer boundary of the annulus. The push-
forward of the background coefficient (say, the identity matrix) with the diffeomorphism represents the meta-
material needed for the cloak, and the finite size hole is the area that may be used as a “hiding place” [§].
The fact that the diffeomorphism is the identity on the outer boundary ensures that the perturbation in the
“far field” is that corresponding to a small inhomogeneity. The corresponding “lack of cloaking” /visibility
can be estimated by the volume of the small inhomogeneity. The required meta-material is anisotropic, which
presents a problem when it comes to actual manufacture of the cloak. Typically a radial affine transformation
has been used [4,5,8-10], however, a very natural question arises, namely : “are there transformations that
lead to lower degree of anisotropy than the radial affine transformation?” In [6] it was shown that there
are indeed better radial transformations than the affine, when it comes to minimizing anisotropy. In that
paper the meta-material obtained by “optimal radial transformation” is also shown to be quite related to
meta-materials obtained by other cloak enhancement strategies, employing additional layers [3,7]. The focus
of this note is to produce very strong evidence for the conjecture that when the cloak takes the shape of
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a classical annulus, non-radial transformations do not help in reducing the degree of anisotropy. Like in [6],
we formulate the problem of minimizing anisotropy as a variational problem (minimization of an appropriate
energy). Corollary 4.4 summarizes our main results. Broadly speaking, we show that

— There exists a radial transformation, which is a stationary point for the energy.
X

— This radial transformation has smaller energy than all other transformations with “directional field” Tl
— If the amplitude is kept fixed and radial, then any change in the “directional field” away from ﬁ will increase
energy.

In the final section of this note we consider the case when the outer (and inner) boundary of the cloak are not
circles, and we illustrate how the optimal radial transformation for the circular case translates into a non-radial
(optimal) transformation for a non-circular cloak.

2. PRELIMINARIES

For r > 0 we set
B,={zeR*:|z|<r}, and C,={2z€eR®: |z|=r}.

Given 0 < € < 1/2, we shall use the notation ® for a bijective diffeomorphism B; \ B. — B \ By with
o e C! (E\ Be; By \ B%>, and @l e C! (E\ B%;B71\ BC). We furthermore impose that

®|o, = 1d, and ®(Ce) = Cy.

N

One such transformation is the radial affine transformation, given by

|x] — 1 L)
T— | —0—— —
2(1—¢) ||
The push-forward of the identity matrix with the diffeomorphism ® is given by

®1(@()) = Tt par ()

This is a positive definite matrix, and since we are in two dimensions, with determinant 1. Let 0 < A1(x) <
1 < Xg(x) denote the eigenvalues of ®«[I](®(z)). A natural measure of the degree of anisotropy of ®«[I] at the
point ®(x) is

(@) — 1]+ Pa(@) — 1] = da(@) — M(2) =/ Oa(@) - M(2)?
= /() + da(@))? — 4.

To minimize this we must minimize trace ®«[I](®(x)). As a way of minimizing the aggregate anisotropy we shall
seek to minimize!

L,(®) = / (trace ®«[1])P(®(z)) dx
B1\B
for a fixed choice of 1 < p < oo, and

Io(®) = max trace®«[I|(®(z)) = max trace®«[I](y),
ZEGBl\Bg yEBl\B%

n a slight deviation from [6], the domain of integration of the energy functional is B; \ B, not the transformed domain B;\ B .
2
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corresponding to p = co. Note that A is an eigenvalue for ®«[I](®(z)), with eigenvector v, if and only if A is an
eigenvalue for

Dq)TD(I)( )
det DB
with eigenvector D®7 (z)v, and thus
DO®"D®
trace @« [I](®(z)) = trace [detD@J (z).

Proposition 2.1. Let ® be represented in terms of its polar decomposition

® = exp(1))¢,
where the directional field ¢ is in C*(By \ Be;SY) and the logarithmic amplitude 1 is in C1(By \ Be;R). Then
trace(DOT DP) = |<I>|2(|qu5|2 + |D1/)|2).
Proof. Differentiating we find
D® = exp(¥)¢p D" + exp(1p) Do

Since ¢T¢ = 1, we have
#TD¢ =0, and DopT ¢ = 0,

and therefore
D®" D = exp(2¢) (Dy¢" + Do") (¢Dyp" + Do)
= |2]*(D¢T D¢ + Dy DYT).
By taking the trace we arrive at the desired conclusion. O
It is well known that ¢, being in C* (E\ Be; 81)7 admits a canonical lift § = arg(¢) € C* (E \ B; R/QWZ)2

such that
¢ = (cos,sind)" .

We write
X

0-1 T
']_{1 0], er—m, and eg—Jm~

Proposition 2.2. The matriz D¢ has rank one; furthermore
Range(D¢) = Span(¢)*, and Ker(D¢p) = Span(DO)*.
We denote by Dﬁ@ the angle defined by

—— 1
cos(Dw,DH) = [pypa DY Do and
—— 1
sin(Dv, Do) = TDorpa et Do)
Th
b trace @ «[I](®(x)) = ! ( |6 + |Dw|)(x) > (|D0 + |D1/)|> (2)
sin(pﬁo)‘ [Dy| | DY ~\IDy|  |D8|

with equality only when D - DO = 0.

2A function 6 : By \ Be — R/2nZ is an element of C1 (B1 \ Be; R/27Z) iff given any point z € By \ Be there exists an open
neighborhood w,, of z, relative to By \ B, and a representative of @ (mod 27) that lies in C! (wg;R). Notice that the globally defined
derivative of € C(By \ Be; R/2nZ), D0, lies in C°(B1 \ Be; R?).
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Proof. We calculate
D¢ = (J¢)DoT,

which immediately leads to the statements about Range(D¢) and Ker(D¢), and which also gives
DO = (D¢)" (J¢).
As a consequence
det D® = det(¢pDyp" + (Jp)DOT) exp(21))

= det(Dy, DO)|®[?

— |DY|| Dy sin(Dﬁa)@F.
Here we have used that det D® # 0, since ® is a bijective diffeomorphism of B; \ B, onto B; \ B 1 consequently
det(Dv, D) # 0 and |Dy|| D] > 0 and sin (Dﬁa) (and Do, D) is well-defined. It now follows that

(1o + 1Dul*)
trace @« [I](®(x)) = ———(x
|D6)| Dy sin(zw,De)‘
1 | DY |D1/)|> | DY | DY
= — + () = 57 (@) + 7 (@),
sin(Dw,DH)’ <|Dw D6 | Dy D6
with equality if and only of D1 is normal to D, and therefore in the kernel of D¢. (|

3. THE RADIAL TRANSFORMATION CASE

For the general case of a radial transformation ¢ = (27, and ¢ = f(|z|). Then DO = - JZ and Dy =

[ [
f'(\x|)ﬁ The transformation

P = exp(y)¢
is a bijective C'! diffeomorphism of B; \ B, onto By \ By with

7

|, = Id, and ®(C.) = C

if and only if
f(e) = —log2, f(1) =0, and f € C*([¢,1]) with f'(r) > 0 for all r € [¢, 1].

In this case, sin (Dﬁ@) =1, and

1

trace @+[I](®(x)) = ————— + |z|f'(|=]).
|zl (|1)
Proposition 3.1. Suppose 1 < p < oo, and let I, denote the energy
1 1 p
L(f) ::/ (trace @ «[I))?(®(z))dz = 27r/ < - +7’f’(’l")) rdr,
B1\B. e \rf'(r)

with values in (0,00), defined on the convex set

C= {f € C e, 1)) : f' >0, f(e) = —log2, f(1) = O}.

Then
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— I, has a unique minimizer, f,, in C.
— fp lies in C*([¢,1]), and is the unique solution in C to the Euler—Lagrange equation

((f() ersn) (‘ Tk

Proof. We start by establishing (part of) the last statement concerning the existence of a unique solution to
the Euler-Lagrange equation (E-L). By integration, any C! solution to (E-L) must satisfy

crf) =5

r2

+r2>> =0 inle1]. (E-L)

for some constant C', with the function G : Ry — R given by

cor= (20) (4 )

Now suppose 1 < p < oo. A simple calculation shows that G is monotonically increasing, with G(1) = 0,
limy o, G(t) = —oo and lim;_. G(t) = co. G~' : R — Ry is thus well defined, and f, has the form

fp(r) = / £ (t)dt —log2 = /Tt—lc:*(g) dt —log 2,

for some constant C. The constant C' must be chosen so that f, satisfies the boundary condition fj,(1) = 0. As
C — fﬁl t=1G—1 (t%) dt — log 2 is continuous and monotonically increasing, with

1
44 (C |[loge| —log2 >0 when C — 0
t'GTH 5 ) dt —log2
/6 (t2> 8 _>{10g2<0 when C' — —o0’

it follows immediately that there exists a unique value Cy < 0 for which the boundary condition f,(1) = 0
is satisfied. This shows the uniqueness of the solution to the Euler-Lagrange equation in C. Furthermore, the

formula , o
fp(r) = / ttg! (;) dt —log?2

clearly gives rise to a C° function in C which solves the equation (E-L), thus establishing the existence®. A
slightly modified argument works for p = 1, and in that case we find the (even more) explicit formula

3r+/9r2 +16(2 - €) (% — ¢)
4(2 —¢)

fi:r—log

We now proceed to show that f, is the unique minimizer of I, in C. Since the function (0, 00) 3 z — (% + x)p €
(0,00) is strictly convex, it follows immediately that I, is strictly convex on C. Now suppose there existed a
function g € C with I,(g) < I,(fp). The convexity of the functional I, implies that

d

ar Ip(fp +7(9 = fp)) < Ip(g) — I(fp) <0,

7=0

3With z,(t) = G=1(C/t?), C < 0, one has the formula

/t*lzp(t) = %log 1 i_ ZE:; +(p—1) (arctan zp(t) — %zp(t)) + const

for the indefinite integral of z;,(¢)/t. This formula proves extremely useful when computing the fp’s, and in particular their ¢ — 0
limits, numerically.
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/61 (rfl(r) + ”f/(T)>p1 ( (;)2 + T2> (g—f,) dr <0,

in contradiction with the fact that f, is a solution to the Euler-Lagrange equation (E-L). This verifies that f,
is a minimizer of I, in C. The fact that the minimizer is unique follows immediately from the strict convexity
of I,. O

or

Remark. The logarithmic amplitude f; gives rise to the transformation

NELE \/9|:1c|2 +162-)(3-¢)\ 2
b 42-¢ ||

L(f1) = 27r/61<f{1(r) +r2f{(r)> dr = 271'(1 — e+ %(26— 1)2).

By comparison, the radial affine transformation
|x] — 1 x
P, = +1]—,
" (2(1 — ) |z

fra(r) = log<2(1€) + 1)-

We compute

with logarithmic amplitude

has

I (fra) :zw/:( ,l(r) 2 ;a(r)) dr:27r(1—62+1n2(26—1)2) > 1(f1).

ra

Equality occurs only when € = % (when the associated transformations are both the identity). O

Turning to maximum norm, we consider the minimization

Too = mf sup(rf( ] +rf’(r)>.

fec [e,1]

We note that

Ioo:gfl{ll(wfzafecwith sup{rf,l()-F f()} % K}

rele,1]

1 1
> i — : ith — <
_}1(n>f1{K+K HfECWlthK|log7°_f(r)|}

) 1 [log €| log2  |loge|
>inf¢ — + K : <K;= .
= {K + log2 — } [log €| + log 2

Here we have used that, if f € C and if K > 1, then

1 /
W‘i‘rf (r) <

= ?|logr| <|f(r)] < K|logr| in (e, 1).
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On the other hand, the function

log 2
o) = o (3.1)

lies in C, and has Io(fs) = |11%gg2€| + |11§§26|.

It now follows immediately that f., is a minimizer of I, in C. The following graph shows the amplitudes
exp frq (dashed orange line), exp f1, exp fa, exp f3, exp f5, exp fs, exp f13 and exp foo (solid lines from red to
green), for e = 1/1000. For illustration we have included the limiting amplitude of exp f5 as € tends to zero.

This is shown as a dotted line next to exp fs.

The optimal radial map for the L> norm given by
€T log2
Dy — exp foo(|sr|)m = |z] Moz el Ly

is very similar to the one computed in [6] for a slightly different criterion. It is well approximated by one of the
radial changes of variable suggested in [11] for an appropriate parameter choice. The maps associated with all
these amplitudes are radial, but the materials obtained by push-forward transformations are not isotropic. A
number of articles have investigated how to best achieve similar cloaking effects with layers of isotropic materials
[1-3,6,7,11]. In this context we note that, it is well known from homogenization theory that the field responses
of effective anisotropic impedance matrices are well approximated by those arising from constructs based on

multiple fine isotropic laminates. The L? optimal maps ®,(z) = exp fp(|x|)|%‘, 1 <p < o (just as @,,) have
non-trivial limits as e — 0, corresponding to maps of the punctured unit disk to the annulus By \ B; /2- However,
the map ¢, degenerates as ¢ — 0, as it approaches ﬁ, except for a vanishing boundary layer. The L? optimal
maps ®,, 1 < p < oo, to the best of our knowledge, do not appear in other works.

4. OPTIMALITY OF RADIAL TRANSFORMS

We now return to the general, two dimensional case. By introducing v = ¢ and V = —JD# in the formula

_ DY + Do)

trace @« [I](®(z)) = det(De, D) (2),
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we obtain ) )
D \%4
trace &= [1)(®(z)) = %(@.
Similarly, by introducing © = 6 and V = JD1), we obtain
|Dul* +|V]?
t D« [I](P =—(x).
race @-[1](®(x)) = = (2)

We thus notice that the problem of minimizing
I,(®) = / (trace @« [1])P(®(x)) dx
B1\Be

with respect to ¥ given 6, and with respect to 6, given ¥ merely differs by a change of the convex test set for
u (essentially relating to boundary conditions). Let arg € C>° (B1 \ B;R/ 27TZ)4 denote the standard argument
function. We introduce the convex sets

Co = C**(B1 \ B;;R/27Z) N {u|c, = arg} and
Cy = C**(By\ B;R) N {u

c. = —log2, ulg, =0},
for some fixed o > 0.

Proposition 4.1. Given C = Cy and a fized V € o (E\ Be;R2), orC =Cq and a fixed V € C° (E\ B,; Rz),
and given n > 1, we introduce

an{uEC:Du~V2

S|

and Hu||Cz,a(Bﬁ\Be) < n}

Suppose Cn, # 0, for some Ny > 1. Given any 1 < p < oo, the functional F, : C,, — R, n > Ny, defined by

u— Fy(u) / [Duf” + VI pdx
— = —_—
p Bl\Be DU‘ V

is strictly convez, continuous, and attains its infimum on C, at a unique minimizer. If the unique minimizer,
. . . 5 . . . .
u, lies in int(Cy,)°, then it satisfies the associated Euler—Lagrange equation

-1
dio| (1Pu + VI " 2Dy |Duf + |V
Du-V Du-V (Du-V)2

V) =0 inB\B., (4.1)

and in the case C = Cy, the additional boundary condition

2Du  |Duf’ + |V x
— V]-—=0 onC.. 4.2
<Du.V (Du-V)? |z ] (42)

Conversely, if there evists a solution to (4.1) (and (4.2) in case C = Cg) which lies in C N
{Du -V >0o0n B\ Bg}, then, for some N > 1, this is the unique minimizer of F, in Cy,, for any n > N.
Consequently this u is also the unique minimizer of F}, in C N {Du -V >0 o0n By \ Be}.

4The space C® (E\ Be; R/QTK‘Z) is defined as {u et (E \ Be; R/Qﬂ'Z) : Du € C® (E\ Be; RQ) } Similarly
C%(B1\ Be;R/2nZ) = {u € C1(B1 \ Be;;R/27Z) : Du € CL%(B1 \ Be;R?) }.
5The interior is formed relative to Cy or Cy with the C?2“ topology, respectively.
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For the proof of Proposition 4.1 we shall need the following lemma.

Lemma 4.2. For any 1 <p < 00, and any A > 0, the function G,[A] : (0,00) x R — R4, given by

Az z/yn2\
e (5530
1s convex. Furthermore,
244

G,lA](x,y) — ——— (2% + o>
)~ s @)
is convex on By = {(x,y) cx? 4yt < MQ}.
Proof. The function x — 2 + Z is strictly convex and positive valued on (0, 00) x R. The map (z,y) — %yg is

2w+u
l

convex and positive on (0,00) x R. Indeed, its Hessian has eigenvalues 0 and . The sum of two convex
(and positive valued) functions is convex (and positive valued), and the composmon of it with z — 2P, a
monotonically increasing and convex function on (0, c0), results in a convex (positive valued) function.

To establish the second assertion, we compute lower bounds for D?G,[A]. It is a fact that the lowest eigenvalue
of a symmetric positive definite matrix is bounded below by the quotient of the determinant over the trace. We
compute that for p > 1,

det(D%G,[A]) _ 4p At At
2 P[A 3 >4 3’
tr(D2Cy[A]) ~ p+1 (A2 4 22 4 42) (A2 + 22 +42)

In particular, on the ball By, = {(x, y) izt 4+ y? < MZ} we have

9 4A*
D*GyA](z,y) > ————=1
(A% + M?)
This immediately leads to the second assertion of the lemma. O
We are now ready for the proof of Proposition 4.1.

Proof. Given u € C,, we define

JV

\%
Py (Du) = Du- —, and Py (Du) = Du - m

\4K
Then

<|Du| + V] ) ( v Pv<Du>+Pv<Du><PVL<Du>>2)”
Du-V Py (Du) V] V] Py (Du)

JLIVI1(Py (D), Py (Du)).
Note that C, # ) implies inf|V| > 0. On Cp, |Py (Du)|* + |Py.(Du)|* < n?, and therefore for any u,v € Cy,
n > Ny, and any 7 € [0,1]
Go[IVII(Py(D(Tu+ (1 = 7)v)), Pyo (D(Tu+ (1 = 7)v)))
< 7G[[VI(Py (Du), Py (Du)) + (1 = 7)Gp[[V]](Pv (Dv), Py. (Dv))
—7(1—7)K|D(u—v)[%,
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with .
2inf
K= 2V oy
<n2 —|—sup\V|2>
For u,v € C,, and 7 € [0, 1], we thus get
Fy(tu+ (1 —71)v) <7F,(u)+ (1 —71)F,(v) —7(1 —7)K |D(u — v)|2 da,

B\ B.

and so F}, is strictly convex on C,,. In regards to continuity, let u,, be a sequence in C,, with u,, — u in the Ct
topology. Then the functions
x — Gp[|VI]](Pv(Dum), Py 1 (Duy)) ()

are measurable, non negative, uniformly bounded, and converge pointwise to the function
z = GylIVI)(Py (Du), Py (Du)(a).
Thanks to the Lebesgue Dominated Convergence Theorem, this implies
lim F, (up,) = Fp(u).

Since C,, is compact with respect to the C'! topology, the C! continuity of F}, implies the existence of a minimizer.
The convexity of C,, and the strict convexity of Fj, yields the uniqueness of the minimizer. A computation shows
that for any u € C,, F}, is Gateaux-differentiable at u, and its differential is given by

—1
iDu + V" ([ 2Du |Duf 4|V
Du-V Du-V (Du~V)2

(DF ). = |

V| - Dhda,
B\ Be

for h € C'. Note that u € C, is the unique minimizer if and only if for all v € C,, there holds
(DFy(u),v —u) > 0. (4.3)
If the minimizer lies in the interior of C,,, (4.3) implies
(DFy(u),h) =0

for all h € C?* N {h=0o0n C. and C1}, if C = Cyp, and for all h € C**N{h=00n C1}, if C = Cp; in
other words, u satisfies the Euler-Lagrange equation (4.1) (or (4.1) and (4.2) when C = Cp). Conversely, if
w € CN{Du-V >0on B;\ B} satisfies (4.1) (and (4.2) if C = Cy), then, for some N, it lies in C,, for all
n > N, and it satisfies (DF,(w),v — w) = 0 (in particular > 0) for all v € C,; w is thus the unique minimizer
of F,, in C, for any n > N. It follows immediately that w is a minimizer of F}, in CN {Du -V >0o0n E\ Be}.
The uniqueness of this minimizer follows from the strict convexity of F, on C,, for any n. (]

Corollary 4.3. A global C** minimizer (¢,0) of I,, subject to ) = —log2 at |z| =€, ¥ =0 and § = arg at
|z| = 1, and det(Dv, D) > 0 on By \ B, satisfies

_({1Dv)? + |Do)*\" 2D JDo
div 3 3 + = Oa
det (D1, DO) |Dy|* + |D]>  det(Dy, D)

and »
div |Dy|* + | DO 2D _ JDy o
det(Dv, D) |Dy|? + |Do|*  det(Dw, DF) '
Furthermore,
|Dy[* + | DY z _
( det(D0. DY) JDvy —2D8@ =i 0 on {|z| =€}
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F, (ef(‘z‘)w(x))

F1GURE 1. Illustration of the conclusions of Corollary 4.4.

Proof. The 1) component of this global minimizer automatically lies in int(C,,) with C = Cy and V = —JD# for
some n, and it is a minimizer of F}, in C,,. The first equation of this corollary is now simply the Euler-Lagrange
(4.1) for such a minimizer. Similarly, the § component of this global minimizer lies in int(C,,) with C = Cy and
V = JDv for some n, and is a minimizer of F}, in C,. The two last equations of this corollary are simply the
Euler—Lagrange (4.1) and the boundary condition (4.2) satisfied by such a minimizer. O

Corollary 4.4. Let f, be the function introduced in Proposition 3.1. The transformation x — fp(|z|)i%, or

[z

rather the function pair (f,(|z|),arg(x)) satisfies the three Euler-Lagrange equations from Corollary 4.3. As a

B B (50 ) <1, (s %), g

forany ¢ € Cy N {Di/}(x) : ﬁ >0 on By \ Be}. The last two FEuler—Lagrange equations from Corollary 4.3 are

actually satisfied by any pair (f(|z]),arg(x)), with f € {f € C**([e,1]) : ' >0, f(e) = —log2, f(1) =0}. As a
consequence

(e ) < 1 £0aD 5 ) < DA Geliote) (@5)

for any ¢(x) = (cos(0(z)),sin(f(x))t, with § € Co N {DG Jig >0 on Bl\B} and any f €
{feC®([e,1]): f' >0, f(e) = —log2, f(1) = 0}.

Proof. Direct calculations verify that the first Euler-Lagrange equation from Corollary 4.3 is satisfied by the
pair (f,(|x]), arg(x)), and that the last two Euler—Lagrange equations from Corollary 4.3 are satisfied by any pair
(f(|z]),arg(x)), with f € {f € C**([e,1]) : f' > 0, f(€) = —log?2, f(1) = 0}. The inequality (4.4) now follows
immediately from the last statement in Proposition 4.1 in the case C Cy and V = —JDarg(z) = Ir\ |m| The
first inequality in (4.5) is a direct consequence of (4.4). The second inequality follows from the last statement
in Proposition 4.1 in the case C = Cp and V = JDf(|z]) = f’(\J;|)J‘§—|. O

5. OPTIMAL CLOAKS FOR SIMPLY CONNECTED DOMAINS

So far our study has focused on the situation where the cloaks are constructed from diffeomorphisms of the
classical annulus B; \ B, to the classical annulus B; \ B 1 and the corresponding push-forwards of the identity
matrix. In a more general setting, one could consider instead three simply connected domains, w. C w 1 C Q
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FIGURE 2. Cloaking by mapping where Q = sinh(B;), with e = 1/10.

containing the origin (where w, is comparable to B.) and a bijective diffeomorphism ¥, : Q\ w. — Q\ wi,
such that ¥, = Id on 90 and ¥.(0w.) = dw 1 As before, the material parameters of the cloak would be the
push-forward of I by ¥.. Any smooth globally minimizing transformation would still satisfy the Euler—Lagrange
equations of Corollary 4.3, if we continue to use the energy I,. We note that the convexity properties estab-
lished in Proposition 4.1 suggest a possible numerical strategy to search for a minimizer, namely: alternatingly
performing a minimization with respect to angle (for fixed logarithmic amplitude) and a minimization with
respect to logarithmic amplitude (for fixed angle).

The goal of this section is to show that for general geometries one should (naturally) not expect the optimal
transformations to be radial. As we demonstrate this, we also derive a process for the construction of optimal
transformations (based on a slightly revised energy). Suppose {2 is a bounded, smooth, simply connected domain
containing the origin. Due to the Riemann Mapping Theorem, there exists a unique (complex) analytic map ¥
such that ¥(0) = 0, D¥(0) = al for some a > 0 and ¥ is a one-to-one mapping from 2 onto B;. By the maximum

modulus principle min{|z| : z € Q} < 1/a < max{|z| : z € OQ}. Set w. = ¥~1(B,), and wy = \I/_l(B ) By

1
2

construction, 0 € w, C w 1 C 2. Provided e is small enough, we is approximately Be, in the sense that

Vo € C. ‘\I/_l(m) — E‘ < 1maLx|D2\Il_l|62.
a 2B
Given @, € C*! (E \ Be; Br \ B%) a (possibly optimal) bijective diffcomorphism with @[, = Id, and ®.(C,) =
C%, we define
U =0 lod oW. (5.1)
Figure 2 shows some of the “rays” of the map ¥, (®. being radial) in the case ¥~! = sinh, Q = sinh(By),
wi = sinh (B%) and w, = sinh(B,). The green curves on the left are mapped to proper subsets of themselves,

shown as red curves on the right. Clearly the transformation W, is no longer radial.
For any = € 09, U(z) lies on Cy, and thus &, o U(z) = ¥(x). It follows that U.(x) = x, in other words:
Ve = Id on 9N Similarly, we obtain that ¥c(dwe) = dwy. (¥.),[I] therefore produces an approximate cloak
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(with same approximate invisibility as that of (®.),[I]). From composition of transformations we obtain

(Te), 1] = (1) [(®c), [T [1]]).

Lemma 5.1. There holds
trace(¥.), [I] = (trace(®.), [I]) o T.

Proof. Since V¥ is conformal, DU = v@Q with « a positive scalar and @ an orthogonal matrix. We are in 2d, and
so this implies

T
(1) = T Pt oV ) = 1
Similarly,
1 _\T
e L
= Q" (2)A(¥(2))Q(x),

where we have used that (DU~1)(¥(z)) = (W) Y(z) = %QT(x). In summary, we conclude that (¥.),[I] is
given by the formula
(Te), [](2) = Q" (2)(®e), [1](¥(2))Q(2),

and the statement about the traces follows. O

If ®. is a transformation which minimizes the anisotropy of (®.).[I], using the measure I, for some 1 < p < oo,
then it follows immediately from Lemma 5.1 above that ¥, minimizes anistropy of (¥.),[I], using the slightly
modified measure

L(V,) = /Q\ (trace(Vo).[I]))F (U (z)) | det ¥ (z)| dz.

A similar statement holds for p = co. In that case there is no change in the measure of anisotropy.
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