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FULLY-DISCRETE, DECOUPLED, SECOND-ORDER TIME-ACCURATE AND
ENERGY STABLE FINITE ELEMENT NUMERICAL SCHEME OF THE
CAHN-HILLIARD BINARY SURFACTANT MODEL CONFINED IN THE

HELE-SHAW CELL

Xiaofeng Yang*

Abstract. We consider the numerical approximation of the binary fluid surfactant phase-field model
confined in a Hele-Shaw cell, where the system includes two coupled Cahn-Hilliard equations and Darcy
equations. We develop a fully-discrete finite element scheme with some desired characteristics, including
linearity, second-order time accuracy, decoupling structure, and unconditional energy stability. The
scheme is constructed by combining the projection method for the Darcy equation, the quadratization
approach for the nonlinear energy potential, and a decoupling method of using a trivial ODE built upon
the “zero-energy-contribution” feature. The advantage of this scheme is that not only can all variables
be calculated in a decoupled manner, but each equation has only constant coefficients at each time
step. We strictly prove that the scheme satisfies the unconditional energy stability and give a detailed
implementation process. Various numerical examples are further carried out to prove the effectiveness
of the scheme, in which the benchmark Saffman-Taylor fingering instability problems in various flow
regimes are simulated to verify the weakening effects of surfactant on surface tension.
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1. Introduction

We consider the numerical approximation of the binary surfactant phase-field model confined in the Hele-
Shaw cell in this paper, focusing on establishing a fully-discrete finite element scheme with desired properties of
linearity, second-order temporal accuracy, decoupling structure, and unconditional energy stability (for simplic-
ity, a numerical scheme with these properties is called as “ideal”). The term Hele-Shaw (or Hele-Shaw cell) is
commonly used to describe the restricted movement of fluid between two parallel plates with a small gap. The
fluid motion for this type of flow conforms to the mechanical principles in a porous medium. Surfactants, as a
common compound that can change or reduce the interfacial tension of multiphase fluids, have been modeled
and simulated for a long time using the phase-field method, see [18, 19, 25–27, 41, 42, 44, 45]. The main idea of
using the phase-field approach to simulate a binary fluid mixture with surfactants is to adopt two phase-field
variables, one for the local density of the fluid, and the other for the local concentration of surfactants. The
total free energy incorporating the hydrophilic-hydrophobic interaction of the fluid and the interfacial absorption
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characteristics caused by the amphiphilic nature of surfactant molecules is postulated. By using the gradient
flow method (Cahn-Hilliard dynamics) to minimize the free energy, a governing system composed of two highly
nonlinear coupled Cahn-Hilliard equations can be obtained.

To simulate the free interface motion driven by the flow field (e.g., droplets coalescence/non-merging phe-
nomena under the shear flow, or Saffman-Taylor fingering instability in the porous medium flow, etc., see
[12, 14, 16, 24, 28, 31, 34, 43, 56]), the hydrodynamic equations will be coupled with the two Cahn-Hilliard equa-
tions to obtain a full flow-coupled binary fluid surfactant model. Different fluid equations will be used in different
flow regimes, such as the Navier-Stokes equations for incompressible fluids, the Darcy equations for the porous
medium, etc. Obviously, due to the existence of more coupled nonlinear terms, designing numerical schemes for
a flow-coupled model is far more difficult than that of a model without flow. Then, for the Darcy flow-coupled
binary surfactant Cahn-Hilliard phase-field model (abbreviated as DCHS) considered in this article, a natural
question is how difficult it is to design an “ideal” type scheme. One may think it is not difficult at all because
there exist so many effective numerical methods that can handle the phase-field equations (e.g., the Invariant
Energy Quadratization (IEQ) method [39,48,53], Scalar Auxiliary Variable (SAV) method [40,49,52,57], convex
splitting method [20], etc.), and the “ideal” scheme can be easily and naturally obtained after stacking these
methods with any effective numerical method of the Darcy equation.

However, the fact is quite the opposite. As far as the author knows, for the Darcy coupled with the phase-field
equations, the only scheme owning the properties of “decoupling, second-order time accuracy, energy stability”
(partially “ideal” type scheme due to the lack of linearity) was developed in [21, 22]. The scheme uses the
implicit-explicit combination method to deal with the advection and surface tension terms. Using the linear
relationship between the pressure gradient and velocity, the fluid velocity in the advection term is formulated
by the pressure and surface tension terms, so as to achieve a fully-decoupled scheme (see the details introduced
in Rem. 3.9). However, if the same technique developed in [21,22] is applied to the DCHS model, we will quickly
find that the fluid velocity in the advection term involves both phase-field variables. This means that although
the velocity field can be decoupled from the two Cahn-Hilliard equations, the price to pay is that the two Cahn-
Hilliard equations remain coupled. In addition, another disadvantage of this method is that the Cahn-Hilliard
equation with variable coefficients must be solved at each time step, which results in a higher computational
cost than just solving equations with constant coefficients (see Rem. 3.9).

Therefore, in order to solve the highly complex nonlinear DCHS model, we aim to construct an “ideal”
type fully-discrete numerical scheme, where the main challenge that needs to be overcome is how to obtain a
decoupling structure and second-order accuracy while keeping the linearity and maintaining the energy stability
unconditionally. We achieve such a scheme by assembling several proven methods, including the finite element
method for the spatial discretization, projection method for the Darcy equation, the quadratization approach
for the nonlinear energy functional, and a new decoupling method to deal with the coupled terms (advection and
surface tension). Inspired by the “zero-energy-contribution” property (see Rem. 2.3) satisfied by these coupled
terms, the decoupling method is developed by introducing an additional nonlocal variable and designing a
special ordinary differential equation (ODE), which consists of the inner product of the coupled terms with
some specific functions. This ODE is trivial at the continuous level because all the terms contained in it provide
a zero summation. But after discretization, it can help to obtain unconditional energy stability. Meanwhile,
the nonlocal variable can decompose each discrete equation into multiple sub-equations that can be solved
independently, thereby obtaining a fully-decoupled structure. Besides, the high efficiency of this scheme is also
reflected in that not only can all variables be calculated in a decoupled manner, but all equations have constant
coefficients at each time step. We also give rigorous proofs of the solvability and unconditional energy stability
of the scheme. To demonstrate the stability and accuracy numerically, we further simulate various numerical
examples, including the Saffman-Taylor fingering instability caused by the continuously injected radical/uniform
flow or rotating Hele-Shaw cell, in which the weakening effects of surfactants on surface tension can be verified
by the number of generated fingers.

The rest of this article is organized as follows. We first introduce the DCHS model limited in the Hele-
Shaw cell in Section 2, and its law of energy dissipation is derived. In Section 3, we construct a fully-discrete
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finite element scheme of the “ideal” type, and describe its implementations in detail. Unconditional energy
stability and solvability are also proved rigorously. In Section 4, we perform several accuracy/stability tests
and implement various simulations on the Saffman-Taylor fingering instability problems to demonstrate the
effectiveness of the scheme. In Section 5, some concluding remarks are given finally.

2. Governing System

Now, we give a brief introduction of the DCHS system limited to the Hele-Shaw cell. Suppose that Ω is
a smooth, open, bounded, connected domain in R𝑑, 𝑑 = 2, 3. We adopt two phase-field variables 𝜑(𝑥, 𝑡) and
𝜓(𝑥, 𝑡), where 𝜑 is used to represent the density (or volume fraction) of the two fluids, and 𝜓 is used to represent
the local concentration of surfactants, i.e.,

𝜑(𝑥, 𝑡) =

{︃
−1 fluid I,
1 fluid II,

(2.1)

with a thin, smooth transition region with a width 𝑂(𝜖). The mixing free energy associated with 𝜑 and 𝜓 is
assumed as follows (see [28,44,45,49,56]),

𝐸mix(𝜑, 𝜓) =
∫︁

Ω

(︂
𝜆1(

1
2
|∇𝜑|2 +

1
𝜖2
𝐹 (𝜑)) + 𝜆2(

𝛾

2
|∇𝜓|2 +

1
𝜂2
𝐺(𝜓)) +𝑊 (𝜑, 𝜓)

)︂
𝑑𝑥 (2.2)

where ⎧⎨⎩𝐹 (𝜑) =
1
4

(𝜑2 − 1)2, 𝑊 (𝜑, 𝜓) = −𝜃
2
𝜓|∇𝜑|2 +

𝜁

4
|∇𝜑|4,

𝐺(𝜓) = 𝛼4𝜓
4 + 𝛼3𝜓

3 + 𝛼2𝜓
2 + 𝛼𝜓, (𝛼1, 𝛼2, 𝛼3, 𝛼4) = (3.62,−7.25, 7.30,−3.68),

(2.3)

and 𝜆1, 𝜆2, 𝜖, 𝛾, 𝜂, 𝜃, 𝜁 are all positive parameters. The total free energy includes the hydrophilic (gradient)-
hydrophobic (double-well) trend of the phase-field variable 𝜑 where the parameter 𝜖 represents the width of
the binary fluid interface, and the hydrophilicity (gradient)-hydrophobic (quartic polynomial 𝐺) trend of the
concentration variable 𝜓 where 𝜂 is a penalty parameter. The last component 𝑊 (𝜑, 𝜓) includes the coupling
item between the surfactant and the fluid interface, where the parameter 𝜃 controls the degree of the effect of
the surfactant accumulated on the fluid interface, and the 𝜁 term (𝜁 ≪ 1) is used to ensure that the total free
energy is bounded from below, see [49,56].

Remark 2.1. There are many different options for the hydrophobic functional 𝐺(𝜓). For example, it can be
selected as the Flory-Huggins logarithmic type which reads as 𝐺(𝜓) = 𝜓ln𝜓+ (1−𝜓)ln(1−𝜓) (cf. [44,45,56]),
double-well type (cf. [25]), or quartic polynomial type given in (2.3) (cf. [49]). The last option is used here
because it can easily obtain the boundedness property (from below) of the energy potential, which is significant
for the well-posedness of the model and the development of numerical algorithms.

Assuming that the fluid motion conforms to the mechanical principles in porous medium, the DCHS model
reads as:

𝜑𝑡 +∇ · (u𝜑) = 𝑀1∆𝜇, (2.4)

𝜇 = 𝜆1(−∆𝜑+
1
𝜖2
𝑓(𝜑)) +𝑊𝜑, (2.5)

𝜓𝑡 +∇ · (u𝜓) = 𝑀2∆𝜔, (2.6)

𝜔 = 𝜆2(−𝛾∆𝜓 +
1
𝜂2
𝑔(𝜓)) +𝑊𝜓, (2.7)

u𝑡 + 𝛼𝜈(𝜑)u +∇𝑝+ 𝜑∇𝜇+ 𝜓∇𝜔 = 0, (2.8)
∇ · u = 0, (2.9)
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where ⎧⎪⎪⎨⎪⎪⎩
𝜇 =

𝛿𝐸mix

𝛿𝜑
, 𝜔 =

𝛿𝐸mix

𝛿𝜓
, 𝑓(𝜑) = 𝐹 ′(𝜑) = 𝜑(𝜑2 − 1), 𝑔(𝜓) = 𝐺′(𝜓),

𝑊𝜑 =
𝛿𝑊 (𝜑, 𝜓)

𝛿𝜑
= 𝜃∇ · (𝜓∇𝜑)− 𝜁∇ · (|∇𝜑|2∇𝜑),𝑊𝜓 =

𝛿𝑊 (𝜑, 𝜓)
𝛿𝜓

= −𝜃
2
|∇𝜑|2,

(2.10)

u is the dimensionless seepage velocity, 𝜏 is a positive parameter, 𝑀1,𝑀2 are two mobility parameters, 𝛼 is
the dimensionless hydraulic conductivity, 𝜈(𝜑) = 1

2𝜈1(1 − 𝜑) + 1
2𝜈2(1 + 𝜑) is the fluid viscosity [14], 𝜈1 and 𝜈2

are the viscosity for fluid I and II, respectively, 𝑝 is the pressure. Note that the time derivative of the seepage
velocity u is retained for flows in porous medium, cf. [4, 21,22,30]. The boundary conditions read as

u · 𝑛|𝜕Ω = 𝜕𝑛𝜑|𝜕Ω = 𝜕𝑛𝜓|𝜕Ω = 𝜕𝑛𝜇|𝜕Ω = 𝜕𝑛𝜔|𝜕Ω = 0, (2.11)

where 𝑛 is the unit outward normal on the boundary 𝜕Ω. Note that the above boundary conditions also implies
𝜕𝑛𝑝|𝜕Ω = 0. It is also possible to assume periodic boundary conditions for all variables. The initial conditions
read as

(u, 𝑝, 𝜑, 𝜓)|𝑡=0 = (u0, 𝑝0, 𝜑0, 𝜓0). (2.12)

The total mass of local density variable 𝜑 and concentration variable 𝜓 are conserved over time since

𝑑

𝑑𝑡

∫︁
Ω

𝜑𝑑𝑥 = 0,
𝑑

𝑑𝑡

∫︁
Ω

𝜓𝑑𝑥 = 0, (2.13)

which can be obtained by integrating (2.4) and (2.6) and using the boundary conditions (2.11).
Some notations are introduced here. We denote the 𝐿2 inner product of any two functions 𝜑(𝑥) and 𝜓(𝑥) is

denoted by (𝜑, 𝜓) =
∫︀
Ω
𝜑(𝑥)𝜓(𝑥)𝑑𝑥, and the 𝐿2 norm of 𝜑(𝑥) is denoted by ‖𝜑‖2 = (𝜑, 𝜑). It is easy to see that

the entire DCHS system (2.4)–(2.9) holds the law of energy dissipation by performing the standard derivation
as follows.

Lemma 2.2. The following energy law holds for the system (2.4)–(2.9):

𝑑

𝑑𝑡
𝐸tot(𝜑, 𝜓,u) =−𝑀1‖∇𝜇‖2 −𝑀2‖∇𝜔‖2 − 𝛼‖

√︀
𝜈(𝜑)u‖2, (2.14)

where

𝐸tot(𝜑, 𝜓,u) = 𝐸mix(𝜑, 𝜓) +
1
2

∫︁
Ω

|u|2𝑑𝑥. (2.15)

Proof. First, we take the inner product of (2.4) with 𝜇, of (2.6) with 𝜔 in 𝐿2, and use integration by parts to
get

(𝜑𝑡, 𝜇) = −𝑀1‖∇𝜇‖2 −
∫︁

Ω

∇ · (u𝜑)𝜇𝑑𝑥, (2.16)

(𝜓𝑡, 𝜔) = −𝑀2‖∇𝜔‖2 −
∫︁

Ω

∇ · (u𝜓)𝜔𝑑𝑥. (2.17)

Second, we take the inner product of (2.5) with −𝜑𝑡, of (2.7) with −𝜓𝑡 in 𝐿2, and use integration by parts to
get

− (𝜇, 𝜑𝑡) = − 𝑑

𝑑𝑡

∫︁
Ω

𝜆1(
1
2
|∇𝜑|2 +

1
𝜖2
𝐹 (𝜑))𝑑𝑥−

∫︁
Ω

𝑊𝜑𝜑𝑡𝑑𝑥, (2.18)
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− (𝜔, 𝜓𝑡) = − 𝑑

𝑑𝑡

∫︁
Ω

𝜆2(
𝛾

2
|∇𝜓|2 +

1
𝜂2
𝐺(𝜓))𝑑𝑥−

∫︁
Ω

𝑊𝜓𝜓𝑡𝑑𝑥. (2.19)

Third, we take the inner product of (2.8) with u in 𝐿2, and use (2.9) to obtain

𝑑

𝑑𝑡

∫︁
Ω

1
2
|u|2𝑑𝑥 + 𝛼‖

√︀
𝜈(𝜑)u‖2 =−

∫︁
Ω

𝜑∇𝜇 · u𝑑𝑥−
∫︁

Ω

𝜓∇𝜔 · u𝑑𝑥. (2.20)

Combining the above five equations, we derive the energy law (2.14). �

Remark 2.3. In the process of deriving the energy law (2.14), we find that the four nonlinear terms associated
with the advection and surface tensions are cancelled out, namely,∫︁

Ω

∇ · (u𝜑)𝜇𝑑𝑥 +
∫︁

Ω

𝜑∇𝜇 · u𝑑𝑥 = 0,
∫︁

Ω

∇ · (u𝜓)𝜔𝑑𝑥 +
∫︁

Ω

𝜓∇𝜔 · u𝑑𝑥 = 0. (2.21)

These equalities are derived by using the integration by parts and the boundary conditions for u (periodic
or u · 𝑛|𝜕Ω = 0). These two equalities can be regarded as the contribution of two types of nonlinear terms
(advection: ∇ · (u𝜑) and ∇ · (u𝜓), and surface tensions: 𝜑∇𝜇 and 𝜓∇𝜔) to the total free energy of the system
is zero. These unique “zero-energy-contribution” properties will be used to design decoupling type numerical
schemes.

3. Numerical scheme

In this section, we aim to construct an “ideal” type fully-discrete finite element scheme to solve the DCHS
system (2.4)–(2.9). Some special processing is needed to develop appropriate temporal discretizations for the
challenging terms, including the advection, the surface tension, the nonlinear cubic term 𝑓(𝜑), and the linear
coupling between velocity and pressure through the divergence-free condition.

3.1. Reformulated equivalent system and energy law

We introduce a nonlocal variable 𝑄(𝑡) and design an ODE system for it, that reads as:⎧⎨⎩𝑄𝑡 =
∫︁

Ω

(︁
− 𝜑u · ∇𝜇− 𝜓u · ∇𝜔 + 𝜑∇𝜇 · u + 𝜓∇𝜔 · u

)︁
𝑑𝑥,

𝑄|(𝑡=0) = 1.
(3.1)

It is easy to see that the system (3.1) is the same as a trivial ODE system of 𝑄𝑡 = 0, 𝑄|𝑡=0 = 1 with the exact
solution of 𝑄(𝑡) = 1.

We further define a nonlocal variable 𝑈(𝑡) as

𝑈 =

√︃∫︁
Ω

𝑁(𝜑, 𝜓)𝑑𝑥 +𝐵, (3.2)

where 𝑁(𝜑, 𝜓) = 𝜆1
𝐹 (𝜑)
𝜖2 + 𝜆2

𝐺(𝜓)
𝜂2 + 𝑊 (𝜑, 𝜓), 𝐵 is a constant to guarantee the radicand always be positive.

We can always find such a constant 𝐵 since the nonlocal term in the radicand is always bounded from below.
This is because it is easy to see that − 𝜃

2𝜓|∇𝜑|
2 ≥ − 𝜁

4 |∇𝜑|
4− 𝑐𝜓2 for some constant 𝑐, and −𝑐𝜓2 can be always

bounded by the quartic polynomial 𝐺(𝜓).
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We rewrite the original system (2.4)–(2.9) using the new variables 𝑄 and 𝑈 to the following:

𝜑𝑡 +𝑄∇ · (u𝜑) = 𝑀1∆𝜇, (3.3)
𝜇 = −𝜆1∆𝜑+𝐻𝑈, (3.4)
𝜓𝑡 +𝑄∇ · (u𝜓) = 𝑀2∆𝜔, (3.5)
𝜔 = −𝜆2𝛾∆𝜓 +𝑅𝑈, (3.6)

𝑈𝑡 =
1
2

∫︁
Ω

(𝐻𝜑𝑡 +𝑅𝜓𝑡)𝑑𝑥, (3.7)

u𝑡 + 𝛼𝜈(𝜑)u +∇𝑝+𝑄𝜑∇𝜇+𝑄𝜓∇𝜔 = 0, (3.8)
∇ · u = 0, (3.9)

𝑄𝑡 =
∫︁

Ω

(︁
− 𝜑u · ∇𝜇− 𝜓u · ∇𝜔 + 𝜑∇𝜇 · u + 𝜓∇𝜔 · u

)︁
𝑑𝑥, (3.10)

where

𝐻(𝜑, 𝜓) =
𝜆1

𝑓(𝜑)
𝜖2 +𝑊𝜑√︁∫︀

Ω
𝑁(𝜑, 𝜓)𝑑𝑥 +𝐵

,𝑅(𝜑, 𝜓) =
𝜆2

𝑔(𝜓)
𝜂2 +𝑊𝜓√︁∫︀

Ω
𝑁(𝜑, 𝜓)𝑑𝑥 +𝐵

· (3.11)

The transformed system (3.3)–(3.10) satisfies the following initial conditions,⎧⎪⎨⎪⎩
(u, 𝑝, 𝜑, 𝜓)|𝑡=0 = (u0, 𝑝0, 𝜑0, 𝜓0), 𝑄|𝑡=0 = 1,

𝑈 |𝑡=0 =

√︃∫︁
Ω

𝑁(𝜑0, 𝜓0)𝑑𝑥 +𝐵.
(3.12)

Some detailed explanations about the reformulation are given in the remarks below.

Remark 3.1. We multiply the advection terms (∇ · (u𝜑), ∇ · (u𝜓)) and surface tension terms (𝜑∇𝜇, 𝜓∇𝜔)
with 𝑄. Since the nonlocal variable 𝑄(𝑡) is equal to 1, the PDE system will not be changed by this modifica-
tion. Meanwhile, note that the three new equations ((3.4),(3.6),(3.7)) are equivalent to the original equation
((2.5),(2.7)). Therefore, the two PDE systems, (3.3)–(3.10) and (2.4)–(2.9) are equivalent.

Remark 3.2. The mass-conserved property of the two phase-field variables 𝜑, 𝜓 remains unchanged in the
new system (3.3)–(3.10) noting that the variable 𝑄 is nonlocal (i.e.,

∫︀
Ω
𝑄∇ · (u𝜑)𝑑𝑥 = 𝑄

∫︀
Ω
∇ · (u𝜑)𝑑𝑥). By

integrating for (3.4) and (3.6) and using integration by parts, we still derive

𝑑

𝑑𝑡

∫︁
Ω

𝜑𝑑𝑥 = 0,
𝑑

𝑑𝑡

∫︁
Ω

𝜓𝑑𝑥 = 0. (3.13)

This means that the mass of two fluids and the concentration of the surfactants are still conserved over time.

Lemma 3.3. The transformed system (3.3)–(3.10) also follows an energy dissipative law as

𝑑

𝑑𝑡
𝐸̂tot(𝜑, 𝜓,u, 𝑄, 𝑈) =−𝑀1‖∇𝜇‖2 −𝑀2‖∇𝜔‖2 − 𝛼‖

√︀
𝜈(𝜑)u‖2, (3.14)

where 𝐸̂tot(𝜑, 𝜓,u, 𝑄, 𝑈) =
∫︀
Ω

(︁
1
2 |u|

2 + 𝜆1
2 |∇𝜑|

2 + 𝜆2𝛾
2 |∇𝜓|2

)︁
𝑑𝑥 + |𝑈 |2 + 1

2 |𝑄|
2 −𝐵.

Proof. First, we take the inner product of (3.3) with 𝜇, and of (3.5) with 𝜔 in 𝐿2, respectively, and use integration
by parts to get

(𝜑𝑡, 𝜇) = −𝑀1‖∇𝜇‖2 +𝑄

∫︁
Ω

𝜑u · ∇𝜇𝑑𝑥, (3.15)

(𝜓𝑡, 𝜔) = −𝑀2‖∇𝜔‖2 +𝑄

∫︁
Ω

𝜓u · ∇𝜔𝑑𝑥. (3.16)
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Second, we take the inner product of (3.4) with −𝜑𝑡, and of (3.6) with −𝜓𝑡 in 𝐿2, respectively, and use
integration by parts to get

− (𝜇, 𝜑𝑡) = − 𝑑

𝑑𝑡

∫︁
Ω

𝜆1

2
|∇𝜑|2𝑑𝑥− 𝑈

∫︁
Ω

𝐻𝜑𝑡𝑑𝑥, (3.17)

− (𝜔, 𝜓𝑡) = − 𝑑

𝑑𝑡

∫︁
Ω

𝜆2𝛾

2
|∇𝜓|2𝑑𝑥− 𝑈

∫︁
Ω

𝑅𝜓𝑡𝑑𝑥. (3.18)

By multiplying (3.7) with 2𝑈 , we obtain

𝑑

𝑑𝑡
|𝑈 |2 = 𝑈

∫︁
Ω

𝐻𝜑𝑡𝑑𝑥 + 𝑈

∫︁
Ω

𝑅𝜓𝑡𝑑𝑥. (3.19)

Third, we take the inner product of (3.8) with u in 𝐿2, and use (3.9) to obtain

𝑑

𝑑𝑡

∫︁
Ω

1
2
|u|2𝑑𝑥 + 𝛼‖

√︀
𝜈(𝜑)u‖2 =−𝑄

∫︁
Ω

𝜑∇𝜇 · u𝑑𝑥−𝑄

∫︁
Ω

𝜓∇𝜔 · u𝑑𝑥. (3.20)

By multiplying (3.10) with 𝑄, we obtain

𝑑

𝑑𝑡

(︁1
2
|𝑄|2

)︁
=−𝑄

∫︁
Ω

𝜑u · ∇𝜇𝑑𝑥−𝑄

∫︁
Ω

𝜓u · ∇𝜔𝑑𝑥

+𝑄

∫︁
Ω

𝜑∇𝜇 · u𝑑𝑥 +𝑄

∫︁
Ω

𝜓∇𝜔 · u𝑑𝑥.
(3.21)

Combining (3.15)–(3.21), we derive the law of energy disspation (3.14), that is now related to the new variables
𝑄,𝑈 . �

3.2. Fully-discrete finite element numerical scheme

We develop the fully-discrete finite element scheme for the modified model (3.3)–(3.10) in this section.
We first formulate the PDE system (3.3)–(3.10) to the weak form. Some Hilbert spaces are introduced as

follows:

X = 𝐿2(Ω)𝑑, 𝐿2
0(Ω) = {𝑞 ∈ 𝐿2(Ω) :

∫︁
Ω

𝑞𝑑𝑥 = 0}, 𝑌 = 𝐻1(Ω),𝑀 = 𝐻1(Ω) ∩ 𝐿2
0(Ω). (3.22)

The weak formulation of the system (3.3)–(3.10) reads as: find (𝜑, 𝜇, 𝜓, 𝜔,u, 𝑝) ∈ 𝑌 × 𝑌 × 𝑌 × 𝑌 ×X×𝑀 ,
such that

(𝜑𝑡,Θ)−𝑄(u𝜑,∇Θ) = −𝑀1(∇𝜇,∇Θ) (3.23)
(𝜇, 𝜙) = 𝜆1(∇𝜑,∇𝜙) + 𝑈(𝐻,𝜙), (3.24)
(𝜓𝑡, 𝜛)−𝑄(u𝜓,∇𝜛) = −𝑀2(∇𝜔,∇𝜛), (3.25)
(𝜔,Ψ) = 𝜆2𝛾(∇𝜓,∇Ψ) + 𝑈(𝑅,Ψ), (3.26)

𝑈𝑡 =
1
2

∫︁
Ω

(𝐻𝜑𝑡 +𝑅𝜓𝑡)𝑑𝑥, (3.27)

(u𝑡,𝑣) + 𝛼(𝜈(𝜑)u,𝑣) + (∇𝑝,𝑣) +𝑄(𝜑∇𝜇,𝑣) +𝑄(𝜓∇𝜔,𝑣) = 0, (3.28)
(u,∇𝑞) = 0, (3.29)

𝑄𝑡 =
∫︁

Ω

(︁
− 𝜑u · ∇𝜇− 𝜓u · ∇𝜔 + 𝜑∇𝜇 · u + 𝜓∇𝜔 · u

)︁
𝑑𝑥, (3.30)
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for (𝜙,Θ,Ψ, 𝜛,𝑣, 𝑞) ∈ 𝑌 × 𝑌 × 𝑌 × 𝑌 ×X×𝑀 .
Before the numerical scheme, we introduce a few finite dimensional discrete subspaces. Assuming that the

polygonal/polyhedral domain Ω is discretized by a conforming and shape regular triangulation/tetrahedron
mesh 𝒯ℎ that is composed by open disjoint elements 𝐾 such that Ω̄ =

⋃︀
𝐾∈𝒯ℎ

𝐾̄. We use 𝒫𝑘 to denote the space
of polynomials of total degree at most 𝑘 (𝑘 ≥ 1) and define the following finite element spaces:

𝑋ℎ =
{︀
𝑣 ∈ 𝐿2(Ω)𝑑 : 𝑣|𝐾 ∈ 𝒫𝑙−1(𝐾)𝑑,∀𝐾 ∈ 𝒯ℎ

}︀
,

𝑀ℎ =
{︀
𝑝 ∈ 𝐻1(Ω) ∩ 𝐿2

0(Ω) : 𝑝|𝐾 ∈ 𝒫𝑙(𝐾)
}︀
,

𝑌ℎ =
{︀
𝑋 ∈ 𝐶0(Ω) : 𝑋|𝐾 ∈ 𝒫ℓ(𝐾),∀𝐾 ∈ 𝒯ℎ

}︀
.

(3.31)

Hence 𝑋ℎ ⊂ 𝐿2(Ω)𝑑,𝑀ℎ ⊂ 𝐿2
0(Ω), 𝑌ℎ ⊂ 𝐻1(Ω).

Using the second-order backward differentiation formula for the time derivative, we construct the fully discrete
scheme to solve the system (3.23)–(3.30) as follows: find 𝜑𝑛+1

ℎ ∈ 𝑌ℎ, 𝜇𝑛+1
ℎ ∈ 𝑌ℎ, 𝜓𝑛+1

ℎ ∈ 𝑌ℎ, 𝜔𝑛+1
ℎ ∈ 𝑌ℎ, ũ𝑛+1

ℎ ∈
𝑋ℎ,u𝑛+1

ℎ ∈ 𝑋ℎ, 𝑝
𝑛+1
ℎ ∈𝑀ℎ, and two nonlocal scalars 𝑈𝑛+1, 𝑄𝑛+1 such that

(︂
𝑎𝜑𝑛+1

ℎ − 𝑏𝜑𝑛ℎ + 𝑐𝜑𝑛−1
ℎ

2𝛿𝑡
,Θℎ

)︂
−𝑄𝑛+1(u*ℎ𝜑

*
ℎ,∇Θℎ) = −𝑀1(∇𝜇𝑛+1

ℎ ,∇Θℎ), (3.32)

(𝜇𝑛+1
ℎ , 𝜙ℎ) = 𝜆1(∇𝜑𝑛+1

ℎ ,∇𝜙ℎ) + 𝑈𝑛+1(𝐻*, 𝜙ℎ) +
𝑆1

𝜖2
(𝜑𝑛+1
ℎ − 𝜑*ℎ, 𝜙ℎ), (3.33)

(︂
𝑎𝜓𝑛+1

ℎ − 𝑏𝜓𝑛ℎ + 𝑐𝜓𝑛−1
ℎ

2𝛿𝑡
,𝜛ℎ

)︂
−𝑄𝑛+1(u*ℎ𝜓

*
ℎ,∇𝜛ℎ) = −𝑀2(∇𝜔𝑛+1

ℎ ,∇𝜛ℎ), (3.34)

(𝜔𝑛+1
ℎ ,Ψℎ) = 𝜆2𝛾(∇𝜔𝑛+1

ℎ ,∇Ψℎ) + 𝑈𝑛+1(𝑅*,Ψℎ) +
𝑆2

𝜂2
(𝜓𝑛+1
ℎ − 𝜓*ℎ,Ψℎ), (3.35)

𝑎𝑈𝑛+1 − 𝑏𝑈𝑛 + 𝑐𝑈𝑛−1 =
1
2

∫︁
Ω

(︁
𝐻*(𝑎𝜑𝑛+1

ℎ − 𝑏𝜑𝑛ℎ + 𝑐𝜑𝑛−1
ℎ ) (3.36)

+𝑅*(𝑎𝜓𝑛+1
ℎ − 𝑏𝜓𝑛ℎ + 𝑐𝜓𝑛−1

ℎ )
)︁
𝑑𝑥,

(︂
𝑎ũ𝑛+1

ℎ − 𝑏u𝑛ℎ + 𝑐u𝑛−1
ℎ

2𝛿𝑡
,𝑣ℎ

)︂
+ 𝛼(𝜈(𝜑*ℎ)ũ𝑛+1

ℎ ,𝑣ℎ) + (∇𝑝𝑛ℎ,𝑣ℎ) (3.37)

+𝑄𝑛+1(𝜑*ℎ∇𝜇*ℎ,𝑣ℎ) +𝑄𝑛+1(𝜓*ℎ∇𝜔*ℎ,𝑣ℎ) = 0,
𝑎𝑄𝑛+1 − 𝑏𝑄𝑛 + 𝑐𝑄𝑛−1

2𝛿𝑡
=

∫︁
Ω

(︁
− 𝜑*ℎu

*
ℎ · ∇𝜇𝑛+1

ℎ − 𝜓*ℎu
*
ℎ · ∇𝜔𝑛+1

ℎ (3.38)

+𝜑*ℎ∇𝜇*ℎ · ũ𝑛+1
ℎ + 𝜓*ℎ∇𝜔*ℎ · ũ𝑛+1

ℎ

)︁
𝑑𝑥,

(∇(𝑝𝑛+1
ℎ − 𝑝𝑛ℎ),∇𝑞ℎ) =

𝑎

2𝛿𝑡
(ũ𝑛+1
ℎ ,∇𝑞ℎ), (3.39)

u𝑛+1
ℎ = ũ𝑛+1

ℎ − 2𝛿𝑡
𝑎

(∇𝑝𝑛+1
ℎ −∇𝑝𝑛ℎ), (3.40)

for all Θℎ ∈ 𝑌ℎ, 𝜙ℎ ∈ 𝑌ℎ, 𝜛ℎ ∈ 𝑌ℎ,Ψℎ ∈ 𝑌ℎ,𝑣ℎ ∈ 𝑋ℎ, 𝑞ℎ ∈𝑀ℎ, where

𝑎 = 3, 𝑏 = 4, 𝑐 = 1,u*ℎ = 2u𝑛ℎ − u𝑛−1
ℎ , 𝜑*ℎ = 2𝜑𝑛ℎ − 𝜑𝑛−1

ℎ ,

𝜇*ℎ = 2𝜇𝑛ℎ − 𝜇𝑛−1
ℎ , 𝜓*ℎ = 2𝜓𝑛ℎ − 𝜓𝑛−1

ℎ , 𝜔*ℎ = 2𝜔𝑛ℎ − 𝜔𝑛−1
ℎ ,

𝐻* = 𝐻(𝜑*ℎ), 𝑅* = 𝑅(𝜓*ℎ), 𝜑 =
{︂
𝜑, |𝜑| < 1,
sign(𝜑), |𝜑| > 1,

(3.41)
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and 𝑆1 and 𝑆2 are two positive stabilization parameters.
Several remarks are in order.

Remark 3.4. The computations of the second-order scheme (3.32)–(3.40) require all values of 𝑡 = 𝑡1. In
practice, we can obtain these values by constructing a similar first-order scheme based on the backward Euler
method as long as we set 𝑎 = 𝑏 = 2, 𝑐 = 0, 𝑟* = 𝑟0,∀𝑟. Meanwhile, similar to the continuous case, the mass-
conserved property of 𝜑𝑛+1

ℎ and 𝜓𝑛+1
ℎ still holds, which can be proved by taking Θℎ = 𝜛ℎ = 1 in (3.32) and

(3.34). We can derive
∫︀
Ω
𝜑𝑛+1
ℎ 𝑑𝑥 =

∫︀
Ω

𝑏𝜑𝑛
ℎ−𝑐𝜑

𝑛−1
ℎ

𝑎 𝑑𝑥 and
∫︀
Ω
𝜓𝑛+1
ℎ 𝑑𝑥 =

∫︀
Ω

𝑏𝜓𝑛
ℎ−𝑐𝜓

𝑛−1
ℎ

𝑎 𝑑𝑥. By using the math
induction, it is easy to obtain

∫︀
Ω
𝜑𝑛+1
ℎ 𝑑𝑥 =

∫︀
Ω
𝜑𝑛ℎ𝑑𝑥 = · · · =

∫︀
Ω
𝜑0
ℎ𝑑𝑥 and

∫︀
Ω
𝜓𝑛+1
ℎ 𝑑𝑥 =

∫︀
Ω
𝜓𝑛ℎ𝑑𝑥 = · · · =∫︀

Ω
𝜓0
ℎ𝑑𝑥.

Remark 3.5. A second-order pressure-correction scheme is used to decouple the computation of the pressure
from that of the velocity. ũ𝑛+1 is the intermediate velocity and u𝑛+1 is the final velocity field that satisfies the
divergence free condition. u𝑛+1

ℎ satisfies the discrete divergence free condition that can be deduced by taking
the 𝐿2 inner product of (3.40) with ∇𝑞ℎ where 𝑞ℎ ∈𝑀ℎ, that is

(u𝑛+1
ℎ ,∇𝑞ℎ) = (ũ𝑛+1

ℎ ,∇𝑞ℎ)− 2𝛿𝑡
𝑎

(∇(𝑝𝑛+1
ℎ − 𝑝𝑛ℎ),∇𝑞ℎ) = 0, (3.42)

where (3.39) is used.

Remark 3.6. When the system has very high stiffness issues caused by the model parameters or other con-
ditions, while some numerical methods are formally unconditionally energy stable, but exceedingly small time
steps are needed to achieve reasonable accuracy, see the stabilized-IEQ/SAV methods in [9, 39, 47, 55]. To fix
such an inherent deficiency, a commonly used effective way is to add one or more extra linear stabilization
terms with the corresponding temporal order (cf. the second-order term associated with 𝑆1 in (3.33) and 𝑆2 in
(3.35)). The scale of the splitting errors caused by this term are about 𝑆1

𝜖2 𝛿𝑡
2𝜕𝑡𝑡𝜑(·) and 𝑆2

𝜂2 𝛿𝑡
2𝜕𝑡𝑡𝜓(·), which are

actually consistent with the error caused by the second-order extrapolated nonlinear term 𝑓(𝜑) and 𝑔(𝜓). In
Section 4, we present numerical evidence to show that this stabilizer is effective to improve the energy stability
while using large time steps in Figure 3. Similar linear stabilization techniques had been widely used in the
numerical scheme for solving the phase-field type models, e.g., the methods of linear stabilization, IEQ, SAV,
convex-splitting methods, etc., see [8, 9, 11,38,39,47,50,51,54,55].

Remark 3.7. Note that 1
𝛿𝑡 (𝐸

𝑛+1 − 𝐸𝑛) is actually a temporal second-order approximation of the term
𝑑
𝑑𝑡 𝐸̂tot(𝜑, 𝜓,u, 𝑄, 𝑈) at 𝑡 = 𝑡𝑛+1. Since for any smooth variable 𝜓 with time, we always have the following
heuristic approximations as

‖𝜓𝑛+1‖2 + ‖2𝜓𝑛+1 − 𝜓𝑛‖2

2𝛿𝑡
− ‖𝜓𝑛‖2 + ‖2𝜓𝑛 − 𝜓𝑛−1‖2

2𝛿𝑡

∼=
‖𝜓𝑛+2‖2 − ‖𝜓𝑛‖2

2𝛿𝑡
+𝑂(𝛿𝑡2) ∼=

𝑑

𝑑𝑡
‖𝜓(𝑡𝑛+1)‖2 +𝑂(𝛿𝑡2). (3.43)

We now show that the scheme (3.32)–(3.40) is unconditionally energy stable. We will use the following three
identities repeatedly:

2(𝑎− 𝑏, 𝑎) = |𝑎|2 − |𝑏|2 + |𝑎− 𝑏|2, (3.44)
2(3𝑎− 4𝑏+ 𝑐)𝑎 = |𝑎|2 − |𝑏|2 + |2𝑎− 𝑏|2 − |2𝑏− 𝑐|2 + |𝑎− 2𝑏+ 𝑐|2, (3.45)
(3𝑎− 4𝑏+ 𝑐)(𝑎− 2𝑏+ 𝑐) = |𝑎− 𝑏|2 − |𝑏− 𝑐|2 + 2|𝑎− 2𝑏+ 𝑐|2. (3.46)

Theorem 3.8. The following discrete energy dissipation law holds for the fully-discrete scheme (3.32)–(3.40)
that reads as

1
𝛿𝑡

(𝐸𝑛+1
ℎ − 𝐸𝑛ℎ ) ≤ −𝛼‖

√︁
𝜈(𝜑*ℎ)u𝑛+1

ℎ ‖2 −𝑀1‖∇𝜇𝑛+1
ℎ ‖2 −𝑀2‖∇𝜔𝑛+1

ℎ ‖2 ≤ 0, (3.47)
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where 𝐸𝑛+1
ℎ is defined as

𝐸𝑛+1
ℎ =

1
2

(︁1
2
‖u𝑛+1

ℎ ‖2 +
1
2
‖2u𝑛+1

ℎ − u𝑛ℎ‖2
)︁

+
𝜆1

2
(
1
2
‖∇𝜑𝑛+1

ℎ ‖2 +
1
2
‖2∇𝜑𝑛+1

ℎ −∇𝜑𝑛ℎ‖2)

+
𝜆2𝛾

2
(
1
2
‖∇𝜓𝑛+1

ℎ ‖2 +
1
2
‖2∇𝜓𝑛+1

ℎ −∇𝜓𝑛ℎ‖2)

+ (
1
2
|𝑈𝑛+1|2 +

1
2
|2𝑈𝑛+1 − 𝑈𝑛|2) +

1
2

(
1
2
|𝑄𝑛+1|2 +

1
2
|2𝑄𝑛+1 −𝑄𝑛|2)

+
𝛿𝑡2

3
‖∇𝑝𝑛+1

ℎ ‖2 +
𝑆1

2𝜖2
‖𝜑𝑛+1

ℎ − 𝜑𝑛ℎ‖2 +
𝑆2

2𝜂2
‖𝜓𝑛+1

ℎ − 𝜓𝑛ℎ‖2 −𝐵.

(3.48)

Proof. Taking 𝑣ℎ = 2𝛿𝑡ũ𝑛+1
ℎ in (3.37), we obtain

(3ũ𝑛+1
ℎ − 4u𝑛ℎ + u𝑛−1

ℎ , ũ𝑛+1
ℎ ) + 2𝛿𝑡𝛼‖

√︁
𝜈(𝜑*ℎ)ũ𝑛+1

ℎ ‖2 + 2𝛿𝑡(∇𝑝𝑛ℎ, ũ𝑛+1
ℎ )

+ 2𝛿𝑡𝑄𝑛+1

∫︁
Ω

𝜑*ℎ∇𝜇*ℎ · ũ𝑛+1
ℎ 𝑑𝑥 + 2𝛿𝑡𝑄𝑛+1

∫︁
Ω

𝜓*ℎ∇𝜔*ℎ · ũ𝑛+1
ℎ 𝑑𝑥 = 0,

(3.49)

where we use 𝜈(𝜑*ℎ) ≥ min(𝜈1, 𝜈2) > 0 from (3.41).
We rewrite (3.40) as

ũ𝑛+1
ℎ − u𝑛+1

ℎ =
2𝛿𝑡
3
∇(𝑝𝑛+1

ℎ − 𝑝𝑛ℎ). (3.50)

Taking the 𝐿2 inner product of the above equality with u𝑛+1
ℎ , we derive

(ũ𝑛+1
ℎ − u𝑛+1

ℎ ,u𝑛+1
ℎ ) =

2𝛿𝑡
3

(∇(𝑝𝑛+1
ℎ − 𝑝𝑛ℎ),𝑢𝑛+1) = 0, (3.51)

and

(3u𝑛+1
ℎ − 4u𝑛ℎ + u𝑛−1

ℎ , ũ𝑛+1
ℎ − u𝑛+1

ℎ )

= (3u𝑛+1
ℎ − 4u𝑛ℎ + u𝑛−1

ℎ ,
2𝛿𝑡
3
∇(𝑝𝑛+1

ℎ − 𝑝𝑛ℎ)) = 0,
(3.52)

where (3.42) is used. By using (3.51) and (3.52), we deduce

(3ũ𝑛+1
ℎ −4u𝑛ℎ + u𝑛−1

ℎ , ũ𝑛+1
ℎ )

=
(︀
3ũ𝑛+1

ℎ − 3u𝑛+1
ℎ , ũ𝑛+1

ℎ

)︀
+

(︀
3u𝑛+1

ℎ − 4u𝑛ℎ + u𝑛−1
ℎ , ũ𝑛+1

ℎ

)︀
=

(︀
3ũ𝑛+1

ℎ − 3u𝑛+1
ℎ , ũ𝑛+1

ℎ + u𝑛+1
ℎ

)︀
+

(︀
3u𝑛+1

ℎ − 4u𝑛ℎ + u𝑛−1
ℎ ,u𝑛+1

ℎ

)︀
=

1
2

(‖u𝑛+1
ℎ ‖2 − ‖u𝑛ℎ‖2 + ‖2u𝑛+1

ℎ − u𝑛ℎ‖2 − ‖2u𝑛ℎ − u𝑛−1
ℎ ‖2 + ‖u𝑛+1

ℎ − 2u𝑛ℎ + u𝑛−1
ℎ ‖2)

+ 3‖ũ𝑛+1
ℎ ‖2 − 3‖u𝑛+1

ℎ ‖2.

(3.53)

We rewrite (3.40) as

u𝑛+1
ℎ +

2
3
𝛿𝑡∇𝑝𝑛+1

ℎ = ũ𝑛+1
ℎ +

2
3
𝛿𝑡∇𝑝𝑛ℎ.

Taking the 𝐿2 inner product of the above equation with itself and multiply the result with 3
2 , we derive

2𝛿𝑡(ũ𝑛+1
ℎ ,∇𝑝𝑛ℎ) =

3
2
‖u𝑛+1

ℎ ‖2 − 3
2
‖ũ𝑛+1

ℎ ‖2 +
2𝛿𝑡2

3
‖∇𝑝𝑛+1

ℎ ‖2 − 2𝛿𝑡2

3
‖∇𝑝𝑛ℎ‖2. (3.54)
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We rewrite (3.40) as

u𝑛+1
ℎ − ũ𝑛+1

ℎ = −2
3
𝛿𝑡∇𝑝𝑛+1

ℎ +
2
3
𝛿𝑡∇𝑝𝑛ℎ. (3.55)

By taking the 𝐿2 inner product of the above equation with 3u𝑛+1
ℎ , using (3.42) and (3.44), we obtain

3
2
‖u𝑛+1

ℎ − ũ𝑛+1
ℎ ‖2 =

3
2
‖ũ𝑛+1

ℎ ‖2 − 3
2
‖u𝑛+1

ℎ ‖2. (3.56)

By combining (3.49), (3.53), (3.54) and (3.56), we derive

1
2

(‖u𝑛+1
ℎ ‖2 − ‖u𝑛ℎ‖2 + ‖2u𝑛+1

ℎ − u𝑛ℎ‖2 − ‖2u𝑛ℎ − u𝑛−1
ℎ ‖2 + ‖u𝑛+1

ℎ − 2u𝑛ℎ + u𝑛−1
ℎ ‖2)

+
3
2
‖u𝑛+1

ℎ − ũ𝑛+1
ℎ ‖2 + 2𝛼𝛿𝑡‖

√︁
𝜈(𝜑*ℎ)ũ𝑛+1

ℎ ‖2 +
2𝛿𝑡2

3
‖∇𝑝𝑛+1

ℎ ‖2 − 2𝛿𝑡2

3
‖∇𝑝𝑛ℎ‖2

+ 2𝛿𝑡𝑄𝑛+1

∫︁
Ω

𝜑*ℎ∇𝜇*ℎ · ũ𝑛+1
ℎ 𝑑𝑥 + 2𝛿𝑡𝑄𝑛+1

∫︁
Ω

𝜓*ℎ∇𝜔*ℎ · ũ𝑛+1
ℎ 𝑑𝑥 = 0.

(3.57)

Taking Θℎ = 2𝛿𝑡𝜇𝑛+1
ℎ in (3.32) and 𝜛ℎ = 2𝛿𝑡𝜔𝑛+1

ℎ in (3.34), we derive

(3𝜑𝑛+1
ℎ − 4𝜑𝑛ℎ + 𝜑𝑛−1

ℎ , 𝜇𝑛+1
ℎ )− 2𝛿𝑡𝑄𝑛+1

∫︁
Ω

𝜑*ℎu
*
ℎ · ∇𝜇𝑛+1

ℎ 𝑑𝑥 + 2𝛿𝑡𝑀1‖∇𝜇𝑛+1
ℎ ‖2 = 0, (3.58)

and

(3𝜓𝑛+1
ℎ − 4𝜓𝑛ℎ + 𝜓𝑛−1

ℎ , 𝜔𝑛+1
ℎ )− 2𝛿𝑡𝑄𝑛+1

∫︁
Ω

𝜓*ℎu
*
ℎ · ∇𝜔𝑛+1

ℎ 𝑑𝑥 + 2𝛿𝑡𝑀2‖∇𝜔𝑛+1
ℎ ‖2 = 0. (3.59)

Taking 𝜙ℎ = −(3𝜑𝑛+1
ℎ − 4𝜑𝑛ℎ + 𝜑𝑛−1

ℎ ) in (3.33) and Ψℎ = −(3𝜓𝑛+1
ℎ − 4𝜓𝑛ℎ + 𝜓𝑛−1

ℎ ) in (3.35), we find

− (𝜇𝑛+1
ℎ , 3𝜑𝑛+1

ℎ − 4𝜑𝑛ℎ + 𝜑𝑛−1
ℎ ) + 𝜆1(∇𝜑𝑛+1

ℎ ,∇(3𝜑𝑛+1
ℎ − 4𝜑𝑛ℎ + 𝜑𝑛−1

ℎ ))

+ 𝑈𝑛+1

∫︁
Ω

𝐻*(3𝜑𝑛+1
ℎ − 4𝜑𝑛ℎ + 𝜑𝑛−1

ℎ )𝑑𝑥 +
𝑆1

𝜖2
(𝜑𝑛+1
ℎ − 𝜑*ℎ, 3𝜑

𝑛+1
ℎ − 4𝜑𝑛ℎ + 𝜑𝑛−1

ℎ ) = 0,
(3.60)

and

− (𝜔𝑛+1
ℎ , 3𝜓𝑛+1

ℎ − 4𝜓𝑛ℎ + 𝜓𝑛−1
ℎ ) + 𝜆2𝛾(∇𝜓𝑛+1

ℎ ,∇(3𝜓𝑛+1
ℎ − 4𝜓𝑛ℎ + 𝜓𝑛−1

ℎ ))

+ 𝑈𝑛+1

∫︁
Ω

𝑅*(3𝜓𝑛+1
ℎ − 4𝜓𝑛ℎ + 𝜓𝑛−1

ℎ )𝑑𝑥 +
𝑆2

𝜂2
(𝜓𝑛+1
ℎ − 𝜓*ℎ, 3𝜓

𝑛+1
ℎ − 4𝜓𝑛ℎ + 𝜓𝑛−1

ℎ ) = 0.
(3.61)

We multiply (3.36) with 2𝑈𝑛+1 to obtain

|𝑈𝑛+1|2 − |𝑈𝑛|2 + |2𝑈𝑛+1 − 𝑈𝑛|2 − |2𝑈𝑛 − 𝑈𝑛−1|2 + |𝑈𝑛+1 − 2𝑈𝑛 + 𝑈𝑛−1|2

= 𝑈𝑛+1

(︂∫︁
Ω

𝐻*(3𝜑𝑛+1
ℎ − 4𝜑𝑛ℎ + 𝜑𝑛−1

ℎ )𝑑𝑥 +
∫︁

Ω

𝑅*(3𝜓𝑛+1
ℎ − 4𝜓𝑛ℎ + 𝜓𝑛−1

ℎ )𝑑𝑥
)︂
,

(3.62)

where (3.45) is used.
By multiplying (3.38) with 2𝛿𝑡𝑄𝑛+1 and using (3.45), we obtain

1
2

(︁
|𝑄𝑛+1|2 − |𝑄𝑛|2 + |2𝑄𝑛+1 −𝑄𝑛|2 − |2𝑄𝑛 −𝑄𝑛−1|2 + |𝑄𝑛+1 − 2𝑄𝑛 +𝑄𝑛−1|2

)︁
=2𝛿𝑡𝑄𝑛+1

∫︁
Ω

(︁
− 𝜑*ℎu

*
ℎ · ∇𝜇𝑛+1

ℎ − 𝜓*ℎu
*
ℎ · ∇𝜔𝑛+1

ℎ

)︁
𝑑𝑥

+ 2𝛿𝑡𝑄𝑛+1

∫︁
Ω

(︁
𝜑*ℎ∇𝜇*ℎ · ũ𝑛+1

ℎ + 𝜓*ℎ∇𝜔*ℎ · ũ𝑛+1
ℎ

)︁
𝑑𝑥.

(3.63)
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Hence, by combining (3.57)–(3.63) and using (3.45), (3.46), we arrive at

1
2

(‖u𝑛+1
ℎ ‖2 − ‖u𝑛ℎ‖2 + ‖2u𝑛+1

ℎ − u𝑛ℎ‖2 − ‖2u𝑛ℎ − u𝑛−1
ℎ ‖2) +

2𝛿𝑡2

3
(‖∇𝑝𝑛+1

ℎ ‖2 − ‖∇𝑝𝑛ℎ‖2)

+
𝜆1

2
(‖∇𝜑𝑛+1

ℎ ‖2 − ‖∇𝜑𝑛ℎ‖2 + ‖∇(2𝜑𝑛+1
ℎ − 𝜑𝑛ℎ)‖2 − ‖∇(2𝜑𝑛ℎ − 𝜑𝑛−1

ℎ )‖2)

+
𝜆2𝛾

2
(‖∇𝜓𝑛+1

ℎ ‖2 − ‖∇𝜓𝑛ℎ‖2 + ‖∇(2𝜓𝑛+1
ℎ − 𝜓𝑛ℎ)‖2 − ‖∇(2𝜓𝑛ℎ − 𝜓𝑛−1

ℎ )‖2)

+ (|𝑈𝑛+1|2 − |𝑈𝑛|2 + |2𝑈𝑛+1 − 𝑈𝑛|2 − |2𝑈𝑛 − 𝑈𝑛−1|2)

+
1
2

(|𝑄𝑛+1|2 − |𝑄𝑛|2 + |2𝑄𝑛+1 −𝑄𝑛|2 − |2𝑄𝑛 −𝑄𝑛−1|2)

+
𝑆1

𝜖2
(‖𝜑𝑛+1

ℎ − 𝜑𝑛ℎ‖2 − ‖𝜑𝑛ℎ − 𝜑𝑛−1
ℎ ‖2) +

𝑆2

𝜂2
(‖𝜓𝑛+1

ℎ − 𝜓𝑛ℎ‖2 − ‖𝜓𝑛ℎ − 𝜓𝑛−1
ℎ ‖2)

+
{︁1

2
‖u𝑛+1

ℎ − 2u𝑛ℎ + u𝑛−1
ℎ ‖2 +

3
2
‖u𝑛+1

ℎ − ũ𝑛+1
ℎ ‖2

+
𝜆1

2
‖∇(𝜑𝑛+1

ℎ − 2𝜑𝑛ℎ + 𝜑𝑛−1
ℎ )‖2 +

𝜆2𝛾

2
‖∇(𝜓𝑛+1

ℎ − 2𝜓𝑛ℎ + 𝜓𝑛−1
ℎ )‖2

+
2𝑆1

𝜖2
‖𝜑𝑛+1

ℎ − 2𝜑𝑛ℎ + 𝜑𝑛−1
ℎ ‖2 +

2𝑆2

𝜂2
‖𝜓𝑛+1

ℎ − 2𝜓𝑛ℎ + 𝜓𝑛−1
ℎ ‖2

+ |𝑈𝑛+1 − 2𝑈𝑛 + 𝑈𝑛−1|2 +
1
2
|𝑄𝑛+1 − 2𝑄𝑛 +𝑄𝑛−1|2

}︁
= −2𝛿𝑡𝛼‖

√︁
𝜈(𝜑*ℎ)ũ𝑛+1

ℎ ‖2 − 2𝛿𝑡𝑀1‖∇𝜇𝑛+1
ℎ ‖2 − 2𝛿𝑡𝑀2‖∇𝜔𝑛+1

ℎ ‖2.

(3.64)

Finally, by dropping the positive terms in { } of (3.64), we obtain (3.47). �

3.3. Decoupled implementation

In this subsection, we develop the decoupled implementation process for the scheme (3.32)–(3.40) in which
we make full use of the nonlocal property of the auxiliary variable 𝑄.

Step 1:, we split 𝜑𝑛+1
ℎ , 𝜇𝑛+1

ℎ , 𝜓𝑛+1
ℎ , 𝜔𝑛+1

ℎ , 𝑈𝑛+1 into a linear combination form in terms of 𝑄𝑛+1, namely,⎧⎪⎨⎪⎩
𝜑𝑛+1
ℎ = 𝜑𝑛+1

1ℎ +𝑄𝑛+1𝜑𝑛+1
2ℎ , 𝜇𝑛+1

ℎ = 𝜇𝑛+1
1ℎ +𝑄𝑛+1𝜇𝑛+1

2ℎ ,

𝜓𝑛+1
ℎ = 𝜓𝑛+1

1ℎ +𝑄𝑛+1𝜓𝑛+1
2ℎ , 𝜔𝑛+1

ℎ = 𝜔𝑛+1
1ℎ +𝑄𝑛+1𝜔𝑛+1

2ℎ ,

𝑈𝑛+1 = 𝑈𝑛+1
1 +𝑄𝑛+1𝑈𝑛+1

2 .

(3.65)

We solve 𝜑𝑛+1
𝑖ℎ , 𝜇𝑛+1

𝑖ℎ , 𝜓𝑛+1
𝑖ℎ , 𝜔𝑛+1

𝑖ℎ for 𝑖 = 1, 2, as follows.
Using (3.65) and according to 𝑄𝑛+1, the system (3.32)–(3.35) can be split into the following four subsystems:⎧⎪⎪⎨⎪⎪⎩

(︂
𝑎

2𝑀1𝛿𝑡
𝜑𝑛+1

1ℎ ,Θℎ

)︂
= −(∇𝜇𝑛+1

1ℎ ,∇Θℎ) + (
𝑏𝜑𝑛ℎ − 𝑐𝜑𝑛−1

ℎ

2𝑀1𝛿𝑡
,Θℎ),

(𝜇𝑛+1
1ℎ , 𝜙ℎ) = 𝜆1(∇𝜑𝑛+1

1ℎ ,∇𝜙ℎ) + (𝐻*, 𝜙ℎ)𝑈𝑛+1
1 +

𝑆1

𝜖2
(𝜑𝑛+1

1ℎ − 𝜑*ℎ, 𝜙ℎ),

(3.66)

⎧⎪⎪⎨⎪⎪⎩
(︂

𝑎

2𝑀1𝛿𝑡
𝜑𝑛+1

2ℎ ,Θℎ

)︂
= −(∇𝜇𝑛+1

2ℎ ,∇Θℎ) +
1
𝑀1

(u*ℎ𝜑
*
ℎ,∇Θℎ),

(𝜇𝑛+1
2ℎ , 𝜙ℎ) = 𝜆1(∇𝜑𝑛+1

2ℎ ,∇𝜙ℎ) + (𝐻*, 𝜙ℎ)𝑈𝑛+1
2 +

𝑆1

𝜖2
(𝜑𝑛+1

2ℎ , 𝜙ℎ),
(3.67)
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(︂

𝑎

2𝑀2𝛿𝑡
𝜓𝑛+1

1ℎ , 𝜛ℎ

)︂
= −(∇𝜔𝑛+1

1ℎ ,∇𝜛ℎ) + (
𝑏𝜓𝑛ℎ − 𝑐𝜓𝑛−1

ℎ

2𝑀2𝛿𝑡
,𝜛ℎ),

(𝜔𝑛+1
1ℎ ,Ψℎ) = 𝜆2𝛾(∇𝜓𝑛+1

1ℎ ,∇Ψℎ) + (𝑅*,Ψℎ)𝑈𝑛+1
1 +

𝑆2

𝜂2
(𝜓𝑛+1

1ℎ − 𝜓*ℎ,Ψℎ),
(3.68)

and ⎧⎪⎪⎨⎪⎪⎩
(︂

𝑎

2𝑀2𝛿𝑡
𝜓𝑛+1

2ℎ , 𝜛ℎ

)︂
= −(∇𝜔𝑛+1

2ℎ ,∇𝜛ℎ) +
1
𝑀2

(u*ℎ𝜓
*
ℎ,∇𝜛ℎ),

(𝜔𝑛+1
2 ,Ψℎ) = 𝜆2𝛾(∇𝜓𝑛+1

2ℎ ,∇Ψℎ) + (𝑅*, 𝜓ℎ)𝑈𝑛+1
2 +

𝑆2

𝜂2
(𝜓𝑛+1

2ℎ ,Ψℎ).
(3.69)

We continue to split 𝜑𝑛+1
𝑖ℎ , 𝜇𝑛+1

𝑖ℎ , 𝜓𝑛+1
𝑖ℎ , 𝜔𝑛+1

𝑖ℎ for 𝑖 = 1, 2 using the nonlocal variables 𝑈𝑛+1
1 and 𝑈𝑛+1

2 . Namely,
for 𝑖 = 1, 2, we formulate 𝜑𝑛+1

𝑖ℎ , 𝜇𝑛+1
𝑖ℎ , 𝜓𝑛+1

𝑖ℎ , 𝜔𝑛+1
𝑖ℎ as{︃

𝜑𝑛+1
𝑖ℎ = 𝜑𝑛+1

𝑖1ℎ + 𝑈𝑛+1
𝑖 𝜑𝑛+1

𝑖2ℎ , 𝜇
𝑛+1
𝑖ℎ = 𝜇𝑛+1

𝑖1ℎ + 𝑈𝑛+1
𝑖 𝜇𝑛+1

𝑖2ℎ ,

𝜓𝑛+1
𝑖ℎ = 𝜓𝑛+1

𝑖1ℎ + 𝑈𝑛+1
𝑖 𝜓𝑛+1

𝑖2ℎ , 𝜔
𝑛+1
𝑖ℎ = 𝜔𝑛+1

𝑖1ℎ + 𝑈𝑛+1
𝑖 𝜔𝑛+1

𝑖2ℎ .
(3.70)

Using (3.70), we replace 𝜑𝑛+1
𝑖ℎ , 𝜇𝑛+1

𝑖ℎ , 𝜓𝑛+1
𝑖ℎ , 𝜔𝑛+1

𝑖ℎ in the four subsystems (3.66)–(3.69), and decompose the
obtained equations according to 𝑈𝑛+1

1 and 𝑈𝑛+1
2 to the following eight sub-systems:⎧⎪⎨⎪⎩

𝑎

2𝑀1𝛿𝑡
(𝜑𝑛+1
𝑖1ℎ ,Θℎ) = −(∇𝜇𝑛+1

𝑖1ℎ ,∇Θℎ) +𝐺𝑖1,

(𝜇𝑛+1
𝑖1ℎ , 𝜙ℎ) = 𝜆1(∇𝜑𝑛+1

𝑖1ℎ ,∇𝜙ℎ) +
𝑆1

𝜖2
(𝜑𝑛+1
𝑖1ℎ , 𝜙ℎ), 𝑖 = 1, 2,

(3.71)

⎧⎪⎨⎪⎩
𝑎

2𝑀1𝛿𝑡
(𝜑𝑛+1
𝑖2ℎ ,Θℎ) = −(∇𝜇𝑛+1

𝑖2ℎ ,∇Θℎ) +𝐺𝑖2,

(𝜇𝑛+1
𝑖2ℎ , 𝜙ℎ) = 𝜆1(∇𝜑𝑛+1

𝑖2ℎ ,∇𝜙ℎ) + (𝐻*, 𝜙ℎ) +
𝑆1

𝜖2
(𝜑𝑛+1
𝑖2ℎ , 𝜙ℎ), 𝑖 = 1, 2,

(3.72)

⎧⎪⎨⎪⎩
𝑎

2𝑀2𝛿𝑡
(𝜓𝑛+1
𝑖1ℎ , 𝜛ℎ) = −(∇𝜔𝑛+1

𝑖1ℎ ,∇𝜛ℎ) + 𝐺̂𝑖1,

(𝜔𝑛+1
𝑖1ℎ ,Ψℎ) = 𝜆2𝛾(∇𝜓𝑛+1

𝑖1ℎ ,∇Ψℎ) +
𝑆2

𝜂2
(𝜓𝑛+1
𝑖1ℎ ,Ψℎ), 𝑖 = 1, 2,

(3.73)

⎧⎪⎨⎪⎩
𝑎

2𝑀2𝛿𝑡
(𝜓𝑛+1
𝑖2ℎ , 𝜛ℎ) = −(∇𝜔𝑛+1

𝑖2ℎ ,∇𝜛ℎ) + 𝐺̂𝑖2,

(𝜔𝑛+1
𝑖2ℎ ,Ψℎ) = 𝜆2𝛾(∇𝜓𝑛+1

𝑖2ℎ ,∇Ψℎ) + (𝑅*,Ψℎ) +
𝑆2

𝜂2
(𝜓𝑛+1
𝑖2ℎ ,Ψℎ), 𝑖 = 1, 2,

(3.74)

where ⎧⎪⎪⎨⎪⎪⎩
𝐺11 = (

𝑏𝜑𝑛ℎ − 𝑐𝜑𝑛−1
ℎ

2𝑀1𝛿𝑡
,Θℎ), 𝐺21 =

1
𝑀1

(u*ℎ𝜑
*
ℎ,∇Θℎ), 𝐺12 = 𝐺22 = 0,

𝐺̂11 = (
𝑏𝜓𝑛ℎ − 𝑐𝜓𝑛−1

ℎ

2𝑀2𝛿𝑡
,𝜛ℎ), 𝐺̂21 =

1
𝑀2

(u*ℎ𝜓
*
ℎ,∇𝜛ℎ), 𝐺̂12 = 𝐺̂22 = 0.

(3.75)



664 X. YANG

It is very easy to solve (3.71)–(3.74) since all equations in these systems are linear and elliptic with constant
coefficients. Note that 𝜑𝑛+1

12ℎ = 𝜑𝑛+1
22ℎ and 𝜓𝑛+1

12ℎ = 𝜓𝑛+1
22ℎ , thus we only need to solve six elliptic systems here.

Step 2:, we further solve 𝑈𝑛+1
1 and 𝑈𝑛+1

2 . We rewrite (3.36) to be the following form:

𝑈𝑛+1 =
1
2

∫︁
Ω

(𝐻*𝜑𝑛+1
ℎ +𝑅*𝜓𝑛+1

ℎ )𝑑𝑥 + 𝑔𝑛, (3.76)

where 𝑔𝑛 = 1
3 (𝑏𝑈𝑛 − 𝑐𝑈𝑛−1)− 1

6

∫︀
Ω

(𝐻*(𝑏𝜑𝑛ℎ − 𝑐𝜑
𝑛−1
ℎ ) +𝑅*(𝑏𝜓𝑛ℎ − 𝑐𝜓

𝑛−1
ℎ ))𝑑𝑥, and replace (𝑈, 𝜑ℎ, 𝜓ℎ)𝑛+1 using

(3.65) to get

𝑈𝑛+1
1 +𝑄𝑛+1𝑈𝑛+1

2 =
1
2

∫︁
Ω

(𝐻*(𝜑𝑛+1
1ℎ +𝑄𝑛+1𝜑𝑛+1

2ℎ ) +𝑅*(𝜓𝑛+1
1ℎ +𝑄𝑛+1𝜓𝑛+1

2ℎ ))𝑑𝑥 + 𝑔𝑛. (3.77)

According to 𝑄𝑛+1, we get

𝑈𝑛+1
𝑖 =

1
2

∫︁
Ω

(𝐻*𝜑𝑛+1
𝑖ℎ +𝑅*𝜓𝑛+1

𝑖ℎ )𝑑𝑥 +𝐺𝑖𝑈 , 𝑖 = 1, 2, (3.78)

where 𝐺1
𝑈 = 𝑔𝑛, 𝐺2

𝑈 = 0. We continue to replace 𝜑𝑛+1
𝑖ℎ , 𝜓𝑛+1

𝑖ℎ with 𝑖 = 1, 2 in (3.78) using (3.70) and apply a
simple factorization to derive

𝑈𝑛+1
𝑖 =

1
2

∫︀
Ω

(𝐻*𝜑𝑛+1
𝑖1ℎ +𝑅*𝜓𝑛+1

𝑖1ℎ )𝑑𝑥 +𝐺𝑖𝑈
1− 1

2

∫︀
Ω
𝐻*𝜑𝑛+1

𝑖2ℎ 𝑑𝑥−
1
2

∫︀
Ω
𝑅*𝜓𝑛+1

𝑖2ℎ 𝑑𝑥
, 𝑖 = 1, 2. (3.79)

Thus one can directly solve 𝑈𝑛+1
1 , 𝑈𝑛+1

2 from (3.79) under of the premise that the denominators are non-zero.
We show the solvability of (3.79) as follows. For the system of (𝜑𝑖2ℎ, 𝜇𝑖2ℎ)𝑛+1, 𝑖 = 1, 2 in (3.72), we set

Θℎ = −𝜇𝑛+1
𝑖2ℎ and 𝜙ℎ = 𝑎

2𝑀1𝛿𝑡
𝜑𝑛+1
𝑖2ℎ to deduce

− 𝑎

2𝑀1𝛿𝑡

∫︁
Ω

𝐻*𝜑𝑛+1
𝑖2ℎ 𝑑𝑥 = ‖∇𝜇𝑛+1

𝑖2ℎ ‖
2 +

𝜆1𝑎

2𝑀1𝛿𝑡
‖∇𝜑𝑛+1

𝑖2ℎ ‖
2 +

𝑎𝑆1

2𝑀1𝜖2𝛿𝑡
‖𝜑𝑛+1

𝑖2ℎ ‖
2 ≥ 0, 𝑖 = 1, 2. (3.80)

In the similar way, we set 𝜛ℎ = −𝜔𝑛+1
𝑖2ℎ and Ψℎ = 𝑎

2𝑀2𝛿𝑡
𝜓𝑛+1
𝑖2ℎ in (3.74) to deduce

− 𝑎

2𝑀2𝛿𝑡

∫︁
Ω

𝑅*𝜓𝑛+1
𝑖2ℎ 𝑑𝑥 = ‖∇𝜔𝑛+1

𝑖2ℎ ‖
2 +

𝜆2𝛾𝑎

2𝑀2𝛿𝑡
‖∇𝜓𝑛+1

𝑖2ℎ ‖
2 +

𝑎𝑆2

2𝑀2𝜂2𝛿𝑡
‖𝜓𝑛+1

𝑖2ℎ ‖
2 ≥ 0, 𝑖 = 1, 2. (3.81)

Hence, the denominators in (3.79) are always non-zero which means the solvability of (3.79) is always valid.
After 𝑈𝑛+1

1 , 𝑈𝑛+1
2 are computed, 𝜑𝑛+1

𝑖ℎ , 𝜇𝑛+1
𝑖ℎ , 𝜓𝑛+1

𝑖ℎ , 𝜔𝑛+1
𝑖ℎ with 𝑖 = 1, 2 can be updated from (3.70) directly.

Step 3: we solve the velocity field ũ𝑛+1
ℎ in (3.37). We formulate ũ𝑛+1

ℎ to be the split form as

ũ𝑛+1
ℎ = ũ𝑛+1

1ℎ +𝑄𝑛+1ũ𝑛+1
2ℎ . (3.82)

After replacing the variable ũ𝑛+1
ℎ in (3.37) with (3.82), and splitting the obtained equations in terms of 𝑄𝑛+1,

we can obtain two sub-systems:(︁(︀ 𝑎

2𝛿𝑡
+ 𝛼𝜈(𝜑*ℎ)

)︀
ũ𝑛+1
𝑖ℎ ,𝑣ℎ

)︁
= (𝑅𝑖u,𝑣ℎ), 𝑖 = 1, 2, (3.83)

where 𝑅1
u = −∇𝑝𝑛ℎ + 𝑏u𝑛

ℎ−𝑐u
𝑛−1
ℎ

2𝛿𝑡 , 𝑅2
u = −𝜑*ℎ∇𝜇*ℎ − 𝜓*ℎ∇𝜔*ℎ. It is very easy to solve (3.83) since they are just

linear algebraic equations. Moreover, since 𝜈(𝜑*ℎ) ≥ min(𝜈1, 𝜈2) > 0, we have 𝑎
2𝛿𝑡 + 𝛼𝜈(𝜑*ℎ) > 0 which shows

(3.83) is always solvable.
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Step 4: we solve 𝑄𝑛+1 in (3.38). By using the linear combination forms for the variables (𝜇ℎ, 𝜔ℎ)𝑛+1 in
(3.65), ũ𝑛+1

ℎ in (3.82), we formulate (3.38) into the following form:

(
3

2𝛿𝑡
− 𝜂2)𝑄𝑛+1 =

1
2𝛿𝑡

(4𝑄𝑛 −𝑄𝑛−1) + 𝜂1, (3.84)

where 𝜂𝑖 is given as

𝜂𝑖 =
∫︁

Ω

(︁
− 𝜑*ℎu

*
ℎ · ∇𝜇𝑛+1

𝑖ℎ − 𝜓*ℎu
*
ℎ · ∇𝜔𝑛+1

𝑖ℎ + 𝜑*ℎ∇𝜇*ℎ · ũ𝑛+1
𝑖ℎ + 𝜓*ℎ∇𝜔*ℎ · ũ𝑛+1

𝑖ℎ

)︁
𝑑𝑥, 𝑖 = 1, 2. (3.85)

It is very easy to solve (3.84) since all terms in 𝜂1 and 𝜂2 are already obtained from Step 1-Step 3 (solv-
ability of (3.84) is given below). Once 𝑄𝑛+1 is obtained from (3.84), ũ𝑛+1

ℎ is updated from (3.82), and
𝜑𝑛+1
ℎ , 𝜇𝑛+1

ℎ , 𝜓𝑛+1
ℎ , 𝜔𝑛+1

ℎ , 𝑈𝑛+1 are updated from (3.65).
We further show the solvability of (3.84), i.e., 3

2𝛿𝑡 − 𝜂2 ̸= 0. Taking 𝑣ℎ = ũ𝑛+1
2ℎ in the equation (3.83) for

𝑖 = 2, we deduce

−
∫︁

Ω

(︁
𝜑*ℎ∇𝜇*ℎ · ũ𝑛+1

2ℎ + 𝜓*ℎ∇𝜔*ℎ · ũ𝑛+1
2ℎ

)︁
𝑑𝑥 =

𝑎

2𝛿𝑡
‖ũ𝑛+1

2ℎ ‖2 + 𝛼‖
√︁
𝜈(𝜑*ℎ)ũ𝑛+1

2ℎ ‖2 ≥ 0. (3.86)

Taking Θℎ = −𝑀1𝜇
𝑛+1
2ℎ , 𝜙ℎ = 𝑎

2𝛿𝑡𝜑
𝑛+1
2ℎ in (3.67), 𝜛ℎ = −𝑀2𝜔

𝑛+1
2ℎ , Ψℎ = 𝑎

2𝛿𝑡𝜓
𝑛+1
2ℎ in (3.69), and combining the

four obtained equalities, we get∫︁
Ω

(𝜑*ℎu
*
ℎ · ∇𝜇𝑛+1

2ℎ + 𝜓*ℎu
*
ℎ · ∇𝜔𝑛+1

2ℎ )𝑑𝑥

= 𝑀1‖∇𝜇𝑛+1
2ℎ ‖2 +

𝑎𝜆1

2𝛿𝑡
‖∇𝜑𝑛+1

2ℎ ‖2 +
𝑎𝑆1

2𝛿𝑡𝜖2
‖𝜑𝑛+1

2ℎ ‖2

+𝑀2‖∇𝜔𝑛+1
2ℎ ‖2 +

𝑎𝜆2𝛾

2𝛿𝑡
‖∇𝜓𝑛+1

2ℎ ‖2 +
𝑎𝑆2

2𝛿𝑡𝜂2
‖𝜓𝑛+1

2ℎ ‖2

+
𝑎

2𝛿𝑡
𝑈𝑛+1

2

∫︁
Ω

(︀
𝐻*𝜑𝑛+1

2ℎ +𝑅*𝜓𝑛+1
2ℎ

)︀
𝑑𝑥.

(3.87)

From (3.78) with 𝑖 = 2, we get

𝑈𝑛+1
2

∫︁
Ω

(𝐻*𝜑𝑛+1
2ℎ +𝑅*𝜓𝑛+1

2ℎ )𝑑𝑥 = 2(𝑈𝑛+1
2 )2 ≥ 0, (3.88)

which implies ∫︁
Ω

(𝜑*ℎu
*
ℎ · ∇𝜇𝑛+1

2ℎ + 𝜓*ℎu
*
ℎ · ∇𝜔𝑛+1

2ℎ )𝑑𝑥 ≥ 0. (3.89)

The combination of (3.86) and (3.89) gives −𝜂2 ≥ 0. Thus (3.84) is always solvable.

Step 5: we update u𝑛+1
ℎ and 𝑝𝑛+1

ℎ from (3.39) and (3.40).
From the above-detailed implementation process, it can be seen that the calculation of all unknown variables

are completely decoupled. At each time step, the total cost only includes the computations of several elliptic
equations. The decoupling of all equations and the characteristic of having only constant coefficients means very
efficient practical calculations.

Remark 3.9. For the sake of completeness, here we present the fully-decoupled scheme developed in [22] for
solving the Darcy coupled Cahn-Hilliard equation. For simplicity, only the first-order time marching scheme is
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given here, since the second-order version follows the same line. We only discretize related terms, while other
irrelevant terms remain unchanged. The scheme in [22] reads as

𝜑𝑡 +∇ · (u𝑛+1𝜑𝑛) = 𝑀∆𝜇𝑛+1, (3.90)

𝜏
u𝑛+1 − u𝑛

𝛿𝑡
+ 𝛼𝜈(𝜑)u𝑛+1 +∇𝑝𝑛 + 𝜑𝑛∇𝜇𝑛+1 = 0. (3.91)

Note that the advection ∇ · (u𝜑) and surface tension 𝜑∇𝜇 are discretized using the traditional explicit-implicit
combination method. Due to the special format of the Darcy equations, by using the explicit linear relationship
between u𝑛+1 and other items, the decoupling structure of the above scheme can be obtained. More precisely,
one can rewrite (3.91) as

u𝑛+1 =
1

𝜏
𝛿𝑡 + 𝛼𝜈(𝜑)

(︁ 𝜏
𝛿𝑡

u𝑛 −∇𝑝𝑛 + 𝜑𝑛∇𝜇𝑛+1
)︁
. (3.92)

Then, by replacing u𝑛+1 in the scheme (3.90) using (3.92), the scheme for the Cahn-Hilliard equation is formu-
lated as

𝜑𝑡 +∇ ·
(︁ 1
𝜏
𝛿𝑡 + 𝛼𝜈(𝜑)

(
𝜏

𝛿𝑡
u𝑛 −∇𝑝𝑛 + 𝜑𝑛∇𝜇𝑛+1)𝜑𝑛

)︁
= 𝑀∆𝜇𝑛+1. (3.93)

This scheme does achieve a full decoupling structure, i.e., the computation of 𝜑𝑛+1 is independent of the velocity
field u𝑛+1. However, the paid price is that the phase-field equation is then equipped with variable coefficients
(i.e., the coefficients of 𝜇𝑛+1) at each time step, which increases the practical computational cost.

Moreover, it is worth noting that if we apply similar techniques to the DCHS model studied here, (3.92) will
also include 𝜓𝑛∇𝜔𝑛+1. This means the two Cahn-Hilliard equations must be coupled together. Therefore, the
decoupling technique given in [22] can not actually obtain the expected full decoupling structure for the DCHS
model.

4. Numerical simulation

In this section, we investigate the accuracy, energy stability, and effectiveness of the proposed scheme (3.32)–
(3.40), numerically, in which all the numerical simulation are implemented using the FreeFem++ [23].

4.1. Accuracy and stability test

In this example, we perform several convergence and stability tests in 2D of the finite element scheme (3.32)–
(3.40), referred to as DSAV for short. We set the computational domain as Ω = [0, 2]2. We use 𝑙 = ℓ = 2, that
is, 𝑃2 finite elements for 𝜑, 𝜓, 𝜇, 𝜔, 𝑝, and 𝑃1 for u.

We first verify the convergence order of the scheme DSAV in space and time, where we impose some suitable
source terms so that the following solutions satisfy the system (2.4)–(2.7):⎧⎪⎨⎪⎩

𝜑(𝑥, 𝑦, 𝑡) = cos(2𝜋𝑥)cos(𝜋𝑦)cos𝑡, 𝜓(𝑥, 𝑦, 𝑡) = 0.2 + 0.01cos(4𝜋𝑥)cos(4𝜋𝑦)cos𝑡,
u(𝑥, 𝑦, 𝑡) = (𝑢(𝑥, 𝑦, 𝑡), 𝑣(𝑥, 𝑦, 𝑡)) = (𝜋sin(2𝜋𝑦)sin2(𝜋𝑥),−𝜋sin(2𝜋𝑥)sin2(𝜋𝑦)cos𝑡),
𝑝(𝑥, 𝑦, 𝑡) = cos(𝜋𝑥)cos(𝜋𝑦)sin𝑡.

(4.1)

We set the model parameters as

𝜈1 = 𝜈2 = 1, 𝛼 = 1𝑒3, 𝜆1 = 𝜆2 = 1𝑒− 2, 𝛾 = 1, 𝜏 = 1, 𝜁 = 1𝑒− 5,
𝜃 = 0.01, 𝜖 = 0.09, 𝜂 = 5𝑒− 3,𝑀1 = 𝑀2 = 1, 𝐵 = 1𝑒5, 𝑆1 = 𝑆2 = 4.

(4.2)

To verify the temporal convergence order, the linear relation between the spatial resolution and temporal
resolution is assumed such that the temporal error is dominant. In Figure 1a, the errors measured in 𝐿2 norm
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Figure 1. Convergence order tests for (a) temporal and (b) spatial discretization for the
example of the presumed exact solutions (4.1).

Figure 2. Convergence order tests for temporal discretization for the example of the presumed
exact solutions (4.1) with low stiffness parameters with low stiffness parameters of 𝜂 = 𝜖 =
1, 𝜃 = 0.001.

between the numerical solution and the exact solution at 𝑡 = 1 are plotted, where we vary different time step
size and the spatial grid size is set as ℎ = 𝛿𝑡. It can be observed that the scheme DSAV presents second-order
temporal accuracy for all variables.

To verify the spatial convergence order, in Figure 1b, we plot the errors measured in various norms at 𝑡 = 1
for various mesh size ℎ, in which we choose 𝛿𝑡 sufficiently small (𝛿𝑡 = 1𝑒− 5) so that the errors are dominated by
the spatial discretization error. We can see that the third-order convergence rates are followed by the pressure
𝜑, 𝜓, 𝑝 in the 𝐿2 norm, while the second-order convergence rates are observed for the u in the 𝐿2 norm, 𝑝 in
the 𝐻1 norm. These results are in full agreements with the theoretical expectation of accuracy for the adopted
finite element space. In Fig. 2, we test the convergence rate for low stiffness parameters 𝜂 = 𝜖 = 1, 𝜃 = 0.001. It
can be seen all variables follow the second-order convergence order.

We further perform the stability test by plotting the time evolution of the total free energy where we set the
initial conditions to 𝜑 to be two circles with different radii, that read as follows (shown in the small inset figure
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Figure 3. (a) The time evolution of the total free energy (3.48) with different time steps,
where small inset subfigure shows that even with very tiny time steps, the energy blows up if
𝑆1 = 𝑆2 = 0, and (b) comparisons of the time evolution of the total free energy in the original
form (2.15) and in the discrete form (3.48) computed with 𝛿𝑡 = 0.1/23, where several profiles
of 𝜑 are appended to show the coarsening effects.

in Fig. 3b), ⎧⎪⎪⎨⎪⎪⎩
𝜑0(𝑥, 𝑦) = 1 +

2∑︁
𝑖=1

tanh(
𝑟𝑖 −

√︀
(𝑥− 𝑥𝑖)2 + (𝑦 − 𝑦𝑖)2

1.5𝜖
), 𝜓0 = 0.2,

u0(𝑥, 𝑦) = 0, 𝑝0(𝑥, 𝑦) = 0,

(4.3)

where 𝑟1 = 1.4, 𝑟2 = 0.7, 𝑥1 = 𝜋 − 0.8, 𝑥2 = 𝜋 + 1.7, 𝑦1 = 𝑦2 = 𝜋. The computational domain is set as [0, 2𝜋]2.
We still use the model parameters given in (4.2) and grid size ℎ = 2𝜋

256 .
In Figure 3a, the evolution curves of the total free energy (3.48) computed by the scheme DSAV are shown,

where different time step sizes are used. All energy curves computed show monotonic decays, thereby verifying
its unconditional stability. When the time step 𝛿𝑡 is large (e.g., 𝛿𝑡 ≥ 0.1/22), the obtained energy curves display
large deviations from others, which means that the larger the time step, the larger the error. When the time
step 𝛿𝑡 is small (e.g., 𝛿𝑡 ≤ 0.1/23), the obtained energy curves are overlapped, which means that the smaller the
time step, the more accurate the computation result. To illustrate the effectiveness of the stabilizations (𝑆1 and
𝑆2), for comparison, in the small inset figure of Figure 3a, we append the energy curves computed by DSAV
but with 𝑆1 = 𝑆2 = 0. We find that, with the absence of these two stabilizers, the energy blows up quickly even
with very tiny time steps (e.g., 𝛿𝑡 = 0.1/213), which shows these two stabilizers are very effective in improving
stability. In Figure 3b, we plot the time evolution of the total free energy in the original form (2.15) and the
discrete form (3.48) using the same time step size 𝛿𝑡 = 0.1/23. Both energy curves overlap very well. We also
attach the profiles of 𝜑 at various times and find that the coarsening effect causes the small circle to gradually
absorb into the large circle.

4.2. Saffman-Taylor fingering instability

In this subsection, we simulate the Saffman-Taylor fingering pattern instability problem, which demonstrates
the formation and evolution of elaborate patterned structures, as one of the most in-depth benchmark research
problems in fluid dynamic systems. It considers the development of interfacial instabilities when a fluid with
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Figure 4. Example of radial injection of a less viscous fluid, where the surfactant effect is
absent (𝜃 = 0). Snapshots of the phase-field variable 𝜑 are taken at 𝑡 = 0, 1, 3, 4, 5.5. In the
grayscale images, the dark and blank regions represent the injected fluid with less viscosity and
the displaced fluid with higher viscosity, respectively.

low viscosity displaces another fluid of higher viscosity between the narrowly spaced plates of a Hele-Shaw
cell. Several widely studied versions of this problem are the so-called continuous injection (radial or uniform)
[5, 7, 13, 35], or rotating Hele-Shaw cell [2, 6, 35, 43]. Below we carry out numerical simulations on these three
problems respectively. In each case, we compare the number of fingers formed to verify the weakening effects of
surface tension by surfactants.

4.2.1. Radial injection of a less viscous fluid

The first numerical example considers a radial injection of low-viscosity fluid to displace high-viscosity fluid.
Initially, except for a small circular area in the center of the domain occupied by the low viscosity fluid, the
entire domain is filled with a fluid with high viscosity. The two fluids are immiscible, and the low-viscosity fluid
intrudes from the center of the domain at a constant injection rate. Physical and numerical experiments show
that as the size of the fluid interface increases outward, fingers are formed, spread out and move in the direction
of separation from each other, and finally get very complex branching patterns, see [1, 3, 7, 13,17,29,35,37,43].

We implement numerical simulations in 2D with the computational domain Ω = [0, 2𝜋]2. To represent the
injection flow, we adopt the Gaussian method designed in [43] where a potential radial velocity u𝑝 is imposed
in the momentum equation and the Cahn-Hilliard equation for 𝜑. Namely, the two corresponding equations are
modified as

𝜑𝑡 +∇ · (u𝜑) + (u𝑝 · ∇)𝜑 = 𝑀1∆𝜇, (4.4)
𝜏u𝑡 + 𝛼𝜈(𝜑)(u + u𝑝) +∇𝑝+ 𝜑∇𝜇+ 𝜓∇𝜔 = 0, (4.5)

where u𝑝 = −𝐶(1− 𝑒−4𝑟2/𝑅2
0)r̃, 𝑟 =

√︀
(𝑥− 𝑥0)2 + (𝑦 − 𝑦0)2, r̃(𝑥, 𝑦) = (𝑥−𝑥0

𝑟+𝜀 ,
𝑦−𝑦0
𝑟+𝜀 ), 𝐶 is the injection strength,

𝑅0 is the radius of the circular injection region, 𝜀 is a small quantity such that 𝑟 + 𝜀 ̸= 0.
We set the initial conditions as follows:

𝜑0 = tanh(
𝑟 −

√︀
(𝑥− 𝑥0)2 − (𝑦 − 𝑦0)2

𝜖
), 𝜓0 = 0.2,u0 = (0, 0), 𝑝0 = 0, (4.6)

where 𝑟 = 𝑟0 + 0.01rand(𝑥) and rand(𝑥) is the random number in [−1, 1]. We set model parameters as

𝑥0 = 𝑦0 = 𝜋, 𝑟0 = 𝑅0 = 0.3, 𝐶 = 0.65, 𝜏 = 1, 𝛼 = 28000, 𝜁 = 1𝑒− 5,
𝜖 = 0.03, 𝜂 = 1𝑒− 3, 𝜆1 = 𝜆2 = 1𝑒− 3, 𝐵 = 1𝑒5, 𝑆1 = 𝑆2 = 4,
𝑀1 = 𝑀2 = 1𝑒− 2, 𝜀 = 1𝑒− 3, 𝜈1 = 1, 𝜈2 = 0.1, ℎ = 2𝜋/512, 𝛿𝑡 = 1𝑒− 3,

(4.7)

where 𝜈1 is the (high) viscosity of the displaced fluid, 𝜈2 is the (low) viscosity of the injected fluid. The profile
of the initial condition 𝜑0 is shown in Figure 4a. We change the coupling parameter 𝜃 to investigate the effect
of the surfactant on finger formation.
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Figure 5. Example of radial injection of a less viscous fluid with the surfactant effect (𝜃 =
0.004), where (a) snapshots of the phase-field variable 𝜑 (grayscale image) are captured at
𝑡 = 0.5, 1, 2, 2.5, 4; (b) the profile of 𝜓 at 𝑡 = 2.5; (c) the profile of 𝑝 at 𝑡 = 2.5 (the contour
line {𝜑 = 0} appended); and (d) the velocity field u at 𝑡 = 2.5 (the contour line {𝜑 = 0}
appended).

We first set the coupling parameter 𝜃 = 0 to study the way the fingers are formed without surfactants. In
Figure 4, snapshots of the phase-field variable 𝜑 at different times are drawn, in which a grayscale image is used
to obtain a clearer view. It can be seen that when the fluid with lower viscosity is continuously injected into
the domain, and the size of the droplet increases to a certain size, some short and thick fingers are formed (12
fingers marked in the last subfigure of Fig. 4).

We further apply the surfactant effect by setting 𝜃 = 0.004 and show snapshots of 𝜑 at different times in
Figure 5a. Unlike the case without surfactants, the number of finger-like patterns finally obtained not only far
exceeds (19 fingers, shown in the last subfigure of Fig. 4), but the formed finger shows more slender and longer
structure, which indicates that the applied surfactant effectively weakens the surface tension. In Figure 5b, the
profile of 𝜓 at 𝑡 = 2.5 is drawn, where one can see that the surfactant concentration is high around the fluid
interface due to the coupling term between 𝜑 and 𝜓. In Figure 5c and d, we plot the pressure 𝑝 and the velocity
field at 𝑡 = 2.5 where the contour line {𝜑 = 0} is appended. It can be seen that the velocity field presents a
radial pattern in the vicinity of each finger.

In Figure 6, by using various coupling parameter 𝜃, we show the fingering pattern at the same time instance
𝑡 = 3.5, where the larger 𝜃 (stronger surfactant action) results in a slender finger structure and an increase in
the number of fingers, which means that the surfactant has a stronger weakening effect on surface tension. For
example, when 𝜃 = 0.001, 11 fingers are formed; when 𝜃 = 0.002, 14 fingers are formed; when 𝜃 = 0.003, 16
fingers are formed; and when 𝜃 = 0.004, 19 fingers are formed. These numerical simulations are qualitatively
consistent with the physical experiments/numerical simulations in [1, 3, 5, 7, 17,29,43].

4.2.2. Uniform injection of a less viscous fluid

The second example is the injection problem similar to the previous example. We still inject low-viscosity
fluid, but the injection location is changed to the bottom of the computational domain. The initial conditions are
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Figure 6. Comparisons of formed fingering patterns of the radial injetion example where
different surfactant effects are applied by setting the coupling parameter 𝜃 as 𝜃 is (a) 𝜃 = 0 (no
surfactant case); (b) 𝜃 = 0.001; (c) 𝜃 = 0.002; (d) 𝜃 = 0.003; (e) 𝜃 = 0.004. In all subfigures,
the profiles of 𝜑 at 𝑡 = 3.5 are plotted in the grayscale image.

set to two fluids with a horizontally layered interface, where the high-viscosity fluid I (blank) is above the low-
viscosity fluid II (black), shown in Figure 7a. The Gaussian method designed in [43] using the external potential
velocity and the system (4.4)–(4.5) are still used, where u𝑝 = (0, 𝑣𝑝) for 2D with 𝑣𝑝 = 𝐶( 1

2−
1
2 tanh(𝑦−𝑅0/0.01)),

and u𝑝 = (0, 0, 𝑤𝑝) for 3D with 𝑤𝑝 = 𝐶( 1
2 −

1
2 tanh(𝑧 − 𝑅0/0.01)), 𝐶 is the injection strength, 𝑅0 is the width

of the injection layer.
We first simulate the 2D example where the computational domain is (𝑥, 𝑦) ∈ Ω = [0, 2𝜋]2. The initial

conditions are set as

𝜑0 = −tanh(
𝑦 − 𝑟

𝜖
), 𝜓0 = 0.2,u0 = (0, 0), 𝑝0 = 0, (4.8)

where 𝑟 = 0.2 + 0.01rand(𝑥). We set the model parameters as

𝑅0 = 0.2, 𝐶 = 1, 𝜏 = 1, 𝛼 = 1000, 𝜁 = 1𝑒− 5, 𝜖 = 0.09,
𝜂 = 1𝑒− 3, 𝜆1 = 𝜆2 = 1𝑒− 2, 𝐵 = 1𝑒5, 𝑆1 = 𝑆2 = 4,
𝑀1 = 𝑀2 = 1𝑒− 2, 𝜈1 = 1, 𝜈2 = 0.1, ℎ = 2𝜋/512, 𝛿𝑡 = 1𝑒− 3.

(4.9)

First, by setting 𝜃 = 0 to remove the surfactant effect, in Figure 7, we plot the profiles of 𝜑 at various times
using the grayscale image. When the interfacial layer rises to a certain height, fingering structures (8 fingers)
appear, and they finally touch the upper wall (at 𝑡 = 4.5). Then, we apply the surfactant effect by setting
𝜃 = 0.004. In Figure 8a, snapshots of the phase-field variable 𝜑 at different times are drawn, in which we can
see the significant influence of the surfactant on the surface tension, that is, more slender fingers (15 fingers)
are produced over time. The surfactant concentration 𝜓, pressure 𝑝 and velocity field u at 𝑡 = 2 are plotted in
In Figure 8b, c, d, respectively.

We further simulate the 3D numerical example with the computational domain of (𝑥, 𝑦, 𝑧) ∈ Ω = [0, 1.25𝜋]×
[0, 0.25𝜋]× [0, 1.25𝜋]. The initial conditions of the layered fluids as

𝜑0 = −tanh(
𝑧 − 𝑟

𝜖
), 𝜓0 = 0.2,u0 = (0, 0, 0), 𝑝0 = 0, (4.10)

where 𝑟 = 0.2 + 0.01rand(𝑥). We set ℎ = 1.25𝜋
300 and 𝛿𝑡 = 0.001. All other model parameters are given in (4.7)

with the application of surfactant effect 𝜃 = 0.004. The isosurfaces {𝜑 = 0} at the different times are shown in
Figure 9, where we can see that a large number of 3D fingers grow vertically upwards over time. These fingering
patterns in 2D and 3D are well consistent with the numerical/physical experiments in [15, 32, 33, 35–37, 46],
qualitatively.
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Figure 7. Example of uniform injection of a less viscous fluid from the bottom, where surfac-
tant effect is absent (𝜃 = 0). Snapshots of the phase-field variable 𝜑 are taken at 𝑡 = 0, 2.5, 3,
4, 4.5. In the grayscale images, the dark and blank regions represent the injected fluid with less
viscosity and the displaced fluid with higher viscosity, respectively.

Figure 8. Example of uniform injection of a less viscous fluid from the bottom with the
surfactant effect (𝜃 = 0.004), where (a) snapshots of the phase-field variable 𝜑 (grayscale image)
are taken at 𝑡 = 0.5, 1, 1.5, 2, and 3.5; (b) the profile of 𝜓 at 𝑡 = 2; (c) the profile of 𝑝 at 𝑡 = 2;
and (d) the velocity field u at 𝑡 = 2.

4.2.3. Rotating Hele-Shaw cell

Rotating the Hele-Shaw cell is another commonly-used method for obtaining fingering patterns, which will be
implemented in this example. The rotation state can be achieved by applying an external rotation force in the
Darcy equations. More precisely, we replace the momentum equation (2.8) by the following form (see [2, 10]):

𝜏u𝑡 + 𝛼𝜈(𝜑)u +∇𝑝+ 𝜑∇𝜇+ 𝜓∇𝜔 = 𝑓𝑟𝑜𝑡, (4.11)

where 𝑓 rot = Υ𝑔
(1+𝜑)

2 (Υ2
𝜔𝑟 + 2Υ𝜔(𝑒𝑧 × u)) is the applied rotating force, 𝑒𝑧 = (0, 0, 1), 𝑟 = 𝑥− 𝑥0, and Υ𝑔,Υ𝑤

are constants given in (4.12).
We set Ω = [0, 2𝜋]2 and implement 2D simulations first. The initial conditions of are still from (4.6) with

𝑟 = 1.3 + 0.01rand(𝑥), and the profile of 𝜑0 is plotted in Figure 10a using the grayscale image. The model
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Figure 9. Example of 3D uniform injection of a less viscous fluid from the bottom with the
surfactant effect (𝜃 = 0.004). Snapshots of the isosurface {𝜑 = 0} are taken at 𝑡 = 0, 0.4, 0.8,
1, 1.2, 1.4, 1.6, and 1.8 from left to right and from top to bottom.

parameters are set as

Υ𝑔 = 5,Υ𝑤 = 5,𝑥0 = (𝜋, 𝜋), 𝜏 = 1, 𝛼 = 1000, 𝜁 = 1𝑒− 5,
𝜖 = 0.03, 𝜂 = 1𝑒− 3, 𝜆1 = 𝜆2 = 1𝑒− 3, 𝐵 = 1𝑒5, 𝑆1 = 𝑆2 = 4,
𝑀1 = 𝑀2 = 1𝑒− 2, 𝜈1 = 1, 𝜈2 = 0.1, ℎ = 2𝜋/512, 𝛿𝑡 = 1𝑒− 3.

(4.12)

Similar to the previous injection example, we still perform the simulation without the influence of surfactant
first, and then study the pattern differences caused by surfactants. In Figure 10, for the case of no surfactant
(𝜃 = 0), snapshots of the phase-field variable 𝜑 at different times are drawn using the grayscale image. We
observe that over time, many slender fingers are formed, some of which break into satellite droplets or more
branched fingers. We further apply the surfactant effect by setting 𝜃 = 0.004. In Figure 11, the phase-field
variable 𝜑 and the concentration variable 𝜓 are plotted at different times. It can be seen that the number
of fingers obtained far exceeds the number of fingers without surfactant, which again illustrates the effect of
surfactants on weakening the surface tension. In Figure 12, by using various coupling parameter 𝜃, we show the
fingering pattern at the same time instance 𝑡 = 3, where the larger 𝜃 causes a larger number of fingers with
more elongated and slender shapes.
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Figure 10. Example of 2D rotating Hele-Shaw cell where the surfactant effect is absent (𝜃 = 0).
Snapshots of the phase-field variable 𝜑 are taken at 𝑡 = 0, 1, 1.5, 2, 3.2 (grayscale image).

Figure 11. Example of 2D rotating Hele-Shaw cell with the surfactant effect (𝜃 = 0.004),
where (a) snapshots of the phase-field variable 𝜑 (grayscale image) and (b) the profile of 𝜓
(color image) are taken at different times.

Figure 12. Comparisons of formed fingers of the 2D rotating Hele-Shaw cell example where
different surfactant effects are applied with (a) 𝜃 = 0 (no surfactant case); (b) 𝜃 = 0.001; (c)
𝜃 = 0.002; (d) 𝜃 = 0.003; (e) 𝜃 = 0.004. In all subfigures, the profiles of 𝜑 at 𝑡 = 3 are plotted
in the grayscale image.
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Figure 13. Example of the 3D rotating Hele-Shaw cell with the surfactant effect (𝜃 = 0.004)
where the isosurfaces {𝜑 = 0} at 𝑡 = 0, 0.4, 0.6, 0.8, 1.2, 1.4, 1.6, 1.8, and 2 are plotted from
left to right and from top to bottom.

We continue to perform a simulation in 3D and set the computed domain as Ω = [0, 2𝜋] × [0, 2𝜋] × [0, 4𝜋
25 ].

The initial conditions read as (shown in the first subfigure of Fig. 13):

𝜑0 = tanh(
𝑟 −

√︀
(𝑥− 𝑥0)2 − (𝑦 − 𝑦0)2 + (𝑧 − 𝑧0)2

𝜖
), 𝜓0 = 0.2,u0 = (0, 0, 0), 𝑝0 = 0, (4.13)

where 𝑥0 = 𝑦0 = 𝜋, 𝑧0 = 2𝜋
25 , 𝑟 = 1+0.01rand(𝑥). We set the grid size ℎ = 4𝜋

800 and the time step size 𝛿𝑡 = 0.001,
and all other order parameters are still from (4.12). In Figure 13, the isosurfaces of {𝜑 = 0} at different times
are plotted. We observe that that plenty of 3D fingers are formed over time, which are consistent with the 2D
simulations qualitatively. Similar dynamics were also observed experimentally/numerically in [2, 3, 6, 10].
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5. Concluding remarks

We design a decoupled fully-discrete finite element scheme to solve the highly complex nonlinear Darcy
flow-coupled Cahn-Hilliard phase-field model of binary surfactants. The scheme is constructed based on a
combination of a variety of effective numerical methods, including the finite element method, projection method,
quadratization method, as well as a new decoupling technique by designing a special type of ODE. While
maintaining the second-order time accuracy and linearity, it is natural to obtain unconditional energy stability
and practically realized decoupling structure. The detailed actual realization, solvability and stability are given
rigorously. By simulating plenty of 2D and 3D numerical examples, including the fingering instability caused by
radial/uniform injection and rotating Hele-Shaw cell, we numerically prove the effectiveness of the developed
scheme. To the best of the author’s knowledge, the developed scheme is the first “ideal” type fully-discrete
scheme for the Darcy flow coupling binary surfactant phase-field model.

Acknowledgements. This author’s research is partially supported by the U.S. National Science Foundation under grant
number DMS-2012490.
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