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APPROXIMATION OF THE INVARIANT DISTRIBUTION FOR A CLASS OF
ERGODIC SPDES USING AN EXPLICIT TAMED EXPONENTIAL EULER
SCHEME

CHARLES-EDOUARD BREHIER*

Abstract. We consider the long-time behavior of an explicit tamed exponential Euler scheme applied
to a class of parabolic semilinear stochastic partial differential equations driven by additive noise, under
a one-sided Lipschitz continuity condition. The setting encompasses nonlinearities with polynomial
growth. First, we prove that moment bounds for the numerical scheme hold, with at most polynomial
dependence with respect to the time horizon. Second, we apply this result to obtain error estimates,
in the weak sense, in terms of the time-step size and of the time horizon, to quantify the error to
approximate averages with respect to the invariant distribution of the continuous-time process. We
justify the efficiency of using the explicit tamed exponential Euler scheme to approximate the invariant
distribution, since the computational cost does not suffer from the at most polynomial growth of the
moment bounds. To the best of our knowledge, this is the first result in the literature concerning the
approximation of the invariant distribution for SPDEs with non-globally Lipschitz coefficients using an
explicit tamed scheme.
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1. INTRODUCTION

In the last 25 years, the analysis of numerical methods for stochastic partial differential equations (SPDEs)
has been a very active research field. Pionnering works have focused on the so-called strong convergence of
numerical schemes for equations with Lipschitz continuous nonlinearities, and in the last decade many results
concerning convergence of schemes for equations with non-globally Lipschitz continuous nonlinearities, and weak
convergence, have been obtained. We refer to the monograph [21] for a pedagogical introduction to this field of
research.

In this article, we consider some semilinear parabolic SPDEs of the type

dX(t) = AX(t)dt + F(X(t))dt + dWC(1),

as written in the framework of stochastic evolution equations, see [14]. Precise assumptions concerning the
linear operator A, the nonlinearity F' and the Wiener process W€ and its covariance operator C are given
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below (Sect. 2). Under appropriate assumptions, this process admits a unique invariant probability distribution
hx, such that
Blo(X(T)] =, [ odu
—00

exponentially fast, for any initial condition X (0) and any real-valued Lipschitz continuous function ¢ (see
Sect. 3). We study the question of approximating the invariant distribution g, using a numerical scheme.
The main novelty of this article is to show that an explicit scheme can be used, without loss of computational
efficiency, even if the nonlinearity F' is not globally Lipschitz continuous but only one-sided Lipschitz continuous.

Let us review the existing literature concerning the numerical approximation of invariant distributions for
parabolic semilinear SPDEs — see also the preprint [2] where stochastic viscous scalar conservation laws are
considered, and the monograph [16] and references therein where some stochastic Schrodinger equations are
studied. In [3], parabolic semilinear SPDEs; with Lipschitz nonlinearity, driven by space-time white noise, are
considered; temporal discretization is performed using a linear implicit Euler scheme, and weak error estimates
which are uniform in time are obtained using a Kolmogorov equation approach. In [6], the same framework has
been considered, for full-discretization schemes (using a finite element method for spatial discretization); error
estimates are obtained using a Poisson equation approach. A full-discretization scheme based on an exponen-
tial Euler scheme has been considered in [10]. A postprocessed integrator has been proposed in [7] in order to
increase the order of convergence. For non globally Lipschitz continuous nonlinearities, the only existing result
is the recent article [12], where the authors use a fully implicit scheme. Note that the literature is also limited
concerning the analysis of the weak error on finite time intervals when applied to SPDEs with non-globally Lip-
schitz nonlinearity: see [5] where a splitting scheme is applied for the Allen—Cahn equation (cubic nonlinearity),
and also [8,11].

In this article, we consider exponential integrators to deal with the linear part. As demonstrated in [1,18]
(see also the monograph [17]), using a simple explicit exponential Euler scheme (like for instance in [20]) of the
type

X1 = 24X, + AtF(X,,) + AWS),

where the nonlinearity is discretized explictly, is not appropriate due to the loss of moment bounds, which
would be essential in the proof of convergence. Many recipes have been proposed to overcome this issue (we
refer to [17] for a general analysis in the case of finite-dimensional Stochastic Differential Equations). In this
article, we consider the following explicit tamed exponential Euler scheme (see Eq. (4.1))

F(Xn)

K = AN 4 ()7 (1= ) e

+ eAtAAWE,

where AW are Wiener increments. This type of scheme has already been studied in [15,19,24] for instance
(with a different definition of the tamed operator in terms of the time-step size in [15]). In those works, a finite
time horizon T € (0,0) is fixed, and the authors look at strong convergence. To the best of our knowledge,
neither weak convergence rates nor long-time behavior have been considered for this type of explicit tamed
scheme for SPDEs in the literature so far. The objective of this article is to prove that the explicit tamed
scheme can be employed to approximate the invariant distribution u,, with precise error estimates and analysis
of the computational cost.
The contribution of this article is twofold. First, moment bounds of the type

3

sup (]E[HXTL”ZLOO])
0<nAt<T

< C(llof L) (1 +T)

are obtained, for all T € (0,00). See Theorem 4.1 for a precise statement. The moment bound is uniform with
respect to the time-step size At. It is important to note that the upper bound is not uniform with respect to
the final time T'.
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Second, weak error estimates of the type
[E[o(Xn)] — E[o(X (ta)]] < Calp: |20l 1) (1 + T9) A2,

for some integer @ € N, where a € (0,@) and @ is a parameter which quantifies the regularity of the process. If
1

the equation is driven by a cylindrical Wiener process (C = I, space-time white noise), @ = %, whereas @ = 3
if the equation is driven by trace-class noise (Tr(C) < o0). See Theorem 4.2 for a precise statement. Note that
the weak error estimate is not uniform with respect to time 7.

Even if the upper bounds show some dependence with respect to time 7', the polynomial growth is sufficiently
slow (compared with an exponential growth) not to damage the performance of the scheme when one is interested
in the approximation of the invariant distribution u.. Since the convergence to equilibrium is exponentially fast
(with respect to T') in the models considered here, the analysis of the computational cost (see Cor. 4.3) reveals
that there is no loss in the efficiency, when compared with a situation where uniform moment bounds and error
estimates would hold (for instance, if the nonlinearity is globally Lipschitz as in [3], or if an implicit integrator is
employed as in [12]). Since the tamed exponential Euler scheme is explicit, in practice its application is simpler
and the cost per step is lower than when using an implicit scheme, thus the results of this article justify the
efficiency of the proposed scheme for the approximation of the invariant distribution for SPDEs.

To the best of our knowledge, the long-time behavior of moment bounds and weak error estimates for explicit
tamed Euler schemes applied to SPDEs has not been studied in the literature so far, and the results above
show that these schemes are effective to numerically approximate the invariant distribution of SPDEs. Note
that only upper bounds are proven, and it may happen that in fact the polynomial growth is not optimal and
that uniform in time upper bounds may be proved by other techniques. Some numerical experiments have been
performed and have not been sufficient to exhibit the polynomial growth (thus they are not reported here).
Studying whether the polynomial growth is optimal or whether uniform bounds can be obtained is left for
future works. The combination of the results of this article with the analysis of spatial discretization, and the
application of (multilevel) Monte-Carlo methods is also left as an open question. Finally, in this article the
analysis is limited to SPDEs with one-dimensional spatial variable: the results may be generalized in higher
dimension with appropriate modifications, see Remark 3.2 below.

This article is organized as follows. The setting is presented and the main assumptions are stated in Section 2.
Preliminary results concerning the long-time behavior of the solution of the SPDE are given in Section 3. The
explicit tamed exponential Euler scheme is defined in Section 4, where the two main results, Theorem 4.1
(moment bounds) and Theorem 4.2 (error estimate) are stated and discussed. Section 5 is devoted to the proof
of Theorem 4.1, whereas Section 6 is devoted to the proof of Theorem 4.2.

2. SETTING

For every p € [1,00] let LP = LP(0, 1) be the Banach space of real-valued functions with finite LP norm, and
let the associated norm be denoted by | - |z». When p = 2, H = L? is an Hilbert space, with inner product
denoted by (-, -). Let N denote the set of integers and Ny = N u {0}.

The time-step size of the numerical schemes is denoted by At. The a priori bounds and error estimates will
be stated below for At € (0, Atg], where At is an arbitrary parameter. Once the value of the time-step size At
is fixed, the following notation is used: for all n € Ny, ¢, = nAt, and for all ¢ € [0,0), {(t) = n if and only if
t € [tn, tns1).

The values of constants may change from line to line in the proofs, however they are assumed not to depend
on quantities such as the time-step size At or the initial condition xg.

2.1. Linear operator

Set e, = v/2sin(n7) and A, = (nm)?, for all n € N. Then (e,,), .y is a complete orthonormal system of H.
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The unbounded self-adjoint linear operator on H defined by

A=— Z A, enyen

neN

is the realization of the Laplace operator on (0,1), with homogeneous Dirichlet boundary conditions. The

associated semi-group (etA)t>O, with et4 = 3 e (- e,)e,, is such that t — e!z is the solution of the

tA) also defines a

heat equation with homogeneous Dirichlet boundary conditions. For every p € [2, o0), (e >0

semi-group on LP. For every a € [—1,1], let (—A)® be the operator defined on H by

(—A)* = > X enen.

neN

Let us state some inequalities which are employed in the sequel. We refer for instance to [9] and to [23].

— For all x € L?, one has
||etAx||L2 < e MYz pe. (2.1)

— For every a € [0, 1], there exists Cy, € (0,00) such that for all x € L? and ¢ > 0, one has
[(—A)*e |, < Comin(t, 1)~z e. (2.2)
— For every a € [0, 1], there exists C,, € (0,00) such that for all x € L? and ¢, s = 0, one has
|tz — eSAchLZ < Colt — 5| (—A)%x| 1. (2.3)
— There exists ¢,C € (0,00) such that for all x € L? and all ¢t > 0, one has
HetAxHLw < Cmin(t, 1) Fe |z 2, (2.4)
and for all z € L' and all £ > 0, one has
let42| . < Cmin(t,1)"2e a1 (2.5)

— There exists ¢ € (0,0) such that, for all p € (2, 00), there exists C), € (0, 00), such that for all x € L? and all
t > 0, one has
HetAzHLF < Cpe 2| Lo (2.6)

— There exists C € (0, 00) such that for all z € L™ and all ¢ > 0 one has
HetALUHLOO < CHSL‘HLOC (27)
— For all kK € (i, 1)7 there exists C, € (0,00) such that for all z € L? one has
|zl < Cull(=A) . (2.8)
— For all p € [2,0), there exists A, € (0,0) such that for all z € L?, such that Az € LP, one has
(Az, z|z|P~?) < —Ap ||}, (2.9)
~ For all a € (0, %), € >0, with o + € < 3, there exists Cy,c € (0,0) such that

[(=A)7 (@) 1 < Cael (A @l L2|(—A) "] 2. (2.10)
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— For all o € (0, %), e > 0, with a + 2¢ < %, there exists Cq, € (0,0) such that, if ¢ : R — R is Lipschitz

continuous, for all x € L? such that |(—A)®*T2¢x|.2 < o0, one has

‘|(_A)a+ew($)|‘L2 < Ca,6[¢]Lip|(_A)a+2€x}L27 (2'11)
where [¢]ip = sup 7‘“72:2(‘21)‘.
z1#22
Note that Ay = Ay, and for all p > 2, one has the lower bound A, > /\14(’)7;1). Indeed using an integration
P

by parts argument, one has

(Az,z|z|P~?) = —(Vz,V (z|z|"7?))
= —(p— 1){Vz, Vz|z[P~?)

s 2
~(p—D|le)"= V2|,

()

4(p—1)
p2

4p—1
_ —Al%uxuip.

2
L2

N

A\

Tk

L2

2.2. Nonlinearity

Let us now give the assumptions concerning the nonlinearity: F' is the Nemytskii operator associated with
a real-valued function f : R — R which is assumed to be of class C2, with at most polynomial growth in the
following sense.

Assumption 2.1. There exists a real number ¢ = 2 such that

@ E ()]
Zl;ﬂ}g 1+ o < 0. (2.12)

To study the long time behavior, the following one-sided Lipschitz continuity condition is enforced.

Assumption 2.2. There exists v > 0 such that, if p € {2, ¢}, one has

(Ay,ylylP~2) + (F(y + z) — F(2),ylyl"*) < —|y[F.. (2.13)

whenever y, z € LP are such that the left-hand side of (2.13) makes sense, where q is given by Assumption 2.1.

Let A\p = sup,cg f'(2). When Ap < o0, the real-valued function f satisfies a standard one-sided Lipschitz
continuity condition. The condition (2.13) for p = 2 is satisfied if Az < A;. When Ap < 0, owing to (2.9), the
condition (2.13) is satisfied for all p € [2, 00).

Assumptions 2.1 and 2.2 are satisfied for instance if f is a polynomial function, such that Ap = sup,g f'(2)
is finite and sufficiently small.

2.3. Wiener process and the stochastic convolution

Let (ﬂj)jeN be a sequence of independent standard real-valued Wiener processes, defined on a probability
space (2, F,P) which satisfies the usual conditions. Let the associated expectation operator be denoted by E[-].

The stochastic evolution equation is driven by a @-Wiener process (Wc(t)) with covariance operator C.
It is assumed that C = )]
system of H.

t=0’

jen €<+ €5)€;, where ¢; € [0,00) for all j € N, and (€;) . is a complete orthonormal
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We refer to the monographs [9,14] for the general theory of stochastic evolution equations and properties of
their solutions.
The stochastic convolution is the process defined by

Z(t) = f =AW () = ) \/@J: et=94¢,d43;(s), (2.14)

0 jeN
for all ¢ = 0. The stochastic convolution is the mild solution of the linear equation driven by additive noise:
dZ(t) = AZ(t)dt + dAWE(t), Z(0) = 0.

To justify well-posedness for the stochastic convolution and establish moment bounds for the solution in the
L* norm, the following assumption is required.

Assumption 2.3. The stochastic convolution (Z(t)),s is well-defined and takes values in L. Moreover, uni-
form in time moment bounds are satisfied in the L* -norm: for all m € N,

sup E[|Z(t)]7%] < co. (2.15)
=0

When the covariance operator C and the linear operator A commute, i.e. when €; = ¢; for all j € N, it is
possible to sample the H-valued Gaussian random variable Z(t) exactly in distribution. However, in general
this is not possible and a numerical approximation scheme needs to be employed. In this article, exponential
Euler integrators are used. Let At > 0 denote the time step-size, and define the sequence of random variables

(Z"?t) neNg by

Z3t, = A (25 + AWP), (2.16)

with Z&t = 0, and where AWS = WC(t, 1) — WE(t,) are the Wiener increments. For every n € Ny and
t € [tn, tnt1], set }
Z84(t) = A (ZB L WO — WE(t,)). (2.17)

The following discrete-time versions of Assumption 2.3 is introduced.

Assumption 2.4. For any time-step size At € (0, Atg], the process (Z”At)neNo takes values in L*. Moreover,
moment bounds which are uniform with respect to time and to the time-step size are satisfied: for all m e N,

sup  sup IE[HZM(t)Hm

] < 0. (2.18)
Ate(0,Ato] =0

LOO
It remains to define a parameter @ to express the order of convergence (in the weak sense) of the numerical
scheme.

Assumption 2.5. Assume that there exists a > 0 such that

o0

S e(=A)2ig)7, < o (2.19)

j=1
The parameter @ is then defined by
— L < 20—1 ~ |2
a=supiac|O0, o1k j;ch(fA) 6J'HL2 < 0. (2.20)

For all a € (0,@), one then has

sup E[I(-A°2(0)15:] + sup B (- 200)

2
Lz] < 0, (2.21)
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as consequences of the It6 isometry formula and of (2.2).
Assumptions 2.3-2.5 are compatible: let us give some examples of covariance operators such that they hold
simultaneously.

— Assume that C = I, i.e. that (3.1) is driven by a cylindrical Wiener process/space-time white noise. Then
the assumptions above are satisfied with @ = 1/4.

— Assume that @ > 1/4. Owing to the inequalities (2.8), the inequality (2.21) implies that the inequalities (2.15)
and (2.18) hold.

— In particular, if the noise is trace-class, i.e. if Tr(C) < oo, then @ = 1/2 and the three assumptions are
satisfied.

Note that Assumption 2.5 and the definition (2.20) of @ do not depend only on the eigenvalues A; and ¢; of
—A and C in general: they also depend on the eigenfunctions €; of C. If C and A commute, one may choose
€; = e; and in that case it is sufficient to study the behavior of the eigenvalues. Since sup lejllze < oo, in

je

that case it is possible to prove that Assumption 2.5 implies that Assumptions 2.3 and 2. 4 are satisfied. The
details require to employ more complex arguments than those used in this article (in particular, the notion of
~v-Radonifying operators and related inequalities) and are thus omitted.

The three assumptions above are thus natural and hold in many situations. In the sequel, we work in the
abstract setting, assuming that the three assumptions hold, and we focus on the main novelties of this work:
proving moment bounds and applying them for weak error analysis, in the large time regime. The order of
convergence depends on the value of @.

In the sequel, to simplify notation let Z, = Z2% and Z(t) = ZA4(t).

3. PRELIMINARY RESULTS

This section is devoted to state and prove some properties of the solution of the stochastic evolution equation

dX(t) = AX(t)dt + F(X(t))dt + dWC(t), X(0) = zo. (3.1)

Define Y (t) = X(t) — Z(¢) for all ¢ = 0. Then (3.1) is equivalent to the evolution equation with a random
time-dependent nonlinearity

dY (¢
Let us first recall a well-posedness result, see for instance Proposition 6.2.2 of [9] for a similar result. Let

Assumptions 2.1 and 2.3 be satisfied. Then, for any initial condition xy € L?, there exists a unique global mild
solution (3.1), defined by

¢ ¢
X(t) = etzo + J eAR(X (s))ds + J e=DAAWEC(s), t=0.
0 0
To put emphasis on the role of the initial condition xg, the notation X, (t) = X (¢) may be used.
The process (X, (t)) takes values in L®. If Assumption 2.2 is satisfied, one has the following moment bounds
in the L® norm, uniformly in time, if z¢g € L®.

Proposition 3.1. Let Assumptions 2.1-2.3 be satisfied.

For all m € N, there exists Cy, € (0,00) such that for all xo € L*, one has

p (B[] Xao (O]7 )™ < Con(1 + 0] %),

t=0
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Proof. Let Yy, (t) = Xz, (t) — Z(t). Then for all £ > 0, one has

dY,, (t)
dt

= AY,,(t) + F (Y, (t) + Z(t)).

By an energy estimate, using (2.13) (see Assumption 2.2) and Young’s inequality one obtains

1d[[ Yz, ()] 2

S < Y Yao )]0 + CIF(Z ()]0

for some v € (0,7) and C € (0,00).
Using Gronwall’s lemma and the polynomial growth assumption for F', see Assumption 2.1, for all ¢ > 0 one
has

t
Voo Ol < e ool +C | e (14 |2 ) d,
0

Using Jensen’s inequality and Assumption 2.3, one obtains the inequality

3|

sup (E[|Yz, (1) 70])

t=0

< Cp(1 + H$0||Lq)»

for some C,, € (0,00), for all m € N.
To obtain moment bounds in the L* norm, the argument uses the inequality (2.5). First, the mild formulation
yields the identity
¢
Yy, (t) = eao + J e=AR(Y,, (s) + Z(s)) ds.
0

Applying (2.5) and (2.7) for the first inequality below, then using the polynomial growth assumption for F for
the second inequality below, one has

t c(t—s)

[Yao (D] Lo < o]l o + CJ 1F(Yay (s) + Z(s))| 1 ds

o
0 min((t —5)z, 1)
t efc(tfs) ‘ .
(1 + 1Yao ()l za + [12()] %) ds.

<ol +C 1
0 min((t — )z, 1)

Applying Jensen’s inequality and using the moment bounds in the L? norm proved above and Assumption 2.3
yields

sup (B[|[Ya, ()71 < Cn (1 + [l20]7-0),

t=0

=

and combining again this result with Assumption 2.3 concludes the proof. ]

Remark 3.2. The proof of Proposition 3.1 is limited to the one-dimensional case, and it would be required
to modify some assumptions in order to cover higher-dimensional situations. Precisely, if the interval (0,1) is
replaced by (0,1)% in the setting, then (2.5) holds with the exponent —3 replaced by —%. Assoonasd > 2, a
non-integrable singularity appears and one can not retrieve a L® bound from a L? bound of the solution as in
the last part of the proof of Proposition 3.1.

If d = 2, it suffices to assume that the condition (2.13) holds for some p = ¢ > ¢, in order to apply a similar
argument. If d > 3, it suffices to assume that the condition (2.13) holds for some sufficiently large p = g
depending on dimension.

The analysis is presented in the case d = 1 only in order to simplify the presentation.
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Proposition 3.3. Let Assumptions 2.1-2.3 be satisfied. Then for all x}, 23 € LP, with p € {2,q}, one has for
allt =0,

[ Xa(t) = X3 (1)

0

—t),2 _ 1
L <e” H:co *xOHLp' (3.2)

Moreover, there exists a probability distribution ., which satisfies §||z|7% dp.(x) < oo for all m € N, such that
for all Lipschitz continuous functions ¢ : LP — R and all g € LP, with p € {2,q}, one has for allt >0

‘]E[w(Xzo ()] - J@dﬂ* < C(p)e (1 + JlwollLe)- (3-3)

Finally, p. is the unique invariant probability distribution of (3.1).

Proof. The construction is standard, so only a sketch of proof is provided. See for instance [13] for details.
Let 60X (t) = X 2(t) — X 1 (t), then
0 0
0X (t)

TR ASX(t) + F(Xwg (t)) - F<ng) (t)),

and using an energy estimate combined with (2.13) yields

p

L |Xa3®) = X0
P dt

p

L <~ Xy (8) = Xy (8

0

73

Using Gronwall’s lemma concludes the proof of (3.2).

Using the remote initial condition method, the contraction property (3.2) allows to construct a stationary
process (X«(t)),=, such that the distribution of X, (t) is independent of ¢. Let y1. be this probability distribution.
Using that construction, the property { | z|7% dp.(z) < o0 is a consequence of the uniform moment bounds given
by Proposition 3.1. Finally, the convergence to equilibrium property (3.3) is a straightforward consequence
of (3.2) combined with the moment bound property above. The fact that the invariant probability distribution
is unique is a direct consequence of (3.3). O

4. TAMED EXPONENTIAL EULER SCHEME AND MAIN RESULTS

In this work, we consider the explicit tamed exponential Euler scheme defined by

F(X,)
1+ At F(Xn)] 2

X1 = eAAX, + (A7t (I- eAtA) + AAATVE, (4.1)

where as explained above At € (0, Ato] is the time-step size, t, = nAt and AWS = WC(t,11) — WE(t,).
Recall that £(t) is defined at the beginning of Section 2: £(t) = n for all ¢ € [t,, tn11).
Define for all ¢t > 0

- t F(Xg ) -
X(4) = A J (t—s)A (s) 7 4.9
(t) = eao + . e 1o ALM AtMy, ds + Z(t) (4.2)

where Z(t) = Z2%(t) is given by (2.17), and M,, = |F(X,,)| .. Note that X (t,) = X,, for all n > 0.
The first main result of this article states moment bounds in the L® norm for the auxiliary process

(f( (t)) , for all T € (0,0), with a dependence which is at most polynomial, uniformly with respect
0<t<T

to the time-step size.
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Theorem 4.1. Let Assumptions 2.1-2.3 be satisfied. Let the process (X(t)) be defined by (4.2).
=0

For all m € N, there exists a polynomial function P, : R — R such that fo; all T € (0,00) and all xg € L*,
one has

sup sup (E[| Xp[7%])™ < (1 +T)Pom(lzoll e )- (4.3)
Ate(0,Atg] O<nAL<T

and

Lo sw (B[O )T < 0+ 9Pl (44)

The proof of Theorem 4.1 is postponed to Section 5. It would be possible to express the degree of the
polynomial function P,, in terms of m and ¢, but since this does not matter below this dependence is not
indicated. The polynomial function P,, is independent of the time-step size At. Since the right-hand side
of (4.4) depends on the time T, the moment bounds for the discrete time process qualitatively differ from the
continuous time case, where uniform in time moment bounds hold, see Proposition 3.1.

Since uniform in time moment bounds are not proven, then the discrete-time process may not admit an
invariant probability distribution. Despite the loss of uniform in time moment bounds, it is in fact possible to
approximate averages {¢du,. with respect to the invariant distribution ., as explained by the second main
result of this article.

Theorem 4.2. Let Assumptions 2.1-2.3 be satisfied.

There exists a polynomial function P : R — R, Q € N, and for every a € (0,@) and any function ¢ : L> - R
of class C? with bounded first and second order derivatives, there exists Cy(p) € (0,00), such that for all xo € L®,
all At € (0, Atg] and N € N, one has

’E[W(XN)] - fsodu*

< Calp) AL (L + (NAO)Q)P(ao] o) + €M1+ o] 20)-

Recall that @ € (0, ] is given by (2.20) (under Assumption 2.5), and that @ = $ if C = I (¢; = 1 forall j > 1,
space-time white noise) and @ = 3 if Tr(C) < o (3] jen €j < 0, trace-class noise). The order of convergence for
the temporal discretization error in Theorem 4.2 thus coincides with the weak order of convergence for Euler
type methods applied to the SPDE (3.1), either on finite time horizon (see [5] where C = I and F is a cubic
nonlinearity) or for the approximation of the invariant distribution for globally Lipschitz nonlinearities (see [3]
where C = I). The order of convergence 2a is optimal, it corresponds to the weak order for the discretization
of the stochastic convolution, indeed one has

sup [E[o(Zn)] = E[p(Z(tn))]] < Calp)A*,

neN

where (Z(t)),>, and (Zy), oy are defined by (2.14) and (2.16) respectively. The assumption that ¢ is of class C?
cannot be relaxed, see [4] (in the case C = I and F = 0).

Note that the proof gives the upper bound for Q < 3¢?, however the exact value of the integer @ is not
important for the analysis of the computational cost below. In fact, the same analysis of the cost would give
the same conclusions even if @ = 0 (i.e. if the moment bounds and error estimates would be uniform in time),
as explained below.

Contrary to existing results concerning the numerical approximation of the invariant distribution for SPDEs,
the weak error estimate from Theorem 4.2 is not uniform with respect to time, instead the dependence is at
most polynomial, with an upper bound for the degree given by ). However, this at most polynomial growth
does not lead to a reduction of the efficiency of the approach, indeed one has the following corollary.
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Corollary 4.3. Let g € L* and ¢ : L? — R of class C? with bounded first and second order derivatives. For
all a € (0, @), there exists Co (20, ) such that can choose N and At such that for all e € (0,1), the error satisfies

]Ewcmw]fwdm <,

with a computational cost, defined as the number of time steps, satisfying
C(e) = N < Calwo, )¢ =

In the computational cost analysis, the spatial discretization of the process and the Monte-Carlo approxi-
mation of the expectation are not taken into account. In addition, it is assumed that the cost is of size 1 at
each step. Indeed, if fully-discrete schemes using the same spatial discretization and Monte-Carlo parameters
are considered, it is sufficient to compare the temporal discretization error and the associated cost.

Proof of Corollary 4.3. Let o € (0,@).
The parameters N and At are chosen such that

NAt = C|log(e)]

and
atao

(NAH)CRAL = = Ce,

where C'is a constant (depending on zg and ).
This leads to

At = C’sﬁﬂog(a)r%,

and finally

N = C|log(e)|At™! = Csfﬁﬂ 10g(€)|1+% <Ce
since a < @ and |log(e)|™ = o(e ™) when £ — 0, for all M € N.
This concludes the proof of Corollary 4.3. O

Observe that Corollary 4.3 would be the same if one would have uniform in time estimates (as in the case of
Lipschitz continuous coefficients, see [3], or using an implicit scheme, see [12]) in Theorems 4.1 and 4.2 instead
of the at most polynomial dependence we prove in this article. However, the scheme studied in [3] cannot be
employed for non globally Lipschitz nonlinearities, and the scheme from [12] is implicit: the scheme studied in
this article is explicit thus is expected to be more efficient in practice. The exact rate of polynomial growth is
not important in the argument above.

In addition, observe that obtaining a polynomial dependence with respect to time in the right-hand side
of (4.4) is fundamental: had the dependence been exponential (77 replaced by exp(cT') in the right-hand side
of (4.4)), a reduction of the effective order of convergence appearing in the analysis of the computational cost
would have been observed, depending on the value of c.

This means that Theorem 4.1 is sufficiently good as far as one is concerned with the application to estimate
averages § ¢ dy. with respect to the invariant distribution.

Remark 4.4. In [22], the authors propose to use the so-called rejecting exploding trajectories technique to
approximate ergordic averages { ¢ dju., for SDEs with non-globally Lipschitz coefficients. This technique requires
to introduce an auxiliary truncation parameter. However, even if in practice it is effective, this technique does
not lead to a clean analysis of the cost as in Corollary 4.3.
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Remark 4.5. Theorems 4.1 and 4.2 hold if one can compute exactly in distribution Z(t,) for all n € N, with
simpler proofs. This would mean replacing Z,, defined by (2.16) and Z(t) defined by (2.17), by

bt

1
Zn+1 _ eAtAZn + J e(tn_*_lfs)A dWc(S)

and Z(t) = Z(t).

5. PROOF OF THEOREM 4.1

This section is devoted to the proof of the first main result of this article, Theorem 4.1.
The value of the time-step size At € (0, Atg] is fixed, and in the upper bounds obtained below the constants
do not depend on At.

Recall that the process (f( (t)) is defined by (4.2), and that the auxiliary process (Z (t)) is defined

= =

by (2.17). Owing to Assumption 2.4, one has moment bounds in the L* norm for Z(t), uniformly with respect
to t.

Introduce an auxiliary parameter R = At™", for a sufficiently small &.

For every n > 0, let Qr, = {supy<s<, | Xt < R}, and to simplify notation let x,, = 1o, , denote the
indicator function of the set {2, . Let also x_; = 1.

Theorem 4.1 is then an straightforward consequence of Lemmas 5.1 and 5.2 stated below.

Lemma 5.1. For every m € N, there exists Cy, € (0,00), such that for all T € (0,0) and xg € L*, one has

m maq®
s sup B | Xl f] < G (14 Lol 7). (5.1)
Ate(0,Aty] 0<SNALLT

Lemma 5.2. For every m € N, there exists a polynomial function Py, : R — R, such that for all T € (0,00)
and o € L*, one has

sup sup  E[(1—xn) | Xn]7%] < (14+T™) P (2ol 1 )- (5.2)
Ate(0,Ato] 0SnALST

Note that the moment bound (5.1) is uniform with respect to time. The polynomial dependence in the
right-hand side of (4.4) only comes from the use (5.2).

Proof of Lemma 5.1. Introduce the following auxiliary processes:
Zyo(t) = €2t Az + Z (1)

i ) t F(X )
_ _ _ | pt—sa T Rus)
Y(t) X(t) Zxg (t) J;) € 1+ Ath(s) @

R = | IAP(V(5) + Zay 1)) d
r(t) = Y (t) — R(t).
First, we claim that for all p € [2,00) and m € N, one has for all 0 < ¢ < ¢,
E[Xn—1]r(t)[7] < C(1 + |zo]i%),

Indeed, r(t) = r1(t) + r2(t) where

t —AtM,
£ = (t=s)A__T776) poy d
Tl( ) L € 1 + AtMl(s) ( é(s)) s
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ro(t) = L -0 (F(Y (tew)) + Zeo (o)) ) = F(V(5) + Zay (te(5))) ) ds,

On the one hand, using (2.6) and the polynomial growth of F' (Assumption 2.1), one has

t
Xt Olhs < | e AP () 7, ds
0

t
< an_lAtf e (14 Xy |37 ) ds
0

< CAt(1 + R*)
<C,

using R = At™" with k < 2q.
On the other hand, using the polynomial growth of F' (Assumption 2.1) and Holder’s inequality, one obtains

HF(Y(Q(S))—&—Z(Q(S)))—F(Y( + Z(t(s )H

(1 + HY tg

q
+

L2pa

+

< C|¥ (tue) — V(5)|

‘Y(s)

L2p [2pa

Then, using (2.6), one has for all t € [0, ]

Bl <C | 0 (B [P (¥ te) + Z(t0)) ~ F(F(6) + Zuo(te))
OJ (t=9) My (s) My (s) ds

where
1

wi() = (& o[ ) - 7 )

D) Gl - o)

To treat the first factor, let s € [tg,tg+1), with & <n — 1, and let € € (0,1). Using (2.3), one has

) f (s—r)A F(Xk?) dr
th 1+ AtM,

Y

Y (t(s))

Ma(s) = 1+ (B[ o

+

V() =V (tuw)| , < |(4 = 1)¥ () .

(AT (0)] , +CAUF(X) e,

L2p

L2p

< C At

where a € (0, 1).
Using (2.2), one obtains

t
[T @), < Carxnmn [ €= 5P (i) d5 < 1+ B,
0

L2p

which gives
My (s) < CAt*(1 + RY).
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1
- 2gm 2m
To treat the second factor, note that (E[ V. (s)” ]) < C+||lzo|% ., using the moment bound assump-
Lm

tion for Z (Assumption 2.4). In addition, using (2.6), one has for s < t,,

w0t |[FO, €x0ms [ eI ) 0
<C(1+ R7),

thus, one has for all 0 < s < t,,
Ma(s) < 0(1 + R‘f) + Ollzo] .

Choosing R = At~ with sufficiently small x then gives the upper bound M (s)Ms(s) < C, for all s € [0, t,),
for some C € (0, 0), and

(Bl 11 OIED ™ + B2 ()71 Den 1 Ir2 @17 ]) ™ < C(1+ Jol§-0),

for all ¢ € [0,t,). As a consequence, this concludes the proof of the claim.
Second, observe that

dR(¢ .
% — AR(t) + F(R(t) +7(8) + Zay (te0) )
Using condition (2.13) (Assumption 2.2) and Young’s inequality, one obtains
Ld|R()T. _ g . ¢
S S S BOIL + O () + Zay(t00) )|,

and as a consequence one has for all t € [0,¢,],

2

t Y ~ q2
ol B 01, < 0 [ e (L1 + |2 e, ) 0

Using the moment bound proved above for r(s) and Assumption 2.4, one obtains for all ¢ € [0, t,,]

(Elxn—1|ROIF])™ < L+ zo]0).

Finally, since X (t) = Y (t) + Zy, (t) = 7(t) + R(t) + Zy,(t), one obtains for all 0 < t < t,

(o0 ])* <o ).

It remains to prove the moment bound for the L* norm instead of the L? norm. This is obtained as follows:
using (2.5), for all ¢ € [0, t,], one has

m

X0

La

m m

(om0} ) <l - [ e e o el 0] )

L®
t mas L
<Ot laolle +0 |07 B X[
0
< O(1+ Jolf-).

This concludes the proof of Lemma 5.1. O
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Proof of Lemma 5.2. Recall that x, = Lo, , with Qr,, = {supoci<, |[X¢|;» < R} and x_1 = 1. As a
consequence, one has
L=xn=10;g, =log  +lop,  Lix,,.>r
=1—=xn-1+xXn11x,|, >R
One thus obtains the equality

n
1—xn= Z Xe—11)x,), >R
=0

Let p € N. Using Minkowksi, Cauchy—Schwarz and Markov inequalities, one obtains

1

L n 1
B = Xa) [ Xnl oo D™ < D (Elxe-11yx,), o> rI X1 ]) ™

< 3 (B[ 22]) ™ (Ele'ﬁg'

£=0

~
(=)

1
) 2m
where 6 € N is chosen below.
On the one hand, by construction of the tamed Euler scheme and using (2.4) and Assumption 2.3, one has

oy t —c(t—s _1 f X 2
[0, <l w0 | ety 41+”A£ ;&1”3} ds +[12(0)] -
L2
C
< [zoll e + 57 + 12(0)]2

thus

(Bl ]) ™ < o1+ lanlye + 57)

On the other hand, applying Lemma 5.1 yields for all £ > 0

E[xet[Xelz0 | < O(1 + ol ).

Gathering the estimates yields

2]

I = )Xl ™D < O (1 laole + 57 ) (14 holf8) R,

Since R = At™", it suffices to choose 9”” > 2 in order to obtain (5.2).
This concludes the proof of Lemma 5 2. O

We are now in position to provide the proof of Theorem 4.1.
Proof of Theorem 4.1. Since X,, = xnXn + (1 — X)X, combining Minkowskii’s inequality with (5.1) and (5.2)

gives

m 1
sup sup (E[[Xn|L-])™ < Cn(1 + NA)Pp (|20l £ )-
os<n<N

This concludes the proof of (4.3). It remains to prove (4.4). . .
Using the notation from the proof of Lemma 5.1, one has X (t) = Y (t) + Z,,(t), with

- t F(Xus)
Y () = (t—s)A £(s) d
( ) JO € 1+ AtMg(S) s
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Using (2.4), one has, for all t € [0,T]
¢
Vo), <0 [ e - H ()] ds

<O [ (1 ) as

Using the moment bound for X,, above, with nAt < NAt < T, one obtains

s (B[[70)])" < 1+ TP llrol )

o<t<T

and combining this with (2.7) with Assumption 2.4 concludes the proof of (4.4) and of Theorem 4.1. O

6. PROOF OF THEOREM 4.2

This section is devoted to the proof of the second main result of this article. The approach is based on
the analysis of the weak error of the numerical scheme, where the dependence with respect to the final time
T = NAt is carefully mentioned.

The weak error analysis uses the Kolmogorov equation approach, like for instance in [3]. Some important
regularity properties are given in Section 6.1 below. A few auxiliary results concerning spatial and temporal
regularity of Z(t) and Y (t) are stated and proved in Section 6.2. Finally, weak error estimates are proved in
Section 6.3.

All the computations and statements hold rigorously using suitable approximations: the nonlinearity may
be replaced by a globally Lipschitz continuous approximation and the noise may be truncated. The objective
is to prove that bounds hold independently of the approximation parameters. This is a standard approach in
the analysis of Kolmogorov equations and weak error in infinite dimension: for instance, like in [5], one may
consider an approximate stochastic evolution equation of the type

AX°7I(t) = AXOTT dt + AP (X0 (1)) dt + 24Py AW (1),

where 6 > 0, F;(z) = £(®,(z) — x) where 7 > 0 and (®;),, the flow associated with the ordinary differential

equation # = F(z), and Py = Z‘j]:1<~, €;)€;, J € N, is an orthogonal projection with finite rank. The noise is then
finite dimensional, F is Lipschitz continuous, and e’4 is regularizing, so that all the computations make sense.
In the estimates, the parameters ¢, 7, J do not appear and it suffices to pass to the limit 6 — 0,7 — 0,J — o
to get results for the model of interest and its numerical approximation. In order to simplify the notation, the
approximation parameters are omitted in the sequel. In [3], a spectral Galerkin approximation is used but this
is not convenient here since we deal with LP norms, with p > 2.

6.1. Regularity results for the Kolmogorov equation

Let ¢ : L? — R be a function of class C2. Define

u(t, z) = E[p(X*(1))],

for all t > 0 and x € L9, where (X*(t)),5, is the solution with initial condition X*(0) = .
Several properties of u are employed in the weak error analysis. First, u is solution of the Kolmogorov equation

Oru(t,x) = Lu(t,z) = Du(t,z) - (Ax + F(x Z c;D*u(t,z) - (é;,€;), (6.1)
]GN

with initial condition u(0,-) = ¢, where Du(t,x) and D?u(t,z) are the first and second order derivatives of
u(t, ) with respect to the variable x.
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Second, one has for all T' > 0 and all x € L9,

< Clp)e (L + |z a)- (6.2)

(T, z) — f@du*

Finally, some regularity properties for the spatial derivatives are instrumental in the weak error analysis
below. Proposition 6.1 is a variant of existing results: see [3, 6] for the Lipschitz case. See also [5,11] for the
treatment of polynomial nonlinearities, for estimates with ¢ < T.

Proposition 6.1. There exists ¢ € (0,0), such that the following holds. First, for all a € [0,1), there exists
Cy € (0,0) such that for allt >0, x € L* and h € L?, one has

\Du(t,z) - h| < C4 (1 + |\a:|\f£g>0) e~ min(t, 1)~ (—A) A ..

Moreover, for all 1,02 € [0,1), such that B1 + P2 < 1, there exists Cg, g, € (0,0) such that for all t > 0,
z € L® and hy, hy € L?, one has

[D2u(t,@) - (b, ho)| < Coy (14 Il 202 e min(t, 1)~ (= A) P4 o (= 4) 7 s |

with Q(a1,a2) = ¢+ qla;>0 + Lay>0-
Proof of Proposition 6.1. The first and second order derivatives of u(t,-) are expressed as
Du(t,z) - h = E[Dp(X*(t)) - n"(t)]
Du(t,x) - (h1, ha) = E[Dp(X*(t)) - ¢""2(1)] + E[Dp(X*(1)) - (1" (£),0"(2))],
where the processes (n" (t))tzo and (¢Mhe (t))t>0 are solutions of
"
%Ch“'“ (1) = (A+ F(XT (1)) ¢""2 (t) + F"(X= ()™ ()" (2),

with initial conditions "(0) = h and ¢"**2(0) = 0.
In the computations below, the values of C' and ¢ may change from line to line.
Introduce the family of operators (O(t,s)),s =, such that for all h e L?

(t) = (A+ F'(X"(1)n" (t)

%@(t,s)h = (A+ F'(X*(1))O(t,s)h, t=s, ©O(s,s)h=nh.

Using the condition (2.13), one has

1d|O(, 5)h[7

ST < et )3,

thus |O(t,s)h|z2 < e~ h|| g2 for all t > s > 0. This yields the result for a = 0.
To treat the case a > 0, introduce the auxiliary operators O(t,s) = O(t,s) — e*=9)4 for all t > s (see [5]).
Then one has
d
dt
with C:)(s, s)h = 0. Applying a Duhamel type formula yields

Ot 5)h = (A+ F/(X"(t)))O(t, 5)h + F' (X" (t)el"~*)4h,

O(t, s)h = f o(t,r) (F’(X‘”(r))e(’“_s)“‘h) dr.



168 C.-E. BREHIER

Using the result when o = 0, the polynomial growth of F’ (Assumption 2.1) and the inequality (2.2), one
obtains

e(T_S)AhH dr
L2

o, < [ e

t
< CJ eI (14 | X7 (1) |2 )e oA (r — s)~ drl[(— )R],

where ¢ € (0,v) > 0. Using moment estimates (see Prop. 3.1) and Jensen’s inequality, one obtains

1

(E|O@ o)z )" < e+ fuolf)| (~4)h] ..
Since O(t, s) = O(t, s) + e*=5)4 one finally obtains
(E[O(t, $)h|7])™ < Ce™U=) min(t — s, 1)"*(1 + [ao|%0 )| (— A)7h| -

Since 7" (t) = O(t,0)h, this gives the result when « € (0, 1) for the first-order derivative.
It remains to deal with the second-order derivative. On the one hand, since ¢ is of class C? with bounded
second-order derivative, applying Cauchy—Schwarz inequality and the result above yields

E[D>(X* (1) - (" (1)), 7" )] < (B[l )]} ])* @[2=013:0)*
c(E[1e¢, 03 |)* (B[6(, 0)hal2.])*

< 06726% ag—as (1 + H560||q]la1>0+102>0)”(714)7&1}“ A)ia2h2

HL2 H(f ”L?'

On the other hand, a Duhamel type formula yields the equality

Chl,hz (t) _ JO @(t, S) (F//(Xm(s))nin (t)’l]hZ (t)) ds.

Let x € (1,1), such that inequality (2.8) holds. By a duality argument, one has |[(—=A) ™" |2 < Cy| | 1:. Using
the result above with a conditional expectation argument yields

—c(t—s)

¢ (& ( q /" T 2 2
EHChl’hz(t)HLz < CL m(l + [lzol| 7 ( [H TEF(X(s D" ()" (t))HLQ] ds

t efc(tfs) 2 :
<cf m<1+||xon%m>(ﬁnn’“< W1e [l 0] ) as

—c(t s) e—2cs

—A) —az ho

< C(1+ lwo Z™ ) ds|(—A)~ hy

¢ |12

min(¢t — s, 1)* min(s, 1)1+

) e S S

using the condition ay + ag to ensure integrability, where Q(aq, a2) = ¢+ ¢la;>0 + Lay>0-
This gives

ELD%6 (X (1) ¢ (0] < €1+ Lol )| (- A) o (<A) o

Gathering the estimates then concludes the proof of Proposition 6.1. O
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6.2. Some useful regularity results

_ In this section, the objective is to state and prove some useful spatial and temporal regularity properties for
Z(t) defined by (2.17), and for Y (¢) given by

Y/(t) _ Jt e(tfs)A F(Xé(é)) ds,
0 L+ At|F (X))

which is such that X (t) = e!daq + Y (t) + Z(t).
In the sequel, let Assumption 2.5 be satisfied, and let the parameter @ be defined by (2.20).

Lemma 6.2. For every o € [0,@) and m € N, there exists Cy,m € (0,0) such that

sSup ]E[H(_A)QZHH?Z] < Ca,m
n=0

and for alln =0 and t € [ty, tni1]

m

1
(B[|20) - 2] ,])" < Camare.
Proof. Tt suffices to consider the case m = 2 since Z(t) is a Gaussian random variable with values in L? for all
t=0.
First, using Itd’s isometry formula and the inequalities (2.1) and (2.2), one has

L2

2

n—1
IE[||(—A)@ZnHiz] _E|| Y (At aawe
£=0 L2
2
35 St e
=0 jeN
nol —c(tn—te) T
<caty S —_|(—a)*ts—3g,
£=0 (tn - tl) Lz
< Cp,e < 0,

if ee (O, a%"‘)
Second, using 1t6’s isometry formula and the inequalities (2.3) and (2.2), one has for t € [t,, tnt1],

2 2 2
7 _ _ (t—tn)A _ (t—t,)A C/y\ _ 1i7C
E[Z(t) Z, L2] —E“ (e I)Zn‘)LQ] +]ET“@ (WE(t) — WE(t,)) Lz]
2
< AE[[(-A)Zul3a ] + Y o5t — o) |4 |
jeN L
a e 1 o (t—t, a—1~ 2
S Calt + (t—1,)* Y ¢j|(t — 1)~ (—A)2 el A(— A)22g; L
JeN
< Ol A,
This concludes the proof of Lemma 6.2. O

Lemma 6.3. For every e € [0,1) and m € N, there exists Ce , € (0,0) and a polynomial function P, : R - R
such that

1
m 4

sup (B[ "V (t)]L])" < Comn(1+ (VAP (o] )

0<nAt<NAt

L2
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and for alln =0 and t € [tp,tni1], withn < N, one has

({lve -

Proof. First, using (2.2) and (4.3) for all 0 < ¢ < T, one has

)" <o o ElF ) D)
cfo Yoo .0).

)

1) < om0+ (VAP

Eli

(EH(— ey (¢ ds

Second, for 0 < ¢, <t < ty, one has
(<l -yl ])" < (&l (- i)

¢ F(X,) "
(t—s)A n m
*(EH T ARG, D as

< can(B[| A ¥ | ])" + AEIFX) 7D
< OAI= 1+ TP (lool).

This concludes the proof of Lemma 6.3. O
6.3. Weak error analysis

We are now in position to study the weak error and prove Theorem 4.2. The weak error is written as follows:

Elp(Xn)] = Elp(X (tn))] = E[u(0, Xn)] = E[u(ty, Xo)]

= N_I(E[u(tN —tnt1, Xnt1)] = Elu(ty —tn, X0)])
- N:l(IE[ (v =ty X (tnrn)) | = B[uty =, £(0) )

Z J B[ (= + Lo)u(ty —£.X(1)) | at,

using It6’s formula, where for all n € N the auxiliary operator £,, is defined by

_ F(X5) 24 GAtA; AtAS
Lno = Do(x) - (Ax+ TTAE(Y, Lz) JG%CJD &)

Using the fact that u is solution of the Kolmogorov equation (6.1), one has

E[p(Xn)] — E[p(X (tn))] = en + €k,

where

|1

G}V_LtNElD“(tN_t’X(tU <1+AZ’;X&>Z) ) F(Mﬂ)ﬂdt
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tN 1 - ~
6?\[ = f 5 Z CjE[D2U(tN — t, X(t)) . (EAtAéj, eAtAéj) — DQU(tN — t, X(t)) . (éj, é])] dt.
0 .
jeN

Theorem 4.2 is a straightforward consequence of Lemmas 6.4 and 6.5 stated below.

Lemma 6.4. There exists a polynomial function P : R — R, and for every a € (0,@) there exists Cy, € (0,00),
such that for all xg € L*, all At € (0, Atg] and N € N, one has

k] < Car®® (14 (NADP 20 P(lag . )

Lemma 6.5. There exists a polynomial function P : R — R, and for every a € (0,@) there exists C,, € (0,0),
such that for all xg € L*, all At € (0,Atg] and N € N, one has

€& < CaAt2a<1 + (NAt)S"z)P(onHLw)-

Proof of Theorem 4.2. It suffices to write

< [Elp(Xn)] = E[p(X (NAY)]| + ‘E[@(X(NN))] - f@du*

‘E[cp(XN)] - Jsﬂ dyie

< len| + |eX |+

)

u(NAt, zg) — f@du*

and to use Lemmas 6.4, 6.5 and the inequality 6.2 to conclude the proof of Theorem 4.2. O

It remains to prove Lemmas 6.4 and 6.5. In the proofs, the notations C' and P is used for constants and
polynomial functions respectively which may change from line to line. The dependence with respect to T' =
ty = NAt is studied carefully.

Proof of Lemma 6.4. The error term e} is decomposed as follows:
e}v = e}\}l + 6}\}2 + e}\’,?’,

where

&= B[t () | Du(tn — £.XO) - F(Xa)]

& = [ B[ (Pu(en ~ 1. X0) - Dulen ~1.X00)) - (FO) - (X)) |
& = [ B[pulen — X0 - (FO) - F(X0)) o

Using Proposition 6.1 with @ = 0 and Theorem 4.1, for the first term one obtains

e_c(tN_S)E[(l + HX(t)H%OO) (1 + HX(%))H% )] at

tN

L®°

e}\}ll < C’AtJO

< Cat(1+ 1) (Lol - )-

To study the second error term, using Proposition 6.1 with a3 = a3 = 0 and the polynomial growth of F,
one obtains
2
} at
L2

2

tN ~ d <
] < CJO ec(tNt)EKl +[| x| Ty X(t) = X (tew)

L>©

L

‘X(te(t)) ng )
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< CJ:N e=ctn 1) (1 + 5w E[ X(S)HiiDé (E“X(t) — X (te)

Recall that X (t) = 'z + Z(t) + Y (t). Using the inequalities (2.3) and (2.2), one has

1
4 2
]) .
L2

et — e Aag], < Cal® i3 o

for all ¢ > At. Writing the integral for ¢ € [0,tx] as the sum as the integrals for ¢t € [0, At] (which gives a
contribution of size At) and ¢ € [At,¢y], and using Lemmas 6.2 and 6.3, combined with the moment bounds
from Theorem 4.1, one obtains

2 2
e8| < €At (Pllzol o) (1 + (= 4)%wo| . ) (1 -+ 637727)).
It remains to deal with the third error term 611\,3.
For every n > 0, let E, = E[|F,] denote the conditional expectation operator, where F; =

o(WQ(s),0 < s<t). Set Yzo(t) = e'2 + Y (t), then one has X(t) = Y, (t) + Z(t). The error term ey’ is
decomposed into two parts as follows:

N = _[:N E[DU(tN t, Xowy) <F< vo (o)) + Z(tz(t))> B F<Y$° () + Z(t)))] d

—JtNIE[Du(tN—t Xg(t) ( ( o tz(t) +Z( )) F<?zo(t)+2(t))>]dt

0

F
+ f:N E[Du(tN —t, Xo)) - ( ( o (L)) + Z(tat))) - F(on (tew) + Z(t)D] d

1,3,1 1,3,2
=€y TeEyN’

For the first term, using Proposition 6.1 with @ = 0, then moment bounds from Theorem 4.1, and finally the
inequalities 2.3 and (2.2) as above, and Lemma 6.3, and one obtains

121‘ <OJ 7c(tN7t)E|:(1+ .

< OJ e—cltn—1) (1 + qu)P(H:z:OHLOO) <IE[
0

< 0(1 + Tq2+q>P(onHLm)At2a.

q

Yo (te(e)) = Yo (2)

1
2 2

D at
L2

1,3,2 . . o . .
The arguments for the second term e 1\}3’ are more involved. First, a conditional expectation argument gives

|at

# [0l + [20],.)

f/ﬂco (tf(t)) H

Y/mo (t) - Yaco (té(t))

2 = Z fml ulty —t,X,,) - (F(foo(tn) + Zn) - F(f’zo(tn) + Z(ﬂ))] dt

NZI fﬂﬂ E| Dulty . X0) - (F (Yoo tn) + Zn) = En| F(Vaulta) + 2)) |) | .

n

A second-order Taylor expansion then yields
E, [F(YI (t) + Z(t))] - F(Yf (tn) + Z ) - (?mo(tn)> ‘E,, [Z(t) - Zn] +R,

= F(Vay(tn)) - (¢ = 1)Zy) + Ra,
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with 5
[Ralzs < C(1+]

oot +12al + |20 )20 - 24

L2
Using Proposition 6.1 and the inequality 2.8, for x € (%, 1), moment bounds from Theorem 4.1 and Assump-
tion 2.4, and Lemma 6.2, one has

tn+1

E[Dulty — t,X,) - Rp]dt| < CAt2a(1 + qu)P(HxOHLm).

To treat the last error term, combining the inequalities (2.10) and (2.11), with polynomial growth of F’ (Assump-
tion 2.1) yields

() (Vs <tn>) ~ ((e““ —1)7y)

.
< Co( )H ) Yoy tn)] | (A7 (A = 1) Zu
cmmm( )H ) Voo (tn)] | (~A4)* Zul s,

where € > 0, using the inequality (2.3) in the last step. Note that

(AT, ()

_ atevy _ a+te tn, A

< H( A) Y(tn)HL2 + C(—A)* et Aag| .

As above, one uses the inequality (2.2) to get H(—A)O‘“et"AﬂvoHL2 < Ct,;* |20 2 when n > 1, and a decom-
position of the integral for ¢ € [0,¢y] into integrals for ¢ € [0, At] (Whlch gives a contribution of size At) and
t € [At,ty]. Using Proposition 6.1 with a; = @ + k and a3 = 0, one then obtains

tn41

]E[Du(tN — 1, X0) B (Vo b)) - (€34 = 1) 2,) |

—c(tN t)

< CAe* Z th WE[(HH&H%@O)(H

< CA (1 + T “‘Z)P(H%Hm)

w0 (tn)

A e

C AL

owing to inequality (2.2), and to the moment bounds from Lemmas 6.2, 6.3 and Theorem 4.1.
Finally, one has

ek*?| < car (14 774 20) (g .0 ).
Gathering the estimates for ey', ey” and ey’ then concludes the proof of Lemma 6.4. O
Proof of Lemma 6.5. Using the symmetry of the bilinear operator D2u<T —t, X(t)), one has
e?\, =€y TEN,

where

ZchN D2u(T 1. X(0) - (>~ 1)ey, (2~ 1)e;) | ar

jEN

%2 EchtN DT =4, X (1)) - (A = 1)éj, &) | at.

JeN
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1

Let a € (0, @), and € > 0 such that a+¢ < @. Below, Proposition 6.1 is used with ay = %—i—a and ap = 5 —a—e.
In addition, Theorem 4.1 is also used to control moments.
Using the inequalities (2.2) and (2.3), one obtains, with 7' = NAt,

2

‘6?\}1 Cj J«tN thifz; t) 714),%,& (eAtA —1)g L (7A)a*%+féjHL2 (1 + IEHX(t) ‘ii) d¢
jeN
C(L+T% ) Pllol ) Y ) (A (A2 (A = )| (—a)73ove|
jEN
< 0(1 + T3"2)7’(|5€0|Lw)Af2a§\ICjH(—A)a21’+Eéi ;
(1415 )P(laol ) Ar,

since o + € < @.
The second term is treated similar arguments: indeed one has

|y (er - 1)g|

tN c(ty—t
62)2 c J N—t)
N (tv — L

Jje

Ay (1R ) o

and proceeding as above one obtains

22| < 0(1 + T3q2)7>(||xoum)m2a.

This concludes the proof of Lemma 6.5. (Il
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