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APPROXIMATION OF THE INVARIANT DISTRIBUTION FOR A CLASS OF
ERGODIC SPDES USING AN EXPLICIT TAMED EXPONENTIAL EULER

SCHEME

Charles-Edouard Bréhier˚

Abstract. We consider the long-time behavior of an explicit tamed exponential Euler scheme applied
to a class of parabolic semilinear stochastic partial differential equations driven by additive noise, under
a one-sided Lipschitz continuity condition. The setting encompasses nonlinearities with polynomial
growth. First, we prove that moment bounds for the numerical scheme hold, with at most polynomial
dependence with respect to the time horizon. Second, we apply this result to obtain error estimates,
in the weak sense, in terms of the time-step size and of the time horizon, to quantify the error to
approximate averages with respect to the invariant distribution of the continuous-time process. We
justify the efficiency of using the explicit tamed exponential Euler scheme to approximate the invariant
distribution, since the computational cost does not suffer from the at most polynomial growth of the
moment bounds. To the best of our knowledge, this is the first result in the literature concerning the
approximation of the invariant distribution for SPDEs with non-globally Lipschitz coefficients using an
explicit tamed scheme.
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1. Introduction

In the last 25 years, the analysis of numerical methods for stochastic partial differential equations (SPDEs)
has been a very active research field. Pionnering works have focused on the so-called strong convergence of
numerical schemes for equations with Lipschitz continuous nonlinearities, and in the last decade many results
concerning convergence of schemes for equations with non-globally Lipschitz continuous nonlinearities, and weak
convergence, have been obtained. We refer to the monograph [21] for a pedagogical introduction to this field of
research.

In this article, we consider some semilinear parabolic SPDEs of the type

d𝑋p𝑡q “ 𝐴𝑋p𝑡qd𝑡` 𝐹 p𝑋p𝑡qqd𝑡` d𝑊Cp𝑡q,

as written in the framework of stochastic evolution equations, see [14]. Precise assumptions concerning the
linear operator 𝐴, the nonlinearity 𝐹 and the Wiener process 𝑊C and its covariance operator C are given

Keywords and phrases. Stochastic partial differential equations, exponential integrators, tamed scheme, invariant distribution.

Univ Lyon, Universitat Claude Bernard Lyon 1, CNRS UMR 5208, Institut Camille Jordan, 43 blvd. du 11 novembre 1918,
F-69622 Villeurbanne Cedex, France.
˚Corresponding author: brehier@math.univ-lyon1.fr

c○ The authors. Published by EDP Sciences, SMAI 2022

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

https://doi.org/10.1051/m2an/2021089
https://www.esaim-m2an.org
mailto:brehier@math.univ-lyon1.fr
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0


152 C.-E. BRÉHIER

below (Sect. 2). Under appropriate assumptions, this process admits a unique invariant probability distribution
𝜇‹, such that

Er𝜙p𝑋p𝑇 qqs Ñ
𝑇Ñ8

ż

𝜙d𝜇‹,

exponentially fast, for any initial condition 𝑋p0q and any real-valued Lipschitz continuous function 𝜙 (see
Sect. 3). We study the question of approximating the invariant distribution 𝜇‹ using a numerical scheme.
The main novelty of this article is to show that an explicit scheme can be used, without loss of computational
efficiency, even if the nonlinearity 𝐹 is not globally Lipschitz continuous but only one-sided Lipschitz continuous.

Let us review the existing literature concerning the numerical approximation of invariant distributions for
parabolic semilinear SPDEs – see also the preprint [2] where stochastic viscous scalar conservation laws are
considered, and the monograph [16] and references therein where some stochastic Schrödinger equations are
studied. In [3], parabolic semilinear SPDEs, with Lipschitz nonlinearity, driven by space-time white noise, are
considered; temporal discretization is performed using a linear implicit Euler scheme, and weak error estimates
which are uniform in time are obtained using a Kolmogorov equation approach. In [6], the same framework has
been considered, for full-discretization schemes (using a finite element method for spatial discretization); error
estimates are obtained using a Poisson equation approach. A full-discretization scheme based on an exponen-
tial Euler scheme has been considered in [10]. A postprocessed integrator has been proposed in [7] in order to
increase the order of convergence. For non globally Lipschitz continuous nonlinearities, the only existing result
is the recent article [12], where the authors use a fully implicit scheme. Note that the literature is also limited
concerning the analysis of the weak error on finite time intervals when applied to SPDEs with non-globally Lip-
schitz nonlinearity: see [5] where a splitting scheme is applied for the Allen–Cahn equation (cubic nonlinearity),
and also [8, 11].

In this article, we consider exponential integrators to deal with the linear part. As demonstrated in [1, 18]
(see also the monograph [17]), using a simple explicit exponential Euler scheme (like for instance in [20]) of the
type

𝑋𝑛`1 “ 𝑒Δ𝑡𝐴
`

𝑋𝑛 `∆𝑡𝐹 p𝑋𝑛q `∆𝑊C
𝑛

˘

,

where the nonlinearity is discretized explictly, is not appropriate due to the loss of moment bounds, which
would be essential in the proof of convergence. Many recipes have been proposed to overcome this issue (we
refer to [17] for a general analysis in the case of finite-dimensional Stochastic Differential Equations). In this
article, we consider the following explicit tamed exponential Euler scheme (see Eq. (4.1))

𝑋𝑛`1 “ 𝑒Δ𝑡𝐴𝑋𝑛 ` p´𝐴q
´1

`

𝐼 ´ 𝑒Δ𝑡𝐴
˘ 𝐹 p𝑋𝑛q

1`∆𝑡}𝐹 p𝑋𝑛q}𝐿2

` 𝑒Δ𝑡𝐴∆𝑊C
𝑛 ,

where ∆𝑊C
𝑛 are Wiener increments. This type of scheme has already been studied in [15, 19, 24] for instance

(with a different definition of the tamed operator in terms of the time-step size in [15]). In those works, a finite
time horizon 𝑇 P p0,8q is fixed, and the authors look at strong convergence. To the best of our knowledge,
neither weak convergence rates nor long-time behavior have been considered for this type of explicit tamed
scheme for SPDEs in the literature so far. The objective of this article is to prove that the explicit tamed
scheme can be employed to approximate the invariant distribution 𝜇‹, with precise error estimates and analysis
of the computational cost.

The contribution of this article is twofold. First, moment bounds of the type

sup
0ď𝑛Δ𝑡ď𝑇

pEr}𝑋𝑛}
𝑚
𝐿8sq

1
𝑚 ď 𝐶p}𝑥0}𝐿8qp1` 𝑇 q

are obtained, for all 𝑇 P p0,8q. See Theorem 4.1 for a precise statement. The moment bound is uniform with
respect to the time-step size ∆𝑡. It is important to note that the upper bound is not uniform with respect to
the final time 𝑇 .
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Second, weak error estimates of the type

|Er𝜙p𝑋𝑛qs ´ Er𝜙p𝑋p𝑡𝑛qqs| ď 𝐶𝛼p𝜙, }𝑥0}𝐿8q
`

1` 𝑇𝑄
˘

∆𝑡2𝛼,

for some integer 𝑄 P N, where 𝛼 P p0, 𝛼q and 𝛼 is a parameter which quantifies the regularity of the process. If
the equation is driven by a cylindrical Wiener process (C “ 𝐼, space-time white noise), 𝛼 “ 1

4 , whereas 𝛼 “ 1
2

if the equation is driven by trace-class noise (TrpCq ă 8). See Theorem 4.2 for a precise statement. Note that
the weak error estimate is not uniform with respect to time 𝑇 .

Even if the upper bounds show some dependence with respect to time 𝑇 , the polynomial growth is sufficiently
slow (compared with an exponential growth) not to damage the performance of the scheme when one is interested
in the approximation of the invariant distribution 𝜇‹. Since the convergence to equilibrium is exponentially fast
(with respect to 𝑇 ) in the models considered here, the analysis of the computational cost (see Cor. 4.3) reveals
that there is no loss in the efficiency, when compared with a situation where uniform moment bounds and error
estimates would hold (for instance, if the nonlinearity is globally Lipschitz as in [3], or if an implicit integrator is
employed as in [12]). Since the tamed exponential Euler scheme is explicit, in practice its application is simpler
and the cost per step is lower than when using an implicit scheme, thus the results of this article justify the
efficiency of the proposed scheme for the approximation of the invariant distribution for SPDEs.

To the best of our knowledge, the long-time behavior of moment bounds and weak error estimates for explicit
tamed Euler schemes applied to SPDEs has not been studied in the literature so far, and the results above
show that these schemes are effective to numerically approximate the invariant distribution of SPDEs. Note
that only upper bounds are proven, and it may happen that in fact the polynomial growth is not optimal and
that uniform in time upper bounds may be proved by other techniques. Some numerical experiments have been
performed and have not been sufficient to exhibit the polynomial growth (thus they are not reported here).
Studying whether the polynomial growth is optimal or whether uniform bounds can be obtained is left for
future works. The combination of the results of this article with the analysis of spatial discretization, and the
application of (multilevel) Monte-Carlo methods is also left as an open question. Finally, in this article the
analysis is limited to SPDEs with one-dimensional spatial variable: the results may be generalized in higher
dimension with appropriate modifications, see Remark 3.2 below.

This article is organized as follows. The setting is presented and the main assumptions are stated in Section 2.
Preliminary results concerning the long-time behavior of the solution of the SPDE are given in Section 3. The
explicit tamed exponential Euler scheme is defined in Section 4, where the two main results, Theorem 4.1
(moment bounds) and Theorem 4.2 (error estimate) are stated and discussed. Section 5 is devoted to the proof
of Theorem 4.1, whereas Section 6 is devoted to the proof of Theorem 4.2.

2. Setting

For every 𝑝 P r1,8s let 𝐿𝑝 “ 𝐿𝑝p0, 1q be the Banach space of real-valued functions with finite 𝐿𝑝 norm, and
let the associated norm be denoted by } ¨ }𝐿𝑝 . When 𝑝 “ 2, 𝐻 “ 𝐿2 is an Hilbert space, with inner product
denoted by x¨, ¨y. Let N denote the set of integers and N0 “ NY t0u.

The time-step size of the numerical schemes is denoted by ∆𝑡. The a priori bounds and error estimates will
be stated below for ∆𝑡 P p0,∆𝑡0s, where ∆𝑡0 is an arbitrary parameter. Once the value of the time-step size ∆𝑡
is fixed, the following notation is used: for all 𝑛 P N0, 𝑡𝑛 “ 𝑛∆𝑡, and for all 𝑡 P r0,8q, ℓp𝑡q “ 𝑛 if and only if
𝑡 P r𝑡𝑛, 𝑡𝑛`1q.

The values of constants may change from line to line in the proofs, however they are assumed not to depend
on quantities such as the time-step size ∆𝑡 or the initial condition 𝑥0.

2.1. Linear operator

Set 𝑒𝑛 “
?

2 sinp𝑛𝜋¨q and 𝜆𝑛 “ p𝑛𝜋q
2, for all 𝑛 P N. Then p𝑒𝑛q𝑛PN is a complete orthonormal system of 𝐻.
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The unbounded self-adjoint linear operator on 𝐻 defined by

𝐴 “ ´
ÿ

𝑛PN
𝜆𝑛x¨, 𝑒𝑛y𝑒𝑛

is the realization of the Laplace operator on p0, 1q, with homogeneous Dirichlet boundary conditions. The
associated semi-group

`

𝑒𝑡𝐴
˘

𝑡ě0
, with 𝑒𝑡𝐴 “

ř

𝑛PN 𝑒
´𝜆𝑛𝑡x¨, 𝑒𝑛y𝑒𝑛, is such that 𝑡 ÞÑ 𝑒𝑡𝐴𝑥 is the solution of the

heat equation with homogeneous Dirichlet boundary conditions. For every 𝑝 P r2,8q,
`

𝑒𝑡𝐴
˘

𝑡ě0
also defines a

semi-group on 𝐿𝑝. For every 𝛼 P r´1, 1s, let p´𝐴q𝛼 be the operator defined on 𝐻 by

p´𝐴q𝛼 “
ÿ

𝑛PN
𝜆𝛼𝑛x¨, 𝑒𝑛y𝑒𝑛.

Let us state some inequalities which are employed in the sequel. We refer for instance to [9] and to [23].

– For all 𝑥 P 𝐿2, one has
›

›𝑒𝑡𝐴𝑥
›

›

𝐿2 ď 𝑒´𝜆1𝑡}𝑥}𝐿2 . (2.1)

– For every 𝛼 P r0, 1s, there exists 𝐶𝛼 P p0,8q such that for all 𝑥 P 𝐿2 and 𝑡 ą 0, one has
›

›p´𝐴q𝛼𝑒𝑡𝐴𝑥
›

›

𝐿2 ď 𝐶𝛼 minp𝑡, 1q´𝛼}𝑥}𝐿2 . (2.2)

– For every 𝛼 P r0, 1s, there exists 𝐶𝛼 P p0,8q such that for all 𝑥 P 𝐿2 and 𝑡, 𝑠 ě 0, one has
›

›𝑒𝑡𝐴𝑥´ 𝑒𝑠𝐴𝑥
›

›

𝐿2 ď 𝐶𝛼|𝑡´ 𝑠|
𝛼}p´𝐴q𝛼𝑥}𝐿2 . (2.3)

– There exists 𝑐, 𝐶 P p0,8q such that for all 𝑥 P 𝐿2 and all 𝑡 ą 0, one has

›

›𝑒𝑡𝐴𝑥
›

›

𝐿8
ď 𝐶 minp𝑡, 1q´

1
4 𝑒´𝑐𝑡}𝑥}𝐿2 , (2.4)

and for all 𝑥 P 𝐿1 and all 𝑡 ą 0, one has
›

›𝑒𝑡𝐴𝑥
›

›

𝐿8
ď 𝐶 minp𝑡, 1q´

1
2 𝑒´𝑐𝑡}𝑥}𝐿1 . (2.5)

– There exists 𝑐 P p0,8q such that, for all 𝑝 P p2,8q, there exists 𝐶𝑝 P p0,8q, such that for all 𝑥 P 𝐿𝑝 and all
𝑡 ą 0, one has

›

›𝑒𝑡𝐴𝑥
›

›

𝐿𝑝 ď 𝐶𝑝𝑒
´𝑐𝑡}𝑥}𝐿𝑝 . (2.6)

– There exists 𝐶 P p0,8q such that for all 𝑥 P 𝐿8 and all 𝑡 ě 0 one has
›

›𝑒𝑡𝐴𝑥
›

›

𝐿8
ď 𝐶}𝑥}𝐿8 . (2.7)

– For all 𝜅 P
`

1
4 , 1

˘

, there exists 𝐶𝜅 P p0,8q such that for all 𝑥 P 𝐿2 one has

}𝑥}𝐿8 ď 𝐶𝜅}p´𝐴q
𝜅𝑥}𝐿2 . (2.8)

– For all 𝑝 P r2,8q, there exists Λ𝑝 P p0,8q such that for all 𝑥 P 𝐿𝑝, such that 𝐴𝑥 P 𝐿𝑝, one has
@

𝐴𝑥, 𝑥|𝑥|𝑝´2
D

ď ´Λ𝑝}𝑥}
𝑝
𝐿𝑝 . (2.9)

– For all 𝛼 P
`

0, 1
2

˘

, 𝜖 ą 0, with 𝛼` 𝜖 ă 1
2 , there exists 𝐶𝛼,𝜖 P p0,8q such that

›

›p´𝐴q´𝛼´𝜖p𝑥𝑦q
›

›

𝐿1 ď 𝐶𝛼,𝜖|p´𝐴q
𝛼`𝜖𝑥|𝐿2 |p´𝐴q´𝛼𝑦|𝐿2 . (2.10)
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– For all 𝛼 P
`

0, 1
2

˘

, 𝜖 ą 0, with 𝛼 ` 2𝜖 ă 1
2 , there exists 𝐶𝛼,𝜖 P p0,8q such that, if 𝜓 : R Ñ R is Lipschitz

continuous, for all 𝑥 P 𝐿2 such that |p´𝐴q𝛼`2𝜖𝑥|𝐿2 ă 8, one has
›

›p´𝐴q𝛼`𝜖𝜓p𝑥q
›

›

𝐿2 ď 𝐶𝛼,𝜖r𝜓sLip

ˇ

ˇp´𝐴q𝛼`2𝜖𝑥
ˇ

ˇ

𝐿2 , (2.11)

where r𝜓sLip “ sup
𝑧1‰𝑧2

|𝜓p𝑧2q´𝜓p𝑧1q|
|𝑧2´𝑧1|

.

Note that Λ2 “ 𝜆1, and for all 𝑝 ě 2, one has the lower bound Λ𝑝 ě 𝜆1
4p𝑝´1q
𝑝2 . Indeed using an integration

by parts argument, one has
@

𝐴𝑥, 𝑥|𝑥|𝑝´2
D

“ ´
@

∇𝑥,∇
`

𝑥|𝑥|𝑝´2
˘D

“ ´p𝑝´ 1q
@

∇𝑥,∇𝑥|𝑥|𝑝´2
D

“ ´p𝑝´ 1q
›

›

›
|𝑥|

𝑝´2
2 ∇𝑥

›

›

›

2

𝐿2

“ ´
4p𝑝´ 1q
𝑝2

›

›

›
∇
´

|𝑥|
𝑝
2

¯
›

›

›

2

𝐿2

ď ´𝜆1
4p𝑝´ 1q
𝑝2

›

›

›
|𝑥|

𝑝
2

›

›

›

2

𝐿2

“ ´𝜆1
4p𝑝´ 1q
𝑝2

}𝑥}𝑝𝐿𝑝 .

2.2. Nonlinearity

Let us now give the assumptions concerning the nonlinearity: 𝐹 is the Nemytskii operator associated with
a real-valued function 𝑓 : R Ñ R which is assumed to be of class 𝒞2, with at most polynomial growth in the
following sense.

Assumption 2.1. There exists a real number 𝑞 ě 2 such that

sup
𝑧PR

|𝑓p𝑧q| ` |𝑓 1p𝑧q| ` |𝑓2p𝑧q|

1` |𝑥|𝑞
ă 8. (2.12)

To study the long time behavior, the following one-sided Lipschitz continuity condition is enforced.

Assumption 2.2. There exists 𝛾 ą 0 such that, if 𝑝 P t2, 𝑞u, one has
@

𝐴𝑦, 𝑦|𝑦|𝑝´2
D

`
@

𝐹 p𝑦 ` 𝑧q ´ 𝐹 p𝑧q, 𝑦|𝑦|𝑝´2
D

ď ´𝛾}𝑦}𝑝𝐿𝑝 , (2.13)

whenever 𝑦, 𝑧 P 𝐿𝑝 are such that the left-hand side of (2.13) makes sense, where 𝑞 is given by Assumption 2.1.

Let 𝜆𝐹 “ sup𝑧PR 𝑓 1p𝑧q. When 𝜆𝐹 ă 8, the real-valued function 𝑓 satisfies a standard one-sided Lipschitz
continuity condition. The condition (2.13) for 𝑝 “ 2 is satisfied if 𝜆𝐹 ă 𝜆1. When 𝜆𝐹 ă 0, owing to (2.9), the
condition (2.13) is satisfied for all 𝑝 P r2,8q.

Assumptions 2.1 and 2.2 are satisfied for instance if 𝑓 is a polynomial function, such that 𝜆𝐹 “ sup𝑧PR 𝑓 1p𝑧q
is finite and sufficiently small.

2.3. Wiener process and the stochastic convolution

Let p𝛽𝑗q𝑗PN be a sequence of independent standard real-valued Wiener processes, defined on a probability
space pΩ,ℱ ,Pq which satisfies the usual conditions. Let the associated expectation operator be denoted by Er¨s.

The stochastic evolution equation is driven by a 𝑄-Wiener process
`

𝑊Cp𝑡q
˘

𝑡ě0
, with covariance operator C.

It is assumed that C “
ř

𝑗PN 𝑐𝑗x¨, 𝑒𝑗y𝑒𝑗 , where 𝑐𝑗 P r0,8q for all 𝑗 P N, and p𝑒𝑗q𝑗PN is a complete orthonormal
system of 𝐻.



156 C.-E. BRÉHIER

We refer to the monographs [9,14] for the general theory of stochastic evolution equations and properties of
their solutions.

The stochastic convolution is the process defined by

𝑍p𝑡q “

ż 𝑡

0

𝑒p𝑡´𝑠q𝐴d𝑊Cp𝑠q “
ÿ

𝑗PN

?
𝑐𝑗

ż 𝑡

0

𝑒p𝑡´𝑠q𝐴𝑒𝑗d𝛽𝑗p𝑠q, (2.14)

for all 𝑡 ě 0. The stochastic convolution is the mild solution of the linear equation driven by additive noise:

d𝑍p𝑡q “ 𝐴𝑍p𝑡qd𝑡` d𝑊Cp𝑡q, 𝑍p0q “ 0.

To justify well-posedness for the stochastic convolution and establish moment bounds for the solution in the
𝐿8 norm, the following assumption is required.

Assumption 2.3. The stochastic convolution p𝑍p𝑡qq𝑡ě0 is well-defined and takes values in 𝐿8. Moreover, uni-
form in time moment bounds are satisfied in the 𝐿8-norm: for all 𝑚 P N,

sup
𝑡ě0

Er}𝑍p𝑡q}𝑚𝐿8s ă 8. (2.15)

When the covariance operator C and the linear operator 𝐴 commute, i.e. when 𝑒𝑗 “ 𝑒𝑗 for all 𝑗 P N, it is
possible to sample the 𝐻-valued Gaussian random variable 𝑍p𝑡q exactly in distribution. However, in general
this is not possible and a numerical approximation scheme needs to be employed. In this article, exponential
Euler integrators are used. Let ∆𝑡 ą 0 denote the time step-size, and define the sequence of random variables
`

𝑍Δ𝑡
𝑛

˘

𝑛PN0
by

𝑍Δ𝑡
𝑛`1 “ 𝑒Δ𝑡𝐴

`

𝑍Δ𝑡
𝑛 `∆𝑊C

𝑛

˘

, (2.16)

with 𝑍Δ𝑡
0 “ 0, and where ∆𝑊C

𝑛 “ 𝑊Cp𝑡𝑛`1q ´ 𝑊Cp𝑡𝑛q are the Wiener increments. For every 𝑛 P N0 and
𝑡 P r𝑡𝑛, 𝑡𝑛`1s, set

𝑍Δ𝑡p𝑡q “ 𝑒p𝑡´𝑡𝑛q𝐴
`

𝑍Δ𝑡
𝑛 `𝑊Cp𝑡q ´𝑊Cp𝑡𝑛q

˘

. (2.17)

The following discrete-time versions of Assumption 2.3 is introduced.

Assumption 2.4. For any time-step size ∆𝑡 P p0,∆𝑡0s, the process
`

𝑍Δ𝑡
𝑛

˘

𝑛PN0
takes values in 𝐿8. Moreover,

moment bounds which are uniform with respect to time and to the time-step size are satisfied: for all 𝑚 P N,

sup
Δ𝑡Pp0,Δ𝑡0s

sup
𝑡ě0

E
”
›

›

›
𝑍Δ𝑡p𝑡q

›

›

›

𝑚

𝐿8

ı

ă 8. (2.18)

It remains to define a parameter 𝛼 to express the order of convergence (in the weak sense) of the numerical
scheme.

Assumption 2.5. Assume that there exists 𝛼 ą 0 such that

8
ÿ

𝑗“1

𝑐𝑗
›

›p´𝐴q2𝛼´1𝑒𝑗
›

›

2

𝐿2 ă 8. (2.19)

The parameter 𝛼 is then defined by

𝛼 “ sup

#

𝛼 P

ˆ

0,
1
2



;
8
ÿ

𝑗“1

𝑐𝑗
›

›p´𝐴q2𝛼´1𝑒𝑗
›

›

2

𝐿2 ă 8

+

. (2.20)

For all 𝛼 P p0, 𝛼q, one then has

sup
𝑡ě0

E
”

}p´𝐴q𝛼𝑍p𝑡q}
2
𝐿2

ı

` sup
𝑡ě0

E
„

›

›

›
p´𝐴q𝛼𝑍p𝑡q

›

›

›

2

𝐿2



ă 8, (2.21)
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as consequences of the Itô isometry formula and of (2.2).
Assumptions 2.3–2.5 are compatible: let us give some examples of covariance operators such that they hold

simultaneously.

– Assume that C “ 𝐼, i.e. that (3.1) is driven by a cylindrical Wiener process/space-time white noise. Then
the assumptions above are satisfied with 𝛼 “ 1{4.

– Assume that 𝛼 ą 1{4. Owing to the inequalities (2.8), the inequality (2.21) implies that the inequalities (2.15)
and (2.18) hold.

– In particular, if the noise is trace-class, i.e. if TrpCq ă 8, then 𝛼 “ 1{2 and the three assumptions are
satisfied.

Note that Assumption 2.5 and the definition (2.20) of 𝛼 do not depend only on the eigenvalues 𝜆𝑗 and 𝑐𝑗 of
´𝐴 and C in general: they also depend on the eigenfunctions 𝑒𝑗 of C. If C and 𝐴 commute, one may choose
𝑒𝑗 “ 𝑒𝑗 and in that case it is sufficient to study the behavior of the eigenvalues. Since sup

𝑗PN
}𝑒𝑗}𝐿8 ă 8, in

that case it is possible to prove that Assumption 2.5 implies that Assumptions 2.3 and 2.4 are satisfied. The
details require to employ more complex arguments than those used in this article (in particular, the notion of
𝛾-Radonifying operators and related inequalities) and are thus omitted.

The three assumptions above are thus natural and hold in many situations. In the sequel, we work in the
abstract setting, assuming that the three assumptions hold, and we focus on the main novelties of this work:
proving moment bounds and applying them for weak error analysis, in the large time regime. The order of
convergence depends on the value of 𝛼.

In the sequel, to simplify notation let 𝑍𝑛 “ 𝑍Δ𝑡
𝑛 and 𝑍p𝑡q “ 𝑍Δ𝑡p𝑡q.

3. Preliminary results

This section is devoted to state and prove some properties of the solution of the stochastic evolution equation

d𝑋p𝑡q “ 𝐴𝑋p𝑡qd𝑡` 𝐹 p𝑋p𝑡qqd𝑡` d𝑊Cp𝑡q, 𝑋p0q “ 𝑥0. (3.1)

Define 𝑌 p𝑡q “ 𝑋p𝑡q ´ 𝑍p𝑡q for all 𝑡 ě 0. Then (3.1) is equivalent to the evolution equation with a random
time-dependent nonlinearity

d𝑌 p𝑡q
d𝑡

“ 𝐴𝑌 p𝑡q ` 𝐹 p𝑌 p𝑡q ` 𝑍p𝑡qq, 𝑌 p0q “ 𝑥0.

Let us first recall a well-posedness result, see for instance Proposition 6.2.2 of [9] for a similar result. Let
Assumptions 2.1 and 2.3 be satisfied. Then, for any initial condition 𝑥0 P 𝐿

𝑞, there exists a unique global mild
solution (3.1), defined by

𝑋p𝑡q “ 𝑒𝑡𝐴𝑥0 `

ż 𝑡

0

𝑒p𝑡´𝑠q𝐴𝐹 p𝑋p𝑠qq d𝑠`
ż 𝑡

0

𝑒p𝑡´𝑠q𝐴 d𝑊Cp𝑠q, 𝑡 ě 0.

To put emphasis on the role of the initial condition 𝑥0, the notation 𝑋𝑥0p𝑡q “ 𝑋p𝑡q may be used.
The process p𝑋𝑥0p𝑡qq takes values in 𝐿8. If Assumption 2.2 is satisfied, one has the following moment bounds

in the 𝐿8 norm, uniformly in time, if 𝑥0 P 𝐿
8.

Proposition 3.1. Let Assumptions 2.1–2.3 be satisfied.
For all 𝑚 P N, there exists 𝐶𝑚 P p0,8q such that for all 𝑥0 P 𝐿

8, one has

sup
𝑡ě0

pEr}𝑋𝑥0p𝑡q}
𝑚
𝐿8sq

1
𝑚 ď 𝐶𝑚p1` }𝑥0}

𝑞
𝐿8q.
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Proof. Let 𝑌𝑥0p𝑡q “ 𝑋𝑥0p𝑡q ´ 𝑍p𝑡q. Then for all 𝑡 ą 0, one has

d𝑌𝑥0p𝑡q

d𝑡
“ 𝐴𝑌𝑥0p𝑡q ` 𝐹 p𝑌𝑥0p𝑡q ` 𝑍p𝑡qq.

By an energy estimate, using (2.13) (see Assumption 2.2) and Young’s inequality one obtains

1
𝑞

d}𝑌𝑥0p𝑡q}
𝑞
𝐿𝑞

d𝑡
ď ´𝛾1}𝑌𝑥0p𝑡q}

𝑞
𝐿𝑞 ` 𝐶}𝐹 p𝑍p𝑡qq}

𝑞
𝐿𝑞 ,

for some 𝛾1 P p0, 𝛾q and 𝐶 P p0,8q.
Using Gronwall’s lemma and the polynomial growth assumption for 𝐹 , see Assumption 2.1, for all 𝑡 ě 0 one

has

}𝑌𝑥0p𝑡q}
𝑞
𝐿𝑞 ď 𝑒´𝑞𝛾

1𝑡}𝑥0}
𝑞
𝐿𝑞 ` 𝐶

ż 𝑡

0

𝑒´𝑞𝛾
1
p𝑡´𝑠q

´

1` }𝑍p𝑠q}𝑞
2

𝐿𝑞2

¯

d𝑠.

Using Jensen’s inequality and Assumption 2.3, one obtains the inequality

sup
𝑡ě0

pEr}𝑌𝑥0p𝑡q}
𝑚
𝐿𝑞 sq

1
𝑚 ď 𝐶𝑚p1` }𝑥0}𝐿𝑞 q,

for some 𝐶𝑚 P p0,8q, for all 𝑚 P N.
To obtain moment bounds in the 𝐿8 norm, the argument uses the inequality (2.5). First, the mild formulation

yields the identity

𝑌𝑥0p𝑡q “ 𝑒𝑡𝐴𝑥0 `

ż 𝑡

0

𝑒p𝑡´𝑠q𝐴𝐹 p𝑌𝑥0p𝑠q ` 𝑍p𝑠qqd𝑠.

Applying (2.5) and (2.7) for the first inequality below, then using the polynomial growth assumption for 𝐹 for
the second inequality below, one has

}𝑌𝑥0p𝑡q}𝐿8 ď }𝑥0}𝐿8 ` 𝐶

ż 𝑡

0

𝑒´𝑐p𝑡´𝑠q

min
´

p𝑡´ 𝑠q
1
2 , 1

¯}𝐹 p𝑌𝑥0p𝑠q ` 𝑍p𝑠qq}𝐿1 d𝑠

ď }𝑥0}𝐿8 ` 𝐶

ż 𝑡

0

𝑒´𝑐p𝑡´𝑠q

min
´

p𝑡´ 𝑠q
1
2 , 1

¯ p1` }𝑌𝑥0p𝑠q}
𝑞
𝐿𝑞 ` }𝑍p𝑠q}

𝑞
𝐿𝑞 qd𝑠.

Applying Jensen’s inequality and using the moment bounds in the 𝐿𝑞 norm proved above and Assumption 2.3
yields

sup
𝑡ě0

pEr}𝑌𝑥0p𝑡q}
𝑚
𝐿8sq

1
𝑚 ď 𝐶𝑚p1` }𝑥0}

𝑞
𝐿8q,

and combining again this result with Assumption 2.3 concludes the proof. �

Remark 3.2. The proof of Proposition 3.1 is limited to the one-dimensional case, and it would be required
to modify some assumptions in order to cover higher-dimensional situations. Precisely, if the interval p0, 1q is
replaced by p0, 1q𝑑 in the setting, then (2.5) holds with the exponent ´ 1

2 replaced by ´𝑑
2 . As soon as 𝑑 ě 2, a

non-integrable singularity appears and one can not retrieve a 𝐿8 bound from a 𝐿𝑞 bound of the solution as in
the last part of the proof of Proposition 3.1.

If 𝑑 “ 2, it suffices to assume that the condition (2.13) holds for some 𝑝 “ 𝑞 ą 𝑞, in order to apply a similar
argument. If 𝑑 ě 3, it suffices to assume that the condition (2.13) holds for some sufficiently large 𝑝 “ 𝑞𝑑
depending on dimension.

The analysis is presented in the case 𝑑 “ 1 only in order to simplify the presentation.
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Proposition 3.3. Let Assumptions 2.1–2.3 be satisfied. Then for all 𝑥1
0, 𝑥

2
0 P 𝐿

𝑝, with 𝑝 P t2, 𝑞u, one has for
all 𝑡 ě 0,

›

›

›
𝑋𝑥2

0
p𝑡q ´𝑋𝑥1

0
p𝑡q

›

›

›

𝐿𝑝
ď 𝑒´𝛾𝑡

›

›𝑥2
0 ´ 𝑥

1
0

›

›

𝐿𝑝 . (3.2)

Moreover, there exists a probability distribution 𝜇‹, which satisfies
ş

}𝑥}𝑚𝐿8 d𝜇‹p𝑥q ă 8 for all 𝑚 P N, such that
for all Lipschitz continuous functions 𝜙 : 𝐿𝑝 Ñ R and all 𝑥0 P 𝐿

𝑝, with 𝑝 P t2, 𝑞u, one has for all 𝑡 ě 0
ˇ

ˇ

ˇ

ˇ

Er𝜙p𝑋𝑥0p𝑡qqs ´

ż

𝜙d𝜇‹

ˇ

ˇ

ˇ

ˇ

ď 𝐶p𝜙q𝑒´𝛾𝑡p1` }𝑥0}𝐿𝑝q. (3.3)

Finally, 𝜇‹ is the unique invariant probability distribution of (3.1).

Proof. The construction is standard, so only a sketch of proof is provided. See for instance [13] for details.
Let 𝛿𝑋p𝑡q “ 𝑋𝑥2

0
p𝑡q ´𝑋𝑥1

0
p𝑡q, then

𝛿𝑋p𝑡q

d𝑡
“ 𝐴𝛿𝑋p𝑡q ` 𝐹

´

𝑋𝑥2
0
p𝑡q

¯

´ 𝐹
´

𝑋𝑥1
0
p𝑡q

¯

,

and using an energy estimate combined with (2.13) yields

1
𝑝

›

›

›
𝑋𝑥2

0
p𝑡q ´𝑋𝑥1

0
p𝑡q

›

›

›

𝑝

𝐿𝑝

d𝑡
ď ´𝛾

›

›

›
𝑋𝑥2

0
p𝑡q ´𝑋𝑥1

0
p𝑡q

›

›

›

𝑝

𝐿𝑝
.

Using Gronwall’s lemma concludes the proof of (3.2).
Using the remote initial condition method, the contraction property (3.2) allows to construct a stationary

process p𝑋‹p𝑡qq𝑡ě0, such that the distribution of 𝑋‹p𝑡q is independent of 𝑡. Let 𝜇‹ be this probability distribution.
Using that construction, the property

ş

}𝑥}𝑚𝐿8 d𝜇‹p𝑥q ă 8 is a consequence of the uniform moment bounds given
by Proposition 3.1. Finally, the convergence to equilibrium property (3.3) is a straightforward consequence
of (3.2) combined with the moment bound property above. The fact that the invariant probability distribution
is unique is a direct consequence of (3.3). �

4. Tamed exponential Euler scheme and main results

In this work, we consider the explicit tamed exponential Euler scheme defined by

𝑋𝑛`1 “ 𝑒Δ𝑡𝐴𝑋𝑛 ` p´𝐴q
´1

`

𝐼 ´ 𝑒Δ𝑡𝐴
˘ 𝐹 p𝑋𝑛q

1`∆𝑡}𝐹 p𝑋𝑛q}𝐿2

` 𝑒Δ𝑡𝐴∆𝑊C
𝑛 , (4.1)

where as explained above ∆𝑡 P p0,∆𝑡0s is the time-step size, 𝑡𝑛 “ 𝑛∆𝑡 and ∆𝑊C
𝑛 “ 𝑊Cp𝑡𝑛`1q ´𝑊Cp𝑡𝑛q.

Recall that ℓp𝑡q is defined at the beginning of Section 2: ℓp𝑡q “ 𝑛 for all 𝑡 P r𝑡𝑛, 𝑡𝑛`1q.
Define for all 𝑡 ě 0

𝑋̃p𝑡q “ 𝑒𝑡𝐴𝑥0 `

ż 𝑡

0

𝑒p𝑡´𝑠q𝐴
𝐹
`

𝑋ℓp𝑠q

˘

1`∆𝑡𝑀ℓp𝑠q
d𝑠` 𝑍p𝑡q (4.2)

where 𝑍p𝑡q “ 𝑍Δ𝑡p𝑡q is given by (2.17), and 𝑀𝑛 “ }𝐹 p𝑋𝑛q}𝐿2 . Note that 𝑋̃p𝑡𝑛q “ 𝑋𝑛 for all 𝑛 ě 0.
The first main result of this article states moment bounds in the 𝐿8 norm for the auxiliary process

´

𝑋̃p𝑡q
¯

0ď𝑡ď𝑇
, for all 𝑇 P p0,8q, with a dependence which is at most polynomial, uniformly with respect

to the time-step size.



160 C.-E. BRÉHIER

Theorem 4.1. Let Assumptions 2.1–2.3 be satisfied. Let the process
´

𝑋̃p𝑡q
¯

𝑡ě0
be defined by (4.2).

For all 𝑚 P N, there exists a polynomial function 𝒫𝑚 : R Ñ R such that for all 𝑇 P p0,8q and all 𝑥0 P 𝐿
8,

one has
sup

Δ𝑡Pp0,Δ𝑡0s

sup
0ď𝑛Δ𝑡ď𝑇

pEr}𝑋𝑛}
𝑚
𝐿8sq

1
𝑚 ď p1` 𝑇 q𝒫𝑚p}𝑥0}𝐿8q. (4.3)

and

sup
Δ𝑡Pp0,Δ𝑡0s

sup
0ď𝑡ď𝑇

´

E
”
›

›

›
𝑋̃p𝑡q

›

›

›

𝑚

𝐿8

ı¯

1
𝑚

ď p1` 𝑇 𝑞q𝒫𝑚p}𝑥0}𝐿8q. (4.4)

The proof of Theorem 4.1 is postponed to Section 5. It would be possible to express the degree of the
polynomial function 𝒫𝑚 in terms of 𝑚 and 𝑞, but since this does not matter below this dependence is not
indicated. The polynomial function 𝒫𝑚 is independent of the time-step size ∆𝑡. Since the right-hand side
of (4.4) depends on the time 𝑇 , the moment bounds for the discrete time process qualitatively differ from the
continuous time case, where uniform in time moment bounds hold, see Proposition 3.1.

Since uniform in time moment bounds are not proven, then the discrete-time process may not admit an
invariant probability distribution. Despite the loss of uniform in time moment bounds, it is in fact possible to
approximate averages

ş

𝜙d𝜇‹ with respect to the invariant distribution 𝜇‹, as explained by the second main
result of this article.

Theorem 4.2. Let Assumptions 2.1–2.3 be satisfied.
There exists a polynomial function 𝒫 : R Ñ R, 𝑄 P N, and for every 𝛼 P p0, 𝛼q and any function 𝜙 : 𝐿2 Ñ R

of class 𝒞2 with bounded first and second order derivatives, there exists 𝐶𝛼p𝜙q P p0,8q, such that for all 𝑥0 P 𝐿
8,

all ∆𝑡 P p0,∆𝑡0s and 𝑁 P N, one has
ˇ

ˇ

ˇ

ˇ

Er𝜙p𝑋𝑁 qs ´

ż

𝜙d𝜇‹

ˇ

ˇ

ˇ

ˇ

ď 𝐶𝛼p𝜙q∆𝑡2𝛼
`

1` p𝑁∆𝑡q𝑄
˘

𝒫p}𝑥0}𝐿8q ` 𝑒
´𝑐𝑁Δ𝑡p1` }𝑥0}𝐿8q.

Recall that 𝛼 P p0, 1
2 s is given by (2.20) (under Assumption 2.5), and that 𝛼 “ 1

4 if C “ 𝐼 (𝑐𝑗 “ 1 for all 𝑗 ě 1,
space-time white noise) and 𝛼 “ 1

2 if TrpCq ă 8 (
ř

𝑗PN 𝑐𝑗 ă 8, trace-class noise). The order of convergence for
the temporal discretization error in Theorem 4.2 thus coincides with the weak order of convergence for Euler
type methods applied to the SPDE (3.1), either on finite time horizon (see [5] where C “ 𝐼 and 𝐹 is a cubic
nonlinearity) or for the approximation of the invariant distribution for globally Lipschitz nonlinearities (see [3]
where C “ 𝐼). The order of convergence 2𝛼 is optimal, it corresponds to the weak order for the discretization
of the stochastic convolution, indeed one has

sup
𝑛PN

|Er𝜙p𝑍𝑛qs ´ Er𝜙p𝑍p𝑡𝑛qqs| ď 𝐶𝛼p𝜙q∆𝑡2𝛼,

where p𝑍p𝑡qq𝑡ě0 and p𝑍𝑛q𝑛PN are defined by (2.14) and (2.16) respectively. The assumption that 𝜙 is of class 𝒞2

cannot be relaxed, see [4] (in the case C “ 𝐼 and 𝐹 “ 0).
Note that the proof gives the upper bound for 𝑄 ď 3𝑞2, however the exact value of the integer 𝑄 is not

important for the analysis of the computational cost below. In fact, the same analysis of the cost would give
the same conclusions even if 𝑄 “ 0 (i.e. if the moment bounds and error estimates would be uniform in time),
as explained below.

Contrary to existing results concerning the numerical approximation of the invariant distribution for SPDEs,
the weak error estimate from Theorem 4.2 is not uniform with respect to time, instead the dependence is at
most polynomial, with an upper bound for the degree given by 𝑄. However, this at most polynomial growth
does not lead to a reduction of the efficiency of the approach, indeed one has the following corollary.
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Corollary 4.3. Let 𝑥0 P 𝐿
8 and 𝜙 : 𝐿2 Ñ R of class 𝒞2 with bounded first and second order derivatives. For

all 𝛼 P p0, 𝛼q, there exists 𝐶𝛼p𝑥0, 𝜙q such that can choose 𝑁 and ∆𝑡 such that for all 𝜀 P p0, 1q, the error satisfies
ˇ

ˇ

ˇ

ˇ

Er𝜙p𝑋𝑁 qs ´

ż

𝜙d𝜇‹

ˇ

ˇ

ˇ

ˇ

ď 𝜀,

with a computational cost, defined as the number of time steps, satisfying

𝒞p𝜀q “ 𝑁 ď 𝐶𝛼p𝑥0, 𝜙q𝜖
´ 1

𝛼 .

In the computational cost analysis, the spatial discretization of the process and the Monte-Carlo approxi-
mation of the expectation are not taken into account. In addition, it is assumed that the cost is of size 1 at
each step. Indeed, if fully-discrete schemes using the same spatial discretization and Monte-Carlo parameters
are considered, it is sufficient to compare the temporal discretization error and the associated cost.

Proof of Corollary 4.3. Let 𝛼 P p0, 𝛼q.
The parameters 𝑁 and ∆𝑡 are chosen such that

𝑁∆𝑡 “ 𝐶| logp𝜀q|

and
p𝑁∆𝑡q𝑄∆𝑡

𝛼`𝛼
2 “ 𝐶𝜀,

where 𝐶 is a constant (depending on 𝑥0 and 𝜙).
This leads to

∆𝑡 “ 𝐶𝜀
2

𝛼`𝛼 | logp𝜀q|´
2𝑄

𝛼`𝛼 ,

and finally

𝑁 “ 𝐶| logp𝜀q|∆𝑡´1 “ 𝐶𝜀´
2

𝛼`𝛼 || logp𝜀q|1`
2𝑄

𝛼`𝛼 ď 𝐶𝜀´
1
𝛼 ,

since 𝛼 ă 𝛼 and | logp𝜀q|𝑀 “ op𝜀
1

𝑀 q when 𝜀Ñ 0, for all 𝑀 P N.
This concludes the proof of Corollary 4.3. �

Observe that Corollary 4.3 would be the same if one would have uniform in time estimates (as in the case of
Lipschitz continuous coefficients, see [3], or using an implicit scheme, see [12]) in Theorems 4.1 and 4.2 instead
of the at most polynomial dependence we prove in this article. However, the scheme studied in [3] cannot be
employed for non globally Lipschitz nonlinearities, and the scheme from [12] is implicit: the scheme studied in
this article is explicit thus is expected to be more efficient in practice. The exact rate of polynomial growth is
not important in the argument above.

In addition, observe that obtaining a polynomial dependence with respect to time in the right-hand side
of (4.4) is fundamental: had the dependence been exponential (𝑇 𝑞 replaced by expp𝑐𝑇 q in the right-hand side
of (4.4)), a reduction of the effective order of convergence appearing in the analysis of the computational cost
would have been observed, depending on the value of 𝑐.

This means that Theorem 4.1 is sufficiently good as far as one is concerned with the application to estimate
averages

ş

𝜙d𝜇‹ with respect to the invariant distribution.

Remark 4.4. In [22], the authors propose to use the so-called rejecting exploding trajectories technique to
approximate ergordic averages

ş

𝜙d𝜇‹, for SDEs with non-globally Lipschitz coefficients. This technique requires
to introduce an auxiliary truncation parameter. However, even if in practice it is effective, this technique does
not lead to a clean analysis of the cost as in Corollary 4.3.
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Remark 4.5. Theorems 4.1 and 4.2 hold if one can compute exactly in distribution 𝑍p𝑡𝑛q for all 𝑛 P N, with
simpler proofs. This would mean replacing 𝑍𝑛 defined by (2.16) and 𝑍p𝑡q defined by (2.17), by

𝑍𝑛`1 “ 𝑒Δ𝑡𝐴𝑍𝑛 `

ż 𝑡𝑛`1

𝑡𝑛

𝑒p𝑡𝑛`1´𝑠q𝐴 d𝑊Cp𝑠q

and 𝑍p𝑡q “ 𝑍p𝑡q.

5. Proof of Theorem 4.1

This section is devoted to the proof of the first main result of this article, Theorem 4.1.
The value of the time-step size ∆𝑡 P p0,∆𝑡0s is fixed, and in the upper bounds obtained below the constants

do not depend on ∆𝑡.
Recall that the process

´

𝑋̃p𝑡q
¯

𝑡ě0
is defined by (4.2), and that the auxiliary process

´

𝑍p𝑡q
¯

𝑡ě0
is defined

by (2.17). Owing to Assumption 2.4, one has moment bounds in the 𝐿8 norm for 𝑍p𝑡q, uniformly with respect
to 𝑡.

Introduce an auxiliary parameter 𝑅 “ ∆𝑡´𝜅, for a sufficiently small 𝜅.
For every 𝑛 ě 0, let Ω𝑅,𝑡𝑛 “

 

sup0ďℓď𝑛 }𝑋ℓ}𝐿8 ď 𝑅
(

, and to simplify notation let 𝜒𝑛 “ 1Ω𝑅,𝑡𝑛
denote the

indicator function of the set Ω𝑅,𝑡𝑛 . Let also 𝜒´1 “ 1.
Theorem 4.1 is then an straightforward consequence of Lemmas 5.1 and 5.2 stated below.

Lemma 5.1. For every 𝑚 P N, there exists 𝐶𝑚 P p0,8q, such that for all 𝑇 P p0,8q and 𝑥0 P 𝐿
8, one has

sup
Δ𝑡Pp0,Δ𝑡0s

sup
0ď𝑛Δ𝑡ď𝑇

Er𝜒𝑛´1}𝑋𝑛}
𝑚
𝐿8s ď 𝐶𝑚

´

1` }𝑥0}
𝑚𝑞3

𝐿8

¯

. (5.1)

Lemma 5.2. For every 𝑚 P N, there exists a polynomial function 𝒫𝑚 : R Ñ R, such that for all 𝑇 P p0,8q
and 𝑥0 P 𝐿

8, one has

sup
Δ𝑡Pp0,Δ𝑡0s

sup
0ď𝑛Δ𝑡ď𝑇

Erp1´ 𝜒𝑛q}𝑋𝑛}
𝑚
𝐿8s ď p1` 𝑇

𝑚q𝒫𝑚p}𝑥0}𝐿8q. (5.2)

Note that the moment bound (5.1) is uniform with respect to time. The polynomial dependence in the
right-hand side of (4.4) only comes from the use (5.2).

Proof of Lemma 5.1. Introduce the following auxiliary processes:

𝑍𝑥0p𝑡q “ 𝑒Δ𝑡𝐴𝑥0 ` 𝑍p𝑡q

𝑌 p𝑡q “ 𝑋̃p𝑡q ´ 𝑍𝑥0p𝑡q “

ż 𝑡

0

𝑒p𝑡´𝑠q𝐴
𝐹
`

𝑋ℓp𝑠q

˘

1`∆𝑡𝑀ℓp𝑠q
d𝑠

𝑅p𝑡q “

ż 𝑡

0

𝑒p𝑡´𝑠q𝐴𝐹
´

𝑌 p𝑠q ` 𝑍𝑥0

`

𝑡ℓp𝑠q
˘

¯

d𝑠

𝑟p𝑡q “ 𝑌 p𝑡q ´𝑅p𝑡q.

First, we claim that for all 𝑝 P r2,8q and 𝑚 P N, one has for all 0 ď 𝑡 ă 𝑡𝑛

Er𝜒𝑛´1}𝑟p𝑡q}
𝑚
𝐿𝑝s ď 𝐶p1` }𝑥0}

𝑞𝑚
𝐿8q,

Indeed, 𝑟p𝑡q “ 𝑟1p𝑡q ` 𝑟2p𝑡q where

𝑟1p𝑡q “

ż 𝑡

0

𝑒p𝑡´𝑠q𝐴
´∆𝑡𝑀ℓp𝑠q

1`∆𝑡𝑀ℓp𝑠q
𝐹
`

𝑋ℓp𝑠q

˘

d𝑠
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𝑟2p𝑡q “

ż 𝑡

0

𝑒p𝑡´𝑠q𝐴
´

𝐹
´

𝑌
`

𝑡ℓp𝑠q
˘

` 𝑍𝑥0

`

𝑡ℓp𝑠q
˘

¯

´ 𝐹
´

𝑌 p𝑠q ` 𝑍𝑥0p𝑡ℓp𝑠qq
¯¯

d𝑠.

On the one hand, using (2.6) and the polynomial growth of 𝐹 (Assumption 2.1), one has

𝜒𝑛´1}𝑟1p𝑡q}𝐿𝑝 ď

ż 𝑡

0

𝑒´𝑐p𝑡´𝑠q∆𝑡
›

›𝐹
`

𝑋ℓp𝑠q

˘
›

›

2

𝐿𝑝 d𝑠

ď 𝐶𝜒𝑛´1∆𝑡
ż 𝑡

0

𝑒´𝑐p𝑡´𝑠q
´

1`
›

›𝑋ℓp𝑠q

›

›

2𝑞

𝐿8

¯

d𝑠

ď 𝐶∆𝑡
`

1`𝑅2𝑞
˘

ď 𝐶,

using 𝑅 “ ∆𝑡´𝜅 with 𝜅 ă 2𝑞.
On the other hand, using the polynomial growth of 𝐹 (Assumption 2.1) and Hölder’s inequality, one obtains

›

›

›
𝐹
´

𝑌
`

𝑡ℓp𝑠q
˘

` 𝑍
`

𝑡ℓp𝑠q
˘

¯

´ 𝐹
´

𝑌 p𝑠q ` 𝑍p𝑡ℓp𝑠qq
¯
›

›

›

𝐿𝑝

ď 𝐶
›

›

›
𝑌
`

𝑡ℓp𝑠q
˘

´ 𝑌 p𝑠q
›

›

›

𝐿2𝑝

´

1`
›

›

›
𝑌
`

𝑡ℓp𝑠q
˘

›

›

›

𝑞

𝐿2𝑝𝑞
`

›

›

›
𝑌 p𝑠q

›

›

›

𝑞

𝐿2𝑝𝑞
`

›

›

›
𝑍𝑥0

`

𝑡ℓp𝑠q
˘

›

›

›

𝑞

𝐿8

¯

.

Then, using (2.6), one has for all 𝑡 P r0, 𝑡𝑛s

pEr𝜒𝑛´1}𝑟2p𝑡q}
𝑚
𝐿𝑝sq

1
𝑚 ď 𝐶

ż 𝑡

0

𝑒´𝑐p𝑡´𝑠q
´

E
”

𝜒𝑛´1

›

›

›
𝐹
´

𝑌
`

𝑡ℓp𝑠q
˘

` 𝑍
`

𝑡ℓp𝑠q
˘

¯

´ 𝐹
´

𝑌 p𝑠q ` 𝑍𝑥0p𝑡ℓp𝑠qq
¯
›

›

›

𝑚

𝐿𝑝

ı¯

1
𝑚

d𝑠

ď 𝐶

ż 𝑡

0

𝑒´𝑐p𝑡´𝑠qℳ1p𝑠qℳ2p𝑠qd𝑠

where

ℳ1p𝑠q “

ˆ

E
„

𝜒𝑛´1

›

›

›
𝑌
`

𝑡ℓp𝑠q
˘

´ 𝑌 p𝑠q
›

›

›

2𝑚

𝐿2𝑝

˙
1

2𝑚

ℳ2p𝑠q “ 1`
ˆ

E
„

𝜒𝑛´1

›

›

›
𝑌
`

𝑡ℓp𝑠q
˘

›

›

›

2𝑞𝑚

𝐿2𝑝𝑞

˙
1

2𝑚

`

ˆ

E
„

𝜒𝑛´1

›

›

›
𝑌 p𝑠q

›

›

›

2𝑞𝑚

𝐿2𝑝𝑞

˙
1

2𝑚

`

ˆ

E
„

›

›

›
𝑍𝑥0p𝑠q

›

›

›

2𝑞𝑚

𝐿8

˙
1

2𝑚

.

To treat the first factor, let 𝑠 P r𝑡𝑘, 𝑡𝑘`1q, with 𝑘 ď 𝑛´ 1, and let 𝜖 P p0, 1q. Using (2.3), one has

›

›

›
𝑌 p𝑠q ´ 𝑌

`

𝑡ℓp𝑠q
˘

›

›

›

𝐿2𝑝
ď

›

›

›

´

𝑒p𝑡´𝑡𝑘q𝐴 ´ 𝐼
¯

𝑌 p𝑡𝑘q
›

›

›

𝐿2𝑝
`

›

›

›

›

ż 𝑠

𝑡𝑘

𝑒p𝑠´𝑟q𝐴
𝐹 p𝑋𝑘q

1`∆𝑡𝑀𝑘
d𝑟
›

›

›

›

𝐿2𝑝

ď 𝐶𝜖∆𝑡𝛼
›

›

›
p´𝐴q𝛼𝑌 p𝑡𝑘q

›

›

›

𝐿2𝑝
` 𝐶∆𝑡}𝐹 p𝑋𝑘q}𝐿8 ,

where 𝛼 P p0, 1q.
Using (2.2), one obtains

𝜒𝑛´1

›

›

›
p´𝐴q𝛼𝑌 p𝑡𝑘q

›

›

›

𝐿2𝑝
ď 𝐶𝛼𝜒𝑛´1

ż 𝑡

0

𝑒´𝑐p𝑡´𝑠qp𝑡´ 𝑠q´𝛼
›

›𝐹
`

𝑋ℓp𝑠q

˘
›

›

𝐿2𝑝 d𝑠 ď 𝐶p1`𝑅𝑞q,

which gives
ℳ1p𝑠q ď 𝐶∆𝑡𝛼p1`𝑅𝑞q.
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To treat the second factor, note that
ˆ

E
„

›

›

›
𝑍𝑥0p𝑠q

›

›

›

2𝑞𝑚

𝐿8

˙
1

2𝑚

ď 𝐶`}𝑥0}
𝑞
𝐿8 , using the moment bound assump-

tion for 𝑍 (Assumption 2.4). In addition, using (2.6), one has for 𝑠 ă 𝑡𝑛

𝜒𝑛´1

›

›

›
𝑌 p𝑠q

›

›

›

𝐿𝑝
ď 𝜒𝑛´1

ż 𝑠

0

𝑒´𝑐p𝑠´𝑟q
›

›𝐹
`

𝑋ℓp𝑟q

˘
›

›

𝐿8
d𝑠

ď 𝐶p1`𝑅𝑞q,

thus, one has for all 0 ď 𝑠 ă 𝑡𝑛

ℳ2p𝑠q ď 𝐶
´

1`𝑅𝑞
2
¯

` 𝐶}𝑥0}
𝑞
𝐿8 .

Choosing 𝑅 “ ∆𝑡´𝜅 with sufficiently small 𝜅 then gives the upper bound ℳ1p𝑠qℳ2p𝑠q ď 𝐶, for all 𝑠 P r0, 𝑡𝑛q,
for some 𝐶 P p0,8q, and

pEr𝜒𝑛´1}𝑟1p𝑡q}
𝑚
𝐿𝑝sq

1
𝑚 ` pEr𝜒𝑛´1}𝑟2p𝑡q}

𝑚
𝐿𝑝sr𝜒𝑛´1}𝑟2p𝑡q}

𝑚
𝐿𝑝sq

1
𝑚 ď 𝐶p1` }𝑥0}

𝑞
𝐿8q,

for all 𝑡 P r0, 𝑡𝑛q. As a consequence, this concludes the proof of the claim.
Second, observe that

d𝑅p𝑡q
d𝑡

“ 𝐴𝑅p𝑡q ` 𝐹
´

𝑅p𝑡q ` 𝑟p𝑡q ` 𝑍𝑥0

`

𝑡ℓp𝑡q
˘

¯

.

Using condition (2.13) (Assumption 2.2) and Young’s inequality, one obtains

1
𝑞

d}𝑅p𝑡q}𝑞𝐿𝑞

d𝑡
ď ´

𝛾

2
}𝑅p𝑡q}𝑞𝐿𝑞 ` 𝐶

›

›

›
𝐹
´

𝑟p𝑡q ` 𝑍𝑥0

`

𝑡ℓp𝑡q
˘

¯
›

›

›

𝑞2

𝐿𝑞
,

and as a consequence one has for all 𝑡 P r0, 𝑡𝑛s,

𝜒𝑛´1}𝑅p𝑡q}
𝑞
𝐿𝑞 ď 𝐶

ż 𝑡

0

𝑒´𝑞
𝛾
2 p𝑡´𝑠q

ˆ

1` 𝜒𝑛´1}𝑟p𝑠q}
𝑞2

𝐿𝑞2 `

›

›

›
𝑍𝑥0

`

𝑡ℓp𝑠q
˘

›

›

›

𝑞2

𝐿8

˙

d𝑠.

Using the moment bound proved above for 𝑟p𝑠q and Assumption 2.4, one obtains for all 𝑡 P r0, 𝑡𝑛s

pEr𝜒𝑛´1}𝑅p𝑡q}
𝑚
𝐿𝑞 sq

1
𝑚 ď 𝐶p1` }𝑥0}

𝑞
𝐿8q.

Finally, since 𝑋̃p𝑡q “ 𝑌 p𝑡q ` 𝑍𝑥0p𝑡q “ 𝑟p𝑡q `𝑅p𝑡q ` 𝑍𝑥0p𝑡q, one obtains for all 0 ď 𝑡 ď 𝑡𝑛

´

E
”

𝜒𝑛´1

›

›

›
𝑋̃p𝑡q

›

›

›

𝑚

𝐿𝑞

ı¯

1
𝑚

ď 𝐶
´

1` }𝑥0}
𝑞2

𝐿8

¯

.

It remains to prove the moment bound for the 𝐿8 norm instead of the 𝐿𝑞 norm. This is obtained as follows:
using (2.5), for all 𝑡 P r0, 𝑡𝑛s, one has

´

E
”

𝜒𝑛´1

›

›

›
𝑋̃p𝑡q

›

›

›

𝑚

𝐿8

ı¯

1
𝑚

ď
›

›𝑒𝑡𝐴𝑥0

›

›

𝐿8
` 𝐶

ż 𝑡

0

𝑒´𝑐p𝑡´𝑠qp𝑡´ 𝑠q´
1
2
`

E
“

𝜒𝑛´1

›

›𝐹
`

𝑋ℓp𝑠q

˘
›

›

𝑚

𝐿1

‰˘

1
𝑚 d𝑠`

´

E
”
›

›

›
𝑍p𝑡q

›

›

›

𝑚

𝐿8

ı¯

1
𝑚

ď 𝐶 ` }𝑥0}𝐿8 ` 𝐶

ż 𝑡

0

𝑒´𝑐p𝑡´𝑠qp𝑡´ 𝑠q´
1
2
`

E
“

𝜒𝑛´1

›

›𝑋ℓp𝑠q

›

›

𝑞𝑚

𝐿𝑞

‰˘

1
𝑚 d𝑠

ď 𝐶
´

1` }𝑥0}
𝑞3

𝐿8

¯

.

This concludes the proof of Lemma 5.1. �
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Proof of Lemma 5.2. Recall that 𝜒𝑛 “ 1Ω𝑅,𝑡𝑛
, with Ω𝑅,𝑡𝑛 “

 

sup0ďℓď𝑛 }𝑋ℓ}𝐿8 ď 𝑅
(

and 𝜒´1 “ 1. As a
consequence, one has

1´ 𝜒𝑛 “ 1Ω𝑐
𝑅,𝑡𝑛

“ 1Ω𝑐
𝑅,𝑡𝑛´1

` 1Ω𝑅,𝑡𝑛´1
1}𝑋𝑛}𝐿8ą𝑅

“ 1´ 𝜒𝑛´1 ` 𝜒𝑛´11}𝑋𝑛}𝐿8ą𝑅
.

One thus obtains the equality

1´ 𝜒𝑛 “
𝑛
ÿ

ℓ“0

𝜒ℓ´11}𝑋ℓ}𝐿8ą𝑅
.

Let 𝑝 P N. Using Minkowksi, Cauchy–Schwarz and Markov inequalities, one obtains

pErp1´ 𝜒𝑛q}𝑋𝑛}
𝑚
𝐿8sq

1
𝑚 ď

𝑛
ÿ

ℓ“0

`

E
“

𝜒ℓ´11}𝑋ℓ}𝐿8ą𝑅
}𝑋𝑛}

𝑚
𝐿8

‰˘
1
𝑚

ď

𝑛
ÿ

ℓ“0

´

E
”

}𝑋𝑛}
2𝑚
𝐿8

ı¯
1

2𝑚

˜

E

«

𝜒ℓ´1
}𝑋ℓ}

𝜃
𝐿8

𝑅𝜃

ff¸
1

2𝑚

,

where 𝜃 P N is chosen below.
On the one hand, by construction of the tamed Euler scheme and using (2.4) and Assumption 2.3, one has

›

›

›
𝑋̃p𝑡q

›

›

›

𝐿8
ď }𝑥0}𝐿8 ` 𝐶

ż 𝑡

0

𝑒´𝑐p𝑡´𝑠qp𝑡´ 𝑠q´
1
4

›

›𝑓
`

𝑋ℓp𝑠q

˘
›

›

𝐿2

1`∆𝑡
›

›𝑓
`

𝑋ℓp𝑠q

˘
›

›

𝐿2

d𝑠` }𝑍p𝑡q}𝐿8

ď }𝑥0}𝐿8 `
𝐶

∆𝑡
` }𝑍p𝑡q}𝐿8

thus
´

E
”

}𝑋𝑛}
2𝑚

ı¯
1

2𝑚

ď 𝐶

ˆ

1` }𝑥0}𝐿8 `
1

∆𝑡

˙

¨

On the other hand, applying Lemma 5.1 yields for all ℓ ě 0

E
”

𝜒ℓ´1}𝑋ℓ}
𝜃
𝐿8

ı

ď 𝐶
´

1` }𝑥0}
𝜃𝑞3

𝐿8

¯

.

Gathering the estimates yields

pErp1´ 𝜒𝑛q}𝑋𝑛}
𝑚
sq

1
𝑚 ď 𝐶

𝑇

∆𝑡

ˆ

1` }𝑥0}𝐿8 `
1

∆𝑡

˙

´

1` }𝑥0}
𝜃𝑞3

𝐿8

¯

𝑅´
𝜃

2𝑚 .

Since 𝑅 “ ∆𝑡´𝜅, it suffices to choose 𝜃𝜅
2𝑚 ą 2 in order to obtain (5.2).

This concludes the proof of Lemma 5.2. �

We are now in position to provide the proof of Theorem 4.1.

Proof of Theorem 4.1. Since 𝑋𝑛 “ 𝜒𝑛𝑋𝑛`p1´ 𝜒𝑛q𝑋𝑛, combining Minkowskii’s inequality with (5.1) and (5.2)
gives

sup sup
0ď𝑛ď𝑁

pEr}𝑋𝑛}
𝑚
𝐿8sq

1
𝑚 ď 𝐶𝑚p1`𝑁∆𝑡q𝒫𝑚p}𝑥0}𝐿8q.

This concludes the proof of (4.3). It remains to prove (4.4).
Using the notation from the proof of Lemma 5.1, one has 𝑋̃p𝑡q “ 𝑌 p𝑡q ` 𝑍𝑥0p𝑡q, with

𝑌 p𝑡q “

ż 𝑡

0

𝑒p𝑡´𝑠q𝐴
𝐹
`

𝑋ℓp𝑠q

˘

1`∆𝑡𝑀ℓp𝑠q
d𝑠.
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Using (2.4), one has, for all 𝑡 P r0, 𝑇 s

›

›

›
𝑌 p𝑡q

›

›

›

𝐿8
ď 𝐶

ż 𝑡

0

𝑒´𝑐p𝑡´𝑠qp𝑡´ 𝑠q´
1
2
›

›𝐹
`

𝑋ℓp𝑠q

˘
›

›

𝐿2 d𝑠

ď 𝐶

ż 𝑡

0

𝑒´𝑐p𝑡´𝑠qp𝑡´ 𝑠q´
1
2
`

1`
›

›𝑋ℓp𝑠q

›

›

𝑞

𝐿8

˘

d𝑠.

Using the moment bound for 𝑋𝑛 above, with 𝑛∆𝑡 ď 𝑁∆𝑡 ď 𝑇 , one obtains

sup
0ď𝑡ď𝑇

´

E
”
›

›

›
𝑌 p𝑡q

›

›

›

𝑚

𝐿8

ı¯

1
𝑚

ď p1` 𝑇 𝑞q𝒫𝑚p}𝑥0}𝐿8q,

and combining this with (2.7) with Assumption 2.4 concludes the proof of (4.4) and of Theorem 4.1. �

6. Proof of Theorem 4.2

This section is devoted to the proof of the second main result of this article. The approach is based on
the analysis of the weak error of the numerical scheme, where the dependence with respect to the final time
𝑇 “ 𝑁∆𝑡 is carefully mentioned.

The weak error analysis uses the Kolmogorov equation approach, like for instance in [3]. Some important
regularity properties are given in Section 6.1 below. A few auxiliary results concerning spatial and temporal
regularity of 𝑍p𝑡q and 𝑌 p𝑡q are stated and proved in Section 6.2. Finally, weak error estimates are proved in
Section 6.3.

All the computations and statements hold rigorously using suitable approximations: the nonlinearity may
be replaced by a globally Lipschitz continuous approximation and the noise may be truncated. The objective
is to prove that bounds hold independently of the approximation parameters. This is a standard approach in
the analysis of Kolmogorov equations and weak error in infinite dimension: for instance, like in [5], one may
consider an approximate stochastic evolution equation of the type

d𝑋𝛿,𝜏,𝐽p𝑡q “ 𝐴𝑋𝛿,𝜏,𝐽 d𝑡` 𝑒𝛿𝐴𝐹𝜏
`

𝑋𝛿,𝜏,𝐽p𝑡q
˘

d𝑡` 𝑒𝛿𝐴𝑃𝐽 d𝑊Cp𝑡q,

where 𝛿 ą 0, 𝐹𝜏 p𝑥q “ 1
𝜏 pΦ𝜏 p𝑥q ´ 𝑥q where 𝜏 ą 0 and pΦ𝑡q𝑡ě0 the flow associated with the ordinary differential

equation 9𝑧 “ 𝐹 p𝑧q, and 𝑃𝐽 “
ř𝐽
𝑗“1x¨, 𝑒𝑗y𝑒𝑗 , 𝐽 P N, is an orthogonal projection with finite rank. The noise is then

finite dimensional, 𝐹𝜏 is Lipschitz continuous, and 𝑒𝛿𝐴 is regularizing, so that all the computations make sense.
In the estimates, the parameters 𝛿, 𝜏, 𝐽 do not appear and it suffices to pass to the limit 𝛿 Ñ 0, 𝜏 Ñ 0, 𝐽 Ñ 8

to get results for the model of interest and its numerical approximation. In order to simplify the notation, the
approximation parameters are omitted in the sequel. In [3], a spectral Galerkin approximation is used but this
is not convenient here since we deal with 𝐿𝑝 norms, with 𝑝 ą 2.

6.1. Regularity results for the Kolmogorov equation

Let 𝜙 : 𝐿2 Ñ R be a function of class 𝒞2. Define

𝑢p𝑡, 𝑥q “ Er𝜙p𝑋𝑥p𝑡qqs,

for all 𝑡 ě 0 and 𝑥 P 𝐿𝑞, where p𝑋𝑥p𝑡qq𝑡ě0 is the solution with initial condition 𝑋𝑥p0q “ 𝑥.
Several properties of 𝑢 are employed in the weak error analysis. First, 𝑢 is solution of the Kolmogorov equation

B𝑡𝑢p𝑡, 𝑥q “ ℒ𝑢p𝑡, 𝑥q “ 𝐷𝑢p𝑡, 𝑥q ¨ p𝐴𝑥` 𝐹 p𝑥qq `
1
2

ÿ

𝑗PN
𝑐𝑗𝐷

2𝑢p𝑡, 𝑥q ¨ p𝑒𝑗 , 𝑒𝑗q, (6.1)

with initial condition 𝑢p0, ¨q “ 𝜙, where 𝐷𝑢p𝑡, 𝑥q and 𝐷2𝑢p𝑡, 𝑥q are the first and second order derivatives of
𝑢p𝑡, 𝑥q with respect to the variable 𝑥.
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Second, one has for all 𝑇 ě 0 and all 𝑥 P 𝐿𝑞,
ˇ

ˇ

ˇ

ˇ

𝑢p𝑇, 𝑥q ´

ż

𝜙d𝜇‹

ˇ

ˇ

ˇ

ˇ

ď 𝐶p𝜙q𝑒´𝛾𝑇 p1` }𝑥}𝐿𝑞 q. (6.2)

Finally, some regularity properties for the spatial derivatives are instrumental in the weak error analysis
below. Proposition 6.1 is a variant of existing results: see [3, 6] for the Lipschitz case. See also [5, 11] for the
treatment of polynomial nonlinearities, for estimates with 𝑡 ď 𝑇 .

Proposition 6.1. There exists 𝑐 P p0,8q, such that the following holds. First, for all 𝛼 P r0, 1q, there exists
𝐶𝛼 P p0,8q such that for all 𝑡 ą 0, 𝑥 P 𝐿8 and ℎ P 𝐿2, one has

|𝐷𝑢p𝑡, 𝑥q ¨ ℎ| ď 𝐶𝛼

´

1` }𝑥}𝑞1𝛼ą0
𝐿8

¯

𝑒´𝑐𝑡 minp𝑡, 1q´𝛼
›

›p´𝐴q´𝛼ℎ
›

›

𝐿2 .

Moreover, for all 𝛽1, 𝛽2 P r0, 1q, such that 𝛽1 ` 𝛽2 ă 1, there exists 𝐶𝛽1,𝛽2 P p0,8q such that for all 𝑡 ą 0,
𝑥 P 𝐿8 and ℎ1, ℎ2 P 𝐿

2, one has
ˇ

ˇ𝐷2𝑢p𝑡, 𝑥q ¨ pℎ1, ℎ2q
ˇ

ˇ ď 𝐶𝛽1,𝛽2

´

1` }𝑥}𝑄p𝛼1,𝛼2q

𝐿8

¯

𝑒´𝑐𝑡 minp𝑡, 1q´𝛽1´𝛽2
›

›p´𝐴q´𝛽1ℎ1

›

›

𝐿2

›

›p´𝐴q´𝛼2ℎ2

›

›

𝐿2 .

with 𝑄p𝛼1, 𝛼2q “ 𝑞 ` 𝑞1𝛼1ą0 ` 1𝛼2ą0.

Proof of Proposition 6.1. The first and second order derivatives of 𝑢p𝑡, ¨q are expressed as

𝐷𝑢p𝑡, 𝑥q ¨ ℎ “ E
“

𝐷𝜙p𝑋𝑥p𝑡qq ¨ 𝜂ℎp𝑡q
‰

𝐷2𝑢p𝑡, 𝑥q ¨ pℎ1, ℎ2q “ E
“

𝐷𝜙p𝑋𝑥p𝑡qq ¨ 𝜁ℎ1,ℎ2p𝑡q
‰

` E
“

𝐷2𝜙p𝑋𝑥p𝑡qq ¨
`

𝜂ℎ1p𝑡q, 𝜂ℎ2p𝑡q
˘‰

,

where the processes
`

𝜂ℎp𝑡q
˘

𝑡ě0
and

`

𝜁ℎ1,ℎ2p𝑡q
˘

𝑡ě0
are solutions of

d
d𝑡
𝜂ℎp𝑡q “

`

𝐴` 𝐹 1p𝑋𝑥p𝑡qq
˘

𝜂ℎp𝑡q

d
d𝑡
𝜁ℎ1,ℎ2p𝑡q “

`

𝐴` 𝐹 1p𝑋𝑥p𝑡qq
˘

𝜁ℎ1,ℎ2p𝑡q ` 𝐹 2p𝑋𝑥p𝑡qq𝜂ℎ1p𝑡q𝜂ℎ2p𝑡q,

with initial conditions 𝜂ℎp0q “ ℎ and 𝜁ℎ1,ℎ2p0q “ 0.
In the computations below, the values of 𝐶 and 𝑐 may change from line to line.
Introduce the family of operators pΘp𝑡, 𝑠qq𝑡ě𝑠ě0, such that for all ℎ P 𝐿2

d
d𝑡

Θp𝑡, 𝑠qℎ “
`

𝐴` 𝐹 1p𝑋𝑥p𝑡qq
˘

Θp𝑡, 𝑠qℎ, 𝑡 ě 𝑠, Θp𝑠, 𝑠qℎ “ ℎ.

Using the condition (2.13), one has

1
2

d}Θp𝑡, 𝑠qℎ}2𝐿2

d𝑡
ď ´𝛾}Θp𝑡, 𝑠q}2𝐿2 ,

thus }Θp𝑡, 𝑠qℎ}𝐿2 ď 𝑒´𝛾p𝑡´𝑠q}ℎ}𝐿2 for all 𝑡 ě 𝑠 ě 0. This yields the result for 𝛼 “ 0.
To treat the case 𝛼 ą 0, introduce the auxiliary operators Θ̃p𝑡, 𝑠q “ Θp𝑡, 𝑠q ´ 𝑒p𝑡´𝑠q𝐴 for all 𝑡 ě 𝑠 (see [5]).

Then one has
d
d𝑡

Θ̃p𝑡, 𝑠qℎ “
`

𝐴` 𝐹 1p𝑋𝑥p𝑡qq
˘

Θ̃p𝑡, 𝑠qℎ` 𝐹 1p𝑋𝑥p𝑡q𝑒p𝑡´𝑠q𝐴ℎ,

with Θ̃p𝑠, 𝑠qℎ “ 0. Applying a Duhamel type formula yields

Θ̃p𝑡, 𝑠qℎ “
ż 𝑡

𝑠

Θp𝑡, 𝑟q
´

𝐹 1p𝑋𝑥p𝑟qq𝑒p𝑟´𝑠q𝐴ℎ
¯

d𝑟.
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Using the result when 𝛼 “ 0, the polynomial growth of 𝐹 1 (Assumption 2.1) and the inequality (2.2), one
obtains

›

›

›
Θ̃p𝑡, 𝑠qℎ

›

›

›

𝐿2
ď

ż 𝑡

𝑠

𝑒´𝛾p𝑡´𝑟q
›

›𝐹 1p𝑋𝑥p𝑟qq
›

›

𝐿8

›

›

›
𝑒p𝑟´𝑠q𝐴ℎ

›

›

›

𝐿2
d𝑟

ď 𝐶

ż 𝑡

𝑠

𝑒´𝛾p𝑡´𝑟qp1` }𝑋𝑥p𝑟q}
𝑞
𝐿8q𝑒

´𝑐p𝑟´𝑠q𝐴p𝑟 ´ 𝑠q´𝛼 d𝑟
›

›p´𝐴q´𝛼ℎ
›

›

𝐿2 ,

where 𝑐 P p0, 𝛾q ą 0. Using moment estimates (see Prop. 3.1) and Jensen’s inequality, one obtains

´

E
”

Θ̃p𝑡, 𝑠qℎ}𝑚𝐿2

ı¯
1
𝑚

ď 𝐶𝑒´𝑐
1
p𝑡´𝑠qp1` }𝑥0}

𝑞
𝐿8q

›

›p´𝐴q´𝛼ℎ
›

›

𝐿2 .

Since Θp𝑡, 𝑠q “ Θ̃p𝑡, 𝑠q ` 𝑒p𝑡´𝑠q𝐴, one finally obtains

pErΘp𝑡, 𝑠qℎ}𝑚𝐿2sq
1
𝑚 ď 𝐶𝑒´𝑐p𝑡´𝑠qminp𝑡´ 𝑠, 1q´𝛼p1` }𝑥0}

𝑞
𝐿8q

›

›p´𝐴q´𝛼ℎ
›

›

𝐿2 .

Since 𝜂ℎp𝑡q “ Θp𝑡, 0qℎ, this gives the result when 𝛼 P p0, 1q for the first-order derivative.
It remains to deal with the second-order derivative. On the one hand, since 𝜙 is of class 𝒞2 with bounded

second-order derivative, applying Cauchy–Schwarz inequality and the result above yields

ˇ

ˇE
“

𝐷2𝜙p𝑋𝑥p𝑡qq ¨
`

𝜂ℎ1p𝑡q
˘

, 𝜂ℎ2p𝑡q
‰
ˇ

ˇ ď 𝐶
´

E
”

›

›𝜂ℎ1p𝑡q
›

›

2

𝐿2

ı¯
1
2 `E

“

𝜂ℎ2p𝑡q}2𝐿2

‰˘

1
2

ď 𝐶
´

E
”

}Θp𝑡, 0qℎ1}
2
𝐿2

ı¯
1
2 `E

“

Θp𝑡, 0qℎ2}
2
𝐿2

‰˘
1
2

ď 𝐶𝑒´2𝑐𝑡𝑡´𝛼1´𝛼2

´

1` }𝑥0}
𝑞1𝛼1ą0`1𝛼2ą0

𝐿8

¯

›

›p´𝐴q´𝛼1ℎ1

›

›

𝐿2

›

›p´𝐴q´𝛼2ℎ2

›

›

𝐿2 .

On the other hand, a Duhamel type formula yields the equality

𝜁ℎ1,ℎ2p𝑡q “

ż 𝑡

0

Θp𝑡, 𝑠q
`

𝐹 2p𝑋𝑥p𝑠qq𝜂ℎ1p𝑡q𝜂ℎ2p𝑡q
˘

d𝑠.

Let 𝜅 P
`

1
4 , 1

˘

, such that inequality (2.8) holds. By a duality argument, one has }p´𝐴q´𝜅 ¨ }𝐿2 ď 𝐶𝜅} ¨ }𝐿1 . Using
the result above with a conditional expectation argument yields

E
›

›𝜁ℎ1,ℎ2p𝑡q
›

›

𝐿2 ď 𝐶

ż 𝑡

0

𝑒´𝑐p𝑡´𝑠q

minp𝑡´ 𝑠, 1q𝜅
p1` }𝑥0}

𝑞
𝐿8q

´

E
”

›

›p´𝐴q´𝜅
`

𝐹 2p𝑋𝑥p𝑠qq𝜂ℎ1p𝑡q𝜂ℎ2p𝑡q
˘
›

›

2

𝐿2

ı

d𝑠

ď 𝐶

ż 𝑡

0

𝑒´𝑐p𝑡´𝑠q

minp𝑡´ 𝑠, 1q𝜅
p1` }𝑥0}

𝑞
𝐿8q

`

E}𝜂ℎ1p𝑡q}2𝐿2

‰

E
”

›

›𝜂ℎ2p𝑡q
›

›

2

𝐿2

ı

˙

1
2

d𝑠

ď 𝐶
´

1` }𝑥0}
𝑄p𝛼1,𝛼2q

𝐿𝑞

¯

ż 𝑡

0

𝑒´𝑐p𝑡´𝑠q

minp𝑡´ 𝑠, 1q𝜅
𝑒´2𝑐𝑠

minp𝑠, 1q𝛼1`𝛼2
d𝑠
›

›p´𝐴q´𝛼1ℎ1

›

›

𝐿2

›

›p´𝐴q´𝛼2ℎ2

›

›

𝐿2

ď 𝐶
´

1` }𝑥0}
𝑄p𝛼1,𝛼2q

𝐿𝑞

¯

𝑒´𝑐𝑡
›

›p´𝐴q´𝛼1ℎ1

›

›

𝐿2

›

›p´𝐴q´𝛼2ℎ2

›

›

𝐿2 ,

using the condition 𝛼1 ` 𝛼2 to ensure integrability, where 𝑄p𝛼1, 𝛼2q “ 𝑞 ` 𝑞1𝛼1ą0 ` 1𝛼2ą0.
This gives

ˇ

ˇE
“

𝐷2𝜙p𝑋𝑥p𝑡qq ¨ 𝜁ℎ1,ℎ2p𝑡q
‰
ˇ

ˇ ď 𝐶
´

1` }𝑥0}
3𝑞
𝐿𝑞

¯

𝑒´𝑐𝑡
›

›p´𝐴q´𝛼1ℎ1

›

›

𝐿2

›

›p´𝐴q´𝛼2ℎ2

›

›

𝐿2 .

Gathering the estimates then concludes the proof of Proposition 6.1. �
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6.2. Some useful regularity results

In this section, the objective is to state and prove some useful spatial and temporal regularity properties for
𝑍p𝑡q defined by (2.17), and for 𝑌 p𝑡q given by

𝑌 p𝑡q “

ż 𝑡

0

𝑒p𝑡´𝑠q𝐴
𝐹
`

𝑋ℓp𝑠q

˘

1`∆𝑡
›

›𝐹
`

𝑋ℓp𝑠q

˘
›

›

𝐿2

d𝑠,

which is such that 𝑋̃p𝑡q “ 𝑒𝑡𝐴𝑥0 ` 𝑌 p𝑡q ` 𝑍p𝑡q.
In the sequel, let Assumption 2.5 be satisfied, and let the parameter 𝛼 be defined by (2.20).

Lemma 6.2. For every 𝛼 P r0, 𝛼q and 𝑚 P N, there exists 𝐶𝛼,𝑚 P p0,8q such that

sup
𝑛ě0

Er}p´𝐴q𝛼𝑍𝑛}𝑚𝐿2s ď 𝐶𝛼,𝑚

and for all 𝑛 ě 0 and 𝑡 P r𝑡𝑛, 𝑡𝑛`1s

´

E
”
›

›

›
𝑍p𝑡q ´ 𝑍𝑛

›

›

›

𝑚

𝐿2

ı¯

1
𝑚

ď 𝐶𝛼,𝑚∆𝑡𝛼.

Proof. It suffices to consider the case 𝑚 “ 2 since 𝑍p𝑡q is a Gaussian random variable with values in 𝐿2 for all
𝑡 ě 0.

First, using Itô’s isometry formula and the inequalities (2.1) and (2.2), one has

E
”

}p´𝐴q𝛼𝑍𝑛}
2
𝐿2

ı

“ E

»

–

›

›

›

›

›

𝑛´1
ÿ

ℓ“0

p´𝐴q𝛼𝑒p𝑡𝑛´𝑡ℓq𝐴∆𝑊C
ℓ

›

›

›

›

›

2

𝐿2

fi

fl

“ ∆𝑡
𝑛´1
ÿ

ℓ“0

ÿ

𝑗PN
𝑐𝑗

›

›

›
p´𝐴q𝛼𝑒p𝑡𝑛´𝑡ℓq𝐴𝑒𝑗

›

›

›

2

𝐿2

ď 𝐶𝜖∆𝑡
𝑛´1
ÿ

ℓ“0

𝑒´𝑐p𝑡𝑛´𝑡ℓq

p𝑡𝑛 ´ 𝑡ℓq
1´𝜖

›

›

›
p´𝐴q𝛼`

𝜖
2´

1
2 𝑒𝑗

›

›

›

2

𝐿2

ď 𝐶𝛼,𝜖 ă 8,

if 𝜖 P
`

0, 𝛼´𝛼2

˘

.
Second, using Itô’s isometry formula and the inequalities (2.3) and (2.2), one has for 𝑡 P r𝑡𝑛, 𝑡𝑛`1s,

E
„

›

›

›
𝑍p𝑡q ´ 𝑍𝑛

›

›

›

2

𝐿2



“ E
„

›

›

›

´

𝑒p𝑡´𝑡𝑛q𝐴 ´ 𝐼
¯

𝑍𝑛

›

›

›

2

𝐿2



` E
„

›

›

›
𝑒p𝑡´𝑡𝑛q𝐴

`

𝑊Cp𝑡q ´𝑊Cp𝑡𝑛q
˘

›

›

›

2

𝐿2



ď ∆𝑡2𝛼E
”

}p´𝐴q𝛼𝑍𝑛}
2
𝐿2

ı

`
ÿ

𝑗PN
𝑐𝑗p𝑡´ 𝑡𝑛q

›

›

›
𝑒p𝑡´𝑡𝑛q𝐴𝑒𝑗

›

›

›

2

𝐿2

ď 𝐶𝛼∆𝑡2𝛼 ` p𝑡´ 𝑡𝑛q
2𝛼

ÿ

𝑗PN
𝑐𝑗

›

›

›
p𝑡´ 𝑡𝑛q

1
2´𝛼p´𝐴q

1
2´𝛼𝑒p𝑡´𝑡𝑛q𝐴p´𝐴q𝛼´

1
2 𝑒𝑗

›

›

›

2

𝐿2

ď 𝐶𝛼∆𝑡2𝛼.

This concludes the proof of Lemma 6.2. �

Lemma 6.3. For every 𝜖 P r0, 1q and 𝑚 P N, there exists 𝐶𝜖,𝑚 P p0,8q and a polynomial function 𝒫𝑚 : R Ñ R
such that

sup
0ď𝑛Δ𝑡ď𝑁Δ𝑡

´

E
”
›

›

›
p´𝐴q1´𝜖𝑌 p𝑡𝑛q

›

›

›

𝑚

𝐿2

ı¯

1
𝑚

ď 𝐶𝛼,𝑚p1` p𝑁∆𝑡q𝑞q𝒫𝑚p}𝑥0}𝐿8q
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and for all 𝑛 ě 0 and 𝑡 P r𝑡𝑛, 𝑡𝑛`1s, with 𝑛 ď 𝑁 , one has

´

E
”
›

›

›
𝑌 p𝑡q ´ 𝑌 p𝑡𝑛q

›

›

›

𝑚

𝐿2

ı¯

1
𝑚

ď 𝐶𝜖,𝑚∆𝑡1´𝜖p1` p𝑁∆𝑡q𝑞q𝒫𝑚p}𝑥0}𝐿8q.

Proof. First, using (2.2) and (4.3) for all 0 ď 𝑡 ď 𝑇 , one has

´

E
›

›

›
p´𝐴q1´𝜖𝑌 p𝑡q

›

›

›

𝑚

𝐿2

¯

1
𝑚

ď 𝐶

ż 𝑡

0

𝑒´𝑐p𝑡´𝑠q

p𝑡´ 𝑠q1´𝜖
`

E
“
›

›𝐹
`

𝑋ℓp𝑠q

˘
›

›

𝑚

𝐿2

‰˘

1
𝑚 d𝑠

ď 𝐶

ż 8

0

𝑒´𝑐𝑠

𝑠1´𝜖
d𝑠p1` 𝑇 𝑞q𝒫𝑚p}𝑥0}𝐿8q.

Second, for 0 ď 𝑡𝑛 ď 𝑡 ď 𝑡𝑁 , one has

´

E
”
›

›

›
𝑌 p𝑡q ´ 𝑌 p𝑡𝑛q

›

›

›

𝑚

𝐿2

ı¯

1
𝑚

ď

´

E
”
›

›

›

´

𝑒p𝑡´𝑡𝑛q𝐴 ´ 𝐼
¯

𝑌 p𝑡𝑛q
›

›

›

𝑚

𝐿2

ı¯

1
𝑚

`

ˆ

E
„

}

ż 𝑡

𝑡𝑛

𝑒p𝑡´𝑠q𝐴
𝐹 p𝑋𝑛q

1`∆𝑡}𝐹 p𝑋𝑛q}𝐿2

d𝑠}𝑚𝐿2

˙

1
𝑚

d𝑠

ď 𝐶∆𝑡1´𝜖
´

E
”
›

›

›
p´𝐴q1´𝜖𝑌 p𝑡𝑛q

›

›

›

𝑚

𝐿2

ı¯

1
𝑚

`∆𝑡pEr}𝐹 p𝑋𝑛q}
𝑚
𝐿8sq

1
𝑚

ď 𝐶∆𝑡1´𝜖p1` 𝑇 𝑞q𝒫𝑚p}𝑥0}𝐿8q.

This concludes the proof of Lemma 6.3. �

6.3. Weak error analysis

We are now in position to study the weak error and prove Theorem 4.2. The weak error is written as follows:

Er𝜙p𝑋𝑁 qs ´ Er𝜙p𝑋p𝑡𝑁 qqs “ Er𝑢p0, 𝑋𝑁 qs ´ Er𝑢p𝑡𝑁 , 𝑋0qs

“

𝑁´1
ÿ

𝑛“0

pEr𝑢p𝑡𝑁 ´ 𝑡𝑛`1, 𝑋𝑛`1qs ´ Er𝑢p𝑡𝑁 ´ 𝑡𝑛, 𝑋𝑛qsq

“

𝑁´1
ÿ

𝑛“0

´

E
”

𝑢
´

𝑡𝑁 ´ 𝑡𝑛`1, 𝑋̃p𝑡𝑛`1q

¯ı

´ E
”

𝑢
´

𝑡𝑁 ´ 𝑡𝑛, 𝑋̃p𝑡𝑛q
¯ı¯

“

𝑁´1
ÿ

𝑛“0

ż 𝑡𝑛`1

𝑡𝑛

E
”

p´B𝑡 ` ℒ𝑛q𝑢
´

𝑡𝑁 ´ 𝑡, 𝑋̃p𝑡q
¯ı

d𝑡,

using Itô’s formula, where for all 𝑛 P N the auxiliary operator ℒ𝑛 is defined by

ℒ𝑛𝜑 “ 𝐷𝜑p𝑥q ¨

ˆ

𝐴𝑥`
𝐹 p𝑋𝑛q

1`∆𝑡}𝐹 p𝑋𝑛q}𝐿2

˙

`
1
2

ÿ

𝑗PN
𝑐𝑗𝐷

2𝜑p𝑥q ¨
`

𝑒Δ𝑡𝐴𝑒𝑗 , 𝑒
Δ𝑡𝐴𝑒𝑗

˘

.

Using the fact that 𝑢 is solution of the Kolmogorov equation (6.1), one has

Er𝜙p𝑋𝑁 qs ´ Er𝜙p𝑋p𝑡𝑁 qqs “ 𝜖1𝑁 ` 𝜖
2
𝑁 ,

where

𝜖1𝑁 “

ż 𝑡𝑁

0

E

«

𝐷𝑢
´

𝑡𝑁 ´ 𝑡, 𝑋̃p𝑡q
¯

¨

˜

𝐹
`

𝑋ℓp𝑡q

˘

1`∆𝑡
›

›𝐹
`

𝑋ℓp𝑡q

˘
›

›

𝐿2

´ 𝐹
´

𝑋̃p𝑡q
¯

¸ff

d𝑡
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𝜖2𝑁 “

ż 𝑡𝑁

0

1
2

ÿ

𝑗PN
𝑐𝑗E

”

𝐷2𝑢
´

𝑡𝑁 ´ 𝑡, 𝑋̃p𝑡q
¯

¨
`

𝑒Δ𝑡𝐴𝑒𝑗 , 𝑒
Δ𝑡𝐴𝑒𝑗

˘

´𝐷2𝑢
´

𝑡𝑁 ´ 𝑡, 𝑋̃p𝑡q
¯

¨ p𝑒𝑗 , 𝑒𝑗q
ı

d𝑡.

Theorem 4.2 is a straightforward consequence of Lemmas 6.4 and 6.5 stated below.

Lemma 6.4. There exists a polynomial function 𝒫 : R Ñ R, and for every 𝛼 P p0, 𝛼q there exists 𝐶𝛼 P p0,8q,
such that for all 𝑥0 P 𝐿

8, all ∆𝑡 P p0,∆𝑡0s and 𝑁 P N, one has

ˇ

ˇ𝜖2𝑁
ˇ

ˇ ď 𝐶𝛼∆𝑡2𝛼
´

1` p𝑁∆𝑡q2𝑞
2
`2𝑞

¯

𝒫p}𝑥0}𝐿8q.

Lemma 6.5. There exists a polynomial function 𝒫 : R Ñ R, and for every 𝛼 P p0, 𝛼q there exists 𝐶𝛼 P p0,8q,
such that for all 𝑥0 P 𝐿

8, all ∆𝑡 P p0,∆𝑡0s and 𝑁 P N, one has

ˇ

ˇ𝜖2𝑁
ˇ

ˇ ď 𝐶𝛼∆𝑡2𝛼
´

1` p𝑁∆𝑡q3𝑞
2
¯

𝒫p}𝑥0}𝐿8q.

Proof of Theorem 4.2. It suffices to write
ˇ

ˇ

ˇ

ˇ

Er𝜙p𝑋𝑁 qs ´

ż

𝜙d𝜇‹

ˇ

ˇ

ˇ

ˇ

ď |Er𝜙p𝑋𝑛qs ´ Er𝜙p𝑋p𝑁∆𝑡qqs| `
ˇ

ˇ

ˇ

ˇ

Er𝜙p𝑋p𝑁∆𝑡qqs ´
ż

𝜙d𝜇‹

ˇ

ˇ

ˇ

ˇ

ď
ˇ

ˇ𝜖1𝑁
ˇ

ˇ`
ˇ

ˇ𝜖2𝑁
ˇ

ˇ`

ˇ

ˇ

ˇ

ˇ

𝑢p𝑁∆𝑡, 𝑥0q ´

ż

𝜙d𝜇‹

ˇ

ˇ

ˇ

ˇ

,

and to use Lemmas 6.4, 6.5 and the inequality 6.2 to conclude the proof of Theorem 4.2. �

It remains to prove Lemmas 6.4 and 6.5. In the proofs, the notations 𝐶 and 𝒫 is used for constants and
polynomial functions respectively which may change from line to line. The dependence with respect to 𝑇 “

𝑡𝑁 “ 𝑁∆𝑡 is studied carefully.

Proof of Lemma 6.4. The error term 𝜖1𝑁 is decomposed as follows:

𝜖1𝑁 “ 𝜖1,1𝑁 ` 𝜖1,2𝑁 ` 𝜖1,3𝑁 ,

where

𝜖1,1𝑁 “

ż 𝑡𝑁

0

E
”

´∆𝑡
›

›𝐹
`

𝑋ℓp𝑡q

˘
›

›

𝐿2𝐷𝑢
´

𝑡𝑁 ´ 𝑡, 𝑋̃p𝑡q
¯

¨ 𝐹
`

𝑋ℓp𝑡q

˘

ı

d𝑡

𝜖1,2𝑁 “

ż 𝑡𝑁

0

E
”´

𝐷𝑢
´

𝑡𝑁 ´ 𝑡, 𝑋̃p𝑡q
¯

´𝐷𝑢
`

𝑡𝑁 ´ 𝑡,𝑋ℓp𝑡q

˘

¯

¨

´

𝐹
`

𝑋ℓp𝑡q

˘

´ 𝐹
´

𝑋̃p𝑡q
¯¯ı

d𝑡

𝜖1,3𝑁 “

ż 𝑡𝑁

0

E
”

𝐷𝑢
`

𝑡𝑁 ´ 𝑡,𝑋ℓp𝑡q

˘

¨

´

𝐹
`

𝑋ℓp𝑡q

˘

´ 𝐹
´

𝑋̃p𝑡q
¯¯ı

d𝑡.

Using Proposition 6.1 with 𝛼 “ 0 and Theorem 4.1, for the first term one obtains

ˇ

ˇ

ˇ
𝜖1,1𝑁

ˇ

ˇ

ˇ
ď 𝐶∆𝑡

ż 𝑡𝑁

0

𝑒´𝑐p𝑡𝑁´𝑠qE
„

´

1` }𝑋̃p𝑡q}𝑞𝐿8
¯

ˆ

1`
›

›

›
𝑋̃
`

𝑡ℓp𝑡q
˘

›

›

›

2𝑞

𝐿8

˙

d𝑡

ď 𝐶∆𝑡
´

1` 𝑡𝑞
2
`2𝑞

𝑁

¯

𝒫p}𝑥0}𝐿8q.

To study the second error term, using Proposition 6.1 with 𝛼1 “ 𝛼2 “ 0 and the polynomial growth of 𝐹 ,
one obtains

ˇ

ˇ

ˇ
𝜖1,2𝑁

ˇ

ˇ

ˇ
ď 𝐶

ż 𝑡𝑁

0

𝑒´𝑐p𝑡𝑁´𝑡qE
„ˆ

1`
›

›

›
𝑋̃p𝑡q

›

›

›

2𝑞

𝐿8
`

›

›

›
𝑋̃
`

𝑡ℓp𝑡q
˘

›

›

›

2𝑞

𝐿8

˙

›

›

›
𝑋̃p𝑡q ´ 𝑋̃

`

𝑡ℓp𝑡q
˘

›

›

›

2

𝐿2



d𝑡
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ď 𝐶

ż 𝑡𝑁

0

𝑒´𝑐p𝑡𝑁´𝑡q
ˆ

1` sup
0ď𝑠ď𝑡𝑁

E
„

›

›

›
𝑋̃p𝑠q

›

›

›

4𝑞

𝐿8

˙
1
2
ˆ

E
„

›

›

›
𝑋̃p𝑡q ´ 𝑋̃

`

𝑡ℓp𝑡q
˘

›

›

›

4

𝐿2

˙
1
2

d𝑡.

Recall that 𝑋̃p𝑡q “ 𝑒𝑡𝐴𝑥0 ` 𝑍p𝑡q ` 𝑌 p𝑡q. Using the inequalities (2.3) and (2.2), one has
›

›𝑒𝑡𝐴𝑥0 ´ 𝑒
𝑡ℓp𝑡q𝐴𝑥0

›

›

𝐿2 ď 𝐶𝛼∆𝑡2𝛼𝑡´2𝛼
ℓp𝑡q }𝑥0}𝐿2 .

for all 𝑡 ě ∆𝑡. Writing the integral for 𝑡 P r0, 𝑡𝑁 s as the sum as the integrals for 𝑡 P r0,∆𝑡s (which gives a
contribution of size ∆𝑡) and 𝑡 P r∆𝑡, 𝑡𝑁 s, and using Lemmas 6.2 and 6.3, combined with the moment bounds
from Theorem 4.1, one obtains

ˇ

ˇ

ˇ
𝜖1,2𝑁

ˇ

ˇ

ˇ
ď 𝐶∆𝑡2𝛼

´

𝒫p}𝑥0}𝐿8q

´

1`
›

›p´𝐴q2𝛼𝑥0

›

›

2

𝐿2

¯´

1` 𝑡2𝑞
2
`2𝑞

𝑁

¯¯

.

It remains to deal with the third error term 𝜖1,3𝑁 .
For every 𝑛 ě 0, let E𝑛 “ Er¨|ℱ𝑡𝑛s denote the conditional expectation operator, where ℱ𝑡 “

𝜎
`

𝑊𝑄p𝑠q, 0 ď 𝑠 ď 𝑡
˘

. Set 𝑌𝑥0p𝑡q “ 𝑒𝑡𝐴𝑥0 ` 𝑌 p𝑡q, then one has 𝑋̃p𝑡q “ 𝑌𝑥0p𝑡q ` 𝑍p𝑡q. The error term 𝜖1,3𝑁 is
decomposed into two parts as follows:

𝜖1,3𝑁 “

ż 𝑡𝑁

0

E
”

𝐷𝑢
`

𝑡𝑁 ´ 𝑡,𝑋ℓp𝑡q

˘

¨

´

𝐹
´

𝑌𝑥0

`

𝑡ℓp𝑡q
˘

` 𝑍
`

𝑡ℓp𝑡q
˘

¯

´ 𝐹
´

𝑌𝑥0p𝑡q ` 𝑍p𝑡q
¯¯ı

d𝑡

“

ż 𝑡𝑁

0

E
”

𝐷𝑢
`

𝑡𝑁 ´ 𝑡,𝑋ℓp𝑡q

˘

¨

´

𝐹
´

𝑌𝑥0

`

𝑡ℓp𝑡q
˘

` 𝑍p𝑡q
¯

´ 𝐹
´

𝑌𝑥0p𝑡q ` 𝑍p𝑡q
¯¯ı

d𝑡

`

ż 𝑡𝑁

0

E
”

𝐷𝑢
`

𝑡𝑁 ´ 𝑡,𝑋ℓp𝑡q

˘

¨

´

𝐹
´

𝑌𝑥0

`

𝑡ℓp𝑡q
˘

` 𝑍
`

𝑡ℓp𝑡q
˘

¯

´ 𝐹
´

𝑌𝑥0

`

𝑡ℓp𝑡q
˘

` 𝑍p𝑡q
¯¯ı

d𝑡

“ 𝜖1,3,1𝑁 ` 𝜖1,3,2𝑁 .

For the first term, using Proposition 6.1 with 𝛼 “ 0, then moment bounds from Theorem 4.1, and finally the
inequalities 2.3 and (2.2) as above, and Lemma 6.3, and one obtains

ˇ

ˇ

ˇ
𝜖1,2,1𝑁

ˇ

ˇ

ˇ
ď 𝐶

ż 𝑡𝑁

0

𝑒´𝑐p𝑡𝑁´𝑡qE
”´

1`
›

›

›
𝑌𝑥0

`

𝑡ℓp𝑡q
˘

›

›

›

𝑞

𝐿8
`

›

›

›
𝑌𝑥0p𝑡q

›

›

›

𝑞

𝐿8
`

›

›

›
𝑍p𝑡q

›

›

›

𝑞

𝐿8

¯
›

›

›
𝑌𝑥0

`

𝑡ℓp𝑡q
˘

´ 𝑌𝑥0p𝑡q
›

›

›

𝐿2

ı

d𝑡

ď 𝐶

ż 𝑡𝑁

0

𝑒´𝑐p𝑡𝑁´𝑡q
´

1` 𝑇 𝑞
2
¯

𝒫p}𝑥0}𝐿8q

ˆ

E
„

›

›

›
𝑌𝑥0p𝑡q ´ 𝑌𝑥0

`

𝑡ℓp𝑡q
˘

›

›

›

2

𝐿2

˙
1
2

d𝑡

ď 𝐶
´

1` 𝑇 𝑞
2
`𝑞
¯

𝒫p}𝑥0}𝐿8q∆𝑡
2𝛼.

The arguments for the second term 𝜖1,3,2𝑁 are more involved. First, a conditional expectation argument gives

𝜖1,2,2𝑁 “

𝑁´1
ÿ

𝑛“0

ż 𝑡𝑛`1

𝑡𝑛

E
”

𝐷𝑢p𝑡𝑁 ´ 𝑡,𝑋𝑛q ¨

´

𝐹
´

𝑌𝑥0p𝑡𝑛q ` 𝑍𝑛

¯

´ 𝐹
´

𝑌𝑥0p𝑡𝑛q ` 𝑍p𝑡q
¯¯ı

d𝑡

“

𝑁´1
ÿ

𝑛“0

ż 𝑡𝑛`1

𝑡𝑛

E
”

𝐷𝑢p𝑡𝑁 ´ 𝑡,𝑋𝑛q ¨

´

𝐹
´

𝑌𝑥0p𝑡𝑛q ` 𝑍𝑛

¯

´ E𝑛
”

𝐹
´

𝑌𝑥0p𝑡𝑛q ` 𝑍p𝑡q
¯ı¯ı

d𝑡.

A second-order Taylor expansion then yields

E𝑛
”

𝐹
´

𝑌𝑥0p𝑡𝑛q ` 𝑍p𝑡q
¯ı

´ 𝐹
´

𝑌𝑥0p𝑡𝑛q ` 𝑍𝑛

¯

“ 𝐹 1
´

𝑌𝑥0p𝑡𝑛q
¯

¨ E𝑛
”

𝑍p𝑡q ´ 𝑍𝑛

ı

`𝑅𝑛

“ 𝐹 1
´

𝑌𝑥0p𝑡𝑛q
¯

¨
``

𝑒Δ𝑡𝐴 ´ 𝐼
˘

𝑍𝑛
˘

`𝑅𝑛,
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with
}𝑅𝑛}𝐿1 ď 𝐶

´

1`
›

›

›
𝑌𝑥0p𝑡𝑛q

›

›

›

𝑞

𝐿8
` }𝑍𝑛}

𝑞
𝐿8 `

›

›

›
𝑍p𝑡q

›

›

›

𝑞

𝐿8

¯
›

›

›
𝑍p𝑡q ´ 𝑍𝑛

›

›

›

2

𝐿2
.

Using Proposition 6.1 and the inequality 2.8, for 𝜅 P p 14 , 1q, moment bounds from Theorem 4.1 and Assump-
tion 2.4, and Lemma 6.2, one has

ˇ

ˇ

ˇ

ˇ

ˇ

𝑁´1
ÿ

𝑛“0

ż 𝑡𝑛`1

𝑡𝑛

Er𝐷𝑢p𝑡𝑁 ´ 𝑡,𝑋𝑛q ¨𝑅𝑛sd𝑡

ˇ

ˇ

ˇ

ˇ

ˇ

ď 𝐶∆𝑡2𝛼
´

1` 𝑇 𝑞
2
¯

𝒫p}𝑥0}𝐿8q.

To treat the last error term, combining the inequalities (2.10) and (2.11), with polynomial growth of 𝐹 1 (Assump-
tion 2.1) yields

›

›

›
p´𝐴q´𝛼´2𝜖𝐹 1

´

𝑌𝑥0p𝑡𝑛q
¯

¨
``

𝑒Δ𝑡𝐴 ´ 𝐼
˘

𝑍𝑛
˘

›

›

›

𝐿1

ď 𝐶𝛼,𝜖

´

1`
›

›

›
𝑌𝑥0p𝑡𝑛q

›

›

›

𝑞

𝐿8

¯
›

›

›
p´𝐴q𝛼`𝜖𝑌𝑥0p𝑡𝑛q

›

›

›

𝐿2

›

›p´𝐴q´𝛼
`

𝑒Δ𝑡𝐴 ´ 𝐼
˘

𝑍𝑛
›

›

𝐿2

ď 𝐶𝛼,𝜖∆𝑡2𝛼
´

1`
›

›

›
𝑌𝑥0p𝑡𝑛q

›

›

›

𝑞

𝐿8

¯
›

›

›
p´𝐴q𝛼`𝜖𝑌𝑥0p𝑡𝑛q

›

›

›

𝐿2
}p´𝐴q𝛼𝑍𝑛}𝐿2 ,

where 𝜖 ą 0, using the inequality (2.3) in the last step. Note that
›

›

›
p´𝐴q𝛼`𝜖𝑌𝑥0p𝑡𝑛q

›

›

›

𝐿2
ď

›

›

›
p´𝐴q𝛼`𝜖𝑌 p𝑡𝑛q

›

›

›

𝐿2
` 𝐶

›

›p´𝐴q𝛼`𝜖𝑒𝑡𝑛𝐴𝑥0

›

›

𝐿2 .

As above, one uses the inequality (2.2) to get
›

›p´𝐴q𝛼`𝜖𝑒𝑡𝑛𝐴𝑥0

›

›

𝐿2 ď 𝐶𝑡´𝛼´𝜖𝑛 }𝑥0}𝐿2 when 𝑛 ě 1, and a decom-
position of the integral for 𝑡 P r0, 𝑡𝑁 s into integrals for 𝑡 P r0,∆𝑡s (which gives a contribution of size ∆𝑡) and
𝑡 P r∆𝑡, 𝑡𝑁 s. Using Proposition 6.1 with 𝛼1 “ 𝛼` 𝜅 and 𝛼2 “ 0, one then obtains
ˇ

ˇ

ˇ

ˇ

ˇ

𝑁´1
ÿ

𝑛“0

ż 𝑡𝑛`1

𝑡𝑛

E
”

𝐷𝑢p𝑡𝑁 ´ 𝑡,𝑋𝑛q ¨ 𝐹
1
´

𝑌𝑥0p𝑡𝑛q
¯

¨
``

𝑒Δ𝑡𝐴 ´ 𝐼
˘

𝑍𝑛
˘

ı

d𝑡

ˇ

ˇ

ˇ

ˇ

ˇ

ď 𝐶∆𝑡2𝛼
𝑁´1
ÿ

𝑛“0

ż 𝑡𝑛`1

𝑡𝑛

𝑒´𝑐p𝑡𝑁´𝑡q

p𝑡𝑁 ´ 𝑡q𝛼`𝜅`2𝜖
E
”´

1` }𝑋𝑛}
2𝑞
𝐿8

¯´

1`
›

›

›
𝑌𝑥0p𝑡𝑛q

›

›

›

𝑞

𝐿8

¯
›

›

›
p´𝐴q𝛼`𝜖𝑌𝑥0p𝑡𝑛q

›

›

›

𝐿2
}p´𝐴q𝛼𝑍𝑛}𝐿2

ı

d𝑡

ď 𝐶∆𝑡2𝛼
´

1` 𝑇 𝑞
2
`2𝑞

¯

𝒫p}𝑥0}𝐿8q.

owing to inequality (2.2), and to the moment bounds from Lemmas 6.2, 6.3 and Theorem 4.1.
Finally, one has

ˇ

ˇ

ˇ
𝜖1,3,2𝑁

ˇ

ˇ

ˇ
ď 𝐶∆𝑡2𝛼

´

1` 𝑇 𝑞
2
`2𝑞

¯

𝒫p}𝑥0}𝐿8q.

Gathering the estimates for 𝜖1,1𝑁 , 𝜖1,2𝑁 and 𝜖1,3𝑁 then concludes the proof of Lemma 6.4. �

Proof of Lemma 6.5. Using the symmetry of the bilinear operator 𝐷2𝑢
´

𝑇 ´ 𝑡, 𝑋̃p𝑡q
¯

, one has

𝜖2𝑁 “ 𝜖2,1𝑁 ` 𝜖2,2𝑁 ,

where

𝜖2,1𝑁 “
1
2

ÿ

𝑗PN
𝑐𝑗

ż 𝑡𝑁

0

E
”

𝐷2𝑢
´

𝑇 ´ 𝑡, 𝑋̃p𝑡q
¯

¨
``

𝑒Δ𝑡𝐴 ´ 𝐼
˘

𝑒𝑗 ,
`

𝑒Δ𝑡𝐴 ´ 𝐼
˘

𝑒𝑗
˘

ı

d𝑡

𝜖2,2𝑁 “
ÿ

𝑗PN
𝑐𝑗

ż 𝑡𝑁

0

E
”

𝐷2𝑢
´

𝑇 ´ 𝑡, 𝑋̃p𝑡q
¯

¨
``

𝑒Δ𝑡𝐴 ´ 𝐼
˘

𝑒𝑗 , 𝑒𝑗
˘

ı

d𝑡.
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Let 𝛼 P p0, 𝛼q, and 𝜖 ą 0 such that 𝛼`𝜖 ă 𝛼. Below, Proposition 6.1 is used with 𝛼1 “
1
2`𝛼 and 𝛼2 “

1
2´𝛼´𝜖.

In addition, Theorem 4.1 is also used to control moments.
Using the inequalities (2.2) and (2.3), one obtains, with 𝑇 “ 𝑁∆𝑡,

ˇ

ˇ

ˇ
𝜖2,1𝑁

ˇ

ˇ

ˇ
ď 𝐶

ÿ

𝑗PN
𝑐𝑗

ż 𝑡𝑁

0

𝑒´𝑐p𝑡𝑁´𝑡q

p𝑡𝑁 ´ 𝑡q1´𝜖

›

›

›
p´𝐴q´

1
2´𝛼

`

𝑒Δ𝑡𝐴 ´ 𝐼
˘

𝑒𝑗

›

›

›

𝐿2

›

›

›
p´𝐴q𝛼´

1
2`𝜖𝑒𝑗

›

›

›

𝐿2

ˆ

1` E
›

›

›
𝑋̃p𝑡q

›

›

›

3𝑞

𝐿8

˙

d𝑡

ď 𝐶
´

1` 𝑇 3𝑞2
¯

𝒫p}𝑥0}𝐿8q
ÿ

𝑗PN
𝑐𝑗

›

›

›
p´𝐴q´

1
2`𝛼p´𝐴q´2𝛼

`

𝑒Δ𝑡𝐴 ´ 𝐼
˘

𝑒𝑗

›

›

›

𝐿2

›

›

›
p´𝐴q´

1
2`𝛼`𝜖𝑒𝑗

›

›

›

𝐿2

ď 𝐶
´

1` 𝑇 3𝑞2
¯

𝒫p}𝑥0}𝐿8q∆𝑡
2𝛼

ÿ

𝑗PN
𝑐𝑗

›

›

›
p´𝐴q𝛼´

1
2`𝜖𝑒𝑗

›

›

›

2

𝐿2

ď 𝐶
´

1` 𝑇 3𝑞2
¯

𝒫p}𝑥0}𝐿8q∆𝑡
2𝛼,

since 𝛼` 𝜖 ă 𝛼.
The second term is treated similar arguments: indeed one has

ˇ

ˇ

ˇ
𝜖2,2𝑁

ˇ

ˇ

ˇ
ď 𝐶

ÿ

𝑗PN
𝑐𝑗

ż 𝑡𝑁

0

𝑒´𝑐p𝑡𝑁´𝑡q

p𝑡𝑁 ´ 𝑡q1´𝜖

›

›

›
p´𝐴q´

1
2´𝛼

`

𝑒Δ𝑡𝐴 ´ 𝐼
˘

𝑒𝑗

›

›

›

𝐿2

›

›

›
p´𝐴q´

1
2`𝛼`𝜖𝑒𝑗

›

›

›

𝐿2

ˆ

1` E
›

›

›
𝑋̃p𝑡q

›

›

›

3𝑞

𝐿8

˙

d𝑡,

and proceeding as above one obtains
ˇ

ˇ

ˇ
𝜖2,2𝑁

ˇ

ˇ

ˇ
ď 𝐶

´

1` 𝑇 3𝑞2
¯

𝒫p}𝑥0}𝐿8q∆𝑡
2𝛼.

This concludes the proof of Lemma 6.5. �
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[7] C.-E. Bréhier and G. Vilmart, High order integrator for sampling the invariant distribution of a class of parabolic stochastic
PDEs with additive space-time noise. SIAM J. Sci. Comput. 38 (2016) A2283–A2306.

[8] M. Cai, S. Gan and X. Wang, Weak convergence rates for an explicit full-discretization of stochastic Allen–Cahn equation with
additive noise. J. Sci. Comput. 86 (2021) 1–30.

[9] S. Cerrai, Second Order PDE’s in Finite and Infinite Dimension: A Probabilistic Approach. Vol. 1762 of Lecture Notes in
Mathematics. Springer-Verlag, Berlin (2001).

[10] Z. Chen, S. Gan and X. Wang, A full-discrete exponential Euler approximation of the invariant measure for parabolic stochastic
partial differential equations. Appl. Numer. Math. 157 (2020) 135–158.

[11] J. Cui and J. Hong, Strong and weak convergence rates of a spatial approximation for stochastic partial differential equation
with one-sided Lipschitz coefficient. SIAM J. Numer. Anal. 57 (2019) 1815–1841.

https://arxiv.org/abs/1903.06066
https://doi.org/10.1093/imanum/drab049


APPROXIMATION OF THE INVARIANT DISTRIBUTION FOR A CLASS OF ERGODIC SPDES 175

[12] J. Cui, J. Hong and L. Sun, Weak convergence and invariant measure of a full discretization for parabolic SPDEs with
non-globally Lipschitz coefficients. Stoch. Process. Appl. 134 (2021) 55–93.

[13] G. Da Prato and J. Zabczyk, Ergodicity for Infinite-Dimensional Systems. Vol. 229 of London Mathematical Society Lecture
Note Series. Cambridge University Press, Cambridge (1996).

[14] G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions. Vol. 152 of Encyclopedia of Mathematics and its
Applications, 2nd edition. Cambridge University Press, Cambridge (2014).
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