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CONVERGENCE BOUNDS FOR EMPIRICAL NONLINEAR LEAST-SQUARES

Martin Eigel1, Reinhold Schneider2 and Philipp Trunschke2,*

Abstract. We consider best approximation problems in a nonlinear subset M of a Banach space
of functions (V, ‖∙‖). The norm is assumed to be a generalization of the 𝐿2-norm for which only a
weighted Monte Carlo estimate ‖∙‖𝑛 can be computed. The objective is to obtain an approximation
𝑣 ∈ M of an unknown function 𝑢 ∈ V by minimizing the empirical norm ‖𝑢 − 𝑣‖𝑛. We consider this
problem for general nonlinear subsets and establish error bounds for the empirical best approximation
error. Our results are based on a restricted isometry property (RIP) which holds in probability and is
independent of the specified nonlinear least squares setting. Several model classes are examined and
the analytical statements about the RIP are compared to existing sample complexity bounds from the
literature. We find that for well-studied model classes our general bound is weaker but exhibits many of
the same properties as these specialized bounds. Notably, we demonstrate the advantage of an optimal
sampling density (as known for linear spaces) for sets of functions with sparse representations.
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1. Introduction, scope, contributions

We consider the problem of estimating an unknown function 𝑢 from noiseless observations. For this problem
to be well-posed, some prior information about 𝑢 has to be assumed, which often takes the form of regularity
assumptions. To make this notion more precise, we assume that 𝑢 is an element of some Banach space of
functions (V, ‖∙‖) that can be well approximated in a given nonlinear subset (or model class) M ⊆ V. The
approximation error is measured in the norm

‖𝑣‖ :=
(︂ˆ

𝑌

|𝑣|2𝑦 d𝜌(𝑦)
)︂1/2

,

where 𝑌 is some Borel subset of R𝑑, 𝜌 is a probability measure on 𝑌 and |∙|𝑦 is a 𝑦-dependent seminorm for
which the integral above is finite for all 𝑣 ∈V. This norm is a generalization of the 𝐿2(𝑌, 𝜌)- and 𝐻1

0 (𝑌, 𝜌)-norms
which are induced by the seminorms |𝑣|2𝑦 = |𝑣(𝑦)|2 and |𝑣|2𝑦 = ‖∇𝑣(𝑦)‖22, respectively.
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We characterize any best approximation 𝑢M in M by

𝑢M ∈ arg min
𝑣∈M

‖𝑢− 𝑣‖.

In general, this approximation is not computable. We propose to approximate 𝑢M by an estimator 𝑢M,𝑛 that is
based on the weighted least-squares method which replaces the norm ‖𝑣‖ by the empirical seminorm

‖𝑣‖𝑛 :=

(︃
1
𝑛

𝑛∑︁
𝑖=1

𝑤(𝑦𝑖)|𝑣|2𝑦𝑖

)︃1/2

for a given weight function 𝑤 and a sample set {𝑦𝑖}𝑛
𝑖=1 ⊆ 𝑌 with 𝑦𝑖 ∼ 𝑤−1𝜌. The weight function can be chosen

as any almost surely positive function 𝑤 > 0 that satisfies
´

𝑌
𝑤−1 d𝜌 = 1. Any corresponding empirical best

approximation 𝑢M,𝑛 in M is characterized by

𝑢M,𝑛 ∈ arg min
𝑣∈M

‖𝑢− 𝑣‖𝑛. (1.1)

Given this definition we can choose 𝑤 such that the theoretical convergence rate of ‖𝑢− 𝑢M,𝑛‖
𝑛→∞−−−−→

‖𝑢− 𝑢M‖ is maximized. Note that changing the sampling measure from 𝜌 to 𝑤−1𝜌 is a common strategy
to reduce the variance in Monte Carlo methods referred to as importance sampling (cf. [7]).

Since ‖∙‖ is not computable in general, the best approximation error

‖𝑢− 𝑢M‖ = min
𝑣∈M

‖𝑢− 𝑣‖

serves as a baseline for a numerical method founded on a finite set of samples. We prove in this paper that the
empirical best approximation error ‖𝑢− 𝑢M,𝑛‖ is equivalent to this error with high probability.

Main result. For any model class M ⊆ V with dim⟨M⟩ <∞, any weight function 𝑤 and all 𝛿 ∈ (0, 1) there
exists 𝐶 > 0 such that

‖𝑢− 𝑢M,𝑛‖ ≤
(︁

1 + 2√
1−𝛿

)︁
‖𝑢− 𝑢M‖𝑤,∞

holds with probability 1−𝐶 exp
(︂
−𝑛

2

(︁
𝛿

𝐾(𝑈({𝑢M}−M))

)︁2
)︂

. The constant 𝐶 is independent of 𝑛 and depends only

polynomially on 𝛿 and 𝐾(𝑈({𝑢M} −M))−1.

This result is a combination of Theorems 2.8 and 2.12. Their proofs as well as the definitions of 𝐾, 𝑈 and
‖∙‖𝑤,∞ can be found in Section 2. Some special model classes for which the theorem holds are discussed in
Section 3.

To prove this result for general nonlinear model classes, we extend the idea of a restricted isometry property
(RIP) as known from compressed sensing. In contrast to previous specific results for linear spaces [14], sets of
sparse functions [38, 39], and low-rank tensors [40], the aim of this paper is to develop first results for a more
general theory. New results for low-rank tensors are obtained and it is demonstrated how the theory can guide
the choice of the model class M.

Despite the generality of the derived theory we observe many of the same phenomena as more specialised
theories namely, the emergence of an optimal sampling measure (cf. [14]), the importance of weighted sparsity
(cf. [39]) and the advantage of multilevel sampling (cf. [3]).

1.1. Structure

The remainder of the paper is organized as follows. In Section 1.2 we aim to provide a brief overview of
previous work and introduce the notion of the restricted isometry property (RIP). Based on the RIP, Section 2
develops the central results of this work. These are applied to some common model classes in Section 3. We
begin by considering linear spaces in Section 3.1. Section 3.2 considers sets of sparse functions and Section 3.3
examines sets of low-rank functions. Finally, we investigate the influence of the seminorm on the convergence
in Section 4. We conclude in Section 5 with a discussion of the derived results and an outlook on future work.
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1.2. Related work

When |𝑣|𝑦 = |𝑣(𝑦)| is used, 𝑢M,𝑛 is known as the nonlinear least squares estimator of 𝑢. The extensive
interest in machine learning in recent years has lead to the investigation of this estimator for special model
classes like sparse vectors [11,21,39], low-rank tensors [10,20,25,40,45] and neural networks [5,31]. However, to
the knowledge of the authors no investigation for general model classes has been published so far. This may be
due to the fact that sparse vectors and low-rank tensors were the first model classes for which rigorous theories
were developed and that most of these works focus on ℓ1 and nuclear norm minimization. Our work may be
regarded as an extension of these works (in particular of infinite-dimensional compressed sensing [1, 3]) to the
nonlinear least-squares setting. For a more in-depth discussion of statistical learning theory we refer to the
articles [15, 43] and the monographs [16, 26]. For linear spaces the first estimate in Theorem 2.12 has already
appeared in [14] for weighted least squares and in [13,33,34] for standard least squares.

A convergence bound for the nonlinear least squares approximation problem was recently analysed in [20].
However, the probability of the bound failing increases exponentially as the best approximation error ‖𝑢− 𝑢M‖
approaches zero and becomes one when ‖𝑢− 𝑢M‖ vanishes. Moreover, this bound only holds for model classes
that are bounded in 𝐿∞ and it does not provide any insight on what property of the set influences the convergence
rate.

The empirical approximation problem (1.1) was thoroughly examined in [14] for linear model spaces. There
the model class M is assumed to be the 𝑚-dimensional subspace spanned by the orthonormal basis func-
tions {B𝑗}𝑗∈[𝑚] in V = 𝐿2(𝑌, 𝜌). A key point in this work is that the error ‖𝑢− 𝑢M,𝑛‖ can be bounded by
‖𝑢− 𝑢M‖𝐿∞(𝑌,𝜌) if ‖G− I𝑚‖2 ≤ 𝛿 < 1 where

G :=
1
𝑛

𝑛∑︁
𝑖=1

𝑤(𝑦𝑖)B(𝑦𝑖)B(𝑦𝑖)
ᵀ

=
1
𝑛

𝑛∑︁
𝑖=1

𝑤(𝑦𝑖)[B1(𝑦𝑖) . . . B𝑚(𝑦𝑖)]
ᵀ[B1(𝑦𝑖) . . . B𝑚(𝑦𝑖)]

is the Monte Carlo estimate of the Gram matrix I𝑚. This condition is in fact equivalent to the norm equivalence

(1− 𝛿)‖𝑢‖2 ≤ ‖𝑢‖2𝑛 ≤ (1 + 𝛿)‖𝑢‖2 for 𝑢 ∈M. (1.2)

Cohen and Migliorati [14] prove that, under suitable conditions, the norm equivalence (1.2) is satisfied with
high probability.

Theorem 1.1. If 𝐾̃ := ess sup𝑦∈𝑌 𝑤(𝑦)𝐵(𝑦)ᵀ
𝐵(𝑦) <∞ then

P[‖G− I𝑚‖2 > 𝛿] ≤ 2𝑚 exp
(︂
−𝑐𝛿𝑛
𝐾̃

)︂
,

with 𝑐𝛿 := −𝛿 + (1 + 𝛿) ln(1 + 𝛿).

Equation (1.2) can be seen as a generalized restricted isometry property. The notion of a RIP was introduced
in the context of compressed sensing [11]. It expresses the well-posedness of the problem by ensuring that ‖∙‖𝑛

is indeed a norm and equivalent to ‖∙‖ on M. Minimizing the error with respect to ‖∙‖𝑛 thus minimizes the
error with respect to ‖∙‖. In compressed sensing of sparse vectors [11, 21] and low-rank tensors [40] discrete
analogues of (1.2) are employed to derive bounds for the corresponding reconstruction errors. A recent work [6]
also generalizes the theory from [14] to sparse grid spaces.

In this paper we extend the cited results to more general norms and nonlinear model sets by directly bounding
the probability of

RIP𝐴(𝛿) :⇔ (1− 𝛿)‖𝑢‖2 ≤ ‖𝑢‖2𝑛 ≤ (1 + 𝛿)‖𝑢‖2 ∀𝑢 ∈ 𝐴 ⊆V.
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We prove that, under some conditions on 𝑛 and 𝐴, this RIP holds with high probability and show that these
conditions are satisfied for a variety of model classes. We then use the RIP to provide quasi-optimality guarantees
for the empirical best approximation in Theorem 2.12.

In Remark 2.5 we note that it suffices to consider conic model sets. Optimizing over these sets is not straight-
forward. In [41], appropriate restricted isometry constants for exact recovery of conic model sets using a suitable
regularizer are derived.

2. Main result

To measure the rate of convergence with which ‖𝑣‖𝑛 approaches ‖𝑣‖ as 𝑛 tends to ∞, we introduce the
variation constant

𝐾(𝐴) := sup
𝑢∈𝐴

‖𝑢‖2𝑤,∞ with ‖𝑣‖2𝑤,∞ := ess sup
𝑦∈𝑌

𝑤(𝑦)|𝑣|2𝑦.

This constant constitutes a uniform upper bound of ‖𝑣‖𝑛 for all realizations of the empirical norm ‖∙‖𝑛 and all
𝑣 ∈ 𝐴. We usually omit the dependence on the choice of 𝑤, |∙|𝑦 and 𝑌 . When a distinction between different
choices of these parameters is necessary we add appropriate subscripts to 𝐾.

Remark 2.1. The variation constant 𝐾(𝑈(𝐴)) can be seen as a generalization of the embedding constant
(𝐴, ‖∙‖) →˓

(︁
𝐴, ‖∙‖𝑤,∞

)︁
to nonlinear sets and therefore as an analog of 𝐾̃ in Theorem 1.1.

The constant 𝐾 is a fundamental parameter in many concentration inequalities that are used to provide
bounds for the rate of convergence of the quadrature error.

Definition 2.2 (Quadrature Error). The quadrature error of the empirical norm ‖∙‖2𝑛 on the model set 𝐴 ⊆V

is defined by
E𝐴 := sup

𝑢∈𝐴

⃒⃒⃒
‖𝑢‖2 − ‖𝑢‖2𝑛

⃒⃒⃒
.

This error is closely related to the RIP through the normalization operator 𝑈 . This relation is developed
rigorously in the subsequent lemma.

Definition 2.3 (Normalization operator). The normalization operator acts on a set 𝐴 by

𝑈(𝐴) :=
{︁

𝑢
‖𝑢‖ : 𝑢 ∈ 𝐴∖{0}

}︁
.

Lemma 2.4 (Equivalence of RIP and a bounded quadrature error). For some set 𝐴,

RIP𝐴(𝛿) ⇔E𝑈(𝐴) ≤ 𝛿 for 𝛿 > 0.

Proof. Note that ‖0‖𝑛 = ‖0‖, that ‖𝛼𝑢‖𝑛 = |𝛼|‖𝑢‖𝑛 for all 𝛼 ∈ R and 𝑢 ∈ 𝐴 and that ‖𝑢‖ = 1 for all 𝑢 ∈ 𝑈(𝐴).
Therefore,

(1− 𝛿)‖𝑢‖2 ≤ ‖𝑢‖2𝑛 ≤ (1 + 𝛿)‖𝑢‖2 ∀𝑢 ∈ 𝐴
⇔ (1− 𝛿) ≤

⃦⃦⃦
𝑢
‖𝑢‖

⃦⃦⃦2

𝑛
≤ (1 + 𝛿) ∀𝑢 ∈ 𝐴 ∖ {0}

⇔ −𝛿 ≤ ‖𝑢‖2𝑛 − ‖𝑢‖
2 ≤ 𝛿 ∀𝑢 ∈ 𝑈(𝐴),

which is equivalent to sup𝑢∈𝑈(𝐴)

⃒⃒⃒
‖𝑢‖2 − ‖𝑢‖2𝑛

⃒⃒⃒
≤ 𝛿. �

Remark 2.5. By the preceding lemma

RIP𝐴(𝛿) ⇔ RIPCone(𝐴)(𝛿),

where Cone(𝐴) := {𝛼𝑎 : 𝑎 ∈ 𝐴,𝛼 > 0} denotes the cone generated by 𝐴. This implies that our theory also holds
for unbounded sets 𝐴.
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We introduce the notion of a covering number to provide a well-known bound for the quadrature error in the
following.

Definition 2.6 (Covering number). The covering number 𝜈‖∙‖(𝐴, 𝜀) of a subset 𝐴 ⊆V is the minimal number
of ‖∙‖-open balls of radius 𝜀 that are needed to cover 𝐴.

Lemma 2.7. Let 𝐴 ⊆V and 𝐾 = 𝐾(𝑈(𝐴)) <∞. Then,

P
[︀
E𝑈(𝐴) ≥ 𝛿

]︀
≤ 2𝜈‖∙‖𝑤,∞

(︁
𝑈(𝐴), 1

8
𝛿√
𝐾

)︁
exp
(︁
−𝑛

2

(︀
𝛿
𝐾

)︀2)︁
for 𝛿 > 0.

The proof of this lemma can be found in Appendix A. With the preceding preparations we can derive a
central result:

Theorem 2.8. Let 𝐴 ⊆V and 𝐾 = 𝐾(𝑈(𝐴)) <∞. Then,

P[RIP𝐴(𝛿)] ≥ 1− 2𝜈‖∙‖𝑤,∞

(︁
𝑈(𝐴), 1

8
𝛿√
𝐾

)︁
exp
(︁
−𝑛

2

(︀
𝛿
𝐾

)︀2)︁
for 𝛿 > 0.

Proof. By Lemma 2.4 it suffices to bound the quadrature error on 𝑈(𝐴). Lemma 2.7 provides a bound for the
probability of the complementary event. �

Corollary 2.9 (Sample complexity). Let 𝑐, 𝐶,𝑀 > 0 and 𝐴 ⊆ V be a set that satisfies 𝜈‖∙‖𝑤,∞
(𝑈(𝐴), 𝑟) ≤

𝐶(𝑐𝑟)−𝑀 . Under the assumptions of Theorem 2.8, and with 𝐾 = 𝐾(𝑈(𝐴)),

𝑛 ≥ 2

(︃
𝑀 ln

(︃
8
√
𝐾

𝑐𝛿

)︃
− ln

(︁ 𝑝

2𝐶

)︁)︃(︂𝐾
𝛿

)︂2

many samples are sufficient to satisfy RIP𝐴(𝛿) with probability 1− 𝑝.

Proof. To obtain RIP𝐴(𝛿) with a probability of 1− 𝑝 it suffices that

P[RIP𝐴(𝛿)] ≥ 1− 2𝜈 exp
(︁
−𝑛

2

(︀
𝛿
𝐾

)︀2)︁ ≥ 1− 𝑝,

with 𝜈 := 𝜈‖∙‖𝑤,∞

(︁
𝑈(𝐴), 1

8
𝛿√
𝐾

)︁
. Solving the second inequality for 𝑛 shows that

𝑛 ≥ 2 ln
(︁

2𝜈
𝑝

)︁(︀
𝐾
𝛿

)︀2
samples are sufficient to satisfy RIP𝐴(𝛿) with the prescribed probability. Replacing 𝜈 by the upper bound

𝐶
(︁

𝑐𝛿
8
√

𝐾

)︁−𝑀

yields the claim. �

Linear spaces, sparse vectors and low-rank tensors all satisfy the requirements of this corollary with 𝑀
depending linearly on the number of parameters of the model [5,40,44]. The corollary states that in these cases
𝑛 ∈ O(𝑀𝐺) where the factor 𝐺 := ln(𝐾)𝐾2 represents the variation of ‖∙‖𝑛 on M.

Remark 2.10. An interpretation of Corollary 2.9 is that the variation constant 𝐾 is of greater importance
than the covering number 𝜈 which enters the bound on the sample complexity only logarithmically.

Example 2.11 (𝐾 is independent of the dimension). If M is a manifold then one might expect the bound
for the probability of RIPM(𝛿) to depend on its dimension. But counter-examples can be constructed easily.
Consider V = 𝐿2

(︀
[−1, 1], d𝑥

2

)︀
with the weight function 𝑤 ≡ 1 and let 𝑃𝑘 denote the 𝑘-th Legendre polynomial.

Let moreover 𝑑 ∈ N and 𝑚 ≥ 𝑑2

2 + 𝑑 − 1
2 . Then the 1-dimensional manifold span{𝑃𝑚} has a larger variation

constant than the 𝑑-dimensional manifold span{𝑃𝑘}𝑘∈[𝑑]. We refer to Section 3.1 for the computation of these
variation constants. In the light of Remark 2.10, this means that the dimension 𝑑 only has a minor influence on
the bound for the probability of RIPM(𝛿).
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Theorem 2.12 (Empirical projection error). Assume that RIP{𝑢M}−M(𝛿) holds. Then

‖𝑢M − 𝑢M,𝑛‖ ≤ 2
1√

1− 𝛿
‖𝑢− 𝑢M‖𝑤,∞. (2.1)

If in addition RIP{𝑢−𝑢M}(𝛿) is satisfied then

‖𝑢M − 𝑢M,𝑛‖ ≤ 2

√︂
1 + 𝛿

1− 𝛿
‖𝑢− 𝑢M‖ (2.2)

and consequently

‖𝑢− 𝑢M‖ ≤ ‖𝑢− 𝑢M,𝑛‖ ≤
(︂

1 + 2
√

1 + 𝛿√
1− 𝛿

)︂
‖𝑢− 𝑢M‖. (2.3)

Proof. First observe that 𝑢M,𝑛 ∈M and therefore 𝑢M −𝑢M,𝑛 ∈ {𝑢M}−M. By the RIP{𝑢M}−M(𝛿), the triangle
inequality and the definition of 𝑢M,𝑛, we deduce

‖𝑢M − 𝑢M,𝑛‖ ≤
1√

1− 𝛿
‖𝑢M − 𝑢M,𝑛‖𝑛

≤ 1√
1− 𝛿

[︀
‖𝑢M − 𝑢‖𝑛 + ‖𝑢− 𝑢M,𝑛‖𝑛

]︀
≤ 2

1√
1− 𝛿

‖𝑢− 𝑢M‖𝑛.

Hence, equation (2.1) holds since ‖𝑣‖𝑛 ≤ ‖𝑣‖𝑤,∞ is satisfied for all 𝑣 ∈ V and in particular for 𝑢 − 𝑢M.
Equation (2.2) follows by an application of RIP{𝑢−𝑢M}(𝛿) and from it equation (2.3) follows by an application
of the triangle inequality to ‖𝑢− 𝑢M,𝑛‖. �

Remark 2.13. Note that Theorem 2.12 bounds ‖𝑢M − 𝑢M,𝑛‖ even if 𝑢M and 𝑢M,𝑛 are not uniquely defined.

Remark 2.14. Theorem 2.12 requires RIP{𝑢M}−M(𝛿) and RIP{𝑢−𝑢M}(𝛿). If the covering number of
𝑈({𝑢M} −M) is finite then 𝐾(𝑈({𝑢M} −M)) and 𝐾(𝑈({𝑢− 𝑢M})) are bounded and Theorem 2.8 guarantees
that RIP{𝑢M}−M(𝛿) and RIP{𝑢−𝑢M}(𝛿) hold when 𝑛 is sufficiently large.

If 𝑢 ∈M then RIP{𝑢−𝑢M}(𝛿) is implied by RIP{𝑢M}−M(𝛿) and bounds for the sample complexity of some well-
known model classes are given in Section 3. If 𝑢 ̸∈M then the probability of RIP{𝑢−𝑢M}(𝛿) has to be bounded
separately. Since 𝜈(𝑈({𝑢− 𝑢M}), 𝑟) = 1, we only need to bound 𝐾(𝑈({𝑢− 𝑢M})) to apply Theorem 2.8. Since
𝐾(𝑈({𝑢− 𝑢M})) depends only on 𝑢−𝑢M it is a purely approximation theoretic constant and we provide explicit
bounds for two examples in the following.

– Let M be a space of low-rank functions and M𝜔,𝑠 be some space of sparse functions as defined in Section 3.2.
If 𝑢 = 𝑢low-rank + 𝑢sparse with 𝑢low-rank ∈M and 𝑢sparse ∈M𝜔,𝑠 then 𝐾(𝑈({𝑢− 𝑢M})) ≤ 𝑠2.

– Consider 𝑢(𝑥) := sin(𝜋𝑥) and assume that 𝑢M(𝑥) =
∑︀𝑚

𝑘=0(−1)𝑘 (𝜋𝑥)2𝑘+1

(2𝑘+1)! (for an otherwise arbitrary choice
of M). From this one can derive that 𝐾(𝑈({𝑢− 𝑢M})) ≤ 4𝑚+ 7.

Remark 2.15 (An indicator for RIP𝐴(𝛿)). In Theorem 2.12 there is no constraint on the samples {𝑦𝑖}𝑛
𝑖=1

except that they satisfy the RIP. They explicitly do not have to be i.i.d. random variables. This means that
they could, theoretically, be determined by a deterministic quadrature rule. The challenge, however, is to ensure
the RIP. In [14] the empirical Gramian could be used to verify this RIP for a given sample set. In the nonlinear
setting this is not possible. To obtain a practical indicator for the convergence of our method we make the
following considerations. Define 𝐴 := ({𝑢M} −M)∪{𝑢− 𝑢M}, as well as 𝑒𝑛 := ‖𝑢− 𝑢M,𝑛‖ and 𝑒 := ‖𝑢− 𝑢M‖.
Observe that for 𝛿 ≤ 1√

2

1 + 𝛿 ≤
√︂

1 + 𝛿

1− 𝛿
≤ 1 + 2𝛿.
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Combining the second inequality with Theorem 2.12 leads to

RIP𝐴(𝛿) ⇒ 𝑒𝑛 ≤
(︂

1 + 2
√︁

1+𝛿
1−𝛿

)︂
𝑒 ≤ (1 + 2(1 + 2𝛿))𝑒

⇒ 𝑒𝑛 ≤ (3 + 4𝛿)𝑒.

Therefore,
P[RIP𝐴(𝛿)] ≤ P[𝑒𝑛 ≤ (3 + 4𝛿)𝑒]. (2.4)

By Theorem 2.8 there exist 𝑐 and 𝜈(𝛿) such that

1− 𝜈(𝛿) exp
(︀
−𝑐𝑛𝛿2

)︀
≤ P[RIP𝐴(𝛿)].

Combining this with (2.4) yields

1− 𝜈(𝛿) exp
(︀
−𝑐𝑛𝛿2

)︀
≤ P[𝑒𝑛 ≤ (3 + 4𝛿)𝑒] =: 𝑝(𝛿). (2.5)

Since 𝑝(𝛿) is increasing in 𝛿, we can define an inverse in the sense of the quantile function 𝛿(𝑝) :=
inf
{︁
𝛿 ∈ R≥0 : 𝑝 ≤ 𝑝

(︁
𝛿
)︁}︁

. For fixed 𝑝 := 𝑝(𝛿) in equation (2.5) it then follows that 𝛿 ≥ 𝛿(𝑝) =: 𝛿 and con-
sequently

− ln(1− 𝑝) ≥ 𝑐𝑛𝛿2 − ln
(︁
𝜈
(︁
𝛿
)︁)︁

or equivalently
− ln(1− 𝑝) ≥ 𝑐𝑛𝛿(𝑝)2 − ln(𝜈(𝛿(𝑝))).

Since 𝛿(𝑝) ≥ 0 is increasing and − ln(𝜈(𝛿(𝑝)))
𝑝→1−−−→ 0, the second term in the above sum becomes negligible

for large 𝑝. This yields 𝛿(𝑝) . 𝑛−1/2, from which follows that 𝑒𝑛 .
(︀
1 + 𝑛−1/2

)︀
𝑒. Hence, if RIP𝐴(𝛿) holds for

some 𝛿 ≤ 1√
2
, one can expect a rate of convergence that is reminiscent of the convergence rates for classical

Monte Carlo quadrature. We can use this observation as an indicator for when RIP𝐴(𝛿) is attained. To do this
we select a test set of 𝑛′ samples and observe the test set error 𝑒𝑛 := ‖𝑢− 𝑢M,𝑛‖𝑛′ as the number of samples 𝑛
is increased. When 𝑒𝑛 begins to decrease with an algebraic rate of (1 + 𝑛−𝑟) we take this as an indication that
RIP𝐴(𝛿) is satisfied and that additional sampling is unnecessary. This is illustrated in Figure 1.

Remark 2.16 (Reconstruction with noise). Consider the randomly perturbed seminorm |𝑣|𝑦 + 𝜂𝑦 where 𝜂𝑦

is a centered random process satisfying the bound 𝑤(𝑦)𝜂2
𝑦 ≤ 1

4 (1− 𝛿)𝜀2 for some 𝜀 > 0 and 𝛿 ∈ (0, 1). This
seminorm induces the perturbed empirical norm

‖𝑣‖𝜂,𝑛 :=

(︃
1
𝑛

𝑛∑︁
𝑖=1

𝑤(𝑦𝑖)
(︁
|𝑣|𝑦𝑖

+ 𝜂𝑦𝑖

)︁2
)︃1/2

and the perturbed empirical best approximation

𝑢M,𝑛,𝜂 ∈ arg min
𝑣∈M

‖𝑢− 𝑣‖𝜂,𝑛.

Assume that RIP{𝑢M}−M(𝛿) holds. Then

‖𝑢M − 𝑢M,𝑛,𝜂‖ ≤ 2
1√

1− 𝛿
‖𝑢− 𝑢M‖𝑤,∞ + 𝜀.

If in addition RIP{𝑢−𝑢M}(𝛿) is satisfied then

‖𝑢M − 𝑢M,𝑛,𝜂‖ ≤ 2

√︂
1 + 𝛿

1− 𝛿
‖𝑢− 𝑢M‖+ 𝜀.
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Figure 1. Let V = 𝐿2
(︀
[−1, 1], d𝑥

2

)︀
, 𝑤 ≡ 1 and M be the model space of polynomials of degree

less than 𝑚 = 10. Let moreover 𝐴, 𝑒𝑛 and 𝑒 be defined as in Remark 2.15. Depicted is the
distribution of the random variable 𝑒𝑛/𝑒−1 for different values of 𝑛 and a synthetic (but fixed)
function 𝑢. The hatched area on the left marks a range of 𝑛 where the approximation problem
is underdetermined and any error can be reached. When 𝑛 ≥ 𝑚 the approximation problem
has a unique solution in the least squares sense. From this point until the gray and dashed line,
an exponential decay of the error can be observed. This decay results from the exponentially
fast convergence of the probability for RIP𝐴(𝛿) w.r.t. 𝑛. From there on, RIP𝐴(𝛿) holds with a
high probability and the error decays with a rate of 𝑛−1. Remark 2.15 predicts a rate of 𝑛−1/2

but the condition 𝑒𝑛 ≤ 𝑐(1 + 𝑛−𝑟) is satisfied for 𝑐 = 𝑟 = 1. This faster decay can be explained
by the fact that for the linear space M the bounds in the proof of Theorem 2.8 are suboptimal
(see Example 3.1).

Remark 2.17. A generalization of Theorem 2.12 also holds for the residual minimization problem

𝑣M ∈ arg min
𝑣∈M

‖𝑢− 𝐿𝑣‖ and 𝑣M,𝑛 ∈ arg min
𝑣∈M

‖𝑢− 𝐿𝑣‖𝑛,

since, whenever RIP{𝑢}−𝐿M(𝛿) and RIP{𝑢−𝐿𝑣M}(𝛿) hold, we can estimate

‖𝑢− 𝐿𝑣M,𝑛‖ . ‖𝑢− 𝐿𝑣M,𝑛‖𝑛 ≤ ‖𝑢− 𝐿𝑣M‖𝑛 . ‖𝑢− 𝐿𝑣M‖.

This means that the present theory can treat residual minimization problems by considering the RIP for the
transformed model class 𝐿M. An important application of such a problem arises in medical imaging and is
briefly discussed in Example 4.3.

3. Examples and numerical illustrations

In this section, we examine some exemplary model classes to which the developed theory can be applied.
More specifically, we consider linear spaces, sparse vectors and tensors of fixed rank. The following theorem is
central to the further considerations.

Theorem 3.1. Let V be a separable vector space and 𝐴 ⊆V. Then the pointwise supremum 𝑏̂(𝑦) := sup𝑣∈𝐴|𝑣|
2
𝑦

with respect to 𝑦 ∈ 𝑌 is measurable and for any weight function 𝑤

𝐾(𝐴) =
⃦⃦⃦
𝑤𝑏̂
⃦⃦⃦

𝐿∞(𝑌,𝜌)
.



CONVERGENCE BOUNDS FOR EMPIRICAL NONLINEAR LEAST-SQUARES 87

If 𝐴 is ‖∙‖-bounded, 𝐾(𝐴) is finite, and 𝑏̂ > 0 is almost surely positive, then

𝐾(𝐴) ≥
⃦⃦⃦
𝑏̂
⃦⃦⃦

𝐿1(𝑌,𝜌)
,

where the lower bound is attained by the weight function 𝑤 =
⃦⃦⃦
𝑏̂
⃦⃦⃦

𝐿1(𝑌,𝜌)
𝑏̂−1.

Proof. See Appendix B. �

This theorem allows to analyse the seminorm and the model class independently from the choice of weight
function which can be chosen optimally when these first two parameters are fixed.

3.1. Linear spaces

Consider an 𝑚-dimensional linear subspace V𝑚 ⊆V := 𝐿2(𝑌, 𝜌) spanned by the orthonormal basis {B𝑗}𝑗∈[𝑚].

Recall that Theorem 3.1 implies 𝐾(𝑈(V𝑚)) =
⃦⃦⃦
𝑤𝑏̂
⃦⃦⃦

𝐿∞(𝑌,𝜌)
where

𝑏̂(𝑦) = sup
𝑣∈V𝑚

‖𝑣‖=1

|𝑣(𝑦)|2 = sup
v∈R𝑚

‖v‖2=1

|B(𝑦)ᵀv|2 = ‖B(𝑦)‖22.

Here, the second equality follows by orthonormality and the third by the Cauchy–Schwarz inequality. From this,
Theorem 3.1 implies

𝐾(𝑈(V𝑚)) ≥
⃦⃦⃦
𝑏̂
⃦⃦⃦

𝐿1(𝑌,𝜌)
= 𝑚 (3.1)

where the optimal weight function is given by 𝑤(𝑦) := 𝑚‖𝐵(𝑦)‖−2
2 . Note that this observation was already

reported in [14].
Using the fact that ‖𝑣‖ ≤ ‖𝑣‖𝑤,∞ ≤

√
𝐾‖𝑣‖, we obtain

𝜈‖∙‖𝑤,∞
(𝑈(V𝑚), 𝑟) ≤ 𝜈‖∙‖

(︂
𝑈(V𝑚),

𝑟√
𝐾

)︂
≤
(︂

𝑟

2
√
𝐾𝑚

)︂−𝑚

.

Corollary 2.9 then bounds the sample complexity of this model class by

𝑛 ≥ 2
(︂
𝑚 ln

(︂
8𝑚3/2

𝛿

)︂
− ln

(︁𝑝
2

)︁)︂(︁𝑚
𝛿

)︁2

∈ O
(︀
𝑚3 ln(𝑚)

)︀
,

when the optimal weight function is used. Although our approach is more general the resulting asymptotic bound
differs only by a factor of 𝑚2 from the bound 𝑛 ∈ O(𝑚 ln(𝑚)) provided in [14]. The near optimal bound in [14]
is obtained by using tighter concentration inequalities (cf. [42]) when bounding the probability of RIPV𝑚

(𝛿) in
Theorem 1.1.

Remark 3.2. When the sampling density cannot be changed, the variation constant can also be used to guide
the choice of a suitable model class. For linear spaces this section shows that an optimal model space is spanned
by an orthonormal basis for which the basis functions are bounded by 1. Such spaces are characterized in [30]
and a prime example is the Fourier basis of 𝐿2

(︀
[−1, 1], d𝑥

2 ; C
)︀
.
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3.2. Sets of sparse functions

In this section we follow the ideas of [39] and consider spaces with weighted sparsity constraints. For any
sequence 𝜔 ∈ RN

≥0 and any subset 𝑆 ⊆ N, define a weighted cardinality and a weighted ℓ0-seminorm by

𝜔(𝑆) :=
∑︁
𝑗∈𝑆

𝜔2
𝑗 and ‖v‖𝜔,0 := 𝜔(supp(v)).

Observe that 𝜔 ⪯ 𝜔̃ (i.e. 𝜔𝑗 ≤ 𝜔̃𝑗 for all 𝑗) implies 𝜔(𝑆) ≤ 𝜔̃(𝑆) and that 𝜔(𝑆) = |𝑆| for 𝜔 ≡ 1.
Let in the following {B𝑗}𝑗∈N be a fixed orthonormal basis for V := 𝐿2(𝑌, 𝜌), fix a weight function 𝑤 and

define the model set
M𝜔,𝑠 :=

{︁
𝑣 ∈V : ‖v‖𝜔,0 ≤ 𝑠

}︁
,

where v denotes the coefficient vector of 𝑣 ∈V with respect to the basis {B𝑗}𝑗∈N.

Lemma 3.3. It holds that

– M𝜔̃,𝑠 ⊆M𝜔,𝑠 for 𝜔 ⪯ 𝜔̃,
– M𝜔,𝑠 ⊆M𝜔,𝑡 for 𝑠 ≤ 𝑡,
– M𝜔,𝑠 = −M𝜔,𝑠 and
– M𝜔,𝑠 + M𝜔,𝑡 ⊆M𝜔,𝑠+𝑡.

Moreover, if 𝜔𝑗 ≥ ‖B𝑗‖𝑤,∞ for all 𝑗 then ‖𝑣‖𝑤,∞ ≤
√
𝑠‖𝑣‖ for all 𝑣 ∈M𝜔,𝑠.

Proof. The first four assertions are trivial. To prove the last one, let 𝑣 ∈M𝜔,𝑠. Using the triangle inequality and
𝜔𝑗 ≥ ‖B𝑗‖𝑤,∞, we obtain

‖𝑣‖𝑤,∞ ≤
∞∑︁

𝑗=1

|v𝑗 |‖B𝑗‖𝑤,∞ ≤
∞∑︁

𝑗=1

|v𝑗 |𝜔𝑗 =
∑︁

𝑗∈supp(v)

|v𝑗 |𝜔𝑗 .

The Cauchy–Schwarz inequality, ‖v‖𝜔,0 ≤ 𝑠 and the orthonormality of B yield

‖𝑣‖𝑤,∞ ≤ ‖v‖2
√︃ ∑︁

𝑗∈supp(v)

𝜔2
𝑗 = ‖v‖2

√︁
‖v‖𝜔,0 ≤ ‖𝑣‖

√
𝑠. �

Lemma 3.4. Let 𝑐(𝜔,𝑤) := sup𝑗∈N
‖B𝑗‖𝑤,∞

𝜔𝑗
. Then

𝐾(𝑈(M𝜔,𝑠)) ≤ 𝑐(𝜔,𝑤)2𝑠.

Proof. First, observe that M𝜔,𝑠 = M𝑐𝜔,𝑐2𝑠 for any 𝑐 > 0. Since 𝑐(𝜔,𝑤)𝜔𝑗 ≥ ‖B𝑗‖𝑤,∞ for all 𝑗 ∈ N, the claim
follows directly from Lemma 3.3. �

This setting also incorporates the standard sparsity class M1,𝑘 ∩V𝑚 where 1 = (1, 1, . . .) and V𝑚 is the 𝑚-
dimensional space spanned by {B𝑗}𝑗∈[𝑚]. To see this, define for any arbitrary sequence 𝜔 ∈ RN

≥0 the restricted
sequence 𝜔≤𝑚 by

𝜔≤𝑚
𝑗 :=

{︃
𝜔𝑗 𝑗 ≤ 𝑚

∞ otherwise

and observe that M1,𝑘 ∩V𝑚 = M1≤𝑚,𝑘.
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Remark 3.5. Consider the standard sparsity class M1,𝑘 ∩V𝑑𝑀 , where V𝑑𝑀 = Ṽ⊗𝑀
𝑑 and 𝑤 = 𝑤̃⊗𝑀 both have

product structure. If Ṽ𝑑 is spanned by the basis
{︁
B̃𝑗

}︁
𝑗∈[𝑑]

, as is common e.g. in polynomial regression, then

𝑐
(︁
1≤𝑑𝑀

, 𝑤
)︁

=
(︂

max
𝑗∈[𝑑]

⃦⃦⃦
B̃𝑗

⃦⃦⃦
𝑤̃,∞

)︂𝑀

.

This means that 𝐾(𝑈(M1,𝑘 ∩V𝑑𝑀 )) grows exponentially with 𝑀 , which limits the applicability of classical
isotropic sparsity in high-dimensional settings.

Lemma 3.6. Let V𝑚 be the 𝑚-dimensional subspace spanned by {B𝑗}𝑗∈[𝑚]. Then there exists 𝐶 > 0 such that

𝜈‖∙‖𝑤,∞
(𝑈(M𝜔,𝑠 ∩V𝑚), 𝑟) ≤

(︂
𝐶𝑚

𝑟
√

𝑐(𝜔≤𝑚,𝑤)2𝑠

)︂𝑐(𝜔≤𝑚,𝑤)2
𝑠

.

Proof. Since M𝜔,𝑠 = M𝑐𝜔,𝑐2𝑠 for any 𝑐 > 0, it suffices to consider the case 𝑐
(︀
𝜔≤𝑚, 𝑤

)︀
= 1, i.e. 𝜔𝑗 ≥ ‖B𝑗‖𝑤,∞

for all 𝑗 ∈ [𝑚]. In this case, we show that

𝜈‖∙‖𝑤,∞
(𝑈(M𝜔,𝑠 ∩V𝑚), 𝑟) ≤ 𝜈‖∙‖

(︂
𝑈(M𝜔,𝑠 ∩V𝑚),

𝑟√
2𝑠

)︂
≤
(︁

𝐶𝑚
𝑟
√

𝑠

)︁𝑠

·

For the first step, let {𝑣𝑗} be the centers of a ‖∙‖-covering of 𝑈(M𝜔,𝑠 ∩V𝑚) with radius 𝑟√
2𝑠

. Thus, for any
𝑣 ∈ 𝑈(M𝜔,𝑠 ∩V𝑚) there exists 𝑣𝑗 such that ‖𝑣 − 𝑣𝑗‖ ≤ 𝑟√

2𝑠
. Since 𝑣 − 𝑣𝑗 ∈M𝜔,2𝑠 and by Lemma 3.3,

‖𝑣 − 𝑣𝑗‖𝑤,∞ ≤
√

2𝑠‖𝑣 − 𝑣𝑗‖ ≤ 𝑟.

This implies that {𝑣𝑗} are also the centers of an ‖∙‖𝑤,∞-covering with radius 𝑟.
For the second step, observe that M𝜔,𝑠 ⊆M1,𝑠 = M1,⌊𝑠⌋. Since (V𝑚, ‖∙‖) ≃ (R𝑚, ‖∙‖2) it remains to compute

the covering number for the unit sphere of ⌊𝑠⌋-sparse vectors in R𝑚. A bound for this is given in [44] by

𝜈‖∙‖2

(︂
𝑆R𝑚

1 (0) ∩M1,⌊𝑠⌋,
𝑟√
2𝑠

)︂
≤

(︃
𝐶𝑚

√
2𝑠

𝑟⌊𝑠⌋

)︃⌊𝑠⌋
≤
(︂

4𝐶𝑚
𝑟
√
𝑠

)︂𝑠

·

This proves the claim. �

Theorem 3.7. Let V𝑚 be the 𝑚-dimensional subspace spanned by {B𝑗}𝑗∈[𝑚]. Then there exists 𝐶 > 0 such
that

P
[︀
RIPM𝜔,𝑠∩V𝑚

(𝛿)
]︀
≥ 1− 2 exp

(︂
𝑐
(︀
𝜔≤𝑚, 𝑤

)︀2
𝑠 ln
(︀

8𝐶𝑚
𝛿

)︀
− 𝑛

2

(︁
𝛿

𝑐(𝜔≤𝑚,𝑤)2𝑠

)︁2
)︂
·

Proof. The assertion follows directly from Theorem 2.8 together with Lemmas 3.4 and 3.6. �

Remark 3.8. Assuming 𝜔𝑗 ≥ ‖B𝑗‖𝑤,∞ for all 𝑗 ∈ [𝑚], Theorem 3.7 implies that

𝑛 & 𝑠2(𝑠 ln(𝑚)− 𝑠 ln(𝛿)− ln(1− 𝑝))𝛿−2.

samples are sufficient to satisfy RIPM𝜔,𝑠∩V𝑚
(𝛿) with probability 1−𝑝. This result can be compared with Theorem

5.2 in [39] where

𝑛 & 𝑠max
{︀

ln3(𝑠) ln(𝑚), ln
(︀
𝑝−1
)︀}︀
𝛿−2

or Theorems 4.4 and 8.4 in [38] where

𝑛 & 𝑠max
{︀

ln2(𝑠) ln(𝑚) ln(𝑛), ln
(︀
𝑝−1
)︀}︀
𝛿−2𝑐

(︀
1≤𝑚, 𝑤

)︀2
.

Since our theory is very general, we cannot expect our bound to be as strong as these specialized bounds. This
comparison, however, shows that our bound remains qualitatively similar up to polynomial factors.
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Example 3.9. Consider the basis of tensorized Legendre polynomials Bj =
⨂︀𝑀

𝑚=1 Lj𝑚 and define the linear

space V𝑚 in Theorem 3.7 as V𝑚 := span
{︁
Bj : 𝜔2

j ≤ 𝑠
}︁

. Then the bound in Theorem 3.7 depends on the
parameter 𝑠 alone since the size of the hyperbolic cross

{︀
j ∈ N𝑀 : 𝜔2

j ≤ 𝑠
}︀
⊆

{︃
j ∈ N𝑀 :

𝑀∏︁
𝑚=1

(2j𝑚 + 1) ≤ 𝑠

}︃

can be bounded by 𝑚 . 𝑠 log(𝑠)𝑀−1 (cf. [39]).

For a fixed basis {B𝑗}𝑗∈N and weight sequence 𝜔, the coefficient 𝑐(𝜔,𝑤), defined in Lemma 3.4, depends only
on the weight function 𝑤. Theorem 3.7 indicates that the probability of RIPM𝜔,𝑠∩V𝑚(𝛿) is maximized when

𝑐
(︀
𝜔≤𝑚, 𝑤

)︀2
= sup

𝑦∈𝑌
𝑤(𝑦) max

𝑗∈[𝑚]

|B𝑗 |2𝑦
𝜔2

𝑗

=: sup
𝑦∈𝑌

𝑤(𝑦)𝑏̃(𝑦) =
⃦⃦⃦
𝑤𝑏̃
⃦⃦⃦

𝐿∞(𝑌,𝜌)

is minimized. From Theorem 3.1 we know that the minimum
⃦⃦⃦
𝑤𝑏̃
⃦⃦⃦

𝐿∞(𝑌,𝜌)
=
⃦⃦⃦
𝑏̃
⃦⃦⃦

𝐿1(𝑌,𝜌)
is attained for the

weight function 𝑤̃ =
⃦⃦⃦
𝑏̃
⃦⃦⃦

𝐿1(𝑌,𝜌)
𝑏̃−1. Numerical experiments that compare different weight sequences 𝜔 and

weight functions 𝑤 are provided in Figure 2.
We finally note, that the theory presented in this subsection can be generalized easily to dictionary learning

(cf. [19, 29]). This is stated, without proof, in the following theorem.

Theorem 3.10. Assume that {B𝑗}𝑗∈N is a Riesz sequence satisfying

𝑐‖v‖22 ≤
⃦⃦⃦∑︁

𝑗∈N
v𝑗B𝑗

⃦⃦⃦2

≤ 𝐶‖v‖22

and that 𝜔 is chosen such that 𝜔𝑗 ≥ ‖B𝑗‖ for all 𝑗. Redefine

M𝜔,𝑠 :=

⎧⎨⎩𝑣 ∈V : ∃v s.t. 𝑣 =
∞∑︁

𝑗=1

v𝑗B𝑗 ∧ ‖v‖𝜔,0 ≤ 𝑠

⎫⎬⎭
and let V𝑚 ⊂V be the 𝑚-dimensional subspace spanned by {B𝑗}𝑗∈[𝑚]. Then it holds, that

– M𝜔̃,𝑠 ⊆M𝜔,𝑠 for 𝜔 ⪯ 𝜔̃,
– M𝜔,𝑠 ⊆M𝜔,𝑡 for 𝑠 ≤ 𝑡,
– M𝜔,𝑠 = −M𝜔,𝑠,
– M𝜔,𝑠 + M𝜔,𝑡 ⊆M𝜔,𝑠+𝑡,
– ‖𝑣‖𝑤,∞ ≤

√
𝑠

𝑐 ‖𝑣‖ for all 𝑣 ∈M𝜔,𝑠 and

– 𝜈‖∙‖𝑤,∞
(𝑈(M𝜔,𝑠 ∩V𝑚), 𝑟) ≤

(︁
𝑘 𝐶𝑚

𝑐𝑟
√

𝑠

)︁𝑠

for some 𝑘 > 0.

3.3. Tensors of rank 𝑟

We now consider two different problems related to model classes of low-rank tensors. Both can be expressed
with 𝑌 = (R𝑚)⊗𝑀 and V = (𝑌, ‖∙‖) with |𝑣|𝑦 := |(𝑣, 𝑦)Fro|. The only difference is the distribution 𝜌 from
which the samples are drawn.

(1) Recovery from Gausian samples. In this problem 𝜌 = N(0𝑌 , Id𝑌 ) is a Gaussian distribution on the tensor
space 𝑌 and ‖∙‖ = ‖∙‖Fro. Although this problem is rather artificial it was one of the first where rigorous
bounds were developed in [40].
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Figure 2. Interpolations of the function 𝑓(𝑥) = 1
1+25𝑥2 (red) by Legendre polynomials of

degree 99, using six different methods. Depicted is the probability distribution of the function
values for an interpolation that uses 𝑛 = 30 random sampling points. The subfigures 2a and 2b
show standard least squares approximations of the first 30 and 15 basis functions, respectively.
The other figures employ the weighted ℓ1-minimization minv∈R100 ‖Ωv‖1 s.t. vᵀB(𝑦𝑖) =
𝑓(𝑥𝑖) for 1 ≤ 𝑖 ≤ 𝑛, with Ω := diag(𝜔). For 2c and 2d, the sampling points are drawn
according to the uniform measure on [−1, 1]. For 2e and 2f, the sampling points are drawn
according to the measure induced by 𝑏̃. Subplots 2c and 2e display the results of standard
ℓ1-minimization (i.e. 𝜔𝑗 = 1) while 2d and 2f display the results of weighted ℓ1-minimization
(i.e. 𝜔𝑗 = ‖B𝑗‖𝐿∞). (a) Exact inversion, mean error: 2 × 107. (b) Least squares, mean error:
3×102. (c) Standard ℓ1, unweighted samples, mean error: 6×10−1. (d) Weighted ℓ1, unweighted
samples, mean error: 5 × 10−1. (e) Standard ℓ1, weighted samples, mean error: 3 × 10−1. (f)
Weighted ℓ1, weighted samples, mean error: 8× 10−2.

(2) Recovery from rank-1 samples and completion. For this problem let {𝜌𝑘}𝑘∈[𝑀 ] be distributions on R𝑚 and
consider the push-forward of 𝜌 = 𝜌1 ⊗ · · · ⊗ 𝜌𝑀 through the tensor product map. This means, that every
realization (𝑦1, . . . , 𝑦𝑀 ) ∼ 𝜌 is mapped to the tensor product 𝑦1⊗· · ·⊗𝑦𝑀 . This problem occurs for example
whenever one tries to approximate a low-rank function of 𝑀 variables using a tensor product basis. A special
case of this setting is the problem of tensor completion where a tensor has to be recovered from a few of its
entries. In this case, all distributions 𝜌𝑘 are discrete measures on the standard basis vectors.

In both problems the task is to find a best approximation in a subset T𝑟 ⊆V of bounded rank 𝑟. For tensors,
however, there exist many different concepts of rank for which we refer to [4, 24, 27, 28] and the works cited
below.
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Recovery from Gaussian samples

In this section we consider a subset T𝑟 ⊆ V of tensors of bounded (Hierarchical Tucker) HT-rank 𝑟. For
𝑤 ≡ 1 the following bound for the sample complexity subject to 𝛿 is given in Theorem 2 of [40],

𝑛 & max
{︀(︀

(𝑀 − 1)𝑟3 +𝑀𝑚𝑟
)︀

ln(𝑀𝑟), ln
(︀
𝑝−1
)︀}︀
𝛿−2.

To obtain a sample bound from our theory, we would have to bound the variation constant, which however
is infinity,

𝐾(𝑈(T𝑟)) = sup
𝑣∈T𝑟

‖𝑣‖=1

ess sup
𝑦∈𝑌

|(𝑣, 𝑦)Fro|
2 = ∞.

This shows that a direct application of the presented formalism to this problem cannot provide a finite sample
complexity.

Remark 3.11. As above, this exposes the lacking sharpness of the results used in the proof of Theorem 2.8.
With more refined concentration inequalities as in [18], a different definition of the variation constant would
emerge (replacing ‖∙‖𝑤,∞ by a sub-Gaussian norm), which would be finite for this problem.

The present theory can deal with this problem in two different ways. The first option is to choose the weight
function 𝑤(𝑦) = 𝑚𝑀‖𝑦‖−2

Fro, which yields the variation constant

𝐾(𝑈(T𝑟)) = 𝑚𝑀 sup
𝑣∈T𝑟

‖𝑣‖=1

ess sup
𝑦∈𝑌
‖𝑦‖=1

|(𝑣, 𝑦)Fro|
2 = 𝑚𝑀 ,

where the final equality holds since ‖∙‖ = ‖∙‖Fro. The second option is to normalize the samples and thereby
replace the Gaussian distribution by a uniform distribution on the unit sphere. In this case we obtain the new
identity ‖∙‖ = 𝑚−𝑀/2‖∙‖Fro and the corresponding variation constant

𝐾(𝑈(T𝑟)) = 𝑚𝑀 sup
𝑣∈T𝑟

‖𝑣‖=1

ess sup
𝑦∈𝑌
‖𝑦‖=1

|(𝑣, 𝑦)Fro|
2 = 𝑚𝑀 .

In both cases 𝐾(𝑈(T𝑟)) = 𝐾(𝑈(V)). Let 𝑘 =
√︀
𝐾(𝑈(T2𝑟)). By using the bound ‖∙‖𝑤,∞ ≤ 𝑘‖∙‖ on T2𝑟 we can

utilize the bound for the covering number for tensors of HT-rank 𝑟 that is provided in [40]. This leads to the
estimate

𝜈‖∙‖𝑤,∞
(𝑈(T𝑟), 𝜀) ≤ 𝜈‖∙‖

(︁
𝑈(T𝑟),

𝜀

𝑘

)︁
≤
(︂

𝜀

3(2𝑀 − 1)
√
𝑟𝑘

)︂−(𝑀𝑟3+𝑀𝑚𝑟)
.

A subsequent application of Corollary 2.9 yields

𝑛 ≥ 2
(︁(︀
𝑀𝑟3 +𝑀𝑚𝑟

)︀
ln
(︀
3(2𝑀 − 1)

√
𝑟𝑘𝛿−1

)︀
− ln

(︁𝑝
2

)︁)︁(︂𝑘2

𝛿

)︂2

·

For 𝑘 = 1 this would have the same asymptotic complexity as the bound in [40] and we conjecture that the
transition 𝑘 = 𝑚𝑀/2 ; 𝑘 = 1 can be achieved by using a generic chaining argument (cf. [18]) rather than a
simple Hoeffding bound in the proof of Theorem 2.8.

Recovery from rank-1 samples and completion

In this section we consider subsets T𝑟 ⊆V of rank-𝑟 tensors for any rank concept that satisfies T1 ⊆ T𝑟. This
is the case for all tree-shaped tensor formats including the Tucker format, the tensor train (TT) format and
general hierarchical tensor formats (HT) as well as the canonical polyadic decomposition (CP). For the sake of
completeness we define

T1 := {𝑣 ∈V : v = v1 ⊗ · · · ⊗ v𝑀 with v1, . . . ,v𝑀 ∈ R𝑚}.

The variation constant for the set T𝑟 is computed in the next theorem.
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Theorem 3.12. 𝐾(𝑈(T𝑟)) = 𝐾(𝑈(V)) for any weight function 𝑤.

Proof. Observe that

𝑏̂𝑈(V)(𝑦) = sup
𝑣∈V
‖𝑣‖=1

|(𝑣, 𝑦)Fro|
2 =

⃒⃒⃒(︁
𝑦
‖𝑦‖ , 𝑦

)︁
Fro

⃒⃒⃒2
=
‖𝑦‖4Fro

‖𝑦‖2
·

Moreover, if 𝑦 is of rank 1, then

𝑏̂𝑈(T1)(𝑦) = sup
𝑣∈T1
‖𝑣‖=1

|(𝑣, 𝑦)Fro|
2 =

⃒⃒⃒(︁
𝑦
‖𝑦‖ , 𝑦

)︁
Fro

⃒⃒⃒2
=
‖𝑦‖4Fro

‖𝑦‖2
·

Since the measure 𝜌 is supported only on the set T1, we deduce, using Theorem 3.1, that 𝐾(𝑈(T1)) = 𝐾(𝑈(V)).
This proves the assertion since T1 ⊆ T𝑟 ⊆ (R𝑚)⊗𝑀 implies 𝐾(𝑈(T1)) ≤ 𝐾(𝑈(T𝑟)) ≤ 𝐾(𝑈(V)). �

The theorem states that tensor formats do not exhibit a smaller variation constant than the linear space they
are embedded in. This result is surprising at first because tensor formats have a significantly smaller covering
number than the full tensor space, cf. [40]. However, this is already indicated by the classical analysis of matrix
completion from which it is known that the notion of incoherence is required in addition to a low-rank property.

Despite this unfavourable result, it is noteworthy that the present theory can be used in this setting. The
bound ‖∙‖𝑤,∞ ≤

√︀
𝐾(𝑈(T2𝑟))‖∙‖ and the isometry ‖∙‖ = ‖∙‖Fro imply

𝜈‖∙‖𝑤,∞
(𝑈(T𝑟), 𝜀) ≤ 𝜈‖∙‖Fro

(︃
𝑈(T𝑟),

𝜀√︀
𝐾(𝑈(T2𝑟))

)︃
·

Assuming the weight function 𝑤 is chosen optimally, we know from Theorem 3.12 and equation (3.1) that
𝐾(𝑈(T2𝑟)) = 𝑚𝑀 . We can now apply the bound for the covering number of tensors of HT-rank 𝑟 from [40].
The resulting estimate reads

𝜈‖∙‖𝑤,∞
(𝑈(T𝑟), 𝜀) ≤

(︃
𝜀

3(2𝑀 − 1)
√
𝑟𝑚𝑀

)︃−(𝑀𝑟3+𝑀𝑚𝑟)
·

A final application of Corollary 2.9 yields

𝑛 ≥ 2
(︁(︀
𝑀𝑟3 +𝑀𝑚𝑟

)︀
ln
(︁

3(2𝑀 − 1)
√
𝑟𝑚𝑀𝛿−1

)︁
− ln

(︁𝑝
2

)︁)︁(︂𝑚𝑀

𝛿

)︂2

·

To the knowledge of the authors this is the first estimate of the number of samples that are necessary to satisfy
RIPT𝑟

(𝛿) in this setting. Note that this is a worst-case estimate and that significantly less samples are needed
in practice (cf. [20]).

In the following examples we discuss the application to two common classes of problems.

Example 3.13. In this example we consider the problem of recovering the low-rank coefficient tensor of a
function from samples. Let 𝜋𝑚 be a probability measure on 𝑍𝑚 and W𝑚 ⊆ 𝐿2(𝑍𝑚, 𝜋𝑚) be spanned by the 𝑑𝑚

orthonormal basis functions {B𝑚,𝑗}𝑗∈[𝑑𝑚]. Now define the product space W := W⊗𝑀
𝑚 ⊆ 𝐿2(𝑍, 𝜋) with 𝑍 := 𝑍𝑀

𝑚

and 𝜋 := 𝜋⊗𝑀
𝑚 and endow it with the seminorm †𝑤†𝑧 := |𝑤(𝑧)|. For the sake of simplicity we assume that the

weight function is constant, which means that writing 𝑤 ∈W does not introduce a conflict of notation. This is
the space in which the sought functions will live and it shall be approximated in the norm ††∙†† := ‖∙‖𝐿2(𝑍,𝜋).
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As a model class consider the set TW
𝑟 ⊆ W of functions with a coefficient tensor of rank 𝑟. Note that every

𝑤 ∈ TW
𝑟 can be represented in the tensor product basis Bj(𝑧) :=

∏︀𝑀
𝑘=1 B𝑚,j𝑘(𝑧𝑘) as

𝑤(𝑧) =
∑︁

j∈N𝑀

wjBj(𝑧)

with a coefficient tensors w ∈ TV
𝑟 := T𝑟.

To compute the variation constant of this model class, recall the definition of V = (𝑌, ‖∙‖), 𝑌 = (R𝑚)⊗𝑀

and |𝑣|𝑦 = |(𝑣, 𝑦)Fro| from above. Note that each function 𝑤 ∈ W corresponds uniquely to a coefficient tensor
w ∈V and that the mapping B : 𝑍 → 𝑌 given by (B(𝑧))j := Bj(𝑧) induces an isometry of seminorms

†𝑤†𝑧 = |𝑤(𝑧)| = |(w,B(𝑧))Fro| = |w|B(𝑧).

This means that, if we choose 𝜌 as the pushforward measure 𝜌 := B*𝜋, the isometry of seminorms induces the
isometry of the two norms

‖w‖ =
(︂ˆ

𝑌

|w|2𝑦 d𝜌(𝑦)
)︂1/2

=
(︂ˆ

𝑍

†𝑤†2𝑧 d𝜋(𝑧)
)︂1/2

= ††𝑤††

and

‖w‖1,∞ = ess sup
𝑦∈𝑌

|w|𝑦 = ess sup
𝑧∈𝑍

†𝑤†𝑧 =: ††𝑤††1,∞.

Together with Theorems 3.12 and 3.1 it follows that

𝐾
(︀
𝑈
(︀
TW

𝑟

)︀)︀
= 𝐾

(︀
𝑈
(︀
TV

𝑟

)︀)︀
= 𝐾(𝑈(V)) ≥ 𝑚𝑀 .

This shows that the variation constant for this problem grows exponentially with 𝑀 .

Example 3.14. The problem of tensor completion can be considered as a special case of Example 3.13. In
this setting 𝑍 = [𝑚]𝑀 is the set of all multi-indices, 𝜋 = U(𝑍) is a uniform distribution on 𝑍 and W =(︁

(R𝑚)⊗𝑀
, ‖∙‖Fro

)︁
is endowed with the semi-norm †𝑤†𝑧 := 𝑚𝑀 |𝑤𝑧|. Since this is a special case of Example 3.13

the model class of rank-𝑟 tensors T𝑟 exhibits the same bound, namely 𝐾(𝑈(T𝑟)) = 𝐾(𝑈(W)) ≥ 𝑚𝑀 .

These two examples show that 𝐾(𝑈(T𝑟)) ≥ 𝑚𝑀 in important applications. To reduce the variation constant
in these cases we can only intersect T𝑟 with another model class M with low variation constant. The intersection
then inherits the low covering number of T𝑟 and the low variation constant of M.

4. Dependence on the seminorm

Since the definition of the ‖∙‖-norm is very general, our theory is not limited to the 𝐿2-norm but extends
to Sobolev or energy norms. It is therefore natural to ask how the choice of the semi-norm |∙|𝑦 influences the
variation constant. In this section we investigate this influence using Sobolev norms as an example.

We will need the following generalization of reproducing kernel Hilbert spaces (GRKHS) as a tool for the
analysis.

Definition 4.1 (Generalized Reproducing Kernel Hilbert Space). Let H ⊆V and {𝐿𝑦}𝑦∈𝑌 ⊆L
(︀
H,Rℓ

)︀
be a

family of bounded linear operators. Then the pair
(︁
H, {𝐿𝑦}𝑦∈𝑌

)︁
generalizes the concept of reproducing kernel

Hilbert spaces.
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If
(︁
H, {𝐿𝑦}𝑦∈𝑌

)︁
forms a GRKHS and |𝑣|𝑦 := ‖𝐿𝑦𝑣‖2 then

‖𝑣‖𝑤,∞ ≤ κ‖𝑣‖H and 𝐾(𝑈(𝐴)) ≤ κ2𝜆2,

for 𝑣 ∈ 𝐴 ⊆ H with κ := sup𝑦∈𝑌

√︀
𝑤(𝑦)‖𝐿𝑦‖L(H,R𝑙) and 𝜆 := sup𝑣∈𝐴∖{0}

‖𝑣‖H
‖𝑣‖ . This allows to efficiently

compute an upper bound for 𝐾(𝑈(𝐴)).

Remark 4.2. In this setting the application of Theorem 2.12 leads to

‖𝑢− 𝑢M,𝑛‖ . ‖𝑢− 𝑢M‖𝑤,∞ ≤ κ‖𝑢− 𝑢M‖H

whenever RIP{𝑢M}−M(𝛿) holds.

In the following, we consider a linear model space M ⊆ H := 𝐻𝑀 (𝑌 ) with a Lipschitz domain 𝑌 ⊆ R𝑑.
For each 𝑚 ≤ 𝑀 − 𝑑

2 we consider V := 𝐻𝑚(𝑌 ) with |𝑣|𝑦 :=
⃦⃦
𝐿𝑚

𝑦 𝑣
⃦⃦

2
and 𝐿𝑚

𝑦 ∈ L
(︀
H,Rℓ

)︀
defined such that

‖∙‖ = ‖∙‖𝐻𝑚 . This means, that we are searching the best approximation in the model space M with respect to
the 𝐻𝑚-norm. To investigate the influence of 𝑚 on the sample complexity, the upper bound κ2

𝑚𝜆
2
𝑚 for 𝐾(𝑈(M))

depending on 𝑚 has to be computed.
It is proven in Appendix C, that for 𝑤 ≡ 1

κ𝑚 :=
(︀
2
√
𝜋
)︀−𝑑 Γ(𝑀 + 1)Γ

(︀
𝑀 −𝑚− 𝑑

2

)︀
Γ(𝑀 −𝑚)

· (4.1)

Since κ𝑚 increases whith 𝑚, while 𝜆𝑚 decreases, both effects should be equilibrated by a proper choice of 𝑚.
This is illustrated for two different model spaces M in Figure 3. The small effect of κ𝑚 is due to the dimension
𝑑 = 1 for which we can bound (4.1) by

(𝑀 + 1)!
2
√
𝜋

(𝑀 −𝑚)−1/2
< κ𝑚 <

(𝑀 + 1)!
2
√
𝜋

(𝑀 −𝑚− 1)−1/2

via Gautschi’s inequality ([35], Eq. (5.6.4)).
We conclude that for linear model spaces an approximation with respect to the 𝐻𝑚-norm for larger 𝑚 requires

less samples than an approximation with respect to the 𝐿2-norm. For 𝑚 = 1 this hypothesis is confirmed
numerically in Figure 4. For an application in the setting of weighted sparsity we refer to the recent work [2].
Note that this does not have to be the case in general. If the model class contains only piecewise constant
functions then information about the gradients is irrelevant. Such phenomena may also arise due to intricate
properties of the model class and may only be observable by looking at the variation constant.

Also note that the minimization with respect to the𝐻𝑚-norm does not necessarily require more computational
effort than the minimization with respect to the 𝐿2-norm. The values of both seminorms can be computed with
a single evaluation of the Fourier transform 𝑢̂ = F𝑢 of 𝑢. A particularly important application of this setting
is Magnetic Resonance Imaging (MRI). Recalling Remark 2.17, we describe this application in the following
example.

Example 4.3 (MRI). In Magnetic Resonance Imaging an image 𝑢 is sampled via evaluations of its Fourier
transform 𝑢̂ = F𝑢. This means that the samples {𝑢̂𝑖}𝑖∈[𝑛] satisfy 𝑢̂𝑖 = 𝑢̂(𝜔𝑖) for samples of the angular
frequency 𝜔𝑖. The precise distribution of the samples 𝜔𝑖 is given by the problem and is not of particular interest
in this example. Since 𝑢 is an image of the human body, we can assume that it can be sparsely represented in
a wavelet basis (cf. [9, 37]). The MRI reconstruction problem can hence be written as

𝑣M ∈ arg min
𝑣∈M1,𝑘

‖𝑢̂−F𝑣‖,
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Figure 3. The upper bound κ2
𝑚𝜆

2
𝑚 for the variation constant for two different model spaces

M with 𝑌 = [−1, 1] and 𝑀 = 40. The squares and dots represent the bound when 𝐴 is the
span of the first 10 polynomials and trigonometric polynomials, respectively. The optimal 𝑚 is
marked fat and in red.

Figure 4. Probability distributions of the function values for least squares approximations
of the function 𝑓(𝑥) = 1

1+25𝑥2 (red) by Legendre polynomials of degree 29. Different approx-
imations correspond to different random draws of 𝑛 = 40 sampling points from the uniform
measure on [−1, 1]. (a) 𝐿2-least squares, mean error: 2× 107. (b) 𝐻1-least squares, mean error:
5× 105.
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where the seminorm is chosen as |𝑣|𝜔 = |𝑣(𝜔)| and M1,𝑘 is defined with respect to the chosen wavelet basis.
From Remark 2.17 we know that recovery requires RIP{𝑢̂}−FM1,𝑘

(𝛿) and RIP{𝑢̂−F𝑢M}(𝛿), the probabilities of
which can be bounded by Theorem 2.8.

In the following we only compute the variation constant since the Fourier transform is an isometry and does
not change the covering number. Assuming that 𝑢 ∈M1,𝑘, we can estimate

𝐾(𝑈({𝑢̂−F𝑣M})) ≤ 𝐾(𝑈({𝑢̂} −FM1,𝑘)) ≤ 𝐾(𝑈(FM1,2𝑘)).

To evaluate this, let 𝜓 be the mother wavelet and define the daughter wavelets 𝜓𝑎,𝑏(𝑡) = 1√
𝑎
𝜓
(︀

𝑡−𝑏
𝑎

)︀
. Due to

basic properties of the Fourier transform 𝜓𝑎,𝑏(𝜔) := (F𝜓𝑎,𝑏)(𝜔) =
√
𝑎𝜓(𝑎𝜔) exp(−𝑖𝑎𝜔) and since the daughter

wavelets are normalized we obtain

𝐾
(︁
𝑈
(︁⟨
𝜓𝑎,𝑏

⟩)︁)︁
=

⃦⃦⃦
𝜓𝑎,𝑏

⃦⃦⃦2

𝐿∞⃦⃦⃦
𝜓𝑎,𝑏

⃦⃦⃦2

𝐿2

= 𝑎
⃦⃦⃦
𝜓
⃦⃦⃦2

𝐿∞
.

Note that 𝜓 is the Fourier transform of the mother wavelet and therefore
⃦⃦⃦
𝜓
⃦⃦⃦2

𝐿∞
is constant. It can be concluded

that many samples are needed to recover larger scale coefficients but fewer samples for smaller scales. This
suggests a multilevel approach where the small-scale coefficients are learned separately from the large-scale
coefficients. This was already observed in the compressed sensing literature (cf. [3]). Typically, these schemes
use the classical unweighted notion of sparsity. For a recent application of weighted sparsity in the context of
residual minimization in a sparse wavelet representation we refer to [17].

Due to the high variation constant of the large scale coefficients, it is sensible to incorporate as much infor-
mation as possible into this model class. In the spirit of works like [12], this can for example be achieved by
means of manifold constraints. These manifolds can either be estimated for a single patient (cf. [32]) or for
multiple patients when it can be assumed that the large-scale structures remain similar for different patients.
In this way the image 𝑢 is decomposed (approximately) as a sum of a background image modelling the healthy
tissue and a foreground image modelling the pathological lesion.

Note that, if the mother wavelet 𝜓 is differentiable, we can also consider the semi-norm |𝑣|𝜔 :=
√

1 + 𝜔2|𝑣(𝜔)|,
which corresponds to the 𝐻1-norm in the physical domain. Computing the variation constant is however out of
scope for this brief discussion.

5. Discussion

The nonlinear least squares method is probably the easiest and, currently, the most commonly used setting in
machine learning regression. In Section 2 we derive an error bound for the nonlinear least squares estimator (1.1)
that can be used with arbitrary model classes. This result is based on a restricted isometry property (RIP), which
we prove to hold with high probability when the number of samples is sufficiently large.

To put our theory into perspective, we apply it to well-known model classes and compare the results to the
near optimal bounds that often already exist in the literature. In the cases of linear spaces (Sect. 3.1), functions
with sparse representation (Sect. 3.2) and low-rank tensors (Sect. 3.3), we obtain asymptotic bounds which
differ from these near optimal ones by a polynomial factor. This means that our analysis does not provide
optimal complexity bounds when the number of samples should be determined a priori and when sampling
is costly (i.e. when it is imperative to require as few samples as possible). We however assume that a more
meticulous application of modern concentration arguments (like [18]) could close this gap. We also obtain first
bounds for the sample complexity of low-rank tensor recovery in Section 3.3. These bounds, however, only
improve the sample complexity by a logarithmic term in comparison to full-rank tensors. An intuition for this
result is already provided by matrix recovery, where it is known that regularity in the form of incoherence
is needed in addition to the low-rank property. As a first remedy, we suggest to impose additional regularity
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Figure 5. Probability distributions of the function values for empirical approximations of
𝑓(𝑥) = 1

1+𝑐𝑥2 (red) by Legendre polynomials of degree 29. Different approximations correspond
to different random draws of 𝑛 = 100 sampling points from the uniform measure on [−1, 1]. (a)
𝑐 = 5, mean error: 2× 103. (b) 𝑐 = 10, mean error: 2× 105. (c) 𝑐 = 15, mean error: 2× 106.

assumptions on the model class as was done in [22]. We, however, believe that this problem can be handled by
taking the regularity of the sought function 𝑢 into account. Figure 5 provides first numerical evidence in support
of this hypothesis. The model class used for all three experiments is the same and only the regularity of the
function varies. Even though the best approximation error in all three cases is bounded by 10−3, we can observe
how the empirical approximations deteriorate with decreasing regularity. The relative errors for the empirical
approximation increase from 10−2 to 101.

Despite the mentioned limitation, we obtain qualitatively similar results to those that are reported for more
specialized approaches. In particular, this concerns the emergence of an optimal sampling measure in Section 3.1,
the importance of weighted sparsity (rather than standard sparsity) in Section 3.2 and the advantage of multilevel
sampling in Example 4.3. The generality of our theory also allows us to combine these result and derive optimal
weight functions in the setting of weighted sparsity. Since these results rely only on an estimation of the
probability of the RIP, they can be compared to results on weighted ℓ1-minimization and we observe that using
an optimal weight function can improve the quality of the estimate.

In a final section, the dependence of the sample complexity on the seminorm that is used is investigated.
Expectedly, we observe faster convergence when stronger norms are used and provide a theoretical reason for
this effect.

Despite several remaining problems, we believe that this work is a promising first step towards a general
theory for the sample complexity of the nonlinear least squares problem. We also want to emphasise that,
although our discussion is limited to well-known model classes, the developed theory can be applied to arbitrary
model classes which may even be constructed empirically by methods such as manifold learning.

Appendix A. Proof of Lemma 2.7

The proof consists of two steps. In the first step we derive Lemma A.3 to show that there exists 𝜈 ∈ N and
{𝑢𝑗}𝑗∈[𝜈] ⊆ 𝑈(𝐴) such that

P

[︃
sup

𝑢∈𝑈(𝐴)

⃒⃒⃒
‖𝑢‖2 − ‖𝑢‖2𝑛

⃒⃒⃒
> 𝛿

]︃
≤ P

[︂
max

1≤𝑗≤𝜈

⃒⃒⃒
‖𝑢𝑗‖2 − ‖𝑢𝑗‖2𝑛

⃒⃒⃒
> 𝛿

2

]︂
·

Using a union bound argument it follows that

P
[︂

max
1≤𝑗≤𝜈

⃒⃒⃒
‖𝑢𝑗‖2 − ‖𝑢𝑗‖2𝑛

⃒⃒⃒
> 𝛿

2

]︂
≤
∑︁

1≤𝑗≤𝜈

P
[︁⃒⃒⃒
‖𝑢𝑗‖2 − ‖𝑢𝑗‖2𝑛

⃒⃒⃒
> 𝛿

2

]︁
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≤ 𝜈 max
1≤𝑗≤𝜈

P
[︁⃒⃒⃒
‖𝑢𝑗‖2 − ‖𝑢𝑗‖2𝑛

⃒⃒⃒
> 𝛿

2

]︁
·

In the second step we prove Lemma A.5, which allows us to bound the probability

P
[︁⃒⃒⃒
‖𝑢𝑗‖2 − ‖𝑢𝑗‖2𝑛

⃒⃒⃒
> 𝛿

2

]︁
≤ 2 exp

(︁
− 𝛿2𝑛

2𝐾2

)︁
for each 1 ≤ 𝑗 ≤ 𝜈 by a standard concentration inequality. Combining both inequalities yields Lemma 2.7.

In the following we are concerned with proving Lemmas A.3 and A.5 which both rely on properties of the
function ℓ𝑦 : 𝑢 ↦→ 𝑤(𝑦)|𝑢|2𝑦.

Lemma A.1. The function ℓ𝑦 : 𝑢 ↦→ 𝑤(𝑦)|𝑢|2𝑦 has the properties
– |ℓ𝑦(𝑢)| ≤ 𝐾 and
– |ℓ𝑦(𝑢)− ℓ𝑦(𝑣)| ≤ 2

√
𝐾‖𝑢− 𝑣‖𝑤,∞

for all 𝑢, 𝑣 ∈ 𝑈(𝐴).

Proof. Let 𝑢, 𝑣 ∈ 𝑈(𝐴). The first statement follows immediately by

|ℓ𝑦(𝑢)| ≤ sup
𝑢∈𝑈(𝐴)

ess sup
𝑦∈𝑌

𝑤(𝑦)|𝑢|2𝑦 = 𝐾.

To prove the second statement we consider the seminorm k𝑦 :=
√︀
ℓ𝑦 and use the reverse triangle inequality

|k𝑦(𝑢)− k𝑦(𝑣)| ≤ k𝑦(𝑢− 𝑣) ≤ ess sup
𝑦∈𝑌

k𝑦(𝑢− 𝑣) = ‖𝑢− 𝑣‖𝑤,∞.

Since k𝑦 is bounded by
√
𝐾, we can use the Lipschitz continuity of 𝑥 ↦→ 𝑥2 on [−

√
𝐾,
√
𝐾] to conclude

|ℓ𝑦(𝑢)− ℓ𝑦(𝑣)| ≤ 2
√
𝐾|k𝑦(𝑢)− k𝑦(𝑢)| ≤ 2

√
𝐾‖𝑢− 𝑣‖𝑤,∞.

�

As an intermediate step we first prove Lemma A.2 from which Lemma A.3 follows almost immediately.

Lemma A.2. Let 𝜈 := 𝜈‖∙‖𝑤,∞

(︁
𝑈(𝐴), 𝛿

8
√

𝐾

)︁
and {𝑢𝑗}𝑗∈[𝜈] be the centres of the corresponding covering. Then

almost surely
sup

𝑢∈𝑈(𝐴)

⃒⃒⃒
‖𝑢‖2 − ‖𝑢‖2𝑛

⃒⃒⃒
≤ 𝛿

2 + max
1≤𝑗≤𝜈

⃒⃒⃒
‖𝑢𝑗‖2 − ‖𝑢𝑗‖2𝑛

⃒⃒⃒
.

Proof. Let 𝑢 ∈ 𝑈(𝐴) be given. Then by definition of the {𝑢𝑗}𝑗∈[𝜈], there is a specific 𝑢𝑗 with ‖𝑢− 𝑢𝑗‖𝑤,∞ ≤ 𝛿
8
√

𝐾
.

By Lemma A.1 and Jensen’s inequality we know that⃒⃒⃒
‖𝑢‖2 − ‖𝑢𝑗‖2

⃒⃒⃒
≤
ˆ

𝑌

|ℓ𝑦(𝑢)− ℓ𝑦(𝑢𝑗)|𝑤(𝑦)−1 d𝜌(𝑦) ≤ 2
√
𝐾‖𝑢− 𝑢𝑗‖𝑤,∞ ≤ 𝛿

4

and almost surely ⃒⃒⃒
‖𝑢‖2𝑛 − ‖𝑢𝑗‖2𝑛

⃒⃒⃒
≤ 1

𝑛

𝑛∑︁
𝑖=1

|ℓ𝑦𝑖
(𝑢)− ℓ𝑦𝑖

(𝑢𝑗)| ≤ 2
√
𝐾‖𝑢− 𝑢𝑗‖𝑤,∞ ≤ 𝛿

4 ·

Therefore, by triangle inequality,⃒⃒⃒
‖𝑢‖2 − ‖𝑢‖2𝑛

⃒⃒⃒
≤
⃒⃒⃒
‖𝑢‖2 − ‖𝑢‖2𝑛 −

(︁
‖𝑢𝑗‖2 − ‖𝑢𝑗‖2𝑛

)︁⃒⃒⃒
+
⃒⃒⃒
‖𝑢𝑗‖2 − ‖𝑢𝑗‖2𝑛

⃒⃒⃒
≤
⃒⃒⃒
‖𝑢‖2 − ‖𝑢𝑗‖2

⃒⃒⃒
+
⃒⃒⃒
‖𝑢‖2𝑛 − ‖𝑢𝑗‖2𝑛

⃒⃒⃒
+
⃒⃒⃒
‖𝑢𝑗‖2 − ‖𝑢𝑗‖2𝑛

⃒⃒⃒
≤ 𝛿

2 +
⃒⃒⃒
‖𝑢𝑗‖2 − ‖𝑢𝑗‖2𝑛

⃒⃒⃒
almost surely.

Taking the maximum concludes the proof. �



100 M. EIGEL ET AL.

Lemma A.3. Let 𝜈 := 𝜈‖∙‖𝑤,∞

(︁
𝑈(𝐴), 𝛿

8
√

𝐾

)︁
and {𝑢𝑗}𝑗∈[𝜈] be the centres of the corresponding covering. Then

P

[︃
sup

𝑢∈𝑈(𝐴)

⃒⃒⃒
‖𝑢‖2 − ‖𝑢‖2𝑛

⃒⃒⃒
> 𝛿

]︃
≤ P

[︂
max

1≤𝑗≤𝜈

⃒⃒⃒
‖𝑢𝑗‖2 − ‖𝑢𝑗‖2𝑛

⃒⃒⃒
> 𝛿

2

]︂
·

Proof. By Lemma A.2

sup
𝑢∈𝑈(𝐴)

⃒⃒⃒
‖𝑢‖2 − ‖𝑢‖2𝑛

⃒⃒⃒
≤ 𝛿

2 + max
1≤𝑗≤𝜈

⃒⃒⃒
‖𝑢𝑗‖2 − ‖𝑢𝑗‖2𝑛

⃒⃒⃒
holds almost surely. In this event we know that

sup
𝑢∈𝑈(𝐴)

⃒⃒⃒
‖𝑢‖2 − ‖𝑢‖2𝑛

⃒⃒⃒
> 𝛿 ⇒ max

1≤𝑗≤𝜈

⃒⃒⃒
‖𝑢𝑗‖2 − ‖𝑢𝑗‖2𝑛

⃒⃒⃒
> 𝛿

2

which concludes the proof. �

To prove Lemma A.5 we first recall a standard concentration result from statistics.

Lemma A.4 (Hoeffding 1963). Let {𝑋𝑖}𝑖∈[𝑁 ] be a sequence of i.i.d. bounded random variables |𝑋𝑖| ≤ 𝑀 and

define 𝑋 := 1
𝑁

∑︀𝑁
𝑖=1𝑋𝑖. Then

P
[︀⃒⃒

E
[︀
𝑋
]︀
−𝑋

⃒⃒
≥ 𝛿
]︀
≤ 2 exp

(︁
− 2𝛿2𝑁

𝑀2

)︁
·

The proof of Lemma A.5 is now a mere application of this result.

Lemma A.5. Let 𝑢𝑗 ∈ 𝑈(𝐴) then

P
[︁⃒⃒⃒
‖𝑢𝑗‖2 − ‖𝑢𝑗‖2𝑛

⃒⃒⃒
> 𝛿

2

]︁
≤ 2 exp

(︁
− 𝑛𝛿2

2𝐾2

)︁
·

Proof of Lemma A.5. The statement follows from an application of Lemma A.4 to the sequence of random
variables {ℓ𝑦𝑖

(𝑢𝑗)}𝑛
𝑖=1. Since the samples 𝑦𝑖 are i.i.d. the random variables ℓ𝑦𝑖

(𝑢) are i.i.d. as well. Moreover, by
Lemma A.1 the variables are bounded in absolute value by 𝐾. Therefore, the assumptions for Lemma A.4 are
satisfied. �

Appendix B. Proof of Theorem 3.1

We first need to show that 𝑏̂ is measurable. For this let {𝑢𝑗}∞𝑗=1 be a countable dense subset in 𝐴. Then

𝑏̂(𝑦) := sup
𝑢∈𝐴

|𝑢|2𝑦 = sup
𝑗∈N

|𝑢𝑗 |2𝑦

is the supremum over a countable set of measurable functions and as such measurable. The first assertion now
follows by definition of 𝐾.

For the second assertion, we start by showing the integrability of 𝑏̂ via
ˆ

𝑌

𝑏̂(𝑦) d𝜌(𝑦) ≤ sup
𝑦∈𝑌

𝑤(𝑦) sup
𝑣∈𝐴

|𝑣|2𝑦
ˆ

𝑌

𝑤(𝑦)−1 d𝜌(𝑦) = sup
𝑣∈𝐴

‖𝑣‖2𝑤,∞.

Now choose 𝑅 > 0 such that ‖𝑣‖ ≤ 𝑅 for all 𝑣 ∈ 𝐴. Since ‖𝑣‖𝑤,∞ ≤
√︀
𝐾(𝐴)‖𝑣‖ ≤

√︀
𝐾(𝐴)𝑅 for all 𝑣 ∈ 𝐴, we

can conclude that 𝑏̂ is integrable.
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Figure B.1. The set of feasible 𝛼1, 𝛼2 satisfying 𝛼1, 𝛼2 > 0 and 𝛼1𝐼1 + 𝛼2𝐼2 = 1 is displayed
in red. Contour lines 𝑘(𝛼1, 𝛼2) = 𝑡 of the function 𝑘(𝛼1, 𝛼2) = 𝛼−1

1 ∨ 𝛼−1
2 for 𝑡1 < 𝑡2 (left) and

for the optimal value 𝑡opt = 𝛼−1
1 = 𝛼−1

2 (right) are drawn in black.

It remains to show that the weight function 𝑤 =
⃦⃦⃦
𝑏̂
⃦⃦⃦

𝐿1(𝑌,𝜌)
𝑏̂−1 is indeed optimal. We only sketch the proof

of this assertion. By substituting 𝑤 =
(︁
𝑣𝑏̂
)︁−1

, the minimization problem

min
𝑤

⃦⃦⃦
𝑤𝑏̂
⃦⃦⃦

𝐿∞(𝑌,𝜌)
s.t. 𝑤 > 0 and

ˆ
𝑌

𝑤̂−1 d𝜌 = 1

is equivalent to

min
𝑣

⃦⃦
𝑣−1

⃦⃦
𝐿∞(𝑌,𝜌)

s.t. 𝑣 > 0 and
ˆ

𝑌

𝑏̂𝑣 d𝜌 = 1,

which is a non-convex optimization problem under linear constraints. The second assertion is now equivalent
to the statement that the minimal 𝑣 is a constant function and the constraint

´
𝑌
𝑏̂𝑣 d𝜌 = 1 implies 𝑤 =⃦⃦⃦

𝑏̂
⃦⃦⃦

𝐿1(𝑌,𝜌)
𝑏̂−1.

To prove that a minimal 𝑣 has to be constant, let Ω1,Ω2 ⊆ 𝑌 be any disjoint subsets with positive measures
and Ω1 ∪ Ω2 = 𝑌 . Then 𝑣 can be written as 𝑣 = 𝛼1𝑣1 + 𝛼2𝑣2 with

𝛼𝑘 :=
⃦⃦
𝑣−1

⃦⃦−1

𝐿∞(Ω𝑘,𝜌)
and 𝑣𝑘 :=

𝑣𝜒Ω𝑘

𝛼𝑘
for 𝑘 = 1, 2.

Now observe that ⃦⃦
𝑣−1

⃦⃦
𝐿∞(𝑌,𝜌)

=
⃦⃦
𝑣−1

⃦⃦
𝐿∞(Ω1,𝜌)

∨
⃦⃦
𝑣−1

⃦⃦
𝐿∞(Ω2,𝜌)

= 𝛼−1
1 ∨ 𝛼−1

2 .

Moreover, 𝑣 > 0 implies 𝛼1, 𝛼2 > 0 and the linear constraint can hence be written as 𝛼1𝐼1 + 𝛼2𝐼2 = 1 with
𝐼𝑘 :=

´
𝑌
𝑏̂𝑣𝑘 d𝜌 for 𝑘 = 1, 2. Since 𝑣 is optimal, it must also satisfy

min
𝛼1,𝛼2

𝛼−1
1 ∨ 𝛼−1

2 s.t. 𝛼1, 𝛼2 > 0 and 𝛼1𝐼1 + 𝛼2𝐼2 = 1.

Figure B.1 illustrates why the solution must be 𝛼1 = 𝛼2. This means that an optimal function 𝑣 has to satisfy⃦⃦
𝑣−1

⃦⃦
𝐿∞(Ω1,𝜌)

=
⃦⃦
𝑣−1

⃦⃦
𝐿∞(Ω2,𝜌)

. The claim now follows since the subsets Ω1 and Ω2 were chosen arbitrarily.

Appendix C. Proof of equation (4.1)

Recall that V := 𝐻𝑚(𝑌, 𝜌) where 𝑌 ⊆ R𝑑 is a Lipschitz domain and 𝐴 ⊆ H := 𝐻𝑀 (𝑌, 𝜌) and that the
considered seminorm is given by

|𝑣|2𝑦 = ‖𝐿𝑦𝑣‖22 =
∑︁

𝛼∈N𝑑

|𝛼|≤𝑚

⃒⃒
𝐿𝛼

𝑦 𝑣
⃒⃒2
,
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where the family of linear operators 𝐿𝛼
𝑦 is defined by 𝐿𝛼

𝑦 𝑣 = 𝐷𝛼𝑣(𝑦) for all 𝑦 ∈ 𝑌 and all 𝛼 ∈ N𝑑 with |𝛼| ≤ 𝑚.
Observe that 𝐷𝛼𝑣 ∈ 𝐻𝜇(𝑌, 𝜌) for all 𝛼 ∈ N𝑑 with |𝛼| ≤ 𝑚, where 𝜇 := 𝑀 −𝑚 > 𝑑

2 . It was shown in [8] that,
since 𝑌 is Lipschitz, 𝐻𝑚(𝑌 ) can be embedded isometrically into 𝐻𝑚

(︀
R𝑑
)︀
. This means that we can restrict our

analysis to the case 𝑌 = R𝑑. In the following we compute

𝜅(𝑦) = ‖𝐿𝑦‖2L
(︁
H,R|{𝛼∈N𝑑:|𝛼|≤𝑚}|

)︁ =
∑︁

𝛼∈N𝑑

|𝛼|≤𝑚

⃦⃦
𝐿𝛼

𝑦

⃦⃦2

H* .

As in [36] the Riesz representative of 𝐿𝛼
𝑦 ,

𝐾𝛼
𝑦 (𝑥) :=

ˆ
R𝑑

∏︀𝑑
𝑗=1(2𝜋i𝑢𝑗)𝛼𝑗 exp(2𝜋i(𝑥− 𝑦) · 𝑢)∑︀

|𝛽|≤𝑚+𝑙

∏︀𝑑
𝑗=1(2𝜋𝑢𝑗)2𝛽𝑗

d𝑢,

can be obtained via the Fourier transform and some of its standard properties. Thus,⃦⃦
𝐿𝛼

𝑦

⃦⃦2

H* =
⃦⃦
𝐾𝛼

𝑦

⃦⃦2

H
=
⟨︀
𝐾𝛼

𝑦 ,𝐾
𝛼
𝑦

⟩︀
H

=
[︀
𝐷𝛼𝐾𝛼

𝑦

]︀
(𝑦)

=
ˆ

R𝑑

∏︀𝑑
𝑗=1(2𝜋𝑢𝑗)2𝛼𝑗∑︀

|𝛽|≤𝑚+𝑙

∏︀𝑑
𝑗=1(2𝜋𝑢𝑗)2𝛽𝑗

d𝑢.

By the change of variables 𝑡𝑗 = 2𝜋𝑢𝑗

⃦⃦
𝐿𝛼

𝑦

⃦⃦2

H* =
1

(2𝜋)𝑑

ˆ
R𝑑

∏︀𝑑
𝑗=1 𝑡

2𝛼𝑗

𝑗∑︀
|𝛽|≤𝑚+𝑙

∏︀𝑑
𝑗=1 𝑡

2𝛽𝑗

𝑗

d𝑡.

The multinomial theorem states that

(︁
1 + ‖𝑡‖22

)︁𝑚

=
∑︁
|𝛼|≤𝑚

(︂
𝑚

𝛼

)︂ 𝑑∏︁
𝑗=1

𝑡
2𝛼𝑗

𝑗 .

As a consequence, ∑︁
|𝛼|≤𝑚

𝑑∏︁
𝑗=1

𝑡
2𝛼𝑗

𝑗 ≤
(︁

1 + ‖𝑡‖22
)︁𝑚

≤ Γ(𝑚+ 1)
∑︁
|𝛼|≤𝑚

𝑑∏︁
𝑗=1

𝑡
2𝛼𝑗

𝑗 .

This leads to the estimate

∑︁
|𝛼|≤𝑚

⃦⃦
𝐿𝛼

𝑦

⃦⃦2

H* =
1

(2𝜋)𝑑

ˆ
R𝑑

∑︀
|𝛼|≤𝑚

∏︀𝑑
𝑗=1 𝑡

2𝛼𝑗

𝑗∑︀
|𝛽|≤𝑚+𝜇

∏︀𝑑
𝑗=1 𝑡

2𝛽𝑗

𝑗

d𝑡

≤ Γ(𝑚+ 𝜇+ 1)

(2𝜋)𝑑

ˆ
R𝑑

(︁
1 + ‖𝑡‖22

)︁𝑚

(︁
1 + ‖𝑡‖22

)︁𝑚+𝜇 d𝑡

=
Γ(𝑚+ 𝜇+ 1)

(2𝜋)𝑑

ˆ
R𝑑

d𝑡(︁
1 + ‖𝑡‖22

)︁𝜇

=
Γ(𝑚+ 𝜇+ 1)

(2𝜋)𝑑

2𝜋𝑑/2

Γ
(︀

𝑑
2

)︀ ˆ ∞

0

𝑠𝑑−1

(1 + 𝑠2)𝜇 d𝑠.
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The recurrence relation (2.147) in [23] together with 𝜇 > 𝑑
2 yields

ˆ ∞

0

𝑠𝑑−1

(1 + 𝑠2)𝑙
d𝑠 =

𝑑− 2
2𝜇− 𝑑

ˆ ∞

0

𝑠𝑑−3

(1 + 𝑠2)𝜇 d𝑠 = . . . =
Γ
(︀
𝜇− 𝑑

2

)︀
Γ
(︀

𝑑
2

)︀
2Γ(𝜇)

·

Consequently,

𝜅(𝑦) ≤
(︀
2
√
𝜋
)︀−𝑑 Γ(𝑚+ 𝜇+ 1)Γ

(︀
𝜇− 𝑑

2

)︀
Γ(𝜇)

·
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