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CONVERGENCE BOUNDS FOR EMPIRICAL NONLINEAR LEAST-SQUARES

MARTIN EI1GEL!, REINHOLD SCHNEIDER? AND PHILIPP TRUNSCHKE®*

Abstract. We consider best approximation problems in a nonlinear subset .# of a Banach space
of functions (7, ||e||). The norm is assumed to be a generalization of the L*norm for which only a
weighted Monte Carlo estimate ||e||, can be computed. The objective is to obtain an approximation
v € M of an unknown function v € 7° by minimizing the empirical norm ||u — v||,,. We consider this
problem for general nonlinear subsets and establish error bounds for the empirical best approximation
error. Our results are based on a restricted isometry property (RIP) which holds in probability and is
independent of the specified nonlinear least squares setting. Several model classes are examined and
the analytical statements about the RIP are compared to existing sample complexity bounds from the
literature. We find that for well-studied model classes our general bound is weaker but exhibits many of
the same properties as these specialized bounds. Notably, we demonstrate the advantage of an optimal
sampling density (as known for linear spaces) for sets of functions with sparse representations.
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1. INTRODUCTION, SCOPE, CONTRIBUTIONS

We consider the problem of estimating an unknown function u from noiseless observations. For this problem
to be well-posed, some prior information about u has to be assumed, which often takes the form of regularity
assumptions. To make this notion more precise, we assume that w is an element of some Banach space of
functions (7, ||e||) that can be well approximated in a given nonlinear subset (or model class) # C 7. The
approximation error is measured in the norm

ol = ( /| vlidp(y>>1/2,

where Y is some Borel subset of R, p is a probability measure on Y and |e| y isa y-dependent seminorm for

which the integral above is finite for all v € 7. This norm is a generalization of the L?(Y, p)- and Hg (Y, p)-norms
. . . 2 2 2 2 .

which are induced by the seminorms [v[, = [v(y)|” and |v[, = [|[Vv(y)|l5, respectively.
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We characterize any best approximation w in / by

Uy € argminlju — vl
veM
In general, this approximation is not computable. We propose to approximate v 4 by an estimator u 4 , that is
based on the weighted least-squares method which replaces the norm ||v|| by the empirical seminorm

Lo 1/2
loll, = (nzw@mmi)

i=1
for a given weight function w and a sample set {yi}?zl C Y with y; ~ w™!p. The weight function can be chosen
as any almost surely positive function w > 0 that satisfies fY w~ldp = 1. Any corresponding empirical best
approximation w4, in 4 is characterized by

Uy € argmin|lu — v, (1.1)
veM

Given this definition we can choose w such that the theoretical convergence rate of ||u — uz .| ——
|lu — uzl|l is maximized. Note that changing the sampling measure from p to w™!p is a common strategy
to reduce the variance in Monte Carlo methods referred to as importance sampling (cf. [7]).

Since ||e|| is not computable in general, the best approximation error
U — Uy| = min|lu —v
o~ wa | = minu o]
serves as a baseline for a numerical method founded on a finite set of samples. We prove in this paper that the
empirical best approximation error ||u — w4,y is equivalent to this error with high probability.

Main result. For any model class # C 7" with dim(.#) < oo, any weight function w and all § € (0,1) there
exists C' > 0 such that

[u—vwan| < (1 + \/12_75) llu— “/%Hw,oo

2
holds with probability 1 —C exp (—g ( ) ) . The constant C'is independent of n and depends only

5
K(U{ua}—4))
polynomially on § and K (U ({us} — 4))~".

This result is a combination of Theorems 2.8 and 2.12. Their proofs as well as the definitions of K, U and
]|, o can be found in Section 2. Some special model classes for which the theorem holds are discussed in
Section 3.

To prove this result for general nonlinear model classes, we extend the idea of a restricted isometry property
(RIP) as known from compressed sensing. In contrast to previous specific results for linear spaces [14], sets of
sparse functions [38,39], and low-rank tensors [40], the aim of this paper is to develop first results for a more
general theory. New results for low-rank tensors are obtained and it is demonstrated how the theory can guide
the choice of the model class /.

Despite the generality of the derived theory we observe many of the same phenomena as more specialised
theories namely, the emergence of an optimal sampling measure (cf. [14]), the importance of weighted sparsity
(cf [39]) and the advantage of multilevel sampling (cf. [3]).

1.1. Structure

The remainder of the paper is organized as follows. In Section 1.2 we aim to provide a brief overview of
previous work and introduce the notion of the restricted isometry property (RIP). Based on the RIP, Section 2
develops the central results of this work. These are applied to some common model classes in Section 3. We
begin by considering linear spaces in Section 3.1. Section 3.2 considers sets of sparse functions and Section 3.3
examines sets of low-rank functions. Finally, we investigate the influence of the seminorm on the convergence
in Section 4. We conclude in Section 5 with a discussion of the derived results and an outlook on future work.
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1.2. Related work

When |v|y = |v(y)| is used, uz ., is known as the nonlinear least squares estimator of u. The extensive
interest in machine learning in recent years has lead to the investigation of this estimator for special model
classes like sparse vectors [11,21,39], low-rank tensors [10,20,25,40,45] and neural networks [5,31]. However, to
the knowledge of the authors no investigation for general model classes has been published so far. This may be
due to the fact that sparse vectors and low-rank tensors were the first model classes for which rigorous theories
were developed and that most of these works focus on ¢! and nuclear norm minimization. Our work may be
regarded as an extension of these works (in particular of infinite-dimensional compressed sensing [1,3]) to the
nonlinear least-squares setting. For a more in-depth discussion of statistical learning theory we refer to the
articles [15,43] and the monographs [16,26]. For linear spaces the first estimate in Theorem 2.12 has already
appeared in [14] for weighted least squares and in [13,33,34] for standard least squares.

A convergence bound for the nonlinear least squares approximation problem was recently analysed in [20].
However, the probability of the bound failing increases exponentially as the best approximation error ||u — ||
approaches zero and becomes one when ||u — u || vanishes. Moreover, this bound only holds for model classes
that are bounded in L*° and it does not provide any insight on what property of the set influences the convergence
rate.

The empirical approximation problem (1.1) was thoroughly examined in [14] for linear model spaces. There
the model class . is assumed to be the m-dimensional subspace spanned by the orthonormal basis func-
tions {Bj}je[m] in 7 = L?(Y,p). A key point in this work is that the error |[u — w4 | can be bounded by
lu = vl poo (v, p) i G = Tinlly, <6 <1 where

G = *Z (yz)B(yz)B(yz)
S B - BB . B
i=1

is the Monte Carlo estimate of the Gram matrix I,,,. This condition is in fact equivalent to the norm equivalence
(L= O)ull® < flully, < (1 +8)|[u]*  forue .. (1.2)

Cohen and Migliorati [14] prove that, under suitable conditions, the norm equivalence (1.2) is satisfied with
high probability.

Theorem 1.1. If K := ess sup,cy w(y)B(y)"B(y) < oo then

G —-1L,|, >4 <2me ML)’
B(IG — L[, > 4] xp( il

with ¢s == —§ + (14 6) In(1 + 9).

Equation (1.2) can be seen as a generalized restricted isometry property. The notion of a RIP was introduced
in the context of compressed sensing [11]. It expresses the well-posedness of the problem by ensuring that |||,
is indeed a norm and equivalent to ||e|| on .. Minimizing the error with respect to ||e|/, thus minimizes the
error with respect to ||e||. In compressed sensing of sparse vectors [11,21] and low-rank tensors [40] discrete
analogues of (1.2) are employed to derive bounds for the corresponding reconstruction errors. A recent work [6]
also generalizes the theory from [14] to sparse grid spaces.

In this paper we extend the cited results to more general norms and nonlinear model sets by directly bounding
the probability of

RIP4(8) : (1= &) Jull” < [lull, < A+ 0)[u*  VueACT.
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We prove that, under some conditions on n and A, this RIP holds with high probability and show that these
conditions are satisfied for a variety of model classes. We then use the RIP to provide quasi-optimality guarantees
for the empirical best approximation in Theorem 2.12.

In Remark 2.5 we note that it suffices to consider conic model sets. Optimizing over these sets is not straight-
forward. In [41], appropriate restricted isometry constants for exact recovery of conic model sets using a suitable
regularizer are derived.

2. MAIN RESULT

To measure the rate of convergence with which ||v[|, approaches |[v| as n tends to oo, we introduce the
variation constant

2 . 2 2
K(A) = sgg”u”wm with V][00 = esses;lpw(y)|v|y.
u Yy

This constant constitutes a uniform upper bound of ||v|,, for all realizations of the empirical norm ||e||, and all
v € A. We usually omit the dependence on the choice of w, ||, and Y. When a distinction between different
choices of these parameters is necessary we add appropriate subscripts to K.

Remark 2.1. The variation constant K(U(A)) can be seen as a generalization of the embedding constant

(A, ]e]]) — (A, l|e]l., Oo) to nonlinear sets and therefore as an analog of K in Theorem 1.1.

The constant K is a fundamental parameter in many concentration inequalities that are used to provide
bounds for the rate of convergence of the quadrature error.

Definition 2.2 (Quadrature Error). The quadrature error of the empirical norm H‘”i on the model set A C 7
is defined by

2 2
& = sup| [Jull” = |lull, |-
ucA

This error is closely related to the RIP through the normalization operator U. This relation is developed
rigorously in the subsequent lemma.

Definition 2.3 (Normalization operator). The normalization operator acts on a set A by

U(A) = {ﬁ ‘u€ A\{o}}.
Lemma 2.4 (Equivalence of RIP and a bounded quadrature error). For some set A,
RIP4(9) & 8y <o for 6>0.

Proof. Note that ||0]|,, = [|0]|, that [|ou|,, = |a|||u]|,, for all @« € R and u € A and that ||ul| =1 for all u € U(A).
Therefore,

(1= 8)[lull” < HUHZ2 <A+O)|ul® vue4
« w-9< |Hl =a+e vu e A\ {0}
s =0 < lull;, — Jlul® < 6 Vu € U(A),
which is equivalent to sup, e (a) )| = ||u||i <. O

Remark 2.5. By the preceding lemma
RIPA((s) < RIPCone(A)(5)7

where Cone(A) := {aa: a € A,a > 0} denotes the cone generated by A. This implies that our theory also holds
for unbounded sets A.
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We introduce the notion of a covering number to provide a well-known bound for the quadrature error in the
following.

Definition 2.6 (Covering number). The covering number v|4|(A,€) of a subset A C 7" is the minimal number
of ||e||-open balls of radius e that are needed to cover A.

Lemma 2.7. Let AC 7 and K = K(U(A)) < oo. Then,

P[%U(A) > (5] < 2”“’“10,00 (U(A), %\/%) exp(—%(%f) for 6 > 0.

The proof of this lemma can be found in Appendix A. With the preceding preparations we can derive a
central result:

Theorem 2.8. Let AC 7" and K = K(U(A)) < co. Then,

P[RIPA(§)] >1 _2V”'Hwo@<U(A)7é\/%> exp(—%(%f) for 6 > 0.
Proof. By Lemma 2.4 it suffices to bound the quadrature error on U(A). Lemma 2.7 provides a bound for the
probability of the complementary event. (|

(U(A),r) <

Corollary 2.9 (Sample complexity). Let ¢,C,M > 0 and A C 7" be a set that satisfies v)q|
C(er)™. Under the assumptions of Theorem 2.8, and with K = K(U(A)),

vz 2035 () ()

many samples are sufficient to satisfy RIP 4(9) with probability 1 — p.

w, 00

Proof. To obtain RIP 4(d) with a probability of 1 — p it suffices that
n(06\2
PIRIP4(8)] > 1 - 2vexp(—3(£)*) 2 1-p,

L). Solving the second inequality for n shows that

1
8 VK
n>2In(2)(%)?

samples are sufficient to satisfy RIP4(d) with the prescribed probability. Replacing v by the upper bound

-M
C’(S\C/‘%) yields the claim. |

Linear spaces, sparse vectors and low-rank tensors all satisfy the requirements of this corollary with M
depending linearly on the number of parameters of the model [5,40,44]. The corollary states that in these cases
n € O(MQG) where the factor G := In(K)K? represents the variation of |e||, on ..

with v = I/H.Hw,oo (U(A),

Remark 2.10. An interpretation of Corollary 2.9 is that the variation constant K is of greater importance
than the covering number v which enters the bound on the sample complexity only logarithmically.

Example 2.11 (K is independent of the dimension). If .# is a manifold then one might expect the bound
for the probability of RIP 4(d) to depend on its dimension. But counter-examples can be constructed easily.
Consider 7" = L? ([—1, 1], %) with the weight function w = 1 and let P denote the k-th Legendre polynomial.

Let moreover d € N and m > % +d - % Then the 1-dimensional manifold span{P,,} has a larger variation
constant than the d-dimensional manifold span{Pk}ke[ 4- We refer to Section 3.1 for the computation of these
variation constants. In the light of Remark 2.10, this means that the dimension d only has a minor influence on
the bound for the probability of RIP 4(4).
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Theorem 2.12 (Empirical projection error). Assume that RIPy, ,)—.4(5) holds. Then

lwa — vanl <2

1
——|lu—u .
m” -/”Hw,oo
If in addition RIP 1,_,,(d) is satisfied then

140
HU/% - U/%,n“ <2 1_ 5”“ - u/%” (2‘2)

e = wal
N A
Proof. First observe that uy ,, € # and therefore uy —uz,n € {uu} — M. By the RIP{, ,}—«(8), the triangle
inequality and the definition of u 4 ,, we deduce

and consequently

= ) < = ) < (1 2 (2.3)

1
1
> 1—

A

]

[l = ull, + llu =z m

[«

IA

1
2——|lu—u .
lln el

Hence, equation (2.1) holds since [[v]|,, < [lvl,, ., is satisfied for all v € 7" and in particular for u — uz.
Equation (2.2) follows by an application of RIPy,_,,};(d) and from it equation (2.3) follows by an application
of the triangle inequality to |ju — wz nl|- O

Remark 2.13. Note that Theorem 2.12 bounds ||uz — vz | even if u 4 and w4, are not uniquely defined.

Remark 2.14. Theorem 2.12 requires RIPy, ,3—#(0) and RIPg,_, (). If the covering number of
U({uu} — ) is finite then K(U({un} — #)) and K(U({u — uy})) are bounded and Theorem 2.8 guarantees
that RIP, ,1—.«(9) and RIP{,_, () hold when n is sufficiently large.

If u € M then RIP,_, ,(0) is implied by RIPy,, ,3—(d) and bounds for the sample complexity of some well-
known model classes are given in Section 3. If u & .4 then the probability of RIPy,_,,,}(d) has to be bounded
separately. Since v(U({u —ux}),r) = 1, we only need to bound K(U({u — u4})) to apply Theorem 2.8. Since
K(U({u —ux})) depends only on u—u, 4 it is a purely approximation theoretic constant and we provide explicit
bounds for two examples in the following.

— Let ./ be a space of low-rank functions and .Z,, s be some space of sparse functions as defined in Section 3.2.

Ifu= Ulow-rank T Usparse with Ulow-rank € M and Usparse S %w,s then K(U({u - u%})) S 52~

— Consider u(z) := sin(rz) and assume that w4 (z) = Z?:O(fl)k%

of ). From this one can derive that K(U({u —ux})) <4m+ 7.

(for an otherwise arbitrary choice

Remark 2.15 (An indicator for RIP4(6)). In Theorem 2.12 there is no constraint on the samples {y;};_,
except that they satisfy the RIP. They explicitly do not have to be i.i.d. random variables. This means that
they could, theoretically, be determined by a deterministic quadrature rule. The challenge, however, is to ensure
the RIP. In [14] the empirical Gramian could be used to verify this RIP for a given sample set. In the nonlinear
setting this is not possible. To obtain a practical indicator for the convergence of our method we make the

following considerations. Define A := ({uy} — M) I{u —us}, as well as e, == ||u — uzn| and e := |Ju — uz|.
Observe that for § < \%
2
1406
140< /0 <1420,

1-9
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Combining the second inequality with Theorem 2.12 leads to

RIP4(0) = e, < <1 +2 }tg>e < (1+2(1420))e
=en, < (3+40)e.
Therefore,
P[RIP4(0)] < Ple, < (3 +40)e]. (2.4)
By Theorem 2.8 there exist ¢ and v(d) such that
1 — v(8) exp(—cns®) < P[RIP4(6)).
Combining this with (2.4) yields
1 —v(8) exp(—ené?) < Ple, < (3+48)e] =: p(6). (2.5)

Since p(d) is increasing in 0, we can define an inverse in the sense of the quantile function §(p) :=
inf{g ERsp:p< p(g)} For fixed p := p(8) in equation (2.5) it then follows that & > §(p) =: & and con-
sequently

—In(1 —p) > end? — ln(u(g))
or equivalently

—In(1 - p) = end(p)® — In(v(3(p))-

Since §(p) > 0 is increasing and — In(v(d(p))) LiN 0, the second term in the above sum becomes negligible

for large p. This yields d(p) < n~'/2, from which follows that e, < (14 n~'/2)e. Hence, if RIP 4(6) holds for
some § < %, one can expect a rate of convergence that is reminiscent of the convergence rates for classical
Monte Carlo quadrature. We can use this observation as an indicator for when RIP 4(¢) is attained. To do this
we select a test set of n’ samples and observe the test set error €, := ||u — uz nl|,, as the number of samples n
is increased. When é,, begins to decrease with an algebraic rate of (1 +n~") we take this as an indication that

RIP 4(9) is satisfied and that additional sampling is unnecessary. This is illustrated in Figure 1.

Remark 2.16 (Reconstruction with noise). Consider the randomly perturbed seminorm |v] sty where 7y,

is a centered random process satisfying the bound w(y)n; < 1(1—6)e? for some € > 0 and 6 € (0,1). This
seminorm induces the perturbed empirical norm

Lo )\ /2
vl == (nzw(yi)(lvlyi +nyi) )
i=1

and the perturbed empirical best approximation

Ust g € arger/r/llinHu =0l -
v

Assume that RIPy, ,}—.4(0) holds. Then

o

1
s — v nnl < 2\/ﬁllu = Utt|| 0 +

If in addition RIP,_,,,} () is satisfied then

1+6
i sl <2~ e
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FIGURE 1. Let 7 = L? ([—1, 1], %), w = 1 and A be the model space of polynomials of degree
less than m = 10. Let moreover A, e, and e be defined as in Remark 2.15. Depicted is the
distribution of the random variable e, /e — 1 for different values of n and a synthetic (but fixed)
function u. The hatched area on the left marks a range of n where the approximation problem
is underdetermined and any error can be reached. When n > m the approximation problem
has a unique solution in the least squares sense. From this point until the gray and dashed line,
an exponential decay of the error can be observed. This decay results from the exponentially
fast convergence of the probability for RIP 4(4) w.r.t. n. From there on, RIP 4(6) holds with a
high probability and the error decays with a rate of n~!. Remark 2.15 predicts a rate of n~1/2
but the condition e, < ¢(1+n~") is satisfied for ¢ = r = 1. This faster decay can be explained
by the fact that for the linear space 4 the bounds in the proof of Theorem 2.8 are suboptimal
(see Example 3.1).

Remark 2.17. A generalization of Theorem 2.12 also holds for the residual minimization problem

vy € argmin|lu — Lv|| and vy, € argmin|lu — Lo||,,
veM veM

since, whenever RIP 1. 4(0) and RIP,_r,,}(5) hold, we can estimate
lu—Lvanl < llu—=Loanl, < llu—Lval, < llv— Lol

This means that the present theory can treat residual minimization problems by considering the RIP for the
transformed model class L. An important application of such a problem arises in medical imaging and is
briefly discussed in Example 4.3.

3. EXAMPLES AND NUMERICAL ILLUSTRATIONS

In this section, we examine some exemplary model classes to which the developed theory can be applied.
More specifically, we consider linear spaces, sparse vectors and tensors of fixed rank. The following theorem is
central to the further considerations.

Theorem 3.1. Let 7" be a separable vector space and A C 7. Then the pointwise supremum I;(y) = supU€A|U|§
with respect to y € Y is measurable and for any weight function w

K@Q:wa .
Lo (Y,p)



CONVERGENCE BOUNDS FOR EMPIRICAL NONLINEAR LEAST-SQUARES 87
If A is ||e||-bounded, K(A) is finite, and b > 0 is almost surely positive, then

K(A) > |[b

L'(Y,p)

b1,
L1(Y.p)

where the lower bound is attained by the weight function w = HE‘
Proof. See Appendix B. a

This theorem allows to analyse the seminorm and the model class independently from the choice of weight
function which can be chosen optimally when these first two parameters are fixed.

3.1. Linear spaces

Consider an m-dimensional linear subspace 7,,, C 7" := L*(Y, p) spanned by the orthonormal basis {B,}

Recall that Theorem 3.1 implies K (U (7)) = le;”L ) where
> (Y,p

JE[m]

7 2 2 2
b(y) = sup |v(y)]" = sup [B(y)'v[ = [B(y)l5-
VEVm veR™
ol =1 Ivll,=1

Here, the second equality follows by orthonormality and the third by the Cauchy—Schwarz inequality. From this,
Theorem 3.1 implies

=m (3.1)

KU (7w) 2 Hi)’ L(Yp)

where the optimal weight function is given by w(y) = m||B(y)|y ?. Note that this observation was already
reported in [14].
Using the fact that [jv]| < [|lv],, ., < VK[|v]|, we obtain

W) < (VO =) < (=) -

Corollary 2.9 then bounds the sample complexity of this model class by

w2 2(min(P25) - (3)) (5) € o i),

when the optimal weight function is used. Although our approach is more general the resulting asymptotic bound
differs only by a factor of m? from the bound n € 6(mIn(m)) provided in [14]. The near optimal bound in [14]
is obtained by using tighter concentration inequalities (cf. [42]) when bounding the probability of RIPg; (§) in
Theorem 1.1.

Vel

w, 00

Remark 3.2. When the sampling density cannot be changed, the variation constant can also be used to guide
the choice of a suitable model class. For linear spaces this section shows that an optimal model space is spanned
by an orthonormal basis for which the basis functions are bounded by 1. Such spaces are characterized in [30]

and a prime example is the Fourier basis of LQ([fl, 1], %; (C).
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3.2. Sets of sparse functions

In this section we follow the ideas of [39] and consider spaces with weighted sparsity constraints. For any
sequence w € Rgo and any subset S C N, define a weighted cardinality and a weighted £°-seminorm by

w(S) := Zw? and [vll,,.0 = w(supp(v)).
j€S
Observe that w = @ (i.e. w; < @; for all j) implies w(S) < @(S) and that w(S) = |S]| for w = 1.
Let in the following {B,}._y be a fixed orthonormal basis for 7" := L*(Y, p), fix a weight function w and
define the model set

jEN
Moy = {0 €T 1 V] <5},
where v denotes the coefficient vector of v € 7" with respect to the basis {B;}, .

Lemma 3.3. It holds that

- ‘%L:J,S g ‘%w,s forw j ‘D;
~ Mys C Myy for s <t,

-~ My s =—M, s and
- %cu,s + ‘%w,t g ‘%w,s—i-t-

Moreover, if w; > ||Byl|,, ., for all j then ||v|| < /sllvl| for allv € M, 5.

w,00 —
Proof. The first four assertions are trivial. To prove the last one, let v € /,, 5. Using the triangle inequality and

w; > ||B; we obtain

Hw,oo’
o0 o0
[0lyoe < D Vil Bjlly e € D Ivilwi = > |vjlw;.
Jj=1 Jj=1 jEsupp(v)

The Cauchy—Schwarz inequality, Hv||w,0 < s and the orthonormality of B yield

[Wloo < IVIL [ D0 w2 =1Vlay/IIVllbo < lIWlIVs. O
Jj€supp(v)

B.
Lemma 3.4. Let ¢(w,w) := sup;ey % Then

K(U(M, ) < c(w,w)’s.

Proof. First, observe that M, s = M, 2, for any ¢ > 0. Since c(w,w)w; > [|Byl[,, ., for all j € N, the claim
follows directly from Lemma 3.3. O

This setting also incorporates the standard sparsity class 41 j N 75, where 1 = (1,1,...) and 7, is the m-
dimensional space spanned by {Bj}j lm]’ To see this, define for any arbitrary sequence w € Rlio the restricted
sequence w<" by
w ) <
wSm =W I =T
J oo otherwise

and observe that M1 N Vi = My<m -
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Remark 3.5. Consider the standard sparsity class .#1 ; N Zgum, where Py = %®M and w = w®M both have

product structure. If 7 is spanned by the basis {Bj} a’ as is common e.g. in polynomial regression, then
j€

M
C(lSdM’w> = (maXHBJH )
JE[d] W,00

This means that K (U (M N Pgm)) grows exponentially with M, which limits the applicability of classical
isotropic sparsity in high-dimensional settings.

Lemma 3.6. Let 7,, be the m-dimensional subspace spanned by {B; }je[m]' Then there exists C' > 0 such that

c(w— ,w) s
< Cm .
I/H.Hw’m (U(ﬂw’s n %m),’l") - (r\/ c(wﬁmﬂu)zs)
Proof. Since My, s = Mey, 25 for any ¢ > 0, it suffices to consider the case c(wgm,w) =1, ie. w; > ||Byll,, o
for all j € [m]. In this case, we show that

T m s
Vijoll,, oo (UM s V), 1) S V) <U(/%w,s NZn), \/g> =< (fﬁ) '

For the first step, let {v;} be the centers of a | e||-covering of U (A, s N 7;,) with radius 5= Thus, for any

veU(My, s N Vy) there exists v; such that |jv — v;|| < \/% Since v — v; € M., 25 and by Lemma 3.3,

o= 05l 00 < VEsllo — 5] < 7.

This implies that {v;} are also the centers of an | e||, . -covering with radius r.
For the second step, observe that ., s C M1 s = My, s)- Since (Zpn, ||o]]) =~ (R™, ||e||,) it remains to compute
the covering number for the unit sphere of |s]-sparse vectors in R™. A bound for this is given in [44] by

V|.|2<S$’"(0)m/%1,w\/%) - (%) Ls) _ (f}:)

This proves the claim. O
Theorem 3.7. Let 7y, be the m-dimensional subspace spanned by {Bj}je[m]' Then there exists C > 0 such
that )
<m 2 8Cm n 6
P[RIP 4, .7, (6)] > 1 —2exp <C(w yw) sIn(#52) — §(W) )
Proof. The assertion follows directly from Theorem 2.8 together with Lemmas 3.4 and 3.6. O

Remark 3.8. Assuming w; > [|B,l|,, ., for all j € [m], Theorem 3.7 implies that
n > s%(sln(m) — sIn(8) — In(1 — p))s 2.

samples are sufficient to satisfy RIP 4, 7, (0) with probability 1—p. This result can be compared with Theorem
5.2 in [39] where

n 2 smax{In’(s) In(m), In(p~*)}5 2
or Theorems 4.4 and 8.4 in [38] where
nzs max{lnz(s) In(m) In(n),In(p~") }62c(15™, w)2.

Since our theory is very general, we cannot expect our bound to be as strong as these specialized bounds. This
comparison, however, shows that our bound remains qualitatively similar up to polynomial factors.
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Example 3.9. Consider the basis of tensorized Legendre polynomials Bj = ®M L;,. and define the linear

m=1
space %, in Theorem 3.7 as 7, := span{Bj :wJ? < s} Then the bound in Theorem 3.7 depends on the

parameter s alone since the size of the hyperbolic cross
M
{jGNM:wfgs}g {jENM: H(2jm+1)§s}
m=1
can be bounded by m < slog(s)™ ™" (cf. [39]).

For a fixed basis {B; }j oy and weight sequence w, the coefficient ¢(w, w), defined in Lemma 3.4, depends only
on the weight function w. Theorem 3.7 indicates that the probability of RIP 4, .7, (6) is maximized when

2
e(w=™, w)” = sup w(y) max Bily _, sup w(y)b(y) = H“’BH
’ yey j€m w3 yey L>(Y.p)
is minimized. From Theorem 3.1 we know that the minimum HwZ)H = Hl;‘ is attained for the
L= (Y,p) L(Y,p)

iy )5_1. Numerical experiments that compare different weight sequences w and
0
weight functions w are provided in Figure 2.

We finally note, that the theory presented in this subsection can be generalized easily to dictionary learning

(cf [19,29]). This is stated, without proof, in the following theorem.

weight function w = HB‘

Theorem 3.10. Assume that {Bj}jeN is a Riesz sequence satisfying

2
2 2
elviz < | Yo viBs| < civi3
jEN

and that w is chosen such that w; > ||B;|| for all j. Redefine

oo
Mys =vET :3Iv st. v= Zvaj ANVl o <8
j=1

and let Yy, C Y be the m-dimensional subspace spanned by {Bj}jG[m]' Then it holds, that

- ﬂ&),s g ﬂw,s forw j (;j,
- %cu,s C -%w,t fOT’ S S t7

- -ﬂw,s = *-%w,m
- ﬂw,s + -%w,t g -%w,s+t7
~Nollyoe < 20|l for all v € M, s and

- V||'||wvoo(U(ﬂw,s NZm), 1) < (kc(iim\/a for some k > 0.

3.3. Tensors of rank r

We now consider two different problems related to model classes of low-rank tensors. Both can be expressed
with Y = (R™)®M and 7 = (Y, |le||) with [v], = [(v;Y)py|- The only difference is the distribution p from
which the samples are drawn.

(1) Recovery from Gausian samples. In this problem p = A4 (0y,Idy) is a Gaussian distribution on the tensor
space Y and |/e|| = ||®||p,. Although this problem is rather artificial it was one of the first where rigorous
bounds were developed in [40].
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(b)

(d) (e) (f)

FIGURE 2. Interpolations of the function f(x) = Hzﬁ (red) by Legendre polynomials of
degree 99, using six different methods. Depicted is the probability distribution of the function
values for an interpolation that uses n = 30 random sampling points. The subfigures 2a and 2b
show standard least squares approximations of the first 30 and 15 basis functions, respectively.
The other figures employ the weighted ¢'-minimization minyegioo [|Qv]]; st. vIB(y;) =
flz;) forl < i < n, with Q := diag(w). For 2c and 2d, the sampling points are drawn
according to the uniform measure on [—1,1]. For 2e and 2f, the sampling points are drawn
according to the measure induced by b. Subplots 2c¢ and 2e display the results of standard
¢ -minimization (i.e. w; = 1) while 2d and 2f display the results of weighted ¢*-minimization
(i.e. wj = || Bj| ;). (a) Exact inversion, mean error: 2 x 107. (b) Least squares, mean error:
3x102. (c) Standard ¢!, unweighted samples, mean error: 6 x 1071, (d) Weighted ¢!, unweighted
samples, mean error: 5 x 1071, (e) Standard ¢!, weighted samples, mean error: 3 x 1071, (f)
Weighted ¢!, weighted samples, mean error: 8 x 1072,

(2) Recovery from rank-1 samples and completion. For this problem let {pk}ke[ M be distributions on R™ and
consider the push-forward of p = p; ® -+ ® pps through the tensor product map. This means, that every
realization (y1,...,yn) ~ p is mapped to the tensor product y; ®- - - @yas. This problem occurs for example
whenever one tries to approximate a low-rank function of M variables using a tensor product basis. A special
case of this setting is the problem of tensor completion where a tensor has to be recovered from a few of its
entries. In this case, all distributions pj are discrete measures on the standard basis vectors.

In both problems the task is to find a best approximation in a subset 7, C 7" of bounded rank r. For tensors,
however, there exist many different concepts of rank for which we refer to [4,24,27,28] and the works cited
below.
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Recovery from Gaussian samples

In this section we consider a subset 7, C 7" of tensors of bounded (Hierarchical Tucker) HT-rank r. For
w = 1 the following bound for the sample complexity subject to ¢ is given in Theorem 2 of [40],

n 2 max{((M — 1)r® + Mmr) In(Mr),In(p~") }6 2.

To obtain a sample bound from our theory, we would have to bound the variation constant, which however
is infinity,
2
K(U(;)) = sup esssup|(v,y)p,| = 0.

vET, YEY
llvll=1

This shows that a direct application of the presented formalism to this problem cannot provide a finite sample
complexity.
Remark 3.11. As above, this exposes the lacking sharpness of the results used in the proof of Theorem 2.8.

With more refined concentration inequalities as in [18], a different definition of the variation constant would
emerge (replacing ||e||,, . by a sub-Gaussian norm), which would be finite for this problem.

The present theory can deal with this problem in two different ways. The first option is to choose the weight
f . _ M —2 . . ..
unction w(y) = m™||y|| g, Which yields the variation constant

K(U(,)) =mM sup ess sup|(v7y)Fm|2 =mM,
veET, yey
=1 lyll=1
where the final equality holds since ||e| = ||®||,,. The second option is to normalize the samples and thereby

replace the Gaussian distribution by a uniform distribution on the unit sphere. In this case we obtain the new

identity o] = m~*/2||e||,, and the corresponding variation constant
K(U(Z;)) =mM sup ess sup|(v7y)pm|2 =mM,
vET, YEY
lloll=1 llyll=1

In both cases K(U(7;)) = K(U(7')). Let k = \/K(U(J2;)). By using the bound ||e||,, . < k[|e]| on T2, we can

utilize the bound for the covering number for tensors of HT-rank r that is provided in [40]. This leads to the

estimate .
c ) — (Mr +Mmr)

Vel .. (U(Tr),€) S vjje| (U(%)= %) = (3(2]\4—1)\/7%

A subsequent application of Corollary 2.9 yields

n > 2((Mr3 + Mmr) In(3(2M — 1)\/;]“571) *hl(%)) <]22>2

For k = 1 this would have the same asymptotic complexity as the bound in [40] and we conjecture that the
transition & = m™/2 ~» k = 1 can be achieved by using a generic chaining argument (cf. [18]) rather than a
simple Hoeffding bound in the proof of Theorem 2.8.

Recovery from rank-1 samples and completion

In this section we consider subsets 7, C 7" of rank-r tensors for any rank concept that satisfies 97 C 7,.. This
is the case for all tree-shaped tensor formats including the Tucker format, the tensor train (TT) format and
general hierarchical tensor formats (HT) as well as the canonical polyadic decomposition (CP). For the sake of
completeness we define

T ={ve? :v=vi®- - Qv with vi,...,vyy e R™}.

The variation constant for the set 7, is computed in the next theorem.
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Theorem 3.12. K(U(7;)) = K(U(7")) for any weight function w.

Proof. Observe that

. 2 y 2 _ Iyl

b @) = sup |0 9)el* = | (1), | = L5
ve7 Fro [yl
=1

Moreover, if y is of rank 1, then

; 2 _ lyll

bu(o = sup |(v, 2=’<L7 ) = tro.

v () ve&g (0, ¥) gy Myl Y Fro Hy”2

llvl=1

Since the measure p is supported only on the set J7, we deduce, using Theorem 3.1, that K(U(71)) = K(U(7)).
This proves the assertion since 71 C 75 C (R™)®M implies K(U(%1)) < K(U(Z,)) < K(U(7)). O

The theorem states that tensor formats do not exhibit a smaller variation constant than the linear space they
are embedded in. This result is surprising at first because tensor formats have a significantly smaller covering
number than the full tensor space, cf. [40]. However, this is already indicated by the classical analysis of matrix
completion from which it is known that the notion of incoherence is required in addition to a low-rank property.

Despite this unfavourable result, it is noteworthy that the present theory can be used in this setting. The

bound [ls], .. < v/E(U(2,))|ls|| and the isometry o] = [|o]|s,, imply

Vel . U(Tr),€) < Vo, (U(%)’ K(£U2))>

Assuming the weight function w is chosen optimally, we know from Theorem 3.12 and equation (3.1) that
K(U(J%,)) = mM. We can now apply the bound for the covering number of tensors of HT-rank r from [40].
The resulting estimate reads

3

2M — 1)VrmM

—(MT3+]\/[m7")
Vo], .. (U(Tr),€) < (3( ) .

A final application of Corollary 2.9 yields

M 2
n > 2((M7"3 + Mmr) ln(3(2M - 1)V 7’de71> - ln(§)> <m(5> .
To the knowledge of the authors this is the first estimate of the number of samples that are necessary to satisfy
RIPg (6) in this setting. Note that this is a worst-case estimate and that significantly less samples are needed
in practice (¢f. [20]).
In the following examples we discuss the application to two common classes of problems.

Example 3.13. In this example we consider the problem of recovering the low-rank coeflicient tensor of a
function from samples. Let 7,,, be a probability measure on Z,, and %, C L?(Z,,, ) be spanned by the d,,
orthonormal basis functions {B,, ;} Now define the product space % := W, C L?(Z, ) with Z := ZM

JjE€ldm]” m
and 7 := M and endow it with the seminorm fwf, := |w(2)|. For the sake of simplicity we assume that the
weight function is constant, which means that writing w € %" does not introduce a conflict of notation. This is

the space in which the sought functions will live and it shall be approximated in the norm ffef := [[e]| ;25 .-
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As a model class consider the set F]TW C ¥ of functions with a coefficient tensor of rank r. Note that every
w € 7,7 can be represented in the tensor product basis Bj(z) := H;ngﬂ B, ;. (k) as

w(z)= ) wiBj(z)

jeNM

with a coefficient tensors w € 7,7 := 7.

To compute the variation constant of this model class, recall the definition of 7° = (Y, ||e||), ¥ = (R™)®M
and |v| y = |(v,Y) gy | from above. Note that each function w € % corresponds uniquely to a coefficient tensor
w € 7" and that the mapping B : Z — Y given by (B(z)); := Bj(z) induces an isometry of seminorms

fwt, = [w(z)] = [(w, B(2))gy,| = [Wlp(2)-

This means that, if we choose p as the pushforward measure p := B,7, the isometry of seminorms induces the

isometry of the two norms
1/2 1/2
2
i = ([ at) = ([rotane)) = o

[wll; o = esssup|w|, = esssupfwt, =: fwif -
yey z€Z

and

Together with Theorems 3.12 and 3.1 it follows that

KU(G"))=K(U(F”))=KUZ)) >m".

T T —

This shows that the variation constant for this problem grows exponentially with M.

Example 3.14. The problem of tensor completion can be considered as a special case of Example 3.13. In
this setting Z = [m]" is the set of all multi-indices, 7 = %(Z) is a uniform distribution on Z and % =

((Rm)®M, H0||F\m> is endowed with the semi-norm twt, := m?|w,|. Since this is a special case of Example 3.13
the model class of rank-r tensors 7, exhibits the same bound, namely K (U(Z,)) = K(U(%')) > m™.

These two examples show that K (U(J,.)) > m™ in important applications. To reduce the variation constant
in these cases we can only intersect 7, with another model class .# with low variation constant. The intersection
then inherits the low covering number of 7, and the low variation constant of /.

4. DEPENDENCE ON THE SEMINORM

Since the definition of the ||e||-norm is very general, our theory is not limited to the L?-norm but extends
to Sobolev or energy norms. It is therefore natural to ask how the choice of the semi-norm |o|y influences the
variation constant. In this section we investigate this influence using Sobolev norms as an example.

We will need the following generalization of reproducing kernel Hilbert spaces (GRKHS) as a tool for the
analysis.

Definition 4.1 (Generalized Reproducing Kernel Hilbert Space). Let # € 7" and {Ly}, ., C Z(%,R") be a

family of bounded linear operators. Then the pair (7/ , {Ly}y EY) generalizes the concept of reproducing kernel

Hilbert spaces.
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It (%, {Ly}yey) forms a GRKHS and o], := || L], then

[Wllyoe < vl and  K(U(A)) <52
for v € A C Z with s := sup,cy \/w(y)HLyHg(W’R,) and A 1= sup,ca\ o} % This allows to efficiently
compute an upper bound for K(U(A)).

Remark 4.2. In this setting the application of Theorem 2.12 leads to

u—twanl S llu—1ull, o < xllu—wnellg
whenever RIPy,, ,1—#(6) holds.

In the following, we consider a linear model space # C # := HM(Y) with a Lipschitz domain ¥ C R<.
For each m < M — % we consider 7" := H™(Y) with |v], = HLTUH2 and L7 € & (% ,R") defined such that
||®]| = ||®]| ym. This means, that we are searching the best approximation in the model space ./ with respect to
the H™-norm. To investigate the influence of m on the sample complexity, the upper bound 52, A2, for K(U(.#))
depending on m has to be computed.

It is proven in Appendix C, that for w =1

—aD(M +1)I'(M —m —
"M —m)

[VISH

oy = (2/T) ). (4.1)
Since sz, increases whith m, while A,, decreases, both effects should be equilibrated by a proper choice of m.

This is illustrated for two different model spaces . in Figure 3. The small effect of s, is due to the dimension
d =1 for which we can bound (4.1) by

(M +1)!
NG

via Gautschi’s inequality ([35], Eq. (5.6.4)).

We conclude that for linear model spaces an approximation with respect to the H™-norm for larger m requires
less samples than an approximation with respect to the L2-norm. For m = 1 this hypothesis is confirmed
numerically in Figure 4. For an application in the setting of weighted sparsity we refer to the recent work [2].
Note that this does not have to be the case in general. If the model class contains only piecewise constant
functions then information about the gradients is irrelevant. Such phenomena may also arise due to intricate
properties of the model class and may only be observable by looking at the variation constant.

Also note that the minimization with respect to the H™-norm does not necessarily require more computational
effort than the minimization with respect to the L2-norm. The values of both seminorms can be computed with
a single evaluation of the Fourier transform o = %u of u. A particularly important application of this setting
is Magnetic Resonance Imaging (MRI). Recalling Remark 2.17, we describe this application in the following
example.

(M +1)!

-1/
N (M —m—1)""2

(M—m)fl/2 <y <

Example 4.3 (MRI). In Magnetic Resonance Imaging an image u is sampled via evaluations of its Fourier
transform @ = %wu. This means that the samples {ﬁ’i}ie[n] satisfy @; = 4(w;) for samples of the angular
frequency w;. The precise distribution of the samples w; is given by the problem and is not of particular interest
in this example. Since u is an image of the human body, we can assume that it can be sparsely represented in
a wavelet basis (cf. [9,37]). The MRI reconstruction problem can hence be written as

v € argmin||i — Fo|,
vEM1 K
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FIGURE 3. The upper bound 32,A2, for the variation constant for two different model spaces
M with Y = [—1,1] and M = 40. The squares and dots represent the bound when A is the
span of the first 10 polynomials and trigonometric polynomials, respectively. The optimal m is
marked fat and in red.

() (b)

FIGURE 4. Probability distributions of the function values for least squares approximations
of the function f(z) = mﬁ (red) by Legendre polynomials of degree 29. Different approx-
imations correspond to different random draws of n = 40 sampling points from the uniform
measure on [—1,1]. (a) L2-least squares, mean error: 2 x 107. (b) H!-least squares, mean error:
5 x 105.
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where the seminorm is chosen as |v|, = |v(w)| and M4 is defined with respect to the chosen wavelet basis.
From Remark 2.17 we know that recovery requires RIP {4y _g.4, , (0) and RIP(4_g,,}(5), the probabilities of
which can be bounded by Theorem 2.8.

In the following we only compute the variation constant since the Fourier transform is an isometry and does
not change the covering number. Assuming that u € #4 i, we can estimate

K(U{a - Fva})) < KU{a} = Flly)) < K(U(F My 2x))-

To evaluate this, let ¢ be the mother wavelet and define the daughter wavelets 9, () = ﬁw(%) Due to

basic properties of the Fourier transform ), 5(w) := (Fthas)(w) = v/ath(aw) exp(—iaw) and since the daughter
wavelets are normalized we obtain

2

T)Z)a,bH

K(e((5o))) = e =

¢a,b‘ 12

2

Loe

. 112
Note that 1 is the Fourier transform of the mother wavelet and therefore HwH is constant. It can be concluded
LOQ

that many samples are needed to recover larger scale coefficients but fewer samples for smaller scales. This
suggests a multilevel approach where the small-scale coefficients are learned separately from the large-scale
coefficients. This was already observed in the compressed sensing literature (cf. [3]). Typically, these schemes
use the classical unweighted notion of sparsity. For a recent application of weighted sparsity in the context of
residual minimization in a sparse wavelet representation we refer to [17].

Due to the high variation constant of the large scale coefficients, it is sensible to incorporate as much infor-
mation as possible into this model class. In the spirit of works like [12], this can for example be achieved by
means of manifold constraints. These manifolds can either be estimated for a single patient (c¢f. [32]) or for
multiple patients when it can be assumed that the large-scale structures remain similar for different patients.
In this way the image u is decomposed (approximately) as a sum of a background image modelling the healthy
tissue and a foreground image modelling the pathological lesion.

Note that, if the mother wavelet 1) is differentiable, we can also consider the semi-norm |v| , := V1 + w?|v(w)],
which corresponds to the H'-norm in the physical domain. Computing the variation constant is however out of
scope for this brief discussion.

5. DiscussioN

The nonlinear least squares method is probably the easiest and, currently, the most commonly used setting in
machine learning regression. In Section 2 we derive an error bound for the nonlinear least squares estimator (1.1)
that can be used with arbitrary model classes. This result is based on a restricted isometry property (RIP), which
we prove to hold with high probability when the number of samples is sufficiently large.

To put our theory into perspective, we apply it to well-known model classes and compare the results to the
near optimal bounds that often already exist in the literature. In the cases of linear spaces (Sect. 3.1), functions
with sparse representation (Sect. 3.2) and low-rank tensors (Sect. 3.3), we obtain asymptotic bounds which
differ from these near optimal ones by a polynomial factor. This means that our analysis does not provide
optimal complexity bounds when the number of samples should be determined a priori and when sampling
is costly (i.e. when it is imperative to require as few samples as possible). We however assume that a more
meticulous application of modern concentration arguments (like [18]) could close this gap. We also obtain first
bounds for the sample complexity of low-rank tensor recovery in Section 3.3. These bounds, however, only
improve the sample complexity by a logarithmic term in comparison to full-rank tensors. An intuition for this
result is already provided by matrix recovery, where it is known that regularity in the form of incoherence
is needed in addition to the low-rank property. As a first remedy, we suggest to impose additional regularity
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(a) (b) (c)

FIGURE 5. Probability distributions of the function values for empirical approximations of
flz) = ﬁ (red) by Legendre polynomials of degree 29. Different approximations correspond
to different random draws of n = 100 sampling points from the uniform measure on [—1,1]. (a)
¢ =5, mean error: 2 x 10%. (b) ¢ = 10, mean error: 2 x 10°. (¢) ¢ = 15, mean error: 2 x 10°.

assumptions on the model class as was done in [22]. We, however, believe that this problem can be handled by
taking the regularity of the sought function w into account. Figure 5 provides first numerical evidence in support
of this hypothesis. The model class used for all three experiments is the same and only the regularity of the
function varies. Even though the best approximation error in all three cases is bounded by 1073, we can observe
how the empirical approximations deteriorate with decreasing regularity. The relative errors for the empirical
approximation increase from 10=2 to 10'.

Despite the mentioned limitation, we obtain qualitatively similar results to those that are reported for more
specialized approaches. In particular, this concerns the emergence of an optimal sampling measure in Section 3.1,
the importance of weighted sparsity (rather than standard sparsity) in Section 3.2 and the advantage of multilevel
sampling in Example 4.3. The generality of our theory also allows us to combine these result and derive optimal
weight functions in the setting of weighted sparsity. Since these results rely only on an estimation of the
probability of the RIP, they can be compared to results on weighted ¢'-minimization and we observe that using
an optimal weight function can improve the quality of the estimate.

In a final section, the dependence of the sample complexity on the seminorm that is used is investigated.
Expectedly, we observe faster convergence when stronger norms are used and provide a theoretical reason for
this effect.

Despite several remaining problems, we believe that this work is a promising first step towards a general
theory for the sample complexity of the nonlinear least squares problem. We also want to emphasise that,
although our discussion is limited to well-known model classes, the developed theory can be applied to arbitrary
model classes which may even be constructed empirically by methods such as manifold learning.

APPENDIX A. PROOF OF LEMMA 2.7

The proof consists of two steps. In the first step we derive Lemma A.3 to show that there exists v € N and
{Uj}je[,,] C U(A) such that

P| su ‘uQ—u2>(5 <]P’[max’u»2— ui|?| > 2]

o 1 > ] < P st~ 2] > 4
Using a union bound argument it follows that

2 2 5| 2 2 5]

PL??;‘J”“J'” = luslia| > 3| < 32 P{|lles1* = g 2] > £]

1<j<v
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> g].
In the second step we prove Lemma A.5, which allows us to bound the probability
P]jus)? > 8] < 2exp(-27)
for each 1 < j < v by a standard concentration inequality. Combining both inequalities yields Lemma 2.7.

In the following we are concerned with proving Lemmas A.3 and A.5 which both rely on properties of the
function ¢, : u — w(y)|u|z

< v max IP’HHujHQ -
1<j<v

Lemma A.1. The function £y : u — w(y)|u|§ has the properties
— [4y(u)] < K and
ey (w) = by ()] < 2VE[Ju =],
for all u,v € U(A).
Proof. Let u,v € U(A). The first statement follows immediately by

[6y(w)| < sup esssupw(y)|uf] = K.
ueU(A) yeY

To prove the second statement we consider the seminorm %, := /¢, and use the reverse triangle inequality

|ﬁﬂu%—ﬁﬂwlSéﬂu—vkéﬁtypéﬂu—v)ZHU—Mug)
Y

Since %, is bounded by v K, we can use the Lipschitz continuity of z — 2?2 on [~V K, VK] to conclude

16y (w) = £, (0)] < 2VE|#y (w) — £y (w)] < 2VE [u— vl o

As an intermediate step we first prove Lemma A.2 from which Lemma A.3 follows almost immediately.

Lemma A.2. Let v :=vq _ (U(A) W) and {uj} el be the centres of the corresponding covering. Then

almost surely

2 2 2
sup |[lul oty = s
ueU(A) v

Proof. Let u € U(A) be given. Then by definition of the {u;}
By Lemma A.1 and Jensen’s inequality we know that

jely)» there is a specific u; with lu—ujll, o < ﬁ.

el = s ] < [ 1) = o)™ dpty) < 2V =1, o, < 5

and almost surely

[l §]@1 — . ()] < 2VEJu = 5], o0 < 3

Therefore, by triangle inequality,

2 2 2 2 2 2 2
el = W] < ll® = Il = eI = g )| + |
2 2 2 2 2 2
< |l = s | + [l [
<3S+ ‘HujH2 almost surely.

Taking the maximum concludes the proof. (I
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Lemma A.3. Let v:=v, (U(A) v) and {u; }ge[u] be the centres of the corresponding covering. Then

2
P[sup(wm - ] <P[nwx\mﬂ| | >§]
ucU(A)
Proof. By Lemma A.2
2
sup | Jul* - ma [ * -
ucU(A)
holds almost surely. In this event we know that
b
sup,[ul” - e || > - | :
ueU(A
which concludes the proof. O

To prove Lemma A.5 we first recall a standard concentration result from statistics.

Lemma A.4 (Hoeffding 1963). Let {X;},cn) be a sequence of i.i.d. bounded random variables | X;| < M and
define X = & SN | X;. Then

P[[E[X] - X| 2 9] < 2exp(-%7)-
The proof of Lemma A.5 is now a mere application of this result.

Lemma A.5. Let u; € U(A) then
1P>H||uj||2 > 4] <2exp(-25)-

Proof of Lemma A.5. The statement follows from an application of Lemma A.4 to the sequence of random
variables {£,, (u;)}!_,. Since the samples y; are i.i.d. the random variables £,, (u) are i.i.d. as well. Moreover, by
Lemma A.1 the varlables are bounded in absolute value by K. Therefore, the assumptions for Lemma A.4 are
satisfied. O

APPENDIX B. PROOF OF THEOREM 3.1

We first need to show that b is measurable. For this let {u; };’;1 be a countable dense subset in A. Then
7 2 2
b(y) := suplul, = sup|u;|,
u€A JEN

is the supremum over a countable set of measurable functions and as such measurable. The first assertion now
follows by definition of K.
For the second assertion, we start by showing the integrability of b via

/KWMMS@MW@M w(y) ™ dp(y) = sup|loll?,
Y er vEA Y vEA

Now choose R > 0 such that [|v|| < R for all v € A. Since [[v[|,, ., < VE(A)[[v]| < /K(A)R for all v € A, we

can conclude that b is integrable.
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FIGURE B.1. The set of feasible aq, as satisfying oy, s > 0 and a7 + asly = 1 is displayed
in red. Contour lines k(ay, az) = t of the function k(ay,as) = a7t Vay* for t; < ty (left) and
for the optimal value top, = o' = a; ' (right) are drawn in black.

b= is indeed optimal. We only sketch the proof

It remains to show that the weight function w =
LY(Y,p)

b

=1
of this assertion. By substituting w = (vb) , the minimization problem

min )wl; s.t. w >0 and / wtdp =1
w L= (Y,p) Y
is equivalent to
. 1 2 _
HLIHH’U HLOO(Y’p) s.t. v >0 and /Y bvdp =1,

which is a non-convex optimization problem under linear constraints. The second assertion is now equivalent
to the statement that the minimal v is a constant function and the constraint [, bvdp = 1 implies w =

b b1,
L1(Y,p)
To prove that a minimal v has to be constant, let 21,5 C Y be any disjoint subsets with positive measures

and Q1 UQo =Y. Then v can be written as v = a1v1 + agvo with

and Vg = X for k=1,2.

O 2= Hv_lH;:O(Qk,p) o

Now observe that

Hv_lHLw(Y,p) = Hv_luLw(Ql,p) v Hv_luLoo(Qz,p) =a;'Vag'.

Moreover, v > 0 implies a1,z > 0 and the linear constraint can hence be written as anl; + azly = 1 with
Iy = fY bug dp for k = 1,2. Since v is optimal, it must also satisfy

min al_l \Y, a;l s.t. ap,ap >0and a1l + asly = 1.
Qp,02

Figure B.1 illustrates why the solution must be a; = as. This means that an optimal function v has to satisfy

Hv = ||1F1 || Lo (Qa.p)" The claim now follows since the subsets €21 and €25 were chosen arbitrarily.

i@
APPENDIX C. PROOF OF EQUATION (4.1)
Recall that 7 := H™(Y,p) where Y C R? is a Lipschitz domain and A C % := HM (Y, p) and that the
considered seminorm is given by
ol = 120l = 3 |25l

aeN?
la<m
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where the family of linear operators Ly is defined by Lyv = D%v(y) for all y € Y and all a € N¢ with |a| < m.

Observe that D% € H"(Y, p) for all a € N with |o| < m, where p := M —m > 4. It was shown in [8] that,
since Y is Lipschitz, H™(Y) can be embedded isometrically into H™ (Rd). This means that we can restrict our
analysis to the case Y = R?. In the following we compute

(0) = WLl (o itocrsiorsmt) = 2 (15l

aeN?
la|<m

As in [36] the Riesz representative of L,

[15_, (27iu;)™ exp(2mi(z — y) - u)
Rd > g<met 1=y (2mu;)*

can be obtained wvia the Fourier transform and some of its standard properties. Thus,

du,

K (z) =

L5115 = |Kg |12 = (K. Kg),, = [DKg] ()

Yy
d 20
(2w )T
_ [T, (2mu)) .

d 20,
R D2 g1 <mat [1j—1 (2u;) 7

By the change of variables t; = 27u;

d 200

a2 1 [ t;™

||Ly||yf* = d d 20, dt.
@m)" et 3 5 < =1

The multinomial theorem states that
2\™ m\ 201
(1+1e13) = > <a>Htj E
la|<m Jj=1

As a consequence,
d d
2a; 2 m S0rs
> IIE < (1+103)" <vm+1) 3 T16™
la|<m j=1 = =1

This leads to the estimate

S gl =L, [ Deien Lot
Yy lge~

d d 20;
al<m @) I 32 g ey [ 15

Pt psn) o (LH0E)"
< = /R

dt

oS ()"
_Pm+p+1) / dt
o e (1 eg3)”

_F(m+u+1)27rd/2/°° L s
ot T(E) e G+
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The recurrence relation (2.147) in [23] together with p > ¢ yields

14 52! 2u—dJy (1+s2)" 2T (p

/oo gd—1 1 d—92 [ 4d-3 F(ufd)
o (

Consequently,

—aT(m+p+ 1) (p—9)
I'(p)

K(y) < (2v/7)
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