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CONVERGENCE ANALYSIS OF ADAPTIVE DIIS ALGORITHMS WITH
APPLICATION TO ELECTRONIC GROUND STATE CALCULATIONS

MAXIME CHUPIN', MI-SoNG DUPUY?, GUILLAUME LEGENDRE™ AND ERIC SERE!

Abstract. This paper deals with a general class of algorithms for the solution of fixed-point problems
that we refer to as Anderson—Pulay acceleration. This family includes the DIIS technique and its
variant sometimes called commutator-DIIS, both introduced by Pulay in the 1980s to accelerate the
convergence of self-consistent field procedures in quantum chemistry, as well as the related Anderson
acceleration which dates back to the 1960s, and the wealth of techniques they have inspired. Such
methods aim at accelerating the convergence of any fixed-point iteration method by combining several
iterates in order to generate the next one at each step. This extrapolation process is characterised by
its depth, i.e. the number of previous iterates stored, which is a crucial parameter for the efficiency of
the method. It is generally fixed to an empirical value. In the present work, we consider two parameter-
driven mechanisms to let the depth vary along the iterations. In the first one, the depth grows until a
certain nondegeneracy condition is no longer satisfied; then the stored iterates (save for the last one) are
discarded and the method “restarts”. In the second one, we adapt the depth continuously by eliminating
at each step some of the oldest, less relevant, iterates. In an abstract and general setting, we prove
under natural assumptions the local convergence and acceleration of these two adaptive Anderson—
Pulay methods, and we show that one can theoretically achieve a superlinear convergence rate with
each of them. We then investigate their behaviour in quantum chemistry calculations. These numerical
experiments show that both adaptive variants exhibit a faster convergence than a standard fixed-depth
scheme, and require on average less computational effort per iteration. This study is complemented by
a review of known facts on the DIIS, in particular its link with the Anderson acceleration and some
multisecant-type quasi-Newton methods.
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1. INTRODUCTION

The Direct Inversion in the Iterative Subspace (DIIS) technique, introduced by Pulay [46] and also known as
Pulay mizing, is a locally convergent method widely used in computational quantum chemistry for accelerating
self-consistent field convergence. As a complement to available globally convergent methods, like the optimal
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damping algorithm (ODA) [10] or its energy-DIIS (EDIIS) variant [38], it remains a method of choice, in a large
part due to its simplicity and nearly unparalleled performance once a convergence region has been attained. Due
to this success, variants of the technique have been proposed over the years in other types of application, like the
GDIIS adaptation [14,17] for geometry optimization or the residual minimisation method—direct inversion in the
iterative subspace (RMM-DIIS) for the simultaneous computation of eigenvalues and corresponding eigenvectors,
attributed to Bendt and Zunger and described in [62]. It has also been combined with other schemes to improve
the rate of convergence of various types of iterative calculations (see [35] for instance).

From a general point of view, the DIIS can be seen as an acceleration technique based on extrapolation,
applicable to any fixed-point iterative scheme for which a measure of the error at each step, in the form of a
residual for instance, is (numerically) available. It was recently established that this technique is closely related
to an older process known as the Anderson acceleration [3]. It was also shown that it amounts to a multisecant-
type variant of a Broyden method [8] and that, when applied to linear problems, it is (essentially) equivalent
to the generalised minimal residual (GMRES) method of Saad and Schultz [50]. On this basis, Rohwedder and
Schneider [48] (for the DIIS), and later Toth and Kelley [56] (for the Anderson acceleration), analysed the
method in an abstract framework and provided convergence results.

In the present paper, we consider a unified family of methods, which we refer to as Anderson—Pulay accel-
eration, encompassing the DIIS, its commutator-DIIS (CDIIS) variant [47], and the Anderson acceleration. In
such methods, one keeps a “history” of previous iterates which are combined to generate the next one at each
step with the aim of accelerating the convergence of the sequence of iterates. This extrapolation process is
characterised by an integer, sometimes called the depth (see [1,18,56]), which is the number of previous iterates
stored and is an important parameter for the efficiency of the method. In most applications, the depth grows
up to an empirically fixed value m, then remains constant. One of the main conclusions of our work is that it
can be beneficial to let the depth vary adaptively along the iterations.

In order to prove this point, we propose and investigate two parameter-driven procedures to determine the
depth at each step of the Anderson—Pulay acceleration method. The first one allows the method to “restart”,
based on a condition initially introduced by Gay and Schnabel for a quasi-Newton method using multiple secant
equations [25] and used by Rohwedder and Schneider in the context of the DIIS [48]. In the second one, we
adapt the depth continuously, thanks to a very simple criterion which is new, as far as we know.

In a general framework, we mathematically analyse these two adaptive Anderson—Pulay methods, and prove
local convergence and acceleration properties. In contrast with preceding works [48,56], our results are obtained
without any assumption on the boundedness of the extrapolation coefficients (which would have to be verified
a posteriori in practice). Indeed, the built-in mechanism in each of the proposed algorithms prevents linear
dependency from occurring in the least-squares problem for the coefficients, allowing us to derive a theoretical a
priori bound on these coefficients. Applications of both methods to self-consistent field calculations in quantum
chemistry and comparisons with their fixed-depth counterparts, demonstrate their good performances, and even
suggest that adapting continuously the depth gives the fastest convergence in practice.

The paper is organized as follows. The principle of the Anderson—Pulay acceleration is presented in Section 2
through an overview of the DIIS and its relation with the Anderson acceleration and a class of quasi-Newton
methods based on multisecant updating. We also recall convergence results existing in the literature for this
class of methods, in both linear and nonlinear cases. In Section 3, a generic abstract problem is set and two
variants of the Anderson—Pulay acceleration with adaptive depth are proposed to solve it. For both variants, a
local convergence result is proved as well as an acceleration property, and we show that one can theoretically
achieve a superlinear convergence rate. In Section 4, the quantum chemistry problems we consider for the
application of the methods are recalled and their mathematical properties are discussed in connection with
our abstract framework. Finally, numerical experiments, performed on molecules in order to illustrate the
convergence behaviour of both methods and to compare them with their “classical” fixed-depth counterpart,
are reported in Section 5.
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2. OVERVIEW OF THE DIIS

The class of methods named Anderson—Pulay acceleration in the present paper comprises several methods,
introduced in various applied contexts with the same goal of accelerating the convergence of fixed-point iterations
by means of extrapolation, the most famous of these in the quantum chemistry community probably being the
DIIS technique, introduced by Pulay in 1980 [46]. We first describe its basic principle in an abstract context and
explore its relation to similar extrapolation methods and to a family of multisecant-type quasi-Newton methods.
We conclude this section by recalling a number of previously established results pertaining to the DIIS and the
Anderson acceleration.

2.1. Presentation

Consider the numerical computation of the fixed-point x, of a nonlinear function g from R™ to R™ by the
fixed-point iterative scheme

VE e N, z*+D = g(:v(k)), (2.1)
for which one can compute at each step an “error” vector r*) of the form
(k) — f(x(k))7
with f a function from R™ to RP? (the integer p being possibly different from n) satisfying

f(xzs) = 0.

Given a non-negative integer m (the maximal depth), the DIIS paradigm assumes that a good approximation
to the solution x, can be obtained at step k + 1 by forming a combination involving the my + 1 previous guess
values, with my = min {m, k}, that is

mp
VE €N, g+ = chk) g(x(k_m’”'i)), (2.2)
i=0
while requiring that the coefficients c(()k), e C%z of the combination be such that the norm of the associated

. . . . (k - N . .
linearised error vector, given by ZZ’Q’O cg ) mi+i) is minimal in the least-squares sense under the constraint

that

mp
S o1 (23)
=0

As discussed by Pulay, this minimisation may be achieved through a Lagrange multiplier technique applied
to the normal equations associated with the problem. More precisely, one can introduce an undetermined scalar
A and define the Lagrangian function

1 || )
L(Co, e ’ka,)\) = 5 Z C T(kfmk*‘rl)
=0

2 m m m m
. (ici_ 1) -1 S5 e (Zc _1>,
5 i=0 i=0

i=0 j=0

in which the coefficients bl(-f),

error vectors stored at the end of step k, i.e. bgf) = <r(k_mk+j),r(k_mk+i)>2. One then finds the saddle point

i,j = 0,...,myg, are those of the Gramian matrix associated with the set of

(c(()k), e ,CE,’;Z,/\(’“)) of this Lagrangian by solving the associated Euler-Lagrange equations. This amounts to
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solving the following system of my + 2 linear equations

k k k

b(()o) . b((),")% -1 cg ) 0
AT I I IO B
-1 ... -1 0/ \\® -1

The DIIS iterations are generally ended once an acceptable accuracy has been reached, for instance when the
value of the norm of the current error vector lies below a prescribed tolerance. This procedure is summarised
in Algorithm 1.

Algorithm 1: Pulay’s DIIS [46] for the acceleration of a fixed-point method based on a function g.

Data: (9, tol, m

r(0) = f(2©)

mp = 0

while Hr(k)H2 > tol do

solve the constrained least-squares problem for the coefficients {cgk)} using linear system (2.4)
7;:0,.‘.7mk

2R+ — Z;r;ko Cgk)g(x(kfmﬁi))
rE+1) — f(x(k+1))
Mmg1 = min(my + 1,m)
k=k+1

end

In practice and for a large number of applications, the integer m is chosen small, of the order of a few units.
Since system (2.4) is related to normal equations, it may nevertheless happen that it is ill-conditioned if some
error vectors are (almost) linearly dependent. In such a situation, a possible cure is to drop the oldest stored
vectors one by one, until the condition number of the resulting system becomes acceptable. One should note
that the use of an unconstrained equivalent formulation of the least-squares problem, like those derived in the
next subsection, is usually advocated, as it is generally observed that it results in a better condition number for
the matrix of the underlying linear system. We refer the reader to [52,58] for more details on this topic.

In [46], Pulay initially suggested using the quantities

Vk e N, r(®) = g+ _ (k) — g(ac(k)> —z®, (2.5)

as error vectors. Note that with this choice, p = n and there is a direct relation between the error function f
and the fixed-point function g:

f=g—id (2.6)

Pulay later proposed in [47] a variant form of the procedure, sometimes known as the commutator-DIIS or
simply CDIIS (see [24] for instance), which is more appropriate for self-consistent field (SCF) iterative schemes in
quantum chemistry (see Sect. 4). In such applications, the fixed-point function takes its values in a submanifold
Y (consisting of idempotent matrices), but an extrapolation like (2.2) would not lie on X. As a remedy, the
definition of the new iterate is modified in CDIIS, so that it belongs to the submanifold. Moreover, in this
variant, no relation of the form (2.6) is assumed between the fixed-point and error functions. For applications in
quantum chemistry, Pulay introduced an error function that turns out to be the commutator of two matrices,
hence the name given to the method.



CONVERGENCE ANALYSIS OF ADAPTIVE DIIS ALGORITHMS 2789

2.2. Relation with the Anderson and nonlinear Krylov accelerations

To solve a nonlinear equation of the form

h(z) =0, (2.7)
a classical idea is to perform a fixed-point iteration based on the function
g(x) =x + B h(z), (2.8)

where f3 is a sufficiently regular, homogeneous operator!. One sees that the choice (2.5) for the error vectors
corresponds to setting
f(z) = Bh(z).

In this particular case, the error vectors are (possibly preconditioned) residuals, and it is possible to relate
the DIIS to a structurally similar extrapolation method, the Anderson acceleration [3] (sometimes called the
Anderson mizing), introduced for the numerical solution of discretised nonlinear integral equations and originally
formulated as follows. At the (k + 1)th step, given the my + 1 most recent iterates gh=me) 2 and the
corresponding residuals r#=™%) (k) define

my
vhe N, 20 = g(0) 13060 (g(altm0) —g(«V)), 29)

i=1
the scalars Ql(k), 1=1,...,m; being chosen so as to minimise the norm of the associated linearised residual, i.e.

VkeN, %) = argmin
(01,10, ) ER™E

(2.10)

mg
r® 43, <T<k—mk—1+i> _ r(k))
i=1

2
Setting

my
vk € N, c§k) 292@1, 1=0,...,mp— 1, and cg,’fz =1 —Zej(.’”,
j=1
one observes that relation (2.9) can be put into the form of relation (2.2), so that the DIIS applied to the
solution of (2.7) by fixed-point iteration is actually a reformulation of the Anderson acceleration.

This instance of the DIIS is not the only reinvention of the Anderson acceleration. In 1997, Washio and
Oosterlee [60] introduced a closely related process dubbed Krylov subspace acceleration for the solution of
nonlinear partial differential equation problems. The extrapolation within it relies on a nonlinear extension of
the GMRES method (see Sect. 2.4) and is in all points identical to (2.9) and (2.10), save for the definition of the
fixed-point function g which corresponds in their setting to the application of a cycle of a nonlinear multigrid
scheme. Another method, also based on a nonlinear generalisation of the GMRES method, is the so-called
nonlinear Krylov acceleration (NKA), introduced by Carlson and Miller around 1990 (see [12]) and used for
accelerating modified Newton iterations in a finite element solver with moving mesh. It leads to yet another
equivalent formulation of the Anderson acceleration procedure by setting

mp
Vk e N, zFtD = g(x(k)) — Zagk) (g (x(k*m’““')) — g(x(k*m’““;l))), (2.11)
i=1
with
mi
VkeN, a® = arg min Pk — Zai (r(kfm’““-) — T(kfm’““;l)) , (2.12)
(@1, om,, ) ER™E i=1 2

IThis operator can be seen as a preconditioner of some sort, the simplest case being the multiplication by a (nonzero) constant 3
— a relaxation (or damping) parameter — or, in the context of the fixed-point iteration (2.1), a sequence (ﬁ(k))keN of such constants

(see [3]). Hereafter, we restrict ourselves to the case where 3 is a fixed operator, so that the function f remains unchanged along
the iteration.



2790 M. CHUPIN ET AL.

which amounts to take agk) = Zi-:1 Q;k), 1=1,...,mg. Another form of the minimisation problem for the norm
of the linearised residual is found in [15], where it is combined with a line-search to yield a so-called nonlinear
GMRES (N-GMRES) optimisation algorithm for computing the sum of R rank-one tensors that has minimal
distance to a given tensor in the Frobenius norm.

The fact that the above acceleration schemes are different forms of the same method has been recognised on
several occasions in the literature, see [9,21,58] for instance or Anderson’s own account in [4]. In [7], it is shown
that the Anderson acceleration is actually part of a general framework for the so-called Shanks transformations,
used for accelerating the convergence of sequences.

Like the DIIS, the Anderson acceleration has been used to improve the convergence of numerical schemes
in a number of contexts, and the recent years have seen a wealth of publications dealing with a large range of
applications (see [1,23,31,32,40,42,61,64] for instance). Variants with restart conditions to prevent stagnation
[20], periodic restarts [45] or a periodic use of the extrapolation [5] have also been proposed.

2.3. Interpretation as a multisecant-type quasi-Newton method

An insight on the behaviour of the DIIS may be gained by seeing it as a quasi-Newton method using multiple
secant equations. It was indeed observed by Eyert [19] that the Anderson acceleration procedure amounts to a
modification of Broyden’s second® method [8], in which a given number of secant equations are satisfied at each
step. This relation was further clarified by Fang and Saad [20] as follows (see also the paper by Walker and Ni
[58)).

Keeping with the previously introduced notations® and considering vectors as column matrices, we intro-
duce the matrices respectively containing the differences of successive iterates and the differences of associated
successive error vectors stored at step k,

ay (k) — [xw—mm) _ glkmma) (k) _x(k—n} and .7 ®) — [r(k—mm) — i) ) D]
in order to rewrite the recursive relation (2.11) as
VE e N, 2+ = gk 4 pk) _ (@(k) + y(@) a®),
the minimization problem (2.12) becoming a simple least-squares problem,

vk eN, a® = argmin Hr(k) — Y(k)aH .
Q€M 1 (R) 2

Assuming that .#(®) is a full-rank matrix, which means that the error vectors are affinely independent, and
characterising a®) as the solution of the associated normal equations, with closed form

o — (y(k)Ty(k))*ly(kﬁr(k)’ (2.13)
one obtains the relation

Vk e N, g+ — () _ <[n i (@(k) 4 y(k)) (y(k)—ry(k)>_1y(k)—r>r(k)7

which can be identified with the update formula of a quasi-Newton method of multisecant type,
VE e N, z*+D = 0 _ q®R)pk) (2.14)

2It is sometimes also called the bad Broyden method (see [27]).
3We continue to assume that the relaxation parameter 3 does not vary from one iteration to the next.
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with
G = —1, + (#7470 (70 70 T (2.15)

Here, the matrix G*) is regarded as an approximate inverse of the Jacobian of the function f at point z(*),
satisfying the inverse multiple secant condition

GF) k) — gy (k)

It moreover minimises the Frobenius norm HG (k) 4 InH2 among all the matrices satisfying this condition. Thus,
formula (2.15) can be viewed as a rank-my, update of —I,, generalising Broyden’s second method, which effec-
tively links the Anderson acceleration to a particular class of quasi-Newton methods. Apparently not aware
of this connection, Rohwedder and Schneider [48] derived a similar conclusion in their analysis of the DIIS
considering a full history of iterates, showing that it corresponds to a projected variant of Broyden’s second
method proposed by Gay and Schnabel in 1977 (see Algorithm II’ in [25]).

In contrast, the generalisation of Broyden’s first method aims at directly approximating the Jacobian of the
function f at point 2(*) by a matrix B*) which minimises the norm HB(’“) + In”z subject to the multiple secant

condition B®# %) = () Under the assumption that the matrix % *) is full-rank, this yields
T -1 T
B® — 1 + (@(k) n y(k)) (g(k) g(k)) gk

Using this fact, Fang and Saad [20] defined a “type-I” Anderson acceleration (the “type-I1I” Anderson acceler-
ation corresponding to the original one, related to Broyden’s second method as seen above). Indeed, assuming

that the matrix % (k)Ty (%) is invertible and applying the Sherman-Morrison-Woodbury formula, it follows
that

(B =, + (@(’C) n y(k)) (g/(k)Ty(k))_lg(k)T,

and substituting (B®™)~! to G®) in (2.14), one is led to a variant of the original method, the coefficients of
which satisfy

&t _ (g(k)—ry(k)>71g(k)—rr(k)7

instead of (2.13).

To end this subsection, let us mention that a relation between the DIIS applied to ground state calcula-
tions and quasi-Newton methods was also suspected, albeit in heuristic ways, in articles originating from the
computational chemistry community (see [37,55] for instance).

2.4. Equivalence with the GMRES method for linear problems

Consider the application of the DIIS to the solution of a system of n linear equations in n unknowns, with
solution z,, by assuming that the function h in (2.7) is of the form h(x) = b — Ax, where A is a nonsingular
matrix of order n and b a vector of R™. In such a case, relation (2.8) amounts to g(z) = (I, — SA)z + §b,
and the fixed-point iteration method (2.1) reduces to the stationary Richardson method. In what follows, we
assume that all the previous error vectors are kept at each iteration, that is m = 400, so that my = k for each
natural integer k.

A well-known iterative method for the solution of the above linear system is the GMRES method [50], in
which the approximate solution z(**t1) at the (k+1)th step is the unique vector minimising the Euclidean norm

of the residual

k+1 k
TE;MR)ES =b— Az*D

in the affine space
Wi1 = {v =20 42|z € Ky (A’ TSKARES) }’
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where, for any integer j > 1, K (A, TE}?K/IRES) = span{rg)lz/[REs, Arg)K/IRES, . Ajflrg)g/IRES} is the
order-j Krylov (linear) subspace generated by the matrix A and the residual vector rg)KARES =b— Az,
the starting vector z(°) being given. Since each of these Krylov subspaces is contained in the following one, the
norm of the residual decreases monotonically with the iterations and the exact solution is obtained in at most
n iterations (the idea being that an already good approximation to the exact solution is reached after a number
of iterations much smaller than n). More precisely, the following result holds (for a proof, see for instance [44]).

Proposition 2.1. The GMRES method converges in ezxactly I/(A, rgJKARES) steps, where the integer

V(Aﬁg)K/IRES) is the grade* of T(C?K/IRES with respect to A.

In [28], it was shown that the GMRES method could be interpreted as a quasi-Newton method. Similarly,
the fact that the DIIS (or the Anderson acceleration) used to solve a linear system is equivalent to the GMRES
method in the following sense was proved in [48,58] (see also [44] for more refined results).

Theorem 2.2. Suppose that x](DOI)IS x((glz/IRES = 29 and that the sequence of residual norms does not stagnate’

before step k, i.e. rgMRES #0 and HTGMRESH > HTGMRESH for each integer j such that 0 < j < k. Then

(k),.(3)
xGMRES ZC IpIrs:

and

k+1 k
x](DIIS) = g(xg}lz/IRES)

Assuming that a full history of iterates is kept and that no stagnation occurs, this equivalence directly provides
convergence results in the linear case for the DIIS in view of the well-known theory for the GMRES method.
In particular, if g is a contraction, then stagnation is forbidden and the DIIS converges to the exact solution in
a finite number of steps. Theorem 2.2 also justifies the inclusion of Krylov’s name in some of the rediscoveries
of the Anderson acceleration we previously mentioned. Of course, if the number of stored iterates is fixed or if
“restarts” are allowed over the course of the computation, in the spirit of the periodically restarted GMRES
method, GMRES(m), these results are no longer valid. Nevertheless, the behaviour of GMRES(m) has been
studied in a number of particular cases, and various restart or truncation strategies (see [16] and the references
therein for instance) have been proposed over the years in order to compensate for the loss of information by
selectively retaining some of it from earlier iterations.

Walker and Ni [58] showed in a similar way that the type-I Anderson acceleration, recalled in the preceding
subsection, is essentially equivalent to the full orthogonalisation method (FOM) based on the Arnoldi process
(see [50], Sect. 2) in the linear case.

4The grade of a non-zero vector x with respect to a matrix A is the smallest integer £ for which there is a non-zero polynomial
p of degree ¢ such that p(A)z = 0.

5As shown in [26], any nonincreasing sequence of residual norms can be produced by the GMRES method. It is then possible for

the residual norm to stagnate at some point, say at the kth step, k being a nonzero natural integer, with r((}{cl\>/[RES TGkMIQES # 0.

In such a case, the equivalence between the methods implies that xgcgsl) = xlgkl)lsv making the least-square problem associated with

the minimisation ill-posed due to the family {f(zDHS) f( ](Dkgsl)) } not having full rank. The DIIS method then breaks down

upon stagnation before the solution has been found, whereas the GMRES method does not. As pointed out in [58], this results in
the conditioning of the least-square problem being of utmost importance in the numerical implementation of the method.
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2.5. Existing convergence theories in the nonlinear case

In light of the previous subsection, it appears that the convergence theory for the DIIS in the linear case
is well developed and intimately linked to that of the GMRES method. On the contrary, this theory is far
from being established when the method is applied to nonlinear problems. The interpretation of the DIIS as
a particular instance of quasi-Newton methods does not provide an answer, as there is no general convergence
theory for these methods. Nevertheless, results have emerged in the literature in the recent years.

In [48], Rohwedder and Schneider proved a local g-convergence result® for the DIIS applied to a general non-
linear problem of the form (2.7), with the choice § = —1 in (2.8). They assumed that the underlying mapping
is locally contractive and that error vectors associated with the stored iterates satisfy an affine independence
condition. Their analysis is based on the equivalence between the DIIS and a projected variant of Broyden’s
second method, the convergence properties and an improvement of estimates appearing in the proof of conver-
gence by Gay and Schnabel in [25]. By interpreting the DIIS as an inexact Newton method, they also obtained
a refined estimate for the error vector at a given step that allowed them to discuss the possibility of obtaining
a superlinear convergence rate for the method.

More recently, Kelley and Toth [56] studied the use of the Anderson acceleration on a fixed-point iteration
in R™, also based on the function (2.8) in which one has set 8 = 1, the history of error vectors being of fixed
depth m. Assuming that the fixed-point mapping is Lipschitz continuously differentiable and is a contraction in
a neighbourhood of the solution, and with the requirement that the extrapolation coefficients remain uniformly
bounded in the ¢'-norm, they proved that the method converges locally r-linearly. When m = 1, they showed
that the sequence of residuals converges g-linearly if the fixed-point mapping is sufficiently contractive and the
initial guess is close enough to the solution. This analysis was later extended to the case where the evaluation
of the fixed point map is corrupted with errors in [57]. Chen and Kelley [13] also obtained global and local
convergence results for a variant of the method in which a non-negativity constraint on the coefficients is
imposed (an idea previously used in the EDIIS method [38]), generalising the results in [56]. Recently, Evans
et al. [18] studied the convergence improvement given by the Anderson method.

Note, however, that in all these works, for m > 1 an assumption is made on the boundedness of the extrapo-
lation coefficients, or on the affine independence of the error vectors. Such an assumption can only be checked a
posteriori in the standard DIIS or Anderson algorithm. To address this issue, a stabilised version of the type-I
Anderson acceleration is introduced by Zhang et al. [65]. It includes a regularisation ensuring the non-singularity
of the approximated Jacobian, a restart strategy guaranteeing a certain linear independence of the differences
of successive stored iterates, and a safeguard mechanism guaranteeing a decrease of the residual norm. A global
convergence result for the corresponding acceleration applied to a Krasnoselskii-Mann iteration in R™ is then
proved.

3. RESTARTED AND ADAPTIVE-DEPTH ANDERSON-PULAY ACCELERATION

Two peculiarities of the CDIIS variant proposed by Pulay for electronic ground state calculations [47] are
that, when interpreted in terms of an abstract fixed-point function g and an abstract error function f, the target
set of the function g is possibly a submanifold and the functions g and f do not necessarily satisfy a relation of
the form (2.6) (see Sect. 4 for more details). As a consequence, the convergence theories found in [48] or in [56]
do not apply.

This observation leads us to introduce an abstract framework in which the class of Anderson-Pulay accel-
eration algorithms is defined. This class encompasses and generalises the DIIS, the Anderson acceleration, the
CDIIS and other methods reviewed in the previous section (see Algorithm 2). In addition, two adaptive modi-
fications of this procedure are proposed: the first one, Algorithm 3, includes a restart condition in the spirit of
Gay and Schnabel [25]; in the second one, Algorithm 4, the depth is continuously adapted at each step according
to a new criterion.

6The notions of g-linear convergence and r-linear convergence are both recalled in Section 3.2.
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3.1. Description of the algorithms in an abstract framework

We consider an error function f, a fixed-point function g, and a point z, in R™ such that f(z.) = 0 and
g(z.) = x.. We do not impose that f and g be linked by a relation of the form (2.6). In Section 3.2, two
assumptions will be made on these functions in a neighborhood of x,, ensuring that the norm ||f(:1:(k)) ||l2 of the
error diminishes along the basic fixed-point iteration (2.1), and that this norm controls the distance ||z(*) —z,|5.

Our precise definition of Anderson—Pulay acceleration is given below in Algorithm 2.

Algorithm 2: Fixed-depth Anderson—Pulay acceleration for a fixed-point method based on a function g.

Data: (9, tol, m
rO) — f(2®)

mpy = 0
while Hr(k)H2 > tol do
solve the constrained least-squares problem for the coefficients

(@) = agmin [ et
1=0,...,mg (Co,~--,Cm,k)ER7'Lk+1
Y ei=1
gD = S cgk)g(x(k_mk‘”)) (version A)
or

gk = g(zHD) with Fk+D) = S M g(k=miti) (version P)
pl+1) — f(g(k+D)

Mmgr1 = min(my + 1,m)

k=k+1

end

One can observe that the Anderson—Pulay acceleration comes in two versions, which only differ in the defi-
nition of the new iterate. Comparing with Algorithm 1, one sees that version A corresponds to the DIIS [46],
and is equivalent to the Anderson acceleration [3] if relation (2.6) holds. The formula giving the new iterate
in version A can be seen as a linearised form of the one in version P, the latter being directly inspired by the
CDIIS [47]. One may thus note that the two versions coincide for a linear fixed-point function g.

As already discussed in Section 2.1, the numerical solution of the constrained linear least-squares problem
for the extrapolation coefficients requires some care. Indeed, the matrix of linear system (2.4) resulting from
the use of a Lagrange multiplier accounting for the constraint has to be well-conditioned for the method to
be applicable in floating-point arithmetic. Unconstrained formulations of the problem exist, as employed in
the Anderson acceleration (see (2.10)) or its numerous reinventions (see (2.12) for instance), each leading to
an equivalent Anderson—Pulay acceleration algorithm, but with a possibly different condition number for the
matrix of the linear system associated with the least-squares problem.

Note that a bound on the extrapolation coefficients is also needed when investigating the convergence of
the method. In [56], this bound is presented as a requirement, following, for instance, from the uniform well-
conditioning of the least-squares problem, which cannot be a priori guaranteed. Nevertheless, such a condition
can be enforced a posteriori by diminishing the value of the integer my. In practice, this may be achieved by
monitoring the condition number of the least-squares coefficient matrix and by dropping as many of its left-most
columns as needed to have this condition number below a prescribed threshold, as proposed in [58]. Another
possibility consists in ensuring that the error vectors associated with the stored iterates fulfill a kind of linear
independence condition like the one found in [25,48]. To enforce this condition in practice, one can simply choose
to “restart” the method, by resetting the value of my to zero and discarding the iterates previously stored, as
soon as an “almost” linear dependence is detected, as done in [25,65]. This approach is adopted for the first
adaptive modification of Algorithm 2 proposed and analysed in the present work.
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More precisely, assuming that mj > 1 at step k, set

sthmmati) — plh=meti) _ p(b=me) G — 1 my,
and let IT; denote the orthogonal projector onto span{sk=m++1  s(*)} The algorithm will “restart” at step
k+ 1 (meaning that the number my; will be set to zero) if the norm of s+ 11, s(F+1) {g “gmall” compared
to the norm of s*+1) that is, if the following inequality holds:

r HT<k+1> _pemo]| s

‘ (id —Hk)(r(kH) — r(k_m’“)) H (3.1)
2 2
where 7 is a real parameter chosen between 0 and 1. Otherwise, the integer my is incremented by one unit
with the iteration number k. One can view condition (3.1) as a near-linear dependence criterion for the set of
differences of stored error vectors. Indeed, as explained in [25], it “recognizes that, in general, the projection of
s orthogonal to the subspace spanned by sV, ... s~ must be the zero vector for some i < n”.

Such a restart condition is particularly adapted to a specific unconstrained formulation of the linear least-
squares problem for the extrapolation coefficients

my
c®) = arg min E ¢ rFmmetdl (3.2)
(CO,...,ka)ERmk+1 =0 2
T et

to be effectively employed in practice. In this formulation, instead of using the constrained vector of coefficients

c = (coy..-,Cm,), one works with the unconstrained vector v = (71,...,7m,) with 7 = ¢;, 1 <4 < my. One
then has

m mp,

Zci T(kfmszi) — ,r,(kfmk) + Z’Vi S(kfmwri)7

i=0 i=1

resulting in (3.2) being replaced by

mg
r(k*mk) + Z Vi S(kfkar’L)
i=1

'y(k) = arg min
(Y15 Ymy, )ER™E

2

The corresponding modification of the Anderson—Pulay acceleration is given in Algorithm 3. The question of
the numerical computation of the orthogonal projector Il will be addressed in Section 5.1.

Note that, with this instance of the method, all the stored iterates, except for the last one, are discarded when
a restart occurs. In some practical computations, a temporary slowdown of the convergence is observed after the
restart (see Sect. 5). To try to remedy such an inconvenience, we introduce a smoother adaptive modification
of Algorithm 2, based on an update of the set of stored iterates at step k 4+ 1. The idea is to eliminate the old
iterates that are too far from the fixed point, compared to the most recent one. More precisely, one chooses the
largest possible depth my11 < my 41 such that the following inequality is satisfied for all k+1—mygq1 <@ < k:

i

<[],
2 2

Here, the real number ¢ is a small positive parameter. To the best of our knowledge, this criterion is new,
and the corresponding variant of the Anderson-Pulay acceleration is given below in Algorithm 4.

In this algorithm, one may observe that the unconstrained form of the least-squares problem for the coefficients
uses the differences of error vectors associated with successive iterates, that is, sV = ¢ —p(=1 4 — f—m, +
1,...,k, which is a computationally convenient choice when storing a set of iterates whose depth is adapted at

each step. One then has agk) = Z;;E c§.k), i=1,...,myg.
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Algorithm 3: Restarted Anderson—Pulay acceleration for a fixed-point method based on a function g.

Data: I(0)7 tol, T

r© — f(a:(o))
k=0
mg = 0

while HM)H > tol do
2

if mi = 0 then

‘ 2D — g(xae))

else
solve the unconstrained least-squares problem for the coefficients
{ k)} arg min plk=me) | Same o g(k—mi+i)
2

----- (¥1ses7my, ) ER™E
2D — g(muc w) +Z’”ﬂfk)( ( <k—mk+z‘>) _g(w*mw)) (version A)

o
LR+ — g(~(k+1)) with Z*+D = gk=me) 4 Shme ’Yz(k)( (k=miti) x(k_mk)) (version P)

end

PO f(x(k-&-l)

S(B+D) _ (1) _ o (k=my)

compute I, s 4D (the orthogonal projection of s**D onto span{ (k= m"“ (k>}
if 7 Hs(k'H) (id —11;)s* V|| then
2
Mmr41 =
else
| Mry1 =mp +1
end
k=k+1
end

Algorithm 4: Adaptive-depth Anderson—Pulay acceleration for a fixed-point method based on a function g.

Data: (0, tol, §
r(0) — f(x(O))
k =0
=0
whlle Hr ’“>|| > tol do
if my = () then
‘ pkt1) — g(x(k))

else
solve the unconstrained least-squares problem for the coefficients
(o} = amgmin [r®) - 3 oy s
1=1,....,mg

(al,...,amk)E]R’”k
(k1) — g(x(k)) _ ka al(k) (g(x(k—mk+i)) _ g(x(k—mk+i—1))) (Version A)

=1
or
pk+1) — g(EE(kH)) with 7k+1) — 4k _ Z?lkl %(k) (x(k)—mk'f'i) _ x(k—mk—&-i—l)) (version P)
end

Pe+1) — f(l,(k+1))
s+ — p(k+1) _ (k)
set my41 the largest integer m < my + 1 such that for k+1—-m <i <k, ¢ ||1"(i)H2 < Hr(’”l) ||2

k=k+1
end
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The rest of this section is devoted to theoretical convergence results for Algorithms 3 and 4. Since we will
analyse the behaviour of infinite sequences, the stopping parameter tol will be set to zero. If there exists some

natural integer kgop for which r(kseor) = (0, we will also adopt the convention that z(*) = g(kster) (k) = 0 and

my, = 0 for all natural integers k greater or equal to kgop. Moreover, whenever my, = 0, we will take cgk) =1.

3.2. Linear convergence

We shall now study under natural assumptions the convergence of the modified Anderson—Pulay acceleration
methods devised in the previous subsection. To this end, we consider the following functional setting.

Let n and p be two nonzero natural integers, > be a smooth submanifold in R™, V' be an open subset of R",
f be a function in €?(V,RP), g be a function in €%(V,¥), and z, in V N ¥ be a fixed point of g satisfying
f(z.) = 0. We next make two assumptions.

Assumption 3.1. There exists a constant K in (0,1) such that
Ve e Vgl (V)NE, [[(fog)(@)l, < K[ f(@)ll,.
Assumption 3.2. There exists a positive constant o such that
Ve e VNE, ollz — ., < |[f(@)l,

Note that these assumptions ensure that z, is the unique fixed point of g in V' and the unique solution of
the equation f(xz) = 0 in V N 3. There might be other zeroes of f lying outside of X, but they would not be
fixed points of g.

Since f and g are both of class €2, we may assume, taking U C V N g~*(V) a smaller neighbourhood of z,
if necessary, that

V(z,y) € U2, |If () = FW)ll, < 2IDf(zs)llallz = yll,
and [|(f o g)(x) = (f 2 9)(y)lly < 2[[Df(z+) o Dg(a.)llsllz =yl (3-3)

where Df(x,) and Dg(z.) are the respective differentials of f and g at point x., and that one also has, for some
positive constants L and L',

Ve € U, |f(x) ~Df(e)(@— 2l < & o —.],% (3.4)

L 2
Vo €U, llg(z) — o = Dy(zu)(z —z)ll; < 5 llo — o™ (3.5)

We may also impose that U be a tubular neighbourhood of ¥ N U containing z, and such that the formula

Ps(z) = argmin ||z — g,
yeD

defines a smooth nonlinear projection operator Ps from U to X NU (see e.g. [563]). Let Pr, s be the orthogonal
projector onto the tangent space T, 3 to ¥ at x,. For U small enough, there exists a positive constant M such
that it holds:

M
Vo e U, ’Pg(a:) — (x4« + Pr, s(x — m*))H2 < 7”95 — x*|\22. (3.6)

Note that the introduction of the submanifold ¥ is needed in view of applications to quantum chemistry, as
presented in Section 4; the above assumptions will be discussed in such a context.
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When the submanifold ¥ is not an affine subspace of R™, one may observe that the iterate z(**1) generated
by version A of the algorithms may in general lie outside of ¥, which does not seem appropriate. This is the
main reason for the introduction of version P, starting with the CDIIS in quantum chemistry (see [47]). On
the contrary, when ¥ is an affine subspace of R™, it is isometric to R™ for some integer n/ such that n’ < n,
and all the iterates of both versions lie in ¥, so there is no difference with the case ¥ = R™. The theoretical
results of the present paper are thus stated for version P of the algorithms when X is arbitrary, and for version
A assuming that ¥ = R".

As seen in Section 2, the usual abstract framework for the DIIS and/or the Anderson acceleration is a special
case of ours: there is no submanifold (that is, one takes 3 = R™), the integers p and n are the same, and the
functions f and g are related by (2.6). In this setting, Assumptions 3.1 and 3.2 are satisfied as soon as the norm
of Dg(z,) is strictly lower than one. The theoretical results of the present paper are, of course, still valid and,
as far as we know, new in this more restrictive setting.

Before stating the convergence results, let us first recall the terminology associated with the different types
of linear convergence (see also Appendix A of [41]). Let (as(k)) N be a sequence in a normed vector space F,
equipped with the norm ||-||, that converges to some z, in E. The convergence is said to be (at least) g-linear
with rate p in (0, 1) if

[z®+D —a. .
T < p, for all k sufficiently large.

o =,
In addition, the convergence of the sequence is said to be (at least) r-linear with rate p in (0,1) if there exists

a positive constant C such that

Hx(k) — .|| < Cuk, for all k sufficiently large.

In dealing with the convergence of the acceleration techniques considered in the present work, we shall say
that a method is locally g-linearly (resp. r-linearly) convergent if, for H’I“(O)H2 small enough, the sequence of
error vectors (r(F)) ey converges at least q-linearly (resp. r-linearly) to the zero vector in R?. Note that, from
Assumption 3.2, this implies that the sequence of iterates (x(’“)) converges at least r-linearly to z, in R”
with the same rate.

Our first result deals with the convergence of the restarted Anderson—Pulay acceleration method.

keN

Theorem 3.3. Let Assumptions 3.1 and 3.2 hold and let v be a real number such that K < p < 1. There exists
a positive constant R, such that, for any choice of the restart parameter T in the interval (0,1), if the initial
point (0 in UN'Y satisfies 0 < Hr(o) ||2 < R,7? and one runs version P of Algorithm 3 (or version A in the

case ¥ = R™), the sequences (:v(k))keN and (r(k))keN are well-defined and, as long as Hr(k)HQ 18 monzero, one
has

my, < min(k, p), (3.7)

Hc(k)Hm < Com, <1 + W) (3.8)

where Cy,, s a positive constant depending only on my, and

,r,(k‘fmk)

(ot 1) H < et
2

’2. (3.9)

As a consequence, one has
vken, [/ <k | (3.10)
2 2

meaning that the method is locally r-linearly convergent.
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Moreover, there exists a positive constant I', independent of the parameter T, such that, if a restart occurs at
step k+ 1 (that is, if mi1 =0), one has
e
2

Our second theorem deals with the convergence of the adaptive-depth variant of the Anderson—Pulay accel-
eration method.

(3.11)

m ‘2'

T
1-K(1+ T))Hr(k"'l)H2 < (KT +—=— Hr(k_m’“)
T

Theorem 3.4. Let Assumptions 3.1 and 3.2 hold and let p be a real number such that K < u < 1. There exists
a positive constant c,, such that, for any choice of the parameter ¢ in the interval (0, K), if the initial point z©
in UNY satisfies 0 < ||r(0) H2 < ¢,62 and one runs version P of Algorithm 4 (or version A in the case ¥ =R™),

the sequences (x(k))keN and (r™))en are well-defined and, as long as Hr(k) H2 > 0, one has

my, < min(k, p), (3.12)

], <em (14 (7)), (3.13

where C,, s a positive constant depending only on my, and
[+, = w1, (3.4
2 2

The method is thus locally g-linearly convergent.
Moreover, if k — my > 1, then one has

Hr“C)H §5Hr<k—mk—1>H . (3.15)
2 2

In both theorems, we have given an upper bound on the extrapolation coefficients ¢(*) that depends on my
(see (3.8) and (3.13), respectively). Using the fact that my is less than or equal to p, one immediately infers
from these inequalities that the coefficients ¢*) are bounded independently of k, which is sufficient to prove
convergence. Nevertheless, this uniform estimate is rough, as it is observed in practical calculations that the
depth is generally much smaller than the dimension p.

In addition to the local linear convergence estimates (3.9) and (3.14), we have also provided some technical
estimates on the residual — inequalities (3.11) and (3.15), respectively — which are crucial for the proofs of the
acceleration properties in the next subsection.

Theorems 3.3 and 3.4 are proved in Section 3.5. Note that for version P, inequality (3.5) is not used in the
proofs and one just needs the function g to be of class €. For version A, on the contrary, equation (3.5) is
needed, but, of course, equation (3.6) is not, since it is assumed that ¥ = R".

3.3. Acceleration

In this subsection, we study from a mathematical viewpoint the local acceleration properties of the proposed
variants of the Anderson—Pulay acceleration. We prove that, for any choice of the real number A in (0, K), r-linear
convergence with rate A can be achieved, meaning that ||r(*||, = O(A¥), with Algorithm 3 (for 7 and ||r(®|,
small enough) or with Algorithm 4 (for ¢ and Hr(o) H2 small enough). These results are direct consequences of
Theorems 3.3 and 3.4, respectively.

Corollary 3.5. Let Assumptions 3.1 and 3.2 hold and let A and p be two real numbers such that 0 < A < K <
w<1. Let 7 in (0,1) satisfy the smallness constraint 7 < 137—KK/\?’+1. Assume that the initial point z(©) in UNY

satisfies 0 < HT(O) |2 < min{RH, %}T%), where R, and I' are the positive constants of Theorem 3.3. If
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one runs version P of Algorithm 3 (or version A, assuming that ¥ = R™), then the sequences (x(k))keN and

(r*®Ngen are well-defined, with my, < min(k,p) and

Vk € N, Hr(k)H < um")\k_m’“
2

7,(0) H S Mmin(k,p) )\max(O,k:—p)
2

ol
2

As a consequence, the sequence (ac(’“) converges at least r-linearly to x, with rate X.

)keN

Proof. First of all, since 0 < Hr(o) H2 < RMTQP, the conclusions of Theorem 3.3 hold. In particular, the sequences
(x(k))keN and (r®")cn are well-defined, with m; < min{k,p} and ||7"(’“*mk)||2 < uk||r(0)||2. From the other

_ +1 _ +1 .
(k—my) H2 < %7—% < %727’”& Finally, the param-

smallness condition on Hr(o)| 5> We also have Hr

eter 7 is such that 1 — K(1+7) > 2(1 — K) and K7 < % Using these facts, we infer the following
property from estimate (3.11) of Theorem 3.3:

if mgy1 =0, then Hr(k“)H < AP+ Hr(k—mk)
2

. 3.16
2 (3.16)
Using (3.9) and (3.16), we are going to prove by complete induction that, for any natural integer k, there
holds
o, s,
2 2

Let us denote by P(k) the above property at rank k. Obviously, P(0) is true. Let us assume that the property
is satisfied up to rank k, with k a natural integer. We will establish that P(k + 1) holds by distinguishing two
cases.

First, if mgy1 > 1, then, using inequality (3.9), we may write that
,',,(k-‘rl—karl)

el e
2

.
The natural integer k + 1 — myy1 being less than or equal to k, property P(k+ 1 — mgy1) holds and, since

Mik+1-my,, = 0, it takes the form

HT(k‘—Fl—mk+1) < Ak+1—mk+1

r<°>‘

’2 ‘2'

We then conclude by combining the two above estimates.
Second, if my41 = 0, remembering that mj < p and A < 1, we infer from inequality (3.16) that

Hr(k+1)H S)\PJrlHT(kfmk)

< )\mk+1 Hr(kfmk)

2 2 ’2'

The integer k — my, being less than or equal to k, property P(k — my) holds and, since my_,,, = 0, it follows

that
Hr(k—mk) S )\k—mk
2

7«(0)‘

)

2

so that one reaches
HT(k+1)H < )\mk‘i‘l)\k—mk
2

o= o,
2 2

Estimate P (k) thus holds for any natural integer k. Moreover, since m;, < min{k,p} and A < p, we immedi-
ately see that =k yme < \max(0.k—p) min(k.p) “which ends the proof. O

Note that our theoretical smallness requirements on 7 and Hr(o) H2 are unreasonably restrictive and certainly
not representative of what is observed in applications. We will indeed see in Section 5 that acceleration is
commonly achieved in practice.

A similar result for acceleration with Algorithm 4 follows from Theorem 3.4.
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Corollary 3.6. Let Assumptions 3.1 and 3.2 hold and let X\ and p be two real numbers such that 0 < A < K <
p < 1. Choose & so that 0 < § < APt Suppose that the initial point z©) € UNY satisfies 0 < Hr(o)H2 < 6,1(52
where ¢, is the same as in Theorem 3.4, and run version P of Algorithm 4 (or version A in the case ¥ = R"™).
Denote kmax = max{k € N|my = k}. Then one has kmax < p and, for all k in N,

Hr(k)H < ik Fuas) \mas(0,k—Fuma)
2 2

T(O)H S Mmin(k,p))\max(o,k—p)
2

)

As a consequence, (x(k)) converges at least r-linearly to x, with rate \.

keN

Proof. Since d < A < K and 0 < ||7"(0) H2 < cM52, the conclusions of Theorem 3.4 hold. In particular, from bound
(3.12), one has kpax < p, hence A0ax(0k—kmax) < ymin(k.p) \max(0.k=p) for any natural integer k. As a result, we
just need to prove that the following estimate

Hr(k)H < ik ) \max(0.k ki)
2

r(©) H (3.17)
2

holds for any natural integer k. To do this, we argue by complete induction.

On the one hand, if k& < kpax, inequality (3.17) reduces to an estimate of r-linear convergence with rate p,
which follows immediately from the g-linear convergence property (3.14) of Theorem 3.4.

On the other hand, let k > kyax be such that (3.17) holds for all the natural integers less than or equal to
k. From the definition of kyax, one has k +1 — myy1 > 1, and, since § < APTL mp+1 < pand A < 1, estimate
(3.15) implies that
pEF—mii1)

,,,,(k:+1) H < )\mk+1+1
g =

’2'
The natural integer k — my41 being less than or equal to £, one also has

Hr(k—mk+1) ‘ S Mmln(k—karl,kmax)Amax(O,k—mk+1—kmax) 7“(0) H ,
2 2
and, combining the last two estimates, one gets
HT(HI)H < (=1 Fima) \ax (M1 41 k1= Rimax) ,,<0)H .
2 2

In order to study the right-hand side of this inequality, we distinguish two cases.

If k—mpp1 > Kmax, then it holds pin(F=mk 1 kmax) xmax(my1+1E+1=kmax) — jkmax \k+H=Fmax g0 that estimate
(3.17) holds for k + 1. Otherwise, if k — mg11 < Emax, then it holds p™n(F=mk41.kmax) ymax(mep1+1k+1—kmax) —
pk—mer \menitl Since A < p, one has pF=mrt \met1 Tl < pkmax \F+1=Fmax and estimate (3.17) holds for k + 1.

We have thus shown that estimate (3.17) holds for any natural integer k, ending the proof. O

3.4. Reaching superlinear convergence

Let us recall some standard notions of superlinear convergence (see e.g. [41,43]). We shall say that a sequence

(sc(k))keN in a normed space F, equipped with the norm ||-||, converges g-superlinearly to x, in E if

s |

lim 0.

k—+o0 ||J;(k) —x*H o

Let 6 denote a real number greater than one. It is said that the superlinear convergence occurs with g-order at
least 0 if there exists a positive constant a such that

=D — .|

o < a, for all k sufficiently large.
e .|
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More generally, the sequence is said to converge r-superlinearly to x, in F if there exists a sequence of positive
numbers (€x)ren converging g-superlinearly to zero and such that

Hm(k) — :c*H < €, for all k sufficiently large.

If one has additionally
VkeN, e =bn’

for some positive constant b and 7 in (0, 1), the sequence is said to converge superlinearly with r-order at least 6.

In some references, one can find mentions of the DIIS exhibiting a local superlinear convergence behaviour.
Rohwedder and Schneider discussed in [48] the circumstances under which this may occur for the DIIS method.
We now propose a modification of the restarted (resp. adaptive-depth) Anderson—Pulay acceleration, in which
the value of the parameter 7 (resp. 0) is slowly decreased along the iteration. We will show that the resulting
sequence of approximations locally converges r-superlinearly to the fixed point.

Let us first describe the modification made to Algorithm 3. One may observe that estimate (3.11) in
Theorem 3.3 allows a local r-superlinear convergence result, by carefully changing the value of the param-
eter 7 after each restart. As a consequence, we modify the algorithm as follows: first, in the list of data,
the positive constant 7 is replaced by two positive constants T and ( ; then, we replace the boolean test

“THS(’““)H2 > ||(id —Hk)s(k“)HQ” by “T0||7"(k*m’“)||2< Hs(k“)H2 > ||(id—Hk)S(kﬂ)H2”. In other words, the

fixed parameter 7 in the test is replaced by an adaptive one, 7(*="%) = T()H’I“(k_m’“) HQC, which becomes smaller
and smaller along the iteration. Naming this variant Algorithm 3’, we have the following result.

Theorem 3.7. Let Assumptions 3.1 and 3.2 hold and let p be a real number such that K < u < 1. Choose
a positive Ty and ¢ in (0, %) Then, there exists a positive constant e(Tp,(, 1) such that, if we run version
P of Algorithm 3’ (or version A in the case ¥ = R™) with an initial point z© in UNY satisfying 0 <
HT(O)HZ < e(Ty,C, 1), then the sequence (sc(k))keN is well-defined, satisfies estimates (3.7) and (3.10), and

converges superlinearly to x, with r-order at least (1 + min{¢,1 — QpC})%.

For Algorithm 4, the changes are the following: first, in the list of data, we replace the positive constant ¢ by
.. . il
two positive constants Dy and &; then, we replace the boolean test “§ Hr(”HQ < Hr(k“)HZ” by “DOHT(”HQ+§ <
||7'(k+1)||2”. That is to say, the fixed parameter § in the test is replaced by the adaptive one, §(9) = D()H?”'(i) ||§
We name this variant Algorithm 4’ and state the following result.

Theorem 3.8. Let Assumptions 3.1 and 3.2 hold and let 1 be a real number such that K < u < 1. Choose
a positive constant Dy and & in (0, V2 — 1]. In the limit case & = V2 — 1, assume in addition that Dy > A,
where A, is a suitable positive constant. Then, there exists a positive constant €(Dy,&, 1) such that, if we
run version P of Algorithm 4’ (or version A in the case ¥ = R™) with an initial point (9 in U N'Y satisfying
0< HT(O) H2 < &(Do, &, 1), the sequence (x(k))keN is well-defined, satisfies estimates (3.12)—(3.14), and converges

superlinearly to x. with r-order at least (1 + 5)ﬁ

Both Theorems 3.7 and 3.8 are proved at the end of Section 3.5.

1

Note that the best theoretical value of the r-order given by Theorem 3.7 is (1 + ﬁ) "It corresponds to

the choice ( = 210%' For Theorem 3.8, the best theoretical value is 2ﬁ, corresponding to &€ = v/2 — 1. In both
cases, it is very close to one when p is large.

In the numerical experiments reported in the last part of the paper, we only ran Algorithms 3 and 4 with
fixed values of 7 and § and obtained excellent acceleration results for self-consistent field iterations. Nevertheless,
Theorems 3.7 and 3.8 suggest that it may be beneficial in practical calculations to decrease the value of the

parameters 7 and ¢ in an adaptive way along the iteration. We plan to investigate this in the future.
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3.5. Proofs of the theorems

For linear problems in finite dimension, if g is a contraction, then it is well-known that the DIIS (or the
Anderson acceleration) converges to the exact solution in a finite number of steps (see Sect. 2.4). In the nonlinear
case, this is no longer true due to the presence of quadratic terms. Despite these additional terms, convergence
at any given linear rate should be allowed, on the condition that the depth is large enough and one starts close
enough to the solution. Then, if one allows the depth to grow slowly along the process, superlinear convergence
should occur.

To prove these properties, one has to control the quadratic errors and a bound on the size of the extrapolation
coefficients at each step is needed. This amounts to quantitatively measuring the affine independence of the
error vectors, since the optimal coefficients are solution to a least-squares problem whose solubility is directly
related to this independence.

In the existing literature, it is generally” assumed that the coefficients remain bounded throughout the
iteration. While we do not know how to prove a priori such an estimate for the “classical” fixed-depth Anderson—
Pulay acceleration, the mechanisms employed in the restarted and adaptive-depth variants we study allow to
derive one. A key theoretical ingredient is that the problem for the extrapolation coefficients will become poorly
conditioned when the norm of the last stored error vector is much smaller than that of the oldest one. This
phenomenon is rigorously described in Lemma 3.9 below, which constitutes the main technical tool in our proofs
of both convergence and acceleration of the method.

In the restarted Anderson—Pulay acceleration, the role of the parameter 7 is to control the affine independence
of the error vectors. Lemma 3.9 shows that, as long as a restart does not occur, the least-squares problem remains
well-conditioned and the size of the coefficients is bounded, whereas the norm of the last stored error vector is
necessarily much smaller than that of the oldest one when it does. Since there must be a restart after at most
p + 1 consecutive iterations, convergence with acceleration can be established.

In the adaptive-depth version of the Anderson—Pulay acceleration, the parameter ¢ is used to eliminate the
stored iterates which are not “relevant” enough when compared with the most recent one. This criterion does
not directly quantify the independence of the error vectors, and it is certainly not good when the initial guess
is chosen far from the solution, since a large number of iterates will be kept in that case. However, starting
close enough to the solution, Lemma 3.9 allows to inductively prove a bound on the extrapolation coefficients,
for reasons similar to those invoked with the restarted variant. Indeed, at each step, either the stored error
vectors are affinely independent, and the extrapolation coefficients are bounded, or the norm of the last stored
error vector is smaller than § times that of some of the oldest ones. In the latter case, the criterion discards the
corresponding iterates, which results in a restoration of the condition number associated with the least-squares
problem at the next step. In addition, observing that a stored iterate is dismissed at least once in every p + 1
consecutive iterations, it is inferred that accelerated convergence is possible for a parameter § chosen small
enough.

3.5.1. A preliminary lemma

We first introduce some notations. We recall that the set U, introduced in Section 3.2, is a small neighbor-
hood of z, such that the estimates (3.3)—(3.6) hold. For any natural integers k and my, such that k > my > 1,
consider a family (z=7) .. z(®) of vectors in U N X \ {z,}. For any integer i in {0,...,ms}, set
plk—miti) — f(x(k_mk'“)), and, for any integer ¢ in {0,...,m}, let us denote by Aék) the affine span of
{ptk=me) p(k=metOY that is

L
AP = Aff{r(k_m’“),r(k_m”l), o ,r““—mk“)} - {r = ¢yrlkmatd
=0

ol

=0

"An exception is made in the paper by Zhang et al. [65], where a bound on the coefficients is shown for a restarted type-I
Anderson acceleration method (the DIIS rather corresponds to a type-II Anderson acceleration). The authors then prove a global
linear convergence result when f is the gradient of a convex functional, but the linear rate they obtain is no better than the rate
of the basic iteration process.
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and, for any integer £ in {1,...,m}, by dE ) the distance between r(*="%+6 and Az 1> that is

min

(k) _
d” = 0
reA,”’,

‘Twmkm _ TH .
2

Lemma 3.9. Let k and my, be two integers such that k > my, > 1, let (x*=™%) . 29)) be a family of vectors
in UNY\ {z.} and t be a positive real number. For any integer i in {0,...,my}, set r(F=mr+) — f(x(k’m’c”)).
Assume that

Vie{l,...,mg}, dl(-k) >t max
jef{iy...mp}

‘r““—mkﬂ') H : (3.18)
2

Then, the vectors r*=™x) . () gre affinely independent, so that one has mi < p and there is a unique ¢
in R™ 1 such that ;% & = 1 and ||37% & r(k_mk‘”)HZ = dists (O,A%’fi). Moreover, there ezists a positive
constant Cp,, such that
1]l oo < Comye (L+7™). (3.19)
Under the additional assumption that 3*+D = Y% & o (k=metd) pelongs to U, as well as g(2*+Y) and
Yok E g(x(k*mk”)), define

mg
D) = g(i’(k"’l)) (version P) or z*1) = Zéig(x(k_m’“+i)) (version A)
i=0

and set rF+1) = f(x(k"’l)), dg,’fiH = disty (r(’““),Ai’ii). Then, there exists a positive constant k such that

Hr(kH) H < K disty (O7 Aﬁfﬁ) + H',(l + t_Qm’“) max ‘T(k_m"'H) (3.20)
2 i€{0,...,ms} 2
and
1= K) [ < K dfy) 1 4 —2me [kt . 3.21
( )| , S K +r(1+ )ie{éfl..affnk} r , (3.21)
Proof. Set s = pl=meti) _ plk=meti=1) " for any integer i in {1,...,mg}, ¢ = s and ¢ =
(id _HAE'i)l)S(i)’ for any integer 7 in {2, ..., my}, where HAgli)l denotes the orthogonal projector onto .Az(-li)l, the
underlying vector space of .Agi)l. Then, the vectors ¢(1), ..., ¢™) are mutually orthogonal and, for any integer
iin {1,...,my}, one has Hq(i)H2 = dgk).

We may write
mp mg mi
Z & p—meti) — (k) Z Cis™ =) 4 Z g,
i=0 i=1 i=1

() "™ I\r“‘)ll

(&) 7 R

On the other hand, ( = P\, where P is the change-of-basis matrix from {5 )}1':17___7mk to {q(i)}i:L”_,mk. We
need a bound on ||P||. For that purpose, we introduce the matrix factorisation P = P2 PG)  P(mx) where,
for any integer j in {2,...,m}, PY is the change-of-basis matrix from {q Do, g0 s0) .,s(mk)} to

{g®,... qW), sG+D smIY Since ¢ = s and qU) = s0) — $2I71 % ¢, we have

so that |A;| < 2 < 1 due to lower bound (3.18).

= 3>

GNT ()
~ W) — : - W) —_ (7))«
Vie{l,...,mg}, (P )ii land, Vie {1,...,5 —1}, (P )ij (@) Tg@’
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all the other coefficients of this matrix being zero. It follows that

s, _ el + rtomessob]
= d(.k) i = : d(k) :

i

IA

Vie{1,....5—1}, ‘(P(j)) _
ij
As a consequence, there holds an estimate of the form
HP(j)H <C(1+t7Y)
[ee]
for some positive constant C' depending only on my, which thus yields

HP”OO < HP(Q)H HP(3)H . Hp(mk) < ka71(1 _'_tfl)mk,fl.
o e s}

oo

Hence, it follows that

mp—1,_1

S O A & e

Finally, one has & = —(i, & = ( — Gi41, 1 <0 <my — 1, and émy, = 1 + {n,, S0 that €]l oo < Crmy (1 H77%),
for some positive constant C,,, depending only on my, thus proving bound (3.19) on the coefficients.
Next, we remark that estimate (3.21) is an immediate consequence of (3.20). Indeed, by the triangle inequality,

one has
dists <O,A£jf)c> < Hr(’““)H2 +dl

It only remains to prove the bound (3.20) on ||7‘(k+1) H2 As a first step, we are going to estimate the norm of
7D = f(#*+D). One has

< (e bte (50 )],

2

my
f(k+1) _ Z éi’]"<k_mk+l)
=0

+

. i f(pF—me+i)) _ 2 ) (FFHD g,
5 o) b ()

2

so that, using inequality (3.4) and the fact that the coefficients (&;)o<i<m, sum to 1,

2
my 4 I my _
F(k+1) _ & (B—mi+1i) - o p(F—mr+i) _
T chr k < 5 ch(x k x*>
i=0 2 i=0 2
mg
o R )
=0 2
L ~ ~ (k—mp+1) 2
< S+ Vel (ma + Vel + 1), max ||zt
2 1€{0,...,my} 2

It thus follows from the definition of the coefficients ¢; that

mp
A1) _ Z & p(k=miti)

i=

+dists (0, A%) )

2

L ) 2
e x ; (k—my+i) _ ; ( <k)>
Z(mk—|—1)||c||oo((m;€—|—1)||cHoo+1)i€{(r)171.%§1k}Hx x”2 + dist (0, AR ).

F(k+1)H <
2

IN
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Using bound (3.19), we find a constant C;,, > 0 independent of ¢, such that
(i + el o (i + el g +1) < Ol (14 727). (3.22)

So, using Assumption 3.2, we finally obtain

L
~(k+1 —2m
HT( )H2 <353 Cl, (L +t72™)  max

2
dist (k). 9
o? iE{0, i} , +dist2(0, A50) (3.23)

’T(kfm;rki)

In the remaining part of the proof, we treat separately version P and version A.

— Version P. Recall that, in this version, the set ¥ is an arbitrary smooth submanifold and one takes z(*+1) =
g(i(k+1)). An estimate on the distance between #(**1) and ¥ is needed. By the triangle inequality, one has

T R
2 * 2

v+ Pr s (N“) _ z) _ P (:e(k“)) ’

)

|
2

and we will thus get bounds for both contributions in the right-hand side of this inequality. For the first one,
remembering that z( ="+ = Py (x(*=mx+9) for any integer i in {0,...,my} and using (3.6), we reach

T

my
> & (id—Pr, ») (»’C(k_"”‘“) - 33*)
=0

2 =
my

<Yl
=0

mg
= S lel|[Rs(at ) - P s (a0 )|
1=0

2

|

2

IN

M K —miti i
5 ettt
=0
M 2
<= Dile
S5 (mk+ )HCHOOle{(I)I,la?ink}

e

For the second term, we use again (3.6) to obtain

IN

M 2
Y-
2 2

M )
el 1)2]¢
5 (M +1) IICIIwiE{g}%k}

oot () ) <1 s

2

IA

‘x(kfm;rki) _ f*H '
2

Adding these two estimates, using Assumption 3.2 and bound (3.22), we find

Hj(kJrl) Py (j(kﬂ))H < %C;n (1+672™)  max ’x(kfkari) _‘”*H 2
2 2 k i€{0,...,my}
M 2
<= 1 t72mk (E—mp+1i) )
— 202 m’“( + )ie{gf?ﬁk} " 2

Finally, using Assumption 3.1 and combining the above estimate with inequalities (3.3) and (3.23), we get

[0 < [ (s(Po(a%+9))) |, + 2 D7) o Dot — s (5040)
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<K Hf(Pz (j(k+1))) HQ +2||Df(z4) 0 Dg(x*)HQHi’(k+1) —Ps (i,(k+1)) H

<K H77(Ic+1)H2 + 2(K [[Df ()]l + [|Df () 0 Dg(x*)||2)Hj(k+1) P (j(erl)) H

2

2
2
< K disty (0,,4,(7’;{) +r(14+t72™)  max
1€4{0,...,mp}

‘rw—mm)

2 )
where & = s (5 + KM [Df(e.) |, + MDS () o Dy(a.)ll) | max Ch.
mel,...,p
~ Version A. In this version, the set ¥ coincides with R" and one takes z(+1) = S°7% &g (g(k=meti)) - A
bound on the norm of z(*+1) — g(sﬁ(k“‘l)) must be obtained, justifying the assumption that g is of class €2.
We proceed as for the estimate obtained in the first step, the only difference being the use of (3.5) instead
of (3.4), ending up getting something very similar, namely

/

L
200 = g(204)|| < S (e + Dlfell o (Ome + 1)ell o + 1) max

2 1€{0,...,my}

r o 9 2
14 ¢ <™k .
5g2 Oy (LHE75™) _ max

[

Tx

< lr(kfmkfk’i)

2

Then, using Assumption 3.1 and combining the above estimate with inequalities (3.3) and (3.23) yields

(k+1) ~(k+1) (k+1) _ ~(k+1)
2]l = o2, 2 im sl 42 = o ()]
< K[ ] #2010 — o ()]

)

< K dista (0, A%F) ) + £(1+¢727)  max 2

ie{O,...,mk}

‘r(k—mk-i-i)

where k = 5 (&L + L' |Df(z.)|,) max C|
me{l,...,p}

The bound being obtained for version A, the proof is ended.

3.5.2. Proof of Theorem 3.3

For any natural integer k, we consider the following properties

For any i in {0,...,mg}, 2™ exists and lies in UNY \ {z.}, and Hr(k_mk)

) S RHTQP. (ak)

) (br)

2

. (cx)

2

Let us denote by (Py) the set of properties (ax), (by), and (cx) at rank k. Obviously, (Py) holds, since my = 0
and HT(O)H2 < R#sz. We are going to prove by induction that (Py) is true as long as r(¥) is nonzero, if R, is
chosen small enough. Concurrently, bounds (3.7), (3.8) and (3.9) will be proved as consequences of (Py).

Let us then assume that (Pj) holds for some natural integer k. In the case my = 0 the proof of (Pry1) is
very easy, so we only give detailed arguments when my > 1. The error vectors r#=™#) (k) then satisfy
condition (3.18) in Lemma 3.9 for ¢ = 7(1 — p). They are affinely independent and bound (3.7) is satisfied, as
well as (3.8), which is simply bound (3.19) in Lemma 3.9.

Moreover, Assumptions 3.1 and 3.2 together with properties (a;) and (by) imply the bounds
||x(k*mk“) fx*H2 < o7 'R, and ||g(x(k’m’~‘+i)) fx*HQ < 07'R,K for any integer i in {0,...,my}. Com-
bining them with bound (3.8), we see that, for R, small enough, £+ belongs to U as well as g(i(k+1)) and

If my > 1, then, Vi € {1,...,my}, pk=miti) pE=m)

<y
2

If my > 1, then, V¢ € {1,...,my}, dgk) >7(1-— u)Hr(k_mk)
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Sk & g(zk=metD)) s that 28+ and r(+1) are well defined (with (1) belonging to UNY), and estimates
(3.20) and (3.21) of Lemma 3.9 hold.

Now, using property (by), bound (3.20) for ¢t = 7(1 — p) gives
2

1
<k+1)H < K dist (0 (k)> 1 H (k—my)
[ 2], = ¢ dista 0.452) 1+ (@ =z )1
2)

: <K“mk H(”( = >>2P>Hr(kmk)
T(1—p

and, to establish (3.9), we thus need the inequality

2

pk—mg) ,

2

<1

1 RMTQP
Mkarl —

K
M ”(1 HGEME

For this to be true, it suffices to choose the constant R, so that

K 1 R,
ARG eIt

Then, assuming that **1) is nonzero, we distinguish two cases.

— If mi4+1 = 0 (meaning there is a restart at step k), then k+1—my11 = k+ 1 and, since we have previously
shown that (3.9) holds, it follows from property (ay) that

T(k“l’l*mkﬁ—l) S ‘LLkarl T(k?fmk)

2

, S UM R < Ry,

so the set of properties (Py4+1) holds.
— Otherwise, one has k +1 — mg41 = k — my. It then follows from property (ax) that HTUCH’”"”CH)H2 =
Hr(k_m’“) H2 < R, 7%, so that (ax+1) holds. Moreover, since there is no restart at step k, the condition

’r(k-&-l) _ p(k=mp)

. k+1 k—m _ 4(k)
R R RN

e

is verified. We then have

itz 7 ([, = [ +2,)
> T("T(k*mk) _ Mmk+1"r(k7mk) )
> ) )
>7(l— u)Hr(k_m’“) .
Using the same notations as in Lemma 3.9, we also have dEkH) = dz(»k) for any integer @ in {1,...,my + 1}.

As a consequence, property (cg41) follows from property (c;) and the above inequality. Finally, property
(br) is equivalent to

Vj € {0,...,mk+1 —1},

’T(k+1*mk+1+j) H < Hr(kJrlfmkH)

R
2 2

and bound (3.9) is equivalent to

< Mmk+l r(k+1—mk+1)

Hr(k"rl—karl"!‘karl)
2

2

so that property (bg41) holds, and so does (Pj41).
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The set of properties (Py) is thus satisfied as long as 7(*) is nonzero, and (3.7)~(3.9) follow from it. The

r-linear convergence property (3.10) is next proved by complete induction.
For k = 0, it is obvious. Assuming that for a given natural integer k, one has

Vi {0,..., k), Hr“‘)

<,ui T(O)H
2 2

and, using estimate (3.9), one finds that

< mr+1, k—myg
,SHM T

<u
2

)

[+
2

my+1 Hrw—mk)

T(O)H _ Mk+1H7,(0)’

2
ending the proof of (3.10).

Finally, if a restart occurs at step k + 1, one has, employing the same notations as in Lemma 3.9,

dg;iﬂ < THT(kH) — p(k=m)

2

Inequality (3.11) then follows from estimate (3.21) in Lemma 3.9 and the triangle inequality, by setting
F=r(1+(1—p").

8.5.8. Proof of Theorem 3./

For any natural integer k, we consider the following properties.

For any i in {0,...,k}, () exists and lies in UN Y\ {z,} and, Vi € {0,...,k — 1}, Hr(”l)H < ,uHr(i)
2

(ax)

T(kfkarj)Hz_ (bk)

If my, > 1, then, Vj € {1,...,mg}, Vi € {0,...,j — 1}, & rF—metd

<
2

1—
If my > 1, then, V0 € {1,...,my}, dék) > JHT(’“_M’“H)Hz. (cx)
W

Let us denote by (Py) the set of properties (ay), (br), and (cx) at rank k. Obviously, (Py) holds. Under the
assumptions of Theorem 3.4 and for ¢, sufficiently small, we will prove by induction that (P) holds for all &
as long as r*) is nonzero, and that this will imply the statements of the theorem.

Let us then assume that (Pj) holds for some natural integer k. In the case my = 0 the proof of (Pr1) is
very easy, so we only give detailed arguments when my > 1. From property (ay), one has

ve e {0,...,my}, ie{??)ink}

‘Tw—mk+n

= Hr(’f—mk”>H2 < ¢, 82 (3.24)

and property (cx) implies that assumption (3.18) in Lemma 3.9 is satisfied with ¢ = 1_T“ As a consequence,
both (3.12) and estimate (3.19) hold, the latter taking the form

mi
Hm”m <Cp, <1+ (1 ‘_‘M) >

which is exactly estimate (3.13).
Next, using Assumptions 3.1 and 3.2, the bounds

max
1€{0,...,my}

‘m(kfmk“) - :c*H < o’flcuK2 and max
2 i€{0,...,mz }

’g(x(kfmk+i)) _ x*HZ <o le, K?
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follow from (3.24). Combining them with (3.13), we see that, for ¢, small enough, #(F+1) belongs to U, as well
as g(##*1)) and 357 & g(a*~meFD) g0 that z*T1) and r#+1) are both well defined, with z(*+1) belonging
to U N X, and estimates (3.20) and (3.21) of Lemma 3.9 hold.

We now assume that 7(**1) is nonzero and impose the following additional smallness constraint on the

constant ¢,
2 2p
1% 1% K
k| 1+ max ( ) ,( > e <1l——- (3.25)
( { 1—p 1—p . [

From property (by), one has that Hr(k*mk)HQ < 5’1||7"(k)||2, so that, using (3.24) (for £ = 0), we conclude that

max

2
< ], < cutt[r .
i€{0,...,my} 2 2

’ (k—mp+1)

_ H (k—my)

2

Hence, using (3.20) and (3.25), we get

2

Hr(kﬂ) H < K dists (O, Aﬁ,’fi) + n(l + max{t*Q, t*2p}) max ’r(k*m’cﬂ)
2 ie{O,...7mk} 2
< K(1+ (1 +max{t~2,¢72})e,) [r®)|
< <k>H
- uHr 2’

which, together with property (ay), establishes that property (agy1) holds.
If my41 = 0, there is nothing else to check, and (Pg41) holds. Otherwise, one has, by design of the algorithm,

Vie{0,...,mus1}, .

Using property (by), property (bi+1) ensues. Now, from (b;) and (bg+1), one has

HE=m)|| < 1Hr<k+1fmk+1> <1, >H ,
2 2 7 42 2
Combining this with (3.24) (for £ = 0), one finds
T 2
max ‘Tw—mw) - Hr(k—mu SCMHT(M)H _
1€{0,...,my } 2 2

As a consequence, estimate (3.21) of Lemma 3.9 gives

K K 2 2p
k41 (k) o M k+1
P, = 2 e (e (725)(25) ool e

But the constraint (3.25) means exactly that

K 1—-u K W 2 I »
1 1
1-K p +1—K< +max{(1—ﬂ> ’(1—u =

so that HT(’H'D H2 is non-positive if d(kk+1 < 1;” Hr(k“) H2, which is absurd. We have thus proved by contradic-
tion that

4

karl -

_MHT(HUH .
i 2
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Together with our assumption (cg), this implies the new property

17
Vee{l,. .. mp+1}, dP > T“HT%WMHZ. ()

Now, it is easily seen that Ayil)
4

l+1+mp—mpq1

- A&?mrmkﬂ for any integer ¢ in {1,...,mp41}, so that one has dg”l) >

. Property (¢x) implying that

k L= B||, (k1= 40
Ve € {1? .. akarl}a dé+)1+mk7mk+1 Z L Hr( Lot )H27

property (cx+1) holds, and so does (Pg41)-

We have thus proved that, for ¢, small enough, (Pj) holds for any natural integer k& such that (%) is nonzero,
and so do statements (3.12)—(3.14). It remains to prove statement (3.15).

Let k be a natural integer such that k —p > 1 and HT(k)HQ is nonzero. Since my < p, one has k —p—1 <

k —my — 1, so that [|[r® ||, < §||r=ms=1]|| < §||rk=P=D|| . This ends the proof.

8.5.4. Proof of Theorem 3.7

N Py oyt 1ok \ ¢ . :
We set e(Tp, ¢, ) = ming Ty '~ (R, T") =2r¢, (2KT0> and kg = 0. Considering a natural integer k;

such that z(*) is well-defined, my, = 0 and Hr(k’?)Hz < uki
larger natural integer k;i; such that x(kit1) g well-defined, my,
{ki,..., kix1 — 1}, and Hr(k) |2 < pkh || (k)

We may suppose that r(¥) is nonzero (otherwise, one would have x(F) = x(kstop) and thus ki, = k; + 1).
In such a case, by design of Algorithm 3’, the parameter 7 in the boolean test at step k remains equal to
7(ki) = T0||r(ki) |§ for any integer k greater than or equal to k; such that 2(*) is well-defined and my = k — k;.
This means that, in this range of steps, the modified algorithm is equivalent to the original one, with fixed 7
|2 < HT("*’)H2 < To_l/c, one has 0 < 7(F) < 1.
Moreover, by definition of 7(*?) and since Hr(kU)HQ < (RMTO%)ﬁ7 one has ||r(*?) , < R, (Ty ||t 2)21’ =
R, (T(ki))2p, and Theorem 3.3 applies. As a consequence, the integer k; 11 exists and is such that k;41 < k; +p
and [y, < oS < o [0

We have thus shown that the sequence (x(k))k N is well-defined and converges at least r-linearly to x*,
and that the family of steps at which the method restarts forms an infinite sequence (k;);en such that the
difference between two consecutive terms is at most equal to p. This allows to say more about the convergence
of the sequence of approximations. Indeed, if ||r(ki+1)||2 > 0, then estimate (3.11) holds with k& + 1 = k; 41,

T(O)HZ, we will prove the existence of a strictly
in = 0, mp = k — k; for any integer k in
, for any integer & in {k;, ..., kiy1}.

equal to 7% and initial point equal to z(¥:). Since 0 < ||7"(ki)

(ki) . o - (0) 1—-K 1/¢ .
mg = kiy1 — k; — 1 and 7 = 7%, Moreover, since it is assumed that Hr ||2 < (m> , it follows that

1— K(147%k)) > % for any natural integer i. Hence, using the formula for 7(*), one gets from (3.11) the
estimate
1-K (kiy1) (ks) -1 k. %_217 ks -1 ks min{17%—2p} ks
rel < K7W 4+ T ¢ (’7’( 1)> )| < K+TT, ¢ (7'( 1)) ‘T( D
2 2 2

from which the inequality

©
ol <5l
2

=5l
p

e-1

_1\ e
follows, with B = 1_2K(K—|—I‘TO ‘)TO ¢ and © =1+ min{¢,1 — 2pC}.
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Next, let ip be an integer such that Bﬁukio

[P, < 3. Since [[rEo][, < pho [r O], and ||t

one can prove by induction that, for any integer i greater than or equal to ig, Hr(ki) )
(ki*kio)/p

IN A

©
9

B~ 512797 and, using that k; — k;, < (i —ip) p, Hr(ki) , < B~ o129
Finally, for any integer k greater than or equal to k;,, let the integer i(k) be such that k — mj, = k;(). This
implies that i(k) > i and k) > k — p, so that

HT,(k)H < Hr(ki(k))H gB*ﬁ2—@(ki(k)7k’io)/? Sbnek
2 2

)

where n = 2’97%%, b=DB o1, and ) = QV/» = (1 4+ min{¢,1— 2p§})1/p is the desired r-order of superlinear
convergence.
Remark 3.10. In Algorithm 3, the sequence ((*=)), _tends to 0 and estimate (3.8) on the extrapolation

coefficients is no longer uniform: we can only say that Hc(k) ||OO = O(Hr(k’mk) ||2_<mk).

3.5.5. Proof of Theorem 3.8

The proof follows an induction argument very similar to the one in the proof of Theorem 3.4, but with some
novelties, since the value of the parameter ¢ is no longer fixed along the iteration in Algorithm 4’.
The set of properties at rank k, denoted (Py), is almost unchanged, the only modification being the replace-

ment of § by Dy |[r(k=ms+9 ||2€ in the second property:

. 14+€ .
if my > 1, then, Vj € {1,...,my}, Vie {0,...,j — 1}, Do HM’C*WHZ) < Hr(’“*mﬁﬂ)H RS
2

2

Assume that (Pg) holds for some natural integer k, with my > 1 (the case my = 0 being immediate). From
properties (a) and (cg), one infers that assumption (3.18) in Lemma 3.9 is satisfied with ¢t = 177”, so that both
(3.12) and (3.13) hold.

Moreover, the bounds

ViE{O,...,mk},

[t — | < 07 e(Do, € 1) and [|g (a5 0) — o,
2

S 0'_1K5(D0a§?/l)
2

follow from using property (ax) and the use of Assumptions 3.1 and 3.2. As a consequence, for £(Dy, &, 1) small
enough, the linear combination #**1) belongs to U, and so do g(;ﬁ(k“)) and Z?Z}) éig(x(k*mk“)), resulting
in both 21 and »(*+1) being well-defined (with z(*+1) belonging to U N'¥) and estimates (3.20) and (3.21)
of Lemma 3.9 being valid.

1+¢

Let us now assume that r(*t1) is nonzero. Property (bg) implies in particular that Hr(k’mk)H2 <

Do_lHr(k)HQ. This, together with property (ax) and the fact that HT(’“_’”’“)H2 < &(Dy, &, 1) by assumption,

gives

2 2
< Do~ (e(Do, & )|

‘r(k—mk+i)

Hrw—mk)

max

i€{0,...,my} 2 2

Hence, using estimate (3.20), we get

T(k*kari)

P40 | < K disty (0,48 + (1 -+ ma{i~2, 27)) (hax
, 1€{0,...,my

2

< (K + w1+ maeft~2, 20 Dy~ oDy, €)= [0

Since K < p, we may impose that

(K + k(1 + max{t?, t_2p})D0_l(e(D0, g, ,u))l_g) < u, (3.27)
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which can be achieved by taking £(Dy, &, 1) small enough, since ¢ belongs to (0,1/2 — 1]. Thus, there holds
Hr(k+1)H2 <pu Hr(k) Hz? which, combined with property (ay), establishes property (ag41)-

If mgy1 = 0, there is nothing else to check, so (Pr41) is true. If it is not the case, one has, by design of
Algorithm 4’,

Vie{0,...,mupl}, Hr(kﬂ)H > Dy Hr(k-‘rl—mkﬂ-i-i) e
, 2

2

Using property (by), property (br4+1) ensues, leading to

__24¢€
< Dy (+97?

o
2

1
Uo+1) ” ate?
2

As a consequence, estimate (3.21) of Lemma 3.9 gives

K o 2 Zp _2(248) srs
(k+1)H < Pl 1 K a Dy~ (+97? H (’f“)H GFOT (328
HT 27 1-K m’“+1+17K +max 1—pn)  \1—p 0 " 2 ( )

We now impose the condition

K 1—p K i 2 U p _2(2+4¢)
1 Dy (492
1-K p +1—K< +max{<1—u)’<1—u ’

satisfied by taking (Do, &, 1) small enough when £ belongs to (0, V2-— 1), or A, large enough when ¢ is equal to
V2 — 1. Inequality (3.28) then implies that Hr(’”l) ||2 is non-positive if dgjiﬂ < ITTH ||r(k+1) ||2, which is absurd.
We have thus proved by contradiction that

%,1
Ue+1) H ato <1
2

?

L—p
mrp+1 = L r 9

The rest of the induction argument is exactly the same as in the proof of Theorem 3.4, with (P)) holding for
any natural integer k such that r*) is nonzero, and implying estimates (3.12)—(3.14).

It remains to establish that the convergence is superlinear. If £ > p+ 1, then &k — my > k — p > 1, so that,
by property (ay), one has

14+¢

1
p(h—mi—1) H <Dy e
2

’I"(k)H S Do
2

k=p=1) H
2

It also follows from property (ax) that there exists a natural integer ko such that

1
< .

Vie {0, ,p}, Dol/ﬁHT(koH) <5

As a consequence, for any integer k greater or equal to ko + p + 1, writing k — kg = (p 4+ 1)q + ¢ with 7 in
{0,...,p} we get, reasoning by induction on ¢, that

’”(k)H < Dy e27 0 <y

_1 —kotp 1
where b= D, *, n=2"0+8 """ <1 and § = (14 &)#+1. The proof is complete.
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4. APPLICATION TO ELECTRONIC GROUND STATE CALCULATIONS

We now explain how the Anderson—Pulay acceleration analysed in the previous section can be applied to
the computation of the electronic ground state of a molecular system through two of the most commonly used
approximations of the quantum many-body problem in non-relativistic quantum chemistry.

Consider an isolated molecular system composed of M atomic nuclei and N electrons. Within the setting
of the Born—Oppenheimer approximation, the motion of atomic nuclei and electrons can be separated and the
nuclei are classical point-like particles with fixed positions. The state of the electrons is then entirely described
by a wavefunction ¢ valued in C, only depending on the time variable and on the respective positions and spins
of the electrons. The ground state of the molecular system is determined by solving a minimisation problem,
which one may try to attack “directly” by working in a finite basis. Unfortunately, due to the high dimension
of the position space R3Y | this approach is intractable for systems with more than a few electrons and one has
to resort to other types of approximations.

On the one hand, the ab initio Hartree—Fock method [22,30] for the computation of the ground-state elec-
tronic wavefunction v consists in restricting the functional space in the minimisation problem to the set of
so-called Slater determinants, which are antisymmetrised products of N monoelectronic wavefunctions (also
called molecular (or atomic) orbitals). While this restriction only provides with an upper bound of the exact
energy, the main advantage of this approximation is that the problem to be solved remains variational. There
is however a price to pay in a loss of the correlation between the positions of the electrons, as an electron will
evolve independently of the way the others do in this model.

On the other hand, the density functional theory (DFT) of Hohenberg and Kohn [33] follows a completely
different approach and aims at including the electronic correlation missing in the Hartree-Fock method. It
is based on the fact that the ground-state properties of a many-electron system are uniquely determined by
an electronic density, which only depends on the three spatial coordinates. Indeed, following arguments by
Hohenberg and Kohn, the energy functional defined in terms of the unknown wavefunction v can be replaced
by one for the unknown density function p. Since such a functional is not known explicitly for a system of
N interacting electrons, suitable approximations are needed to make the DFT a practical tool for computing
electronic ground states. These rely on exact (or very accurate) evaluations of the density functional of a reference
system “close” to the real one. In the semi-empirical approach of Kohn and Sham [36], the chosen reference
system consists of N non-interacting electrons (the associated wavefunction being a single Slater determinant).
The exchange-correlation part of the functional must then be approximated, using models like the local-density
approximation (LDA) or the generalised gradient approximation (GGA).

While based on different physical principles, the discrete problems associated with these two approximations
both take the form of a nonlinear generalised eigenvalue problem. Omitting the spin variables for the sake
of simplicity, the monoelectronic wavefunctions are linearly expanded on a given finite basis set® (this is the
so-called LCAO approzimation, LCAO being the acronym to linear combination of atomic orbitals), spanning
a vector space of finite dimension d.

In this setting, the spinless Hartree-Fock method leads to the so-called Roothaan—Hall equations [29,49],

FRF(D)C = SCA,

C*SC = Iy,

D =CC*,
in which the matrix FH¥ (D) denotes, with a slight abuse of notation, the Fock matriz associated with the
rectangular matrix C of orbital coefficients, the square matrix D is the discrete density matriz, the matrix S

is the so-called overlap matrix, that is the Gram matrix associated with the basis set, the Hermitian matrix
A, which is by convention chosen diagonal, stands for the Lagrange multipliers attached to an orthonormality

8Due to computational complexity considerations, the basis functions are typically Slater-type or Gaussian-type orbitals, and
generally form a non-orthonormal set.
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constraints on the orbitals, and Iy is the identity matrix of order N. A necessary condition for a matrix D, to
be a “solution” of the above system in the submanifold of pure state density matrices of rank N,

Pn ={D € M44(C), D* =D, DSD =D, tr(SD) = N}, (4.1)
is that it commutes with the associated Fock matrix FH¥(D,) in the sense that
[FHF(D*)vD*} =0,

where the “commutator” [A, B] between two matrices A and B is defined by [A, B] = ABS — SBA.

The discretisation of other Hartree—Fock models or of the Kohn—Sham models can be dealt with in the
same manner. For the spinless Kohn—Sham model, assuming differentiability for the approximated exchange-
correlation functional used in practice, the Roothaan—Hall equations read

FXS(D)C = SCA,
C*SC = Iy,
D =CC*.

The Roothaan—Hall equations are usually solved “self-consistently”, that is using an iterative fixed-point
procedure, the most simple and “natural” approach being the algorithm introduced by Roothaan [49]. Given
the choice of an initial discrete density matrix D(®) it consists in generating a sequence of matrices (D(k)) kEN
defined by

F(D(k))c(k+l) _ SC(k+1)E(’C+1)7

Vk €N, { (CHHD) SCR+D = [y,
D+ — o(k+1) (C(k+1))*’

where E(*+1) is a diagonal matrix such that (E(k“))ii = 51(-]“'1)7 i =1,...,N, the scalars 6(1k+1) < sgﬁ'l) <

e < sg\’?H) being the N smallest eigenvalues, counted with multiplicity, of the linear generalised eigenproblem
F(D(’“))V — SV,

and the columns of the matrix C*+1) are associated orthonormal (with respect to the scalar product induced by
the matrix S) eigenvectors. The procedure of assembling D*+1 by populating the molecular orbitals starting
with those of lowest energy of the current Fock matrix is called the Aufbau principle.

Assuming the uniform well-posedness property introduced in [11], the matrix D®+D is uniquely defined at
each step of the procedure and can be characterised as the minimiser of a variational problem, that is

D+l arginf{tr(F(D(k))D>v D e PN} - g<D(k)),

thus defining a fixed-point iteration process. In practice, a convergence criterion is used to end the iterations.
For instance, one may compute the norm of the difference of two successive density matrices at each step and
compare it to a prescribed tolerance. Another possibility is to use the norm of the commutator between the
current density matrix and its associated Fock matrix.

Both of these choices may be employed to accelerate the convergence of the above self-consistent field (SCF)
algorithm. Indeed, the first one corresponds to error vectors proposed in conjunction with the original form
of the DIIS [46], that is r*) = D®*) — D=1 while the second leads to those used in the CDIIS [47], that
is 7% = [F (D(k)),D(k)]. The latter is widely used in quantum chemistry softwares for electronic structure
calculations, notably because of its simplicity with respect to implementation and its usually rapid, but not
assured, convergence. Let us describe it in more detail.



2816 M. CHUPIN ET AL.

Starting from a guess density matrix D9, one first sets D© = DO After k steps of the method, given a
set of my, + 1 previous density matrices D®*=™%)  D®) one assembles the pseudo-density matrix® D*+1) as

my
BD = o) pleomati)

i=0
where
mp,
) = arg min ¢ {F (D(k*m’““)> , D(k*mk“)] ,
(C0yeesemy, )ER™EF {550 2
Z:’;’”b Cizl

the matrix norm ||-||, being the Frobenius norm. The next density matrix D®+1) g then obtained by applying
the Aufbau principle to 5(’““), that is, by diagonalising the Fock matrix'? associated with D&+ and forming
D*+D from the N eigenvectors associated with its N smallest eigenvalues. This process is then repeated until
the numerical convergence criterion is satisfied. Modifications of the procedure have been proposed in order
to make it more robust, either by replacing the constraint on the coefficients, like in the C2-DIIS [51], or by
obtaining them by minimisation of an associated energy, like in the EDIIS!! [38], the ADIIS'? [34] or the LIST*?
[59].

Let us end this section by explaining how the CDIIS enters the theoretical framework set in the previous
section for the Anderson—Pulay acceleration.

On the one hand, working with self-adjoint (real or complex) matrices of order d (d being the real or complex
dimension of the vector space spanned by the basis functions used in the Galerkin approximation) with fixed
trace, the integer n is equal to d(d + 1) — 1 (real case) or d*> — 1 (complex case), the fixed-point function
g corresponds to the application of the Aufbau principle to such a matrix, and the submanifold ¥ is the set
Pn of pure state density matrices of rank N, defined in (4.1). On the other hand, the error function f is the
commutator between a given density matrix and its associated Fock matrix, f(D) = [F(D), D], so that the
integer p is equal to 3d(d — 1) (real case) or d? — 1 (complex case).

Assumption 3.1 then simply states that the Roothaan algorithm is locally convergent, which is a common
assumption on the base fixed-point iteration method in the analysis of the DIIS or the Anderson acceleration
(see [48] or [56] for instance). Assumption 3.2 amounts to a non-degeneracy assumption, which is equivalent to
saying that the differential of the restriction of the error function to the submanifold is invertible at a solution
D.. In the present context, this function is already the gradient of the discretised Hartree—Fock (or Kohn—Sham)
energy, and the assumption thus implies that the Hessian of this energy is non-degenerate at D,.

Concerning regularity assumptions, the fact that the set Py is a smooth submanifold is a consequence of the
constant rank theorem. For the functions f and g being of class €2, this is always true for the Hartree-Fock

9This denomination stems from the fact that such a construction does not enforce the idempotency property on Dk+1),
10For Hartree—Fock models, the pseudo-Fock matrix Sk cl(k) F(D(k*mkﬂ')) may as well be considered, since it holds that

F(Zi=k0 cz(k)D(k*mk“)) =3k cz(.k> F(D®*=mk+9) due to constraint (2.3) being satisfied by the coefficients cz(.k), i=0,...,myg.

HThe difference in this method is that the coefficients of the linear expansion are such that

m
k) = arg min E(Z ciD(kkari)),
€[o0,1]

mp.
itk ei=1,¢ i=0

where E is the energy functional of the model under consideration.
12This other variant is similar to the EDIIS but uses the following augmented energy functional:

EAD) = B(D®) 4 26:((D = DW)F(DW)) + te((D = DW) (F(D) - F(DP)) ).

13This other variant is also similar to the EDIIS. It uses the so-called corrected Hohenberg—Kohn—Sham functional [63].
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functional, which is smooth. In the case of the Kohn—Sham model, this issue is more delicate, since most of the
exchange-correlation functionals used in practice present a lack of regularity at the origin, see e.g. [2]. However,
it is reasonable to assume that the Kohn-Sham ground state has a non-vanishing density p, so that f and g are
indeed regular in its neighbourhood.

5. NUMERICAL EXPERIMENTS

In this section, we report on some numerical experiments with the intent of illustrating the performances
of our proposed variants of the CDIIS in the context of the electronic ground state calculations considered
in Section 4. All the computations presented were performed using tools provided by the PySCF package
[54]. The source code of our implementation of the CDIIS variants can be found in the following repository:
https://plmlab.math.cnrs.fr/mchupin/restarted-and-adaptive-cdiis/.

5.1. Implementation details

For each variant, the least-squares problem for the extrapolation coefficients is solved using the uncon-
strained form involving the differences of error vectors which are deemed the most convenient'?, as seen in
Algorithms 3 and 4. The solution is achieved wvia the QR factorisation of a matrix of tall and skinny type (since
the integer p is in general very large compared to my). Such a factorisation can be efficiently updated from step to
step by means of a dedicated routine from the SciPy linear algebra library (namely scipy.linalg.qr_update),
as the least-squares problem matrix is modified through the addition of a column (as in the variant with restarts)
or the addition of a column and the possible removal of a set of columns (as in the adaptive-depth variant). A
detailed cost analysis of the resulting factorisation algorithm is given in [32]. An added benefit of using the QR
decomposition is that it directly provides the matrix of the orthogonal projector II; appearing in the restart
condition (3.1), so that testing for this condition at each step in Algorithm 3 only entails a negligible cost.

Finally, we consider that numerical convergence is reached at iteration k if the error vector norm
H [F(D(k)),D(k)] H2 is below some prescribed tolerance.

5.2. Test cases

Some of the molecular systems used in our experiments are taken from benchmarks found in [24,34] and
are considered as representative of challenging convergence tests for self-consistent field algorithms. Results of
some of the tests are presented here, like the cadmium(II)-imidazole complex ([Cd(Im)]?*) for instance, while
others, like the acetaldehyde (CoH40), the acetic acid (CoHy40Os2), or the silane (SiHy), are available in the
online repository given above. The glycine (CoHsNOs3) test case comes from an example given in the PySCF
library and the geometries for galactonolactone (CgH;oOg) and dimethylnitramine (CoHgN2Os) were found on
the PubChem website (https://pubchem.ncbi.nlm.nih.gov/).

Both the restricted Hartree-Fock (RHF') model and the restricted Kohn-Sham (RKS) model are used in the
experiments, the latter in conjunction with the B3LYP approximation of the exchange-correlation functional
[6,39].

5.2.1. Global convergence behaviour

Acceleration techniques like the CDIIS are locally convergent methods and may sometimes give poor results
if a mediocre initial guess is used. In practice, in order to ensure and achieve convergence in a small number of
steps, one usually employs a combination of a relaxed constraint algorithm (like the ODA [10], the EDIIS [38]
or the ADIIS [34]), for its global convergence properties, and of the CDIIS, for its fast local convergence (see
Sect. 5.2.2). Nevertheless, our first experiment is meant to illustrate the convergence behaviour of the methods
starting from the core Hamiltonian guess, for which the orbital coefficients are simply obtained by diagonalising
the matrix representing the kinetic energy and electron-nuclear potential energy parts of the Hamiltonian in
the considered discrete basis.

MNote that, for the fixed-depth CDIIS, the unconstrained formulation we employed uses successive differences.
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FIGURE 1. Residual norm convergence for the fixed-depth, restarted and adaptive-depth CDIIS
on different molecular systems using an initial guess obtained by diagonalising the core Hamil-
tonian matrix. (A) Cadmium-imidazole complex in the RKS/B3LYP model with basis 3-21G.
(B) Glycine molecule in the RKS/B3LYP model with basis 6-31Gs. (C) Dimethylnitramine
molecule in the RHF model with basis 6-31G. (D) Galactonolactone molecule in the RHF
model with basis 6-31G.

Figure 1 presents the convergence of the error vector norm for the (classical) fixed-depth, restarted and
adaptive-depth variants of the CDIIS with different values of their respective parameters: the fixed maximum
depth m, the restart parameter 7 and the adaptive-depth parameter J. It is observed that the restarted and
the adaptive-depth algorithms are efficient in most of the cases, but they may reach the convergence regime
later than their fixed-depth counterpart (see Figs. 1b and 1c). However, when this regime is attained, one can
observe that the rate of convergence of both the restarted and adaptive-depth CDIIS is generally better than
that of the fixed-depth CDIIS.

An effect of the use of a poor initial guess is the accumulation of many stored iterates in the early stages
of the computation by the restarted and adaptive-depth variants, visible in Figure 2. The number of stored
iterates clearly decreases as soon as a convergence regime is reached. This behaviour can be observed in all of
our numerical experiments.

5.2.2. Local convergence behaviour

In order to properly assess their local convergence properties, the CDIIS variants were combined with a
globally convergent method and an improved initial guess, both provided by the PySCF package. More precisely,
the EDIIS with a fixed-depth equal to 8 and an initial guess generated from a superposition of atomic density
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FIGURE 2. Residual norm convergence and corresponding depth value for the restarted and
adaptive-depth CDIIS on the cadmium-imidazole complex in the RKS/B3LYP model with
basis 3-21G, using an initial guess obtained by diagonalising the core Hamiltonian matrix. (A)
Restarted CDIIS with 7 = 10~%. (B) Adaptive-depth CDIIS with § = 1074

matrices were used for the experiments with the RHF model, while the ADIIS with a fixed-depth equal to 8
and the same type of initial guess were used for the experiments with the RKS model. In both cases, the switch
between the “global” method and the CDIIS variants was made when the error vector norm was below 1072.
With such an initialisation, convergence was immediately observed in every test case. Figure 3 presents the
obtained results for the set of molecules already considered in Figure 1 and a smaller set of parameter values. In
such a setting, the restarted and the adaptive-depth CDIIS are shown to be more efficient than the fixed-depth
one when adequately chosen values of their respective parameters are used.

Plotting the error vector norm with the corresponding depth during the course of the numerical experiments,
as done in Figure 4 for the dimethylnitramine and the glycine molecules, allows to observe that a restart occurs
after a significant decrease of the error vector norm, as predicted by the theory for the restarted Anderson—Pulay
acceleration. Unfortunately, one can also notice a slowdown in the convergence (or even a moderate increase of
the error vector norm) just after a restart, thus motivating the introduction of an adaptive-depth mechanism
which would not suffer from such a defect.

Mean depth. The cost of the CDIIS in terms of storage and computational resource at a given iteration is
proportional to the value of the depth at this iteration. As a consequence, to properly compare the restarted
and adaptive-depth variants with the classical fixed-depth CDIIS, we have computed the mean depth, denoted
by m, as the average value of m; during an experiment. Figure 5 presents the evolution of m with respect to
the values of the restart parameter 7 and the adaptive-depth § for each of the molecular systems we considered.
It is seen that m is a decreasing function of these parameters and that the two variants have on average lesser
costs than their fixed-depth counterpart, while their performances are comparable or better.

Rate of convergence. For each of the molecular systems considered in Figure 3, the practical rate of conver-
gence of the restarted and adaptive-depth CDIIS was computed using a linear regression and plotted against
the values of the parameters 7 and § in Figure 6. As expected, it is apparent that this rate increases as the
value of the parameter decreases, its evolution for the adaptive-depth variant being noticeably smoother.

Selecting values for the parameters. As previously mentioned, the decrease of the error vector norm becomes
faster, and the average depth m increases, as the parameters 7 and § are decreased. However, a closer scrutiny
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FI1GURE 3. Residual norm convergence for the fixed-depth, restarted and adaptive-depth CDIIS
on different molecular systems using an initial guess provided by a globally convergent method.
(A) Cadmium-imidazole complex in the RKS/B3LYP model with basis 3-21G. (B) Glycine
molecule in the RKS/B3LYP model with basis 6-31Gs. (C) Dimethylnitramine molecule in the
RHF model with basis 6-31G. (D) Galactonolactone molecule in the RHF model with basis
6-31G.

of both Figures 5 and 6 reveals that the convergence rate appears to tend to an asymptotic value while the
average depth grows at an almost constant rate. Thus, the gain of convergence by decreasing the parameters may
not outweight the added computational cost of keeping a larger history of iterates. In this regard, a satisfying
compromise was reached in our numerical tests by setting the values of both parameters at 10™%.
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FI1GURE 4. Residual norm convergence and corresponding depth for the restarted and adaptive-
depth CDIIS on the dimethylnitramine and glycine molecules. (A) Restarted CDIIS with 7 =
10~* for the dimethylnitramine molecule in the RHF model with basis 6-31G. (B) Adaptive-
depth CDIIS with § = 10~ for the dimethylnitramine molecule in the RHF model with basis
6-31G. (C) Restarted CDIIS with 7 = 10~* for the glycine molecule in the RKS/B3LYP model
with basis 6-31Gs. (D) Adaptive-depth CDIIS with § = 10~* for the glycine molecule in the
RKS/B3LYP model with basis 6-31Gs.

6. CONCLUSION

Motivated by the DIIS and CDIIS techniques, respectively introduced by Pulay in 1980 [46] and 1982 [47],
and their relation with other extrapolation processes designed to accelerate fixed-point iteration methods —
one of them being the well-known Anderson acceleration — we have considered a general and abstract class of
acceleration methods and studied, theoretically and numerically, the local convergence properties of two of its
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instances: one allowing restarts, based on a condition initially introduced for a quasi-Newton using multiple
secant equations [25,48], and another one whose depth is continuously adapted according to a criterion that
appears to be new.

Our main convergence results are obtained in a more general setting and rely on weaker assumptions than
those existing in the literature for the DIIS [48] or the Anderson acceleration [56]. First, we do not impose a
direct relation between the function g of the fixed-point iteration used to compute the solution and the error
function f used for the extrapolation. Second, the nondegeneracy hypothesis on the solution of the problem
is weakened: it only involves the restriction of the function f to a submanifold ¥ containing the range of the
function g. Such generalisations are necessary in order to deal with the self-consistent field iterations in quantum
chemistry, for which the DIIS and the CDIIS were originally introduced. As we already stated before, these
results also cover the particular cases of the Anderson acceleration (for which ¥ = R™ and g = id+f) and of
the DIIS if ¥ = R™.

Another novelty of our work is the absence of assumption concerning the uniform boundedness of the extrap-
olation coefficients. Indeed, the proposed restart and adaptive-depth mechanisms allow us to a priori prove
such a bound. To our knowledge, the only other work where a similar estimate can be found is [65], in which
a global linear convergence analysis for a stabilized variant of the type-I Anderson acceleration is given. As far
as we know, the present article thus provides the first complete proof of accelerated convergence for a family of
extrapolation algorithms which includes instances of the DIIS, the CDIIS or the Anderson acceleration.

Finally, numerical experiments illustrate the good performances of the restarted and adaptive-depth accel-
eration algorithms applied to the numerical computation of the electronic ground state of various molecular
systems. It has been observed that, with an adequate choice of their respective parameters, both variants exhibit
a better convergence rate than their fixed-depth counterpart. In particular, the adaptive-depth variant shows
good promise. It has also been noticed that acceleration occurs for values of the parameters several orders of
magnitude larger than the theoretical estimates, and that the size of the set of stored iterates at each step is
on average smaller than the fixed “rule of thumb” values generally found in implementations of the CDIIS.
Understanding the reasons of this key fact will require further effort.
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