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CONVERGENCE OF THE UNIAXIAL PML METHOD FOR TIME-DOMAIN
ELECTROMAGNETIC SCATTERING PROBLEMS

Changkun Wei1,2 , Jiaqing Yang3,* and Bo Zhang4,5

Abstract. In this paper, we propose and study the uniaxial perfectly matched layer (PML) method for
three-dimensional time-domain electromagnetic scattering problems, which has a great advantage over
the spherical one in dealing with problems involving anisotropic scatterers. The truncated uniaxial PML
problem is proved to be well-posed and stable, based on the Laplace transform technique and the energy
method. Moreover, the 𝐿2-norm and 𝐿∞-norm error estimates in time are given between the solutions of
the original scattering problem and the truncated PML problem, leading to the exponential convergence
of the time-domain uniaxial PML method in terms of the thickness and absorbing parameters of
the PML layer. The proof depends on the error analysis between the EtM operators for the original
scattering problem and the truncated PML problem, which is different from our previous work (Wei
et al. [SIAM J. Numer. Anal. 58 (2020) 1918–1940]).
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1. Introduction

This paper is concerned with the time-domain electromagnetic scattering by a perfectly conducting obstacle
which is modeled by the exterior boundary value problem:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∇×𝐸 + 𝜇𝜕𝑡𝐻 = 0 in
(︀
R3∖Ω

)︀
× (0, 𝑇 ), (1.1a)

∇×𝐻 − 𝜀𝜕𝑡𝐸 = 𝐽 in
(︀
R3∖Ω

)︀
× (0, 𝑇 ), (1.1b)

𝑛×𝐸 = 0 on Γ× (0, 𝑇 ), (1.1c)
𝐸(𝑥, 0) = 𝐻(𝑥, 0) = 0 in R3∖Ω, (1.1d)
𝑥̂× (𝜕𝑡𝐸 × 𝑥̂) + 𝑥̂× 𝜕𝑡𝐻 = 𝑜

(︀
|𝑥|−1

)︀
as |𝑥| → ∞, 𝑡 ∈ (0, 𝑇 ). (1.1e)
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convergence.
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Here, 𝐸 and 𝐻 denote the electric and magnetic fields, respectively, Ω ⊂ R3 is a bounded Lipschitz domain
with boundary Γ and 𝑛 is the unit outer normal vector to Γ. Throughout this paper, the electric permittivity
𝜀 and the magnetic permeability 𝜇 are assumed to be positive constants. Equation (1.1e) is the well-known
Silver-Müller radiation condition in the time domain with 𝑥̂ := 𝑥/|𝑥|.

Time-domain scattering problems have been widely studied recently due to their capability of capturing wide-
band signals and modeling more general materials and nonlinearity, including their mathematical analysis (see,
e.g., [2, 13, 26–28, 31, 33, 37, 39] and the references quoted there). The well-posedness and stability of solutions
to the problem (1.1a)–(1.1e) have been proved in [14] by employing an exact transparent boundary condition
(TBC) on a large sphere. Recently, a spherical PML method has been proposed in [40] to solve the problem
(1.1a)–(1.1e) efficiently, based on the real coordinate stretching technique associated with [Re(𝑠)]−1 in the
Laplace transform domain with the Laplace transform variable 𝑠 ∈ C+ := {𝑠 = 𝑠1 + 𝑖𝑠2 ∈ C : 𝑠1 > 0, 𝑠2 ∈ R},
and its exponential convergence has also been established in terms of the thickness and absorbing parameters
of the PML layer.

In this paper, we continue our previous study in [40] and propose and study the uniaxial PML method for
the problem (1.1a)–(1.1e), based on the real coordinate stretching technique introduced in [40], which uses a
cubic domain to define the PML problem and thus is of great advantage over the spherical one in dealing with
problems involving anisotropic scatterers. We first establish the existence, uniqueness and stability estimates of
the PML problem by the Laplace transform technique and the energy argument and then prove the exponential
convergence in both the 𝐿2-norm and the 𝐿∞-norm in time of the time-domain uniaxial PML method. Our
proof for the 𝐿2-norm convergence follows naturally from the error estimate between the EtM operators for
the original scattering problem and its truncated PML problem established also in the paper, which is different
from [40]. The 𝐿∞-norm convergence is obtained directly from the time-domain variational formulation of the
original scattering problem and its truncated PML problem with using special test functions.

The PML method was first introduced in the pioneering work [3] of Bérenger in 1994 for efficiently solving
the time-dependent Maxwell’s equations. Its idea is to surround the computational domain with a specially
designed medium layer of finite thickness in which the scattered waves decay rapidly regardless of the wave inci-
dent angle, thereby greatly reducing the computational complexity of the scattering problem. Since then, various
PML methods have been developed and studied in the literature (see, e.g., [4, 21, 23–25, 29, 35] and the refer-
ences quoted there). Convergence analysis of the PML method has also been widely studied for time-harmonic
acoustic, electromagnetic, and elastic wave scattering problems. For example, the exponential convergence has
been established in terms of the thickness of the PML layer in [1,4,8,11,12,18,30,32] for the circular or spher-
ical PML method and in [5–7, 15, 17, 19, 20] for the uniaxial (or Cartesian) PML method. Among them, the
proof in [1] is based on the error estimate between the electric-to-magnetic (EtM) operators for the original
electromagnetic scattering problem and its truncated PML problem, while the key ingredient of the proof in
[11, 19] is the decay property of the PML extensions defined by the series solution and the integral represen-
tation solution, respectively. On the other hand, there are also several works on convergence analysis of the
time-domain PML method for transient scattering problems. For two-dimensional transient acoustic scattering
problems, the exponential convergence was proved in [10] for the circular PML method and in [16] for the
uniaxial PML method, based on the complex coordinate stretching technique. For the 3D time-domain electro-
magnetic scattering problem (1.1a)–(1.1e), the spherical PML method was proposed in [40] based on the real
coordinate stretching technique associated with [Re(𝑠)]−1 in the Laplace transform domain with the Laplace
transform variable 𝑠 ∈ C+, and its exponential convergence was established by means of the energy argument
and the exponential decay estimates of the stretched dyadic Green’s function for the Maxwell equations in the
free space. In addition, we refer to [2] for the well-posedness and stability estimates of the time-domain PML
method for the two-dimensional acoustic-elastic interaction problem, and to [38] for the convergence analysis of
the PML method for the fluid-solid interaction problem above an unbounded rough surface.

The remaining part of this paper is as follows. In Section 2, we introduce some basic Sobolev spaces needed
in this paper. In Section 3, the well-posedness of the time-domain electromagnetic scattering problem is pre-
sented, and some important properties are given for the transparent boundary condition (TBC) in the Cartesian
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coordinate. In Section 4, we propose the uniaxial PML method in the Cartesian coordinate, study the well-
posedness of the truncated PML problem and establish its exponential convergence. Some conclusions are given
in Section 5.

2. Functional spaces

We briefly introduce the Sobolev space 𝐻(curl, ·) and its related trace spaces which are used in this paper.
For a bounded domain 𝐷 ⊂ R3 with Lipschitz continuous boundary Σ, the Sobolev space 𝐻(curl, 𝐷) is defined
by

𝐻(curl, 𝐷) :=
{︀
𝑢 ∈ 𝐿2(𝐷)3 : ∇× 𝑢 ∈ 𝐿2(𝐷)3

}︀
which is a Hilbert space equipped with the norm

‖𝑢‖𝐻(curl,𝐷) =
(︁
‖𝑢‖2𝐿2(𝐷)3 + ‖∇ × 𝑢‖2𝐿2(𝐷)3

)︁1/2

.

Denote by 𝑢Σ = 𝑛 × (𝑢 × 𝑛)|Σ the tangential component of 𝑢 on Σ, where 𝑛 denotes the unit outward
normal vector on Σ. By [9] we have the following bounded and surjective trace operators:

𝛾 : 𝐻1(𝐷) → 𝐻1/2(Σ), 𝛾𝜙 = 𝜙 on Σ,

𝛾𝑡 : 𝐻(curl, 𝐷) → 𝐻−1/2(Div, Σ), 𝛾𝑡𝑢 = 𝑢× 𝑛 on Σ,

𝛾𝑇 : 𝐻(curl, 𝐷) → 𝐻−1/2(Curl, Σ), 𝛾𝑇 𝑢 = 𝑛× (𝑢× 𝑛) on Σ,

where 𝛾𝑡 and 𝛾𝑇 are known as the tangential trace and tangential components trace operators, and Div and
Curl denote the surface divergence and surface scalar curl operators, respectively (for the detailed defini-
tion of 𝐻−1/2(Div, Σ) and 𝐻−1/2(Curl, Σ), we refer to [9]). By [9] again we know that 𝐻−1/2(Div, Σ) and
𝐻−1/2(Curl, Σ) form a dual pairing satisfying the integration by parts formula

(𝑢,∇× 𝑣)𝐷 − (∇× 𝑢, 𝑣)𝐷 = ⟨𝛾𝑡𝑢, 𝛾𝑇 𝑣⟩Σ ∀ 𝑢, 𝑣 ∈ 𝐻(curl, 𝐷), (2.1)

where (·, ·)𝐷 and ⟨·, ·⟩Σ denote the 𝐿2-inner product on 𝐷 and the dual product between 𝐻−1/2(Div, Σ) and
𝐻−1/2(Curl, Σ), respectively.

For any relatively closed and locally Lipschitz continuous subset 𝑆 ⊂ Σ, the subspace with zero tangential
trace on 𝑆 is denoted as

𝐻𝑆(curl, 𝐷) := {𝑢 ∈ 𝐻(curl, 𝐷) : 𝛾𝑡𝑢 = 0 on 𝑆}.

In particular, if 𝑆 = Σ then we write 𝐻0(curl, 𝐷) := 𝐻Σ(curl, 𝐷).

3. The well-posedness of the scattering problem

Let Ω be contained in the interior of the cuboid 𝐵1 := {𝑥 = (𝑥1, 𝑥2, 𝑥3)⊤ ∈ R3 : |𝑥𝑗 | < 𝐿𝑗/2, 𝑗 = 1, 2, 3} with
boundary Γ1 = 𝜕𝐵1. Denote by 𝑛1 the unit outward normal to Γ1. The computational domain 𝐵1∖Ω is denoted
by Ω1. In this section, we assume that the current density 𝐽 is compactly supported in 𝐵1 with

𝐽 ∈ 𝐻10(0, 𝑇 ; 𝐿2(Ω1)3), 𝜕𝑗
𝑡 𝐽 |𝑡=0 = 0, 𝑗 = 0, 1, 2, 3, . . . , 9 (3.1)

and that 𝐽 is extended so that

𝐽 ∈ 𝐻10
(︀
0,∞; 𝐿2(Ω1)3

)︀
, ‖𝐽‖𝐻10(0,∞;𝐿2(Ω1)3) ≤ 𝐶‖𝐽‖𝐻10(0,𝑇 ;𝐿2(Ω1)3). (3.2)

Define the following time-domain transparent boundary condition (TBC) on Γ1:

T [𝐸Γ1 ] = 𝐻 × 𝑛1 on Γ1 × (0, 𝑇 ) (3.3)
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which is essentially an electric-to-magnetic (EtM) Calderón operator, where 𝐸Γ1 := 𝑛1 × (𝐸 × 𝑛1)|Γ1 is the
tangential component of 𝐸 on Γ1, 𝐸 and 𝐻 satisfy the exterior Maxwell’s equations⎧⎪⎪⎪⎨⎪⎪⎪⎩

∇×𝐸 + 𝜇𝜕𝑡𝐻 = 0 in R3∖𝐵1 × (0, 𝑇 ),
∇×𝐻 − 𝜀𝜕𝑡𝐸 = 0 in R3∖𝐵1 × (0, 𝑇 ),
𝐸(𝑥, 0) = 𝐻(𝑥, 0) = 0 in R3∖𝐵1,

𝑥̂× (𝜕𝑡𝐸 × 𝑥̂) + 𝑥̂× 𝜕𝑡𝐻 = 𝑜
(︀
|𝑥|−1

)︀
as |𝑥| → ∞, 𝑡 ∈ (0, 𝑇 ).

Then the original scattering problem (1.1a)–(1.1e) can be equivalently reduced into the initial boundary value
problem in a bounded domain Ω1 × (0, 𝑇 ):⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∇×𝐸 + 𝜇𝜕𝑡𝐻 = 0 in Ω1 × (0, 𝑇 ),
∇×𝐻 − 𝜀𝜕𝑡𝐸 = 𝐽 in Ω1 × (0, 𝑇 ),
𝑛×𝐸 = 0 on Γ× (0, 𝑇 ),
𝐸(𝑥, 0) = 𝐻(𝑥, 0) = 0 in Ω1,

T [𝐸Γ1 ] = 𝐻 × 𝑛1 on Γ1 × (0, 𝑇 ).

(3.4)

The well-posedness of the original scattering problem (1.1a)–(1.1e) has been established in [14] by using the
transparent boundary condition on a sphere. Thus the problem (3.4) is also well-posed since it is equivalent to
the problem (1.1a)–(1.1e). However, for convenience of the subsequent use in the following sections, we study
the problem (3.4) directly by studying the property of the EtM operator T , based on the Laplace transform
technique [22,36].

For a Banach space E we denote by 𝒟+(E) = {𝑢 ∈ 𝐶∞0 (R; E), 𝑢 vanishes on (−∞, 0)} the set of smooth and
compactly supported E-valued causal functions on the real line. Further, let 𝒟′+(E) denote the set of E-valued
causal distributions on the real line and let S ′

+(E) be the set of the corresponding tempered distributions. Set

ℒ′+(E) :=
{︀
𝑓 ∈ 𝒟′+(E), 𝑒−𝜎0𝑡𝑓(𝑡) ∈ S ′

+(E) for some 𝜎0 ∈ R
}︀
.

The Laplace transform of 𝑓 ∈ ℒ′+(E) is defined by

L [𝑓(𝑡)](𝑠) =
∫︁ ∞

0

𝑓(𝑡)𝑒−𝑠𝑡 d𝑡, 𝑠 = 𝑠1 + 𝑖𝑠2 for 𝑠1 > 𝜎0.

If 𝑠1 = 0, then the Laplace transform coincides with the usual Fourier transform.
In what follows, we aim to find solutions of the problem (1.1a)–(1.1e) in the Sobolev space (see [14], Thm. 3.1):

𝐸(𝑥, 𝑡) ∈ 𝐿2(0, 𝑇 ; 𝐻(curl, Ω1)) ∩𝐻1
(︀
0, 𝑇 ; 𝐿2(Ω1)3

)︀
,

𝐻(𝑥, 𝑡) ∈ 𝐿2(0, 𝑇 ; 𝐻(curl, Ω1)) ∩𝐻1
(︀
0, 𝑇 ; 𝐿2(Ω1)3

)︀
which are 𝐿2-integrable in the time variable. It can be easily seen that 𝑒−𝜎0𝑡𝐸(·, 𝑡) ∈ S ′

+(𝐿2(Ω1)3) for 𝜎0 > 0.
Thus 𝐸(·, 𝑡) and 𝐻(·, 𝑡) are Laplace-transformable in time. Define

𝐸̌(𝑥, 𝑠) = L (𝐸)(𝑥, 𝑠) =
∫︁ ∞

0

𝑒−𝑠𝑡𝐸(𝑥, 𝑡) d𝑡,

𝐻̌(𝑥, 𝑠) = L (𝐻)(𝑥, 𝑠) =
∫︁ ∞

0

𝑒−𝑠𝑡𝐻(𝑥, 𝑡) d𝑡

for any 𝑠 ∈ C+ := {𝑠 = 𝑠1 + 𝑖𝑠2 ∈ C : 𝑠1 > 0, 𝑠2 ∈ R}, which is usually adopted in the time domain scattering
problems (see, e.g., [14, 40]). Let B : 𝐻−1/2(Curl, Γ1) → 𝐻−1/2(Div, Γ1) be the EtM operator

B[𝐸̌Γ1 ] = 𝐻̌ × 𝑛1 on Γ1, (3.5)
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where 𝐸̌ and 𝐻̌ satisfy the exterior Maxwell’s equation in the Laplace domain⎧⎪⎨⎪⎩
∇× 𝐸̌ + 𝜇𝑠𝐻̌ = 0 in R3∖𝐵1,

∇× 𝐻̌ − 𝜀𝑠𝐸̌ = 0 in R3∖𝐵1,

𝑥̂× (𝐸̌ × 𝑥̂) + 𝑥̂× 𝐻̌ = 𝑜
(︁

1
|𝑥|

)︁
as |𝑥| → ∞.

(3.6)

It is obvious that T = L −1 ∘B ∘L , where L −1 is the inverse Laplace transform given by

𝑓 = F−1
(︀
𝑒𝑠1𝑡L (𝑓)(𝑠)

)︀
=

1
2𝜋𝑖

∫︁
𝛾

𝑒𝑠𝑡L (𝑓)(𝑠) d𝑠

where 𝛾 is the vertical line Re(𝑠) = 𝑠1 > 𝜎0 in the complex plane.
For each 𝑠 ∈ C+ it is known that, by the Lax–Milgram theorem the problem (3.6) has a unique solution

(𝐸̌, 𝐻̌) ∈ 𝐻(curl, R3∖𝐵1) . Thus the operator B is a well-defined, continuous linear operator.

Lemma 3.1. For each 𝑠 ∈ C+, B : 𝐻−1/2(Curl, Γ1) → 𝐻−1/2(Div, Γ1) is bounded with the estimate

‖B‖𝐿(𝐻−1/2(Curl,Γ1),𝐻−1/2(Div,Γ1)) . |𝑠|
−1 + |𝑠|, (3.7)

where 𝐿(𝑋, 𝑌 ) denotes the standard space of bounded linear operators from the Hilbert space 𝑋 to the Hilbert
space 𝑌 . Further, we have

Re⟨B𝜔, 𝜔⟩Γ1 ≥ 0 for any 𝜔 ∈ 𝐻−1/2(Curl, Γ1), (3.8)

where ⟨·⟩Γ1 denotes the dual product between 𝐻−1/2(Div, Γ1) and 𝐻−1/2(Curl, Γ1).

Proof. First, eliminating 𝐻̌ from (3.6) and multiplying both sides of the resulting equation with 𝑉 ∈
𝐻(curl, R3∖𝐵1) yield

⃒⃒
⟨B[𝐸̌Γ1 ], 𝛾𝑇 𝑉 ⟩Γ1

⃒⃒
=

⃒⃒⃒⃒
⃒
∫︁

R3∖𝐵1

[︀
(𝜇𝑠)−1∇× 𝐸̌ · ∇ × 𝑉 + 𝜀𝑠𝐸̌ · 𝑉 d𝑥

]︀⃒⃒⃒⃒⃒
. (|𝑠|−1 + |𝑠|)‖𝐸̌‖𝐻(curl,R3∖𝐵1)

‖𝑉 ‖𝐻(curl,R3∖𝐵1)
,

which implies (3.7).
Now, for any 𝜔 ∈ 𝐻−1/2(Curl, Γ1) suppose (𝐸̌, 𝐻̌) is the solution to the problem (3.6) satisfying the boundary

condition 𝛾𝑇 𝐸̌ = 𝜔 on Γ1. Let 𝐵𝑅 := {𝑥 ∈ R3 : |𝑥| < 𝑅} contain the domain 𝐵1. Eliminating 𝐻̌ from (3.6)
and integrating by parts the resulting equation multiplied with 𝐸̌ over 𝐵𝑅∖𝐵1, we obtain that∫︁

𝐵𝑅∖𝐵1

(︀
(𝜇𝑠)−1|∇ × 𝐸̌|2 + 𝜀𝑠|𝐸̌|2

)︀
d𝑥− ⟨B𝜔, 𝜔⟩Γ1 +

∫︁
𝜕𝐵𝑅

𝑥̂× (𝜇𝑠)−1∇× 𝐸̌ · 𝐸̌ d𝛾 = 0. (3.9)

Taking the real part of (3.9) and noting that⃒⃒
𝑥̂×

(︀
𝐸̌ × 𝑥̂

)︀
− 𝑥̂× (𝜇𝑠)−1∇× 𝐸̌

⃒⃒2
= |𝑥̂×

(︀
𝐸̌ × 𝑥̂

)︀
|2 + |𝑥̂× (𝜇𝑠)−1∇× 𝐸̌|2 − 2Re

(︀
𝑥̂× (𝜇𝑠)−1∇× 𝐸̌

)︀
· 𝐸̌,

we have
𝑠1

𝜇|𝑠|2
‖∇ × 𝐸̌‖2

𝐿2(𝐵𝑅∖𝐵1)3
+ 𝜀𝑠1‖𝐸̌‖2𝐿2(𝐵𝑅∖𝐵1)3

− Re⟨B𝜔, 𝜔⟩Γ1

+
1
2

⃦⃦
𝑥̂× (𝐸̌ × 𝑥̂)

⃦⃦2

𝐿2(𝜕𝐵𝑅)3
+

1
2

⃦⃦
𝑥̂× (𝜇𝑠)−1∇× 𝐸̌

⃦⃦2

𝐿2(𝜕𝐵𝑅)3

=
1
2

⃦⃦
𝑥̂× (𝐸̌ × 𝑥̂)− 𝑥̂× (𝜇𝑠)−1∇× 𝐸̌

⃦⃦2

𝐿2(𝜕𝐵𝑅)3
.

(3.10)

By the Silver-Müller radiation condition (1.1e) in the 𝑠-domain, it is known that the right-hand side of (3.10)
tends to zero as 𝑅 →∞. This implies that Re⟨B𝜔, 𝜔⟩Γ1 ≥ 0. The proof is thus complete. �
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By using Lemma 3.1 and Lemmas 4.5, 4.6 of [39], the time-domain EtM operator T has the following positive
properties which will be used in the error analysis of the time-domain PML solution.

Lemma 3.2. Given 𝜉 ≥ 0 and 𝜔(·, 𝑡) ∈ 𝐿2(0, 𝜉; 𝐻−1/2(Curl, Γ1)) it holds that

Re
∫︁

Γ1

∫︁ 𝜉

0

(︂∫︁ 𝑡

0

C [𝜔](𝑥, 𝜏) d𝜏

)︂
𝜔(𝑥, 𝑡) d𝑡 d𝛾 ≥ 0,

where C = L −1 ∘ 𝑠B ∘L .

Proof. We extend 𝜔 by 0 with respect to 𝑡 outside the interval [0, 𝜉] which is denoted again by 𝜔. Recall the
Parseval identity for the Laplace transform (see [22], (2.46))

1
2𝜋

∫︁ ∞

−∞
𝑢̌(𝑠) · 𝑣(𝑠) d𝑠2 =

∫︁ ∞

0

𝑒−2𝑠1𝑡𝑢(𝑡) · 𝑣(𝑡) d𝑡 (3.11)

for all 𝑠1 > 𝜆, where 𝜆 is the abscissa of convergence for the Laplace transform of 𝑢 and 𝑣. This, together with
Lemma 3.1 and the Laplace transform property L

(︁∫︀ 𝑡

0
𝑢(𝜏) d𝜏

)︁
(𝑠) = 𝑠−1L (𝑢)(𝑠), implies that

Re
∫︁

Γ1

∫︁ ∞

0

𝑒−2𝑠1𝑡

(︂∫︁ 𝑡

0

C [𝜔](𝑥, 𝜏) d𝜏

)︂
𝜔(𝑥, 𝑡) d𝑡 d𝛾

= Re
∫︁

Γ1

∫︁ ∞

0

𝑒−2𝑠1𝑡

(︂∫︁ 𝑡

0

L −1 ∘ 𝑠B ∘L [𝜔](𝑥, 𝜏) d𝜏

)︂
𝜔(𝑥, 𝑡) d𝑡 d𝛾

=
1

2𝜋
Re
∫︁ ∞

−∞

∫︁
Γ1

B ∘L (𝜔) ·L (𝜔)(𝑠) d𝛾 d𝑠2

=
1

2𝜋

∫︁ ∞

−∞
Re⟨B[𝜔̌], 𝜔̌⟩Γ1 d𝑠2

≥ 0.

This completes the proof after taking 𝑠1 → 0. �

Lemma 3.3. Given 𝜉 ≥ 0 and 𝜔(·, 𝑡) ∈ 𝐻1(0, 𝜉; 𝐻−1/2(Curl, Γ1)) with 𝜔(·, 0) = 0, it holds that

Re
∫︁

Γ1

∫︁ 𝜉

0

(︂∫︁ 𝑡

0

C [𝜕𝜏𝜔](𝑥, 𝜏) d𝜏

)︂
𝜕𝜏𝜔(𝑥, 𝑡) d𝑡 d𝛾 ≥ 0.

Proof. The proof is similar to that for Lemma 3.2 with 𝜔 replaced by 𝜕𝜏𝜔. So we omit the detailed proof. �

We now introduce the equivalent variational formulation in the Laplace transform domain to the problem
(3.4). To this end, eliminate the magnetic field 𝐻 and take the Laplace transform of (3.4) to get⎧⎪⎨⎪⎩

∇×
[︀
(𝜇𝑠)−1∇× 𝐸̌

]︀
+ 𝜀𝑠𝐸̌ = −𝐽 in Ω1,

𝑛× 𝐸̌ = 0 on Γ,

B
[︀
𝐸̌Γ1

]︀
= −(𝜇𝑠)−1∇× 𝐸̌ × 𝑛1 on Γ1.

(3.12)

The variational formulation of (3.12) is then as follows: find a solution 𝐸̌ ∈ 𝐻Γ(curl, Ω1) such that

𝑎
(︀
𝐸̌, 𝑉

)︀
= −

∫︁
Ω1

𝐽 · 𝑉 d𝑥, ∀ 𝑉 ∈ 𝐻Γ(curl, Ω1), (3.13)
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Figure 1. Geometric configuration of the uniaxial PML.

where the sesquilinear form 𝑎(·, ·) is defined as

𝑎
(︀
𝐸̌, 𝑉

)︀
=
∫︁

Ω1

[︁
(𝑠𝜇)−1(︀∇× 𝐸̌

)︀
·
(︀
∇× 𝑉

)︀
+ 𝜀𝑠𝐸̌ · 𝑉

]︁
d𝑥 + ⟨B

[︀
𝐸̌Γ1

]︀
, 𝑉Γ1⟩Γ1 . (3.14)

By Lemma 3.1 it is easy to see that 𝑎(·, ·) is uniformly coercive, that is,

Re
[︀
𝑎(𝐸̌, 𝐸̌)

]︀
&

𝑠1

|𝑠|2
(︁
‖∇ × 𝐸̌‖2𝐿2(Ω1)3

+ ‖𝑠𝐸̌‖2𝐿2(Ω1)3

)︁
≥ 𝑠1 min{|𝑠|−2, 1}‖𝐸̌‖2𝐻(curl,Ω1)

. (3.15)

Then, by the Lax–Milgram theorem the problem (3.12) is well-posed for each 𝑠 ∈ C+. Thus, and by the energy
argument in conjunction with the inversion theorem of the Laplace transform (cf. [14]) the well-posedness of
the problem (3.4) follows. In particular, T [𝐸Γ1 ] ∈ 𝐿2

(︀
0, 𝑇 ; 𝐻−1/2(Div, Γ1)

)︀
.

4. The uniaxial PML method

In practical applications, the scattering problems may involve anisotropic scatterers. In this case, the uniaxial
PML method has a big advantage over the circular or spherical PML method as it provides greater flexibility
and efficiency in solving such problems. Thus, in this section, we propose and study the uniaxial PML method
for solving the time-domain electromagnetic scattering problem (1.1a)–(1.1e).

4.1. The PML equation in the Cartesian coordinates

In this subsection, we derive the PML equation in the Cartesian coordinates. To this end, define 𝐵2 := {𝑥 =
(𝑥1, 𝑥2, 𝑥3)⊤ ∈ R3 : |𝑥𝑗 | < 𝐿𝑗/2+𝑑𝑗 , 𝑗 = 1, 2, 3} with boundary Γ2 = 𝜕𝐵2 which is a cubic domain surrounding
𝐵1. Denote by 𝑛2 the unit outward normal to Γ2. Let ΩPML = 𝐵2∖𝐵1 be the PML layer and let Ω2 = 𝐵2∖Ω be
the truncated PML domain. See Figure 1 for the uniaxial PML geometry.

For 𝑥 = (𝑥1, 𝑥2, 𝑥3)⊤ ∈ R3, let 𝑠1 > 0 be an arbitrarily fixed parameter and let us define the PML medium
property as

𝛼𝑗(𝑥𝑗) = 1 + 𝑠−1
1 𝜎𝑗(𝑥𝑗), 𝑗 = 1, 2, 3,

where

𝜎𝑗(𝑥𝑗) =

⎧⎪⎪⎨⎪⎪⎩
0, |𝑥𝑗 | ≤ 𝐿𝑗/2,

̃︀𝜎𝑗

(︂
|𝑥𝑗 | − 𝐿𝑗/2

𝑑𝑗

)︂𝑚

, 𝐿𝑗/2 < |𝑥𝑗 | ≤ 𝐿𝑗/2 + 𝑑𝑗 ,̃︀𝜎𝑗 , 𝐿𝑗/2 + 𝑑𝑗 < |𝑥𝑗 | < ∞

(4.1)
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with positive constants ̃︀𝜎𝑗 , 𝑗 = 1, 2, 3, and integer 𝑚 ≥ 1. In what follows, we will take the real part of the
Laplace transform variable 𝑠 ∈ C+ to be 𝑠1, that is, Re(𝑠) = 𝑠1.

In the rest of this paper, we always make the following assumptions on the thickness of the PML layer and
the parameters ̃︀𝜎𝑗 , which are reasonable in our model:

𝑑1 = 𝑑2 = 𝑑3 := 𝑑, 𝐿 = max{𝐿1, 𝐿2, 𝐿3} ≤ 𝐶0𝑑, (4.2)̃︀𝜎1 = ̃︀𝜎2 = ̃︀𝜎3 := 𝜎0 > 0 (4.3)

for a fixed generic constant 𝐶0. Under the assumptions (4.2) and (4.3) we have∫︁ 𝐿𝑗/2+𝑑𝑗

0

𝜎𝑗(𝜏) d𝜏 =
𝜎0𝑑

𝑚 + 1
, 𝑗 = 1, 2, 3. (4.4)

We remark that the constant assumption on 𝑑𝑗 and ̃︀𝜎𝑗 in (4.2) and (4.3) is only to simplify the convergence
analysis but not mandatory. We now introduce the real stretched Cartesian coordinates ̃︀𝑥 = (̃︀𝑥1, ̃︀𝑥2, ̃︀𝑥3)⊤ with

̃︀𝑥𝑗 =
∫︁ 𝑥𝑗

0

𝛼𝑗(𝜏) d𝜏, 𝑗 = 1, 2, 3. (4.5)

We now derive the PML extension under the stretched coordinates ̃︀𝑥 by following [40]. By Theorem 12.2 of
[34], the solution of the exterior problem (3.6) in R3∖𝐵1 can be given by the integral representation

𝐸̌(𝑥) = −ΨSL(𝑞)(𝑥)−ΨDL(𝑝)(𝑥), 𝐻̌(𝑥) = −(𝜇𝑠)−1curl 𝐸̌(𝑥), (4.6)

where
ΨSL(𝑞) =

∫︁
Γ1

G𝑇 (𝑠, 𝑥, 𝑦)𝑞(𝑦) d𝛾(𝑦), ΨDL(𝑝) =
∫︁

Γ1

(curl𝑦G)𝑇 (𝑠, 𝑥, 𝑦)𝑝(𝑦) d𝛾(𝑦),

denote the Maxwell single- and double-layer potentials, respectively, 𝑝 = 𝛾𝑡

(︀
𝐸̌
)︀

and 𝑞 = 𝛾𝑡(curl 𝐸̌) are the
Dirichlet trace and Neumann trace of the solution on Γ1, and G is the dyadic Green’s function for Maxwell’s
equations in the free space defined as a matrix function (see [34], (12.1)):

G(𝑠, 𝑥, 𝑦) = Φ𝑠(𝑥, 𝑦)I +
1
𝑘2
∇𝑦∇𝑦Φ𝑠(𝑥, 𝑦), 𝑥 ̸= 𝑦.

Hereafter, 𝑠 ∈ C+ with Re(𝑠) = 𝑠1, I is the 3 × 3 identity matrix, Φ𝑠(𝑥, 𝑦) is the fundamental solution of the
Helmholtz equation with complex wave number 𝑘 = 𝑖

√
𝜀𝜇𝑠 defined by

Φ𝑠(𝑥, 𝑦) =
𝑒𝑖𝑘|𝑥−𝑦|

4𝜋|𝑥− 𝑦|
=

𝑒−
√

𝜀𝜇𝑠|𝑥−𝑦|

4𝜋|𝑥− 𝑦|
, (4.7)

and ∇𝑦∇𝑦Φ𝑠(𝑥, 𝑦) is the Hessian matrix of Φ𝑠(𝑥, 𝑦) with its (𝑙,𝑚)th element

(∇𝑦∇𝑦Φ𝑠(𝑥, 𝑦))𝑙,𝑚 =
𝜕2Φ𝑠(𝑥, 𝑦)

𝜕𝑦𝑙
𝜕𝑦𝑚

, 1 ≤ 𝑙,𝑚 ≤ 3. (4.8)

Now, for 𝑥 ∈ R3 ∖𝐵1 define the stretched single- and double-layer potentials

̃︀ΨSL(𝑞) =
∫︁

Γ1

̃︀G𝑇 (𝑠, 𝑥, 𝑦)𝑞(𝑦) d𝛾(𝑦), ̃︀ΨDL(𝑝) =
∫︁

Γ1

(︁
curl𝑦 ̃︀G)︁𝑇

(𝑠, 𝑥, 𝑦)𝑝(𝑦) d𝛾(𝑦),

where the stretched dyadic Green’s function

̃︀G(𝑠, 𝑥, 𝑦) = ̃︀Φ𝑠(𝑥, 𝑦)I +
1
𝑘2
∇𝑦∇𝑦

̃︀Φ𝑠(𝑥, 𝑦), 𝑥 ̸= 𝑦, 𝑘 = 𝑖
√

𝜀𝜇𝑠 (4.9)
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with the stretched fundamental solution and the complex distance

̃︀Φ𝑠(𝑥, 𝑦) =
𝑒−
√

𝜀𝜇𝜌𝑠(̃︀𝑥,𝑦)

4𝜋𝜌𝑠(̃︀𝑥, 𝑦)𝑠−1
, 𝜌𝑠(̃︀𝑥, 𝑦) = 𝑠|̃︀𝑥− 𝑦|. (4.10)

For any 𝑝 ∈ 𝐻−1/2(Div, Γ1) and 𝑞 ∈ 𝐻−1/2(Div, Γ1), define

E(𝑝, 𝑞)(𝑥) := − ̃︀ΨSL(𝑞)(𝑥)− ̃︀ΨDL(𝑝)(𝑥), 𝑥 ∈ R3∖𝐵1 (4.11)

to be the PML extensions in the 𝑠-domain of 𝑝 and 𝑞. Introduce the stretched curl operator acting on vector
𝑢 = (𝑢1, 𝑢2, 𝑢3)⊤:

̃︂curl 𝑢 = ̃︀∇× 𝑢 :=
(︂

𝜕𝑢3

𝜕̃︀𝑥2
− 𝜕𝑢2

𝜕̃︀𝑥3
,
𝜕𝑢1

𝜕̃︀𝑥3
− 𝜕𝑢3

𝜕̃︀𝑥1
,
𝜕𝑢2

𝜕̃︀𝑥1
− 𝜕𝑢1

𝜕̃︀𝑥2

)︂⊤
= A∇× B𝑢

with the diagonal matrices

A = diag
{︂

1
𝛼2𝛼3

,
1

𝛼1𝛼3
,

1
𝛼1𝛼2

}︂
and B = diag{𝛼1, 𝛼2, 𝛼3}. (4.12)

Then the PML extension in the 𝑠-domain in R3∖𝐵1 of 𝛾𝑡

(︀
𝐸̌
)︀
|Γ1 and 𝛾𝑡(curl 𝐸̌)|Γ1 is defined as

̃̌︀𝐸(𝑥) = E
(︀
𝛾𝑡

(︀
𝐸̌
)︀
, 𝛾𝑡

(︀
curl 𝐸̌

)︀)︀
, 𝑥 ∈ R3∖𝐵1. (4.13)

Define ̃̌︁𝐻(𝑥) := −(𝜇𝑠)−1̃︂curl ̃̌︀𝐸(𝑥) for 𝑥 ∈ R3∖𝐵1. Then it is easy to see that ( ̃̌︀𝐸, ̃̌︁𝐻) satisfies the Maxwell
equation in the 𝑠-domain:

̃︀∇× ̃̌︀𝐸 + 𝜇𝑠̃̌︁𝐻 = 0, ̃︀∇× ̃̌︁𝐻 − 𝜀𝑠 ̃̌︀𝐸 = 0 in R3 ∖𝐵1. (4.14)

Define (︀
𝐸PML, 𝐻PML

)︀
:= B

(︁
L −1

(︁ ̃̌︀𝐸)︁, L −1
(︁̃̌︁𝐻)︁)︁.

Then
(︀
𝐸PML, 𝐻PML

)︀
can be viewed as the extension in the region R3∖𝐵1 of the solution of the problem (1.1a)–

(1.1e) since, by the fact that 𝛼𝑗 = 1 on Γ1 for 𝑗 = 1, 2, 3 we have 𝐸PML = 𝐸, 𝐻PML = 𝐻 on Γ1. If we set
𝐸PML = 𝐸 and 𝐻PML = 𝐻 in Ω1 × (0, 𝑇 ), then (𝐸PML, 𝐻PML) satisfies the PML problem:⎧⎪⎪⎪⎨⎪⎪⎪⎩

∇×𝐸PML + 𝜇(BA)−1𝜕𝑡𝐻
PML = 0 in

(︀
R3∖Ω

)︀
× (0, 𝑇 ),

∇×𝐻PML − 𝜀(BA)−1𝜕𝑡𝐸
PML = 𝐽 in

(︀
R3∖Ω

)︀
× (0, 𝑇 ),

𝑛×𝐸PML = 0 on Γ× (0, 𝑇 ),
𝐸PML(𝑥, 0) = 𝐻PML(𝑥, 0) = 0 in R3∖Ω.

(4.15)

The truncated PML problem in the time domain is to find (𝐸𝑝, 𝐻𝑝), which is an approximation to (𝐸, 𝐻) in
Ω1, such that ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∇×𝐸𝑝 + 𝜇(BA)−1𝜕𝑡𝐻
𝑝 = 0 in Ω2 × (0, 𝑇 ),

∇×𝐻𝑝 − 𝜀(BA)−1𝜕𝑡𝐸
𝑝 = 𝐽 in Ω2 × (0, 𝑇 ),

𝑛×𝐸𝑝 = 0 on Γ× (0, 𝑇 ),
𝑛2 ×𝐸𝑝 = 0 on Γ2 × (0, 𝑇 ),
𝐸𝑝(𝑥, 0) = 𝐻𝑝(𝑥, 0) = 0 in Ω2.

(4.16)
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4.2. Well-posedness of the truncated PML problem

We now study the well-posedness of the truncated PML problem (4.16), employing the Laplace transform
technique and a variational method. Eliminate 𝐻𝑝 and take the Laplace transform of (4.16) to obtain that⎧⎪⎨⎪⎩

∇×
[︀
(𝜇𝑠)−1BA∇× 𝐸̌𝑝

]︀
+ 𝜀𝑠(BA)−1𝐸̌𝑝 = −𝐽 in Ω2,

𝑛× 𝐸̌𝑝 = 0 on Γ,

𝑛2 × 𝐸̌𝑝 = 0 on Γ2.

(4.17)

The variational formulation of (4.17) can be derived as follows: find a solution 𝐸̌𝑝 ∈ 𝐻0(curl, Ω2) such that

𝑎𝑝

(︀
𝐸̌𝑝, 𝑉

)︀
= −

∫︁
Ω1

𝐽 · 𝑉 d𝑥, ∀ 𝑉 ∈ 𝐻0(curl, Ω2), (4.18)

where the sesquilinear form 𝑎𝑝(·, ·) is defined as

𝑎𝑝

(︀
𝐸̌𝑝, 𝑉

)︀
=
∫︁

Ω2

[︀
(𝜇𝑠)−1BA

(︀
∇× 𝐸̌𝑝

)︀
·
(︀
∇× 𝑉

)︀
d𝑥 + 𝜀𝑠(BA)−1𝐸̌𝑝 · 𝑉

]︀
d𝑥. (4.19)

We have the following result on the well-posedness of the variational problem (4.18).

Lemma 4.1. For each 𝑠 ∈ C+ with Re(𝑠) = 𝑠1 > 0 the variational problem (4.18) has a unique solution
𝐸̌𝑝 ∈ 𝐻0(curl, Ω2). Further, it holds that

‖∇ × 𝐸̌𝑝‖𝐿2(Ω2)3 + ‖𝑠𝐸̌𝑝‖𝐿2(Ω2)3 . 𝑠−1
1 (1 + 𝑠−1

1 𝜎0)2‖𝑠𝐽‖𝐿2(Ω1)3 . (4.20)

Proof. By the definition of the diagonal matrix BA (see (4.12)) and a direct calculation it easily follows that
for 𝑖 = 1, 2, 3 (︀

1 + 𝑠−1
1 𝜎0

)︀−2 ≤ |(BA)𝑖𝑖| ≤
(︀
1 + 𝑠−1

1 𝜎0

)︀
in ΩPML, (4.21)(︀

1 + 𝑠−1
1 𝜎0

)︀−1 ≤ |(BA)−1
𝑖𝑖 | ≤

(︀
1 + 𝑠−1

1 𝜎0

)︀2
, in ΩPML. (4.22)

Thus, it is derived that

Re
[︀
𝑎𝑝

(︀
𝐸̌𝑝, 𝐸̌𝑝

)︀]︀
&

1(︀
1 + 𝑠−1

1 𝜎0

)︀2 𝑠1

|𝑠|2
(︀
‖∇ × 𝐸̌𝑝‖𝐿2(Ω2)3 + ‖𝑠𝐸̌𝑝‖𝐿2(Ω2)3

)︀
. (4.23)

The existence and uniqueness of solutions to the problem (4.18) then follow from the Lax–Milgram theorem.
The estimate (4.20) can be obtained by combining (4.18), (4.23) and the Cauchy–Schwartz inequality. The proof
is thus complete. �

To show the well-posedness of the truncated PML problem (4.16) in the time domain, we need the following
lemma which is the analog of the Paley–Wiener–Schwartz theorem for the Fourier transform of the distributions
with compact support in the case of Laplace transform ([36], Thm. 43.1).

Lemma 4.2 ([36], Thm. 43.1). Let 𝜔̌(𝑠) denote a holomorphic function in the half complex plane 𝑠1 = Re(𝑠) >
𝜎0 for some 𝜎0 ∈ R, valued in the Banach space E. Then the following statements are equivalent:

(1) there is a distribution 𝜔 ∈ 𝒟′

+(E) whose Laplace transform is equal to 𝜔̌(𝑠), where 𝒟′

+(E) is the space of
distributions on the real line which vanish identically in the open negative half-line;

(2) there is a 𝜎1 with 𝜎0 ≤ 𝜎1 < ∞ and an integer 𝑚 ≥ 0 such that for all complex numbers 𝑠 with 𝑠1 =
Re(𝑠) > 𝜎1 it holds that ‖𝜔̌(𝑠)‖E . (1 + |𝑠|)𝑚.
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The well-posedness and stability of the truncated PML problem (4.16) can be proved by using Lemmas 4.1
and 4.2 and the energy method (cf. [14], Thm. 3.1).

Theorem 4.3. Let 𝑠1 = 1/𝑇 . Then the truncated PML problem (4.16) in the time domain has a unique solution
(𝐸𝑝(𝑥, 𝑡), 𝐻𝑝(𝑥, 𝑡)) with

𝐸𝑝 ∈ 𝐿2(0, 𝑇 ; 𝐻0(curl, Ω2)) ∩𝐻1
(︁

0, 𝑇 ; 𝐿2(Ω2)3
)︁
,

𝐻𝑝 ∈ 𝐿2(0, 𝑇 ; 𝐻0(curl, Ω2)) ∩𝐻1
(︁

0, 𝑇 ; 𝐿2(Ω2)3
)︁

and satisfying the stability estimate

max
𝑡∈[0,𝑇 ]

[︀
‖𝜕𝑡𝐸

𝑝‖𝐿2(Ω2)3 + ‖∇ ×𝐸𝑝‖𝐿2(Ω2)3 + ‖𝜕𝑡𝐻
𝑝‖𝐿2(Ω2)3 + ‖∇ ×𝐻𝑝‖𝐿2(Ω2)3

]︀
. (1 + 𝜎0𝑇 )3‖𝐽‖𝐻1(0,𝑇 ;𝐿2(Ω1)3). (4.24)

Proof. Existence and uniqueness of solutions of the truncated PML problem (4.16) follows directly from The-
orem 3.1 of [14] and Lemmas 4.1 and 4.2. We now establish the stability estimate (4.24). Define the energy
function

𝑒(𝑡) = ‖𝜀1/2(BA)−1/2𝐸𝑝(·, 𝑡)‖2𝐿2(Ω2)3
+ ‖𝜇1/2(BA)−1/2𝐻𝑝(·, 𝑡)‖2𝐿2(Ω2)3

, 𝑡 ∈ (0, 𝑇 ).

From the zero initial conditions of 𝐸𝑝 and 𝐻𝑝, we know that 𝑒(·) can be equivalently written as

𝑒(𝑡) = 𝑒(𝑡)− 𝑒(0) =
∫︁ 𝑡

0

𝑒′(𝜏) d𝜏.

By a simple calculation with using the system (4.16) and integration by parts, we have∫︁ 𝑡

0

𝑒′(𝜏) d𝜏 = 2Re
∫︁ 𝑡

0

∫︁
Ω2

(︀
𝜀(BA)−1𝜕𝜏𝐸𝑝 ·𝐸𝑝 + 𝜇(BA)−1𝜕𝜏𝐻𝑝 ·𝐻𝑝

)︀
d𝑥 d𝜏

= 2Re
∫︁ 𝑡

0

∫︁
Ω2

(︀
∇×𝐻𝑝 ·𝐸𝑝 +∇×𝐸𝑝 ·𝐻𝑝

)︀
d𝑥 d𝜏 − 2Re

∫︁ 𝑡

0

∫︁
Ω2

𝐽 ·𝐸𝑝 d𝑥 d𝜏

= 2Re
∫︁ 𝑡

0

∫︁
Ω2

(︀(︀
∇×𝐸𝑝

)︀
·𝐻𝑝 − (∇×𝐸𝑝) ·𝐻𝑝

)︀
d𝑥 d𝜏 − 2Re

∫︁ 𝑡

0

∫︁
Ω2

𝐽 ·𝐸𝑝 d𝑥 d𝜏

= −2Re
∫︁ 𝑡

0

∫︁
Ω2

𝐽 ·𝐸𝑝 d𝑥 d𝜏 ≤ 2 max
𝑡∈[0,𝑇 ]

‖𝐸𝑝(·, 𝑡)‖𝐿2(Ω2)3‖𝐽‖𝐿1(0,𝑇 ;𝐿2(Ω1)3).

This, combined with the definition of 𝑒(𝑡), the estimate for (BA)−1 (see (4.22)) and the Cauchy–Schwartz
inequality, yields

max
𝑡∈[0,𝑇 ]

(︀
‖𝐸𝑝(·, 𝑡)‖𝐿2(Ω2)3 + ‖𝐻𝑝(·, 𝑡)‖𝐿2(Ω2)3

)︀
. (1 + 𝜎0𝑇 )‖𝐽‖𝐿1(0,𝑇 ;𝐿2(Ω1)3). (4.25)

Taking the derivative of (4.16) with respect to 𝑡, we know that (𝜕𝑡𝐸
𝑝, 𝜕𝑡𝐻

𝑝) satisfy the same set of equations
with the source 𝐽 replaced by 𝜕𝑡𝐽 , and the initial conditions replaced by 𝜕𝑡𝐸

𝑝|𝑡=0 = 𝜀−1BA∇×𝐻𝑝|𝑡=0 = 0,
𝜕𝑡𝐻

𝑝|𝑡=0 = −𝜇−1BA∇×𝐸𝑝|𝑡=0 = 0. Hence, following the similar steps as in deriving (4.25) for (𝜕𝑡𝐸
𝑝, 𝜕𝑡𝐻

𝑝)
we have

max
𝑡∈[0,𝑇 ]

(︀
‖𝜕𝑡𝐸

𝑝(·, 𝑡)‖𝐿2(Ω2)3 + ‖𝜕𝑡𝐻
𝑝(·, 𝑡)‖𝐿2(Ω2)3

)︀
. (1 + 𝜎0𝑇 )‖𝜕𝑡𝐽‖𝐿1(0,𝑇 ;𝐿2(Ω1)3). (4.26)

Combining (4.25), (4.26) and the Maxwell system (4.16) yields the desired estimate (4.24). �
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To study the convergence of the uniaxial PML method, we introduce the EtM operator ̂︀B : 𝐻−1/2(Curl, Γ1) →
𝐻−1/2(Div, Γ1) associated with the truncated PML problem (4.17) in the 𝑠-domain. Given 𝜆 ∈ 𝐻−1/2(Div, Γ1),
define ̂︀B(𝜆× 𝑛1) := 𝑛1 × (𝜇𝑠)−1∇× 𝑢 on Γ1, (4.27)

where 𝑢 satisfies the following problem in the PML layer:{︃
∇×

[︀
(𝜇𝑠)−1BA∇× 𝑢

]︀
+ 𝜀𝑠(BA)−1𝑢 = 0 in ΩPML,

𝑛1 × 𝑢 = 𝜆 on Γ1, 𝑛2 × 𝑢 = 0 on Γ2.
(4.28)

We need to show that (4.28) has a unique solution, so ̂︀B is well-defined. To this end, we consider the following
general problem with the tangential trace 𝜉 on Γ2, which is needed for the convergence analysis of the PML
method: {︃

∇×
[︀
(𝜇𝑠)−1BA∇× 𝑢

]︀
+ 𝜀𝑠(BA)−1𝑢 = 0 in ΩPML,

𝑛1 × 𝑢 = 𝜆 on Γ1, 𝑛2 × 𝑢 = 𝜉 on Γ2.
(4.29)

Define the sesquilinear form 𝑎PML : 𝐻
(︀
curl, ΩPML

)︀
×𝐻

(︀
curl, ΩPML

)︀
→ C as

𝑎PML(𝑢, 𝑉 ) :=
∫︁

ΩPML
(𝜇𝑠)−1BA(∇× 𝑢) · (∇× 𝑉 ) d𝑥 +

∫︁
ΩPML

𝜀𝑠(BA)−1𝑢 · 𝑉 d𝑥. (4.30)

Then the variational formulation of (4.29) is as follows: Given 𝜆 ∈ 𝐻−1/2(Div, Γ1) and 𝜉 ∈ 𝐻−1/2(Div, Γ2),
find 𝑢 ∈ 𝐻

(︀
curl, ΩPML

)︀
such that 𝑛1 × 𝑢 = 𝜆 on Γ1, 𝑛2 × 𝑢 = 𝜉 on Γ2 and

𝑎PML(𝑢, 𝑉 ) = 0, ∀ 𝑉 ∈ 𝐻0

(︀
curl, ΩPML

)︀
. (4.31)

Arguing similarly as in proving (4.23), we obtain that for any 𝑉 ∈ 𝐻0(curl, ΩPML),

Re
[︀
𝑎PML(𝑉 , 𝑉 )

]︀
&

1(︀
1 + 𝑠−1

1 𝜎0

)︀2 𝑠1

|𝑠|2
[︁
‖∇ × 𝑉 ‖2

𝐿2(ΩPML)3
+ ‖𝑠𝑉 ‖2

𝐿2(ΩPML)3

]︁
. (4.32)

By (4.32) and the Lax–Milgram theorem it follows that the variational problem (4.31) has a unique solution.
We have the following stability result for the solution to the problem (4.29).

Lemma 4.4. For any 𝜆 ∈ 𝐻−1/2(Div, Γ1) and 𝜉 ∈ 𝐻−1/2(Div, Γ2), let 𝑢 be the solution to the problem (4.29).
Then

‖∇ × 𝑢‖𝐿2(ΩPML)3 + ‖𝑠𝑢‖𝐿2(ΩPML)3 . 𝑠−1
1

(︀
1 + 𝑠−1

1 𝜎0

)︀4|𝑠|(1 + |𝑠|)
(︀
‖𝜆‖𝐻−1/2(Div,Γ1) + ‖𝜉‖𝐻−1/2(Div,Γ2)

)︀
. (4.33)

Proof. Let 𝑢0 ∈ 𝐻
(︀
curl, ΩPML

)︀
be such that 𝑛1 × 𝑢0 = 𝜆, 𝑛2 × 𝑢0 = 𝜉 on Γ2. Then, by (4.31) we have

𝜔 := 𝑢− 𝑢0 ∈ 𝐻0

(︀
curl, ΩPML

)︀
and

𝑎PML(𝜔, 𝑉 ) = −𝑎PML(𝑢0, 𝑉 ), ∀ 𝑉 ∈ 𝐻0

(︀
curl, ΩPML

)︀
. (4.34)

This, combined with (4.30)–(4.32) and the Cauchy–Schwartz inequality, gives

1(︀
1 + 𝑠−1

1 𝜎0

)︀2 𝑠1

|𝑠|2
(︁
‖∇ × 𝜔‖2

𝐿2(ΩPML)3
+ ‖𝑠𝜔‖2

𝐿2(ΩPML)3

)︁
. Re

[︀
𝑎PML(𝜔, 𝜔)

]︀
.

(︀
1 + 𝑠−1

1 𝜎0

)︀2
|𝑠|

√︀
1 + |𝑠|2

(︁
‖∇ × 𝜔‖2

𝐿2(ΩPML)3
+ ‖𝑠𝜔‖2

𝐿2(ΩPML)3

)︁1/2

‖𝑢0‖𝐻(curl,ΩPML),
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yielding

(︁
‖∇ × 𝜔‖2

𝐿2(ΩPML)3
+ ‖𝑠𝜔‖2

𝐿2(ΩPML)3

)︁1/2

.

(︀
1 + 𝑠−1

1 𝜎0

)︀4|𝑠|√︀1 + |𝑠|2

𝑠1
‖𝑢0‖2𝐻(curl,ΩPML).

This, together with the definition of 𝜔 and the Cauchy–Schwartz inequality, implies that

‖∇ × 𝑢̌‖𝐿2(ΩPML)3 + ‖𝑠𝑢̌‖𝐿2(ΩPML)3 .
(1 + 𝑠−1

1 𝜎0)4|𝑠|(1 + |𝑠|)
𝑠1

‖𝑢0‖𝐻(curl,ΩPML).

The desired estimate (4.33) then follows from the trace theorem. �

Now, by using ̂︀B the truncated PML problem (4.17) for the electric field 𝐸̌𝑝 can be equivalently reduced to
the boundary value problem in Ω1:{︃

∇×
[︀
(𝜇𝑠)−1∇× 𝐸̌𝑝

]︀
+ 𝜀𝑠𝐸̌𝑝 = −𝐽 in Ω1,

𝑛× 𝐸̌𝑝 = 0 on Γ, ̂︀B[𝐸̌𝑝
Γ1

] = 𝑛1 × (𝜇𝑠)−1∇× 𝐸̌𝑝 on Γ1.
(4.35)

Similarly, for the problem (4.35) we can derive its equivalent variational formulation: find 𝐸̌𝑝 ∈ 𝐻Γ1(curl, Ω1)
such that ̂︀𝑎(︀𝐸̌𝑝, 𝑉 )

)︀
= −

∫︁
Ω1

𝐽 · 𝑉 d𝑥, ∀ 𝑉 ∈ 𝐻Γ1(curl, Ω1), (4.36)

where the sesquilinear form ̂︀𝑎(·, ·) is defined as

̂︀𝑎(︀𝐸̌𝑝, 𝑉
)︀

:=
∫︁

Ω1

[︀
(𝜇𝑠)−1(∇× 𝐸̌𝑝) · (∇× 𝑉 ) d𝑥 + 𝜀𝑠𝐸̌𝑝 · 𝑉

]︀
d𝑥 + ⟨ ̂︀B[𝐸̌Γ1 ], 𝑉Γ1⟩Γ1 . (4.37)

By using ̂︀B and the Laplace and inverse Laplace transform it can be shown that the truncated PML problem
(4.16) is equivalent to the initial boundary value problem in Ω1:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∇×𝐸𝑝 + 𝜇𝜕𝑡𝐻
𝑝 = 0 in Ω1 × (0, 𝑇 ),

∇×𝐻𝑝 − 𝜀𝜕𝑡𝐸
𝑝 = 𝐽 in Ω1 × (0, 𝑇 ),

𝑛×𝐸𝑝 = 0 on Γ× (0, 𝑇 ),
𝐸𝑝(𝑥, 0) = 𝐻𝑝(𝑥, 0) = 0 in Ω1,

T̂ [𝐸𝑝
Γ1

] = 𝐻𝑝 × 𝑛1 on Γ1 × (0, 𝑇 ),

(4.38)

where T̂ = L −1 ∘ ̂︀B ∘ L is the time-domain EtM operator for the PML problem. In fact, it is easy to see
that any solution (𝐸𝑝, 𝐻𝑝) of the truncated PML problem (4.16) restricted to Ω1 is a solution of the problem
(4.38). Conversely, let (𝐸𝑝, 𝐻𝑝) be a solution of the problem (4.38). Let 𝐸̌PML be the solution of (4.28) with
𝜆 = 𝑛1×𝐸̌𝑝|Γ1 , where 𝐸̌𝑝|Γ1 is the Laplace transform of 𝐸𝑝 on Γ1. Then 𝐸̌PML is actually an extension in ΩPML

of 𝐸̌𝑝 on Γ1 and 𝑛2 × 𝐸̌PML = 0 on Γ2. Define 𝐻̌PML := −(𝜇𝑠)−1∇× 𝐸̌PML in ΩPML. Then, by the definition
of the transparent operators T̂ and ̂︀B (see (4.27) above) we know that T̂ [𝐸𝑝

Γ1
] = 𝐻PML × 𝑛1 on Γ1 × (0, 𝑇 ).

This, together with the last equation in (4.38), gives that 𝐻PML × 𝑛1 = 𝐻𝑝 × 𝑛1 on Γ1 × (0, 𝑇 ), and thus
𝐻̌PML is actually an extension in ΩPML of 𝐻̌𝑝 on Γ1, where 𝐻̌𝑝|Γ1 is the Laplace transform of 𝐻𝑝 on Γ1. Define
(𝐸𝑝, 𝐻𝑝) := (𝐸PML, 𝐻PML) in ΩPML. Then (𝐸𝑝, 𝐻𝑝) is a solution of the truncated PML problem (4.16).

4.3. Exponential convergence of the uniaxial PML method

In this subsection, we prove the exponential convergence of the uniaxial PML method. The proof depends
on the error analysis between the EtM operators for the original scattering problem and the truncated PML
problem, which is concluded as a boundary value problem in the PML layer with the PML extension as outer
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boundary value. The convergence in then obtained by combining the stability result of the PML system in
Lemma 4.4 and the exponential decay of the PML extension. We begin with the following lemma which is useful
in the proof of the exponential decay property of the stretched fundamental solution ̃︀Φ𝑠(𝑥, 𝑦).

Lemma 4.5. Let 𝑠 = 𝑠1 + 𝑖𝑠2 with 𝑠1 > 0, 𝑠2 ∈ R. Then, for any 𝑥 ∈ Γ2 and 𝑦 ∈ Γ1 the complex distance 𝜌𝑠

defined by (4.10) satisfies

|𝜌𝑠(̃︀𝑥, 𝑦)/𝑠| ≥ 𝑑, Re[𝜌𝑠(̃︀𝑥, 𝑦)] ≥ 𝜎0𝑑

𝑚 + 1
·

Proof. For 𝑥 ∈ Γ2 and 𝑦 ∈ Γ1, ̃︀𝑥𝑗 − 𝑦𝑗 = (𝑥𝑗 − 𝑦𝑗) + 𝑠−1
1 𝑥𝑗 𝜎̂𝑗(𝑥𝑗), where

𝜎̂𝑗(𝑥𝑗) =
1
𝑥𝑗

∫︁ 𝑥𝑗

0

𝜎𝑗(𝜏) d𝜏.

Then, by the definition of the complex distance 𝜌𝑠(̃︀𝑥, 𝑦) (see (4.10)) we have

|𝜌𝑠(̃︀𝑥, 𝑦)/𝑠| = |̃︀𝑥− 𝑦| =
√︁

(̃︀𝑥1 − 𝑦1)2 + (̃︀𝑥2 − 𝑦2)2 + (̃︀𝑥3 − 𝑦3)2

=

⎛⎝ 3∑︁
𝑗=1

[︁
(𝑥𝑗 − 𝑦𝑗)2 + 2𝑠−1

1 𝑥𝑗 𝜎̂𝑗(𝑥𝑗)(𝑥𝑗 − 𝑦𝑗) + 𝑠−2
1 𝑥2

𝑗 𝜎̂
2
𝑗 (𝑥𝑗)

]︁⎞⎠1/2

≥ |𝑥− 𝑦| ≥ 𝑑,

where we have used the fact that 𝑥𝑗 𝜎̂𝑗(𝑥𝑗)(𝑥𝑗 − 𝑦𝑗) ≥ 0 for 𝑥 ∈ Γ2 and 𝑦 ∈ Γ1. In addition,

Re[𝜌𝑠(̃︀𝑥, 𝑦)] = Re
[︁
𝑠2
(︁

(̃︀𝑥1 − 𝑦1)2 + (̃︀𝑥2 − 𝑦2)2 + (̃︀𝑥3 − 𝑦3)2
)︁]︁1/2

= 𝑠1

√︁
(̃︀𝑥1 − 𝑦1)2 + (̃︀𝑥2 − 𝑦2)2 + (̃︀𝑥3 − 𝑦3)2

≥

⎛⎝ 3∑︁
𝑗=1

𝑥2
𝑗 𝜎̂

2
𝑗 (𝑥𝑗)

⎞⎠1/2

.

If 𝑥𝑗 = ±(𝐿𝑗/2 + 𝑑𝑗) ∈ Γ2, then, by (4.4) we have |𝑥𝑗 𝜎̂𝑗(𝑥𝑗)| = 𝜎0𝑑/(𝑚 + 1). Thus, Re[𝜌𝑠(̃︀𝑥, 𝑦)] ≥ 𝜎0𝑑/(𝑚 + 1).
The proof is thus complete. �

By Lemma 4.5, and arguing similarly as in the proof of Lemma 5.3 of [40], we have similar estimates as in
Lemma 5.3 of [40] for the stretched dyadic Green’s function ̃︀G in the PML layer.

Lemma 4.6. Assume that the conditions in (4.2) and (4.3) are satisfied. Then we have that for 𝑥 ∈ Γ2, 𝑦 ∈ Γ1,

|̃︀G(𝑠, 𝑥, 𝑦)| . 𝑠−2
1 𝑑−1

(︀
1 + 𝑠−1

1 𝜎0

)︀2
𝑒−

√
𝜀𝜇𝜎0𝑑

𝑚+1 ,⃒⃒⃒
curl̃︀𝑥 ̃︀G(𝑠, 𝑥, 𝑦)

⃒⃒⃒
,
⃒⃒⃒
curl𝑦 ̃︀G(𝑠, 𝑥, 𝑦)

⃒⃒⃒
. 𝑑−1(1 + |𝑠|)

(︀
1 + 𝑠−1

1 𝜎0

)︀
𝑒−

√
𝜀𝜇𝜎0𝑑

𝑚+1 ,⃒⃒⃒
curl̃︀𝑥 curl𝑦 ̃︀G(𝑠, 𝑥, 𝑦)

⃒⃒⃒
,
⃒⃒⃒
curl𝑦 curl𝑦 ̃︀G(𝑠, 𝑥, 𝑦)

⃒⃒⃒
.
(︀
1 + |𝑠|2

)︀(︀
1 + 𝑠−1

1 𝜎0

)︀2
𝑑−1𝑒−

√
𝜀𝜇𝜎0𝑑

𝑚+1 ,⃒⃒⃒
curl̃︀𝑥 curl𝑦 curl𝑦 ̃︀G(𝑠, 𝑥, 𝑦)

⃒⃒⃒
.
(︀
1 + |𝑠|3

)︀
𝑑−1

(︀
1 + 𝑠−1

1 𝜎0

)︀3
𝑒−

√
𝜀𝜇𝜎0𝑑

𝑚+1 ,

where ̃︀G is the stretched dyadic Green’s function and 𝑠 = 𝑠1 + 𝑖𝑠2 ∈ C+.

By Lemma 4.6, the trace theorem for 𝐻(curl, ·) and the PML extension in the 𝑠-domain defined in terms of the
integral representation (4.11), the following lemma on the decay property of the PML extension can be easily
proved by following the proof of Theorem 5.4 from [40] with Γ𝑅 replaced by Γ1 (cf. [40], Thm. 5.4).
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Lemma 4.7. For any 𝑝, 𝑞 ∈ 𝐻−1/2(Div, Γ1) let E(𝑝, 𝑞) be the PML extension in the 𝑠-domain defined in
(4.11). Then we have that for any 𝑥 ∈ ΩPML,

|E(𝑝, 𝑞)(𝑥)| . 𝑠−2
1 𝑑1/2

(︀
1 + 𝑠−1

1 𝜎0

)︀2
𝑒−

√
𝜀𝜇𝜎0𝑑

𝑚+1
[︀
(1 + |𝑠|)‖𝑞‖𝐻−1/2(Div,Γ1) +

(︀
1 + |𝑠|2

)︀
‖𝑝‖𝐻−1/2(Div,Γ1)

]︀
(4.39)

and

|curl̃︀𝑥 E(𝑝, 𝑞)(𝑥)| . 𝑑1/2
(︀
1 + 𝑠−1

1 𝜎0

)︀3
𝑒−

√
𝜀𝜇𝜎0𝑑

𝑚+1
[︀(︀

1 + |𝑠|2
)︀
‖𝑞‖𝐻−1/2(Div,Γ1) +

(︀
1 + |𝑠|3

)︀
‖𝑝‖𝐻−1/2(Div,Γ1)

]︀
. (4.40)

We now establish the 𝐿2-norm and 𝐿∞-norm error estimates in time between solutions to the original scat-
tering problem and the truncated PML problem (4.16) in the computational domain Ω1.

Theorem 4.8. Let (𝐸, 𝐻) and (𝐸𝑝, 𝐻𝑝) be the solutions of the problems (1.1a)–(1.1e) and (4.16) with 𝑠1 =
1/𝑇 , respectively. If the assumptions (3.1) and (3.2) are satisfied, then we have the error estimates

‖𝐸−𝐸𝑝‖𝐿2(0,𝑇 ;𝐻(curl,Ω1))+‖𝐻−𝐻𝑝‖𝐿2(0,𝑇 ;𝐻(curl,Ω1)) . 𝑇 5𝑑2(1 + 𝜎0𝑇 )15𝑒−𝜎0𝑑
√

𝜀𝜇/2‖𝐽‖𝐻10(0,𝑇 ;𝐿2(Ω1)3) (4.41)

and

‖𝐸 −𝐸𝑝‖𝐿∞(0,𝑇 ;𝐻(curl,Ω1)) + ‖𝐻 −𝐻𝑝‖𝐿∞(0,𝑇 ;𝐻(curl,Ω1)) . 𝑇 11/2𝑑2(1 + 𝜎0𝑇 )15𝑒−𝜎0𝑑
√

𝜀𝜇/2‖𝐽‖𝐻9(0,𝑇 ;𝐿2(Ω1)3).
(4.42)

Proof. We first prove (4.41). Let 𝑈 = 𝐸 − 𝐸𝑝 and 𝑉 = 𝐻 −𝐻𝑝 and let 𝐸̌ and 𝐸̌𝑝 be the solutions to the
variational problems (3.13) and (4.36), respectively. Then, by (3.13) and (4.36) we get

𝑎
(︀
𝑈̌ , 𝑈̌

)︀
= ̂︀𝑎(︀𝐸̌, 𝑈̌

)︀
− 𝑎
(︀
𝐸̌𝑝, 𝑈̌

)︀
=
⟨(︁ ̂︀B −B

)︁[︀
𝐸̌𝑝

Γ1

]︀
, 𝑈̌Γ1

⟩
Γ1

. (4.43)

This, together with the uniform coercivity (3.15) of 𝑎(·, ·), implies that

‖𝑈̌‖𝐻(curl,Ω1) . 𝑠−1
1

(︀
1 + |𝑠|2

)︀
‖
(︁ ̂︀B −B

)︁[︀
𝐸̌𝑝

Γ1

]︀
‖𝐻−1/2(Div,Γ1). (4.44)

From the Maxwell equations in Ω1 obtained by taking the Laplace transform of the problems (1.1a)–(1.1e) and
(4.16), it follows that

‖𝑉 ‖𝐻(curl,Ω1) .
(︀
|𝑠|+ |𝑠|−1

)︀
‖𝑈̌‖𝐻(curl,Ω1).

This, combined with (4.44), leads to the result

‖𝑈̌‖𝐻(curl,Ω1) + ‖𝑉 ‖𝐻(curl,Ω1) . 𝑠−1
1

(︀
|𝑠|−1 + |𝑠|3

)︀
‖
(︁ ̂︀B −B

)︁[︀
𝐸̌𝑝

Γ1

]︀
‖𝐻−1/2(Div,Γ1). (4.45)

We now estimate the norm ‖( ̂︀B−B)[𝐸̌𝑝
Γ1

]‖𝐻−1/2(Div,Γ1). For 𝐸̌𝑝|Γ1 define its PML extension ̃︀𝐸𝑝 in the 𝑠-domain
to be the solution of the exterior problem⎧⎪⎪⎨⎪⎪⎩

̃︀∇× [︁(𝜇𝑠)−1 ̃︀∇× 𝑣
]︁

+ 𝜀𝑠𝑣 = 0 in R3∖𝐵1,

𝑛1 × 𝑣 = 𝑛1 × 𝐸̌𝑝 on Γ1,

𝑥̂× (𝜇𝑠𝑣 × 𝑥̂)− 𝑥̂×
(︁̃︀∇× 𝑣

)︁
= 𝑜
(︀
|̃︀𝑥|−1

)︀
as |̃︀𝑥| → ∞.

By Theorem 12.2 of [34], it is easy to see that ̃︀𝐸𝑝 has the integral representation

̃︀𝐸𝑝 = E
(︁
𝛾𝑡

(︀
𝐸̌𝑝
)︀
, 𝛾𝑡

(︁̃︂curl ̃︀𝐸𝑝
)︁)︁

.
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Define ̃̌︁𝐻𝑝 := −(𝜇𝑠)−1̃︂curl ̃︀𝐸𝑝. Then
(︁ ̃︀𝐸𝑝, ̃̌︁𝐻𝑝

)︁
satisfies the stretched Maxwell equations in (4.14) in R3∖𝐵1. It

is worth noting that ̃̌︁𝐻𝑝 is not the extension of 𝐻𝑝|Γ1 .

Noting that ̃︀∇× 𝑣 = A∇× B𝑣, we know that B ̃︀𝐸𝑝 satisfies the problem⎧⎪⎨⎪⎩
∇×

[︀
(𝜇𝑠)−1BA∇× 𝑣

]︀
+ 𝜀𝑠(BA)−1𝑣 = 0 in R3∖𝐵1,

𝑛1 × 𝑣 = 𝑛1 × 𝐸̌𝑝 on Γ1,

𝑥̂× (𝜇𝑠B−1𝑣 × 𝑥̂)− 𝑥̂× (A∇× 𝑣) = 𝑜
(︀
|̃︀𝑥|−1

)︀
as |̃︀𝑥| → ∞,

where we have used the fact that ̃︀𝐸𝑝 is the extension of 𝐸̌𝑝|Γ1 and B = diag{1, 1, 1} on Γ1. By the definition of
B, and since A = diag{1, 1, 1} on Γ1, it is easy to see that

B
[︀
𝐸̌𝑝

Γ1

]︀
= 𝑛1 × (𝜇𝑠)−1 ̃︀∇× ̃︀𝐸𝑝 = 𝑛1 × (𝜇𝑠)−1∇× B ̃︀𝐸𝑝.

By the definition of ̂︀B in (4.27), we obtain that(︁ ̂︀B −B
)︁[︀

𝐸̌𝑝
Γ1

]︀
= 𝑛1 × (𝜇𝑠)−1∇× 𝜔 (4.46)

where 𝜔 satisfies

∇×
[︀
(𝜇𝑠)−1BA∇× 𝜔

]︀
+ 𝜀𝑠(BA)−1𝜔 = 0 in ΩPML,

𝑛1 × 𝜔 = 0 on Γ1,

𝑛2 × 𝜔 = 𝛾𝑡(B ̃︀𝐸𝑝) on Γ2.

By Lemma 4.4 and the estimate for BA and (BA)−1 in (4.21) and (4.22), we have

‖𝑛1 × (𝜇𝑠)−1∇× 𝜔‖𝐻−1/2(Div,Γ1)

.
(︀
1 + 𝑠−1

1 𝜎0

)︀2‖(𝜇𝑠)−1BA∇× 𝜔‖𝐻(curl,ΩPML)

.
(︀
1 + 𝑠−1

1 𝜎0

)︀2(︃(︀1 + 𝑠−1
1 𝜎0

)︀2
|𝑠|2

‖∇ × 𝜔‖2
𝐿2(ΩPML)3

+
(︀
1 + 𝑠−1

1 𝜎0

)︀4‖𝑠𝜔‖2
𝐿2(ΩPML)3

)︃1/2

. 𝑠−1
1

(︀
1 + 𝑠−1

1 𝜎0

)︀8
(1 + |𝑠|)2‖𝛾𝑡

(︁
B ̃︀𝐸𝑝

)︁
‖𝐻−1/2(Div,Γ2). (4.47)

Since ̃︀∇× 𝑣 = A∇× B𝑣 and |A−1| ≤ (1 + 𝜎0)2 in ΩPML, we have by the boundedness of the trace operator 𝛾𝑡

that
‖𝛾𝑡(B ̃︀𝐸𝑝)‖𝐻−1/2(Div,Γ2) . ‖B ̃︀𝐸𝑝‖𝐻(curl,ΩPML) . (1 + 𝑠−1

1 𝜎0)2‖ ̃︀𝐸𝑝‖
𝐻(̃︂curl,ΩPML). (4.48)

By Lemma 4.7 and the boundedness of 𝛾𝑇 and 𝛾𝑡 it is derived that

‖ ̃︀𝐸𝑝‖2
𝐻(̃︂curl,ΩPML) ≤

(︁
‖ ̃︀𝐸𝑝‖2𝐿∞(ΩPML) + ‖̃︂curl ̃︀𝐸𝑝‖2𝐿∞(ΩPML)

)︁
|ΩPML|

. 𝑠−4
1 𝑑4

(︀
1 + 𝑠−1

1 𝜎0

)︀6
𝑒−2

√
𝜀𝜇𝜎0𝑑

𝑚+1

[︁
(1 + |𝑠|4)‖𝛾𝑡(̃︂curl ̃︀𝐸𝑝)‖2𝐻−1/2(Div,Γ1)

+
(︀
1 + |𝑠|6

)︀
‖𝛾𝑡𝐸̌

𝑝‖2𝐻−1/2(Div,Γ1)

]︁
. 𝑠−4

1 𝑑4
(︀
1 + 𝑠−1

1 𝜎0

)︀6
𝑒−2

√
𝜀𝜇𝜎0𝑑

𝑚+1

[︁
(1 + |𝑠|4)2‖𝛾𝑇

̃︀𝐸𝑝‖2𝐻−1/2(Curl,Γ1)

+
(︀
1 + |𝑠|6

)︀
‖𝛾𝑡𝐸̌

𝑝‖2𝐻−1/2(Div,Γ1)

]︁
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. 𝑠−4
1 𝑑4

(︀
1 + 𝑠−1

1 𝜎0

)︀6
𝑒−2

√
𝜀𝜇𝜎0𝑑

𝑚+1

4∑︁
𝑙=0

‖𝑠𝑙𝐸̌𝑝‖2𝐻(curl, Ω1)

. 𝑠−6
1 𝑑4

(︀
1 + 𝑠−1

1 𝜎0

)︀10
𝑒−2

√
𝜀𝜇𝜎0𝑑

𝑚+1

5∑︁
𝑙=0

‖𝑠𝑙𝐽‖2𝐿2(Ω1)3
, (4.49)

where we have used Lemma 4.1 and the upper bound estimate (3.7) of the EtM operator B. Combining (4.45)-
(4.49) yields that

‖𝑈̌‖2𝐻(curl,Ω1)
+ ‖𝑉 ‖2𝐻(curl,Ω1)

. 𝑠−10
1 𝑑4(1 + 𝑠−1

1 𝜎0)30𝑒−2
√

𝜀𝜇𝜎0𝑑

𝑚+1

10∑︁
𝑙=0

‖𝑠𝑙𝐽‖2𝐿2(Ω1)3
. (4.50)

This, together with the Parseval identity for the Laplace transform (3.11), gives

‖𝑈‖2𝐿2(0,𝑇 ;𝐻(curl,Ω1))
+ ‖𝑉 ‖2𝐿2(0,𝑇 ;𝐻(curl,Ω1))

=
∫︁ 𝑇

0

(︁
‖𝑈‖2𝐻(curl,Ω1)

+ ‖𝑉 ‖2𝐻(curl,Ω1)

)︁
d𝑡

≤ 𝑒2𝑠1𝑇

∫︁ ∞

0

𝑒−2𝑠1𝑡
(︁
‖𝑈‖2𝐻(curl,Ω1)

+ ‖𝑉 ‖2𝐻(curl,Ω1)

)︁
d𝑡

. 𝑒2𝑠1𝑇

∫︁ ∞

0

𝑠−10
1 𝑑4(1 + 𝑠−1

1 𝜎0)30𝑒−2
√

𝜀𝜇𝜎0𝑑

𝑚+1

10∑︁
𝑙=0

‖𝑠𝑙𝐽‖2𝐿2(Ω1)3
d𝑠2

. 𝑒2𝑠1𝑇 𝑠−10
1 𝑑4(1 + 𝑠−1

1 𝜎0)30𝑒−2
√

𝜀𝜇𝜎0𝑑

𝑚+1 ‖𝐽‖2𝐻10(0,𝑇 ;𝐿2(Ω1)3)
, (4.51)

where we have used the assumptions (3.1) and (3.2) to get the last inequality. It is obvious that 𝑚 should be
chosen small enough to ensure rapid convergence (thus we need to take 𝑚 = 1). Since 𝑠−1

1 = 𝑇 in (4.51), we
obtain the required estimate (4.41) by using the Cauchy–Schwartz inequality.

We now prove (4.42). Since (𝐸, 𝐻) and (𝐸𝑝, 𝐻𝑝) satisfy the equations (3.4) and (4.38), respectively, it is
easy to verify that (𝑈 , 𝑉 ) satisfies the problem⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∇×𝑈 + 𝜇𝜕𝑡𝑉 = 0 in Ω1 × (0, 𝑇 ),
∇× 𝑉 − 𝜀𝜕𝑡𝑈 = 0 in Ω1 × (0, 𝑇 ),
𝑛×𝑈 = 0 on Γ× (0, 𝑇 ),
𝑈(𝑥, 0) = 𝑉 (𝑥, 0) = 0 in Ω1,

𝑉 × 𝑛1 =
(︁
T − T̂

)︁[︀
𝐸𝑝

Γ1

]︀
+ T [𝑈Γ1 ] on Γ1 × (0, 𝑇 ).

(4.52)

Eliminating 𝑉 yields that⎧⎪⎪⎪⎨⎪⎪⎪⎩
∇×

(︀
𝜇−1∇×𝑈

)︀
+ 𝜀𝜕2

𝑡 𝑈 = 0 in Ω1 × (0, 𝑇 ),
𝑛×𝑈 = 0 on Γ× (0, 𝑇 ),
𝑈(𝑥, 0) = 𝜕𝑡𝑈(𝑥, 0) = 0 in Ω1,

𝜇−1(∇×𝑈)× 𝑛1 + C [𝑈Γ1 ] =
(︁
T̂ −T

)︁[︀
𝜕𝑡𝐸

𝑝
Γ1

]︀
on Γ1 × (0, 𝑇 ),

(4.53)

where C = L −1 ∘ 𝑠B ∘L . The variational problem of (4.53) is to find 𝑈 ∈ 𝐻Γ(curl, Ω1) for all 𝑡 > 0 such that∫︁
Ω1

𝜀𝜕2
𝑡 𝑈 · 𝜔 d𝑥 =−

∫︁
Ω1

𝜇−1(∇×𝑈)(∇× 𝜔) d𝑥 (4.54)



2438 C. WEI ET AL.

+
∫︁

Γ1

(T̂ −T )[𝜕𝑡𝐸
𝑝
Γ1

] · 𝜔Γ1 d𝛾 −
∫︁

Γ1

C [𝑈Γ1 ] · 𝜔Γ1 d𝛾, ∀𝜔 ∈ 𝐻Γ(curl, Ω1).

For 0 < 𝜉 < 𝑇 , introduce the auxiliary function

Ψ1(𝑥, 𝑡) =
∫︁ 𝜉

𝑡

𝑈(𝑥, 𝜏) d𝜏, 𝑥 ∈ Ω1, 0 ≤ 𝑡 ≤ 𝜉.

Then it is easy to verify that

Ψ1(𝑥, 𝜉) = 0, 𝜕𝑡Ψ1(𝑥, 𝑡) = −𝑈(𝑥, 𝑡). (4.55)

For any 𝜑(𝑥, 𝑡) ∈ 𝐿2
(︀
0, 𝜉; 𝐿2(Ω1)3

)︀
, using integration by parts and condition (4.55), we have∫︁ 𝜉

0

𝜑(𝑥, 𝑡) ·Ψ1(𝑥, 𝑡) d𝑡 =
∫︁ 𝜉

0

∫︁ 𝑡

0

𝜑(𝑥, 𝜏) d𝜏 ·𝑈(𝑥, 𝑡) d𝑡. (4.56)

Taking the test function 𝜔 = Ψ1 in (4.54) and using (4.55) give

Re
∫︁ 𝜉

0

∫︁
Ω1

𝜀𝜕2
𝑡 𝑈 ·Ψ1 d𝑥 d𝑡 = Re

∫︁
Ω1

∫︁ 𝜉

0

𝜀
(︀
𝜕𝑡(𝜕𝑡𝑈 ·Ψ1) + 𝜕𝑡𝑈 ·𝑈

)︀
d𝑡 d𝑥

=
1
2
‖
√

𝜀𝑈(·, 𝜉)‖2𝐿2(Ω1)3
. (4.57)

By (4.56) we have the estimate

Re
∫︁ 𝜉

0

∫︁
Ω1

𝜇−1(∇×𝑈) · (∇×Ψ1) d𝑥 d𝑡

= Re
∫︁

Ω1

∫︁ 𝜉

0

𝜇−1(∇×𝑈) ·
∫︁ 𝜉

𝑡

(∇×𝑈(𝑥, 𝜏)) d𝜏 d𝑡 d𝑥

=
∫︁

Ω1

𝜇−1
⃒⃒⃒ ∫︁ 𝜉

0

(∇×𝑈)(𝑥, 𝑡) d𝑡
⃒⃒⃒2

d𝑥− Re
∫︁ 𝜉

0

∫︁
Ω1

𝜇−1(∇×𝑈) · (∇×Ψ1) d𝑥 d𝑡,

which implies that

Re
∫︁ 𝜉

0

∫︁
Ω1

𝜇−1(∇×𝑈) · (∇×Ψ1) d𝑥 d𝑡 =
1
2

∫︁
Ω1

𝜇−1
⃒⃒⃒ ∫︁ 𝜉

0

∇×𝑈(𝑥, 𝑡) d𝑡
⃒⃒⃒2

d𝑥. (4.58)

Integrating (4.54) from 𝑡 = 0 to 𝑡 = 𝜉 and taking the real parts yield

1
2
‖
√

𝜀𝑈(·, 𝜉)‖2𝐿2(Ω1)3
+

1
2

∫︁
Ω1

𝜇−1
⃒⃒⃒ ∫︁ 𝜉

0

∇×𝑈(𝑥, 𝑡) d𝑡
⃒⃒⃒2

= Re
∫︁ 𝜉

0

∫︁
Γ1

(︁
T̂ −T

)︁[︀
𝜕𝑡𝐸

𝑝
Γ1

]︀
·Ψ1Γ1 d𝛾 d𝑡− Re

∫︁ 𝜉

0

∫︁
Γ1

C [𝑈Γ1 ] ·Ψ1Γ1 d𝛾 d𝑡. (4.59)

First, using (4.56) and Lemma 3.2, we have

Re
∫︁ 𝜉

0

∫︁
Γ1

C [𝑈Γ1 ] ·Ψ1Γ1 d𝛾 d𝑡 = Re
∫︁

Γ1

∫︁ 𝜉

0

(︂∫︁ 𝑡

0

C [𝑈Γ1 ](𝑥, 𝜏) d𝜏

)︂
·𝑈Γ1(𝑥, 𝑡) d𝑡 d𝛾 ≥ 0. (4.60)
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Then, and by (4.56) we deduce the estimate

1
2
‖
√

𝜀𝑈(·, 𝜉)‖2𝐿2(Ω1)3
+

1
2

∫︁
Ω1

𝜇−1
⃒⃒⃒ ∫︁ 𝜉

0

∇×𝑈(𝑥, 𝑡) d𝑡
⃒⃒⃒2

d𝑥

≤ Re
∫︁ 𝜉

0

∫︁
Γ1

(T̂ −T )
[︀
𝜕𝑡𝐸

𝑝
Γ1

]︀
·Ψ1Γ1 d𝛾 d𝑡

= Re
∫︁ 𝜉

0

∫︁
Γ1

(︂∫︁ 𝑡

0

(T̂ −T )
[︀
𝜕𝜏𝐸𝑝

Γ1

]︀
d𝜏

)︂
𝑈Γ1(𝑥, 𝑡) d𝛾 d𝑡

.

(︃∫︁ 𝜉

0

⃦⃦⃦(︁
T̂ −T

)︁[︀
𝜕𝑡𝐸

𝑝
Γ1

]︀
(·, 𝑡)

⃦⃦⃦
𝐻−1/2(Div,Γ1)

d𝑡

)︃(︃∫︁ 𝜉

0

‖𝑈(·, 𝑡)‖𝐻(curl,Ω1) d𝑡

)︃
,

(4.61)

where we have used the trace theorem to get the last inequality. The right-hand of (4.61) contains the term∫︁ 𝜉

0

‖𝑈(·, 𝑡)‖𝐻(curl,Ω1) d𝑡 =
∫︁ 𝜉

0

(︁
‖𝑈(·, 𝑡)‖2𝐿2(Ω1)3

+ ‖∇ ×𝑈(·, 𝑡)‖2𝐿2(Ω1)3

)︁ 1
2

d𝑡

which cannot be controlled by the left-hand of (4.61). To address this issue, we consider the new problem⎧⎪⎪⎪⎨⎪⎪⎪⎩
∇×

(︀
𝜇−1∇× (𝜕𝑡𝑈)

)︀
+ 𝜀𝜕2

𝑡 (𝜕𝑡𝑈) = 0 in Ω1 × (0, 𝑇 ),
𝑛× 𝜕𝑡𝑈 = 0 on Γ× (0, 𝑇 ),
𝜕𝑡𝑈(𝑥, 0) = 𝜕2

𝑡 𝑈(𝑥, 0) = 0 in Ω1,

𝜇−1(∇× (𝜕𝑡𝑈))× 𝑛1 + C [𝜕𝑡𝑈Γ1 ] =
(︁
T̂ −T

)︁[︀
𝜕2

𝑡 𝐸𝑝
Γ1

]︀
on Γ1 × (0, 𝑇 ),

(4.62)

which is obtained by differentiating each equation of (4.53) with respect to 𝑡. By a similar argument as in
deriving (4.54), we obtain the variational formulation of (4.62): find 𝑢 such that for all 𝜔 ∈ 𝐻Γ(curl, Ω1),∫︁

Ω1

𝜀𝜕2
𝑡 (𝜕𝑡𝑈) · 𝜔 d𝑥 = −

∫︁
Ω1

𝜇−1(∇× (𝜕𝑡𝑈))(∇× 𝜔) d𝑥

+
∫︁

Γ1

(︁
T̂ −T

)︁[︀
𝜕2

𝑡 𝐸𝑝
Γ1

]︀
· 𝜔Γ1 d𝛾 −

∫︁
Γ1

C [𝜕𝑡𝑈Γ1 ] · 𝜔Γ1 d𝛾. (4.63)

Define the auxiliary function

Ψ2(𝑥, 𝑡) =
∫︁ 𝜉

𝑡

𝜕𝜏𝑈(𝑥, 𝜏) d𝜏, 𝑥 ∈ Ω1, 0 ≤ 𝑡 ≤ 𝜉.

Similarly as in the derivation of (4.57) and (4.58), we conclude by integration by parts that

Re
∫︁ 𝜉

0

∫︁
Ω1

𝜀𝜕2
𝑡 (𝜕𝑡𝑈) ·Ψ2 d𝑥 d𝑡 =

1
2
‖
√

𝜀𝜕𝑡𝑈(·, 𝜉)‖2𝐿2(Ω1)3
, (4.64)

Re
∫︁ 𝜉

0

∫︁
Ω𝑅

𝜇−1
𝑒 (∇× (𝜕𝑡𝑈)) ·

(︀
∇×Ψ2

)︀
d𝑥 d𝑡 =

1
2

⃦⃦⃦ 1
√

𝜇
∇×𝑈(·, 𝜉)

⃦⃦⃦2

𝐿2(Ω1)3
. (4.65)

Choosing the test function 𝜔 = Ψ2 in (4.63), integrating the resulting equation with respect to 𝑡 from 𝑡 = 0 to
𝑡 = 𝜉 and taking the real parts yield
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1
2
‖
√

𝜀𝜕𝑡𝑈(·, 𝜉)‖2𝐿2(Ω1)3
+

1
2

⃦⃦⃦ 1
√

𝜇
∇×𝑈(·, 𝜉)

⃦⃦⃦2

𝐿2(Ω1)3

= Re
∫︁ 𝜉

0

∫︁
Γ1

(T̂ −T )
[︀
𝜕2

𝑡 𝐸𝑝
Γ1

]︀
·Ψ2Γ1 d𝛾 d𝑡− Re

∫︁ 𝜉

0

∫︁
Γ1

C [𝜕𝑡𝑈Γ1 ] ·Ψ2Γ1 d𝛾 d𝑡. (4.66)

Similarly to (4.60), it follows from (4.56) and Lemma 3.3 that

Re
∫︁ 𝜉

0

∫︁
Γ1

C [𝜕𝑡𝑈Γ1 ] ·Ψ2Γ1 d𝛾 d𝑡 ≥ 0.

Thus, and by (4.66) we have

1
2
‖
√

𝜀𝜕𝑡𝑈(·, 𝜉)‖2𝐿2(Ω1)3
+

1
2

⃦⃦⃦ 1
√

𝜇
∇×𝑈(·, 𝜉)

⃦⃦⃦2

𝐿2(Ω1)3

≤ Re
∫︁ 𝜉

0

∫︁
Γ1

(︁
T̂ −T

)︁[︀
𝜕2

𝑡 𝐸𝑝
Γ1

]︀
·Ψ2Γ1 d𝛾 d𝑡

= Re
∫︁ 𝜉

0

∫︁
Γ1

(︂∫︁ 𝑡

0

(︁
T̂ −T

)︁[︀
𝜕2

𝜏𝐸𝑝
Γ1

]︀
d𝜏

)︂
𝜕𝑡𝑈Γ1(𝑥, 𝑡) d𝛾 d𝑡

= Re
∫︁ 𝜉

0

∫︁
Γ1

(︁
T̂ −T

)︁[︀
𝜕2

𝑡 𝐸𝑝
Γ1

]︀
·𝑈Γ1(𝑥, 𝜉) d𝛾 d𝑡− Re

∫︁ 𝜉

0

∫︁
Γ1

(︁
T̂ −T

)︁[︀
𝜕2

𝑡 𝐸𝑝
Γ1

]︀
𝑈Γ1(𝑥, 𝑡) d𝛾 d𝑡

≤
∫︁ 𝜉

0

⃦⃦⃦(︁
T̂ −T

)︁[︀
𝜕2

𝑡 𝐸𝑝
Γ1

]︀⃦⃦⃦
𝐻−1/2(Div,Γ1)

·
(︀
‖𝑈(·, 𝜉)‖𝐻(curl,Ω1) + ‖𝑈(·, 𝑡)‖𝐻(curl,Ω1)

)︀
d𝑡 (4.67)

Combining (4.61) and (4.67) gives

‖𝑈(·, 𝜉)‖2𝐿2(Ω1)3
+ ‖𝜕𝑡𝑈(·, 𝜉)‖2𝐿2(Ω1)3

+ ‖∇ ×𝑈(·, 𝜉)‖2𝐿2(Ω1)3

.

(︃∫︁ 𝜉

0

⃦⃦⃦(︁
T̂ −T

)︁[︀
𝜕𝑡𝐸

𝑝
Γ1

]︀
(·, 𝑡)

⃦⃦⃦
𝐻−1/2(Div,Γ1)

d𝑡

)︃(︃∫︁ 𝜉

0

‖𝑈(·, 𝑡)‖𝐻(curl,Ω1) d𝑡

)︃

+
∫︁ 𝜉

0

⃦⃦⃦(︁
T̂ −T

)︁[︀
𝜕2

𝑡 𝐸𝑝
Γ1

]︀⃦⃦⃦
𝐻−1/2(Div,Γ1)

·
(︀
‖𝑈(·, 𝜉)‖𝐻(curl,Ω1) + ‖𝑈(·, 𝑡)‖𝐻(curl,Ω1)

)︀
d𝑡. (4.68)

Taking the 𝐿∞-norm of both sides of (4.68) with respect to 𝜉 and using the Young inequality yield

‖𝑈‖2𝐿∞(0,𝑇 ;𝐿2(Ω1)3)
+ ‖𝜕𝑡𝑈‖2𝐿∞(0,𝑇 ;𝐿2(Ω1)3)

+ ‖∇ ×𝑈‖2𝐿∞(0,𝑇 ;𝐿2(Ω1)3)

. 𝑇 2
⃦⃦⃦(︁

T̂ −T
)︁[︀

𝜕𝑡𝐸
𝑝
Γ1

]︀⃦⃦⃦2

𝐿1(0,𝑇 ;𝐻−1/2(Div,Γ1))
+
⃦⃦⃦(︁

T̂ −T
)︁[︀

𝜕2
𝑡 𝐸𝑝

Γ1

]︀⃦⃦⃦2

𝐿1(0,𝑇 ;𝐻−1/2(Div,Γ1))
,

which, together with the Cauchy–Schwartz inequality, implies that

‖𝑈‖𝐿∞(0,𝑇 ;𝐿2(Ω1)3) + ‖𝜕𝑡𝑈‖𝐿∞(0,𝑇 ;𝐿2(Ω1)3) + ‖∇ ×𝑈‖𝐿∞(0,𝑇 ;𝐿2(Ω1)3) (4.69)

. 𝑇 3/2
⃦⃦⃦(︁

T̂ −T
)︁[︀

𝜕𝑡𝐸
𝑝
Γ1

]︀⃦⃦⃦
𝐿2(0,𝑇 ;𝐻−1/2(Div,Γ1))

+ 𝑇 1/2
⃦⃦⃦(︁

T̂ −T
)︁[︀

𝜕2
𝑡 𝐸𝑝

Γ1

]︀⃦⃦⃦
𝐿2(0,𝑇 ;𝐻−1/2(Div,Γ1))

.

We now only need to estimate the right-hand term of (4.69). By (4.46) and the definition of T̂ (see (4.38)) we
know that (T̂ −T )

[︀
𝜕𝑡𝐸

𝑝
Γ1

]︀
= 𝑛1 × 𝜇−1∇× 𝑣, where 𝑣 satisfies the problem⎧⎪⎪⎪⎨⎪⎪⎪⎩

∇×
(︀
𝜇−1BA∇× 𝑣

)︀
+ 𝜀(BA)−1𝜕2

𝑡 𝑣 = 0 in ΩPML × (0, 𝑇 ),
𝑛1 × 𝑣 = 0 on Γ1 × (0, 𝑇 ),

𝑛2 × 𝑣 = 𝛾𝑡

(︁
B ̃︀𝐸𝑝

)︁
on Γ2 × (0, 𝑇 ),

𝑣(𝑥, 0) = 𝜕𝑡𝑣(𝑥, 0) = 0 in ΩPML.

(4.70)



THE UPML METHOD FOR TIME-DOMAIN MAXWELL EQUATIONS 2441

Thus we deduce that⃦⃦⃦(︁
T̂ −T

)︁[︀
𝜕𝑡𝐸

𝑝
Γ1

]︀⃦⃦⃦2

𝐿2(0,𝑇 ;𝐻−1/2(Div,Γ1))
= ‖𝑛1 × 𝜇−1∇× 𝑣‖2

𝐿2(0,𝑇 ;𝐻−1/2(Div,Γ1))

≤ 𝑒2𝑠1𝑇

∫︁ ∞

0

𝑒−2𝑠1𝑡‖𝜇−1∇× 𝑣‖2𝐻(curl,ΩPML) d𝑡

. 𝑒2𝑠1𝑇

∫︁ ∞

−∞
‖𝜇−1∇× 𝑣‖2𝐻(curl,ΩPML) d𝑠2.

Repeating (4.47)–(4.49) yields

⃦⃦⃦(︁
T̂ −T

)︁[︀
𝜕𝑡𝐸

𝑝
Γ1

]︀⃦⃦⃦
𝐿2(0,𝑇 ;𝐻−1/2(Div,Γ1))

. 𝑒𝑠1𝑇 𝑠−4
1 𝑑2

(︀
1 + 𝑠−1

1 𝜎0

)︀15
𝑒−

√
𝜀𝜇𝜎0𝑑

𝑚+1

[︃∫︁ ∞

−∞

8∑︁
𝑙=0

‖𝑠𝑙𝐽‖2𝐿2(Ω1)
3 d𝑠2

]︃1/2

. 𝑒𝑠1𝑇 𝑠−4
1 𝑑2

(︀
1 + 𝑠−1

1 𝜎0

)︀15
𝑒−

√
𝜀𝜇𝜎0𝑑

𝑚+1 ‖𝐽‖𝐻8(0,𝑇 ;𝐿2(Ω1)3).

Similarly, we have⃦⃦⃦(︁
T̂ −T

)︁[︀
𝜕2

𝑡 𝐸𝑝
Γ1

]︀⃦⃦⃦
𝐿2(0,𝑇 ;𝐻−1/2(Div,Γ1))

. 𝑒𝑠1𝑇 𝑠−4
1 𝑑2

(︀
1 + 𝑠−1

1 𝜎0

)︀15
𝑒−

√
𝜀𝜇𝜎0𝑑

𝑚+1 ‖𝐽‖𝐻9(0,𝑇 ;𝐿2(Ω1)3).

By (4.69) and the above two estimates it follows on setting 𝑠1 = 1/𝑇 and 𝑚 = 1 that

‖𝑈‖𝐿∞(0,𝑇 ;𝐿2(Ω1)3) + ‖𝜕𝑡𝑈‖𝐿∞(0,𝑇 ;𝐿2(Ω1)3) + ‖∇ ×𝑈‖𝐿∞(0,𝑇 ;𝐿2(Ω1)3)

. 𝑇 11/2𝑑2(1 + 𝜎0𝑇 )15𝑒−
√

𝜀𝜇𝜎0𝑑/2‖𝐽‖𝐻9(0,𝑇 ;𝐿2(Ω1)3).

From this, the definition of 𝑈 and Maxwell’s system (4.52) the required estimate (4.42) then follows. The proof
is thus complete. �

Remark 4.9. The 𝐿2-norm error estimate (4.41) can also be obtained by integrating (4.68) with respect to
𝜉 from 0 to 𝑇 . The idea of using the uniform coercivity of the variational form in our proof of the 𝐿2-norm
error estimate (4.41) is also known for the time-harmonic PML method. This builds a connection between our
proposed time-domain PML method with the real coordinate stretching technique and the time-harmonic PML
method in some sense.

5. Conclusions

In this paper, by using the real coordinate stretching technique we proposed a uniaxial PML method in
the Cartesian coordinates for 3D time-domain electromagnetic scattering problems, which is of advantage over
the spherical one in dealing with scattering problems involving anisotropic scatterers. The well-posedness and
stability estimates of the truncated uniaxial PML problem in the time domain were established by employing
the Laplace transform technique and the energy argument. The exponential convergence of the uniaxial PML
method was also proved in terms of the thickness and absorbing parameters of the PML layer, based on the
error estimate between the EtM operators for the original scattering problem and the truncated PML problem
established in this paper via the decay estimate of the dyadic Green’s function.

Our method can be extended to other electromagnetic scattering problems such as scattering by inhomoge-
neous media or bounded elastic bodies as well as scattering in a two-layered medium. It is also interesting to
study the spherical and Cartesian PML methods for time-domain elastic scattering problems, which is more
challenging due to the existence of shear and compressional waves with different wave speeds. We hope to report
such results in the near future.



2442 C. WEI ET AL.

Acknowledgements. This research was partly supported by the NNSF of China grants 12122114 and 11771349, and the
Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of
Education (NRF-2020R1I1A1A01073356). We want to thank the reviewers for their insightful and constructive comments
and suggestions which helped to improve the presentation of the paper.

References

[1] G. Bao and H. Wu, Convergence analysis of the perfectly matched layer problems for time-harmonic Maxwell’s equations.
SIAM. J. Numer. Anal. 43 (2005) 2121–2143.

[2] G. Bao, Y. Gao and P. Li, Time-domain analysis of an acoustic-elastic interaction problem. Arch. Ration. Mech. Anal. 229
(2018) 835–884.

[3] J.P. Bérenger, A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 114 (1994) 185–200.

[4] J.H. Bramble and J.E. Pasciak, Analysis of a finite PML approximation for the three dimensional time-harmonic Maxwell and
acoustic scattering problems. Math. Comp. 76 (2007) 597–614.

[5] J.H. Bramble and J.E. Pasciak, Analysis of a finite element PML approximation for the three dimensional time-harmonic
Maxwell problem. Math. Comput. 77 (2008) 1–10.

[6] J.H. Bramble and J.E. Pasciak, Analysis of a Cartesian PML approximation to the three dimensional electromagnetic wave
scattering problem. Int. J. Numer. Anal. Model. 9 (2012) 543–561.

[7] J.H. Bramble and J.E. Pasciak, Analysis of a Cartesian PML approximation to acoustic scattering problems in R2 and R3.
J. Comput. Appl. Math. 247 (2013) 209–230.

[8] J.H. Bramble, J.E. Pasciak and D. Trenev, Analysis of a finite PML approximation to the three dimensional elastic wave
scattering problem. Math. Comput. 79 (2010) 2079–2101.

[9] A. Buffa, M. Costabel and D. Sheen, On traces for H(curl, Ω) in Lipschitz domains. J. Math. Anal. Appl. 276 (2002) 845–867.

[10] Z. Chen, Convergence of the time-domain perfectly matched layer method for acoustic scattering problems. Int. J. Numer.
Anal. Model. 6 (2009) 124–146.

[11] J. Chen and Z. Chen, An adaptive perfectly matched layer technique for 3-D time-harmonic electromagnetic scattering prob-
lems. Math. Comput. 77 (2007) 673–698.

[12] Z. Chen and X. Liu, An adaptive perfectly matched layer technique for time-harmonic scattering problems. SIAM J. Numer.
Anal. 43 (2005) 645–671.

[13] Q. Chen and P. Monk, Discretization of the time domain CFIE for acoustic scattering problems using convolution quadrature.
SIAM J. Math. Anal. 46 (2014) 3107–3130.
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[36] F. Trèves, Basic Linear Partial Differential Equations. Academic Press, New York (1975).

[37] C. Wei and J. Yang, Analysis of a time-dependent fluid-solid interaction problem above a local rough surface. Sci. Chin. Math.
63 (2020) 887–906.

[38] C. Wei, J. Yang and B. Zhang, Convergence of the perfectly matched layer method for transient acoustic-elastic interaction
above an unbounded rough surface. Preprint: arXiv:1907.09703 (2019).

[39] C. Wei, J. Yang and B. Zhang, A time-dependent interaction problem between an electromagnetic field and an elastic body.
Acta Math. Appl. Sin. Engl. Ser. 36 (2020) 95–118.

[40] C. Wei, J. Yang and B. Zhang, Convergence analysis of the PML method for time-domain electromagnetic scattering problems.
SIAM J. Numer. Anal. 58 (2020) 1918–1940.

This journal is currently published in open access under a Subscribe-to-Open model (S2O). S2O is a transformative
model that aims to move subscription journals to open access. Open access is the free, immediate, online availability of
research articles combined with the rights to use these articles fully in the digital environment. We are thankful to our
subscribers and sponsors for making it possible to publish this journal in open access, free of charge for authors.

Please help to maintain this journal in open access!

Check that your library subscribes to the journal, or make a personal donation to the S2O programme, by contacting
subscribers@edpsciences.org

More information, including a list of sponsors and a financial transparency report, available at: https://www.
edpsciences.org/en/maths-s2o-programme

https://arxiv.org/abs/1907.09703
mailto:subscribers@edpsciences.org
https://www.edpsciences.org/en/maths-s2o-programme
https://www.edpsciences.org/en/maths-s2o-programme

	Introduction
	Functional spaces
	The well-posedness of the scattering problem
	The uniaxial PML method
	The PML equation in the Cartesian coordinates
	Well-posedness of the truncated PML problem
	Exponential convergence of the uniaxial PML method

	Conclusions
	References

