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A METHOD TO ENRICH EXPERIMENTAL DATASETS BY MEANS OF
NUMERICAL SIMULATIONS IN VIEW OF CLASSIFICATION TASKS

Damiano Lombardi1 and Fabien Raphel1,2,*

Abstract. Classification tasks are frequent in many applications in science and engineering. A wide
variety of statistical learning methods exist to deal with these problems. However, in many industrial
applications, the number of available samples to train and construct a classifier is scarce and this
has an impact on the classifications performances. In this work, we consider the case in which some
a priori information on the system is available in form of a mathematical model. In particular, a set of
numerical simulations of the system can be integrated to the experimental dataset. The main question
we address is how to integrate them systematically in order to improve the classification performances.
The method proposed is based on Nearest Neighbours and on the notion of Hausdorff distance between
sets. Some theoretical results and several numerical studies are proposed.
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1. Introduction

Classification tasks are frequent in many applications in science and engineering. The statistical learning
methods which are proposed to deal with them rely on the fact that many examples (where the number of
samples depends on the application under consideration) are available and can be exploited to uncover the
underlying structure of the data and their separation in several classes. After the learning phase has been
performed, a classifier is set up and can be used to infer to which class a new observed sample belongs to.

In many industrial applications the number of available samples is scarce, impacting the performances of
the classification. A way to circumvent this limitation is to integrate to the available a posteriori information
(provided by the available data) some a priori information (coming from experimental insight or theoretical
knowledge) as proposed for instance in [15,16,20,21].

The use of mathematical models and numerical simulations to construct the training set of machine learning
methods has been recently investigated in [3, 27, 29]. In [29], a model order reduction framework is proposed
in order to deal with classification problems. In this, synthetic outputs obtained by numerical simulations are
used in order to train the machine learning algorithms. The influence of the model error on the classification
performance is investigated. In [3], numerical simulations are used to set up a sparse gaussian process. This is
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used in order to solve an optimal design problem for structural anomaly detection. In [27], a convolutional neural
network framework is proposed to efficiently deal with health monitoring, seen as a classification problem on
multivariate time series. The training of the network is performed by using numerical simulations of a physical
based model of the system.

In this work we consider the case in which some a priori information is available in form of a mathematical
model. Numerical simulations of several instances of the model can be computed and integrated to an available
dataset in order to improve the classification performances. The main questions to be answered are: how many
numerical simulations should we include, and which ones? Which information is needed in order to devise a
systematic strategy? This work is devoted to the investigation of possible answers to these questions, in the
spirit of what has been proposed in [2], in which an adaptive sampling is proposed in order to improve the
performances of a SVM classifier. The selection of the samples aims at improving the position of the support
vectors and the margin. These questions have also been raised in [17], where each training sample is weighted
in order to solve SVM classification tasks.

This topic is also closely related to two research fields in machine learning: domain adaptation and instance (or
prototype) selection. The main goal of domain adaptation is to account for the discrepancies between target and
test sets and propose ways to correct for them. An abundant literature on this subject is available [23,28,33,36].
The main difference with respect to the method proposed in the present work consists in the fact that in domain
adaptation we often try to minimise a discrepancy between the datasets, whereas in the present work we focus
on trying to improve a classification score. This is more similar, in the spirit, to the methods proposed in the
field of instance selection. Different kinds of algorithms have been proposed in this research field and can be
divided into 4 different classes (commented and compared in the recent work [5]):

(1) Incremental, such as Condensed Nearest Neighbors [14] and its variants [26, 32] or Instance-based learn-
ing [1]. These methods consist in building the training set by adding samples, chosen according different
criteria.

(2) Decremental such as Decremental Reduction Optimization Procedure [34, 35] or Hit Miss Network [19]
consist in defining the training set by pruning samples from an available reservoir of potentially redundant
(and corrupted) samples.

(3) Batching such as Edited Nearest Neighbors [31], consists in testing whether each sample of the training set
follows a removable criterion. All of the samples verifying this criterion are removed at once.

(4) Fixed size such as Learning Vector Quantization [22] which consists in fixing a priori the size of the training
set and selecting the samples to be used.

Recent studies have proposed in-between methods such as in [8]. These algorithms might have several draw-
backs: in the methods in which we test one sample at a time and we decide if it has to be included or not into
the training set, we might obtain a result which is sensitive to the order with which we test the samples. In
some methods, the fitness function introduced to perform the selection is based on similarity criteria applied
to the input features rather than the classification success rate, which might be suboptimal in some cases or it
might depend upon hyperparameters which need to be tuned.

The main contributions of the present investigation are the following:

(1) A systematic strategy can be set up, that enrich available training sets and improves the classification
performance in a substantial way. The only information which is exploited is a representative validation
set, given even in form of samples or in form of a set of data and parameters of a reliable mathematical
model describing the phenomenon.

(2) The method which is proposed can be decomposed in two phases: an incremental one, in which we add to
the training set samples taken from a reservoir of numerical simulations; a decremental one in which we
prune samples to reduce redundancy and noise oversensitivity. We tried to reduce as much as possible the
number of hyperparameters.

(3) The obtained approach is not a generative one: it is not strictly needed to have an exhaustive training set
distributed as the validation set; it is sufficient to add the most informative samples, in a sense that will be
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made more precise in the following, and that will be encoded in the fit functions used in the incremental
and decremental phases.

The structure of the work is as follows. In Section 2 the method is proposed, and some properties are
investigated from a theoretical standpoint. In Section 3 the discretisation is discussed, and in Section 4 some
numerical test cases are presented to illustrate the approach.

2. The method

In this section, we detail the method proposed in the present work. The problem under investigation is a
classification task, and, for the sake of simplicity, we restrict to a binary classification. Four different sets of
samples are introduced:

(1) An augmented set, for which we know both the input (observations) and the output (labels). The augmented
set is the main unknown of the problem. We wish to devise a way to construct it, starting from an available
scarce (in the number of samples) set of labeled instances. The training set of the problem (we will use
to set up the classifier) is the augmented set at the end of the enrichment process. The elements of the
augmented set will be denoted by the superscript “tr”.

(2) A validation set, for which we know both the input (observations) and the output (labels), whose elements
will be denoted by the superscript “v”. This is the only source of information to construct the augmented
set.

(3) A test set, for which we know just the observation, whose elements will be denoted by the superscript “te”.
(4) A reservoir of numerical simulations of the systems, for which we know the observation and the label, to

be used in order to construct or enrich the augmented set.

Several possible cases are met in realistic applications. First, we can be in a case in which we have an
available experimental dataset covering all the possible meaningful instances of the problem under scrutiny,
having however not so many samples (or not enough to have the wished performance on the test set). We
will call this a complete validation case. Second, we could be in an incomplete validation case, meaning that
the experimental dataset to be used as training and validation covers only a subset of the possible instances
(occurring in the test set). In both these situations, we would like to enrich the dataset by integrating elements
of the reservoir in the augmented set. This is the simplest way to integrate some a priori information coming
from mathematical modelling to the existing a posteriori information of the experimental data. We will consider
here the cases of a perfect model (useful to validate certain aspect of the method) and the more realistic case
in which the model is biased.

2.1. Context and notations

Let 𝑋 be a random variable, representing the state of a system, for a population of individuals. A system
configuration, identified by the realisation 𝑥, can belong to two classes, labelled 𝑦 = {0, 1}. In an application,
the system is observed through a measurement process and for a given observation 𝑔 ∈ R𝑛𝑔 (which in general
results from the application of a non-linear function to 𝑥), we need to uncover whether the state belongs to the
class 𝑦 = 0 or 𝑦 = 1.

The system observable for the population can be modelled by a random variable 𝐺 defined on the probability
space (Ω,𝒜, P), with Ω ⊆ R𝑛𝑔 , 𝒜 the 𝜎-algebra of all the possible observables and P the probability measure.
We denote 𝑔(𝑖) ∈ Ω a realisation of 𝐺 and we assume that its probability density distribution, denoted 𝜌(𝑔), is a
mixture of two densities. Let 𝜋0, 𝜋1 ∈ (0, 1), such that 𝜋0 + 𝜋1 = 1. The probability density distribution reads:

𝜌(𝑔) = 𝜋0𝜌0(𝑔) + 𝜋1𝜌1(𝑔), (2.1)

where 𝜌0(𝑔), 𝜌1(𝑔) are the conditional probability density distributions for the classes 0 and 1 respectively,
namely 𝜌0,1(𝑔) = 𝜌(𝑔|𝑦 = (0, 1)).
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In the following, the Lebesgue measure of a generic set 𝐴 is denoted by 𝜇𝐿(𝐴). The classification success rate
is based on a score function 𝜇𝑠, which is a measure, introduced and described in [18], and that we recall for
sake of completeness. The set of all the subsets in Ω is denoted by 2Ω.

Definition 2.1. We define the score function 𝜇𝑠 as follows:

𝜇𝑠 :
{︂

2Ω × 2Ω → R+

(𝑆0, 𝑆1) ↦→ 𝜇𝑠(𝑆0, 𝑆1) (2.2)

where we take:
𝜇𝑠(𝑆0, 𝑆1) = 𝜋0

∫︁
𝑆0

𝜌𝑠
0d𝑔 + 𝜋1

∫︁
𝑆1

𝜌𝑠
1d𝑔, (2.3)

with the given densities 𝜌𝑠
0, 𝜌

𝑠
1, and the superscript “s” denotes either the validation or the test set.

This score can be evaluated for all pairs of subsets 𝑆0, 𝑆1. It is related to the classification outcome when we
compute it for the following pair: {︃

𝑆0 = {𝑔 ∈ R𝑛𝑔 , 𝜋0𝜌
𝑡𝑟
0 (𝑔) > 𝜋1𝜌

𝑡𝑟
1 (𝑔)}

𝑆1 = {𝑔 ∈ R𝑛𝑔 , 𝜋1𝜌
𝑡𝑟
1 (𝑔) > 𝜋0𝜌

𝑡𝑟
0 (𝑔)} ,

(2.4)

where “𝑡𝑟” stands for the augmented set. As in [18], we make the following assumption:

𝜇𝐿(𝑆2) = 𝜇𝐿

(︀
{𝑔 ∈ R𝑛𝑔 , 𝜋1𝜌

𝑡𝑟
1 (𝑔) = 𝜋0𝜌

𝑡𝑟
0 (𝑔)}

)︀
= 0.

Under the hypothesis that the set 𝑆2 is a zero measure set, it follows that:

𝜌𝑠
𝑖 = 𝜌𝑠

𝑖1𝑆𝑖
,∀𝑖 =⇒ 𝜇𝑠 = 1.

Remark 2.2. The main goal is to enrich the augmented set aiming at improving the classification performance,
which is quantified by the above introduced score. To this end, it is not needed to have the following strong
outcome:

𝜋𝑖𝜌
𝑡𝑟
𝑖 = 𝜋𝑖𝜌

𝑣
𝑖 , 𝑖 ∈ {0, 1}.

The propose approach is not a generative one seeking at generating samples distributed as the validation set,
but samples which help improving the score. Henceforth, we could hopefully come up with a method which is
less costly from a computational point of view.

2.2. Augmented set enrichment based on the Hausdorff distance: ASE-HD

We assume that Ω (defined in Sect. 2.1) is a measurable non-empty compact set of R𝑛𝑔 , and an observation
of a system is 𝑔 ∈ Ω ⊂ R𝑛𝑔 .

At the beginning, the augmented set is given by the union of two known sets: 𝑆
(0)
0 and 𝑆

(0)
1 : a sample of

the augmented set is henceforth 𝑔(𝑡𝑟) ∈ 𝑆
(0)
0 ∪ 𝑆

(0)
1 . The goal is to progressively enrich the augmented set by

making use of the samples in the reservoir of simulations. For the sake of simplicity, in this section, we make
the hypothesis that the reservoir samples can cover Ω.

The information to be exploited comes from the knowledge of the validation set, either in form of samples
or as a set of data and parameters of a mathematical model. This can be translated into two sets: 𝑆*0,1, with
𝑆*1 = Ω ∖ 𝑆*0 , such that 𝑆*0 = {𝑔(𝑣) ∈ Ω|𝑦 = 0}. These sets are optimal in the sense of the score function 𝜇𝑣:

[𝑆*0 , 𝑆*1 ] = arg sup
𝑆0,𝑆1⊂Ω

𝜇𝑣. (2.5)

In the following, we denote 𝜇* the score corresponding to these sets.
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Let 𝑛 ∈ N denotes the 𝑛-th step of the enrichment, we define 𝑆
(𝑛)
𝑖 ⊆ Ω (for 𝑖 = 0 or 1), the samples of the

augmented set being 𝑔(𝑡𝑟) ∈ 𝑆
(𝑛)
0 ∪ 𝑆

(𝑛)
1 , as follows:

𝑆
(𝑛)
1 = Ω ∖ 𝑆

(𝑛)
0 . (2.6)

The score of the classification corresponding to these sets reads:

Definition 2.3.
𝜇(𝑛)

𝑣 = 𝜋0

∫︁
𝑆

(𝑛)
0

𝜌𝑣
0d𝑔 + 𝜋1

∫︁
𝑆

(𝑛)
1

𝜌𝑣
1d𝑔,

with: ⎧⎨⎩𝑆
(𝑛)
0 =

{︁
𝑔 ∈ Ω, 𝜋0𝜌

(𝑛)
0 > 𝜋1𝜌

(𝑛)
1

}︁
𝑆

(𝑛)
1 =

{︁
𝑔 ∈ Ω, 𝜋1𝜌

(𝑛)
1 > 𝜋0𝜌

(𝑛)
0

}︁
,

where 𝜌
(𝑛)
𝑖 is the pdf of the augmented set of class 𝑖 and 𝜌𝑣

𝑖 is the pdf of the validation set of class 𝑖.

Starting from known sets 𝑆
(0)
𝑖 , 𝑖 = 0, 1, the goal is to transform them in order to converge to 𝑆*𝑖 , 𝑖 = 0, 1,

which maximizes the classification success rate. We construct a sequence which aims at increasing the cost
function 𝜇

(𝑛)
𝑣 , by observing that it is possible to make the sets 𝑆

(𝑛)
𝑖 to converge towards the optimal sets 𝑆*𝑖 by

diminishing a suitable distance between these sets.
Let ℬ(𝑔, 𝜀) ⊂ Ω denotes a ball of center 𝑔 and radius 𝜀 ≥ 0. The enrichment method is performed as follows.

Let 𝑆
(𝑛)
0,1 be the available set estimations.

(1) Define 𝑀 (𝑛) = (𝑆*0 ∩ 𝑆
(𝑛)
1 ) ∪ (𝑆*1 ∩ 𝑆

(𝑛)
0 ).

(2) Solve the following problem1:

[𝑔𝑛+1, 𝜀*] = arg sup
𝑔,𝜀∈Ω

{︁
𝜀 |ℬ(𝑔, 𝜀) ⊆ 𝑀 (𝑛)

}︁
.

(3) Let ℬ* = ℬ(𝑔𝑛+1, 𝜀). The update of the union of the intersections reads:

𝑀 (𝑛+1) = 𝑀 (𝑛) ∖ ℬ*,

𝑆
(𝑛+1)
0 =

{︃
𝑆

(𝑛)
0 ∪ ℬ* if ℬ* ⊆ 𝑆*0 ∩ 𝑆

(𝑛)
1

𝑆
(𝑛)
0 ∖ ℬ* if ℬ* ⊆ 𝑆*1 ∩ 𝑆

(𝑛)
0 .

(2.7)

2.2.1. Analysis of the ASE-HD algorithm

The convergence of the sets 𝑆
(𝑛)
0,1 to the sets 𝑆*0,1 is studied. First, a lemma is introduced, clarifying the

meaning of the set 𝑀 (𝑛). Let 𝐴∆𝐵 be the symmetric difference [10] between the sets 𝐴 and 𝐵.

Lemma 2.4. For the set 𝑀 (𝑛), ∀𝑛 ∈ N it holds:

𝑀 (𝑛) = 𝑆*0∆𝑆
(𝑛)
0 = 𝑆*1∆𝑆

(𝑛)
1 .

The result of this lemma, makes it possible to prove the following result (the proofs are presented in Supple-
mentary material).

Proposition 2.5. Using the sequence of operations introduced above, almost surely, we have:

lim
𝑛→+∞

𝜇(𝑛)
𝑣 = 𝜇*.

1On centrally symmetric sets, this would correspond to quantify the Bernstein widths of the set.
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Moreover, the gain on the score between two consecutive steps can easily be estimated. Its expression is given
in the following result.

Corollary 2.6. Let 𝜇
(𝑛)
𝑣 be the score on the validation set at iteration 𝑛 ≥ 0. Then, ∀𝑛 ∈ N, we have:

𝜇(𝑛+1)
𝑣 − 𝜇(𝑛)

𝑣 =
∫︁
ℬ*
|𝜋1𝜌

𝑣
1 − 𝜋0𝜌

𝑣
0|d𝑔 ≥ 0,

with ℬ* = ℬ(𝑔𝑛+1, 𝜖*) defined in the previous section. Moreover, the equality holds if and only if 𝜇𝐿(ℬ*) = 0,
where 𝜇𝐿 denotes the Lebesgue measure.

It follows that the gain is proportional to the total variation between 𝜌𝑣
0 and 𝜌𝑣

1 restricted to ℬ*.
The result of the proposition states simply that, under the hypothesis that the system observable belongs to

a compact set, and the set 𝑆*0,1 are known, the proposed iteration enriches the augmented set in such a way that
the optimal classification score is retrieved. This algorithm shows some common properties with the algorithm
detailed in [4]. In particular, the set sequence depends on the symmetric difference between the expected and
the current set.

2.3. Reducing noise oversensitivity and bias induced errors: pruning.

At each stage of the ASE-HD algorithm, the samples of the reservoir contained in a selected ball ℬ* are added
to the augmented set (either to 𝑆

(𝑛+1)
0 or to 𝑆

(𝑛+1)
1 ). As remarked in [35], a large number of noisy samples could

lead to noise oversensitivity. Moreover, as the augmented set is enriched through numerical simulations, a bias
could potentially pollute the classification results in regions where the samples of the validation set are scarce.
To avoid these phenomena and to make the classification less prone to overfitting, a pruning phase is introduced,
which consists in removing the samples which are not useful in improving the score.

Once ASE-HD is performed, the obtained augmented set consists in the pair 𝑆(𝑛,0) = (𝑆(𝑛)
0 , 𝑆

(𝑛)
1 ). Since, in

practice, we have a finite number of samples, these sets consist in a finite set of balls centred around a finite
number of samples.

A stochastic algorithm is introduced. At the 𝑘-th iteration, a sample 𝑔𝑘 ∈ 𝑆
(𝑛)
0 ∪ 𝑆

(𝑛)
1 of the augmented set

is randomly selected. It can be considered as the center of a small ball ℬ𝑘(𝑔𝑘, 𝜀𝑘) whose radius 𝜀𝑘 is such that
the other samples do not belong to ℬ𝑘. The score is computed and the following action is taken:

𝑆(𝑛,𝑘+1) =

{︃
𝑆(𝑛,𝑘) ∖ ℬ𝑘 if 𝜇𝑣

(︀
𝑆(𝑛,𝑘) ∖ ℬ𝑘

)︀
≥ 𝜇𝑣

(︀
𝑆(𝑛,𝑘)

)︀
𝑆(𝑛,𝑘) otherwise.

(2.8)

Remark that, by construction, at the end of the pruning step the score is at least as good as the beginning
of the pruning step, and in some cases an improvement is obtained.

2.4. On realistic scenarios

In many applications different concerns may arise, such as the possible bias in the mathematical model (and
then the database) [12, 30] and the incomplete validation case. We recall that in the present work we consider
incomplete a validation set which does not cover the whole observable space Ω. In this section, a set of results
are proposed to deal with these two cases.

2.4.1. Biased database

In general, the database obtained through a collection of experiments and/or simulations may have a bias.
Let 𝑆𝑡𝑒

𝑖 , (𝑖 = 0 or 1) denote the test set which is supposed to cover Ω, i.e. 𝑆𝑡𝑒
0 ∪ 𝑆𝑡𝑒

1 = Ω:{︃
𝑆

(𝑡𝑒)
0 = {𝑔 ∈ R𝑛𝑔 |𝜋0𝜌

*
0 > 𝜋1𝜌

*
1}

𝑆
(𝑡𝑒)
1 = {𝑔 ∈ R𝑛𝑔 |𝜋1𝜌

*
1 > 𝜋0𝜌

*
0} .

(2.9)
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The samples from these sets are samples drawn from the true underlying densities. The sets identified by
using the densities of the model are:{︃

𝑆
(𝑚)
0 = {𝑔 ∈ R𝑛𝑔 |𝜋0𝜌

𝑚
0 > 𝜋1𝜌

𝑚
1 }

𝑆
(𝑚)
1 = {𝑔 ∈ R𝑛𝑔 |𝜋1𝜌

𝑚
1 > 𝜋0𝜌

𝑚
0 } .

(2.10)

The densities 𝜌𝑚
0,1 are in general different from the true ones. This is due to the model bias, which is such

that the difference in the model state is propagated in the model observable 𝑔 and hence in the density 𝜌𝑚.
This, in turn, affects the sets 𝑆

(𝑚)
0,1 .

We recall that the sets satisfy: {︃
𝑆𝑡𝑒,𝑚

0 ∪ 𝑆𝑡𝑒,𝑚
1 = Ω

𝑆𝑡𝑒,𝑚
0 ∩ 𝑆𝑡𝑒,𝑚

1 = ∅.

We define the biased sets as follows: {︃
𝑏0 = 𝑆𝑚

0 ∩ 𝑆𝑡𝑒
1

𝑏1 = 𝑆𝑚
1 ∩ 𝑆𝑡𝑒

0 .

The bias sets 𝑏0,1 are quantifying, in a sense which is pertinent for the binary classification, the effect of the
model bias.

Lemma 2.7. Let the sets 𝑆𝑡𝑒,𝑚
0,1 be defined as in equations (2.9) and (2.10).The following equalities hold:{︃

𝑆𝑚
0 = (𝑆𝑡𝑒

0 ∪ 𝑏0) ∖ 𝑏1

𝑆𝑚
1 = (𝑆𝑡𝑒

1 ∪ 𝑏1) ∖ 𝑏0.

The result of the lemma makes it possible to prove the following result on the classification score of the test
set:

Proposition 2.8. Let the hypothesis of Lemma 2.7 hold. Let

𝜇𝑏 = 𝜇𝑡𝑒(𝑆𝑚
0 , 𝑆𝑚

1 ) =
∫︁

𝑆𝑚
0

𝜋0𝜌
𝑡𝑒
0 d𝑔 +

∫︁
𝑆𝑚

1

𝜋1𝜌
𝑡𝑒
1 d𝑔, (2.11)

be the score of the classification of the test set when the augmented set is defined by the model. The maximal
score is represented by:

𝜇* = 𝜇𝑡𝑒

(︀
𝑆𝑡𝑒

0 , 𝑆𝑡𝑒
1

)︀
. (2.12)

It holds:
0 ≤ 𝜇𝑏 ≤ 𝜇*,

and, moreover: {︃
𝜇𝑏 = 𝜇* ⇐⇒ 𝜇𝐿(𝑏𝑖) = 0, for 𝑖 ∈ {0, 1}
𝜇𝑏 = 0 ⇐⇒ 𝑆𝑚

𝑖 = 𝑆𝑡𝑒
𝑗 and 𝜌te

j = 𝜌te
j 1{Ste

j }, for 𝑖, 𝑗 ∈ {0, 1}, 𝑖 ̸= 𝑗.

Remark 2.9. In the case where 𝑆𝑚
𝑖 = ∅, we have 𝜇𝑏 =

∫︀
Ω

𝜋𝑗𝜌
𝑡𝑒
𝑗 d𝑔, 𝑖 ̸= 𝑗. It is straightforward to observe that

in the case where there is no bias, we have the equality. In practice, we do not know 𝑆𝑡𝑒
𝑗 . It means that, if we

only train with the model (database) we will compute the score over 𝑆𝑚
𝑗 .
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2.4.2. The Validation set partially covers the set of possible outcomes.

In several situations it is possible to assess whether the validation set covers all the possible scenarios that
could occur in the test set (even prior of receiving the test set). This is possible in particular when there is an
underlying parametrisation of the system at hand, namely when the scenarios of interest are associated with
values of data and parameters that characterise the solution of the models describing the phenomenon. Here,
we consider that the validation set partially covers Ω when the validation set does not have enough instances,
in the sense that there are meaningful scenarios of the real system which are not represented in the validation
set. This would translate in the following: if we trained a classifier by using the validation set, it won’t be able
to well classify some query samples of the test set.

When the validation set partially covers Ω (incomplete validation set) we can show that the score on the
test set (which is supposed to cover Ω) is lower than the score obtained with a validation set covering Ω (see
Prop. 2.11).

Lemma 2.10. Let, 𝑆𝑠
0 ∪ 𝑆𝑠

1 = Ω such that 𝑆𝑠
0 ∩ 𝑆𝑠

1 = ∅ (for 𝑠 = 𝑡𝑒 or 𝑣). Then,

𝑆𝑡𝑒
1 ∖ 𝑆𝑣

1 = 𝑆𝑣
0 ∖ 𝑆𝑡𝑒

0 .

Proposition 2.11. We denote 𝑆𝑠
𝑗 = {𝑔|𝜋𝑗𝜌

𝑠
𝑗 > 𝜋𝑘𝜌𝑠

𝑘} (𝑘 ̸= 𝑗), where 𝑠 = 𝑡𝑒 (test set) or 𝑣 (validation set). We
denote 𝜇𝑐

𝑡𝑒 (resp. 𝜇𝑝
𝑡𝑒) the test set score obtained with a complete (resp. incomplete) validation set. By complete,

we assume that the distribution of 𝜌𝑡𝑒
𝑗 and 𝜌𝑣

𝑗 are the same. Then,

𝜇𝑝
𝑡𝑒 ≤ 𝜇𝑐

𝑡𝑒.

In this scenario, we cannot use generative adversarial networks (GANs) [11] to enrich the augmented set
in regions which are not covered by the validation set. This is due to the fact that the discriminator has no
information on the region where there are no validation samples.

To enrich the augmented set, we propose first to enrich the validation set by adding to it samples extracted
from the reservoir such that the enriched validation set covers all the possible meaningful scenarios.

If some information on the model bias is available (a statistics on the model bias), we proceed as follows. Let
the bias in the observation be a random variable 𝐺𝑏, whose realisations are denoted by 𝑔𝑏 ∈ R𝑛𝑔 . A sample of
the reservoir is randomly picked in the region which is not covered by the validation set, whose observation is
an element 𝑔(𝑟) ∈ R𝑛𝑔 . Then, a sample to be added to the validation set is:

𝑔(𝑣) = 𝑔(𝑟) − 𝑔𝑏, (2.13)

and the associated label is 𝑦(𝑣) = 𝑦(𝑟).

3. Discretisation of the method.

When the enrichment method proposed in the previous section has to be applied to realistic cases, we need
to account for the fact that the only available quantity is a set of labeled samples, which can be divided into
training and validation sets. The method needs to be discretised in order to be practically implemented. Several
elements need to be detailed. The first one is the estimation of the score function. Its computation requires a
density estimation.

3.1. Density estimation in high-dimension.

To estimate the score by using a Monte Carlo method, we need to estimate a density in correspondence to
a sample, namely the value 𝜌(𝑔) ∈ R+. This task may be cumbersome due to the high-dimensionality of the
space. Several methods of non-parametric density estimation are proposed in the literature [6, 9, 25]. For the
present work we consider as a starting point the k–nearest neighbors (KNN) estimation. In the KNN method, a
tree-based algorithm subdivides the samples set into overlapping balls, each containing a fix number of samples,
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say 𝑘 ∈ N* on a total number of 𝑁 ∈ N* samples. The density is usually estimated by making the assumption
that the density is roughly constant in a ball, leading to:

𝜌(𝑔(𝑖)) ≈ 𝑘/𝑁

vol(ℬ𝑖)
, (3.1)

where ℬ𝑖 = ℬ(𝑔𝑖, 𝜀𝑖) and vol(ℬ𝑖) is its volume, computed according to the metric chosen to select the neighbors.
We will denote the ℓ𝑝 distance between two elements (𝑔1, 𝑔2) as ‖𝑔1 − 𝑔2‖ℓ𝑝,𝑛𝑔 .

Remark 3.1. Following [13], if we want to classify a given sample 𝑔* by using the Bayes rules, assuming
P(𝑦 = 0) = P(𝑦 = 1) and 𝑁0 = 𝑁1 = 𝑁 , we will obtain the following result.

Let:

𝑔
(𝑡𝑟)
0 = arg inf

𝑔∈𝑆
(𝑡𝑟)
0

‖𝑔* − 𝑔‖ℓ𝑝,𝑛𝑔 ,

𝑔
(𝑡𝑟)
1 = arg inf

𝑔∈𝑆
(𝑡𝑟)
1

‖𝑔* − 𝑔‖ℓ𝑝,𝑛𝑔 .

Furthermore, let 𝜀0, 𝜀1 be the radius of the balls centred around 𝑔
(𝑡𝑟)
0 , 𝑔

(𝑡𝑟)
1 respectively. The a posteriori

probability reads:

P(𝑦 = 0|𝑔*) =
𝜀
𝑛𝑔

1

𝜀
𝑛𝑔

1 + 𝜀
𝑛𝑔

0

·

This means that the classification outcome only depends on the distance between the closest points in each
class in the augmented set and their respective 𝑘th nearest neighbor. Figure 1 shows an example in which, by
making use of this approach we wrongly classify a validation point. As the computed radius is lower for class 1
the validation point is labeled 1 instead of 0.

The issue shown in Figure 1 is mainly due to the assumption that the density is constant in the ball. We
propose of replacing it by an approximation based on Gaussian radial basis functions (RBFs). Let us introduce
𝜔𝑖 ∈ R, 𝑖 = 1, . . . , 𝑘; moreover, let the elements in a ball be 𝑔(𝑖) ∈ R𝑛𝑔 , 𝑖 = 1, . . . , 𝑘 and 𝜀𝑖 > 0 be the radius of
the balls the samples 𝑔(𝑖) are the center of. The density in a ball is expressed as:

𝜌(𝑔) ≈
𝑘∑︁

𝑖=0

𝜔𝑖𝑒
−
‖𝑔−𝑔(𝑖)‖2

ℓ2
2𝜀2

𝑖 · (3.2)

Let 𝜌𝑖 denotes the density at the sample 𝑔(𝑖) obtained by the classical KNN approximation. The weights 𝜔𝑖

are computed as the result of the following optimisation problem:

𝜌app(𝑔) =
𝑘∑︁

𝑖=0

𝜔𝑖𝑒
−
‖𝑔−𝑔(𝑖)‖2

ℓ2
2𝜀2

𝑖 ,

ℒ(𝜔, 𝜆) =
1
2

𝑘∑︁
𝑖=1

|𝜔𝑖 − 𝜌𝑖|2 + 𝜆

(︂
𝑘

𝑁
−

∫︁
ℬ

𝜌app d𝑔

)︂
,

(𝜔*, 𝜆*) = arg inf
𝜔

sup
𝜆
ℒ(𝜔, 𝜆).

The interpretation is simple: the weights are close to the classical KNN estimated density (the Gaussian
kernel being equal to one when evaluated at the sample), and when integrated on the ball, the approximation
of the density retrieves the expected value of the mass in the ball. Let:

𝐼𝑖 =
∫︁
ℬ

𝑒
−
‖𝑔−𝑔(𝑖)‖2

ℓ2
2𝜀2

𝑖 d𝑔.
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Figure 1. Section 3.1: Example of a wrongly classified point query point.

The solution reads:

𝜔*𝑖 = 𝜌
(︁
𝑔(𝑖)

)︁
+ 𝐼𝑖

𝑘/𝑁 −
∑︀𝑘

𝑗=0 𝜌
(︀
𝑔(𝑗)

)︀
𝐼𝑗∑︀𝑘

𝑗=0 𝐼2
𝑗

· (3.3)

The following example aims at illustrating the effect of the above introduced approximation on a classification
task.

Let Ω = [−5, 5]2 be the domain, and 𝑔 = (𝑔0, 𝑔1) ∈ Ω. We define the two classes as follows:

𝑦 =
{︂

0, 𝑔0 > 0
1, 𝑔0 ≤ 0.

(3.4)

The sample size for the training set is 𝑁0,1 = 18. For each class the training set is uniformly distributed but
with a different density (the density is higher for the class 1 as shown in Fig. 1). The validation set is generated
using a regular square mesh of Ω (with steps ∆𝑔0 = ∆𝑔1 = 0.1) where each node is a sample (it results in a
validation sample size of 𝑁 𝑡𝑒

0,1 = 5000 for each class).
Figure 2 shows the result when the density is estimated via the classical KNN method and with the proposed

Gaussian kernel correction. In this test, the accuracy is significantly increased using the proposed technique (we
pass from 0.86 to 0.96).

3.2. Computing the Hausdorff distance of sets.

One of the key steps of the proposed method is the approximation of the Hausdorff distance and the largest
ball contained in the set 𝑀 (𝑛). Given the sets 𝑆𝑛

0,1, we can identify the 𝑁𝑀 ∈ N* samples, belonging to the

validation set, which are in 𝑀 (𝑛) =
(︁
𝑆

(𝑛)
0 ∩ 𝑆*1

)︁
∪

(︁
𝑆

(𝑛)
1 ∩ 𝑆*0

)︁
. We denote 𝐼

(𝑛)
𝑀 ∈ N the indices of these

samples: 𝐼
(𝑛)
𝑀 =

{︀
𝑖 ∈ 1, . . . , 𝑁𝑣 such that 𝑔(𝑖) ∈ 𝑀 (𝑛)

}︀
. The pairwise distance between every element of 𝑀 (𝑛) is
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Figure 2. Section 3.1: Comparison of the two methods in a binary classification example.
Number of neighbors: 5. Upper: usual KNN method. Lower: RBF based approximation. Left:
training and validation sets. Right: corresponding confusion matrices.

computed, and the pair of elements maximising the distance is chosen:

𝑖*, 𝑗* = arg max
𝑖,𝑗∈𝐼

(𝑛)
𝑀

‖𝑔(𝑖) − 𝑔(𝑗)‖ℓ𝑝,𝑛𝑔 .

We then consider the segment relying the samples 𝑔(𝑖*) and 𝑔(𝑗*). The elements of this are characterise by
the following expression. Let 𝛼 ∈ [0, 1] and the points: 𝑔(𝛼) = (1 − 𝛼)𝑔(𝑖*) + 𝛼𝑔(𝑗*). If the centre of the balls
is chosen among the points of the segment, the problem reduces to finding 𝛼 such that the radius of the ball
inscribed in 𝑀 (𝑛) is the largest:

𝛼* = arg sup
𝛼∈[0,1]

𝜀,

ℬ(𝑔(𝛼), 𝜀) ⊆ 𝑀 (𝑛).

This problem is solved numerically by extensive search: the segment is discretised by considering a number
of points on it, where the evaluation of the ball radius is performed.

Remark 3.2. During the enrichment process, it might happen that there are no elements in the reservoir
belonging to the ball chosen to reduce the Hausdorff distance between the sets. We propose to add to the
augmented set the center of the ball, labeled as the closest sample belonging to the validation set.

3.3. Summary of the method.

The overall method is summarised hereafter. Two validation sets are given, namely 𝑆*0,1 ⊂ Ω, in the form

of sets of validation samples 𝑔(𝑣). At the beginning of the procedure, we have two augmented sets 𝑆
(0)
0,1 ⊂ Ω,

given in form of sets of samples 𝑔(0). At the beginning of a generic iteration of the method, say 𝑛, we have two
augmented sets 𝑆

(𝑛)
0,1 .
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(1) Evaluate the intersections between the validation sets and the current augmented sets: 𝑀 (𝑛) =
(︁
𝑆*0 ∩ 𝑆

(𝑛)
1

)︁
∪(︁

𝑆*1 ∩ 𝑆
(𝑛)
0

)︁
. To do so:

(a) Evaluate the densities 𝜌
(𝑛)
0,1 in the validation sample points 𝑔(𝑣) by using the method described in

Section 3.1.
(b) Perform a Bayesian classification providing the labels 𝑦.
(c) Compare the labels with the true validation labels 𝑦*.
(d) If 𝑦 ̸= 𝑦* then 𝑔(𝑣) ∈ 𝑀 (𝑛).

(2) We compute an approximation of the Hausdorff distance, by evaluating the maximum of the distance
between the well classified validation samples and the wrongly classified ones, that belong to 𝑀 (𝑛).

(3) We compute the largest ball that is contained in 𝑀 (𝑛), by following the steps presented in Section 3.2.
(4) We compute 𝑆

(𝑛+1)
0,1 by adding to them the elements of the reservoir which are contained in the largest ball

computed at the previous step, following equation (2.7).

Remark 3.3. The choice of a Bayesian classification derives naturally from the distribution mixture hypothesis
given in equation (2.1). In particular, we have: P(𝑌 = 𝑖|𝐺 = 𝑔) > 1

2 ⇐⇒ 𝜋𝑖𝜌𝑖(𝑔) > 𝜋𝑗𝜌𝑗(𝑔), 𝑖, 𝑗 ∈ {0, 1}, 𝑖 ̸= 𝑗.
Where 𝑖 is a realization of the random variable 𝑌 defined on (Ω𝑐𝑙 = {0, 1},𝒜𝑐𝑙, P) (corresponding to the class)
and 𝑔 a realization of 𝐺 defined on (Ω ⊆ R𝑛𝑔 ,𝒜, P) (corresponding to the observation).

The pseudo-code of the method is given in Algorithm 1.

Algorithm 1. Augmented set construction (ASE-HD): Overall algorithm.
Require: 𝑇𝑟; 𝑉 ; 𝑅; 𝑘 ◁ Input: Initial Augmented set; Validation set; Reservoir; Number of neighbors.
Require: 𝜋 ← (𝜋0, 𝜋1) ◁ A priori in the binary classification case.

𝜇𝑣 ← 0 ◁ Initialize the score on the validation set.
while 𝜇𝑣 < 1 do

𝜇𝑣, 𝑉 𝑐𝑙 ← classify(𝑇𝑟, 𝑉, 𝑘, 𝜋) ◁ Classify the Validation set from the Augmented set. See Algorithm 2.

𝑝𝑛𝑡0 ← Hausd
(︁
𝑉0, 𝑉

𝑐𝑙0
1

)︁
◁ Get points maximizing the Hausdorff distance (for class 0)†. See Algorithm 3.

𝑝𝑛𝑡1 ← Hausd
(︁
𝑉1, 𝑉

𝑐𝑙1
0

)︁
◁ Same for class 1†. See Algorithm 3.

𝑟0, 𝑐0 ← computeBall
(︁
𝑉0, 𝑉

𝑐𝑙1
1 , 𝑝𝑛𝑡0

)︁
◁ Get the center and radius of the biggest ball in the intersection on the

segment delimited by 𝑝𝑛𝑡0. See Algorithm 4.

𝑟1, 𝑐1 ← computeBall
(︁
𝑉1, 𝑉

𝑐𝑙0
0 , 𝑝𝑛𝑡1

)︁
◁ Same for class 1. See Algorithm 4.

for each class 𝑖 do
nbElem← 0 ◁ Initialize the number of added elements.
for 𝑔𝑅 ∈ 𝑅𝑖 do ◁ Loop on the elements belonging to the class 𝑖 of the reservoir.

if 𝑔𝑅 ∈ ℬ(𝑐𝑖, 𝑟𝑖) then ◁ If the element is inside the ball.
𝑇𝑟 ← 𝑇𝑟 ∪ 𝑔𝑅 ◁ We add the element to the current Augmented set.
nbElem← nbElem + 1 ◁ Increment the number of added elements.

end if
end for
if nbElem == 0 then ◁ Meaning that no elements of 𝑅𝑖 were added (i.e. not belong to the ball).

𝑇𝑟 = 𝑇𝑟 ∪ 𝑐𝑖 ◁ We add the center of the ball to the current Augmented set.
end if

end for
end while

return 𝑇𝑟 ◁ Output of the algorithm.

†: 𝑉
𝑐𝑙𝑗

𝑖 are elements of the validation set belonging to class 𝑖 and labeled 𝑗. These steps allow the computation of 𝑀 (𝑛)

described above in the paper.
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Algorithm 2. Classify method: Classify samples of a Validation set from a Training set.
Require: 𝑇𝑟; 𝑉 ; 𝑘; 𝜋 ◁ Input: Training set; Validation set; Number of neighbors; A priori.

𝜇𝑣 ← 0 ◁ Initialize the score on the validation set.
𝑉 𝑐𝑙 ← ∅ ◁ Initialize the output (classified samples).
for each class 𝑖 do

𝑗 ← {0, 1} ∖ 𝑖 ◁ In the binary classification case.
for 𝑔𝑣 ∈ 𝑉𝑖 do ◁ Loop on the elements belonging to the class 𝑖 of the Validation set.

𝜌𝑖(𝑔𝑣)← estimateDensity (𝑇𝑟𝑖, 𝑘, 𝑔𝑣) ◁ Estimate density of 𝑔𝑣 from 𝑇𝑟†𝑖 .
𝜌𝑗(𝑔𝑣)← estimateDensity (𝑇𝑟𝑗 , 𝑘, 𝑔𝑣) ◁ Same for the other class†.
if 𝜋𝑖𝜌𝑖 > 𝜋𝑗𝜌𝑗 then ◁ Bayesian criterion for classification.

𝜇𝑣 ← 𝜇𝑣 + 1 ◁ Increase the score if well classified.
𝑉 𝑐𝑙𝑖

𝑖 ← 𝑉 𝑐𝑙𝑖
𝑖 ∪ 𝑔𝑣 ◁ Add the element belonging to class 𝑖 and labeled 𝑖.

else ◁ Wrongly classified.

𝑉
𝑐𝑙𝑗

𝑖 ← 𝑉
𝑐𝑙𝑗

𝑖 ∪ 𝑔𝑣 ◁ Add the element belonging to class 𝑖 and labeled 𝑗.
end if

end for
end for
𝜇𝑣 ← 𝜇𝑣/#𝑉 ◁ Renormalize the score.

return 𝜇𝑣; 𝑉 𝑐𝑙 ◁ Output of the algorithm.

†: Using the method described in Section 3.1. See equations (3.2) and (3.3).

Algorithm 3. Hausd method: Return the two samples maximizing the Hausdorff distance.
Require: 𝑉𝑖; 𝑉 𝑐𝑙𝑖

𝑗 ◁ Input: Validation set restricted to class 𝑖; Validation set restricted to class 𝑗 and labeled 𝑖.
𝑝𝑛𝑡← ∅ ◁ Points maximizing the Hausdorff distance.
if #𝑉 𝑐𝑙𝑖

𝑗 > 0 then ◁ If some points of the Validation set are wrongly classified.

𝑑𝐴 ← closest
(︁
𝑉 𝑐𝑙𝑖

𝑗 , 𝑉𝑖

)︁
◁ For each element of 𝑉 𝑐𝑙𝑖

𝑗 return the distance of its closest neighbor in 𝑉 †
𝑖 .

𝑝𝐴 ← argmax(𝑑𝐴) ◁ Maximum distance position.

𝑝𝑛𝑡𝐴 =
(︁
𝑉𝑖(𝑝𝐴), 𝑉 𝑐𝑙𝑖

𝑗 (𝑝𝐴)
)︁

◁ Samples maximizing the distance.

𝑑𝐵 ← closest
(︁
𝑉𝑖, 𝑉

𝑐𝑙𝑖
𝑗

)︁
◁ For each element of 𝑉𝑖 return the distance of its closest neighbor in 𝑉 𝑐𝑙𝑖

𝑗
†.

𝑝𝐵 ← argmax(𝑑𝐵) ◁ Maximum distance position.

𝑝𝑛𝑡𝐵 =
(︁
𝑉𝑖(𝑝𝐵), 𝑉 𝑐𝑙𝑖

𝑗 (𝑝𝐵)
)︁

◁ Samples maximizing the distance.

if 𝑑𝐴 > 𝑑𝐵 then
𝑝𝑛𝑡← 𝑝𝑛𝑡𝐴 ◁ Then, 𝑑𝐴 is the Hausdorff distance.

else
𝑝𝑛𝑡← 𝑝𝑛𝑡𝐵 ◁ Then, 𝑑𝐵 is the Hausdorff distance.

end if
end if

return 𝑝𝑛𝑡 ◁ Output of the algorithm.

†: In this paper, we consider the ℓ∞ distance.

4. Numerical experiments.

In this section, several numerical experiments are proposed to illustrate the enrichment method.

4.1. Two dimensional cases

A two dimensional application is performed on three study cases for which we consider Ω = [0, 1]2. For each
study case, we randomly generated 2000 samples following a uniform law over Ω. The first half is gathered into
the validation set, whereas the second half is gathered into the test set. Figure 4 shows the validation set for
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Algorithm 4. computeBall method: Return the ball to consider for enrichment.

Require: 𝑉𝑖; 𝑉
𝑐𝑙𝑗

𝑗 ; 𝑝𝑛𝑡𝑖 ◁ Input: Validation set of class 𝑖; Validation set of class 𝑗 classified 𝑗; Hausdorff points.
𝑟 ← ∅; 𝑐← ∅ ◁ Initialize the radius and center of the ball.
line← lineFrom(𝑝𝑛𝑡𝑖) ◁ Extract discretized line between the two Hausdorff points.
𝑑𝑖 ← dist(line, 𝑉𝑖) ◁ For each element of 𝑙𝑖𝑛𝑒, compute closest distance to 𝑉0.

𝑑𝑗 ← dist(line, 𝑉
𝑐𝑙𝑗

𝑗 ) ◁ For each element of 𝑙𝑖𝑛𝑒, compute closest distance to the well classified samples in the other
class.
̂︀𝑑𝑖; ̂︀𝑑𝑗 ← reorder(𝑑𝑖, 𝑑𝑗) ◁ Reorder distances with respect to the descending order of 𝑑𝑖.
𝑐𝑝𝑡← 0
while 𝑑𝑖(𝑐𝑝𝑡) > 𝑑𝑗(𝑐𝑝𝑡) do

𝑐𝑝𝑡← 𝑐𝑝𝑡 + 1 ◁ Go closer to the point belonging to 𝑉𝑖.
end while
𝑟 ← 𝑑𝑖(𝑐𝑝𝑡) ◁ Actualize the radius†.
𝑐← line(𝑐𝑝𝑡)

return 𝑟; 𝑐 ◁ Output of the algorithm.

†: For sake of clarity a scheme is given in Figure 3.

Figure 3. Section 3.3: Scheme for Algorithm 4. We call Hausdorff points the two points for
which the Hausdorff distance is computed. 𝑆

(𝑛)
0 ∩𝑆*1 corresponds to the area where the samples

of the validation set belonging to class 1 are labeled 0 at step 𝑛 (i.e. belonging to 𝑆
(𝑛)
0 ). We

move on the segment delimited by the Hausdorff points, starting from the farthest one from
𝑆*0 . At each step, we compute the distances to 𝑆*0 (𝑑0(𝑐𝑝𝑡)) and 𝑆

(𝑛)
1 (𝑑1(𝑐𝑝𝑡)).

each study case. The color corresponds to the label and the black line corresponds to the true delimitation of
the two classes.

The same random uniform process was performed to construct the initial augmented set (of size 20) and the
reservoir of simulation (of size 1000). A summary of the sets is given below:

– Input of the algorithm: validation set (of size 1000), test set (of size 1000), initial augmented set (of size
20) and reservoir of simulations (of size 1000). Each sample (in Ω = [0, 1]2) is an observation (input of the
classifier) with its corresponding label (output of the classifier).
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Figure 4. Section 4.1: Study cases.

– Output of the algorithm: augmented set and classification scores on the validation and test set.

In this study we assume that the reservoir is unbiased. The number of nearest neighbors is set to 𝑘 = 5.
Figure 5 shows the constructed training set (augmented set once the algorithm has stopped) samples for each

study case.
Two main points are highlighted by this figure:

– The whole initial database is not a must-have, only a small fraction of it is actually useful in view of improving
the classification score.

– The selected samples to construct the augmented set are mainly closed to the class delimitation.

Figure 6 shows the scores for the validation and test sets for each study case. As the algorithm is performed
on the validation set, the score on the validation set is higher than the one on the test set (and its standard
deviation smaller). Despite this slight overfitting, the constructed augmented set ensures a score higher than
0.96 on the test set for these three study cases.

4.2. A model in electro-physiology of cells.

This part is devoted to an example in electro-physiology. The observed model output, called action potential
(AP) is the potential difference across the cell membrane. This is influenced by the value of several parameters
which represent the conductances of some of the ion channels of the cell. The model we consider is called
Minimal Ventricular (MV), presented in [7]; it is a system of parametric ordinary differential equations. We
focus on three classification problems: given the model output determine if the conductances of sodium, calcium
and potassium are above or below a certain threshold.

The dataset is synthetic and the numerical method used to approximate the model solution is a third order
Backward Differentiation Formula (BDF3) with a time-step ∆𝑡 = 0.1 ms. A periodic source term in the equation
is repeated every 1200ms and its parametrisation is given in Table 1.



2274 D. LOMBARDI AND F. RAPHEL

Figure 5. Section 4.1: Constructed training sets (augmented sets once the algorithm stops).

Figure 6. Section 4.1: Score obtained for the augmented and validation set for each study case.



DATASETS ENRICHMENT BY MEANS OF NUMERICAL SIMULATIONS FOR CLASSIFICATION 2275

Table 1. Section 4.2: Stimuli parameters.

Duration (ms) Amplitude (pA/pF)

4.0 0.1

Table 2. Section 4.2.1: Biased datasets.

Bias level Relative ℓ2 error norm

Low 0.020
Medium 0.035
High 0.065

By starting from the third stimulation the system reaches periodicity (the ℓ2 norm of the difference between
two consecutive periods varies by less than 10−3) we decided to only store the third period for this study.

A total of 𝑛𝑠 = 2420 signal were generated with random triplets conductances (for sodium, calcium and
potassium) following a uniform law over [0.6, 1]3. It follows that for a realization 𝑥 = [𝑥sodium, 𝑥calcium, 𝑥potassium],
the component 𝑥𝑖 means that channel 𝑖 is blocked at 100*(1−𝑥𝑐)%. We consider the control case (as a reference)
for the realization 𝑥 = [1, 1, 1] which leads to 100% of activity for each channel.

For each component 𝑐 of a realization 𝑥, the labels 𝑦𝑐 are given by:

𝑦𝑐 =

{︃
0 if 𝑥𝑐 < 0.8 (“blocked”)
1 otherwise (“not blocked”).

(4.1)

The value 0.8 corresponds to the conductance threshold for the classification task described at the beginning
of this section.

As we have three parameters, we divided the problem into three classification tasks: sodium, calcium and
potassium conductances classification. An example of AP signals at control case (𝑥 = [1, 1, 1]) and in random
case is shown in Figure C.1.

4.2.1. Biased data

Different biased datasets were generated from these 𝑛𝑠 = 2420 simulated APs. These biased signals were
obtained by computing the Fourier transform and putting to zero the entries corresponding to the higher
frequencies. We considered three different levels of bias (expressed in terms of energy) as presented in Table 2

An example of an AP signal with its different levels of bias is shown in Figure 7.

4.2.2. Dictionary entry computation

For each sample (AP signal), we consider 𝑛𝑔 = 24 observable quantities. These correspond to pairs times and
amplitudes in different phases of the AP signal. They are computed in the same way for each sample and are
shown in Figure 8.

We denote 𝑔
(𝑗)
𝑖 the 𝑖th dictionary entry of the 𝑗th AP signal. Considering the control case as a reference, we

propose to consider the following translated dictionary entries:

𝑔
(𝑗)
𝑖 = 𝑔

(𝑗)
𝑖 − 𝑔

(ctrl)
𝑖 ,∀𝑖, 𝑗.

It follows that, in the control case, we have 𝑔
(ctrl)
𝑖 = 0,∀𝑖 = 1, . . . , 𝑛𝑔. All the samples were then transformed

in such a way that the compact domain Ω is the hypercube of dimension 𝑛𝑔 = 24, side 1 and centered at
𝑐 = ( 1

2 , . . . , 1
2 ) ∈ R𝑛𝑔 . Inputs and outputs of the model are summarized below:
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Figure 7. Section 4.2.1: Sample of an action potential signal generated by the MV model with
its different levels of bias.

Figure 8. Section 4.2.2: Sample of an action potential signal generated by the MV model
(control case: 𝑥 = [1, 1, 1]) with the extracted quantities to generate the dictionary entries.
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Table 3. Section 4.2.3: Datasets sizes.

Validation set 𝑛𝑡 (test) 𝑛𝑣 (validation) 𝑛𝑡𝑟 (initial augmented) 𝑛𝑑 (database)

Complete: Covers Ω 1000 400 20 1000
Incomplete: Partially covers Ω 1000 89 20 1000

Figure 9. Section 4.2.3: Densities of validation and test sets for sodium classification. Black
lines correspond to the class delimitation.

– Input of the model to generate one sample: 𝑥 = [𝑥sodium, 𝑥calcium, 𝑥potassium] ∈ [0.6, 1]3.
– Output of the model: computed entries rescaled with respect to the control case (computed entries for

𝑥𝑐 = [1, 1, 1]) and its corresponding label from 𝑥 given by equation (4.1).

4.2.3. Datasets preprocessing

Two study cases are performed: in the first one, we assume that the validation set covers Ω whereas in the
second one we consider an incomplete validation (the validation set covers only a subset of Ω). To do so, from
the unbiased dataset, we randomly extract 𝑛𝑣 = 89 from the 𝑛𝑠 = 2420 signals in such a way that 84 of them
have a sodium and calcium activity higher than 0.85. The 5 others are randomly chosen in such a way that at
least one sample belongs to the other class (sodium and/or calcium conductance is lower than the threshold).
Dataset’s sizes are summarized in Table 3.

Test, validation and initial augmented sets are randomly extracted from the whole unbiased dataset (𝑛𝑠 =
2420). The database can be biased or unbiased depending on the study (chosen samples are the same, but with
different biases). The random process is performed in such a way that a selected sample belongs to only one set
and cannot be selected more than once. Figure 9 shows the densities of the variable 𝑥 for the validation and
test sets (for each class), in the sodium classification task.

As we can see, when the complete validation case is considered, the density of 𝑥 is almost uniform over the
whole domain of 𝑥 (meaning that we have samples for almost all possible values of 𝑥). On the contrary, for the
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Figure 10. Section 4.2.4: Scores obtained with a complete and incomplete validation set.

incomplete validation case (in the center) we clearly see that there are regions of the domain of 𝑥 in which we
do not have samples.

4.2.4. Computational results

All the following results were obtained using 𝑘 = 5 nearest neighbors.

Comparison between complete and incomplete validation set

Figure 10 shows the scores obtained with a complete and incomplete validation set.

(1) Complete validation set:
(a) The validation score is higher than the test score because the optimization process is performed on the

validation set.
(b) The sodium conductance is easy to classify, whereas calcium conductance is the most difficult to infer.

The fact that potassium and calcium conductances are more difficult to classify is due to the compensa-
tion effect between these two channels (see Fig. C.1), which is a known phenomenon in electrophysiology.

(c) The scores are not significantly impacted by the bias as the proposed method naturally rejects it.
(2) Incomplete validation set:

(a) The validation score is higher than the test score because the optimization process is performed on the
validation set.

(b) The calcium conductance classification shows the lowest success rate whereas the potassium conductance
classification shows the highest score. The fact that the potassium has the highest score is expected as
no data were removed for this case. The scores obtained in the unbiased case are close to the expected
scores: around 69% for the sodium, 75% for the potassium and 60% for the calcium (see Sect. D for
more details). The bias does not highly affect the score except for the sodium in the highest bias case).

(c) The bias is larger in the first part of the signal, as it can be seen in Figure 7. This phase of the solution
is known to be influenced by the sodium conductance. This explains why the score for the sodium
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Table 4. Section 4.2.4: Comparison between the augmented set construction method and com-
mon classification techniques (using Scikit-Learn library [24] with default parameters) consider-
ing the whole reservoir (biased or unbiased samples depending on the scenario) as the training
set. Values correspond to the classification success rate on the test set which is unbiased.

Study/Biased reservoir ASE-HD* SVM KNN

Sodium
No Bias 0.91 0.94 0.94
Low 0.91 0.81 0.82
Medium 0.91 0.81 0.80
High 0.91 0.54 0.57
Average (std) 0.91 (0) 0.78 (0.17) 0.78 (0.15)
Potassium
No Bias 0.83 0.91 0.89
Low 0.84 0.86 0.76
Medium 0.84 0.82 0.83
High 0.84 0.83 0.80
Average (std) 0.84 (0.01) 0.86 (0.04) 0.82 (0.05)
Calcium
No Bias 0.81 0.86 0.87
Low 0.81 0.60 0.67
Medium 0.79 0.78 0.79
High 0.80 0.68 0.64
Average (std) 0.80 (0.01) 0.73 (0.11) 0.74 (0.11)

Notes. (*)See Figure 10, left panel and blue legend.

classification is more impacted than the ones for calcium and potassium which show a more stable
trend.

(3) Complete vs. Incomplete validation set:
(a) The validation score is more stable and higher for the incomplete validation set. This is explained by

the fact that we have less data in the validation set and aggregated in a smaller region, which eases the
process.

(b) The test score is lower in the incomplete validation set case. This is because there are regions of Ω in
which we do not have samples of the dataset. As we do not have information in these empty regions,
the score is lower.

(c) For the same reasons as above, the variability on the test score is higher when the validation set is
incomplete.

A comparison with the construction of a classifier considering the full reservoir of data as the training set is
given in Table 4. The same conditions were considered for the three methods (ASE-HD, SVM and KNN). Indeed,
for the “No Bias” scenario we put in the reservoir unbiased samples, for the “Low” scenario we considered only
samples with a low level bias in the reservoir, and we proceed analogously for the other scenarios. For all the
cases, the samples of the test set are unbiased, meaning, they are drawn from the “true” system. In particular,
in absence of bias, considering the whole reservoir as the training set is globally better. However, in the presence
of bias, the augmented set construction method proposed is better. Moreover, the construction method allows to
get a similar classification success rate irrespective of bias. This is due to the method itself which reject biased
data in an automated way.

Remark 4.1. In the KNN algorithm implemented in Scikit-Learn [24], we consider the 𝑘th closest samples
(from the training set) of a query point irrespective of the class they belong to. We then classify the query
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point using the majority vote strategy. This method is quite different of the proposed strategy proposed in this
paper. In particular, we consider the 𝑘th closest samples from the training set of a query point for each class to
estimate the density over the two classes (for a binary classification). We then consider a Bayesian approach to
classify the query point. This could justify the success rate difference between the No Bias case in the ASE-HD
method and KNN method.

Remark 4.2. In this paper we considered a Bayesian approach to classify a query point. However, the aug-
mented set construction method is not restricted to a particular classification method (nor density approxima-
tion).

Database and validation set enrichment

As described in Section 2.4.2, once the augmented set enrichment process is performed on the incomplete
validation set, we enrich the validation set with data from the database. In the case where we have a bias, we
may exploit some statistical information on the bias to generate more pertinent labeled samples. We recall that
we have 4 different study cases based on the database (see Sect. 4.2.1): without bias and with a low, medium
and high level of bias. We assume that we know the a priori for the two classes: 𝜋0 = 𝜋1 = 1

2 . Then, we enriched
the validation set in such a way the number of samples is each class is the same, with 𝑛𝑣 = 400 (we added 311
samples). See Table 3.

Unbiased case

In the unbiased case, we compute the dictionary entry mean and standard deviation for each class of the
incomplete validation set. We denote ̂︀𝜋𝑖 the estimated a priori. Then, we randomly brows each sample of the
database (for each class). While 𝑛𝑣 < 400, if one of the entries is outside the corresponding (i.e. same class)
mean plus/minus the standard deviation, we add it to the validation set (and remove it from the database) if
the following equation holds:

min
𝑖

̂︀𝜋(𝑛+1)
𝑖 > min

𝑖
̂︀𝜋(𝑛)

𝑖 ,

with ̂︀𝜋(𝑛+1)
𝑖 the a priori computed considering the sample into the validation set and ̂︀𝜋(𝑛)

𝑖 the a priori computed
before considering the current sample into the validation set. In other words, it aims to consider the assumptions
on the true a priori 𝜋𝑖 described above.

Biased case

For the biased case, we compute the average and standard deviation difference (in the dictionary entry space)
between the incomplete validation set and the simulated data with the same parameters:⎧⎪⎨⎪⎩

𝑏𝑚 = E (𝐷𝜃𝑣
− 𝑉𝜃𝑣

)

𝑏𝑠 =
√︂

E
(︁

(𝐷𝜃𝑣 − 𝑉𝜃𝑣 )2
)︁
,

with 𝑏𝑗 ∈ R𝑛𝑔 the mean (𝑗 = 𝑚) or the standard deviation (𝑗 = 𝑠) and where 𝑉𝜃𝑣 is the incomplete validation
set and 𝐷𝜃𝑣

is the simulated dataset obtained with 𝜃𝑣 as parameter entries of the simulated model. Then, from
these statistics, for each sample of the database, we generate 4 ghosts samples following the approach described
in Section 2.4.2. Here, we assume that the bias computed on the validation set is preserved on the empty region.

Results

The results are shown in Figure 11.

(1) The validation set (red and orange) vs. test set (blue and green): we always obtain a higher score on the
validation set.

(2) The enrichment case (orange and green):
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Figure 11. Section 4.2.4: Scores with incomplete/complete validation set and enriched valida-
tion set and database.

(a) In the incomplete validation set case, the score on the test set is lower than the validation set.
(b) The enrichment strategy implies a significantly higher score on the test set for sodium and calcium

conductance classification.
(c) This is not the case on the validation set, because we introduce some variability with the ghost and the

correction.
(d) The enrichment in the case where there is no bias (and no ghosts) induces scores closed to the complete

validation set.
(3) Conductance classification on the test set (blue and green):

(a) The main score benefit is for the sodium conductance classification (from around 0.64 to around 0.85
depending on the bias). This is due to the fact that there is not a compensation effect between the
sodium channel and the other channels (see Fig. C.1).

(b) We also have a significant increase of the score for the calcium conductance classification (from about
0.62 to about 0.78).

5. Conclusions and perspectives

In the present work a method is proposed to enrich available experimental datasets by using numerical
simulations in view of improving classification tasks performances. This is an example of potential interaction
between statistical learning and mathematical modelling. The method is based on the probabilistic description
of the observations of a phenomenon and a characterisation of the classification performances based on set
distances. The main properties of the method have been investigated from a theoretical point of view and
illustrated through some numerical experiments. The systematic construction and enrichment of the augmented
set can have a significant impact on the classification score. The proposed method performs a bias rejection to
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some extent, and, if statistical information on a model bias are available, these can be naturally integrated in
the algorithm.

Appendix A. Proofs in Section 2.2.1

Lemma 2.4. For the set 𝑀 (𝑛), ∀𝑛 ∈ N it holds:

𝑀 (𝑛) = 𝑆*0∆𝑆
(𝑛)
0 = 𝑆*1∆𝑆

(𝑛)
1 .

Proof of Lemma 2.4. By definition of the symmetric difference, we have:

𝑆*0∆𝑆
(𝑛)
0 =

(︁
𝑆*0 ∖ 𝑆

(𝑛)
0

)︁
∪

(︁
𝑆

(𝑛)
0 ∖ 𝑆*0

)︁
⇐⇒

𝑆*0∆𝑆
(𝑛)
0 =

(︁
𝑆*0 ∩ 𝑆

(𝑛)𝐶

0

)︁
∪

(︁
𝑆

(𝑛)
0 ∩ 𝑆*

𝐶

0

)︁
,

where 𝑆
(𝑛)𝐶

0 = Ω ∖ 𝑆
(𝑛)
0 and 𝑆*

𝐶

0 = Ω ∖ 𝑆*0 are the complementary sets of 𝑆
(𝑛)
0 and 𝑆*0 respectively. It follows

that:
𝑆*0∆𝑆

(𝑛)
0 =

(︁
𝑆*0 ∩ 𝑆

(𝑛)
1

)︁
∪

(︁
𝑆

(𝑛)
0 ∩ 𝑆*1

)︁
= 𝑀 (𝑛).

The proof for 𝑆*1∆𝑆
(𝑛)
1 is similar. �

Proposition 2.5. Using the sequence of operations introduced in Section 2.2, almost surely, we have:

lim
𝑛→+∞

𝜇(𝑛)
𝑣 = 𝜇*.

Proof of Proposition 2.5. By definition of 𝑆*𝑗 and 𝑆
(𝑛)
𝑗 (see Eq. (2.6)), we have:(︁

𝑆*0 ∩ 𝑆
(𝑛)
1

)︁
∩

(︁
𝑆*1 ∩ 𝑆

(𝑛)
0

)︁
= ∅.

Then, 𝑀 (𝑛) is a disjoint union of two sets. This implies that:

𝜇𝐿

(︁
𝑀 (𝑛)

)︁
= 𝜇𝐿

(︁
𝑆*0 ∩ 𝑆

(𝑛)
1

)︁
+ 𝜇𝐿

(︁
𝑆*1 ∩ 𝑆

(𝑛)
0

)︁
.

Remark that, by definition of the Lebesgue measure on a set and due to the compactness of the sets, we have
the following inequalities:

0 ≤ 𝜇𝐿

(︁
𝑀 (𝑛)

)︁
< +∞.

It is straightforward to show that:

𝜇𝐿

(︁
𝑀 (𝑛)

)︁
= 0 ⇐⇒ 𝜇(𝑛)

𝑣 = 𝜇* almost surely.

Let assume that 𝜇𝐿

(︀
𝑀 (𝑛)

)︀
> 0. It follows that at least one of the following inequalities is satisfied:⎧⎨⎩𝜇𝐿

(︁
𝑆*0 ∩ 𝑆

(𝑛)
1

)︁
> 0

𝜇𝐿

(︁
𝑆*1 ∩ 𝑆

(𝑛)
0

)︁
> 0.

Let 𝑆′ be the set such that:

𝑆′ = arg max
(︁
𝜇𝐿

(︁
𝑆*0 ∩ 𝑆

(𝑛)
1

)︁
, 𝜇𝐿

(︁
𝑆*1 ∩ 𝑆

(𝑛)
0

)︁)︁
.
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We then have 𝜇𝐿(𝑆′) > 0. Therefore, ∃𝑔𝑛+1 ∈ 𝑆′ and 𝜀 > 0 such that the ball ℬ(𝑔𝑛+1, 𝜀) ⊆ 𝑆′. By definition
of 𝑀 (𝑛) (see Sect. 2.2), we have:

𝑀 (𝑛+1) = 𝑀 (𝑛) ∖ ℬ.

As ℬ ∈ 𝑆′ ⊆ 𝑀 (𝑛) and 𝜇𝐿(ℬ) > 0, we have:

0 ≤ 𝜇𝐿

(︁
𝑀 (𝑛+1)

)︁
< 𝜇𝐿

(︁
𝑀 (𝑛)

)︁
.

We have a sequence of measures which is strictly decreasing and bounded. Thus, this sequence converges to
its minimum. Let assume that this minimum is 𝛿 > 0. Then, it exists a non-empty ball such that the measure
will decrease, which is impossible. It follows that:

lim
𝑛→+∞

𝜇𝐿

(︁
𝑀 (𝑛)

)︁
= 0.

Therefore,
lim

𝑛→+∞
𝑆

(𝑛)
𝑖 = 𝑆*𝑖 ,

almost everywhere for 𝑖 = 0 or 1. Hence, almost surely, we have:

lim
𝑛→+∞

𝜇(𝑛)
𝑣 = 𝜇*.

�

Corollary 2.6. Let 𝜇
(𝑛)
𝑣 be the score on the validation set at iteration 𝑛 ≥ 0. Then, ∀𝑛 ∈ N, we have:

𝜇(𝑛+1)
𝑣 − 𝜇(𝑛)

𝑣 =
∫︁
ℬ*
|𝜋1𝜌

𝑣
1 − 𝜋0𝜌

𝑣
0|d𝑔 ≥ 0,

with ℬ* = ℬ(𝑔𝑛+1, 𝜖*) defined in the previous section. Moreover, the equality holds if and only if 𝜇𝐿(ℬ*) = 0,
where 𝜇𝐿 denotes the Lebesgue measure.

Proof of Corollary 2.6. By definition, ∀𝑛 ∈ N, we have:

𝜇(𝑛)
𝑣 =

∫︁
𝑆

(𝑛)
0

𝜋0𝜌
𝑣
0d𝑔 +

∫︁
𝑆

(𝑛)
1

𝜋1𝜌
𝑣
1d𝑔.

Then, at iteration 𝑛 + 1, we have:

𝜇(𝑛+1)
𝑣 =

∫︁
𝑆

(𝑛+1)
0

𝜋0𝜌
𝑣
0d𝑔 +

∫︁
𝑆

(𝑛+1)
1

𝜋1𝜌
𝑣
1d𝑔,

with:

𝑆
(𝑛+1)
0 =

{︃
𝑆

(𝑛)
0 ∪ ℬ* if ℬ* ⊆ 𝑆*0 ∩ 𝑆

(𝑛)
1

𝑆
(𝑛)
0 ∖ ℬ* if ℬ* ⊆ 𝑆*1 ∩ 𝑆

(𝑛)
0 .

Let us consider the first scenario: 𝑆
(𝑛+1)
0 = 𝑆

(𝑛)
0 ∪ℬ*. Then using the fact that the sets are disjoint, we have:

𝜇(𝑛+1)
𝑣 =

∫︁
𝑆

(𝑛)
0

𝜋0𝜌
𝑣
0d𝑔 +

∫︁
ℬ*

𝜋0𝜌
𝑣
0d𝑔 +

∫︁
𝑆

(𝑛)
1

𝜋1𝜌
𝑣
1d𝑔 −

∫︁
ℬ*

𝜋1𝜌
𝑣
1d𝑔,

which immediately yields to:

𝜇(𝑛+1)
𝑣 − 𝜇(𝑛)

𝑣 =
∫︁
ℬ*

(𝜋0𝜌
𝑣
0 − 𝜋1𝜌

𝑣
1)d𝑔 ≥ 0.
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Here, we assumed that ℬ* ⊆ 𝑆*0 ∩ 𝑆
(𝑛)
1 . The inequality is given by the definition of 𝑆*0 . On this set, we have:

𝜋0𝜌
𝑣
0 − 𝜋1𝜌

𝑣
1 > 0. The equality is then obtained if and only if 𝜇𝐿(ℬ*) = 0. Considering the second scenario, we

finally obtain:

𝜇(𝑛+1)
𝑣 − 𝜇(𝑛)

𝑣 =
∫︁
ℬ*
|𝜋0𝜌

𝑣
0 − 𝜋1𝜌

𝑣
1|d𝑔 ≥ 0.

�

Appendix B. Proofs in Section 2.4.1

Lemma 2.7. Let the sets 𝑆𝑡𝑒,𝑚
0,1 be defined as in equations (2.9) and (2.10).The following equalities hold:{︃

𝑆𝑚
0 = (𝑆𝑡𝑒

0 ∪ 𝑏0) ∖ 𝑏1

𝑆𝑚
1 = (𝑆𝑡𝑒

1 ∪ 𝑏1) ∖ 𝑏0.

Proof of Lemma 2.7. Let us focus on the first equality of the lemma (the proof for the second equality is similar).
We have: (︀

𝑆𝑡𝑒
0 ∪ 𝑏0

)︀
∖ 𝑏1 =

(︀
𝑆𝑡𝑒

0 ∖ 𝑏1

)︀
∪ (𝑏0 ∖ 𝑏1) .

As 𝑏1 ∩ 𝑏0 = ∅ we have: (︀
𝑆𝑡𝑒

0 ∪ 𝑏0

)︀
∖ 𝑏1 =

(︀
𝑆𝑡𝑒

0 ∖ 𝑏1

)︀
∪ 𝑏0 =

(︀
𝑆𝑡𝑒

0 ∖
(︀
𝑆𝑚

1 ∩ 𝑆𝑡𝑒
0

)︀)︀
∪ 𝑏0

⇐⇒(︀
𝑆𝑡𝑒

0 ∪ 𝑏0

)︀
∖ 𝑏1 =

(︀
𝑆𝑡𝑒

0 ∖ 𝑆𝑚
1

)︀
∪ 𝑏0 =

(︀
𝑆𝑡𝑒

0 ∖ 𝑆𝑚
1

)︀
∪

(︀
𝑆𝑚

0 ∩ 𝑆𝑡𝑒
1

)︀
⇐⇒(︀

𝑆𝑡𝑒
0 ∪ 𝑏0

)︀
∖ 𝑏1 =

(︀
𝑆𝑚

0 ∩ 𝑆𝑡𝑒
0

)︀
∪

(︀
𝑆𝑚

0 ∩ 𝑆𝑡𝑒
1

)︀
= 𝑆𝑚

0 ∩
(︀
𝑆𝑡𝑒

0 ∪ 𝑆𝑡𝑒
1

)︀
.

Since 𝑆𝑡𝑒
0 ∪ 𝑆𝑡𝑒

1 = Ω, we finally obtain:
(𝑆𝑡𝑒

0 ∪ 𝑏0) ∖ 𝑏1 = 𝑆𝑚
0 .

�

Proposition 2.8. Let the hypothesis of Lemma 2.7 hold. Let

𝜇𝑏 = 𝜇𝑡𝑒 (𝑆𝑚
0 , 𝑆𝑚

1 ) =
∫︁

𝑆𝑚
0

𝜋0𝜌
𝑡𝑒
0 d𝑔 +

∫︁
𝑆𝑚

1

𝜋1𝜌
𝑡𝑒
1 d𝑔, (B.1)

be the score of the classification of the test set when the training set is defined by the model. The maximal score
is represented by:

𝜇* = 𝜇𝑡𝑒

(︀
𝑆𝑡𝑒

0 , 𝑆𝑡𝑒
1

)︀
. (B.2)

It holds:
0 ≤ 𝜇𝑏 ≤ 𝜇*,

and, moreover: {︃
𝜇𝑏 = 𝜇* ⇐⇒ 𝜇𝐿(𝑏𝑖) = 0, for 𝑖 ∈ {0, 1}
𝜇𝑏 = 0 ⇐⇒ 𝑆𝑚

𝑖 = 𝑆𝑡𝑒
𝑗 and 𝜌te

j = 𝜌te
j 1{Ste

j }, for 𝑖, 𝑗 ∈ {0, 1}, 𝑖 ̸= 𝑗.

Proof of Proposition 2.8. We have:

𝜇𝑏 =
∫︁

𝑆𝑚
0

𝜋0𝜌
𝑡𝑒
0 d𝑔 +

∫︁
𝑆𝑚

1

𝜋1𝜌
𝑡𝑒
1 d𝑔.
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Then from Lemma 2.7 and based on sets definition, we have:

𝜇𝑏 =
∫︁

𝑆𝑡𝑒
0

𝜋0𝜌
𝑡𝑒
0 d𝑔 +

∫︁
𝑏0

𝜋0𝜌
𝑡𝑒
0 d𝑔 −

∫︁
𝑏1

𝜋0𝜌
𝑡𝑒
0 d𝑔 +

∫︁
𝑆𝑡𝑒

1

𝜋1𝜌
𝑡𝑒
1 d𝑔 +

∫︁
𝑏1

𝜋1𝜌
𝑡𝑒
1 d𝑔 −

∫︁
𝑏0

𝜋1𝜌
𝑡𝑒
1 d𝑔

⇐⇒

𝜇𝑏 = 𝜇* +
∫︁

𝑏0

(︀
𝜋0𝜌

𝑡𝑒
0 − 𝜋1𝜌

𝑡𝑒
1

)︀
d𝑔 +

∫︁
𝑏1

(︀
𝜋1𝜌

𝑡𝑒
1 − 𝜋0𝜌

𝑡𝑒
0

)︀
d𝑔.

By virtue of the definition of the sets 𝑏0, 𝑏1, it holds:{︃
𝑔 ∈ 𝑏0 =⇒ 𝜋1𝜌

𝑡𝑒
1 > 𝜋0𝜌

𝑡𝑒
0

𝑔 ∈ 𝑏1 =⇒ 𝜋0𝜌
𝑡𝑒
0 > 𝜋1𝜌

𝑡𝑒
1 .

It immediately leads to 𝜇𝑏 ≤ 𝜇*. Moreover,

𝜇𝑏 = 𝜇* =⇒ 𝜇𝐿(𝑏𝑖) = 0, (𝑖 ∈ {0, 1}),

and,
𝜇𝐿(𝑏𝑖) = 0, (𝑖 ∈ {0, 1}) =⇒ 𝜇𝑏 = 𝜇*.

Then,
𝜇𝑏 = 𝜇* ⇐⇒ 𝜇𝐿(𝑏𝑖) = 0, (𝑖 ∈ {0, 1}).

Concerning the left hand side of the inequality, we have:{︃
𝑆𝑡𝑒

0 = (𝑆𝑡𝑒
0 ∩ 𝑆𝑚

1 ) ∪ (𝑆𝑡𝑒
0 ∖ 𝑆𝑚

1 )
𝑆𝑡𝑒

1 = (𝑆𝑡𝑒
1 ∩ 𝑆𝑚

0 ) ∪ (𝑆𝑡𝑒
1 ∖ 𝑆𝑚

0 ) .

In particular, the intersection of the two members for each equation is empty. Then, we can rewrite 𝜇𝑏 as follows:

𝜇𝑏 =
∫︁

𝑆𝑡𝑒
0 ∩𝑆𝑚

1

𝜋0𝜌
𝑡𝑒
0 d𝑔 +

∫︁
𝑆𝑡𝑒

0 ∖𝑆𝑚
1

𝜋0𝜌
𝑡𝑒
0 d𝑔 +

∫︁
𝑆𝑡𝑒

1 ∩𝑆𝑚
0

𝜋1𝜌
𝑡𝑒
1 d𝑔 +

∫︁
𝑆𝑡𝑒

1 ∖𝑆𝑚
0

𝜋1𝜌
𝑡𝑒
1 d𝑔

+
∫︁

𝑆𝑚
0 ∩𝑆𝑡𝑒

1

(︀
𝜋0𝜌

𝑡𝑒
0 − 𝜋1𝜌

𝑡𝑒
1

)︀
d𝑔 +

∫︁
𝑆𝑚

1 ∩𝑆𝑡𝑒
0

(︀
𝜋1𝜌

𝑡𝑒
1 − 𝜋0𝜌

𝑡𝑒
0

)︀
d𝑔

⇐⇒

𝜇𝑏 =
∫︁

𝑆𝑚
1 ∩𝑆𝑡𝑒

0

𝜋1𝜌
𝑡𝑒
1 d𝑔 +

∫︁
𝑆𝑚

0 ∩𝑆𝑡𝑒
1

𝜋0𝜌
𝑡𝑒
0 d𝑔 +

∫︁
𝑆𝑡𝑒

0 ∖𝑆𝑚
1

𝜋0𝜌
𝑡𝑒
0 d𝑔 +

∫︁
𝑆𝑡𝑒

1 ∖𝑆𝑚
0

𝜋1𝜌
𝑡𝑒
1 d𝑔.

As each integrand is positive or null, we have 𝜇𝑏 ≥ 0.

(1) Let assume that 𝑆𝑚
𝑖 = 𝑆𝑡𝑒

𝑗 and 𝜌𝑡𝑒
𝑗 = 𝜌𝑡𝑒

𝑗 1{𝑆𝑡𝑒
𝑗 }, for 𝑖, 𝑗 ∈ {0, 1}, 𝑖 ̸= 𝑗. Then, we have 𝜇𝑏 = 0.

(2) Let assume that 𝜇𝑏 = 0. By definition of the different sets, it is easy to show that 𝜇𝑏 is defined as a sum
of integrals over disjoint sets. As each integrand is positive or null, it follows that each integral has to be
equal to 0. Recalling that 𝜋0𝜌

𝑡𝑒
0 > 𝜋1𝜌

𝑡𝑒
1 ≥ 0 over 𝑆𝑡𝑒

0 , it is obvious that we necessary have 𝑆𝑡𝑒
0 ⊆ 𝑆𝑚

1 . For
the same reason, we have 𝑆𝑡𝑒

1 ⊆ 𝑆𝑚
0 (from the fourth integral). Let 𝑥 ∈ 𝑆𝑚

1 ∖ 𝑆𝑡𝑒
0 . Then, 𝑥 ∈ 𝑆𝑚

1 ∩ 𝑆𝑡𝑒
1 which

is impossible because 𝑆𝑡𝑒
1 ⊆ 𝑆𝑚

0 . It follows that:

𝑆𝑡𝑒
𝑖 = 𝑆𝑚

𝑗 , 𝑖, 𝑗 ∈ {0, 1}, 𝑖 ̸= 𝑗.

Then, two ensure that the two first integrals are equal to 0, we necessary have:

𝜌𝑡𝑒
𝑖 = 𝜌𝑡𝑒

𝑖 1{𝑆𝑡𝑒
𝑖 }, 𝑖 ∈ {0, 1}.
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Figure C.1. Section 4.2.4: Comparison of different channels blockade (20% of blockade).
Sodium channel blockade is mainly known to reduce the depolarization peak, calcium channel
blockade is mainly known to reduce the plateau phase and the duration whereas potassium
channel blockade is mainly known to induce a signal prolongation.

Finally,

𝜇𝑏 = 0 ⇐⇒

{︃
𝑆𝑚

0 = 𝑆𝑡𝑒
1 ⇐⇒ 𝑆𝑚

1 = 𝑆𝑡𝑒
0

𝜌𝑡𝑒
𝑖 = 𝜌𝑡𝑒

𝑖 1{𝑆𝑡𝑒
𝑖 }.

In other words, the worst case for 𝜇𝑏 is obtained when the model is as bad as possible. �

Appendix C. Proof in Section 2.4.2

Lemma 2.10. Let, 𝑆𝑠
0 ∪ 𝑆𝑠

1 = Ω such that 𝑆𝑠
0 ∩ 𝑆𝑠

1 = ∅ (for 𝑠 = 𝑡𝑒 or 𝑣). Then,

𝑆𝑡𝑒
1 ∖ 𝑆𝑣

1 = 𝑆𝑣
0 ∖ 𝑆𝑡𝑒

0 .

Proof of Lemma 2.10.
𝑆𝑡𝑒

1 ∖ 𝑆𝑣
1 = 𝑆𝑡𝑒

1 ∖ (Ω ∖ 𝑆𝑣
0 ).

Using some set theory properties,

𝑆𝑡𝑒
1 ∖ 𝑆𝑣

1 =
(︀
𝑆𝑣

0 ∩ 𝑆𝑡𝑒
1

)︀
∪

(︀
𝑆𝑡𝑒

1 ∖ Ω
)︀

= 𝑆𝑣
0 ∩ 𝑆𝑡𝑒

1 = 𝑆𝑣
0 ∩

(︀
Ω ∖ 𝑆𝑡𝑒

0

)︀
= Ω ∩

(︀
𝑆𝑣

0 ∖ 𝑆𝑡𝑒
0

)︀
.

Then we finally obtain:
𝑆𝑡𝑒

1 ∖ 𝑆𝑣
1 = 𝑆𝑣

0 ∖ 𝑆𝑡𝑒
0 .

�

Proposition 2.11. We denote 𝑆𝑠
𝑗 = {𝑔|𝜋𝑗𝜌

𝑠
𝑗 > 𝜋𝑘𝜌𝑠

𝑘} (𝑘 ̸= 𝑗), where 𝑠 = 𝑡𝑒 (test set) or 𝑣 (validation set). We
denote 𝜇𝑐

𝑡𝑒 (resp. 𝜇𝑝
𝑡𝑒) the test set score obtained with a complete (resp. incomplete) validation set. By complete,

we assume that the distribution of 𝜌𝑡𝑒
𝑗 and 𝜌𝑣

𝑗 are the same. Then,

𝜇𝑝
𝑡𝑒 ≤ 𝜇𝑐

𝑡𝑒.
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Figure C.2. Section 4.2.3: Densities of validation and test sets for potassium channel blockade
classification. Black lines correspond to the class delimitation.

Figure C.3. Section 4.2.3: Densities of validation and test sets for calcium channel blockade
classification. Black lines correspond to the class delimitation.
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Proof of Proposition 2.11.

𝜇𝑐
𝑡𝑒 =

∫︁
𝑆𝑣

0

𝜋0𝜌
𝑡𝑒
0 d𝑔 +

∫︁
𝑆𝑣

1

𝜋1𝜌
𝑡𝑒
1 d𝑔.

As 𝜌𝑡𝑒
𝑗 = 𝜌𝑣

𝑗 , we have 𝑆𝑡𝑒
𝑗 = 𝑆𝑣

𝑗 . Then,

𝜇𝑐
𝑡𝑒 =

∫︁
𝑆𝑡𝑒

0

𝜋0𝜌
𝑡𝑒
0 d𝑔 +

∫︁
𝑆𝑡𝑒

1

𝜋1𝜌
𝑡𝑒
1 d𝑔.

In the incomplete validation case, we have either:{︃
𝑆𝑣

1 ⊆ 𝑆𝑡𝑒
1 and 𝑆𝑡𝑒

0 ⊆ 𝑆𝑣
0

𝑆𝑣
0 ⊆ 𝑆𝑡𝑒

0 and 𝑆𝑡𝑒
1 ⊆ 𝑆𝑣

1 .

.
By symmetry of the problem, let assume that:

𝑆𝑣
1 ⊆ 𝑆𝑡𝑒

1 and 𝑆𝑡𝑒
0 ⊆ 𝑆𝑣

0 .

We then have:

𝜇𝑝
𝑡𝑒 =

∫︁
𝑆𝑣

0

𝜋0𝜌
𝑡𝑒
0 d𝑔 +

∫︁
𝑆𝑣

1

𝜋1𝜌
𝑡𝑒
1 d𝑔 =

∫︁
𝑆𝑡𝑒

0

𝜋0𝜌
𝑡𝑒
0 d𝑔 +

∫︁
𝑆𝑡𝑒

1

𝜋1𝜌
𝑡𝑒
1 d𝑔 +

∫︁
𝑆𝑣

0 ∖𝑆𝑡𝑒
0

𝜋0𝜌
𝑡𝑒
0 d𝑔 −

∫︁
𝑆𝑡𝑒

1 ∖𝑆𝑣
1

𝜋1𝜌
𝑡𝑒
1 d𝑔.

Using Lemma 2.10, we have:

𝜇𝑝
𝑡𝑒 = 𝜇𝑐

𝑡𝑒 −
∫︁

𝑆𝑡𝑒
1 ∖𝑆𝑣

1

(︀
𝜋1𝜌

𝑡𝑒
1 − 𝜋0𝜌

𝑡𝑒
0

)︀
d𝑔.

Moreover, we know that 𝜋1𝜌
𝑡𝑒
1 ≥ 𝜋0𝜌

𝑡𝑒
0 over 𝑆𝑡𝑒

1 . Hence, the second term of the previous equation is positive.
Then,

𝜇𝑝
𝑡𝑒 ≤ 𝜇𝑐

𝑡𝑒.

�

Appendix D. MV: scores in the incomplete validation set scenario

For this study we make the following assumptions:

– AP behavior under sodium blockade does not depend on potassium and calcium channel activities.
– AP behavior under potassium and/or calcium channel blockade are dependent.

The following study is coarse, but presented to justify scores obtained in Section 4.2.4 of the manuscript.

D.1. Sodium channel blockade

In the incomplete validation case, sodium activities for the validation set belong to (0.85, 1). We recall that
each activity is a independent realization of a random variable following a uniform law over (0.6, 1). Let assume
that for the test set (for which sodium activities belong to (0.6, 1)) has 𝑛𝑡 elements. Then, we expect to have
0.625 * 𝑛𝑡 elements over (0.6, 0.85) and 0.375 * 𝑛𝑡 elements over (0.85, 1). As the set is complete over (0.85, 1)
we assume that the augmented set enrichment is well performed which leads to a perfectly well classified test
set over (0.85, 1). Conversely, as we do not have information over (0.6, 0.85) we assume that half of the test set
is well classified over this region. It follows that the averaged score 𝜇 is:

𝜇 =
1
2 * 0.625 * 𝑛𝑡 + 0.375 * 𝑛𝑡

𝑛𝑡
= 0.6875. (D.1)

Then, by simulation, we expect to have a score close to 0.69 for the sodium channel blockade study in the
incomplete validation set case.
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Figure D.1. Section D.2: Expected test set classification. Upper panel: red region corresponds
to the wrongly classified test set, green region corresponds to the well classified test set and the
orange area corresponds to the region where half of the test set is well classified.

D.2. Potassium channel blockade

For this scenario, we use the same idea as the one described in the previous section. The upper panel of
Figure D.1 shows regions where we well (green), wrongly (red) and partly well (orange) classify the test set.
The lower panel shows the ratio between the potassium and the calcium activity.

Over the incomplete validation region, the lowest ratio for the class 1 (𝜃𝐾 > 0.8 is 0.81 and the highest ratio
for class 0 is 0.93. As the minimal ratio in the unknown region: {𝜃𝐶𝑎 < 0.85 ∪ 𝜃𝐾 > 0.8} is 0.98 all this region
will be well classified. The red area is obtained using the same argument. The orange area corresponds to the
region where ratios can be from either side of the class delimitation in the incomplete validation set.

Finally, summing the green area and half of the orange area we obtain a score 𝜇 which is approximately 0.75.

D.3. Calcium channel blockade

This scenario uses exactly the same arguments as the one exposed in the previous section. The corresponding
figure is shown in Figure D.2.

These strategy lead to a score approximately equal to 0.6.
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Figure D.2. Section D.3: Expected test set classification. Upper panel: red region corresponds
to the wrongly classified test set, green region corresponds to the well classified test set and the
orange area corresponds to the region where half of the test set is well classified.
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