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THE MODEL REDUCTION OF THE VLASOV–POISSON–FOKKER–PLANCK
SYSTEM TO THE POISSON–NERNST–PLANCK SYSTEM VIA THE DEEP

NEURAL NETWORK APPROACH

Jae Yong Lee1 , Jin Woo Jang1,2 and Hyung Ju Hwang1,*

Abstract. The model reduction of a mesoscopic kinetic dynamics to a macroscopic continuum dy-
namics has been one of the fundamental questions in mathematical physics since Hilbert’s time. In this
paper, we consider a diagram of the diffusion limit from the Vlasov–Poisson–Fokker–Planck (VPFP)
system on a bounded interval with the specular reflection boundary condition to the Poisson–Nernst–
Planck (PNP) system with the no-flux boundary condition. We provide a Deep Learning algorithm
to simulate the VPFP system and the PNP system by computing the time-asymptotic behaviors of
the solution and the physical quantities. We analyze the convergence of the neural network solution of
the VPFP system to that of the PNP system via the Asymptotic-Preserving (AP) scheme. Also, we
provide several theoretical evidence that the Deep Neural Network (DNN) solutions to the VPFP and
the PNP systems converge to the a priori classical solutions of each system if the total loss function
vanishes.
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1. Introduction

1.1. Motivation: a diagram of diffusion limit

The description of physical dynamics in various scales is one of the main questions of interest in the mathemat-
ical modeling of complex systems. In kinetic theory, the description of the evolution of gases has been explained
via the statistical approach on the probabilistic distribution functions on the mesoscopic level, whereas the
fluid theory describes the dynamics on the macroscopic level. Each of these interpretations and the asymptotic
expansions of the mesoscopic equations to the macroscopic equations have been crucial issues.

The aim of this paper is to establish the commutation of the following diagram of diffusion limit, which
provides the reduction of the kinetic equation (the Vlasov–Poisson–Fokker–Planck system) to the fluid equation
(the Poisson–Nernst–Planck system) as the perturbation parameter 𝜀 tends to zero:
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Figure 1. The diagram of diffusion limit.

We refer to a theoretical result from [83] to obtain the bottom side (Part I) of the diagram. For the left-hand
side (Part II), the right-hand side (Part III), and the upper side (Part IV) of the diagram, we use a Deep
Learning method using the Deep Neural Network (DNN) solution to approximate the solutions to the kinetic
equation and the fluid equation. We provide large time behaviors and the steady-states of several physical
moments of these DNN solutions to show an agreement with the theoretical results. Also, we provide theoretical
evidence on the relationship between DNN solutions and the analytic solutions for the left and right-hand sides
of the diagram.

There are many numerical studies to simulate an initial-boundary value problem for the kinetic and fluid
equations. Especially, it is computationally challenging in a numerical scheme to automatically capture the limit
for the asymptotic expansions on the small parameter (e.g. the parameter 𝜀 tends to zero as the upper side
of Fig. 1). Many numerical schemes have been developed to overcome this challenge. These schemes are the
so-called Asymptotic-Preserving (AP) schemes, which have been firstly introduced by Jin [54]. The key idea is
to develop a numerical scheme to preserve the asymptotic limits from a mesoscopic to a macroscopic model in
the fixed discrete setting.

A Deep Learning method has achieved remarkable success in various areas. Many studies have recently been
introduced for learning partial differential equations (PDEs) using the Deep Learning method. These studies
approximate the solutions of PDEs using a neural network architecture as a function approximator based on a
universal approximation theorem [21]. Along with many numerical methods, this Deep Learning approach has
been proposed as a new way to simulate PDE problems.

In this paper, we provide a Deep Learning algorithm to simulate each side of Figure 1. In addition, we prove
that the Deep Neural Network solutions converge to the analytic solutions. The simulation results of the Deep
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Learning support the model reduction of the Vlasov–Poisson–Fokker–Planck solution to the Poisson–Nernst–
Planck solution.

1.2. Main results, difficulties and our strategy

In this paper, we establish the commutation of the diagram in Figure 1 on the diffusion limit from the
Vlasov–Poisson–Fokker–Planck (VPFP) system (1.1) in a bounded interval with the specular reflection boundary
condition (1.8) to the Poisson–Nernst–Planck (PNP) system (1.4) with the no-flux boundary condition (1.10).
We provide a Deep Learning Algorithm 1 to simulate the VPFP system and the PNP system. The Deep Learning
is a new possible approach for solving partial differential equations (PDEs) with many advantages. The Deep
Learning method is a mesh-free approximation method, while the traditional methods in numerical analysis
such as the Finite Difference schemes are influenced by the mesh. In this work, we randomly sample the grid
points from a given domain in every epoch to train the Deep Neural Network. By randomly sampling each
domain, we avoid the need of generating a mesh. We use the PyTorch library and the Adam optimizer for our
Deep Learning algorithm.

One of the main advantages of the Deep Learning is that the algorithm can be implemented easily and
intuitively by the computation of the gradient of the loss function with the chain rule, so-called the back-
propagation algorithm. Namely, this means that it is easy to put the PDE information into the algorithm by
adding terms to the loss function. In this regard, we propose the specific loss functions suitable for the VPFP
system (4.7) in Section 4.1 and for the PNP system (5.7) in Section 5.1. Also, we use two neural network
architectures at the same time to solve the Vlasov–Fokker–Planck system as in Figure 3 and the Nernst–Planck
system as in Figure 4, which are coupled with the Poisson equation. In this way, there is a considerable advantage
compared to traditional numerical methods, for which we needed to find a numerical scheme for each equation.
We also use the Softplus activation function (𝜎̄(𝑥) = ln(1 + 𝑒𝑥)) for the output layer in the neural network
structure. Since the Softplus function has the output in the scale of (0, +∞), it makes the neural network
output 𝑓𝑛𝑛

𝜀 (𝑡, 𝑥, 𝑣; 𝑚, 𝑤, 𝑏) positive.
Meanwhile, there are some weaknesses of the Deep Learning approach. First of all, it is difficult to evaluate

the accuracy of Deep Learning while the numerical methods have well-known error bounds. Also, it is difficult
to show that the Deep Learning algorithms find the exact global minimum in the optimization aspect. Since the
Deep Learning is the gradient-based approach, we cannot guarantee that we could find the global minimum of
the loss function, even in our case using the Adam optimizer. Instead, in order to show that our DNN solutions
well-approximate the solutions of the VPFP system and the solutions of the PNP system, we provide numerical
simulations to demonstrate that the neural network solutions satisfy the given theoretical predictions on the
asymptotic behaviors of the VPFP system in Section 4.3 and of the PNP system in Section 5.3. We analyze our
DNN solutions via computing the steady-states for the solutions and via computing the physical quantities of
the total mass, the kinetic energy, the entropy, the electric energy and the free energy, and their steady-states.

We also provide the theoretical supports for the convergence of the DNN solution to the a priori classical
solution in two theorems. More precisely, for the VPFP system in Part II (Sect. 4.2), we claim in Theorem 4.5
that we can find a sequence of approximated neural network solutions that reduce the loss function (4.7).
Also, we prove an additional theorem (Thm. 4.7) which states that the neural network solution converges to
an analytic solution as we minimize the loss function (4.7). In the proof, we use the transformation for the
Vlasov–Poisson–Fokker–Planck system motivated by Carrillo [17]. Similarly, we provide Theorem 5.2 for the
PNP system in Part III (Sect. 5.2).

In particular, it is hard to capture the asymptotic limit using the fixed numerical discretization in numerical
schemes. In this work, we propose a newly devised technique, “Grid Reuse” method, which boosts the Deep
Learning by adding the grid points which make the integrand in the loss function the largest in every epoch. The
“Grid Reuse” method makes it possible to approximate the neural network solution of the VPFP system with a
small Knudsen number 𝜀 without changing the number of grids sampled. We provide the numerical simulation
for the trend of the diffusion limit from the DNN solution of the VPFP system to the DNN solution of the
PNP system in Part IV (Sect. 6). To the best of authors’ knowledge, this is the first attempt to use the Deep
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Learning method as an AP scheme to see the trend of the diffusion limit of the Vlasov–Poisson–Fokker–Planck
system.

The main distictive of this paper compared to the numerical methods is the use of the neural network approach
as a function approximator for the VPFP system, the PNP system, and the AP scheme as the Knudsen number
𝜀 goes to 0. In this paper, our main goal is to complete the commutation in Figure 1 of the neural network
version similar to Figure 2 of the numerical analysis version.

1.3. The Vlasov–Poisson–Fokker–Planck equation

In order to study the diffusion limit of the Vlasov–Poisson–Fokker–Planck system in a bounded interval
Ω def= (−1, 1), we need to rescale the VPFP system with the Knudsen number 𝜀. The small parameter 𝜀 represents
the ratio of the mean free path of the particles to the typical macroscopic length scale of the particle flow. We
are interested in the scaling of the system using the change of variables 𝑡′ = 𝜀2𝑡 and 𝑥′ = 𝜀𝑥; see Section 4 of
[77] and Section 1 of [83]. With these variables, the VPFP system in a bounded interval Ω = (−1, 1) can be
written in the dimensionless form as follows:

𝜀2𝜕𝑡𝑓𝜀 + 𝜀𝑣𝜕𝑥𝑓𝜀 + 𝜀𝐸𝜀𝜕𝑣𝑓𝜀 = 𝜕𝑣(𝑣𝑓𝜀 + 𝜕𝑣𝑓𝜀), 𝑡 ∈ [0, 𝑇 ], 𝑥 ∈ Ω, 𝑣 ∈ R,

𝑓𝜀(0, 𝑥, 𝑣) = 𝑓0(𝑥, 𝑣),

𝜕𝑥𝐸𝜀 =
∫︁

R
𝑓𝜀d𝑣 − ℎ(𝑥), 𝑥 ∈ Ω,

𝐸𝜀(0,−1) = 0,

𝐸𝜀(𝑡, 𝑥) = 0, 𝑥 ∈ 𝜕Ω, (1.1)

where 𝑓𝜀 = 𝑓𝜀(𝑡, 𝑥, 𝑣) ≥ 0 is the distribution of particles in (𝑡, 𝑥, 𝑣) ∈ (0, 𝑇 ) × Ω × R, and 𝐸𝜀 = 𝐸𝜀(𝑡, 𝑥) is the
self-consistent electric force, where Φ𝜀(𝑡, 𝑥) is the internal potential of the system with the equation

𝐸𝜀(𝑡, 𝑥) = −𝜕𝑥Φ𝜀(𝑡, 𝑥).

The function ℎ(𝑥), which is on the right-hand side of the Poisson equation, stands for the presence of a back-
ground charge (e.g. ions). We assume the global neutrality condition∫︁

Ω

∫︁
R

𝑓𝜀d𝑣d𝑥−
∫︁

Ω

ℎ(𝑥)d𝑥 = 0. (1.2)

Note that the equations (1.1)2,(1.1)3, and (1.1)4 will together imply

0 = 𝐸𝜀(0, 𝑥) =
∫︁ 𝑥

−1

𝜕𝑥𝐸𝜀(0, 𝑦)d𝑦 =
∫︁ 𝑥

−1

∫︁
R

𝑓0(𝑦, 𝑣)d𝑣d𝑦 −
∫︁ 𝑥

−1

ℎ(𝑦)d𝑦. (1.3)

The existence and the uniqueness of the VPFP system have been well-studied. Victory and O’Dwyer [78]
showed the existence of the classical solutions to the VPFP system in two dimension. Rein and Weckler [73]
and Bouchut [11] showed the existence of global solutions to the three-dimensional VPFP system in the whole
space. We refer to [17] for the global weak solutions of VPFP system in a bounded domain with absorbing and
reflection type boundary conditions. The large time asymptotic solutions to the Vlasov–Fokker–Planck equation
has been studied first in [26, 29] in the case that the particles occupy the whole space. They prove that the
distribution function 𝑓(𝑡, 𝑥, 𝑣) tends to a Maxwellian function. This result has been extended by Bouchut and
Dolbeault [12] under the more general assumption on the external potential. Also, we refer to [18, 27] in whole
space domain. In the case of initial-boundary value problem for the VPFP system, Bonilla et al. [10] studied the
large time asymptotic behaviors of the solutions with the reflection type boundary condition. The authors in
[38] considered the global well-posedness of the nonlinear Fokker–Planck equation with the specular reflection
boundary. Also, the well-posedness and regularity for different boundary conditions to the kinetic Fokker–Planck
equation has been studied in [44–51].
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1.4. The Poisson–Nernst–Planck equation

One of the macroscopic models to describe the distribution and the transport of ionic species is the Poisson–
Nernst–Planck (PNP) system, where it is also often called the Drift-Diffusion-Poisson (DDP) equation. The PNP
system consists of the Nernst–Planck equation that describes the drift and diffusion of ions and the Poisson
equation that describes the effect of the self-consistent electric field. In this paper, we consider the following the
1-dimensional Poisson–Nernst–Planck (PNP) system in a bounded interval Ω = (−1, 1):

𝜕𝑡𝜌 = 𝜕𝑥(𝜕𝑥𝜌− 𝜌𝐸), 𝑡 ∈ [0, 𝑇 ], 𝑥 ∈ Ω,

𝜌(0, 𝑥) = 𝜌0(𝑥),
𝜕𝑥𝐸 = 𝜌(𝑡, 𝑥)− ℎ(𝑥), 𝑥 ∈ Ω,

𝐸(0,−1) = 0,

𝐸(𝑡, 𝑥) = 0, 𝑥 ∈ 𝜕Ω. (1.4)

Here, 𝜌 = 𝜌(𝑡, 𝑥) stands for density of particles and 𝐸(𝑡, 𝑥) is the self-consistent electric force with the relation
𝐸(𝑡, 𝑥) = −𝜕𝑥Φ(𝑡, 𝑥), similarly to the VPFP system. Then (1.4)2,(1.4)3 and (1.4)4 will together imply

0 = 𝐸(0, 𝑥) =
∫︁ 𝑥

−1

𝜕𝑥𝐸(0, 𝑦)d𝑦 =
∫︁ 𝑥

−1

𝜌0(𝑦)d𝑦 −
∫︁ 𝑥

−1

ℎ(𝑦)d𝑦. (1.5)

We also assume the neutrality condition for the background charge ℎ(𝑥) as follows:∫︁
Ω

𝜌(𝑡, 𝑥)d𝑥−
∫︁

Ω

ℎ(𝑥)d𝑥 = 0. (1.6)

The PNP system has a number of applications in many fields, such as electrical engineering, elctrokinetics,
elctrochemistry and biophysics. Therfore, the analytical study of the PNP system has also a long history in
the various context. An initial-boundary value problem for a system on the transport of mobile carriers in
a semiconductor is studied by Gajewski and Groger [35]. The existence and large time behavior of the PNP
equation is studied in [8]. Also, the convergence rate of solutions to the PNP system is studied in [4,7]. We refer
to a review paper [79] for a recent development of generalized PNP systems.

1.5. Boundary conditions

1.5.1. Phase boundary and the specular reflection for the VPFP system

Throughout this paper, we will denote the phase boundary in Ω × R as 𝛾
def= 𝜕Ω × R. Additionally we split

this boundary into an outgoing boundary 𝛾+, an incoming boundary 𝛾−, and a singular boundary 𝛾0 for grazing
velocities, defined as

𝛾+
def= {(𝑥, 𝑣) ∈ 𝜕Ω× R : 𝑛𝑥 · 𝑣 > 0} ,

𝛾−
def= {(𝑥, 𝑣) ∈ 𝜕Ω× R : 𝑛𝑥 · 𝑣 < 0} ,

𝛾0
def= {(𝑥, 𝑣) ∈ 𝜕Ω× R : 𝑛𝑥 · 𝑣 = 0} ,

(1.7)

where 𝑛𝑥 is the outward normal vector. We define the boundary integration for 𝑓(𝑥, 𝑣), (𝑥, 𝑣) ∈ 𝜕Ω× R,∫︁
𝛾±

𝑓d𝛾 =
∫︁

𝛾±

𝑓(𝑥, 𝑣)|𝑛𝑥 · 𝑣|d𝑆𝑥d𝑣,

where d𝑆𝑥 is the standard surface measure on 𝜕Ω and denote∫︁
𝛾

𝑓d𝛾 =
∫︁

𝛾+

𝑓(𝑥, 𝑣)d𝛾 −
∫︁

𝛾−

𝑓(𝑥, 𝑣)d𝛾.



1808 J.Y. LEE ET AL.

We also define the 𝐿2(𝛾) norm with respect to the measure |𝑛𝑥 · 𝑣|d𝑆𝑥d𝑣,

||𝑓 ||2𝛾
def= ||𝑓 ||2𝛾+

+ ||𝑓 ||2𝛾− .

In terms of 𝑓 , we formulate the specular reflection boundary condition as

𝑓(𝑡, 𝑥, 𝑣)|𝛾− = 𝑓(𝑡, 𝑥,𝑅(𝑥)𝑣), (1.8)

for all 𝑥 ∈ 𝜕Ω, where
𝑅(𝑥)𝑣 def= 𝑣 − 2𝑛𝑥(𝑛𝑥 · 𝑣).

One of the well-known a priori conservation laws for the Vlasov–Poisson–Fokker–Planck system (1.1) for the
specular boundary conditions is the conservation of mass. It means that the total mass, “Mass”, of distribution
𝑓𝜀(𝑡, 𝑥, 𝑣) is preserved for any time as follows:

Mass(𝑡) def=
∫︁

Ω

∫︁
R

𝑓𝜀(𝑡, 𝑥, 𝑣)d𝑣d𝑥 ≡
∫︁

Ω

∫︁
R

𝑓0(𝑥, 𝑣), (1.9)

which means d
d𝑡Mass(𝑡) = 0.

1.5.2. No-flux Boundary Condition for the PNP system

The PNP system is usually posed in a bounded domain with some boundary condition. In this paper, we use
the no-flux boundary condition for the PNP equation as follows:

(𝜕𝑥𝜌− 𝜌𝐸) · 𝑛𝑥 = 0, 𝑥 ∈ 𝜕Ω. (1.10)

This condition is one of the natural boundary conditions for a macroscopic model to explain the diffusion of ions
under the effect of potential. With the Dirichlet boundary condition (1.4)5 for the Poisson equation, it reduces
the following boundary conditions: This boundary condition implies that the system (1.1) has the conservation
of charges/ions. We can check this property by integrating (1.4)1 with respect to 𝑥 over the whole domain [−1, 1]
as follows:

𝜕𝑥𝜌(𝑡, 𝑥) = 𝜌(𝑡, 𝑥)𝐸(𝑡, 𝑥) = 0, 𝑥 ∈ 𝜕Ω.

𝜕𝑡

(︂∫︁
Ω

𝜌d𝑥

)︂
= [𝜕𝑥𝜌− 𝜌𝐸]1𝑥=−1 = 0.

This implies that the conservation of total density, that is,

Mass𝜌(𝑡) def=
∫︁

Ω

𝜌(𝑡, 𝑥)d𝑥 ≡
∫︁

Ω

𝜌0(𝑥)d𝑥, (1.11)

which means d
d𝑡Mass𝜌(𝑡) = 0.

1.6. The equilibrium state and the macroscopic quantities

1.6.1. The equilibrium state and the macroscopic quantities for the VPFP system

It is well-known that the VPFP system has a local equilibrium solution. Bonilla et al. [10] introduced the form
of the steady-state of the VPFP system in bounded domains with the reflection boundary condition on 𝑓(𝑡, 𝑥, 𝑣)
and the Dirichlet boundary condtion for the potential Φ(𝑡, 𝑥) without a background charge. They remark that
they can prove a result analogously with the Neumann boundary conditions instead of the Dirichlet boundary
conditions. In this regard, the VPFP system (1.1), which has the background charge as in (1.1)3, has the
equilibrium state as follows:

𝑓𝜀,∞(𝑥, 𝑣) = 𝐶𝑣𝑝𝑓𝑝𝑀(𝑣)𝑒−Φ∞(𝑥), (1.12)
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where 𝑀(𝑣) def= 1√
2𝜋

𝑒−
𝑣2
2 is the normalized Maxwellian and Φ∞(𝑥) is a weak solution of the Poisson–Boltzmann

(PB) equation:

−∆Φ∞(𝑥) = 𝐶𝑣𝑝𝑓𝑝𝑒
−Φ∞(𝑥) − ℎ(𝑥),

𝜕𝑥Φ∞(𝑥) = 0 on 𝑥 ∈ 𝜕Ω,
(1.13)

and

𝐶𝑣𝑝𝑓𝑝 = ‖𝑓0(·, ·)‖𝐿1
𝑥,𝑣

(︂∫︁
Ω

𝑒−Φ∞(𝑥)d𝑥

)︂−1

.

The system (1.13) is called the Poisson–Boltzmann (PB) equation. By Theorem 1 of [16], the system (1.13) has
a solution Φ∞(𝑥) unique up to an additive constant. If we assume the background charge ℎ(𝑥) as constant, we
can check that the system (1.13) has a solution Φ∞(𝑥) = 0 by the global neutrality condition (1.2). Therefore,
the VPFP system (1.1) has the global equilibrium state (𝑓𝜀,∞, 𝐸𝜀,∞) as

𝑓𝜀,∞(𝑥, 𝑣) =
‖𝑓0(·, ·)‖𝐿1

𝑥,𝑣

|Ω|
𝑀(𝑣), 𝐸𝜀,∞(𝑥) = −𝜕𝑥Φ∞(𝑥) = 0. (1.14)

We expect that the neural network solutions of the VPFP system reach the steady-state (1.14) (see simluation
Sect. 4.3).

The Lyapunov functional 𝜂(𝑡) for the VPFP system (1.1) is defined by the relative entropy of the solu-
tion 𝑓𝜀(𝑡, 𝑥, 𝑣) with respect to a non-normalized stationary distribution 𝑓 . As explained in [10], we define the
Lyapunov functional 𝜂(𝑡) as

𝜂(𝑡) def=
∫︁

Ω

∫︁
R

𝑓𝜀 log
(︂

𝑓𝜀

𝑓𝜀

)︂
d𝑣d𝑥, (1.15)

where 𝑓𝜀 is defined as

𝑓𝜀
def= exp

{︃
−𝑣2

2
− Φ𝜀(𝑡, 𝑥) +

1
‖𝑓0(·, ·)‖𝐿1

𝑥,𝑣

1
2

(︂∫︁
Ω

𝐸𝜀(𝑡, 𝑥)2d𝑥

)︂}︃
. (1.16)

Then, 𝜂(𝑡) can be reduced as

𝜂𝜀(𝑡) =
∫︁

Ω

∫︁
R

𝑓𝜀 log
(︂

𝑓𝜀

𝑓𝜀

)︂
d𝑣d𝑥

=
∫︁

Ω

∫︁
R

[︃
𝑓𝜀 log 𝑓𝜀 +

1
2
𝑓𝜀𝑣

2 + 𝑓𝜀Φ− 𝑓𝜀

2‖𝑓0(·, ·)‖𝐿1
𝑥,𝑣

(︂∫︁
Ω

𝐸𝜀(𝑡, 𝑥)2d𝑥

)︂]︃
d𝑣d𝑥

=
∫︁

Ω

∫︁
R

𝑓𝜀 log 𝑓𝜀d𝑣d𝑥 +
1
2

∫︁
Ω

∫︁
R

𝑓𝜀𝑣
2d𝑣d𝑥 +

∫︁
Ω

(︂∫︁
R

𝑓𝜀d𝑣

)︂
Φ𝜀d𝑥

− 1
2

∫︁
Ω

𝐸𝜀(𝑡, 𝑥)2d𝑥.

If we assume the background charge ℎ(𝑥) as constant and assume the zero-mean constraint for the Φ𝜀 (see
Rem. 2.1), then we have∫︁

Ω

(︂∫︁
R

𝑓𝜀d𝑣

)︂
Φ𝜀d𝑥 =

∫︁
Ω

(−𝜕𝑥𝑥Φ𝜀 + ℎ(𝑥)) Φ𝜀d𝑥 = −
∫︁

Ω

𝜕𝑥𝑥Φ𝜀Φ𝜀d𝑥 +
∫︁

Ω

ℎ(𝑥)Φ𝜀d𝑥

= − [(𝜕𝑥Φ𝜀)Φ𝜀]1−1⏟  ⏞  
=0

+
∫︁

Ω

(𝜕𝑥Φ𝜀)2d𝑥 +
∫︁

Ω

ℎ(𝑥)Φ𝜀d𝑥⏟  ⏞  
=0

=
∫︁

Ω

𝐸𝜀(𝑡, 𝑥)2d𝑥.
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Therefore, it yields that

𝜂𝜀(𝑡) =
∫︁

Ω

∫︁
R

𝑓𝜀 log 𝑓𝜀d𝑣d𝑥 +
1
2

∫︁
Ω

∫︁
R

𝑓𝜀𝑣
2d𝑣d𝑥 +

1
2

∫︁
Ω

𝐸𝜀(𝑡, 𝑥)2d𝑥
def= −Ent(𝑡) + KE(𝑡) + EE(𝑡),

where the entropy of the system “Ent”, the total kinetic energy “KE”, and the electric pontential energy “EE”
of the system are defined as

Ent(𝑡) def= −
∫︁

Ω×R
𝑓𝜀 log 𝑓𝜀d𝑥d𝑣, (1.17)

KE(𝑡) def=
1
2

∫︁
Ω×R

|𝑣|2𝑓𝜀d𝑥d𝑣, (1.18)

and
EE(𝑡) def=

1
2

∫︁
Ω

|𝐸𝜀|2d𝑥. (1.19)

The Lyapunov functional is also called the free energy defined as

FE(𝑡) def= −Ent(𝑡) + KE(𝑡) + EE(𝑡). (1.20)

Since the Lyapunov functional satisfies d
d𝑡𝜂(𝑡) ≤ 0, we expect that the free energy (1.20) is a non-increasing

function (see Sect. 4.3).

1.6.2. The equilibrium state and the free energy for the PNP system

The steady state of the PNP system (1.4) satisfies

𝜕𝑥(𝜕𝑥𝜌∞ − 𝜌∞𝐸∞) = 0,

from the equations (1.4)1. It is reduced to

𝜕𝑥𝜌∞
𝜌∞

− 𝐸∞ = Constant.

Therefore, we have the following steady state:

𝜌∞(𝑥) = 𝐶𝑝𝑛𝑝 exp
(︂∫︁

Ω

𝐸∞(𝑥)d𝑥

)︂
, (1.21)

where 𝐸∞(𝑥) is a solution of the Poisson–Boltzmann (PB) equation

𝜕𝑥𝐸∞(𝑥) = 𝐶𝑝𝑛𝑝 exp
(︂∫︁

Ω

𝐸∞(𝑥)d𝑥

)︂
− ℎ(𝑥),

𝐸∞(𝑥) = 0 on 𝑥 ∈ 𝜕Ω,

(1.22)

with some constant 𝐶𝑝𝑛𝑝. We can express the constant 𝐶𝑝𝑛𝑝 using the total density (1.11) as

𝐶𝑝𝑛𝑝 =

(︃∫︁
[−1,1]

𝜌0(𝑥)d𝑥

)︃(︃∫︁
[−1,1]

exp
(︂∫︁

Ω

𝐸∞(𝑥)d𝑥

)︂
d𝑥

)︃−1

. (1.23)

The PB equation (1.22) has a solution 𝐸∞(𝑥) = 0 similar to the PB equation (1.13) in the VPFP system.
Therefore, the PNP system (1.4) has the steady state as follows:

𝜌∞(𝑥) = 𝐶𝑝𝑛𝑝, 𝐸∞(𝑥) = 0, (1.24)
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with the constant 𝐶𝑝𝑛𝑝 which is defined in (1.23). We expect that the neural network solutions of the PNP
system reach the steady-state (1.24) (see simluation Sect. 5.3).

Also, the free energy FE𝜌(𝑡) of the PNP system (1.4) is defined as follows (similar to [33,53,63]):

FE𝜌(𝑡) def=
∫︁

Ω

(︂
𝜌(𝑡, 𝑥) log 𝜌(𝑡, 𝑥) +

1
2
𝐸(𝑡, 𝑥)2

)︂
d𝑥, (1.25)

which has both the entropic part and the interaction part. The first term 𝜌(𝑡, 𝑥) log 𝜌(𝑡, 𝑥) on the right-hand side
is the entropy related to the Brownian motion of each particles, and the second term 1

2𝐸(𝑡, 𝑥)2 is the electric
potential energy of the particles.

Under the specific boundary conditions (1.10) and (1.4)5, the PNP system has the following relation:∫︁
Ω

Φ(𝜌(𝑡, 𝑥)− ℎ(𝑥))d𝑥 =
∫︁

Ω

Φ𝜕𝑥𝐸d𝑥 = −
∫︁

Ω

Φ𝜕𝑥𝑥Φd𝑥

= −[Φ𝜕𝑥Φ]1−1 +
∫︁

Ω

(𝜕𝑥Φ)2d𝑥 =
∫︁

Ω

(𝜕𝑥Φ)2d𝑥 =
∫︁

Ω

𝐸(𝑡, 𝑥)2d𝑥,

by multiplying Φ(𝑡, 𝑥) onto (1.4)3, integrating it over the domain Ω and using the integration by parts with
respect to 𝑥. Therefore, the free energy can be rewritten as

FE𝜌(𝑡) =
∫︁

Ω

(︂
𝜌(𝑡, 𝑥) log 𝜌(𝑡, 𝑥) +

1
2

(𝜌(𝑡, 𝑥)− ℎ(𝑥))Φ
)︂

d𝑥.

By taking the time derivative of the free energy FE𝜌(𝑡), we can derive

d
d𝑡

FE𝜌(𝑡) =
∫︁

Ω

(𝜌𝑡 log 𝜌 + 𝜌𝑡) d𝑥 +
1
2

∫︁
Ω

((𝜌− ℎ(𝑥))Φ𝑡 + 𝜌𝑡Φ) d𝑥

=
∫︁

Ω

𝜌𝑡 (log 𝜌 + 1 + Φ) d𝑥 +
1
2

∫︁
Ω

((𝜌− ℎ(𝑥))Φ𝑡 − 𝜌𝑡Φ) d𝑥.

Then, we have

d
d𝑡

FE𝜌(𝑡) =
∫︁

Ω

𝜕𝑥(𝜌𝑥 − 𝜌𝐸) (log 𝜌 + 1 + Φ) d𝑥 +
1
2

∫︁
Ω

(−Φ𝑥𝑥Φ𝑡 + Φ𝑡𝑥𝑥Φ) d𝑥

= −
∫︁

Ω

(𝜌𝑥 − 𝜌𝐸)
(︂

𝜌𝑥

𝜌
+ Φ𝑥

)︂
d𝑥 +

1
2

∫︁
Ω

𝜕𝑥 (ΦΦ𝑡𝑥 − Φ𝑡Φ𝑥) d𝑥

= −
∫︁

Ω

1
𝜌

(𝜌𝑥 − 𝜌𝐸)2d𝑥 +
1
2

[ΦΦ𝑡𝑥 − Φ𝑡Φ𝑥]1−1 = −
∫︁

Ω

1
𝜌

(𝜌𝑥 − 𝜌𝐸)2d𝑥.

Therefore, the PNP system (1.4) satisfies the following free energy dissipation law:

d
d𝑡

FE𝜌(𝑡) = −
∫︁

Ω

1
𝜌

(𝜌𝑥 − 𝜌𝐸)2d𝑥 ≤ 0. (1.26)

We expect that the free energy (1.25) of the PNP system is a non-increasing function (see simulation Sect. 5.3).

1.7. Mathematical results on the diffusion limit

In this section, we introduce past results on the diffusion limit of the VPFP system. There are two scalings of
the VPFP. The first one is the diffusion limit (or the parabolic limit, or the low field limit), and the second one
is the drift limit (or the hyperbolic limit, or the high field limit). In this paper, we consider the first one on the
diffusion limit of the VPFP system only. The diffusion limit has been extensively investigated in many works.
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Figure 2. Illustration of AP schemes.

Poupaud [70] considers the diffusion limit of the semiconductor Boltzmann equation. The diffusion limit for the
VPFP system with a given background was considered by [36, 71] in the two-dimensional case. And later, El
Ghani and Masmoudi [30] extend these results to higher dimensional cases in the renormalized sense. The case
of multiple-species dynamics is also considered in [41, 83]. A recent paper [83] of Wu et al. treats the diffusion
limit of the VPFP system in a bounded domain with reflection boundary conditions. We used the results of
this paper to show the bottom side of Figure 1. Also, there are many works that deal with the drift limit as in
[3, 9, 37,66].

1.8. Existing numerical methods and an Asymptotic Preserving scheme

In this section, we introduce a brief history of the numerical methods to approximate the solutions of the
VPFP system and the PNP equation. We also introduce the numerical studies concerning the asymptotic
expansions on the small parameters, the so-called Asymptotic Preserving (AP) scheme.

There are many numerical studies to solve the VPFP system and related systems. There is a wide range
of literature on numerical analysis for the Fokker–Planck (FP) equation including the finite difference method
[19, 74], and its conservative type scheme [6, 13–15, 23]. The particle method [1, 40] is an effective method
for the stochastic properties of the Fokker–Planck operator. Also, Wollman and Ozizmir [80–82] provided the
deterministic particle method for the VPFP systems in one and two-dimensional cases. Another approach is
the spectral method to solve the Fokker–Planck equation. In [68], they develop a new spectral method based
on a Fourier spectral approximation for the Boltzmann equation. Filbet and Pareschi [32] extended the method
to the nonhomogenous case. The review paper [25] contains the latest references on numerical methods for
collisional kinetic equations.

Also, a lot of efforts have been made to the numerical methods for the PNP system. Many of the existing
methods have been constructed for both one-dimensional and higher dimensional cases in various chemical and
biological contexts. We refer to some recent studies for solving time-dependent PNP systems. Solkalski et al.
[76] proposed the finite difference scheme for analyzing liquid junction and ion-selective membrane potentials.
Hyon et al. [53] provided another finite element method with the back-Euler method for the modified PNP
system. It is considered to be difficult for numerical schemes to provide the physical properties of the PNP
system; namely the nonnegativity principle, the mass conservation, and the free energy dissipation. Regarding
these difficulties, Liu and Wang [62] developed a finite difference method for the PNP system. They focus on
the development of a free energy satisfying numerical method for the PNP system. They also provided the
discontinuous Galerkin scheme for a one-dimensional case in [63]. The implicit methods with the trapezoidal
rule and backward differentiation are presented in [33].

Regarding the numerical methods to capture the relation between two regimes, Shi Jin [54] first introduced
the numerical scheme that preserves the asymptotic limits from the mesoscopic to the macroscopic models for
transport in diffusive regimes – the asymptotic-preserving (AP) scheme. The commutative diagram of Figure 2
(taken from Figure 1 of [55]) illustrates the AP scheme of [55]. As explained in [55], ℱ𝜀 is a mesoscopic model
which depends on parameter 𝜀 that characterizes the small scale. ℱ𝜀

𝛿 is a discretization of ℱ𝜀 with parameter 𝛿
that is related to numerical discretization (such as mesh size and/or time step). As 𝜀 goes to zero, the mesoscopic
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model ℱ𝜀 is approximated by a macroscopic model ℱ0. Then, the scheme ℱ𝜀
𝛿 is called AP if the asymptotic

limit of ℱ𝜀
𝛿 as 𝜀 → 0 with 𝛿 fixed, denoted by ℱ0

𝛿 , is a good approximation of ℱ0.
The AP schemes are developed for various equations. Especially, there are many studies that deal with

the AP schemes for the kinetic equations with the Euler regime. Filbet and Jin [31] developed a penalization
method to overcome the Boltzmann integral, which is a fully nonlinear collision operator. Jin and Yan [57]
generalized their idea to the nonhomogeneous Fokker–Planck–Landau equation. Dimarco and Pareschi [24]
introduce an exponential Runge–Kutta method for kinetic equations. The AP schemes for the high field limit of
the VPFP system are considered in [20,56]. In [20], they also developed the AP scheme based on a micro-macro
decomposition for the diffusion limit of the Vlasov–Poisson–BGK model. We refer to the recent surveys by Jin
[55], Degond [22] and Pareschi and Russo [67].

Given the existing numerical methods in the literature, the main distinctive of this paper is the use of the
neural network approach as a solver for these important problems. We used the neural network method as a
function approximator for the VPFP system, PNP system, and the AP scheme as the parameter 𝜖 goes to 0.
The aim of this paper is to complete Figure 1 of neural network vesion similar to Figure 2 of the numerical
analysis version.

1.9. Neural network and an approach to solve a PDE

Neural network has also drawn attention in the machine learning community. It has been used for various
fields such as natural language process, image recognition, speech recognition, and others. Deep Learning, which
uses a deep stack of neural network layer called a Deep Neural Network (DNN), is effectively applied in these
areas. The neural network architecture is introduced in [65] for the first time. There are theoretical results
to justify the use of neural networks in these applications such as [21, 34, 42, 43]. The key theorem to these
results is the universal approximation theorem. The universal approximation theorem states that an arbitrary
real-valued function can be well-approximated by a feed-forward neural network. Later, Li [61] showed that the
neural network with one hidden layer could approximate not only a target function but also its higher partial
derivatives on a compact set.

Then Deep Learning as a PDE solver has also been studied; Lagaris et al. [59,60] suggested the use of neural
networks to solve ODEs and PDEs. Recently, Raissi et al. [72] introduced physics informed neural networks.
They design data-driven algorithms for two main problems: data-driven solutions and data-driven discovery
of partial differential equations. The data-driven method to solve the high-dimensional PDEs with a DNN is
proposed in [75]. The second problem, called the forward-inverse problem, is also considered in [58] with a
theoretical analysis of the convergence of the DNN solutions to the classical solutions. In [2], they present a
method for approximating the solution of PDEs using an adaptive collocation strategy. Also, Han et al. [39]
deal with the uniformly accurate moment system using the kinetic equation as an example.

Hwang et al. [52] introduce the Deep Neural Network solutions to the kinetic Fokker–Planck equation in a
bounded interval under the varied types of the physical boundary conditions. They observed the asymptotic
behaviors of the DNN solutions to verify an agreement with theoretical results. They also provide the theoretical
proofs on the relationship between the DNN solutions and the a priori analytic solutions. Our paper is motivated
by several ideas in [52]. We expand their ideas to a more general VPFP system and its diffusion limit.

1.10. Outline of the paper

Each of the four sides of Figure 1 consists of four parts (Part I, II, III, and IV). In Section 2 (Part I), we show
that the solutions of the VPFP system converge to the solutions of the PNP system as the Knudsen number
𝜀 tends to zero, which corresponds to the bottom side of Figure 1. To this end, we use the theoretical result
from the paper [83]. In Section 3, we will introduce in detail our Deep Learning method to approximate the
solution of the VPFP system and the solution of the PNP system, which is used for the numerical simulations
in Part II, III, and IV. Part II will include the detailed descriptions on the DNN architectures for each system
(Sect. 3.2), the definition of grid points (Sect. 3.3), and a “Grid Reuse” method that is a newly devised tool in
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the paper (Sect. 3.4) to capture the dynamics under a small Knudsen number 𝜀. In Section 4 (Part II), we will
introduce the DNN approximated solutions to the VPFP system (1.1), which corresponds to the left-hand side
of Figure 1. We will provide the suitable loss functions (4.7) to approximate the VPFP system using the Deep
Learning in Section 4.1. We will prove the convergence of the DNN solution to an analytic solution of the VPFP
system as the loss function vanishes in Section 4.2. We will also provide the numerical simulations that show
the asymptotic behaviors of macroscopic quantities and the pointwise values of the DNN solution to the VPFP
system in Section 4.3. In Section 5 (Part III), we will introduce the DNN approximated solutions to the PNP
system (1.4), which corresponds to the right-hand side of Figure 1. The contents would be analogous to those in
Section 4. In Section 6 (Part IV), we will provide several numerical simulations to see the trend of the diffusion
limit from the VPFP system to the PNP system, which corresponds to the upper side of Figure 1. We will
analyze the convergence (2.4) and (2.5) using the DNN solutions of the VPFP system by varying the Knudsen
number from 1 to 0.05 via the Asymptotic-Perserving (AP) scheme. Finally, in Section 7, we will summarize
our methods and the results.

2. Part I. On convergence of the VPFP solution to the PNP solution

In this section, we introduce the convergence of solutions of the VPFP system to a solution of the PNP system
from the recent paper ([83], Thm. 2.1). Wu et al. [83] prove that the VPFP system (1.1) with the Maxwellian
reflection boundary condition converges to the PNP system (1.4) as 𝜀 tends to zero for the multi-species model
case. To be more specific, they consider the renormalized solution (𝑓𝜀,𝑖, Φ𝜀) of a rescaled 𝑁 -species VPFP system
(𝑖 = 1, 2, . . . , 𝑁) in a bounded interval Ω ⊂ R𝑑 using the scaled parameters as

𝜕𝑡𝑓𝜀,𝑖 +
1
𝜀
𝑣 · ∇𝑥𝑓𝜀,𝑖 −

𝜅𝑖𝑧𝑖

𝜀
∇𝑥Φ𝜀 · ∇𝑣𝑓𝜀,𝑖 =

𝜁𝑖

𝜀2
∇𝑣 · (𝑣𝑓𝜀,𝑖 + 𝜅𝑖∇𝑣𝑓𝜀,𝑖),

−𝜛∆𝑥Φ𝜀 =
𝑁∑︁

𝑖=1

𝑧𝑖

∫︁
R𝑑

𝑓𝜀,𝑖(𝑡, 𝑥, 𝑣)d𝑣 − ℎ(𝑥),
(2.1)

with initial condition, reflection boundary condition (especially, Maxwellian boundary condition) for the dis-
tribution function 𝑓𝜀,𝑖 and zero-outward electric field condition (Neumann boundary condition) for the electric
potential Φ𝜀. They show that the solution (𝑓𝜀,𝑖, Φ𝜀) converges to (𝜌𝑖(𝑡, 𝑥)𝑀𝑖(𝑣), Φ(𝑡, 𝑥)), where (𝜌𝑖, Φ) is a weak
solution of the PNP system in a bounded interval Ω as

𝜕𝑡𝜌𝑖 +∇𝑥 ·

𝐽𝑖(𝑡,𝑥)
def
=⏞  ⏟  (︂

− 1
𝜁𝑖
∇𝑥𝜌𝑖 −

𝑧𝑖

𝜁𝑖
𝜌𝑖∇𝑥Φ

)︂
= 0,

−𝜛∆𝑥Φ =
𝑁∑︁

𝑖=1

𝑧𝑖𝜌𝑖 − ℎ(𝑥),

(2.2)

with the initial-boundary conditions given as follows

𝐽𝑖 · 𝑛 = 0, on 𝜕Ω,

∇𝑥Φ · 𝑛 = 0, on 𝜕Ω,
(2.3)

as 𝜀 tends to zero (𝑀𝑖 = 𝑀𝑖(𝑣)’s are the normalized Maxwellians for each species).
Using this result, we derive our specific system (1.1) with the boundary condition. Firstly, we specify the

1-dimension bounded domain Ω = (−1, 1) ⊂ R on the spatial domain and R on the velocity domain. Also, we
consider the single-species case with 𝑁 = 1. This case is reasonable in plasma physics when the relatively huge
ions are supposed to be static in the background. In this case, we denote the distribution function 𝑓𝜀,𝑖 as 𝑓𝜀

for the VPFP system, since 𝑖 = 1. We also choose the classical specular reflection boundary condition for the
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𝑓𝜀(𝑡, 𝑥, 𝑣) instead of the Maxwellian boundary condition used in [83]. We use the Dirichlet boundary condition
for the electric force 𝐸𝜀(𝑡, 𝑥) which is the same as the Neumann boundary condition for the electric field Φ𝜀(𝑡, 𝑥)
assumed in [83]. The boundary conditions (2.3) imply the Neumann condition (∇𝑥𝜌𝑖 · 𝑛 = 0 on 𝜕Ω) for the
density function and the Dirichlet condition (𝐸 = ∇𝑥Φ ·𝑛 = 0 on 𝜕Ω) for the electric force 𝐸(𝑡, 𝑥). Additionally,
we set all the parameters to be 1 in the systems (2.1) and (2.2) except the Knudsen number 𝜀 to take the limit.

Then, the solution 𝑓𝜀 (corresponding to the 𝑓𝜀,𝑖=1) and the solution 𝐸𝜀 = 𝜕𝑥Φ𝜀 to the VPFP system (1.1)
with the specular boundary condition (1.8) satisfy the following convergence:

𝑓𝜀(𝑡, 𝑥, 𝑣) → 𝜌(𝑡, 𝑥)𝑀(𝑣) in 𝐿1(0, 𝑇 ; 𝐿1(Ω× R)), (2.4)

where 𝑀(𝑣) = 1√
2𝜋

𝑒−
𝑣2
2 and

𝐸𝜀(𝑡, 𝑥) → 𝐸(𝑡, 𝑥) in 𝐿2(0, 𝑇 ; 𝐿𝑝(Ω)), 1 ≤ 𝑝 < 2 (2.5)

as the Knudsen number 𝜀 tends to zero, where the density 𝜌 (corresponding to the 𝜌𝑖=1) and the solution 𝐸
satisfy the system (1.4) with the no-flux boundary condition (1.10). In Part IV (Sect. 6) of this paper, we
provide the corresponding numerical simulations which show the trend of the convergence (2.4) and (2.5).

Remark 2.1. In [83], they prove the diffusion limit with two assumption for Φ𝜀 on the Poisson equation; the
global neutrality condition and the zero-mean constraint. The global neutrality condition is the same as the
condition (1.2) we assumed. They also assume the zero-mean constraint as follows:∫︁

Ω

Φ𝜀d𝑥 = 0 (2.6)

his constraint is necessary to uniquely determine the solution Φ𝜀. However, we are interested in the solution
𝐸𝜀(𝑡, 𝑥) = −𝜕𝑥Φ𝜀(𝑡, 𝑥) which is the partial of Φ(𝑡, 𝑥) instead of Φ𝜀(𝑡, 𝑥) in this paper. Without loss of generality,
we can assume (2.6) to apply the diffusion limit theorem from [83].

3. Simulation methodology: The Deep Learning approach

In this section, we introduce our deep learning method to solve the Cauchy problem to the Vlasov–Poisson–
Fokker–Planck system (1.1) and the Poisson–Nernst–Planck (PNP) system (1.4).

3.1. A Deep Learning approach for solving partial differential equation

A Deep Learning algorithm can be described in terms of a non-linear function approximation method using
a Deep Neural Network (DNN). A Deep Neural Network consists of a sequence of multiple layers. Each layers
has several neurons, which receive the neuron activation from the pre-layer as input. The neurons implement
the weighted sum of the input and apply an activation function in order to transform the output to a non-linear
one. The output is transmitted to neurons in the post-layer. We assume that a DNN has 𝐿 layers; it has an
input layer, 𝐿−1 hidden layers and an output layer (𝐿-th layer). Similarly to the explanation of [52], we denote
the relation between the 𝑙-th layer and the (𝑙 + 1)-th layer (𝑙 = 1, 2, . . . , 𝐿− 1) as

𝑧
(𝑙+1)
𝑗 =

𝑚𝑙∑︁
𝑖=1

𝑤
(𝑙+1)
𝑗𝑖 𝜎̄𝑙

(︀
𝑧𝑙
𝑖

)︀
+ 𝑏

(𝑙+1)
𝑗 ,

where 𝑚 = (𝑚0, 𝑚1, 𝑚2, . . . ,𝑚𝐿−1), 𝑤 =
{︁

𝑤
(𝑘)
𝑗𝑖

}︁𝑚𝑘−1,𝑚𝑘,𝐿

𝑖,𝑗,𝑘=1
, 𝑏 =

{︁
𝑏
(𝑘)
𝑗

}︁𝑚𝑘,𝐿

𝑗=1,𝑘=1
, and

– 𝑧𝑙
𝑖: the 𝑖-th neuron in the 𝑙-th layer

– 𝜎̄𝑙: the activation function in the 𝑙-th layer
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– 𝑤
(𝑙+1)
𝑗𝑖 : the weight between the 𝑖-th neuron in the 𝑙-th layer and the 𝑗-th neuron in the (𝑙 + 1)-th layer

– 𝑏
(𝑙+1)
𝑗 : the bias of the 𝑗-th neuron in the (𝑙 + 1)-th layer

– 𝑚𝑙: the number of neurons in the 𝑙-th layer.

Note that the relation between the input layer and the first hidden layer is expressed as follows:

𝑧1
𝑗 =

3∑︁
𝑖=1

𝑤1
𝑗𝑖𝑧

0
𝑖 + 𝑏1

𝑗 ,

where (𝑧0
1 , 𝑧0

2 , 𝑧0
3) = (𝑡, 𝑥, 𝑣).

The deep learning algorithm learns the complex nonlinear mapping by adapting these weights 𝑤
(𝑙+1)
𝑗𝑖 and

biases 𝑏
(𝑙+1)
𝑗 to make the output of Deep Neural Network similar to the target function, in our case, the solution

of the VPFP and PNP system. The Deep learning uses the back-propagation learning algorithm, which applies
the chain rule to calculate the influence of each weight and each bias to reduce a pre-defined cost function,
which is called “loss function” in the Deep Learning. Then, the algorithm uses the gradient method to update
the weights and biases.

To approximate a solution of PDEs using the deep learning algorithm, we need an appropriate loss function
with respect to the PDE system. For example, suppose we coinsider the following parabolic PDE:

𝜕𝑢

𝜕𝑡
(𝑡, 𝑥) + ℒ𝑢(𝑡, 𝑥) = 0, (𝑡, 𝑥) in [0, 𝑇 ]× Ω,

𝑢(0, 𝑥) = 𝑢0(𝑥), 𝑥 in Ω,

ℬ𝑢(𝑡, 𝑥) = 𝑞(𝑥), (𝑡, 𝑥) in [0, 𝑇 ]× 𝜕Ω,

where ℒ is a differential operator and ℬ is the boundary operator with known functions 𝑢0(𝑥) and 𝑞(𝑥). In
many papers (e.g. [72,75]), they approximate the solution 𝑢(𝑡, 𝑥) using the DNN output 𝑢𝑛𝑛(𝑡, 𝑥) with the loss
function as

Loss(𝑢𝑛𝑛) =
⃦⃦⃦⃦

𝜕𝑢𝑛𝑛

𝜕𝑡
(𝑡, 𝑥) + ℒ𝑢𝑛𝑛(𝑡, 𝑥)

⃦⃦⃦⃦2

𝐿2([0,𝑇 ]×Ω)

+ ‖𝑢𝑛𝑛(0, 𝑥)− 𝑢0(𝑥)‖2𝐿2(Ω) + ‖ℬ𝑢𝑛𝑛(𝑡, 𝑥)− 𝑞(𝑡, 𝑥)‖2𝐿2([0,𝑇 ]×𝜕Ω) . (3.1)

The proposed loss function is an intuitive one to approximate the solution of PDE. In our case, we propose
slightly different loss functions for each system. We define the loss function for the VPFP system in Section 4.1
(Part II) and for the PNP system in Section 5.1 (Part III). We propose the loss functions based on our theoretical
evidence. In each section, we prove that the DNN output to the VPFP system and PNP system converges to
a priori classical solution to each system if the proposed loss function goes to zero. The details are precisely
described in Part II and Part III.

3.2. Our Deep Learning algorithm and the architecture

We take two different neural network structures which share the same inputs to approximate the coupleded
nonlinear equations. Each DNN has four hidden layers and each layer has 3(or 2)-100-100-100-100-1 neurons. For
the VPFP system, the two Deep Neural Networks are used to approximate the solutions, 𝑓 and 𝐸, respectively.
The neural network structure is precisely shown in Figure 3.

We denote the approximated solution as (𝑓𝑛𝑛
𝜀 (𝑡, 𝑥, 𝑣; 𝑚, 𝑤, 𝑏), 𝐸𝑛𝑛

𝜀 (𝑡, 𝑥; 𝑚, 𝑤, 𝑏)), which consists of the output
of each DNN. The two outputs 𝑓𝑛𝑛

𝜀 (𝑡, 𝑥, 𝑣; 𝑚, 𝑤, 𝑏) and 𝐸𝑛𝑛
𝜀 (𝑡, 𝑥; 𝑚, 𝑤, 𝑏) are used to calculate the pre-defined loss

function. Then, we use a gradient descent algorithm to update the weights and biases of our model’s parameters
by iteratively moving in the direction of reducing the loss function. In this work, we use the Adam (Adaptive
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Figure 3. The DNN structure for the VPFP system.

Figure 4. The DNN structure for the PNP system.

Moment Estimation) optimizer, an efficient variant of the stochastic gradient descent algorithm which is widely
used in deep learning applications due to quick convergence in training.

Similarly, we use the two Deep Neural Networks to approximate the solutions (𝜌, 𝐸) for the PNP system as
in Figure 4. We denote the approximated solution as (𝜌𝑛𝑛(𝑡, 𝑥; 𝑚, 𝑤, 𝑏), 𝐸𝑛𝑛(𝑡, 𝑥; 𝑚, 𝑤, 𝑏)).

For the four hidden layers in each DNN, we use the hyper-tangent activation function (𝜎̄(𝑥) = 𝑒𝑥−𝑒−𝑥

𝑒𝑥+𝑒−𝑥 ), which
is the common activation function in Deep Learning literature. While the choice of the activation function for
the hidden layers is quite clear, the choice of an activation function for the output layer depends on the purposes.
We use the Softplus activation function (𝜎̄(𝑥) = ln(1 + 𝑒𝑥)) only for the output 𝑓𝑛𝑛

𝜀 (𝑡, 𝑥, 𝑣; 𝑚, 𝑤, 𝑏). It is one
of the main issues to preserve the positivity of the output when the numerical scheme is constructed. Since
the Softplus function has outputs in scale of (0, +∞), we easily apply the positivity constraint for the output
𝑓𝑛𝑛

𝜀 (𝑡, 𝑥, 𝑣; 𝑚, 𝑤, 𝑏).
We use the PyTorch library for deep learning. It is one of the most standard deep learning frameworks due

to its simplicity and ease of use. We also use the Adam optimizer in PyTorch library with the Learning rate
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scheduling, which adjusts the learning rate based on the number of epochs. Regarding the loss function, we
need the derivation and integration of the output with respect to the variables 𝑡, 𝑥 and 𝑣. To approximate the
derivatives of the neural network output with respect to the input variables, we use the Autograd package in
PyTorch library. It provides Automatic Differentiation (AD), which is one of the powerful techniques in scientific
computing. The AD is different from the usual differentiation methods, such as numerical differentiation or the
symbolic differentiation. We refer to the survey papers [5,69] for more details. Also, we use the trapezoidal rule
from the PyTorch library to approximate the integration. The specific loss functions we defined for the VPFP
system and the PNP system are explained in Part II (VPFP) and Part III (PNP).

3.3. Training data: grid points

To approximate the solutions to the VPFP system and the PNP system via the Deep Learning algorithm,
we make the grid points for each variable domain as inputs in the neural networks. We need three-dimensional
time-space-velocity grid for the probability density 𝑓𝑛𝑛

𝜀 (𝑡, 𝑥, 𝑣; 𝑚, 𝑤, 𝑏) in VPFP system and two-dimensional
time-space grid for the density 𝜌𝑛𝑛(𝑡, 𝑥) in PNP system and the force field 𝐸𝑛𝑛

𝜀 (𝑡, 𝑥; 𝑚, 𝑤, 𝑏) to the VPFP system
and 𝐸𝑛𝑛(𝑡, 𝑥; 𝑚, 𝑤, 𝑏) to the PNP system. We choose the time interval [0, 𝑇 ] as [0, 5] only for the VPFP system
with 𝜀 = 1 and [0, 1] with the smaller Knudsen number 𝜀, which is enough to see the steady-state of both the
VPFP system and the PNP system. Also, we truncate the momentum space for the 𝑣 variable as 𝑉

def= [−10, 10]
for training and assume that 𝑓𝑛𝑛

𝜀 (𝑡, 𝑥, 𝑣; 𝑚, 𝑤, 𝑏) is 0 if |𝑣| > 10. Note that we sample the grid points for the each
variables 𝑡, 𝑥 and 𝑣 randomly for each iteration. Compared to the grid created by dividing the domain uniformly,
this sampling-based approach has the effect of selecting infinite grids in the each domain. More precisely, the
grid points for training 𝑓𝑛𝑛

𝜀 (𝑡, 𝑥, 𝑣; 𝑚, 𝑤, 𝑏) are chosen randomly as follows:

{(𝑡𝑖, 𝑥𝑗 , 𝑣𝑘)}𝑖,𝑗,𝑘 ∈ [0, 𝑇 ]× Ω× 𝑉 (3.2)

for the governing equation,
{(𝑡 = 0, 𝑥𝑗 , 𝑣𝑘)}𝑗,𝑘 ∈ Ω× 𝑉 (3.3)

for the initial condition and
{(𝑡𝑖, 𝑥 = −1 or 1, 𝑣𝑘)}𝑖,𝑘 ∈ [0, 𝑇 ]× 𝑉 (3.4)

for the boundary condition with 𝑇 = 1 or 𝑇 = 5, Ω = [−1, 1] and 𝑉 = [−10, 10]. In every epoch, we sample the
grid points for the time 𝑡 as {𝑡𝑖}10𝑖=1, for the position 𝑥 as {𝑥𝑗}10𝑗=1, and for the velocity 𝑣 as {𝑣𝑘}1000𝑘=1 . We use
a larger number of velocity grids than the time and position grids to approximate the integration with respect
to the velocity in the VPFP system (1.1)3. We can choose the grid points similarly for 𝜌𝑛𝑛(𝑡, 𝑥), 𝐸𝑛𝑛

𝜀 (𝑡, 𝑥), and
𝐸𝑛𝑛(𝑡, 𝑥).

3.4. “Grid Reuse” method to capture the small Knudsen number

In Part IV, we provide the numerical simulations when the Knudsen number 𝜀 is small. It is hard to capture
the asymptotic limit with the fixed numerical discretization in numerical schemes.

To overcome this challenge, we propose a newly devised technique in this paper; we call it “Grid Reuse”
method. The Deep Neural Network is trained to minimize the sum of loss functions at randomly sampled grid
points in every epoch, as explained in (3.2)–(3.4). The idea of our “Grid Reuse” method is that we add more
top−𝑘 grid points of these randomly sampled grid points to use for training in the next epoch. Here the top−𝑘
grid points {𝑡𝛼𝑖

, 𝑥𝛽𝑖
, 𝑣𝛾𝑖

}𝑘
𝑖=1 are being selected such that the integrand is being the largest before we take the

integration of the error with respect to the variables 𝑡, 𝑥 and 𝑣. Namely, we choose the top−𝑘 grid points that
make the largest values of the integrand in the loss function (4.1). The “Grid Reuse” method helps to solve the
time dependency, which is one of the main difficulties on capturing the diffusion limit. Also, we note that we
only save grid points of 2-tuple (𝑡, 𝑥) as in Algorithm 1 though the top−𝑘 grid points consist of 3-tuple (𝑡, 𝑥, 𝑣).
This is because we need to calculate the integration term

∫︀
𝑉

𝑓𝑛𝑛
𝜀 (𝑡, 𝑥, 𝑣; 𝑚, 𝑤, 𝑏)d𝑣 for the loss function (4.2)

when we reuse the top−𝑘 grid points. Therefore, we only catch the temporal and spatial grid points (𝑡, 𝑥) where
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the integrand in the loss function has the largest value. We then make the three-dimensional time-space-velocity
grid with a randomly sampled velocity grid in 𝑉 = [−10, 10].

The “Grid Reuse” method is inspired by the Residual-based adaptive refinement (RAR) method in [64] and
the adaptive collocation method in [2]. The technique of these methods and our method are similar to the
adaptive mesh refinement method in numerical analysis.

3.5. Summary of Deep Learning algorithm

Finally, we summarize our Deep Learning algorithm for the VPFP system as follows:

Algorithm 1 Deep Learning algorithm for the VPFP system
1: for number of epochs do
2: Sampling data:
3: Sample 𝑚 samples 𝑡1, 𝑡2, . . . , 𝑡𝑚 from [0, 1] (or [0, 5]).
4: Sample 𝑛 samples 𝑥1, 𝑥2, . . . , 𝑥𝑛 from [−1, 1].
5: Sample 𝑝 samples 𝑣1, 𝑣2, . . . , 𝑣𝑝 from [−10, 10].
6: Make a pair the samples to set the training data as (3.2)–(3.4).
7: Add new top-𝑘 training data paired with the velocity samples.
8: Evaluate the loss function:
9: Approximate the derivative of the DNN output (Autograd).

10: Approximate the integration of the DNN output (Trapezoidal rule).
11: Evaluate the loss function for the VPFP system (4.7).
12: Updating parameters:
13: Update neural network parameters using the Adam optimizer:

𝑤 ← 𝑤new,

𝑏← 𝑏new,

14: in the direction of minimizing the pre-defined loss function.
15: Grid Reuse technique:
16: Choose top−𝑘 grid points {𝑡𝛼𝑖 , 𝑥𝛽𝑖 , 𝑣𝛾𝑖}𝑘𝑖=1 which make the integrand in the loss function (4.1) the largest.
17: Save top−𝑘 grid points {𝑡𝛼𝑖 , 𝑥𝛽𝑖}

𝑘
𝑖=1.

18: end for

We also apply a similar Deep Learning algorithm to the PNP system.

4. Part II. On convergence of DNN solutions to an analytic solution to the
VPFP system and simulation results

In this section, we provide a DNN solution to the VPFP system. This section consists of three subsections.
First, we propose the loss functions of the VPFP system for deep learning. We also prove the convergence of
DNN solutions to an analytic solution of the VPFP system in two steps. Finally, we show that the simulation
results on DNN solutions to the VPFP system agree with theoretical results by comparing the time-asymptotic
behaviors and the macroscopic physical quantities which are defined in Section 1.6.1.

We will focus on the VPFP system (1.1) when the Knudsen number 𝜀 is 1 in this section. The fixed Knudsen
number can be arbitrarily chosen. For the sake of simplicity, we abuse notations and write 𝑓𝜀(𝑡, 𝑥, 𝑣) as 𝑓(𝑡, 𝑥, 𝑣)
and 𝐸𝜀(𝑡, 𝑥) as 𝐸(𝑡, 𝑥) in this section. Later, in Part IV (Sect. 6), we consider the varied Knudsen number
regimes.
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4.1. Loss functions for the VPFP system

In Algorithm 1, the Adam optimizer finds the optimal parameters 𝑤new and 𝑏new in the direction of minimizing
a loss function. Thus, we need to define the loss functions for the Vlasov–Poisson–Fokker–Planck system: Loss𝑓𝑝

GE

for the VPFP system (1.1)1 and (1.1)3, Loss𝑓𝑝
IC for the initial condition (1.1)2 and (1.1)4, Loss𝑓𝑝

BC for the boundary
conditions (1.8) and (1.1)5. Note that we use the superscript Loss𝑓𝑝 for all loss functions to the VPFP system
to distinguish it from the superscript Loss𝑝𝑛𝑝 used for the loss functions to the PNP system in Section 5.1.

First, we define the following loss functions for the governing equation (1.1) as

Loss𝑓𝑝

GE(1)(𝑓𝑛𝑛) def=
∫︁

(0,𝑇 )

d𝑡

∫︁
(−1,1)

d𝑥

∫︁
𝑉

d𝑣|𝜕𝑡𝑓
𝑛𝑛(𝑡, 𝑥, 𝑣; 𝑚, 𝑤, 𝑏) + 𝑣𝜕𝑥𝑓𝑛𝑛(𝑡, 𝑥, 𝑣; 𝑚, 𝑤, 𝑏)

+ 𝐸𝑛𝑛𝜕𝑣𝑓𝑛𝑛 − (𝜕𝑣𝑣𝑓𝑛𝑛(𝑡, 𝑥, 𝑣; 𝑚, 𝑤, 𝑏) + 𝜕𝑣(𝑣𝑓𝑛𝑛)(𝑡, 𝑥, 𝑣; 𝑚, 𝑤, 𝑏))|2, (4.1)

and

Loss𝑓𝑝

GE(2)(𝑓𝑛𝑛) def=
∫︁

(0,𝑇 )

d𝑡

∫︁
(−1,1)

d𝑥|𝜕𝑥𝐸𝑛𝑛(𝑡, 𝑥; 𝑚, 𝑤, 𝑏)−
∫︁

𝑉

d𝑣 𝑓𝑛𝑛(𝑡, 𝑥, 𝑣; 𝑚, 𝑤, 𝑏)|2, (4.2)

where 𝑉
def= [−10, 10]. Then we define Loss𝑓𝑝

GE as

Loss𝑓𝑝
GE(𝑓𝑛𝑛) def= Loss𝑓𝑝

GE(1) + Loss𝑓𝑝

GE(2) .

We now define the loss function for the initial condition via the use of the initial grid points as

Loss𝑓𝑝

IC(1)(𝑓𝑛𝑛) def=
∫︁

(−1,1)

d𝑥

∫︁
𝑉

d𝑣 |𝑓𝑛𝑛(0, 𝑥, 𝑣)− 𝑓0(𝑥, 𝑣)|2 , (4.3)

and

Loss𝑓𝑝

IC(2)(𝑓𝑛𝑛) def=
∫︁

(−1,1)

d𝑥

⃒⃒⃒⃒
𝐸𝑛𝑛(0, 𝑥; 𝑚, 𝑤, 𝑏)−

(︂∫︁ 𝑥

−1

d𝑦

∫︁
R

d𝑣𝑓0(𝑦, 𝑣)− (𝑥 + 1)
)︂⃒⃒⃒⃒2

. (4.4)

Note that we use the equation (1.3) for the loss function Loss2IC. Then, we define LossIC as

Loss𝑓𝑝
IC(𝑓𝑛𝑛) def= Loss𝑓𝑝

IC(1) + Loss𝑓𝑝

IC(2) .

The loss functions for the specular boundary condition for 𝑓 in Section 1.5.1 and the Dirichlet boundary condition
for 𝐸 (1.1)5 are defined as

Loss𝑓𝑝

BC(1)(𝑓𝑛𝑛) def=
∫︁

(0,𝑇 )

d𝑡

∫︁
𝛾−

d𝑥d𝑣 |𝑓𝑛𝑛(𝑡, 𝑥, 𝑣; 𝑚, 𝑤, 𝑏)− 𝑓𝑛𝑛(𝑡, 𝑥,−𝑣; 𝑚, 𝑤, 𝑏)|2 , (4.5)

and

Loss𝑓𝑝

BC(2)(𝑓𝑛𝑛) def=
∫︁

(0,𝑇 )

d𝑡
∑︁

𝑥∈{−1,1}

|𝐸𝑛𝑛(𝑡, 𝑥; 𝑚, 𝑤, 𝑏)|2. (4.6)

Then we define the total loss for the boundary conditions as

Loss𝑓𝑝
BC(𝑓𝑛𝑛) def= Loss𝑓𝑝

BC(1) + Loss𝑓𝑝

BC(2) .

Finally, we define the total loss as

Loss𝑓𝑝
Total(𝑓

𝑛𝑛) def= Loss𝑓𝑝
GE + Loss𝑓𝑝

IC + Loss𝑓𝑝
BC. (4.7)
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Note that we compute these loss functions via the approximation of the integration by the Riemann sum on the
grid points, which is explained in Section 3.3. For example, the loss function Loss𝑓𝑝

GE(𝑓𝑛𝑛) can be approximated
as

Loss𝑓𝑝
GE ≈

1
𝑁𝑖,𝑗,𝑘

∑︁
𝑖,𝑗,𝑘

⃒⃒⃒⃒
𝜕𝑡𝑓

𝑛𝑛(𝑡𝑖, 𝑥𝑗 , 𝑣𝑘; 𝑚, 𝑤, 𝑏) + 𝑣𝜕𝑥𝑓𝑛𝑛(𝑡𝑖, 𝑥𝑗 , 𝑣𝑘; 𝑚, 𝑤, 𝑏)

+ 𝐸𝑛𝑛𝜕𝑣𝑓𝑛𝑛 − (𝜎𝜕𝑣𝑣𝑓𝑛𝑛(𝑡𝑖, 𝑥𝑗 , 𝑣𝑘; 𝑚, 𝑤, 𝑏) + 𝛽𝜕𝑣(𝑣𝑓𝑛𝑛)(𝑡𝑖, 𝑥𝑗 , 𝑣𝑘; 𝑚, 𝑤, 𝑏))
⃒⃒⃒⃒2

+
1

𝑁𝑖,𝑗

∑︁
𝑖,𝑗

⃒⃒⃒⃒
𝜕𝑥𝐸𝑛𝑛(𝑡𝑖, 𝑥𝑗 ; 𝑚, 𝑤, 𝑏)−

∫︁
𝑉

d𝑣 𝑓𝑛𝑛(𝑡𝑖, 𝑥𝑗 , 𝑣𝑘; 𝑚, 𝑤, 𝑏)
⃒⃒⃒⃒2

, (4.8)

where 𝑁𝑖,𝑗,𝑘 and 𝑁𝑖,𝑗 are the number of grid points.

4.2. On convergence of DNN solutions to analytic solutions to the VPFP system

In this section, we show the convergence of DNN solutions to analytic solutions to the VPFP system (1.1) in
two steps. We first prove that there exists a sequence of neural network parameters (neuron numbers 𝑚, weights
𝑤 and biases 𝑏 as defined in Sect. 3.1) such that the total loss function Loss𝑓𝑝

Total converges to 0. Sequentially, we
also prove that if we minimize the total loss function Loss𝑓𝑝

Total, it implies that the Deep Neural Network solution
converges to an analytic solution. Throughout the section, we assume that the existence and the uniqueness of
solutions for the VPFP system (1.1) with the specular boundary condition (1.8) are a priori given.

We first introduce the following definition and the theorem from [61] on the existence of approximated neural
network solutions:

Definition 4.1 ([61]). For a compact set 𝐾 of R𝑛, we say 𝑓 ∈ ̂︀𝐶𝜉(𝐾), 𝜉 ∈ Z𝑛
+ if there is an open Ω (depending

on 𝑓) such that 𝐾 ⊂ Ω and 𝑓 ∈ 𝐶𝜉(Ω).

Theorem 4.2 ([61], Thm. 2.1). Let 𝐾 be a compact subset of R𝑛, 𝑛 ≥ 1, and 𝑓 ∈ ̂︀𝐶𝜉1(𝐾)∩ ̂︀𝐶𝜉2(𝐾)∩· · · ̂︀𝐶𝜉𝑞 (𝐾),
where 𝜉𝑖 ∈ Z𝑛

+ for 1 ≤ 𝑖 ≤ 𝑞. Also, let 𝜎̄ be any non-polynomial function in 𝐶𝑙(R), where 𝑙 = max{|𝜉𝑖| : 1≤ 𝑖≤ 𝑞}.
Then for any 𝜖 > 0, there is a network

𝑓𝑛𝑛(𝑥) =
𝜈∑︁

𝑖=0

𝑐𝑖𝜎̄(⟨𝑤𝑖, 𝑥⟩+ 𝑏𝑖), 𝑥 ∈ R𝑛,

where 𝑐𝑖 ∈ R, 𝑤𝑖 ∈ R𝑛, and 𝑏𝑖 ∈ R, 0 ≤ 𝑖 ≤ 𝜈 such that

‖𝐷𝑘𝑓 −𝐷𝑘𝑓𝑛𝑛‖𝐿∞(𝐾) < 𝜖,

for 𝑘 ∈ Z𝑛
+, 𝑘 ≤ 𝜉𝑖, for some 𝑖, 1 ≤ 𝑖 ≤ 𝑞.

Remark 4.3. 𝜈, 𝑛, 𝑞, and 𝜉 = (𝜉1, 𝜉2, 𝜉3) in Theorem 4.2 correspond to 𝑚, 3, 1, and (1, 1, 2) in our DNN setting
in Section 3.1 for the VPFP system (1.1), respectively.

Remark 4.4. We can generalize the result above to the one with several hidden layers (see, [43]). Also, we
may assume that the architecture is assumed to have only one hidden layer; i.e., 𝐿 = 2.

Now we introduce our first main theorem which states that a sequence of neural network solutions that makes
the total loss function converge to zero exists if a ̂︀𝐶(1,1,2) solution to the VPFP system exists:
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Theorem 4.5 ([52], Thm. 3.4). Assume that the number of layers 𝐿 = 2 and that the solution 𝑓 to (1.1) with
(1.8) which belongs to ̂︀𝐶(1,1,2)([0, 𝑇 ]×[−1, 1]×𝑉 ), and the activation function 𝜎̄(𝑥) ∈ 𝐶(2,2,3)([0, 𝑇 ]×[−1, 1]×𝑉 )
is non-polynomial. Then, there exists {𝑚[𝑗], 𝑤[𝑗], 𝑏[𝑗]}∞𝑗=1 such that a sequence of the DNN solutions 𝑓𝑛𝑛 of
Theorem 4.2 with 𝑚[𝑗] nodes, denoted by

{𝑓𝑗(𝑡, 𝑥, 𝑣) = 𝑓𝑛𝑛(𝑡, 𝑥, 𝑣; 𝑚[𝑗], 𝑤[𝑗], 𝑏[𝑗])}∞𝑗=1

satisfies1

Loss𝑓𝑝
Total(𝑓𝑗) → 0 as 𝑗 →∞. (4.9)

Proof. This is similar to that of Theorem 3.4 of [52]. �

Remark 4.6. The assumption 𝑓 ∈ ̂︀𝐶(1,1,2)([0, 𝑇 ] × [−1, 1] × 𝑉 ) can be replaced by a general Sobolev space,
since the functions in a Sobolev space can be approximated by continuous functions on a compact set.

The first main Theorem 4.5 provides us that we can find the neural network parameters that reduce the
pre-defined total loss function as much as we want. However, it does not imply that the DNN solutions converge
to an analytic solution to the VPFP system. Therefore, we introduce our second main theorem, Theorem 4.7,
which shows that the DNN solutions converge to an analytic solution in a suitable function space when we
minimize the total loss function Loss𝑓𝑝

Total. We assume that our compact domain 𝑉 = [−10, 10] of the 𝑣-variable
is chosen sufficiently large so that we can have

||𝑓 ||𝐿1
𝑥([−1,1];𝐿1

𝑣(R∖𝑉 )) ≤ 𝜖 and
⃒⃒
𝜕𝑘

𝑣 𝑓(𝑡, 𝑥, 𝑣)− 𝜕𝑘
𝑣 𝑓𝑛𝑛(𝑡, 𝑥, 𝑣)

⃒⃒
𝑣∈𝜕𝑉

≤ 𝜖, (4.10)

for some sufficiently small 𝜖 > 0 and 𝑘 = 0, 1.

Theorem 4.7. Assume that 𝑓 is a solution to (1.1) with (1.8) which belongs to ̂︀𝐶(1,1,2)([0, 𝑇 ] × [−1, 1] × 𝑉 ).
If the solution 𝑓 and the Deep Neural Network solution 𝑓𝑛𝑛(𝑡, 𝑥, 𝑣; 𝑚, 𝑤, 𝑏) satisfy (4.10), then it implies that

‖𝑓𝑛𝑛(·, ·, ·; 𝑚, 𝑤, 𝑏)− 𝑓‖𝐿∞𝑡 ([0,𝑇 ];𝐿2
𝑥,𝑣([−1,1]×𝑉 )) ≤ 𝐶

(︁
Loss𝑓𝑝

Total(𝑓
𝑛𝑛) + 𝜖

)︁
, (4.11)

where 𝐶 is a positive constant depending only on 𝑇 .

The proof of this theorem is provided in Appendix A.

Remark 4.8. Note that we fix the DNN architecture in Figure 3 before we train the DNN. Namely, we first fix
the number of neurons for each layer 𝑚 before training, and then we update the weights 𝑤 and biases 𝑏 to mini-
mize the total loss function. Therefore, if we want to approximate the DNN solution 𝑓𝑛𝑛 to an analytic solution
to the VPFP system, Theorem 4.7 indicates how much the total loss function LossTotal(𝑓𝑛𝑛(𝑡, 𝑥, 𝑣; 𝑚, 𝑤, 𝑏)) has
to be reduced. Then, Theorem 4.5 guarantees the existence of a 3-tuple (𝑚, 𝑤, 𝑏) where the total loss function
is sufficiently reduced as we want. In the DNN simulation, we use Algorithm 1 to find the optimal weights 𝑤
and biases 𝑏 to reduce the total loss function while the number of neurons for each layer 𝑚 is fixed.

4.3. Neural Network simulations

In this section, we introduce numerical simulations for the solutions 𝑓𝑛𝑛(𝑡, 𝑥, 𝑣; 𝑚, 𝑤, 𝑏) and 𝐸𝑛𝑛(𝑡, 𝑥; 𝑚, 𝑤, 𝑏)
to the VPFP system (1.1). We consider the following initial condition:

𝑓(0, 𝑥, 𝑣) = 𝑓0(𝑥, 𝑣) =

{︃
𝑒𝑥−1

(︀
1− cos(𝜋

2 𝑣)
)︀
, if 𝑣 ∈ (−4, 4),

0, otherwise,
(4.12)

which has different initial ditributions at each position 𝑥 ∈ [−1, 1]. We consider the time interval [0, 5] which is
enough to reach the steady state of the solution to the VPFP system. Also, we set the background charge ℎ(𝑥)
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Figure 5. The time-asymptotic behaviors of the 𝐿∞ norm, 𝐿1 norm of 𝑓𝑛𝑛(𝑡, 𝑥, 𝑣; 𝑚, 𝑤, 𝑏)
(the first and the second plot) and the 𝐿1 norm, 𝐿2 norm, and 𝐿∞ norm of the difference

between 𝑓𝑛𝑛(𝑡, 𝑥, 𝑣; 𝑚, 𝑤, 𝑏) and the global Maxwellian
‖𝑓0(·,·)‖𝐿1

𝑥,𝑣

|Ω| 𝑀(𝑣). It is notable that the
total mass Mass(𝑡) of the distribution 𝑓𝑛𝑛(𝑡, 𝑥, 𝑣; 𝑚, 𝑤, 𝑏) is conserved over time in the second
plot. Also, note that the third plot shows that the distribtuion 𝑓𝑛𝑛(𝑡, 𝑥, 𝑣; 𝑚, 𝑤, 𝑏) converges to
the global Maxwellian.

as constant that safisfies the global neutrality condtion (1.2). More details about our Deep Learning algorithm
are explained in Sections 3.2, 3.3, and the summary of the Deep Learning Algorithm 1.

The first plot in Figure 5 shows the time-asymptotic behaviors of the 𝐿∞ norm of the distribution
𝑓𝑛𝑛(𝑡, 𝑥, 𝑣; 𝑚, 𝑤, 𝑏) with respect to position 𝑥 and velocity 𝑣. After 3 time grids, the value converges to almost
constant. This indicates that the distributions 𝑓𝑛𝑛(𝑡, 𝑥, 𝑣; 𝑚, 𝑤, 𝑏) converge to the steady state. It can be observed
more clearly in the third plot in Figure 5, which shows the difference between the distribution 𝑓𝑛𝑛(𝑡, 𝑥, 𝑣; 𝑚, 𝑤, 𝑏)
and the global equilibrium (1.14). The 𝐿1, 𝐿2 and 𝐿∞ norm of the difference with respect to position 𝑥 and
velocity 𝑣 tend to zero as time increases. This is consistent to our theoretical supports provided in the equa-
tion (1.14). Later, the pointwise values of 𝑓𝑛𝑛(𝑡, 𝑥, 𝑣; 𝑚, 𝑤, 𝑏) show the shape of the convergence to the global
Maxwellian in Figure 7.

The second plot in Figure 5 shows the value of Mass(𝑡) over time defined in (1.9). The plot shows that the
total mass of the system is conserved. It shows an agreement with the theoretical result that the VPFP system
with the specular boundary condition (1.8) yields the conservation of the total mass (1.9), which is an important
a priori physical law for the VPFP system.

Figure 6 shows the time-asymptotic behaviors of four macroscopic quantities of 𝑓𝑛𝑛(𝑡, 𝑥, 𝑣; 𝑚, 𝑤, 𝑏); the total
kinetic energy “KE” (1.18), the entropy “Ent” (1.17), the electric pontential energy “EE” (1.19) and the
free energy “FE” (1.20). The steady state values of these four macroscopic quantities can obtained from the
macroscopic quntities of the equilibrium in (1.14). Therefore, we expect the steady state values of the four
macroscopic qunatities as follows:

KE∞ =
‖𝑓0(·, ·)‖𝐿1

𝑥,𝑣

|Ω|
, (4.13)

Ent∞ = −‖𝑓0(·, ·)‖𝐿1
𝑥,𝑣

log

(︃
‖𝑓0(·, ·)‖𝐿1

𝑥,𝑣

|Ω|(2𝜋)0.5

)︃
+

1
2
‖𝑓0(·, ·)‖𝐿1

𝑥,𝑣
, (4.14)

EE∞ = 0, (4.15)
FE∞ = KE∞ − Ent∞ + EE∞, (4.16)

1Each of 𝑚[𝑗], 𝑤[𝑗], 𝑏[𝑗] represents the matrix of the numbers corresponding to 𝑓𝑗 for each 𝑗 = 1, 2, . . . ,∞. The matrices

𝑚[𝑗], 𝑤[𝑗], 𝑏[𝑗] consist of the element represented as 𝑚
(𝑙)
[𝑗],𝑖𝑘

, 𝑤
(𝑙)
[𝑗],𝑖𝑘

, 𝑏
(𝑙)
[𝑗],𝑖𝑘

, respectively.
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Figure 6. The time-asymptotic behaviors of the macroscopic quantities of 𝑓𝑛𝑛(𝑡, 𝑥, 𝑣; 𝑚, 𝑤, 𝑏)
and 𝐸𝑛𝑛(𝑡, 𝑥; 𝑚, 𝑤, 𝑏). The steady-state values of the kinetic energy (4.13), the entropy (4.14),
the free energy (4.16) are indicated in the red-dotted lines. Note that the free energy is mono-
tonically decreasing.

where |Ω| = 2 and ‖𝑓0(·, ·)‖𝐿1
𝑥,𝑣
≈ 6.917 in our case. We denote the steady state values via the red-dotted lines

in Figure 6. The four plots show that the each physical quantitity converges to each steady state. Also, the
fourth plot in Figure 6 shows a non-increasing trend of the free energy. This is also consistent to our theoretical
supports of (1.26).

Figure 7 shows the pointwise values of the approximated neural network solution 𝑓𝑛𝑛
𝜀 (𝑡, 𝑥, 𝑣; 𝑚, 𝑤, 𝑏) as time

𝑡 varies at each position 𝑥 = −1,−0.5, 0, 0.5 and 𝑥 = 1. Also, Figure 8 shows the pointwise values of the neural
network solution 𝐸𝑛𝑛

𝜀 (𝑡, 𝑥; 𝑚, 𝑤, 𝑏)) as time 𝑡 varies at some positions 𝑥 = −1,−0.5, 0, 0.5 and 𝑥 = 1 in different
colors as shown in the legend. The two plots show that the 𝑓𝑛𝑛(𝑡, 𝑥, 𝑣; 𝑚, 𝑤, 𝑏) and 𝐸𝑛𝑛(𝑡, 𝑥; 𝑚, 𝑤, 𝑏) converge
pointwisely to each equilibrium

𝑓𝜀,∞(𝑥, 𝑣) =
‖𝑓0(·, ·)‖𝐿1

𝑥,𝑣

|Ω|
𝑀(𝑣) and 𝐸𝜀,∞(𝑥) = 0,

which is precisely explained in (1.14). We expect that the steady-state of the distribution 𝑓𝑛𝑛(𝑡, 𝑥, 𝑣; 𝑚, 𝑤, 𝑏)
to the VPFP system has the same global Maxwellian at each position 𝑥 ∈ [−1, 1] although the initial condition
(4.12) has the different ditributions at each position. To confirm this, we denote the global Maxwellian function
𝑓𝜀,∞(𝑥, 𝑣) via the red-dotted lines in Figure 7. As we expect, Figure 7 shows that the distribution functions
𝑓𝑛𝑛(𝑡, 𝑥, 𝑣; 𝑚, 𝑤, 𝑏) converge to the same Maxwellian shape at time 𝑡 = 5. The relative 𝐿2

𝑥,𝑣 error between the
global Maxwellian 𝑓𝜀,∞(𝑥, 𝑣) and the equilibrium of the neural network solution at 𝑡 = 5 is 4.7 × 10−3. Also,
the pointwise values of 𝐸𝑛𝑛(𝑡, 𝑥; 𝑚, 𝑤, 𝑏) for all positions 𝑥 ∈ [−1, 1] converge to zero as shown in Figure 8. This
result also shows an agreement with the theoretical steady-state (1.14).

5. Part III. On convergence of DNN solutions to an analytic solution to the
PNP system and simulation results

In this section, we provide a DNN solution to the PNP system (1.4). This section also consists of three
subsections, similarly to Part II (Sect. 4). First, we propose the loss functions for the PNP system. Second,
we prove the convergence of a DNN solution to an analytic solution to the PNP system in two steps. Finally,
we show the simulation results of the DNN solutions to the PNP system by comparing the time-asymptotic
behaviors, the macroscopic quantities, and the steady-state of the PNP system which is defined in Section 1.6.1.
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Figure 7. The pointwise values of 𝑓𝑛𝑛(𝑡, 𝑥, 𝑣; 𝑚, 𝑤, 𝑏) as time 𝑡 varies at each position 𝑥’s.
𝑥 = −1,−0.5, 0, 0.5, 1 are the points to explain the convergence to the global Maxwellian
‖𝑓0(·,·)‖𝐿1

𝑥,𝑣

|Ω| 𝑀(𝑣). The steady-state (global Maxwellian) is given via the red-dotted lines.

5.1. Loss functions for the PNP system

We need to define loss functions for the PNP system: Loss𝑝𝑛𝑝
GE for the PNP system (1.4)1 and (1.4)3, Loss𝑝𝑛𝑝

IC

for the initial condition (1.4)2 and (1.4)4 and Loss𝑝𝑛𝑝
BC for the boundary condition (1.10) and (1.4)5. Note that

we use the superscript Loss𝑝𝑛𝑝 for all loss functions to the PNP system to distinguish it from the superscript
Loss𝑣𝑝𝑓𝑝 used for the loss functions to the VPFP system in Section 4.1.

First, we define loss functions for the governing equation as

Loss𝑝𝑛𝑝

GE(1)(𝜌𝑛𝑛) def=
∫︁

(0,𝑇 )

d𝑡

∫︁
(−1,1)

d𝑥|𝜕𝑡𝜌
𝑛𝑛(𝑡, 𝑥; 𝑚, 𝑤, 𝑏)− 𝜕𝑥𝑥𝜌𝑛𝑛(𝑡, 𝑥; 𝑚, 𝑤, 𝑏)

+ 𝜕𝑥(𝜌𝑛𝑛(𝑡, 𝑥; 𝑚, 𝑤, 𝑏)𝐸𝑛𝑛(𝑡, 𝑥; 𝑚, 𝑤, 𝑏))|2, (5.1)
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Figure 8. The pointwise values of 𝐸𝑛𝑛(𝑡, 𝑥; 𝑚, 𝑤, 𝑏) at each position 𝑥’s over time 𝑡. The values
at each position 𝑥 = −1,−0.5, 0, 0.5, 1 are drawn in different colors as shown in the legend.

and

Loss𝑝𝑛𝑝

GE(2)(𝜌𝑛𝑛) def=
∫︁

(0,𝑇 )

d𝑡

∫︁
(−1,1)

d𝑥 |𝜕𝑥𝐸𝑛𝑛(𝑡, 𝑥; 𝑚, 𝑤, 𝑏)− 𝜌𝑛𝑛(𝑡, 𝑥; 𝑚, 𝑤, 𝑏) + 1|2

+
∫︁

(0,𝑇 )

d𝑡

∫︁
(−1,1)

d𝑥 |𝜕𝑡 (𝜕𝑥𝐸𝑛𝑛(𝑡, 𝑥; 𝑚, 𝑤, 𝑏)− 𝜌𝑛𝑛(𝑡, 𝑥; 𝑚, 𝑤, 𝑏) + 1)|2

+
∫︁

(0,𝑇 )

d𝑡

∫︁
(−1,1)

d𝑥 |𝜕𝑥 (𝜕𝑥𝐸𝑛𝑛(𝑡, 𝑥; 𝑚, 𝑤, 𝑏)− 𝜌𝑛𝑛(𝑡, 𝑥; 𝑚, 𝑤, 𝑏) + 1)|2 . (5.2)

Note that this loss function Loss𝑝𝑛𝑝

GE(2)(𝜌𝑛𝑛) is not just the 𝐿2 error with respect to 𝑡 and 𝑥. We add the 𝑡-
derivative and the 𝑥-derivative of the error to the original 𝐿2 error as shown in the definition (5.2). We need
these two terms to prove the convergence of the neural network solution to the analytic solution in Theorem 5.2
in the following section. Then we define Loss𝑝𝑛𝑝

GE as

Loss𝑝𝑛𝑝
GE (𝜌𝑛𝑛) def= Loss𝑝𝑛𝑝

GE(1) + Loss𝑝𝑛𝑝

GE(2) .

We now define the loss function for the initial condition

Loss𝑝𝑛𝑝

IC(1)(𝜌𝑛𝑛) def=
∫︁

(−1,1)

d𝑥 |𝜌𝑛𝑛(0, 𝑥; 𝑚, 𝑤, 𝑏)− 𝜌0(𝑥)|2 (5.3)

and

Loss𝑝𝑛𝑝

IC(2)(𝜌𝑛𝑛) def=
∫︁

(−1,1)

d𝑥

⃒⃒⃒⃒
𝐸𝑛𝑛(0, 𝑥; 𝑚, 𝑤, 𝑏)−

(︂∫︁ 𝑥

−1

𝜌0(𝑦)d𝑦 − (𝑥 + 1)
)︂⃒⃒⃒⃒2

. (5.4)

Then, we define Loss𝑝𝑛𝑝
IC as

Loss𝑝𝑛𝑝
IC (𝜌𝑛𝑛) def= Loss𝑝𝑛𝑝

IC(1) + Loss𝑝𝑛𝑝

IC(2) .
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The loss function for the Neumann boundary condition for 𝜌(𝑡, 𝑥) is defined as follows:

Loss𝑝𝑛𝑝

BC(1)(𝜌𝑛𝑛) def=
∫︁

(0,𝑇 )

d𝑡

∫︁
𝑥∈𝜕[−1,1]

d𝑥 |𝜕𝑥𝜌𝑛𝑛(𝑡, 𝑥; 𝑚, 𝑤, 𝑏)|2 . (5.5)

We defined the loss function for the Dirichlet boundary condition for 𝐸(𝑡, 𝑥)

Loss𝑝𝑛𝑝

BC(2)(𝜌𝑛𝑛) def=
∫︁

(0,𝑇 )

d𝑡

∫︁
𝑥∈𝜕[−1,1]

d𝑥
(︀
|𝐸𝑛𝑛(𝑡, 𝑥; 𝑚, 𝑤, 𝑏)|2

)︀
+
∫︁

(0,𝑇 )

d𝑡

∫︁
𝑥∈𝜕[−1,1]

d𝑥
(︀
|𝜕𝑡𝐸

𝑛𝑛(𝑡, 𝑥; 𝑚, 𝑤, 𝑏)|2
)︀
. (5.6)

Note that we add the error of 𝜕𝑡𝐸
𝑛𝑛(𝑡, 𝑥; 𝑚, 𝑤, 𝑏) to the original 𝐿2 error as shown in the definition (5.6). This

is also for the proof in Theorem 5.2 in the following section. Then, we define the total loss for the boundary
conditions as

Loss𝑝𝑛𝑝
BC (𝜌𝑛𝑛) def= Loss𝑝𝑛𝑝

BC(1) + Loss𝑝𝑛𝑝

BC(2) .

Finally, we define the total loss as

Loss𝑝𝑛𝑝
Total(𝜌

𝑛𝑛) def= Loss𝑝𝑛𝑝
GE + Loss𝑝𝑛𝑝

IC + Loss𝑝𝑛𝑝
BC . (5.7)

Note that we compute these loss functions via approximating the integration by the Riemann sum on the grid
points similarly to Section 4.1.

5.2. On convergence of DNN solutions to an analytic solution to the PNP system

This section shows the convergence of the DNN solutions to an analytic solution to the PNP system (1.4) in
two steps, similarly to Section 5.2. First, we prove that there exists a sequence of neural network parameters
such that the total loss function Loss𝑝𝑛𝑝

Total converges to 0. We then show that the corresponding sequence of
DNN solutions converges to an analytic solution if we minimize the total loss function Loss𝑝𝑛𝑝

Total. Throughout
the section, we assume that the existence and the uniqueness of solutions for the PNP system (1.4) with the
no-flux boundary condition (1.10) are a priori given.

We introduce our first main theorem similarly to that of Theorem 4.5 which shows the existence of a sequence
of neural network parameters that makes the total loss function converge to zero if the ̂︀𝐶(1,2)([0, 𝑇 ] × [−1, 1])
solution to the PNP system exists:

Theorem 5.1 ([52], Thm. 3.4). Assume that the solution 𝜌 to (1.4) with (1.10) which belongs to ̂︀𝐶(1,2)([0, 𝑇 ]×
[−1, 1]), and the activation function 𝜎̄(𝑥) ∈ 𝐶(1,2)([0, 𝑇 ] × [−1, 1]) is non-polynomial. Then, there exists
{𝑚[𝑗], 𝑤[𝑗], 𝑏[𝑗]}∞𝑗=1 such that a sequence of the DNN solutions 𝜌𝑛𝑛 of Theorem 4.2 with 𝑚[𝑗] nodes, denoted
by

{𝜌𝑗(𝑡, 𝑥, 𝑣) = 𝜌𝑛𝑛(𝑡, 𝑥, 𝑣; 𝑚[𝑗], 𝑤[𝑗], 𝑏[𝑗])}∞𝑗=1

satisfies2

Loss𝑝𝑛𝑝
Total(𝜌𝑗) → 0 as 𝑗 →∞. (5.8)

Now we introduce our second main theorem, which shows that the sequence of DNN solutions converges to
an analytic solution to the PNP system in a suitable function space when we minimize the total loss function
Loss𝑝𝑛𝑝

Total. We also refer to Remark 4.8, which explains how these main theorems are related to our Deep Learning
algorithm.

2Each of 𝑚[𝑗], 𝑤[𝑗], 𝑏[𝑗] represents the matrix of the numbers corresponding to 𝜌𝑗 for each 𝑗 = 1, 2, . . . ,∞. The matrices

𝑚[𝑗], 𝑤[𝑗], 𝑏[𝑗] consist of the element represented as 𝑚
(𝑙)
[𝑗],𝑖𝑘

, 𝑤
(𝑙)
[𝑗],𝑖𝑘

, 𝑏
(𝑙)
[𝑗],𝑖𝑘

, respectively.



1828 J.Y. LEE ET AL.

Figure 9. The time-asymptotic behaviors of the total density Mass𝜌(𝑡) and the free energy
FE𝜌(𝑡) of the PNP system. In the second plot, the steady-state value of the free energy is
indicated in the red-dotted line. Note that the free energy is monotonically decreasing.

Theorem 5.2. Assume that 𝜌 is a solution to (1.4) with (1.10) which belongs to ̂︀𝐶(1,2)([0, 𝑇 ]× [−1, 1]). Then,
the Deep Neural Network solution 𝜌𝑛𝑛(𝑡, 𝑥; 𝑚, 𝑤, 𝑏) satisfies that

‖𝜌𝑛𝑛(·, ·; 𝑚, 𝑤, 𝑏)− 𝜌‖𝐿∞𝑡 ([0,𝑇 ];𝐿2
𝑥([−1,1])) ≤ 𝐶𝐿𝑜𝑠𝑠𝑝𝑛𝑝

Total(𝜌
𝑛𝑛), (5.9)

where 𝐶 is a positive constant depending only on 𝑇 .

The proof of this theorem is provided in Appendix B.

5.3. Neural Network simulations

In this section, we provide numerical simulations for the solutions 𝜌𝑛𝑛(𝑡, 𝑥; 𝑚, 𝑤, 𝑏) and 𝐸𝑛𝑛(𝑡, 𝑥; 𝑚, 𝑤, 𝑏) to
the PNP system (1.4). We set the initial condition of 𝜌𝑛𝑛(𝑡, 𝑥; 𝑚, 𝑤, 𝑏) as follows:

𝜌0(0, 𝑥) =
∫︁

R
d𝑣𝑓0(𝑥, 𝑣) = 8𝑒𝑥−1. (5.10)

Note that we set the initial condition (5.10) which satisfies 𝜌(0, 𝑥) = 𝜌0(𝑥) =
∫︀

R d𝑣𝑓0(𝑥, 𝑣) to compare the
convergence on the solutions of the VPFP system with the soluitons of the PNP system in Part IV. We also
set the background charge ℎ(𝑥) as constant to satisfy

∫︀
Ω

𝜌(0, 𝑥) − ℎ(𝑥) = 0. The details of our Deep Learning
algorithm are explained in Sections 3.2, 3.3, and the summary of Algorithm 1.

Figure 9 shows the total density (1.11) and the free energy (1.25) of the PNP system. As shown in the left
plot in Figure 9, the total density Mass𝜌(𝑡) of the neural network solution 𝜌𝑛𝑛(𝑡, 𝑥; 𝑚, 𝑤, 𝑏) is conserved. It is
well-matched to the theoretical result as in (1.11), which is an important property in the PNP system with
the no-flux boundary condition (1.10). The right plot in Figure 9 shows the free energy of the neural network
solution with the steady-state value via the red-dotted line. We compute the steady-state value of the free energy
using the steady state of the PNP solution, 𝜌∞(𝑥) and 𝐸∞(𝑥), in (1.24). We observe that the free energy is non-
increasing as shown in the right plot in Figure 9. It verifies that the neural network solutions, 𝜌𝑛𝑛(𝑡, 𝑥; 𝑚, 𝑤, 𝑏)
and 𝐸𝑛𝑛(𝑡, 𝑥; 𝑚, 𝑤, 𝑏), of the PNP system satisfy the dissipation law of the free energy as explained in (1.26).

Also, we expect that the free energy decreases exponentially to the steady-state based on Theorem 1.2 in [7].
In Figure 10, the plot shows the time evolution of the free energy of the neural network solution in a log-linear
scale. We compute the decreasing rate of the free energy with the difference between the free energy FE𝜌(𝑡) and
the steady-state of the free energy FE𝜌,∞ at 𝑡 = 1. We also denote the algebraic rates and the geometric rates
in log-linear scale. We can observe that the decreasing rate of the free energy is almost simlilar to the geometric
rate 𝐶𝑒−11.7𝑡, which is a linear function in Figure 10, except for a small error near the final time.
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Figure 10. The time-asymptotic behaviors of the difference between the free energy FE𝜌(𝑡) and
the steady-state of the free energy FE𝜌,∞ in log-linear scale. We consider the numerical solution
at 𝑡 = 1 as the steady state of the free energy. Note that this plot verifies the exponential decay
of the approximated free energy.

Figure 11. The pointwise values of 𝜌𝑛𝑛(𝑡, 𝑥; 𝑚, 𝑤, 𝑏) and 𝐸𝑛𝑛(𝑡, 𝑥; 𝑚, 𝑤, 𝑏) for each position 𝑥
as time 𝑡 varies. The values at each time 𝑡 = 0, 0.2, 0.4, 0.6, 0.8, 1 are drawn in different colors
as shown in the legend.

Figure 11 shows the poinstwise values of each approximated neural network solution 𝜌𝑛𝑛(𝑡, 𝑥; 𝑚, 𝑤, 𝑏) and
𝐸𝑛𝑛(𝑡, 𝑥; 𝑚, 𝑤, 𝑏) in different colors as time 𝑡 varies at each position 𝑥 from −1 to 1. We expect that the neural
network solutions 𝜌𝑛𝑛(𝑡, 𝑥; 𝑚, 𝑤, 𝑏) and 𝐸𝑛𝑛(𝑡, 𝑥; 𝑚, 𝑤, 𝑏) converge pointwisely to each equilibrium

𝜌∞(𝑥) = 𝐶𝑝𝑛𝑝 and 𝐸∞(𝑥) = 0,

which is precisely explained in (1.24). As shown in the first plot in Figure 11, the neural network solution
𝜌𝑛𝑛(𝑡, 𝑥; 𝑚, 𝑤, 𝑏) converges to constant for all 𝑥. It is well consistent to the theoretical supports provided in
(1.24). Also, the second plot in Figure 11 shows that the neural network solution 𝐸𝑛𝑛(𝑡, 𝑥; 𝑚, 𝑤, 𝑏) converges to
zero for all 𝑥 ∈ [−1, 1] as 𝑡 increases. This simulation result also well matches the expected steady state of the
PNP system as in (1.24).
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6. Part IV. On the simulation results of the diffusion limit from the VPFP
system to the PNP system

In this section, we provide the trend of the diffusion limit from the VPFP system to the PNP system using the
simulation results of our Deep Neural Network approach. We consider the convergence of the VPFP solutions
to the PNP solution, as summarized in Part I (Sect. 2). We expect that the neural network solutions of the
VPFP system and the PNP system have the trend of diffusion limit as explained in the equations (2.4) and
(2.5). To observe the trend of the convergence, we compare the neural network solutions to the VPFP system
with the Knudsen numbers 𝜀 = 1, 0.5, 0.2, 0.1, 0.05 and the corresponding neural network solutions to the PNP
system. The methods of how to train the neural network solutions to the VPFP system and the PNP system
are precisely described in Section 3. Also, the results of the numerical simulations are given in Part II (Sect. 4)
for the VPFP system and Part III (Sect. 5) for the PNP system, respectively.

As we have introduced in Section 3.4 on the simulation methodology, we use the “Grid Reuse” method to
capture the VPFP with the small Knudsen number 𝜀. When the “Grid Reuse” strategy is not used, the neural
network solutions to the VPFP system could not approximate well at the early part of the time grid (about
0.0∼0.2 time grids) as the Knudsen number 𝜀 is smaller. This means that the VPFP system with the small
Knudsen number is hard to be approximated at the early time grid using Deep Learning. Therefore, the “Grid
Reuse” method is essential to observe the diffusion limit from the neural network solution of the VPFP system
to the neural network solution of the PNP system.

We define the total loss function (4.7) in the sense of the Mean Square Error (MSE). In this section, we use
the Root Mean Square Error (RMSE) as the loss function for the VPFP system. These two cases show almost
similar results, but we choose the RMSE loss function that offers better results. We use 50 reused grid points
(𝑘 = 50) in our work. Here we mention that it was not successful to approximate the solution when we chose
𝑘 between 0 and 10 for the small Knudsen number 𝜀. When 𝑘 was selected around 50, the DNN solution well
approximated the solution of the VPFP system with the Knudsen number 𝜀 being as small as 0.05. The most
accurate DNN solution was obtained when we selected the value of 𝑘 as 50.

The details of our Deep Learning algorithm are explained in Section 3.2 and the summary of the Deep
Learning Algorithm 1.

6.1. Neural Network simulations

In this section, we present the results of the numerical simulations for the diffusion limit from the VPFP
system to the PNP system. We set the initial condtion (4.12) for the VPFP system and the initial condition
(5.10) for the PNP system. It is worth noting that we do not change the number of the grid points for the VPFP
system with any Knudsen numbers, i.e., we anlayze the diffusion limit in the sense of the Asymptotic-Preserving
(AP) scheme. Instead, we use the “Grid Reuse” method for all neural network solutions.

Figure 12 indicates the total mass
∫︀
Ω×𝑉

𝑓𝑛𝑛
𝜀 d𝑣d𝑥 of the VPFP system with the different Knudsen numbers

𝜀 = 1, 0.5, 0.2, 0.1 and 0.05 in different colors as shown in the legend. As shown in Figure 12, all five graphs
overlap so that they appear as one graph. This is because that all the five cases conserve the total mass over
time. This plot implies that the neural network solutions for all 5 cases well approximate the solution of the
VPFP system.

Figure 13 shows the 𝐿∞ norm of the solution 𝑓𝑛𝑛
𝜀 (𝑡, 𝑥, 𝑣; 𝑚, 𝑤, 𝑏) to the VPFP system with the different

Knudsen numbers 𝜀 = 1, 0.5, 0.2, 0.1 and 0.05 in different colors as shown in the legend. Also, we plot the
𝐿∞ norm of the neural network solution 𝜌𝑛𝑛(𝑡, 𝑥; 𝑚, 𝑤, 𝑏)𝑀(𝑣) via the red-dotted-line in Figure 13. We can
observe that the 𝐿∞ norm of the solution 𝑓𝑛𝑛

𝜀 (𝑡, 𝑥, 𝑣; 𝑚, 𝑤, 𝑏) converges pointwisely to the 𝐿∞ norm of the
𝜌𝑛𝑛(𝑡, 𝑥; 𝑚, 𝑤, 𝑏)𝑀(𝑣) as the Knudsen number 𝜀 becomes close to zero. This gives more information than the
theoretical result of convergence as explained in (2.4).

The graphs in Figure 14 and in Figure 15 show the pointwise values of the solutions as time 𝑡 varies at each
𝑥’s. Figure 14 shows the pointwise values of

∫︀
𝑓𝑛𝑛

𝜀 (𝑡, 𝑥, 𝑣; 𝑚, 𝑤, 𝑏)d𝑣 as the Knudsen number 𝜀 varies in different
colors as shown in the legend. We also plot the pointwise values of 𝜌𝑛𝑛(𝑡, 𝑥; 𝑚, 𝑤, 𝑏) via the red-dotted lines.
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Figure 12. The time-asymptotic behaviors of the total mass of 𝑓𝑛𝑛
𝜀 (𝑡, 𝑥, 𝑣; 𝑚, 𝑤, 𝑏) (𝐿1

𝑥,𝑣 norm
of 𝑓𝑛𝑛

𝜀 ) as 𝜀 varies. The values with each Knudsen number 𝜀 are drawn in different colors as
shown in the legend. It is notable that the total mass of the distribution 𝑓𝑛𝑛

𝜀 is conserved over
time although the Knudsen number 𝜀 varies.

Figure 13. The time-asymptotic behavior of the 𝐿∞𝑥,𝑣 norm of 𝑓𝑛𝑛
𝜀 (𝑡, 𝑥, 𝑣; 𝑚, 𝑤, 𝑏) and

𝜌𝑛𝑛(𝑡, 𝑥; 𝑚, 𝑤, 𝑏)𝑀(𝑣) over time 𝑡 as the Knudsen number 𝜀 varies. Each value is drawn in
different colors as shown in the legend.

The first plot in Figure 14 shows that the initial condition (4.12) for the neural network solution of the VPFP
system is consistent with the initial condition (5.10) for the neural network solution of the PNP system, since
we set the initial conditions to satisfy the relation

∫︀
R 𝑓0(𝑡, 𝑥, 𝑣)d𝑣 = 𝜌0(𝑡, 𝑥). It is remarkable that the neural

network solutions to the VPFP system with the different Knudsen numbers well approximate the initial condtion
and the same for the solution to the PNP system. Also, we expect that the integration of neural network solution∫︀

𝑓𝜀(𝑡, 𝑥, 𝑣)d𝑣 converges to the density 𝜌(𝑡, 𝑥; 𝑚, 𝑤, 𝑏) which is consistent to the convergence of 𝑓𝜀 to 𝜌(𝑡, 𝑥)𝑀(𝑣)
as explained in (2.4). As shown in the six plots in Figure 14, the pointwise values of the

∫︀
𝑓𝜀(𝑡, 𝑥, 𝑣)d𝑣 to the

VPFP system converge to the solution 𝜌(𝑡, 𝑥; 𝑚, 𝑤, 𝑏) for all time 𝑡 ∈ [0, 1] as the small Knudsen number 𝜀
becomes small. It is consistent to the theoretical supports in (2.4).
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Figure 14. The pointwise values of
∫︀

𝑓𝑛𝑛
𝜀 (𝑡, 𝑥, 𝑣; 𝑚, 𝑤, 𝑏)d𝑣 to the VPFP system and

𝜌𝑛𝑛(𝑡, 𝑥; 𝑚, 𝑤, 𝑏) to the PNP system for each position 𝑥 at time 𝑡 = 0, 0.2, 0.4, 0.6, 0.8, 1 as
𝜀 varies. The values with each Knudsen number 𝜀 are drawn in different colors as shown in the
legend.

Figure 15. The pointwise values of 𝐸𝑛𝑛
𝜀 (𝑡, 𝑥; 𝑚, 𝑤, 𝑏) to the VPFP system and

𝐸𝑛𝑛(𝑡, 𝑥; 𝑚, 𝑤, 𝑏) to the PNP system for each position 𝑥 at time 𝑡 = 0, 0.2, 0.4, 0.6, 0.8, 1 as
𝜀 varies. The values with each Knudsen number 𝜀 are drawn in different colors as shown in the
legend.
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Figure 16. The values of 𝐿1
𝑡,𝑥,𝑣 norm of the difference between 𝑓𝑛𝑛

𝜀 (𝑡, 𝑥, 𝑣; 𝑚, 𝑤, 𝑏) and
𝜌𝑛𝑛(𝑡, 𝑥; 𝑚, 𝑤, 𝑏)𝑀(𝑣) as 𝜀 varies.

Figure 15 shows the pointwise values of the electric force 𝐸𝑛𝑛
𝜀 (𝑡, 𝑥; 𝑚, 𝑤, 𝑏) with the differnt Knudsen numbers

𝜀 = 1, 0.5, 0.2, 0.1 and 𝜀 = 0.05 in different colors as time 𝑡 varies at each 𝑥’s. Also, we plot the electric force
of the PNP system 𝐸𝑛𝑛(𝑡, 𝑥; 𝑚, 𝑤, 𝑏) in the red-dotted lines. We remark that the first plot in Figure 15 shows
the same pointwise values of the electric force to the VPFP system with different Knudsen numbers and to the
PNP system. It means that the initial conditions of the neural network solution of the electric force 𝐸𝑛𝑛 to
the VPFP system and the PNP system are well approximated. Also, we observe that the six plots in Figure 15
show the solution 𝐸𝑛𝑛

𝜀 (𝑡, 𝑥; 𝑚, 𝑤, 𝑏) of the VPFP system converges to the solution 𝐸𝑛𝑛(𝑡, 𝑥; 𝑚, 𝑤, 𝑏) of the PNP
system as the Knudsen number 𝜀 goes to zero. It agrees with the theoretical result as explained in (2.5).

Finally, Figure 16 shows that the 𝐿1
𝑡,𝑥,𝑣 norm of the difference between the distribution 𝑓𝑛𝑛

𝜀 (𝑡, 𝑥, 𝑣; 𝑚, 𝑤, 𝑏)
and the solution 𝜌𝑛𝑛(𝑡, 𝑥; 𝑚, 𝑤, 𝑏)𝑀(𝑣) as 𝜀 varies. We note that Figure 16 shows the convergence of 𝑓𝜀 to
𝜌(𝑡, 𝑥)𝑀(𝑣) more quantitatively than the plots in the previous figures. As we expected in (2.4), the graph shows
that the 𝐿1

𝑡,𝑥,𝑣 norm of the difference between 𝑓𝑛𝑛
𝜀 and 𝜌𝑛𝑛𝑀 becomes smaller as the Knudsen number 𝜀 tends

to zero.

7. Conclusion

In this paper, we establish the commutation of the diagram of diffusion limit in Figure 1. This also implies
the reduction of the VPFP system with the specular boundary condition to the PNP system with the no-flux
boundary condition as the Knudsen number 𝜀 tends to zero. To this end, we have introduced the Deep Neural
Network (DNN) solutions to the VPFP system and the PNP system using the Deep Learning algorithm. We
use the two neural networks to approximate the VPFP system and the PNP system, coupled with the Poisson
equation. Also, we propose appropriate loss functions for training, including the loss function for the initial
conditions and the boundary conditions to each system: the VPFP system in Part II and the PNP system
in Part III. We also provide the theoretical supports on which the approximated DNN solutions converge to
analytic solutions of each system as the proposed total loss function tends to zero. We also provide the numerical
simulations on the DNN solutions of each system, which support the theoretical predictions on the asymptotic
behaviors of each system. These include the steady-states for the solutions and the physical quantities such as
the total mass, the kinetic energy, the entropy, the electric energy, and the free energy.

Finally, using these DNN solutions of the two systems, we observe the trend of the diffusion limit in Part IV.
We analyze our DNN solutions based on the theory shown in Part I. We use the newly devised technique “Grid
Reuse” method adapted to the Deep Learning algorithm. This technique makes it possible to approximate the
solution of the VPFP system with the Knudsen number 𝜀 in the range between 0.05 and 1.
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We have provided the numerical simulation for the trend of the diffusion limit without a theoretical support
and have seen that the DNN solution of the VPFP system converges to the DNN solution of the PNP system at
the deep learning level. It is an interesting problem to theoretically prove the diffusion limit between the DNN
solutions of those systems in the deep learning stage. Also, an improved method to approximate the VPFP
system will be needed to make it work with a smaller value of the Knudsen number 𝜀 than 0.05. We leave these
questions for future works.

One of the difficulties that the Deep Learning approach experiences as a PDE solver is on its rate of conver-
gence and stability. Compared to the traditional numerical schemes which have a great amount of well-known
studies on each method’s performance, the Deep Learning method still has some difficulties in dealing with such
things due to the optimization issues. However, it is also true that the Deep Learning is a new approach with
many advantages as the Deep Learning method is a mesh-free method. The Deep Learning algorithm that we
introduce in this paper does not require itself to have the mesh generation and instead it re-samples the grid
points for each domain in every epoch. We expect that our work can be applied to arbitrary domains in higher
dimensional kinetic equations.

Appendix A. Proof of Theorem 4.7

In this section, we provide the proof of Theorem 4.7.

Proof. Motivated by [17], we define a transform 𝑢̄(𝑡, 𝑥, 𝑣) of a function 𝑢(𝑡, 𝑥, 𝑣) as follows:

𝑢̄(𝑡, 𝑥, 𝑣) = 𝑒−𝑡𝑢(𝑡, 𝑥, 𝑒−𝑡𝑣).

Then the transformed function 𝑓 satisfies

𝜕𝑡𝑓 + 𝑒−𝑡(𝑣 · 𝜕𝑥)𝑓 + 𝑒𝑡𝐸𝜕𝑣𝑓 − 𝑒2𝑡𝜕2
𝑣𝑓 = 0.

Also, we define the error values of the functions 𝑓𝑛𝑛 and 𝐸𝑛𝑛 as the following equations:

𝑑
(1)
𝑔𝑒,𝑗(𝑡, 𝑥, 𝑣) def= −

[︀
𝜕𝑡 + 𝑒−𝑡(𝑣 · 𝜕𝑥) + 𝑒𝑡𝐸𝑛𝑛𝜕𝑣 − 𝑒2𝑡𝜕2

𝑣

]︀
𝑓𝑛𝑛

for (𝑡, 𝑥, 𝑣) ∈ [0, 𝑇 ]× [−1, 1]× 𝑒𝑡𝑉 ,

𝑑
(2)
𝑔𝑒,𝑗(𝑡, 𝑥) def= −(𝜕𝑥𝐸𝑛𝑛 −

∫︁
d𝑣𝑓𝑛𝑛(𝑡, 𝑥, 𝑣) + ℎ(𝑥))

for (𝑡, 𝑥) ∈ [0, 𝑇 ]× [−1, 1],
𝑑
(1)
𝑏𝑐,𝑗(𝑡, 𝑥, 𝑣) def= −(𝑓𝑛𝑛(𝑡, 𝑥, 𝑣)− 𝑓𝑛𝑛(𝑡, 𝑥,−𝑣))

for (𝑡, 𝑥, 𝑣) ∈ 𝛾−𝑇,𝑒𝑡𝑉 , and

𝑑
(2)
𝑏𝑐,𝑗(𝑡, 𝑥) def= −𝐸𝑛𝑛(𝑡, 𝑥)

for (𝑡, 𝑥) ∈ [0, 𝑇 ]× 𝜕[−1, 1]. Note that the interval 𝑒𝑡𝑉 is defined as

𝑒𝑡𝑉
def= [−10𝑒𝑡, 10𝑒𝑡],

and 𝛾±𝑇,𝑒𝑡𝑉 is defined as [0, 𝑇 ]× 𝛾±𝑒𝑡𝑉 , where 𝛾±𝑒𝑡𝑉 is equal to 𝛾± with the velocity domain R is replaced by 𝑒𝑡𝑉 .
We now consider the following equation on the difference between 𝑓 and 𝑓𝑛𝑛 for each fixed 𝑗 on the compact

set of 𝑡, 𝑥, 𝑣 only as[︀
𝜕𝑡 + 𝑒−𝑡 (𝑣 · 𝜕𝑥)− 𝑒2𝑡𝜕2

𝑣

]︀
{𝑓 − 𝑓𝑛𝑛}+ 𝑒𝑡

(︀
𝐸𝜕𝑣𝑓 − 𝐸𝑛𝑛𝜕𝑣𝑓𝑛𝑛

)︀
= 𝑑

(1)
𝑔𝑒,𝑗(𝑡, 𝑥, 𝑣). (A.1)
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Then we derive the inequality below by multiplying 2(𝑓−𝑓𝑛𝑛) onto (A.1) and integrating it over [−1, 1]×𝑒𝑡𝑉
as ∫︁ 1

−1

∫︁ 10𝑒𝑡

−10𝑒𝑡

𝜕

𝜕𝑡
(𝑓 − 𝑓𝑛𝑛)2(𝑡, 𝑥, 𝑣)d𝑣d𝑥 +

(︃∫︁
𝛾𝑒𝑡𝑉

(𝑓 − 𝑓𝑛𝑛)2d𝛾

)︃
− 2𝑒2𝑡⟨𝜕2

𝑣(𝑓 − 𝑓𝑛𝑛), (𝑓 − 𝑓𝑛𝑛)⟩

= −
∫︁ 1

−1

∫︁ 10𝑒𝑡

−10𝑒𝑡

2𝑒𝑡(𝐸𝜕𝑣𝑓 − 𝐸𝑛𝑛𝜕𝑣𝑓𝑛𝑛)(𝑓 − 𝑓𝑛𝑛)d𝑣d𝑥 + 2⟨𝑑(1)
𝑔𝑒,𝑗 , (𝑓 − 𝑓𝑛𝑛)⟩, (A.2)

where ⟨·, ·⟩ denotes the standard inner product on 𝐿2([−1, 1]× 𝑒𝑡𝑉 ). On the left-hand side of (A.2), we note
that∫︁

𝛾𝑒𝑡𝑉

(︀
𝑓 − 𝑓𝑛𝑛

)︀2 d𝛾 =
∫︁

𝛾+
𝑒𝑡𝑉

(︀
𝑓 − 𝑓𝑛𝑛

)︀2 d𝛾 −
∫︁

𝛾−
𝑒𝑡𝑉

(︀
𝑓 − 𝑓𝑛𝑛

)︀2 d𝛾

=
∫︁

𝛾+
𝑒𝑡𝑉

(︀
𝑓 − 𝑓𝑛𝑛

)︀2 d𝛾 −
∫︁

𝛾−
𝑒𝑡𝑉

(︁
𝑑
(1)
𝑏𝑐,𝑗(𝑡, 𝑥, 𝑣) +

(︀
𝑓 − 𝑓𝑛𝑛

)︀
(𝑡, 𝑥,−𝑣)

)︁2

d𝛾

≥
∫︁

𝛾+
𝑒𝑡𝑉

(︀
𝑓 − 𝑓𝑛𝑛

)︀2 d𝛾 − 2
∫︁

𝛾−
𝑒𝑡𝑉

|𝑑(1)
𝑏𝑐,𝑗(𝑡, 𝑥, 𝑣)|2d𝛾 − 2

∫︁
𝛾−

𝑒𝑡𝑉

(︀
𝑓 − 𝑓𝑛𝑛

)︀2 (𝑡, 𝑥,−𝑣)d𝛾

= 3
∫︁

𝛾+
𝑒𝑡𝑉

(︀
𝑓 − 𝑓𝑛𝑛

)︀2 d𝛾 − 2
∫︁

𝛾−
𝑒𝑡𝑉

|𝑑(1)
𝑏𝑐,𝑗(𝑡, 𝑥, 𝑣)|2d𝛾 ≥ −2

∫︁
𝛾−

𝑒𝑡𝑉

|𝑑(1)
𝑏𝑐,𝑗(𝑡, 𝑥, 𝑣)|2d𝛾. (A.3)

Also, note that

d
d𝑡

⃦⃦
(𝑓 − 𝑓𝑛𝑛)(𝑡, ·, ·)

⃦⃦2

𝐿2
𝑥,𝑣([−1,1]×𝑒𝑡𝑉 )

=
∫︁ 1

−1

∫︁ 10𝑒𝑡

−10𝑒𝑡

𝜕

𝜕𝑡
(𝑓 − 𝑓𝑛𝑛)2(𝑡, 𝑥, 𝑣)d𝑣d𝑥

+ 10𝑒𝑡
(︁⃦⃦

(𝑓 − 𝑓𝑛𝑛)(𝑡, ·, 10𝑒𝑡)
⃦⃦2

𝐿2
𝑥([−1,1])

+
⃦⃦
(𝑓 − 𝑓𝑛𝑛)(𝑡, ·,−10𝑒𝑡)

⃦⃦2

𝐿2
𝑥([−1,1])

)︁
⏟  ⏞  

def
= 𝐵1(𝑡)

,

by the Leibniz rule and

2𝑒2𝑡⟨𝜕2
𝑣

(︀
𝑓 − 𝑓𝑛𝑛

)︀
,
(︀
𝑓 − 𝑓𝑛𝑛

)︀
⟩

= −2𝑒2𝑡
⃦⃦
𝜕𝑣

(︀
𝑓 − 𝑓𝑛𝑛

)︀⃦⃦2

𝐿2
𝑥,𝑣([−1,1]×𝑒𝑡𝑉 )

+ 2𝑒2𝑡

∫︁ 1

−1

𝜕𝑣

(︀
𝑓 − 𝑓𝑛𝑛

)︀ (︀
𝑓 − 𝑓𝑛𝑛

)︀ (︀
𝑡, ·, 10𝑒𝑡

)︀
− 𝜕𝑣

(︀
𝑓 − 𝑓𝑛𝑛

)︀ (︀
𝑓 − 𝑓𝑛𝑛

)︀ (︀
𝑡, ·,−10𝑒𝑡

)︀
d𝑥⏟  ⏞  

def
= 𝐵2(𝑡)

.

So, it yields that
2𝑒2𝑡

⟨︀
𝜕2

𝑣

(︀
𝑓 − 𝑓𝑛𝑛

)︀
,
(︀
𝑓 − 𝑓𝑛𝑛

)︀⟩︀
≤ 𝐵2(𝑡).

Also, note that(︀
𝐸𝜕𝑣𝑓 − 𝐸𝑛𝑛𝜕𝑣𝑓𝑛𝑛

)︀ (︀
𝑓 − 𝑓𝑛𝑛

)︀
= (𝐸 − 𝐸𝑛𝑛) 𝜕𝑣𝑓

(︀
𝑓 − 𝑓𝑛𝑛

)︀
+

1
2
𝐸𝑛𝑛𝜕𝑣

(︀
𝑓 − 𝑓𝑛𝑛

)︀2
,

and Poisson equation implies the difference between 𝐸 and 𝐸𝑛𝑛 as

𝜕𝑥(𝐸 − 𝐸𝑛𝑛) =
∫︁

𝑒𝑡𝑉

(𝑓 − 𝑓𝑛𝑛)d𝑣 +
∫︁

R∖𝑒𝑡𝑉

𝑓d𝑣 + 𝑑
(2)
𝑔𝑒,𝑗(𝑡, 𝑥). (A.4)
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So, it yields that

|𝐸 − 𝐸𝑛𝑛|(𝑡, 𝑥) ≤
∫︁ 𝑥

−1

d𝑥′
∫︁

𝑒𝑡𝑉

d𝑣|𝑓 − 𝑓𝑛𝑛|(𝑡, 𝑥′, 𝑣) +
∫︁ 𝑥

−1

d𝑥′

(︃∫︁
R∖𝑒𝑡𝑉

|𝑓(𝑡, 𝑥′, 𝑣)|d𝑣

)︃

+
∫︁ 𝑥

−1

d𝑥′ |𝑑(2)
𝑔𝑒,𝑗(𝑡, 𝑥′)|+ | (𝐸 − 𝐸𝑛𝑛)(𝑡, 𝑥 = −1)⏟  ⏞  

=|𝐸𝑛𝑛(𝑡,𝑥=−1)|

|

≤
∫︁ 𝑥

−1

d𝑥′
∫︁

𝑒𝑡𝑉

d𝑣|𝑓 − 𝑓𝑛𝑛|(𝑡, 𝑥′, 𝑣) +
∫︁ 𝑥

−1

d𝑥′

(︃∫︁
R∖𝑉

d𝑣|𝑓(𝑡, 𝑥′, 𝑣)|

)︃
+
√

2‖𝑑(2)
𝑔𝑒,𝑗(𝑡, 𝑥′)‖𝐿2

𝑥([−1,1]) + ‖𝑑(2)
𝑏𝑐,𝑗(𝑡, 𝑥)‖𝐿1

𝑥(𝜕[−1,1])⏟  ⏞  
≤
√

2‖𝑑(2)
𝑏𝑐,𝑗(𝑡,𝑥)‖𝐿2

𝑥(𝜕[−1,1])

,

by Hölder’s inequality. Thus, we have

‖𝐸(𝑡)− 𝐸𝑛𝑛(𝑡)‖𝐿∞𝑥
≤ ‖𝑓 − 𝑓𝑛𝑛‖𝐿1

𝑥,𝑣([−1,1]×𝑒𝑡𝑉 ) + 𝜖 +
√

2‖𝑑(2)
𝑔𝑒,𝑗‖𝐿2

𝑥
+
√

2‖𝑑(2)
𝑏𝑐,𝑗‖𝐿2

𝑥
, (A.5)

by (4.10). Then the integration by parts in 𝑣 variable yields that⃒⃒⃒⃒
⃒
∫︁ 1

−1

∫︁ 10𝑒𝑡

−10𝑒𝑡

2𝑒𝑡
(︀
𝐸𝜕𝑣𝑓 − 𝐸𝑛𝑛𝜕𝑣𝑓𝑛𝑛

)︀ (︀
𝑓 − 𝑓𝑛𝑛

)︀
d𝑣d𝑥

⃒⃒⃒⃒
⃒

≤
∫︁ 1

−1

∫︁ 10𝑒𝑡

−10𝑒𝑡

2𝑒𝑡|𝐸 − 𝐸𝑛𝑛||𝜕𝑣𝑓 ||𝑓 − 𝑓𝑛𝑛|d𝑣d𝑥 +
1
2

⃒⃒⃒⃒
⃒
∫︁ 1

−1

∫︁ 10𝑒𝑡

−10𝑒𝑡

2𝑒𝑡𝐸𝑛𝑛𝜕𝑣

(︀
𝑓 − 𝑓𝑛𝑛

)︀2 d𝑣d𝑥

⃒⃒⃒⃒
⃒

≤ 2𝑒𝑡‖𝑓‖𝐶1
𝑥,𝑣([−1,1]×𝑒𝑡𝑉 )‖𝑓 − 𝑓𝑛𝑛‖𝐿1

𝑥,𝑣([−1,1]×𝑒𝑡𝑉 )

×
(︁
‖𝑓 − 𝑓𝑛𝑛‖𝐿1

𝑥,𝑣([−1,1]×𝑒𝑡𝑉 ) + 𝜖 +
√

2‖𝑑(2)
𝑔𝑒,𝑗‖𝐿2

𝑥
+
√

2‖𝑑(2)
𝑏𝑐,𝑗‖𝐿2

𝑥

)︁
+

1
2

⃒⃒⃒⃒∫︁ 1

−1

2𝑒𝑡𝐸𝑛𝑛
(︁(︀

𝑓 − 𝑓𝑛𝑛
)︀2 (︀

𝑡, 𝑥, 10𝑒𝑡
)︀
−
(︀
𝑓 − 𝑓𝑛𝑛

)︀2 (︀
𝑡, 𝑥,−10𝑒𝑡

)︀)︁
d𝑥

⃒⃒⃒⃒
≤ 2𝑒𝑡‖𝑓‖𝐶1

𝑥,𝑣([−1,1]×𝑒𝑡𝑉 )‖𝑓 − 𝑓𝑛𝑛‖𝐿1
𝑥,𝑣([−1,1]×𝑒𝑡𝑉 )

×
(︁
‖𝑓 − 𝑓𝑛𝑛‖𝐿1

𝑥,𝑣([−1,1]×𝑒𝑡𝑉 ) + 𝜖 +
√

2‖𝑑(2)
𝑔𝑒,𝑗‖𝐿2

𝑥
+
√

2‖𝑑(2)
𝑏𝑐,𝑗‖𝐿2

𝑥

)︁
+ 𝑒𝑡‖𝐸𝑛𝑛‖𝐿1

𝑥

(︁
‖
(︀
𝑓 − 𝑓𝑛𝑛

)︀ (︀
𝑡, ·, 10𝑒𝑡

)︀
‖2𝐿∞𝑥 + ‖

(︀
𝑓 − 𝑓𝑛𝑛

)︀ (︀
𝑡, ·,−10𝑒𝑡

)︀
‖2𝐿∞𝑥

)︁
. (A.6)

Here, by Hölder’s inequality, we have

‖𝑓 − 𝑓𝑛𝑛‖𝐿1
𝑥,𝑣([−1,1]×𝑒𝑡𝑉 ) ≤

√
40𝑒𝑡‖𝑓 − 𝑓𝑛𝑛‖𝐿2

𝑥,𝑣
.

Also, 𝑓 ∈ 𝐶(1,1,2) implies that

‖𝑓‖𝐶1
𝑥,𝑣([−1,1]×𝑒𝑡𝑉 )‖ = ‖𝑒−𝑡𝑓

(︀
𝑡, 𝑥, 𝑒−𝑡𝑣

)︀
‖𝐶1

𝑥,𝑣([−1,1]×𝑒𝑡𝑉 ) ≤ 𝑒−𝑡
(︀
𝐶0 + 𝑒−𝑡𝐶0

)︀
,

for some positive constant 𝐶0. Thus, by (4.10), we have⃒⃒⃒⃒
⃒
∫︁ 1

−1

∫︁ 10𝑒𝑡

−10𝑒𝑡

2𝑒𝑡
(︀
𝐸𝜕𝑣𝑓 − 𝐸𝑛𝑛𝜕𝑣𝑓𝑛𝑛

)︀ (︀
𝑓 − 𝑓𝑛𝑛

)︀
d𝑣d𝑥

⃒⃒⃒⃒
⃒

≤ 2
(︁√

40𝑒𝑡‖𝑓 − 𝑓𝑛𝑛‖𝐿2
𝑥,𝑣

+ 𝜖 +
√

2‖𝑑(2)
𝑔𝑒,𝑗‖𝐿2

𝑥
+
√

2‖𝑑(2)
𝑏𝑐,𝑗‖𝐿2

𝑥

)︁
×
(︀
𝐶0 + 𝑒−𝑡𝐶0

)︀√
40𝑒𝑡‖𝑓 − 𝑓𝑛𝑛‖𝐿2 + 2‖𝐸𝑛𝑛‖𝐿1

𝑥
𝑒𝑡𝜖. (A.7)
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Also, by (A.5), we have
‖𝐸𝑛𝑛‖𝐿1

𝑥
= ‖𝐸𝑛𝑛 − 𝐸 + 𝐸‖𝐿1

𝑥
≤ ‖𝐸 − 𝐸𝑛𝑛‖𝐿1

𝑥
+ ‖𝐸‖𝐿1

𝑥

≤ 2
(︁
‖𝑓 − 𝑓𝑗‖𝐿1

𝑥,𝑣([−1,1]×𝑉 ) + 𝜖 +
√

2‖𝑑(2)
𝑔𝑒,𝑗‖𝐿2

𝑥
+
√

2‖𝑑(2)
𝑏𝑐,𝑗‖𝐿2

𝑥

)︁
+ ‖𝐸‖𝐿1

𝑥

≤ 2
(︁√

40𝑒𝑡‖𝑓 − 𝑓𝑛𝑛‖𝐿2
𝑥,𝑣

+ 𝜖 +
√

2‖𝑑(2)
𝑔𝑒,𝑗‖𝐿2

𝑥
+
√

2‖𝑑(2)
𝑏𝑐,𝑗‖𝐿2

𝑥

)︁
+ ‖𝐸‖𝐿1

𝑥
,

by (4.10). Therefore, (A.7) yields that if 𝜖 < 1, then⃒⃒⃒⃒
⃒
∫︁ 1

−1

∫︁ 10𝑒𝑡

−10𝑒𝑡

2𝑒𝑡
(︀
𝐸𝜕𝑣𝑓 − 𝐸𝑛𝑛𝜕𝑣𝑓𝑛𝑛

)︀ (︀
𝑓 − 𝑓𝑛𝑛

)︀
d𝑣d𝑥

⃒⃒⃒⃒
⃒

≤ 2
(︀
𝐶0 + 𝑒−𝑡𝐶0

)︀√
40𝑒𝑡‖𝑓 − 𝑓𝑛𝑛‖𝐿2

𝑥,𝑣
×
(︁√

40𝑒𝑡‖𝑓 − 𝑓𝑛𝑛‖𝐿2
𝑥,𝑣

+ 𝜖 +
√

2‖𝑑(2)
𝑔𝑒,𝑗‖𝐿2

𝑥
+
√

2‖𝑑(2)
𝑏𝑐,𝑗‖𝐿2

𝑥

)︁
+ 2𝑒𝑡𝜖

(︁(︁√
40𝑒𝑡‖𝑓 − 𝑓𝑛𝑛‖𝐿2

𝑥,𝑣
+ 𝜖 + ℒ(𝑡)

)︁
+ ‖𝐸‖𝐿1

𝑥

)︁
≤ 𝐶1‖𝑓 − 𝑓𝑛𝑛‖2𝐿2

𝑥,𝑣
+ 𝐶2𝜖 + 𝐶3‖𝑑(2)

𝑔𝑒,𝑗‖
2
𝐿2

𝑥
+ 𝐶4‖𝑑(2)

𝑏𝑐,𝑗‖
2
𝐿2

𝑥
, (A.8)

for some positive constant 𝐶1, 𝐶2, 𝐶3, and 𝐶4 by the use of Young’s inequality. Note that ‖𝐸‖𝐿1
𝑥

is also bounded
as we have 𝑓 ∈ 𝐶(1,1,2) on the compact domain and we also have ‖𝑓‖𝐿1

𝑥([−1,1];𝐿1
𝑣(R∖𝑉 )) ≤ 𝜖 by (4.10). Then, we

can reduce (A.2) to

d
d𝑡

𝑌 (𝑡)
def
=⏞  ⏟  

‖𝑓 − 𝑓𝑛𝑛‖2𝐿2([−1,1]×𝑒𝑡𝑉 ) ≤ (𝐶1 + 1)
⃦⃦
𝑓 − 𝑓𝑛𝑛

⃦⃦2

𝐿2
𝑥,𝑣([−1,1]×𝑒𝑡𝑉 )

+ 𝐵1(𝑡) + 𝐵2(𝑡) + 𝐶4𝜖

+ ‖𝑑(1)
𝑔𝑒,𝑗(𝑡, 𝑥, 𝑣)‖2𝐿2

𝑥,𝑣([−1,1]×𝑒𝑡𝑉 ) + 𝐶3‖𝑑(2)
𝑔𝑒,𝑗(𝑡, 𝑥)‖2𝐿2

𝑥

+ 2
∫︁

𝛾−
𝑇,𝑒𝑡𝑉

|𝑑(1)
𝑏𝑐,𝑗(𝑡, 𝑥, 𝑣)|2d𝛾 + 𝐶4‖𝑑(2)

𝑏𝑐,𝑗(𝑡, 𝑥)‖2𝐿2
𝑥
. (A.9)

If we use 𝐶1 + 1 ≤ 𝐶5 with some positive constant 𝐶5, we can rewrite (A.9) as follows:

𝑌 ′(𝑡)− 𝐶5𝑌 (𝑡) ≤ 𝐵1(𝑡) + 𝐵2(𝑡) + 𝐶4𝜖 + 𝐶6

(︃
‖𝑑(1)

𝑔𝑒,𝑗‖
2
𝐿2

𝑥,𝑣
+ ‖𝑑(2)

𝑔𝑒,𝑗‖
2
𝐿2

𝑥
+
∫︁

𝛾−
𝑇,𝑒𝑡𝑉

|𝑑(1)
𝑏𝑐,𝑗 |

2d𝛾 + ‖𝑑(2)
𝑏𝑐,𝑗‖

2
𝐿2

𝑥

)︃
⏟  ⏞  

def
= 𝐿(𝑡)

, (A.10)

with some positive constant 𝐶6. By Grönwall’s inequality, we have

𝑌 (𝑡) ≤ 𝑒𝐶5𝑡

(︂
𝑌 (0) +

∫︁ 𝑡

0

𝑒−𝐶5𝑠𝐶6𝐿(𝑠)d𝑠 +
∫︁ 𝑡

0

𝑒−𝐶5𝑠 (𝐵1(𝑠) + 𝐵2(𝑠) + 𝐶4𝜖) d𝑠

)︂
. (A.11)

Finally, we recall that 𝑌 (𝑡) = 𝑒−𝑡‖𝑓 − 𝑓𝑗‖2𝐿2
𝑥,𝑣([−1,1]×𝑉 ), 𝑌 (0) = Loss𝑓𝑝

IC, and

𝑌 (0) +
∫︁ 𝑡

0

𝑒−𝐶5𝑠𝐿(𝑠)d𝑠 ≤ 𝑌 (0) +
∫︁ 𝑇

0

𝐿(𝑠)d𝑠 ≤ 𝐶7

(︁
Loss𝑓𝑝

IC + Loss𝑓𝑝
𝑔𝑒 + Loss𝑓𝑝

BC

)︁
= 𝐶7Loss𝑓𝑝

Total(𝑓𝑗).

for some positive constant 𝐶7. Moreover, under the assumption on (4.10), we have∫︁ 𝑡

0

𝑒−𝐶5𝑠𝐵1(𝑠)d𝑠 ≤ 40𝜖2
∫︁ 𝑡

0

𝑒−𝐶5𝑠𝑒−𝑠d𝑠 ≤ 𝐶8𝜖
2 and

∫︁ 𝑡

0

𝑒−𝐶5𝑠𝐵2(𝑠)d𝑠 ≤ 8𝜖2
∫︁ 𝑡

0

𝑒−𝐶5𝑠𝑒−𝑠d𝑠 ≤ 𝐶9𝜖
2,

for some positive constant 𝐶8 and 𝐶9. Therefore, (A.11) and the inverse transform from 𝑓 to 𝑓 imply that

‖𝑓 − 𝑓𝑛𝑛‖𝐿∞𝑡 ([0,𝑇 ];𝐿2
𝑥,𝑣([−1,1]×𝑉 )) ≤ 𝐶 (LossTotal (𝑓𝑛𝑛) + 𝜖) ,

for some positive constant 𝐶 which depends only on 𝑇 . This completes the proof of Theorem 4.7. �
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Appendix B. Proof of Theorem 5.2

In this section, we provide the proof of Theorem 5.2.

Proof. We define the error values of the neural network outputs 𝜌𝑛𝑛 and 𝐸𝑛𝑛 as the following equations:

𝑑
(1)
𝑔𝑒,𝑗(𝑡, 𝑥) def= − [𝜕𝑡 − 𝜕𝑥𝑥] 𝜌𝑛𝑛 + 𝜕𝑥 (𝜌𝑛𝑛𝐸𝑛𝑛) and 𝑑

(2)
𝑔𝑒,𝑗(𝑡, 𝑥) def= − (𝜕𝑥𝐸𝑛𝑛 − 𝜌𝑛𝑛(𝑡, 𝑥) + ℎ(𝑥))

for (𝑡, 𝑥) ∈ [0, 𝑇 ]× [−1, 1],

𝑑
(1)
𝑏𝑐,𝑗(𝑡, 𝑥) def= −𝜕𝑥𝜌𝑛𝑛(𝑡, 𝑥) and 𝑑

(2)
𝑏𝑐,𝑗(𝑡, 𝑥) def= −𝐸𝑛𝑛(𝑡, 𝑥)

for 𝑥 = ±1. Then, we consider the following equation on the difference between 𝜌 and 𝜌𝑛𝑛 for each fixed 𝑗 on
the compact set of 𝑡, 𝑥 only as

[𝜕𝑡 − 𝜕𝑥𝑥] {𝜌− 𝜌𝑛𝑛}+ 𝜕𝑥 (𝜌𝐸 − 𝜌𝑛𝑛𝐸𝑛𝑛) = 𝑑
(1)
𝑔𝑒,𝑗(𝑡, 𝑥). (B.1)

Then we derive the inequality below by multiplying 2(𝜌− 𝜌𝑛𝑛) onto (B.1) and integrating it over [−1, 1] as∫︁ 1

−1

𝜕

𝜕𝑡
(𝜌− 𝜌𝑛𝑛)2 (𝑡, 𝑥)d𝑥− 2

∫︁ 1

−1

(𝜌− 𝜌𝑛𝑛) 𝜕𝑥𝑥 (𝜌− 𝜌𝑛𝑛) d𝑥 (B.2)

= −2
∫︁ 1

−1

(𝜌− 𝜌𝑛𝑛) 𝜕𝑥 (𝜌𝐸 − 𝜌𝑛𝑛𝐸𝑛𝑛) d𝑥 + 2
⟨
𝑑
(1)
𝑔𝑒,𝑗 , (𝜌− 𝜌𝑛𝑛)

⟩
, (B.3)

where ⟨·, ·⟩ denotes the standard inner product on 𝐿2
𝑥([−1, 1]). On the left-hand side of (B.2), we note that∫︁ 1

−1

𝜕

𝜕𝑡
(𝜌− 𝜌𝑛𝑛)2 (𝑡, 𝑥)d𝑥 =

𝜕

𝜕𝑡
‖𝜌− 𝜌𝑛𝑛‖2𝐿2

𝑥([−1,1])

and ∫︁ 1

−1

(𝜌− 𝜌𝑛𝑛) 𝜕𝑥𝑥 (𝜌− 𝜌𝑛𝑛) d𝑥 =
∫︁

𝜕[−1,1]

(𝜌− 𝜌𝑛𝑛) 𝑑
(1)
𝑏𝑐,𝑗𝑛𝑥d𝑆𝑥 − ‖𝜕𝑥 (𝜌− 𝜌𝑛𝑛)‖2𝐿2

𝑥([−1,1])

≤ 1
2
‖𝜌− 𝜌𝑛𝑛‖2𝐿2

𝑥(𝜕[−1,1]) +
1
2

⃦⃦⃦
𝑑
(1)
𝑏𝑐,𝑗

⃦⃦⃦2

𝐿2
𝑥(𝜕[−1,1])

− ‖𝜕𝑥 (𝜌− 𝜌𝑛𝑛)‖2𝐿2
𝑥([−1,1])

≤ 1
2

(︁
‖𝜌− 𝜌𝑛𝑛‖2𝐿2

𝑥([−1,1]) + ‖𝜕𝑥 (𝜌− 𝜌𝑛𝑛)‖2𝐿2
𝑥([−1,1])

)︁
+

1
2

⃦⃦⃦
𝑑
(1)
𝑏𝑐,𝑗

⃦⃦⃦2

𝐿2
𝑥(𝜕[−1,1])

− ‖𝜕𝑥 (𝜌− 𝜌𝑛𝑛)‖2𝐿2
𝑥([−1,1])

≤ 1
2
‖𝜌− 𝜌𝑛𝑛‖2𝐿2

𝑥([−1,1]) −
1
2
‖𝜕𝑥 (𝜌− 𝜌𝑛𝑛)‖2𝐿2

𝑥([−1,1]) +
1
2

⃦⃦⃦
𝑑
(1)
𝑏𝑐,𝑗

⃦⃦⃦2

𝐿2
𝑥(𝜕[−1,1])

, (B.4)

by the trace theorem for 𝜌 − 𝜌𝑛𝑛. Since 𝜌 belongs to ̂︀𝐶(1,2)([0, 𝑇 ] × [−1, 1]) and 𝜌𝑛𝑛 is a continuous function
with respect to 𝑥, it implies that |(𝜌− 𝜌𝑛𝑛)(𝑡, 𝑥)| < 𝑀1 on the compact domain 𝑥 ∈ 𝜕[−1, 1] for some positive
constant 𝑀1. Also for the second term on the right-hand side of (B.2), we note that⟨

𝑑
(1)
𝑔𝑒,𝑗 , (𝜌− 𝜌𝑛𝑛)

⟩
≤ 1

2

(︂⃦⃦⃦
𝑑
(1)
𝑔𝑒,𝑗

⃦⃦⃦2

𝐿2
𝑥([−1,1])

+ ‖𝜌− 𝜌𝑛𝑛‖2𝐿2
𝑥([−1,1])

)︂
.

Therefore, we reduce (B.2) to

𝜕

𝜕𝑡
‖𝜌− 𝜌𝑛𝑛‖2𝐿2

𝑥([−1,1]) − ‖𝜌− 𝜌𝑛𝑛‖2𝐿2
𝑥([−1,1]) + ‖𝜕𝑥 (𝜌− 𝜌𝑛𝑛)‖2𝐿2

𝑥([−1,1]) −
⃦⃦⃦
𝑑
(1)
𝑏𝑐,𝑗

⃦⃦⃦2

𝐿2
𝑥(𝜕[−1,1])

≤ −2
∫︁ 1

−1

(𝜌− 𝜌𝑛𝑛) 𝜕𝑥 (𝜌𝐸 − 𝜌𝑛𝑛𝐸𝑛𝑛) d𝑥 +
⃦⃦⃦
𝑑
(1)
𝑔𝑒,𝑗

⃦⃦⃦2

𝐿2
𝑥([−1,1])

+ ‖𝜌− 𝜌𝑛𝑛‖2𝐿2
𝑥([−1,1]) . (B.5)
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Also, we reduce the absolute value of the first term on the right hand side of (B.5) to⃒⃒⃒⃒
−2
∫︁ 1

−1

(𝜌− 𝜌𝑛𝑛) 𝜕𝑥 (𝜌𝐸 − 𝜌𝑛𝑛𝐸𝑛𝑛) d𝑥

⃒⃒⃒⃒
≤ 2

⃒⃒⃒⃒
⃒
∫︁

𝜕[−1,1]

(𝜌− 𝜌𝑛𝑛) (𝜌𝐸 − 𝜌𝑛𝑛𝐸𝑛𝑛) 𝑛𝑥d𝑆𝑥

⃒⃒⃒⃒
⃒⏟  ⏞  

def
= 𝐵1(𝑡)

+ 2
⃒⃒⃒⃒∫︁ 1

−1

𝜕𝑥 (𝜌− 𝜌𝑛𝑛) (𝜌𝐸 − 𝜌𝑛𝑛𝐸𝑛𝑛) d𝑥

⃒⃒⃒⃒
⏟  ⏞  

def
= 𝐵2(𝑡)

, (B.6)

by the integration by parts with respect to 𝑥. Note that we have

𝐵1(𝑡) = 2

⃒⃒⃒⃒
⃒
∫︁

𝜕[−1,1]

(𝜌− 𝜌𝑛𝑛) (−𝜌𝑛𝑛𝐸𝑛𝑛) 𝑛𝑥d𝑆𝑥

⃒⃒⃒⃒
⃒ = 2

⃒⃒⃒⃒
⃒
∫︁

𝜕[−1,1]

(𝜌− 𝜌𝑛𝑛) ((𝜌− 𝜌𝑛𝑛)− 𝜌) 𝐸𝑛𝑛𝑛𝑥d𝑆𝑥

⃒⃒⃒⃒
⃒

≤ 2

⃒⃒⃒⃒
⃒
∫︁

𝜕[−1,1]

(𝜌− 𝜌𝑛𝑛)2 𝑑
(2)
𝑏𝑐,𝑗𝑛𝑥d𝑆𝑥

⃒⃒⃒⃒
⃒+ 2

⃒⃒⃒⃒
⃒
∫︁

𝜕[−1,1]

(𝜌− 𝜌𝑛𝑛)𝜌𝑑
(2)
𝑏𝑐,𝑗𝑛𝑥d𝑆𝑥

⃒⃒⃒⃒
⃒ . (B.7)

Therefore, by Holder’s inequality, trace theorem and the Cauchy–Schwarz inequality with 𝜖0, we can bound
𝐵1(𝑡) as

𝐵1(𝑡) ≤ 2
⃦⃦⃦
𝑑
(2)
𝑏𝑐,𝑗

⃦⃦⃦
𝐿∞𝑥 (𝜕[−1,1])

‖𝜌− 𝜌𝑛𝑛‖2𝐿2
𝑥(𝜕[−1,1]) + 2𝑀1 ‖𝜌− 𝜌𝑛𝑛‖𝐿2

𝑥(𝜕[−1,1])

⃦⃦⃦
𝑑
(2)
𝑏𝑐,𝑗

⃦⃦⃦
𝐿2

𝑥(𝜕[−1,1])

≤ 1
3
‖𝜌− 𝜌𝑛𝑛‖2𝐿2

𝑥(𝜕[−1,1]) + 𝑀1

(︂
𝜖0 ‖𝜌− 𝜌𝑛𝑛‖2𝐿2

𝑥(𝜕[−1,1]) +
1
𝜖0

⃦⃦⃦
𝑑
(2)
𝑏𝑐,𝑗

⃦⃦⃦2

𝐿2
𝑥(𝜕[−1,1])

)︂
≤
(︂

1
3

+ 𝑀1𝜖0

)︂
‖𝜌− 𝜌𝑛𝑛‖2𝐿2

𝑥(𝜕[−1,1]) +
𝑀1

𝜖0

⃦⃦⃦
𝑑
(2)
𝑏𝑐,𝑗

⃦⃦⃦2

𝐿2
𝑥(𝜕[−1,1])

≤
(︂

1
3

+ 𝑀1𝜖0

)︂(︁
‖𝜌− 𝜌𝑛𝑛‖2𝐿2

𝑥([−1,1]) + ‖𝜕𝑥(𝜌− 𝜌𝑛𝑛)‖2𝐿2
𝑥([−1,1])

)︁
+

𝑀1

𝜖0

⃦⃦⃦
𝑑
(2)
𝑏𝑐,𝑗

⃦⃦⃦2

𝐿2
𝑥(𝜕[−1,1])

, (B.8)

since we can reduce Loss𝑝𝑛𝑝

BC(2) defined in (5.6) sufficently small so we can bound
⃦⃦⃦
𝑑
(2)
𝑏𝑐,𝑗

⃦⃦⃦
𝐿∞𝑥 (𝜕[−1,1])

for all time

𝑡 ∈ [0, 𝑇 ] using the Sobolev embedding theorem as follows:⃦⃦⃦⃦⃦⃦⃦
𝑑
(2)
𝑏𝑐,𝑗

⃦⃦⃦
𝐿∞𝑥 (𝜕[−1,1])

⃦⃦⃦⃦
𝐿∞𝑡 ([0,𝑇 ])

≤
⃦⃦⃦
𝑑
(2)
𝑏𝑐,𝑗(𝑡, 𝑥 = −1)

⃦⃦⃦
𝐿∞𝑡 ([0,𝑇 ])

+
⃦⃦⃦
𝑑
(2)
𝑏𝑐,𝑗(𝑡, 𝑥 = 1)

⃦⃦⃦
𝐿∞𝑡 ([0,𝑇 ])

≤ 𝐶0

(︂⃦⃦⃦
𝑑
(2)
𝑏𝑐,𝑗(𝑡, 𝑥 = −1)

⃦⃦⃦
𝐻1

𝑡 ([0,𝑇 ])
+
⃦⃦⃦
𝑑
(2)
𝑏𝑐,𝑗(𝑡, 𝑥 = 1)

⃦⃦⃦
𝐻1

𝑡 ([0,𝑇 ])

)︂
≤
√

2𝐶0

(︂⃦⃦⃦
𝑑
(2)
𝑏𝑐,𝑗(𝑡, 𝑥 = −1)

⃦⃦⃦2

𝐻1
𝑡 ([0,𝑇 ])

+
⃦⃦⃦
𝑑
(2)
𝑏𝑐,𝑗(𝑡, 𝑥 = 1)

⃦⃦⃦2

𝐻1
𝑡 ([0,𝑇 ])

)︂
=
√

2𝐶0Loss𝑝𝑛𝑝

BC(2) <
1
6
, (B.9)

for some positive constant 𝐶0. We have some positive constant 𝑀1 satisfying |𝜌(𝑡, 𝑥)| < 𝑀1 on 𝑥 ∈ 𝜕[−1, 1],
since 𝜌 belongs to ̂︀𝐶(1,2)([0, 𝑇 ]× [−1, 1]). By choosing a sufficently small 𝜖0 so that 1

3 + 𝑀1𝜖0 < 1
2 , then we can

bound 𝐵1(𝑡) as

𝐵1(𝑡) ≤ 1
2
‖𝜌− 𝜌𝑛𝑛‖2𝐿2

𝑥([−1,1]) +
1
2
‖𝜕𝑥(𝜌− 𝜌𝑛𝑛)‖2𝐿2

𝑥([−1,1]) + 𝐶1

⃦⃦⃦
𝑑
(2)
𝑏𝑐,𝑗

⃦⃦⃦2

𝐿2
𝑥(𝜕[−1,1])

, (B.10)

for some positive constant 𝐶1.
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To bound the second term 𝐵2(𝑡) on the right-hand side of the inequality (B.6), we have

𝐵2(𝑡) ≤ 2
⃒⃒⃒⃒∫︁ 1

−1

𝜕𝑥(𝜌− 𝜌𝑛𝑛)𝜌(𝐸 − 𝐸𝑛𝑛)d𝑥

⃒⃒⃒⃒
+ 2

⃒⃒⃒⃒∫︁ 1

−1

𝜕𝑥(𝜌− 𝜌𝑛𝑛)𝐸𝑛𝑛(𝜌− 𝜌𝑛𝑛)d𝑥

⃒⃒⃒⃒
≤ ‖𝜌‖𝐿∞𝑥 ([−1,1])

(︂
1
𝜖1
‖𝐸 − 𝐸𝑛𝑛‖2𝐿∞𝑥 ([−1,1]) + 𝜖1 ‖𝜕𝑥(𝜌− 𝜌𝑛𝑛)‖2𝐿2

𝑥([−1,1])

)︂
⏟  ⏞  

def
= 𝐵2,1(𝑡)

+ 2 ‖𝐸𝑛𝑛‖𝐿∞𝑥 ([−1,1])

∫︁ 1

−1

|(𝜌− 𝜌𝑛𝑛)𝜕𝑥(𝜌− 𝜌𝑛𝑛)|d𝑥⏟  ⏞  
def
= 𝐵2,2(𝑡)

, (B.11)

by the Cauchy–Schwarz inequality with 𝜖1. We consider the equation on the difference between 𝐸 and 𝐸𝑛𝑛 for
each fixed 𝑗 on the compact set of 𝑡, 𝑥 only as

|(𝐸 − 𝐸𝑛𝑛) (𝑡, 𝑥)| =
⃒⃒⃒⃒∫︁ 𝑥

−1

(︁
(𝜌− 𝜌𝑛𝑛) (𝑡, 𝑥′) + 𝑑

(2)
𝑔𝑒,𝑗 (𝑡, 𝑥′)

)︁
d𝑥′ + (𝐸 − 𝐸𝑛𝑛) (𝑡, 𝑥 = −1)

⃒⃒⃒⃒
≤
∫︁ 𝑥

−1

|𝜌− 𝜌𝑛𝑛|(𝑡, 𝑥′)d𝑥′ +
∫︁ 𝑥

−1

|𝑑(2)
𝑔𝑒,𝑗(𝑡, 𝑥′)|d𝑥′ + |𝐸𝑛𝑛(𝑡, 𝑥 = −1)| . (B.12)

Thus, we have

‖𝐸 − 𝐸𝑛𝑛‖𝐿∞𝑥
≤ ‖𝜌− 𝜌𝑛𝑛‖𝐿1([−1,1]) +

⃦⃦⃦
𝑑
(2)
𝑔𝑒,𝑗

⃦⃦⃦
𝐿1([−1,1])

+ |𝐸𝑛𝑛(𝑡, 𝑥 = −1)|

≤
√

2 ‖𝜌− 𝜌𝑛𝑛‖𝐿2
𝑥([−1,1]) +

√
2
⃦⃦⃦
𝑑
(2)
𝑔𝑒,𝑗

⃦⃦⃦
𝐿2

𝑥([−1,1])
+ (|𝐸𝑛𝑛(𝑡, 𝑥 = −1)|+ |𝐸𝑛𝑛(𝑡, 𝑥 = 1)|)

≤
√

2 ‖𝜌− 𝜌𝑛𝑛‖𝐿2
𝑥([−1,1]) +

√
2
⃦⃦⃦
𝑑
(2)
𝑔𝑒,𝑗

⃦⃦⃦
𝐿2

𝑥([−1,1])
+
⃦⃦⃦
𝑑
(2)
𝑏𝑐,𝑗

⃦⃦⃦
𝐿1(𝜕[−1,1])

≤
√

2
(︂
‖𝜌− 𝜌𝑛𝑛‖𝐿2

𝑥([−1,1]) +
⃦⃦⃦
𝑑
(2)
𝑔𝑒,𝑗

⃦⃦⃦
𝐿2

𝑥([−1,1])
+
⃦⃦⃦
𝑑
(2)
𝑏𝑐,𝑗

⃦⃦⃦
𝐿2

𝑥(𝜕[−1,1])

)︂
, (B.13)

by Holder’s inequality. Then the first term 𝐵2,1(𝑡) on the right-hand side of the inequality (B.11) is bounded as

𝐵2,1(𝑡) ≤ 𝑀2

(︃
2
𝜖1

(︂
‖𝜌− 𝜌𝑛𝑛‖𝐿2

𝑥([−1,1]) +
⃦⃦⃦
𝑑
(2)
𝑔𝑒,𝑗

⃦⃦⃦
𝐿2

𝑥([−1,1])
+
⃦⃦⃦
𝑑
(2)
𝑏𝑐,𝑗

⃦⃦⃦
𝐿2

𝑥(𝜕[−1,1])

)︂2

+ 𝜖1 ‖𝜕𝑥(𝜌− 𝜌𝑛𝑛)‖2𝐿2
𝑥([−1,1])

)︃

≤ 𝑀2

(︂
6
𝜖1

(︂
‖𝜌− 𝜌𝑛𝑛‖2𝐿2

𝑥([−1,1]) +
⃦⃦⃦
𝑑
(2)
𝑔𝑒,𝑗

⃦⃦⃦2

𝐿2
𝑥([−1,1])

+
⃦⃦⃦
𝑑
(2)
𝑏𝑐,𝑗

⃦⃦⃦2

𝐿2
𝑥(𝜕[−1,1])

)︂
+ 𝜖1 ‖𝜕𝑥(𝜌− 𝜌𝑛𝑛)‖2𝐿2

𝑥([−1,1])

)︂
,

(B.14)

with 𝑀2 satisfies |𝜌(𝑡, 𝑥)| < 𝑀2 on 𝑥 ∈ [−1, 1] since the solution 𝜌 belongs to ̂︀𝐶(1,2)([0, 𝑇 ]× [−1, 1]).
Now, we consider the second term 𝐵2,2(𝑡) on the right-hand side of the inequality (B.11). Since we reduce

Loss𝑝𝑛𝑝

GE(2) sufficiently small, we can bound the
⃦⃦⃦
𝑑
(2)
𝑔𝑒,𝑗

⃦⃦⃦
𝐿2

𝑥([−1,1])
for all time 𝑡 ∈ [0, 𝑇 ] as

⃦⃦⃦⃦⃦⃦⃦
𝑑
(2)
𝑔𝑒,𝑗

⃦⃦⃦
𝐿2

𝑥([−1,1])

⃦⃦⃦⃦
𝐿∞𝑥 ([0,𝑇 ])

≤
⃦⃦⃦⃦⃦⃦⃦

𝑑
(2)
𝑔𝑒,𝑗

⃦⃦⃦
𝐿∞𝑥 ([−1,1])

⃦⃦⃦⃦
𝐿∞𝑥 ([0,𝑇 ])

≤
⃦⃦⃦
𝑑
(2)
𝑔𝑒,𝑗

⃦⃦⃦
𝐿∞𝑥 ([0,𝑇 ]×[−1,1])

≤ 𝐶2

⃦⃦⃦
𝑑
(2)
𝑔𝑒,𝑗

⃦⃦⃦
𝐻1

𝑡,𝑥([0,𝑇 ]×[−1,1])
= 𝐶2Loss𝑝𝑛𝑝

GE(2)

1
2 ≤ 𝑀4,

(B.15)
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for some positive constant 𝑀4 by the Sobolev embedding theorem. Therfore, we can bound ‖𝐸 − 𝐸𝑛𝑛‖𝐿∞𝑥
in

the inequality (B.13) as

‖𝐸 − 𝐸𝑛𝑛‖𝐿∞𝑥 ([−1,1]) ≤
√

2 ‖𝜌− 𝜌𝑛𝑛‖𝐿2
𝑥([−1,1]) +

√
2
⃦⃦⃦
𝑑
(2)
𝑔𝑒,𝑗

⃦⃦⃦
𝐿2

𝑥([−1,1])⏟  ⏞  
≤𝑀4

+
√

2
⃦⃦⃦
𝑑
(2)
𝑏𝑐,𝑗

⃦⃦⃦
𝐿∞𝑥 (𝜕[−1,1])⏟  ⏞  
≤ 1

6

(B.16)

using the inequalities (B.9) and (B.15). Using this bound, we can bound the second term 𝐵2,2(𝑡) on the right-
hand side of the inequality (B.11) as

𝐵2,2(𝑡) ≤ 2 ‖𝜌− 𝜌𝑛𝑛‖𝐿2
𝑥
‖𝜕𝑥(𝜌− 𝜌𝑛𝑛)‖𝐿2

𝑥

(︁
‖𝐸 − 𝐸𝑛𝑛‖𝐿∞𝑥 ([−1,1]) + ‖−𝐸‖𝐿∞𝑥 ([−1,1])

)︁
≤ 2 ‖𝜌− 𝜌𝑛𝑛‖𝐿2

𝑥
‖𝜕𝑥(𝜌− 𝜌𝑛𝑛)‖𝐿2

𝑥

(︃
√

2 ‖𝜌− 𝜌𝑛𝑛‖𝐿2
𝑥([−1,1]) +

√
2𝑀4 +

√
2

6
+ 𝑀3

)︃
.

Defining 𝑀5
def=
√

2𝑀4 +
√

2
6 + 𝑀3 yields that

𝐵2,2(𝑡) ≤ 2
√

2 ‖𝜌− 𝜌𝑛𝑛‖2𝐿2
𝑥
‖𝜕𝑥(𝜌− 𝜌𝑛𝑛)‖𝐿2

𝑥
+ 2𝑀5 ‖𝜌− 𝜌𝑛𝑛‖𝐿2

𝑥
‖𝜕𝑥(𝜌− 𝜌𝑛𝑛)‖𝐿2

𝑥

≤
√

2
𝜖2
‖𝜌− 𝜌𝑛𝑛‖4𝐿2

𝑥
+
√

2𝜖2 ‖𝜕𝑥(𝜌− 𝜌𝑛𝑛)‖2𝐿2
𝑥

+ 𝑀5

(︂
1
𝜖2
‖𝜌− 𝜌𝑛𝑛‖2𝐿2

𝑥
+ 𝜖2 ‖𝜕𝑥(𝜌− 𝜌𝑛𝑛)‖2𝐿2

𝑥

)︂
(B.17)

for any positive constant 𝜖2 and some positive constant 𝑀3 satisfying |𝐸(𝑡, 𝑥)| < 𝑀3 on 𝑥 ∈ [−1, 1] since 𝐸 is
the continuous function with respect to 𝑥. Therefore, we can bound 𝐵2,2(𝑡) as

𝐵2,2(𝑡) ≤ 𝑀5

𝜖2
‖𝜌− 𝜌𝑛𝑛‖2𝐿2

𝑥([−1,1]) +
√

2
𝜖2
‖𝜌− 𝜌𝑛𝑛‖4𝐿2

𝑥([−1,1]) +
(︁
𝑀5 +

√
2
)︁

𝜖2 ‖𝜕𝑥 (𝜌− 𝜌𝑛𝑛)‖2𝐿2
𝑥([−1,1]) . (B.18)

Therefore, we can bound 𝐵2(𝑡) ≤ 𝐵2,1(𝑡) + 𝐵2,2(𝑡) in the inequality (B.17) as

𝐵2(𝑡) ≤ 𝑀2

(︂
6
𝜖1

(︂
‖𝜌− 𝜌𝑛𝑛‖2𝐿2

𝑥
+
⃦⃦⃦
𝑑
(2)
𝑔𝑒,𝑗

⃦⃦⃦2

𝐿2
𝑥

+
⃦⃦⃦
𝑑
(2)
𝑏𝑐,𝑗

⃦⃦⃦2

𝐿2
𝑥(𝜕[−1,1])

)︂
+ 𝜖1 ‖𝜕𝑥 (𝜌− 𝜌𝑛𝑛)‖2𝐿2

𝑥

)︂
+

𝑀5

𝜖2
‖𝜌− 𝜌𝑛𝑛‖2𝐿2

𝑥
+
√

2
𝜖2
‖𝜌− 𝜌𝑛𝑛‖4𝐿2

𝑥
+
(︁
𝑀5 +

√
2
)︁

𝜖2 ‖𝜕𝑥 (𝜌− 𝜌𝑛𝑛)‖2𝐿2
𝑥

≤
(︂

6𝑀2

𝜖1
+

𝑀5

𝜖2

)︂
‖𝜌− 𝜌𝑛𝑛‖2𝐿2

𝑥
+
√

2
𝜖2
‖𝜌− 𝜌𝑛𝑛‖4𝐿2

𝑥
+

6𝑀2

𝜖1

⃦⃦⃦
𝑑
(2)
𝑔𝑒,𝑗

⃦⃦⃦2

𝐿2
𝑥

+
6𝑀2

𝜖1

⃦⃦⃦
𝑑
(2)
𝑏𝑐,𝑗

⃦⃦⃦2

𝐿2
𝑥(𝜕[−1,1])

+
(︁
𝑀2𝜖1 +

(︁
𝑀5 +

√
2
)︁

𝜖2

)︁
‖𝜕𝑥 (𝜌− 𝜌𝑛𝑛)‖2𝐿2

𝑥
(B.19)

by Holder’s inequality. By choosing sufficiently small 𝜖1 and 𝜖2 so that 𝑀2𝜖1 +
(︀
𝑀5 +

√
2
)︀
𝜖2 < 1

2 , then 𝐵2(𝑡) is
bounded as

𝐵2(𝑡) ≤ 𝐶3

(︁
‖𝜌− 𝜌𝑛𝑛‖2𝐿2

𝑥([−1,1]) + ‖𝜌− 𝜌𝑛𝑛‖4𝐿2
𝑥([−1,1])

)︁
+ 𝐶4

(︂⃦⃦⃦
𝑑
(2)
𝑔𝑒,𝑗

⃦⃦⃦2

𝐿2
𝑥([−1,1])

+
⃦⃦⃦
𝑑
(2)
𝑏𝑐,𝑗

⃦⃦⃦2

𝐿2
𝑥(𝜕[−1,1])

)︂
+

1
2
‖𝜕𝑥(𝜌− 𝜌𝑛𝑛)‖2𝐿2

𝑥([−1,1]) (B.20)

for some positive constant 𝐶3 and 𝐶4. Therefore, by using the boundedness of 𝐵1(𝑡) in (B.10) and 𝐵2(𝑡) in
(B.20), the inequality (B.6) yields that
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⃒⃒⃒⃒
−2
∫︁ 1

−1

(𝜌− 𝜌𝑛𝑛)𝜕𝑥(𝜌𝐸 − 𝜌𝑛𝑛𝐸𝑛𝑛)d𝑥

⃒⃒⃒⃒
≤ 𝐵1(𝑡) + 𝐵2(𝑡)

≤ 1
2
‖𝜌− 𝜌𝑛𝑛‖2𝐿2

𝑥([−1,1]) +
1
2
‖𝜕𝑥(𝜌− 𝜌𝑛𝑛)‖2𝐿2

𝑥([−1,1]) + 𝐶1

⃦⃦⃦
𝑑
(2)
𝑏𝑐,𝑗

⃦⃦⃦2

𝐿2
𝑥(𝜕[−1,1])

+ 𝐶3

(︂
‖𝜌− 𝜌𝑛𝑛‖2𝐿2

𝑥([−1,1])

+ ‖𝜌− 𝜌𝑛𝑛‖4𝐿2
𝑥([−1,1])

)︂
+ 𝐶4

(︂⃦⃦⃦
𝑑
(2)
𝑔𝑒,𝑗

⃦⃦⃦2

𝐿2
𝑥([−1,1])

+
⃦⃦⃦
𝑑
(2)
𝑏𝑐,𝑗

⃦⃦⃦2

𝐿2
𝑥(𝜕[−1,1])

)︂
+

1
2
‖𝜕𝑥(𝜌− 𝜌𝑛𝑛)‖2𝐿2

𝑥([−1,1])

≤
(︂

𝐶3 +
1
2

)︂
‖𝜌− 𝜌𝑛𝑛‖2𝐿2

𝑥([−1,1]) + 𝐶3 ‖𝜌− 𝜌𝑛𝑛‖4𝐿2
𝑥([−1,1]) + ‖𝜕𝑥(𝜌− 𝜌𝑛𝑛)‖2𝐿2

𝑥([−1,1])

+ (𝐶1 + 𝐶4)
⃦⃦⃦
𝑑
(2)
𝑏𝑐,𝑗

⃦⃦⃦2

𝐿2
𝑥(𝜕[−1,1])

+ 𝐶4

⃦⃦⃦
𝑑
(2)
𝑔𝑒,𝑗

⃦⃦⃦2

𝐿2
𝑥([−1,1])

. (B.21)

Therefore, we reduce (B.5) to

𝜕

𝜕𝑡

𝑌 (𝑡)
def
=⏞  ⏟  

‖𝜌− 𝜌𝑛𝑛‖2𝐿2
𝑥([−1,1])−‖𝜌− 𝜌𝑛𝑛‖2𝐿2

𝑥([−1,1]) + ‖𝜕𝑥(𝜌− 𝜌𝑛𝑛)‖2𝐿2
𝑥([−1,1]) −

⃦⃦⃦
𝑑
(1)
𝑏𝑐,𝑗

⃦⃦⃦2

𝐿2
𝑥(𝜕[−1,1])

≤
(︂

𝐶3 +
1
2

)︂
‖𝜌− 𝜌𝑛𝑛‖2𝐿2

𝑥
+ 𝐶3 ‖𝜌− 𝜌𝑛𝑛‖4𝐿2

𝑥
+ ‖𝜕𝑥(𝜌− 𝜌𝑛𝑛)‖2𝐿2

𝑥

+ (𝐶1 + 𝐶4)
⃦⃦⃦
𝑑
(2)
𝑏𝑐,𝑗

⃦⃦⃦2

𝐿2
𝑥(𝜕[−1,1])

+ 𝐶4

⃦⃦⃦
𝑑
(2)
𝑔𝑒,𝑗

⃦⃦⃦2

𝐿2
𝑥

+
⃦⃦⃦
𝑑
(1)
𝑔𝑒,𝑗

⃦⃦⃦2

𝐿2
𝑥

+ ‖𝜌− 𝜌𝑛𝑛‖2𝐿2
𝑥
. (B.22)

If we define the constant 𝐶5
def= 𝐶2 + 5

2 , then we can rewrite inequality (B.22) as follows

𝑌 ′(𝑡)− 𝐶5𝑌 (𝑡) ≤ 𝐶3𝑌 (𝑡)2 + 𝐶6

(︂⃦⃦⃦
𝑑
(1)
𝑔𝑒,𝑗

⃦⃦⃦2

𝐿2
𝑥([−1,1])

+
⃦⃦⃦
𝑑
(2)
𝑔𝑒,𝑗

⃦⃦⃦2

𝐿2
𝑥([−1,1])

+
⃦⃦⃦
𝑑
(1)
𝑏𝑐,𝑗

⃦⃦⃦2

𝐿2
𝑥(𝜕[−1,1])

+
⃦⃦⃦
𝑑
(2)
𝑏𝑐,𝑗

⃦⃦⃦2

𝐿2
𝑥(𝜕[−1,1])

)︂
⏟  ⏞  

def
= 𝐿(𝑡)

,

(B.23)

with some positive constant 𝐶6. Multiplying (B.23) by 𝑒−𝐶5𝑡 and integrating it over [0, 𝑡] for 𝑡 < 𝑇 , we have

𝑒−𝐶5𝑡𝑌 (𝑡)− 𝑌 (0) ≤ 𝐶3

∫︁ 𝑡

0

𝑒−𝐶5𝑠𝑌 (𝑠)2d𝑠 + 𝐶6

∫︁ 𝑡

0

𝑒−𝐶5𝑠𝐿(𝑠)d𝑠 ≤ 𝐶3

∫︁ 𝑡

0

𝑌 (𝑠)2d𝑠 + 𝐶6

∫︁ 𝑡

0

𝐿(𝑠)d𝑠. (B.24)

Therefore, we have the inequality

𝑌 (𝑡) ≤ 𝑒𝐶5𝑡

(︂
𝑌 (0) + 𝐶6

∫︁ 𝑡

0

𝐿(𝑠)d𝑠

)︂
+ 𝐶3𝑒

𝐶5𝑡

∫︁ 𝑡

0

𝑌 (𝑠)2d𝑠. (B.25)

By Theorem 25 of [28], we have

𝑌 (𝑡) ≤ 𝑒𝐶5𝑡

(︂
𝑌 (0) + 𝐶6

∫︁ 𝑡

0

𝐿(𝑠)d𝑠

)︂[︃
1− 𝐶3

∫︁ 𝑡

0

𝑒2𝐶5𝑠′

(︃
𝑌 (0) + 𝐶6

∫︁ 𝑠′

0

𝐿(𝑠)d𝑠

)︃
d𝑠′

]︃−1

(B.26)

for 0 ≤ 𝑡 ≤ 𝛽, where

𝛽 = sup
{︂

𝑡 ∈ [0, 𝑇 ]
⃒⃒⃒
𝐶3

∫︁ 𝑡

0

𝑒2𝐶5𝑠′

(︃
𝑌 (0) + 𝐶6

∫︁ 𝑠′

0

𝐿(𝑠)d𝑠

)︃
⏟  ⏞  

def
= ℎ(𝑠′)

d𝑠′ < 1
}︂

. (B.27)
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Note that 𝑌 (0) = Loss𝑝𝑛𝑝
IC (𝜌𝑛𝑛) and

𝑌 (0) + 𝐶6

∫︁ 𝑡

0

𝐿(𝑠)d𝑠 ≤ 𝑌 (0) + 𝐶6

∫︁ 𝑇

0

𝐿(𝑠)d𝑠 = Loss𝑝𝑛𝑝
Total(𝜌

𝑛𝑛).

Therefore, the value of ℎ(𝑠′) in (B.27) is bounded as Loss𝑝𝑛𝑝
Total(𝜌

𝑛𝑛) which can be sufficiently small. Therefore,
we can choose 𝑡 = 𝑇 in (B.26) to obtain that

‖𝜌− 𝜌𝑛𝑛‖2𝐿2
𝑥([−1,1]) ≤ 𝑒𝐶5𝑇 Loss𝑝𝑛𝑝

Total(𝜌
𝑛𝑛)

[︃
1− 𝐶3

∫︁ 𝑇

0

𝑒2𝐶5𝑠′

(︃
𝑌 (0) + 𝐶6

∫︁ 𝑠′

0

𝐿(𝑠)d𝑠

)︃
d𝑠′

]︃−1

≤ 𝐶Loss𝑝𝑛𝑝
Total(𝜌

𝑛𝑛) (B.28)

for some positive constant 𝐶. Therefore, this completes the proof of theorem. �
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