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A POSTERIORI ERROR ESTIMATES FOR SEMILINEAR OPTIMAL CONTROL
PROBLEMS

Alejandro Allendes, Francisco Fuica, Enrique Otárola* and Daniel Quero

Abstract. In two and three dimensional Lipschitz, but not necessarily convex, polytopal domains, we
devise and analyze a reliable and efficient a posteriori error estimator for a semilinear optimal control
problem; control constraints are also considered. We consider a fully discrete scheme that discretizes
the state and adjoint equations with piecewise linear functions and the control variable with piecewise
constant functions. The devised error estimator can be decomposed as the sum of three contributions
which are associated to the discretization of the state and adjoint equations and the control variable. We
extend our results to a scheme that approximates the control variable with piecewise linear functions
and also to a scheme that approximates the solution to a nondifferentiable optimal control problem.
We illustrate the theory with two and three-dimensional numerical examples.
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1. Introduction

In this work we will be interested in the design and analysis of a posteriori error estimates for finite element
approximations of semilinear control–constrained optimal control problems; the state equation corresponds to a
Dirichlet problem for a monotone, semilinear, and elliptic partial differential equation (PDE). To make matters
precise, for 𝑑 ∈ {2, 3}, we let Ω ⊂ R𝑑 be an open and bounded polytopal domain with Lipschitz boundary 𝜕Ω.
Notice that we do not assume that Ω is convex. Given a regularization parameter 𝜈 > 0 and a desired state
𝑦Ω ∈ 𝐿2(Ω), let us introduce the cost functional

𝐽(𝑦, 𝑢) :=
1
2
‖𝑦 − 𝑦Ω‖2𝐿2(Ω) +

𝜈

2
‖𝑢‖2𝐿2(Ω). (1.1)

We shall thus be concerned with the following semilinear elliptic optimal control problem: Find min 𝐽(𝑦, 𝑢)
subject to the monotone, semilinear, and elliptic PDE

−Δ𝑦 + 𝑎(·, 𝑦) = 𝑢 in Ω, 𝑦 = 0 on 𝜕Ω, (1.2)
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and the control constraints

𝑢 ∈ U𝑎𝑑, U𝑎𝑑 := {𝑣 ∈ 𝐿2(Ω) : a ≤ 𝑣(𝑥) ≤ b a.e.𝑥 ∈ Ω}; (1.3)

the control bounds a, b ∈ R are such that a < b. Assumptions on the function 𝑎 will be deferred until Section 2.2.
The analysis of a priori error estimates for finite element approximations of semilinear optimal control prob-

lems has previously been considered in a number of works. The article [5] appears to be the first to provide error
estimates for the distributed optimal control problem (1.1)–(1.3); notice that control constraints are considered.
The authors of this work propose a fully discrete scheme on quasi–uniform meshes that discretizes the control
variable with piecewise constant functions; piecewise linear functions are used for the discretization of the state
and adjoint variables. In two and three dimensions and under the assumptions that Ω is convex, 𝜕Ω is of class
𝐶1,1, and that the mesh–size is sufficiently small, the authors derive a priori error estimates for the approxi-
mation of the optimal control variable in the 𝐿2(Ω)-norm ([5], Thm. 5.1) and the 𝐿∞(Ω)-norm Theorem 5.2 of
[5]; the ones derived in the 𝐿2(Ω)-norm being optimal in terms of approximation. The analysis performed in [5]
was later extended in [11] to a scheme that approximates the control variable with piecewise linear functions.
The main result of this work reads as follows: ℎ−1

T ‖𝑢̄− 𝑢̄T ‖𝐿2(Ω) → 0 as ℎT ↓ 0 Theorem 4.1 of [11], where 𝑢̄T

denotes the corresponding finite element approximation of 𝑢̄. Under a suitable assumption, this result was later
improved to Section 10 of [14]

‖𝑢̄− 𝑢̄T ‖𝐿2(Ω) . ℎ
3/2
T .

The following is a non-exhaustive list of extensions available in the literature: Neumann boundary optimal
control [15], sparse optimal control [12], Dirichlet boundary optimal control [16], and state constrained optimal
control [13].

While it is fair to say that the study of a priori error estimates for finite element solution techniques of
semilinear optimal control problems is matured and well understood, the analysis of a posteriori error estimates is
far from complete. An a posteriori error estimator is a computable quantity that depends on the discrete solution
and data and is of primary importance in computational practice because of its ability to provide computable
information about errors and drive the so-called adaptive finite element methods (AFEMs). The a posteriori
error analysis for linear second–order elliptic boundary value problems have attained a mature understanding,
including also the construction of AFEMs and their convergence and optimal complexity [1,27,32]. To the best
of our knowledge, the first work that provided an advance regarding a posteriori error estimates for linear and
distributed optimal control problems is [25]: the devised residual–type a posteriori error estimator is proven to
yield an upper bound for the error Theorem 3.1 of [25]. These results were later improved in [21] where the
authors explore a slight modification of the estimator of [25] and prove upper and lower error bounds which
include oscillation terms Theorems 5.1 and 6.1 of [21]. Recently, these ideas were unified in [24]. In contrast
to these advances the a posteriori error analysis for nonlinear optimal control problems is not as developed.
To the best of our knowledge, the first work that provides an advance on this matter is [26]. In this work the
authors derive a posteriori error estimates for distributed optimal control problems on Lipschitz domains and
for nonlinear terms 𝑎 which are such that

𝑎(·, 𝑦) ∈𝑊 1,∞(−𝑅,𝑅), 𝑅 > 0,
𝜕𝑎

𝜕𝑦
(·, 𝑦) ∈ 𝐿2(Ω),

𝜕𝑎

𝜕𝑦
(·, 𝑦) ≥ 0.

Under the assumption that estimate (4.18) holds, with 𝑢̃ = 𝑢̄T , the authors devise an error estimator that yields
an upper bound for the corresponding error on the 𝐻1(Ω) × 𝐻1(Ω) × 𝐿2(Ω)–norm Theorem 3.1 of [26]. We
notice that no efficiency analysis is provided in [26]. We conclude this paragraph by mentioning the approach
introduced in [7] for estimating the error in terms of the cost functional for linear/semilinear optimal control
problems. This approach was later extended to problems with control constraints in [20,33] and state constraints
in [8].

In this work, we propose an a posteriori error estimator for the optimal control problem (1.1)–(1.3) that can
be decomposed as the sum of three contributions: one related to the discretization of the state equation, one
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associated to the discretization of the adjoint equation, and another one that accounts for the discretization of
the control variable. This error estimator is different to the one provided in [26]. In two and three dimensional
Lipschitz polytopes, we obtain global reliability and efficiency properties. We must immediately mention that
our global reliability result can be obtained under one of the either following assumptions:

– the underlying family of meshes is such that the conditions in (4.17) hold; see Theorems 4.5 and 5.2. These
assumptions are needed in order to invoke second order sufficient optimality conditions. In particular, it is
assumed that 𝑢̃ − 𝑢̄ ∈ 𝐶𝜏

𝑢̄ , where 𝑢̃ is defined in (4.15). In Section 8.2, we provide numerical evidence that
supports the claim that, after a suitable number of initial adaptive refinements, the condition 𝑢̃−𝑢̄ ∈ 𝐶𝜏

𝑢̄ holds
true uniformly over subsequent adaptive refinements. In Remark 4.6, we show that a necessary condition for
𝑢̃− 𝑢̄ ∈ 𝐶𝜏

𝑢̄ is that the estimate ‖𝑝− 𝑝T ‖𝐿∞(Ω) < 𝜏/2 holds uniformly within adaptive refinement.
– the data of the problem is such the right-hand side estimate in (5.27) holds. In addition, it is also needed that
‖𝑝− 𝑝T ‖𝐿2(Ω) ≤ (2𝒞)−1𝜈2, where 𝒞 is defined in (5.34). In Section 8.2, we provide numerical evidence that
supports the claim that, after a suitable number of initial adaptive refinements, the condition ‖𝑝−𝑝T ‖𝐿2(Ω) ≤
(2𝒞)−1𝜈2 holds true uniformly over subsequent adaptive refinements.

On the basis of the devised error estimator, we also design a simple adaptive strategy that exhibits, for the
examples that we perform, optimal experimental rates of convergence for all the optimal variables. We also
provide numerical evidence that support the claim that our estimator outperforms the one in [26]; see Section 8.
It is important to mention that, as opposed to the case when the state equation is linear, where, in general, only
first order optimality conditions are needed to obtain a posteriori error estimates, here one of our strategies
strongly relies on second order optimality conditions and on the particular structure of the associated critical
cone. In addition, we mention that such a strategy is flexible enough to treat other PDE-constrained opti-
mization problems. In particular, the following extensions of our theory are briefly discussed: piecewise linear
approximation of the optimal control and sparse PDE-constrained optimization, where a nondifferentiable cost
functional is considered.

The outline of this paper is as follows. In Section 2 we set notation and assumptions employed in the rest
of the work. In Section 3 we review preliminary results about solutions to (1.2). Basic results for the optimal
control problem (1.1)–(1.3) as well as first and second order optimality conditions are reviewed in Section 4.
The core of our work are Sections 5 and 6, where we design an a posteriori error estimator for a suitable finite
element discretization and show, in Sections 5 and 6, its reliability and efficiency, respectively. In Section 7
we present extensions of the theory developed in previous sections. Finally, numerical examples presented in
Section 8 illustrate the theory and reveal a competitive performance of the devised error estimator.

2. Notation and assumptions

Let us set notation and describe the setting we shall operate with.

2.1. Notation

Throughout this work 𝑑 ∈ {2, 3} and Ω ⊂ R𝑑 is an open and bounded polytopal domain with Lipschitz
boundary 𝜕Ω. Notice that we do not assume that Ω is convex. If X and Y are Banach function spaces,
X →˓ Y means that X is continuously embedded in Y . We denote by X ′ and ‖ · ‖X the dual and norm,
respectively, of X . The relation a . b indicates that a ≤ 𝐶b, with a positive constant that depends neither on
a, b nor the discretization parameters. The value of 𝐶 might change at each occurrence.

2.2. Assumptions

We assume that the nonlinear function 𝑎 satisfies the following assumptions:

(A.1) 𝑎 : Ω × R → R is a Carathéodory function of class 𝐶2 with respect to the second variable and 𝑎(·, 0) ∈
𝐿2(Ω).
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(A.2) 𝜕𝑎
𝜕𝑦 (𝑥, 𝑦) ≥ 0 for a.e. 𝑥 ∈ Ω and for all 𝑦 ∈ R.

(A.3) For all M > 0, there exists a positive constant 𝐶M such that

2∑︁
𝑖=1

⃒⃒⃒⃒
𝜕𝑖𝑎

𝜕𝑦𝑖
(𝑥, 𝑦)

⃒⃒⃒⃒
≤ 𝐶M,

⃒⃒⃒⃒
𝜕2𝑎

𝜕𝑦2
(𝑥, 𝑣)− 𝜕2𝑎

𝜕𝑦2
(𝑥,𝑤)

⃒⃒⃒⃒
≤ 𝐶M|𝑣 − 𝑤|,

for a.e. 𝑥 ∈ Ω and |𝑦|, |𝑣|, |𝑤| ≤ M.

The following properties follow immediately from (A.1)–(A.3). First, 𝑎 is monotone increasing in 𝑦 for a.e. 𝑥 ∈
Ω. In particular, we have

(𝑎(·, 𝑣)− 𝑎(·, 𝑤), 𝑣 − 𝑤)𝐿2(Ω) ≥ 0 ∀𝑣, 𝑤 ∈ 𝐿2(Ω). (2.1)

Second, 𝑎 and 𝜕𝑎
𝜕𝑦 are locally Lipschitz with respect to the second variable:

|𝑎(𝑥, 𝑣)− 𝑎(𝑥,𝑤)| ≤ 𝐶M|𝑣 − 𝑤|,
⃒⃒⃒⃒
𝜕𝑎

𝜕𝑦
(𝑥, 𝑣)− 𝜕𝑎

𝜕𝑦
(𝑥,𝑤)

⃒⃒⃒⃒
≤ 𝐶M|𝑣 − 𝑤|, (2.2)

for a.e. 𝑥 ∈ Ω and 𝑣, 𝑤 ∈ R such that |𝑣|, |𝑤| ≤ M.

3. Semilinear problems

In this section, we review some of the main results related to the existence and uniqueness of solutions for
problem (1.2). We also review a posteriori error estimates for a particular finite element setting.

3.1. Weak formulation

Given 𝑓 ∈ 𝐿𝑞(Ω) with 𝑞 > 𝑑/2, we consider the following weak formulation of problem (1.2): Find 𝑦 ∈ 𝐻1
0 (Ω)

such that
(∇𝑦,∇𝑣)𝐿2(Ω) + (𝑎(·, 𝑦), 𝑣)𝐿2(Ω) = (𝑓, 𝑣)𝐿2(Ω) ∀𝑣 ∈ 𝐻1

0 (Ω). (3.1)

Invoking the main theorem on monotone operators ([35], Thm. 26.A; [28], Thm. 2.18) and an argument
due to Stampacchia [30], ([23], Thm. B.2), the following result can be derived; see Section 2 of [14] and
Theorem 4.8 of [31].

Theorem 3.1 (well–posedness). Let 𝑞 > 𝑑/2 and 𝑓 ∈ 𝐿𝑞(Ω). Let 𝑎 = 𝑎(𝑥, 𝑦) : Ω × R → R be a Carathéodory
function that is monotone increasing in 𝑦. Let 𝜓M ∈ 𝐿𝑞(Ω) be such that |𝑎(𝑥, 𝑦)| ≤ 𝜓𝑀 (𝑥) for a.e. 𝑥 ∈ Ω and
|𝑦| ≤ M. Then problem (3.1) has a unique solution 𝑦 ∈ 𝐻1

0 (Ω) ∩ 𝐿∞(Ω). In addition, we have

‖∇𝑦‖𝐿2(Ω) + ‖𝑦‖𝐿∞(Ω) . ‖𝑓 − 𝑎(·, 0)‖𝐿𝑞(Ω),

with a hidden constant that is independent of 𝑦, 𝑎, and 𝑓 .

3.2. Finite element discretization

We begin by introducing some preliminary terminology. We denote by T = {𝑇} a conforming partition of
Ω into simplices 𝑇 with size ℎ𝑇 := diam(𝑇 ). We denote by T the collection of conforming and shape regular
meshes that are refinements of an initial mesh T0. We denote by S the set of internal (𝑑 − 1)-dimensional
interelement boundaries 𝑆 of T . If 𝑇 ∈ T , we define S𝑇 as the subset of S that contains the sides of 𝑇 . For
𝑆 ∈ S , we set 𝒩𝑆 = {𝑇+, 𝑇−}, where 𝑇+, 𝑇− ∈ T are such that 𝑆 = 𝑇+ ∩ 𝑇−. We define the star or patch
associated to the element 𝑇 ∈ T as

𝒩𝑇 =
⋃︁
{𝑇 ′ ∈ T : S𝑇 ∩S𝑇 ′ ̸= ∅}. (3.2)
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Given a mesh T ∈ T, we define the finite element space of continuous piecewise polynomials of degree one
as

V(T ) := {𝑣T ∈ 𝐶(Ω) : 𝑣T |𝑇 ∈ P1(𝑇 ) ∀𝑇 ∈ T } ∩𝐻1
0 (Ω). (3.3)

Given a discrete function 𝑣T ∈ V(T ), we define, for any internal side 𝑆 ∈ S , the jump or interelement
residual J∇𝑣T · 𝜈K by

J∇𝑣T · 𝜈K := 𝜈+ · ∇𝑣T |𝑇+ + 𝜈− · ∇𝑣T |𝑇− ,
where 𝜈+,𝜈− denote the unit normals to 𝑆 pointing towards 𝑇+, 𝑇− ∈ T , respectively; 𝑇+, 𝑇− ∈ T are such
that 𝑇+ ̸= 𝑇− and 𝜕𝑇+ ∩ 𝜕𝑇− = 𝑆.

We define the Galerkin approximation to problem (3.1) by

𝑦T ∈ V(T ) : (∇𝑦T ,∇𝑣T )𝐿2(Ω) + (𝑎(·, 𝑦T ), 𝑣T )𝐿2(Ω) = (𝑓, 𝑣T )𝐿2(Ω) (3.4)

for all 𝑣T ∈ V(T ). The monotonicity of the nonlinear term 𝑎 combined with an application of the Brouwer
fixed point theorem yield the well–posedness of the discrete problem (3.4); see Section 7 of [14] for details.

3.3. A posteriori error analysis for the semilinear equation

Let 𝑓 ∈ 𝐿2(Ω) and let 𝑎 = 𝑎(𝑥, 𝑦) : Ω × R → R be as in the statement of Theorem 3.1. Let us assume, in
addition, that 𝑎 is locally Lipschitz with respect to the second variable and 𝑎(·, 0) ∈ 𝐿2(Ω). With the notation
introduced in Section 3.2 at hand, we define the following a posteriori local error indicators and error estimator

ℰ2
𝑇 := ℎ2

𝑇 ‖𝑓 − 𝑎(·, 𝑦T )‖2𝐿2(𝑇 ) + ℎ𝑇 ‖J∇𝑦T · 𝜈K‖2𝐿2(𝜕𝑇∖𝜕Ω), ℰ2
T :=

∑︁
𝑇∈T

ℰ2
𝑇 ,

respectively. Observe that, since 𝑎 is locally Lipschitz with respect to the second variable and 𝑎(·, 0) ∈ 𝐿2(Ω),
the residual term ℎ2

𝑇 ‖𝑓 − 𝑎(·, 𝑦T )‖2𝐿2(𝑇 ) is well–defined.
We present the following reliability result and, for the sake of readability, a proof.

Theorem 3.2 (global reliability of ℰT ). Let 𝑓 ∈ 𝐿2(Ω) and let 𝑎 = 𝑎(𝑥, 𝑦) : Ω×R → R be as in the statement
of Theorem 3.1. Let us assume, in addition, that 𝑎(·, 0) ∈ 𝐿2(Ω) and 𝑎 = 𝑎(𝑥, 𝑦) is locally Lipschitz with
respect to 𝑦. Let 𝑦 ∈ 𝐻1

0 (Ω) ∩𝐿∞(Ω) be the unique solution to problem (3.1) and 𝑦T ∈ V(T ) its finite element
approximation obtained as the solution to (3.4). Then

‖∇(𝑦 − 𝑦T )‖𝐿2(Ω) . ℰT ,

with a hidden constant that is independent of 𝑦, 𝑦T , the size of the elements in the mesh T , and #T .

Proof. Let 𝑣 ∈ 𝐻1
0 (Ω). Since 𝑦 solves (3.1), we invoke Galerkin orthogonality and an elementwise integration

by parts formula to arrive at

(∇(𝑦 − 𝑦T ),∇𝑣)𝐿2(Ω) + (𝑎(·, 𝑦)− 𝑎(·, 𝑦T ), 𝑣)𝐿2(Ω)

=
∑︁

𝑇∈T

ˆ
𝑇

(𝑓 − 𝑎(𝑥, 𝑦T ))(𝑣 − 𝐼T 𝑣)d𝑥+
∑︁
𝑆∈S

ˆ
𝑆

J∇𝑦T · 𝜈K(𝑣 − 𝐼T 𝑣)d𝑥.

Here, 𝐼T : 𝐿1(Ω) → V(T ) denotes the Clément interpolation operator [10, 18]. Standard approximation prop-
erties for 𝐼T and the finite overlapping property of stars allow us to conclude that

(∇(𝑦 − 𝑦T ),∇𝑣)𝐿2(Ω) + (𝑎(·, 𝑦)− 𝑎(·, 𝑦T ), 𝑣)𝐿2(Ω)

.

[︃∑︁
𝑇∈T

ℎ2
𝑇 ‖𝑓 − 𝑎(·, 𝑦T )‖2𝐿2(𝑇 ) + ℎ𝑇 ‖J∇𝑦T · 𝜈K‖2𝐿2(𝜕𝑇∖𝜕Ω)

]︃ 1
2

‖∇𝑣‖𝐿2(Ω).

Set 𝑣 = 𝑦 − 𝑦T ∈ 𝐻1
0 (Ω) and invoke property (2.1) to conclude. �
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4. A semilinear optimal control problem

In what follows, we assume that (A.1)–(A.3) hold and 𝑞 > 𝑑/2. Let us introduce the following weak version
of the optimal control problem (1.1)–(1.3): Find

min{𝐽(𝑦, 𝑢) : (𝑦, 𝑢) ∈ 𝐻1
0 (Ω)× U𝑎𝑑} (4.1)

subject to the monotone, semilinear, and elliptic state equation

(∇𝑦,∇𝑣)𝐿2(Ω) + (𝑎(·, 𝑦), 𝑣)𝐿2(Ω) = (𝑢, 𝑣)𝐿2(Ω) ∀𝑣 ∈ 𝐻1
0 (Ω). (4.2)

The existence of an optimal state-control pair is as follows; see Theorem 6.16 of [9], Theorem 4.15 of [31],
and Theorem 6 of [14].

Theorem 4.1 (existence of the solution). The optimal control problem (4.1)–(4.2) admits at least one solution
(𝑦, 𝑢̄) ∈ 𝐻1

0 (Ω) ∩ 𝐿∞(Ω)× U𝑎𝑑.

4.1. First order necessary optimality conditions

To formulate first order optimality conditions for problem (4.1)–(4.2), we introduce the so-called control-to-
state map 𝒮 : 𝐿𝑞(Ω) → 𝐻1

0 (Ω)∩𝐿∞(Ω) (𝑞 > 𝑑/2), which, given a control 𝑢 ∈ U𝑎𝑑 ⊂ 𝐿𝑞(Ω), associates to it the
unique state 𝑦 ∈ 𝐻1

0 (Ω) ∩ 𝐿∞(Ω) that solves (4.2). With this operator at hand, we introduce the reduced cost
functional

𝑗(𝑢) := 𝐽(𝒮𝑢, 𝑢) =
1
2
‖𝒮𝑢− 𝑦Ω‖2𝐿2(Ω) +

𝜈

2
‖𝑢‖2𝐿2(Ω).

Theorem 4.17 in [31] guarantees that 𝒮 is Fréchet differentiable from 𝐿𝑞(Ω) into 𝐻1
0 (Ω) ∩ 𝐿∞(Ω) (𝑞 > 𝑑/2).

We can thus formulate first order optimality conditions: if 𝑢̄ is locally optimal for problem (4.1)–(4.2), then
Lemma 4.18 of [31]

𝑗′(𝑢̄)(𝑢− 𝑢̄) ≥ 0 ∀𝑢 ∈ U𝑎𝑑. (4.3)

Here, 𝑗′(𝑢̄) denotes the Gateâux derivative of the functional 𝑗 at 𝑢̄. To explore (4.3) we introduce the adjoint
variable 𝑝 ∈ 𝐻1

0 (Ω) ∩ 𝐿∞(Ω) as the unique solution to the adjoint equation

(∇𝑤,∇𝑝)𝐿2(Ω) +
(︁

𝜕𝑎
𝜕𝑦 (·, 𝑦)𝑝, 𝑤

)︁
𝐿2(Ω)

= (𝑦 − 𝑦Ω, 𝑤)𝐿2(Ω) ∀𝑤 ∈ 𝐻1
0 (Ω), (4.4)

where 𝑦 = 𝒮𝑢 solves (4.2). Observe that problem (4.4) is well–posed.
With these ingredients at hand, we present the following first order optimality conditions; see Theorem 4.20

of [31] and Theorem 3.2 of [5].

Theorem 4.2 (first order necessary optimality conditions). Every locally optimal control 𝑢̄ ∈ U𝑎𝑑 for problem
(4.1)–(4.2) satisfies, together with the adjoint state 𝑝 ∈ 𝐻1

0 (Ω) ∩ 𝐿∞(Ω), the variational inequality

(𝑝+ 𝜈𝑢̄, 𝑢− 𝑢̄)𝐿2(Ω) ≥ 0 ∀𝑢 ∈ U𝑎𝑑. (4.5)

Here, 𝑝 denotes the solution to (4.4) with 𝑦 replaced by 𝑦 = 𝒮𝑢̄.

We now introduce the projection operator Π[a,b] : 𝐿1(Ω) → U𝑎𝑑 as

Π[a,b](𝑣) := min{b,max{𝑣, a}} a.e. in Ω. (4.6)

With this projector at hand, we present the following result: If 𝑢̄ denotes a locally optimal control for problem
(4.1)–(4.2), then

𝑢̄(𝑥) := Π[a,b](−𝜈−1𝑝(𝑥)) a.e. 𝑥 ∈ Ω. (4.7)

This formula implies that 𝑢̄ ∈ 𝐻1(Ω) ∩ 𝐿∞(Ω); see Theorem A.1 of [23].
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4.2. Second order sufficient optimality conditions

We follow [14,17] and present necessary and sufficient second order optimality conditions.
Let (𝑦, 𝑝, 𝑢̄) ∈ 𝐻1

0 (Ω)×𝐻1
0 (Ω)×U𝑎𝑑 satisfy the first order optimality conditions (4.2), (4.4), and (4.5). Define

p̄ := 𝑝+ 𝜈𝑢̄. In view of (4.5), it follows that

p̄(𝑥)

⎧⎪⎨⎪⎩
= 0 a.e. 𝑥 ∈ Ω if a < 𝑢̄ < b,

≥ 0 a.e. 𝑥 ∈ Ω if 𝑢̄ = a,

≤ 0 a.e. 𝑥 ∈ Ω if 𝑢̄ = b.

Define the cone of critical directions

𝐶𝑢̄ := {𝑣 ∈ 𝐿2(Ω) satisfying (4.8) and 𝑣(𝑥) = 0 if p̄(𝑥) ̸= 0},

with

𝑣(𝑥)

{︃
≥ 0 a.e. 𝑥 ∈ Ω if 𝑢̄(𝑥) = a,

≤ 0 a.e. 𝑥 ∈ Ω if 𝑢̄(𝑥) = b.
(4.8)

With these ingredients, we are in conditions to present second order necessary and sufficient optimality condi-
tions; see Theorem 23 of [14].

Theorem 4.3 (second order necessary and sufficient optimality conditions). Suppose that assumptions (A.1)–
(A.3) hold. If 𝑢̄ ∈ U𝑎𝑑 is a local minimum for problem (4.1)–(4.2), then

𝑗′′(𝑢̄)𝑣2 ≥ 0 ∀𝑣 ∈ 𝐶𝑢̄.

Conversely, if (𝑦, 𝑝, 𝑢̄) ∈ 𝐻1
0 (Ω) ×𝐻1

0 (Ω) × U𝑎𝑑 satisfies the first order optimality conditions (4.2), (4.4), and
(4.5), and

𝑗′′(𝑢̄)𝑣2 > 0 ∀𝑣 ∈ 𝐶𝑢̄ ∖ {0},

then, there exist 𝜇 > 0 and 𝜀 > 0 such that

𝑗(𝑢) ≥ 𝑗(𝑢̄) +
𝜇

2
‖𝑢− 𝑢̄‖2𝐿2(Ω) ∀𝑢 ∈ U𝑎𝑑 ∩ 𝐵̄𝜀(𝑢̄),

where 𝐵̄𝜀(𝑢̄) denotes the closed ball in 𝐿2(Ω) with center at 𝑢̄ and radius 𝜀.

Define
𝐶𝜏

𝑢̄ := {𝑣 ∈ 𝐿2(Ω) satisfying (4.8) and 𝑣(𝑥) = 0 if |p̄(𝑥)| > 𝜏}. (4.9)

The next result will be of importance for deriving a posteriori error estimates for suitable numerical dis-
cretizations of (4.1)–(4.2); see Theorem 25 of [14].

Theorem 4.4 (equivalent optimality condition). Suppose that assumptions (A.1)–(A.3) hold. If 𝑢̄ ∈ U𝑎𝑑 satis-
fies (4.5) then, the following statements are equivalent:

𝑗′′(𝑢̄)𝑣2 > 0 ∀𝑣 ∈ 𝐶𝑢̄ ∖ {0}, (4.10)

and
∃𝜇, 𝜏 > 0 : 𝑗′′(𝑢̄)𝑣2 ≥ 𝜇‖𝑣‖2𝐿2(Ω) ∀𝑣 ∈ 𝐶𝜏

𝑢̄ . (4.11)

We close this section with the following well–known estimate: Let 𝑢, ℎ, 𝑣 ∈ 𝐿∞(Ω) and M > 0 be such that
max{‖𝑢‖𝐿∞(Ω), ‖ℎ‖𝐿∞(Ω)} ≤ M. Then, there exists 𝐶M > 0 such that Lemma 4.26 of [31]

|𝑗′′(𝑢+ ℎ)𝑣2 − 𝑗′′(𝑢)𝑣2| ≤ 𝐶M‖ℎ‖𝐿2(Ω)‖𝑣‖2𝐿2(Ω). (4.12)
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4.3. Finite element discretization

We present a finite element discretization for our optimal control problem. The approximation of the optimal
control 𝑢̄ is done by piecewise constant functions: 𝑢̄T ∈ U𝑎𝑑(T ), where

U𝑎𝑑(T ) := U(T ) ∩ U𝑎𝑑, U(T ) := {𝑢T ∈ 𝐿∞(Ω) : 𝑢T |𝑇 ∈ P0(𝑇 ) ∀𝑇 ∈ T }.

The optimal state and adjoint state are discretized using the finite element space V(T ) defined in (3.3). In
this setting, the discrete counterpart of (4.1)–(4.2) reads as follows: Find min 𝐽(𝑦T , 𝑢T ) subject to the discrete
state equation

𝑦T ∈ V(T ) : (∇𝑦T ,∇𝑣T )𝐿2(Ω) + (𝑎(·, 𝑦T ), 𝑣T )𝐿2(Ω) = (𝑢T , 𝑣T )𝐿2(Ω) (4.13)

for all 𝑣T ∈ V(T ) and the discrete constraints 𝑢T ∈ U𝑎𝑑(T ). This problem admits at least a solution Section 7
of [14]. In addition, if 𝑢̄T denotes a local solution, then

(𝑝T + 𝜈𝑢̄T , 𝑢T − 𝑢̄T )𝐿2(Ω) ≥ 0 ∀𝑢T ∈ U𝑎𝑑(T ),

where 𝑝T ∈ V(T ) is such that

(∇𝑤T ,∇𝑝T )𝐿2(Ω) +
(︁

𝜕𝑎
𝜕𝑦 (·, 𝑦T )𝑝T , 𝑤T

)︁
𝐿2(Ω)

= (𝑦T − 𝑦Ω, 𝑤T )𝐿2(Ω) (4.14)

for all 𝑤T ∈ V(T ).
Define, on the basis of the projection operator (4.6), the auxiliary variable

𝑢̃ := Π[a,b](−𝜈−1𝑝T ). (4.15)

Notice that 𝑢̃ ∈ U𝑎𝑑 satisfies the following variational inequality Lemma 2.26 of [31]

(𝑝T + 𝜈𝑢̃, 𝑢− 𝑢̃)𝐿2(Ω) ≥ 0 ∀𝑢 ∈ U𝑎𝑑. (4.16)

The following result is instrumental for our a posteriori error analysis.

Theorem 4.5 (auxiliary estimate). Suppose that assumptions (A.1)–(A.3) hold. Let 𝑢̄ ∈ U𝑎𝑑 be a local solution
to (4.1)–(4.2) satisfying the sufficient second order optimality condition (4.10), or equivalently (4.11). If 𝑢̄T

denotes a local minimum of the discrete optimal control problem and T is a mesh such that

𝑢̃− 𝑢̄ ∈ 𝐶𝜏
𝑢̄ , ‖𝑝− 𝑝T ‖𝐿2(Ω) ≤ 𝜈𝜇(2𝐶M)−1, (4.17)

then
𝜇

2
‖𝑢̄− 𝑢̃‖2𝐿2(Ω) ≤ (𝑗′(𝑢̃)− 𝑗′(𝑢̄))(𝑢̃− 𝑢̄). (4.18)

The constant 𝐶M is given by (4.12) and the auxiliary variable 𝑢̃ is defined in (4.15).

Proof. Since 𝑢̃− 𝑢̄ ∈ 𝐶𝜏
𝑢̄ , with 𝐶𝜏

𝑢̄ defined in (4.9), and 𝑢̄ satisfies the sufficient second order optimality condition
(4.11), we are thus allow to set 𝑣 = 𝑢̃− 𝑢̄ there. This yields

𝜇‖𝑢̃− 𝑢̄‖2𝐿2(Ω) ≤ 𝑗′′(𝑢̄)(𝑢̃− 𝑢̄)2. (4.19)

On the other hand, in view of the mean value theorem, we obtain

(𝑗′(𝑢̃)− 𝑗′(𝑢̄))(𝑢̃− 𝑢̄) = 𝑗′′(𝜁)(𝑢̃− 𝑢̄)2,
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with 𝜁 = 𝑢̄+ 𝜃T (𝑢̃− 𝑢̄) and 𝜃T ∈ (0, 1). Thus, in view of (4.19), we arrive at

𝜇‖𝑢̃− 𝑢̄‖2𝐿2(Ω) ≤ (𝑗′(𝑢̃)− 𝑗′(𝑢̄))(𝑢̃− 𝑢̄) + (𝑗′′(𝑢̄)− 𝑗′′(𝜁))(𝑢̃− 𝑢̄)2. (4.20)

Since there exists M > 0 such that max{‖𝑢̄ + 𝜃T (𝑢̃ − 𝑢̄)‖𝐿∞(Ω), ‖𝑢̃ − 𝑢̄‖𝐿∞(Ω)} ≤ M and 𝑗 is of class 𝐶2 in
𝐿2(Ω), we can thus apply (4.12) to derive

(𝑗′′(𝑢̄)− 𝑗′′(𝜁))(𝑢̃− 𝑢̄)2 ≤ 𝐶M‖𝑢̃− 𝑢̄‖𝐿2(Ω)‖𝑢̃− 𝑢̄‖2𝐿2(Ω),

where we have also used that 𝜃T ∈ (0, 1). Invoke (4.7) and (4.15), the Lipschitz property of the projection
operator Π[a,b], defined in (4.6), and Assumption (4.17), to arrive at

(𝑗′′(𝑢̄)− 𝑗′′(𝜁))(𝑢̃− 𝑢̄)2 ≤ 𝐶M𝜈
−1‖𝑝− 𝑝T ‖𝐿2(Ω)‖𝑢̃− 𝑢̄‖2𝐿2(Ω) ≤

𝜇

2
‖𝑢̃− 𝑢̄‖2𝐿2(Ω).

Replacing this inequality into (4.20) yields the desired inequality (4.18). �

Remark 4.6 (a sufficient condition for 𝑢̃− 𝑢̄ ∈ 𝐶𝜏
𝑢̄). In what follows, we show that

‖𝑝− 𝑝T ‖𝐿∞(Ω) < 𝜏/2 =⇒ 𝑢̃− 𝑢̄ ∈ 𝐶𝜏
𝑢̄ .

In fact, since 𝑢̃ ∈ U𝑎𝑑, we can immediately conclude that 𝑢̃ − 𝑢̄ ≥ 0 if 𝑢̄ = a and that 𝑢̃ − 𝑢̄ ≤ 0 if 𝑢̄ = b.
These arguments reveal that 𝑣 = 𝑢̃ − 𝑢̄ satisfies (4.8). It thus suffices to verify the remaining condition in
(4.9). To accomplish this task, we first use the triangle inequality and invoke the Lipschitz property of Π[a,b], in
conjunction with the assumption ‖𝑝− 𝑝T ‖𝐿∞(Ω) < 𝜏/2, to obtain

‖𝑝+ 𝜈𝑢̄− (𝑝T + 𝜈𝑢̃)‖𝐿∞(Ω) ≤ 2‖𝑝− 𝑝T ‖𝐿∞(Ω) < 𝜏. (4.21)

Now, let 𝜉 ∈ Ω be such that p̄(𝜉) = (𝑝 + 𝜈𝑢̄)(𝜉) > 𝜏 . Since 𝜏 > 0, this implies that 𝑢̄(𝜉) > −𝜈−1𝑝(𝜉).
Therefore, from the projection formula (4.7), we conclude that 𝑢̄(𝜉) = a. On the other hand, since 𝜉 ∈ Ω is such
that (𝑝+ 𝜈𝑢̄)(𝜉) > 𝜏 , from (4.21) we can conclude that

(𝑝T + 𝜈𝑢̃)(𝜉) = 𝑝T (𝜉) + 𝜈𝑢̃(𝜉) > 0,

and thus that 𝑢̃(𝜉) > −𝜈−1𝑝T (𝜉). This, on the basis of the definition of the auxiliary variable 𝑢̃, given in (4.15),
yields that 𝑢̃(𝜉) = a. Consequently, 𝑢̄(𝜉) = 𝑢̃(𝜉) = a, and thus (𝑢̃ − 𝑢̄)(𝜉) = 0. Similar arguments allow us to
conclude that, if p̄(𝜉) = (𝑝+ 𝜈𝑢̄)(𝜉) < −𝜏 , then (𝑢̃− 𝑢̄)(𝜉) = 0. Therefore, we have proved that 𝑢̃− 𝑢̄ ∈ 𝐶𝜏

𝑢̄ .

5. A POSTERIORI error analysis: Reliability estimates

In this section, we devise and analyze an a posteriori error estimator for the discretization (4.13)–(4.14) of
the optimal control problem (4.1)–(4.2). To simplify the exposition of the material, we define, for (𝑣, 𝑤, 𝑧) ∈
𝐻1

0 (Ω)×𝐻1
0 (Ω)× 𝐿2(Ω), the norm

�(𝑣, 𝑤, 𝑧)�Ω := ‖∇𝑣‖𝐿2(Ω) + ‖∇𝑤‖𝐿2(Ω) + ‖𝑧‖𝐿2(Ω). (5.1)

The goal of this section is to obtain an upper bound for the error in the norm �·�Ω. This will be obtained
on the basis of estimates on the error between the solution to the discretization (4.13)–(4.14) and auxiliary
variables that we define in what follows. Let 𝑦 ∈ 𝐻1

0 (Ω) be the solution to

(∇𝑦,∇𝑣)𝐿2(Ω) + (𝑎(·, 𝑦), 𝑣)𝐿2(Ω) = (𝑢̄T , 𝑣)𝐿2(Ω) ∀𝑣 ∈ 𝐻1
0 (Ω). (5.2)

Define
ℰ2

𝑠𝑡,𝑇 := ℎ2
𝑇 ‖𝑢̄T − 𝑎(·, 𝑦T )‖2𝐿2(𝑇 ) + ℎ𝑇 ‖J∇𝑦T · 𝜈K‖2𝐿2(𝜕𝑇∖𝜕Ω), ℰ2

𝑠𝑡 :=
∑︁

𝑇∈T

ℰ2
𝑠𝑡,𝑇 . (5.3)
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An application of Theorem 3.2 immediately yields the a posteriori error bound

‖∇(𝑦 − 𝑦T )‖𝐿2(Ω) . ℰ𝑠𝑡. (5.4)

Let 𝑝 ∈ 𝐻1
0 (Ω) be the solution to

(∇𝑤,∇𝑝)𝐿2(Ω) +
(︁

𝜕𝑎
𝜕𝑦 (·, 𝑦T )𝑝, 𝑤

)︁
𝐿2(Ω)

= (𝑦T − 𝑦Ω, 𝑤)𝐿2(Ω) ∀𝑤 ∈ 𝐻1
0 (Ω). (5.5)

Define, for 𝑇 ∈ T , the local error indicators

ℰ2
𝑎𝑑,𝑇 := ℎ2

𝑇 ‖𝑦T − 𝑦Ω − 𝜕𝑎
𝜕𝑦 (·, 𝑦T )𝑝T ‖2𝐿2(𝑇 ) + ℎ𝑇 ‖J∇𝑝T · 𝜈K‖2𝐿2(𝜕𝑇∖𝜕Ω), (5.6)

and the a posteriori error estimator

ℰ𝑎𝑑 :=

(︃∑︁
𝑇∈T

ℰ2
𝑎𝑑,𝑇

)︃ 1
2

. (5.7)

The following result yields an upper bound for the error ‖∇(𝑝−𝑝T )‖𝐿2(Ω) in terms of the computable quantity
ℰ𝑎𝑑.

Lemma 5.1 (global reliability of ℰ𝑎𝑑). Suppose that assumptions (A.1)–(A.3) hold. Let 𝑢̄ ∈ U𝑎𝑑 be a local
solution to (4.1)–(4.2). Let 𝑢̄T be a local minimum of the discretization (4.13)–(4.14) with 𝑦T and 𝑝T being
the associated state and adjoint state, respectively. Then, the auxiliary variable 𝑝, defined in (5.5), satisfies

‖∇(𝑝− 𝑝T )‖𝐿2(Ω) . ℰ𝑎𝑑. (5.8)

The hidden constant is independent of the solution to (4.1)–(4.2), its finite element approximation, the size of
the elements in the mesh T , and #T .

Proof. We proceed as in the proof of Theorem 3.2. Let 𝑤 ∈ 𝐻1
0 (Ω). Since 𝑝 solves (5.5), we invoke Galerkin

orthogonality and an elementwise integration by parts formula to conclude that

(∇𝑤,∇(𝑝− 𝑝T ))𝐿2(Ω) +
(︁

𝜕𝑎
𝜕𝑦 (·, 𝑦T )(𝑝− 𝑝T ), 𝑤

)︁
𝐿2(Ω)

=
∑︁

𝑇∈T

(︁
𝑦T − 𝑦Ω − 𝜕𝑎

𝜕𝑦 (·, 𝑦T )𝑝T , 𝑤 − 𝐼T 𝑤
)︁

𝐿2(𝑇 )
+
∑︁
𝑆∈S

(J∇𝑝T · 𝜈K, 𝑤 − 𝐼T 𝑤)𝐿2(𝑆).

Standard approximation properties for 𝐼T and the finite overlapping property of stars allow us to conclude that

(∇𝑤,∇(𝑝− 𝑝T ))𝐿2(Ω) +
(︁

𝜕𝑎
𝜕𝑦 (·, 𝑦T )(𝑝− 𝑝T ), 𝑤

)︁
𝐿2(Ω)

.

[︃∑︁
𝑇∈T

ℎ2
𝑇 ‖𝑦T − 𝑦Ω − 𝜕𝑎

𝜕𝑦 (·, 𝑦T )𝑝T ‖2𝐿2(𝑇 ) + ℎ𝑇 ‖J∇𝑝T · 𝜈K‖2𝐿2(𝜕𝑇∖𝜕Ω)

]︃ 1
2

‖∇𝑤‖𝐿2(Ω).

Set 𝑤 = 𝑝− 𝑝T and invoke assumption (A.2) to conclude. �

We define a global error estimator associated to the discretization of the optimal control variable as follows:

ℰ2
𝑐𝑡,𝑇 := ‖𝑢̃− 𝑢̄T ‖2𝐿2(𝑇 ), ℰ𝑐𝑡 :=

(︃∑︁
𝑇∈T

ℰ2
𝑐𝑡,𝑇

)︃ 1
2

. (5.9)

We recall that the auxiliary variable 𝑢̃ is defined as in (4.15).
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The following two auxiliary variables, related to 𝑢̃ ∈ U𝑎𝑑 ⊂ 𝐿2(Ω), will be of particular importance for our
analysis. The variable 𝑦 ∈ 𝐻1

0 (Ω), which solves

(∇𝑦,∇𝑣)𝐿2(Ω) + (𝑎(·, 𝑦), 𝑣)𝐿2(Ω) = (𝑢̃, 𝑣)𝐿2(Ω) ∀𝑣 ∈ 𝐻1
0 (Ω),

and 𝑝 ∈ 𝐻1
0 (Ω), which is defined as the solution to

(∇𝑤,∇𝑝)𝐿2(Ω) +
(︁

𝜕𝑎
𝜕𝑦 (·, 𝑦)𝑝, 𝑤

)︁
𝐿2(Ω)

= (𝑦 − 𝑦Ω, 𝑤)𝐿2(Ω) ∀𝑤 ∈ 𝐻1
0 (Ω). (5.10)

After all these definitions and preparations, we define an a posteriori error estimator for the optimal control
problem (4.1)–(4.2), which can be decomposed as the sum of three contributions:

ℰ2
𝑜𝑐𝑝 := ℰ2

𝑠𝑡 + ℰ2
𝑎𝑑 + ℰ2

𝑐𝑡. (5.11)

The estimators ℰ𝑠𝑡, ℰ𝑎𝑑, and ℰ𝑐𝑡, are defined in (5.3), (5.7), and (5.9), respectively.
We are now ready to state and prove one of the main results of this section.

Theorem 5.2 (global reliability I). Suppose that assumptions (A.1)–(A.3) hold. Assume, in addition, that
𝜕𝑎
𝜕𝑦 = 𝜕𝑎

𝜕𝑦 (𝑥, 𝑦) is globally Lipschitz with respect to 𝑦 ∈ R. Let 𝑢̄ ∈ U𝑎𝑑 be a local solution to (4.1)–(4.2) satisfying
the sufficient second order condition (4.10), or equivalently (4.11). Let 𝑢̄T be a local minimum of the associated
discrete optimal control problem with 𝑦T and 𝑝T being the corresponding state and adjoint state, respectively.
Let T be a mesh such that (4.17) holds, then

�(𝑦 − 𝑦T , 𝑝− 𝑝T , 𝑢̄− 𝑢̄T )�Ω . ℰ𝑜𝑐𝑝. (5.12)

The hidden constant is independent of the continuous and discrete optimal variables, the size of the elements in
the mesh T , and #T .

Proof. We proceed in four steps.
Step 1. The goal of this first step is to control the term ‖𝑢̄− 𝑢̄T ‖𝐿2(Ω). We begin with a simple application

of the triangle inequality and write

‖𝑢̄− 𝑢̄T ‖𝐿2(Ω) ≤ ‖𝑢̄− 𝑢̃‖𝐿2(Ω) + ℰ𝑐𝑡, (5.13)

where 𝑢̃ := Π[a,b]

(︀
−𝜈−1𝑝T

)︀
and ℰ𝑐𝑡 is defined as in (5.9). Let us now bound the first term on the right hand

side of (5.13). To accomplish this task, we set 𝑢 = 𝑢̃ in (4.5) and 𝑢 = 𝑢̄ in (4.16) to obtain

−𝑗′(𝑢̄)(𝑢̃− 𝑢̄) = −(𝑝+ 𝜈𝑢̄, 𝑢̃− 𝑢̄)𝐿2(Ω) ≤ 0, −(𝑝T + 𝜈𝑢̃, 𝑢̃− 𝑢̄)𝐿2(Ω) ≥ 0.

In light of these estimates, we invoke (4.18) to obtain

𝜇
2 ‖𝑢̄− 𝑢̃‖2𝐿2(Ω) ≤ 𝑗′(𝑢̃)(𝑢̃− 𝑢̄)− 𝑗′(𝑢̄)(𝑢̃− 𝑢̄) ≤ 𝑗′(𝑢̃)(𝑢̃− 𝑢̄) = (𝑝+ 𝜈𝑢̃, 𝑢̃− 𝑢̄)𝐿2(Ω) ≤ (𝑝− 𝑝T , 𝑢̃− 𝑢̄)𝐿2(Ω).

Adding and subtracting the auxiliary variable 𝑝, defined as the solution to (5.5), and utilizing basic inequalities
we arrive at

‖𝑢̄− 𝑢̃‖2𝐿2(Ω) . (‖𝑝− 𝑝‖𝐿2(Ω) + ‖𝑝− 𝑝T ‖𝐿2(Ω))‖𝑢̃− 𝑢̄‖𝐿2(Ω). (5.14)

We now invoke a Poincaré inequality and the a posteriori error estimate ‖∇(𝑝− 𝑝T )‖𝐿2(Ω) . ℰ𝑎𝑑, which follows
from (5.8), to obtain

‖𝑢̄− 𝑢̃‖𝐿2(Ω) . ‖∇(𝑝− 𝑝)‖𝐿2(Ω) + ℰ𝑎𝑑. (5.15)

The rest of this step is dedicated to estimate the term ‖∇(𝑝 − 𝑝)‖𝐿2(Ω). To accomplish this task, we first
notice that, for every 𝑤 ∈ 𝐻1

0 (Ω), 𝑝− 𝑝 ∈ 𝐻1
0 (Ω) solves

(∇𝑤,∇(𝑝− 𝑝))𝐿2(Ω) +
(︁

𝜕𝑎
𝜕𝑦 (·, 𝑦)𝑝− 𝜕𝑎

𝜕𝑦 (·, 𝑦T )𝑝, 𝑤
)︁

𝐿2(Ω)
= (𝑦 − 𝑦T , 𝑤)𝐿2(Ω).
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Set 𝑤 = 𝑝− 𝑝 and invoke a generalized Hölder’s inequality to obtain

‖∇(𝑝− 𝑝)‖2𝐿2(Ω) +
(︁

𝜕𝑎
𝜕𝑦 (·, 𝑦)(𝑝− 𝑝), 𝑝− 𝑝

)︁
𝐿2(Ω)

= (𝑦 − 𝑦T , 𝑝− 𝑝)𝐿2(Ω) +
(︁[︁

𝜕𝑎
𝜕𝑦 (·, 𝑦T )− 𝜕𝑎

𝜕𝑦 (·, 𝑦)
]︁
𝑝, 𝑝− 𝑝

)︁
𝐿2(Ω)

≤ ‖𝑦 − 𝑦T ‖𝐿2(Ω)‖𝑝− 𝑝‖𝐿2(Ω) +
⃦⃦⃦

𝜕𝑎
𝜕𝑦 (·, 𝑦T )− 𝜕𝑎

𝜕𝑦 (·, 𝑦)
⃦⃦⃦

𝐿2(Ω)
‖𝑝‖𝐿4(Ω)‖𝑝− 𝑝‖𝐿4(Ω).

Since 𝜕𝑎
𝜕𝑦 is globally Lipschitz with respect to 𝑦, we thus obtain

‖∇(𝑝− 𝑝)‖2𝐿2(Ω) . ‖𝑦 − 𝑦T ‖𝐿2(Ω)

(︀
‖𝑝− 𝑝‖𝐿2(Ω) + ‖𝑝‖𝐿4(Ω)‖𝑝− 𝑝‖𝐿4(Ω)

)︀
.

We thus use a Poincaré inequality and the embedding 𝐻1
0 (Ω) →˓ 𝐿4(Ω) to arrive at

‖∇(𝑝− 𝑝)‖𝐿2(Ω) . ‖𝑦 − 𝑦T ‖𝐿2(Ω)(1 + ‖∇𝑝‖𝐿2(Ω)). (5.16)

Stability estimates for the problems that 𝑝 and 𝑦T solve yield the estimate

‖∇𝑝‖𝐿2(Ω) . ‖𝑦Ω‖𝐿2(Ω) + ‖𝑦T ‖𝐿2(Ω) . ‖𝑦Ω‖𝐿2(Ω) + 𝜌|Ω| 12 + ‖𝑎(·, 0)‖𝐿2(Ω),

where 𝜌 = max{|a|, |b|}. Replacing this estimate into (5.16), and invoking, again, a Poincaré inequality, we
obtain

‖∇(𝑝− 𝑝)‖𝐿2(Ω) . ‖𝑦 − 𝑦T ‖𝐿2(Ω) . ‖∇(𝑦 − 𝑦T )‖𝐿2(Ω), (5.17)

with a hidden constant that is independent of the continuous and discrete optimal variables, the size of the
elements in the mesh T , and #T but depends on the continuous problem data.

We now turn our attention to bounding the term ‖∇(𝑦 − 𝑦T )‖𝐿2(Ω) in (5.17). To accomplish this task, we
invoke the auxiliary variable 𝑦, defined as the solution to (5.2), and use the triangle inequality to obtain

‖∇(𝑦 − 𝑦T )‖𝐿2(Ω) . ‖∇(𝑦 − 𝑦)‖𝐿2(Ω) + ℰ𝑠𝑡, (5.18)

where we have also used the a posteriori error estimate (5.4). It thus suffices to bound ‖∇(𝑦 − 𝑦)‖𝐿2(Ω). To do
this, we first notice that 𝑦 − 𝑦 ∈ 𝐻1

0 (Ω) solves the problem:

(∇(𝑦 − 𝑦),∇𝑣)𝐿2(Ω) + (𝑎(·, 𝑦)− 𝑎(·, 𝑦), 𝑣)𝐿2(Ω) = (𝑢̃− 𝑢̄T , 𝑣)𝐿2(Ω) (5.19)

for all 𝑣 ∈ 𝐻1
0 (Ω). Set 𝑣 = 𝑦 − 𝑦. Since 𝑎 is monotone increasing in 𝑦 (2.1) we obtain that ‖∇(𝑦 − 𝑦)‖𝐿2(Ω) .

‖𝑢̃− 𝑢̄T ‖𝐿2(Ω) = ℰ𝑐𝑡. Replacing this estimate into (5.18) and the obtained one into (5.17) yield

‖∇(𝑝− 𝑝)‖𝐿2(Ω) . ℰ𝑠𝑡 + ℰ𝑐𝑡. (5.20)

On the basis of (5.13), (5.15) and (5.20), we conclude the a posteriori error estimate

‖𝑢̄− 𝑢̄T ‖𝐿2(Ω) . ℰ𝑎𝑑 + ℰ𝑠𝑡 + ℰ𝑐𝑡. (5.21)

Step 2. The goal of this step is to bound ‖∇(𝑦− 𝑦T )‖𝐿2(Ω). To accomplish this task, we invoke the auxiliary
state 𝑦, defined as the solution to (5.2) and apply the triangle inequality. In fact, we have

‖∇(𝑦 − 𝑦T )‖𝐿2(Ω) . ‖∇(𝑦 − 𝑦)‖𝐿2(Ω) + ℰ𝑠𝑡, (5.22)

where we have also used the a posteriori error estimate (5.4). It thus suffices to estimate ‖∇(𝑦 − 𝑦)‖𝐿2(Ω). To
achieve this goal, we invoke the state equation (4.2), with 𝑢 replaced by 𝑢̄, problem (5.2), and the monotonicity
of the nonlinear term 𝑎 (2.1). These arguments reveal that

‖∇(𝑦 − 𝑦)‖2𝐿2(Ω) ≤ (∇(𝑦 − 𝑦),∇(𝑦 − 𝑦))𝐿2(Ω) + (𝑎(·, 𝑦)− 𝑎(·, 𝑦), 𝑦 − 𝑦)𝐿2(Ω)

= (𝑢̄− 𝑢̄T , 𝑦 − 𝑦)𝐿2(Ω) . ‖𝑢̄− 𝑢̄T ‖𝐿2(Ω)‖∇(𝑦 − 𝑦)‖𝐿2(Ω).
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Consequently, ‖∇(𝑦 − 𝑦)‖𝐿2(Ω) . ‖𝑢̄− 𝑢̄T ‖𝐿2(Ω). Replacing this estimate into (5.22) and utilizing (5.21) allow
us to conclude that

‖∇(𝑦 − 𝑦T )‖𝐿2(Ω) . ℰ𝑎𝑑 + ℰ𝑠𝑡 + ℰ𝑐𝑡. (5.23)

Step 3. We now bound the term ‖∇(𝑝− 𝑝T )‖𝐿2(Ω). To accomplish this task, we add and subtract 𝑝, defined
as the solution to (5.5), and use, again, the triangle inequality to obtain that

‖∇(𝑝− 𝑝T )‖𝐿2(Ω) . ‖∇(𝑝− 𝑝)‖𝐿2(Ω) + ℰ𝑎𝑑, (5.24)

where we have also used the a posteriori error estimate (5.8). It thus suffices to bound ‖∇(𝑝 − 𝑝)‖𝐿2(Ω). Set
𝑤 = 𝑝− 𝑝 in the weak problem that 𝑝− 𝑝 solves. This yields

‖∇(𝑝− 𝑝)‖2𝐿2(Ω) +
(︁

𝜕𝑎
𝜕𝑦 (·, 𝑦)(𝑝− 𝑝), 𝑝− 𝑝

)︁
𝐿2(Ω)

= (𝑦 − 𝑦T , 𝑝− 𝑝)𝐿2(Ω) +
(︁[︁

𝜕𝑎
𝜕𝑦 (·, 𝑦T )− 𝜕𝑎

𝜕𝑦 (·, 𝑦)
]︁
𝑝, 𝑝− 𝑝

)︁
𝐿2(Ω)

.

This identity, in view of a generalized Hölder’s inequality, the Lipschitz property of 𝜕𝑎
𝜕𝑦 with respect to 𝑦, and

assumption (A.2), allows us to arrive at

‖∇(𝑝− 𝑝)‖2𝐿2(Ω) . ‖𝑦 − 𝑦T ‖𝐿2(Ω)(‖𝑝− 𝑝‖𝐿2(Ω) + ‖𝑝‖𝐿4(Ω)‖𝑝− 𝑝‖𝐿4(Ω)).

Using similar ideas to the ones that lead to (5.16) and (5.17), we can conclude that

‖∇(𝑝− 𝑝)‖𝐿2(Ω) . ‖∇(𝑦 − 𝑦T )‖𝐿2(Ω). (5.25)

Replacing (5.23) into (5.25), and the obtained one into (5.24), we obtain

‖∇(𝑝− 𝑝T )‖𝐿2(Ω) . ℰ𝑎𝑑 + ℰ𝑠𝑡 + ℰ𝑐𝑡. (5.26)

Step 4. Combining (5.21), (5.23), and (5.26) allows us to arrive at (5.12). This concludes the proof. �

In Theorem 5.2, we obtained a global reliability result for our a posteriori error estimator ℰ𝑜𝑐𝑝 under the
assumptions that the underlying adaptive loop driven by such an estimator and thus the family of adaptive
meshes {T } are such that

𝑢̃− 𝑢̄ ∈ 𝐶𝜏
𝑢̄ , ‖𝑝− 𝑝T ‖𝐿2(Ω) ≤ 𝜈𝜇(2𝐶M)−1.

Numerical evidence supports the claim that, after a suitable number of initial adaptive refinements, the condition
𝑢̃ − 𝑢̄ ∈ 𝐶𝜏

𝑢̄ holds true uniformly over subsequent adaptive refinements; see Figure 5 in Section 8.2. It is also
observed that a quadratic experimental rate of convergence for ‖𝑝 − 𝑝T ‖𝐿∞(Ω) is attained so the condition
‖𝑝− 𝑝T ‖𝐿2(Ω) ≤ 𝜈𝜇(2𝐶M)−1 is also computationally satisfied; see Figure 6 in Section 8.2.

As an alternative, in the next result, we obtain a global reliability result for ℰ𝑜𝑐𝑝 under the the following
assumptions:

‖𝑝− 𝑝T ‖𝐿2(Ω) ≤
𝜈2

2𝒞
, max{|a|, |b|, ‖𝑎(·, 0)‖𝐿2(Ω), ‖𝑦Ω‖𝐿2(Ω)} ≤ 𝐶max, (5.27)

where 𝒞 and 𝐶max > 0 are defined as in (5.34).

Theorem 5.3 (global reliability II). Suppose that assumptions (A.1)–(A.3) hold. Assume, in addition, that
𝜕𝑎
𝜕𝑦 = 𝜕𝑎

𝜕𝑦 (𝑥, 𝑦) is globally Lipschitz with respect to 𝑦 ∈ R. Let 𝑢̄ ∈ U𝑎𝑑 be a local solution to (4.1)–(4.2). Let 𝑢̄T

be a local minimum of the associated discrete optimal control problem with 𝑦T and 𝑝T being the corresponding
state and adjoint state, respectively. Assume that (5.27) holds. Then the a posteriori error estimate (5.12) holds,
with a hidden constant independent of the continuous and discrete optimal variables, the size of the elements in
the mesh T , and #T .
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Proof. We begin with a simple application of the triangle inequality to obtain

‖𝑢̄− 𝑢̄T ‖𝐿2(Ω) ≤ ‖𝑢̄− 𝑢̃‖𝐿2(Ω) + ℰ𝑐𝑡, (5.28)

where 𝑢̃ := Π[a,b]

(︀
−𝜈−1𝑝T

)︀
and ℰ𝑐𝑡 is defined as in (5.9). Set 𝑢 = 𝑢̃ in (4.5) and 𝑢 = 𝑢̄ in (4.16). Subtract the

obtained inequalities to arrive at

𝜈‖𝑢̄− 𝑢̃‖2𝐿2(Ω) ≤ (𝑝− 𝑝T , 𝑢̃− 𝑢̄)𝐿2(Ω) = (𝑝− 𝑝, 𝑢̃− 𝑢̄)𝐿2(Ω) + (𝑝− 𝑝T , 𝑢̃− 𝑢̄)𝐿2(Ω),

where 𝑝 denotes the solution to (5.10). Young’s inequality yields

3𝜈
4 ‖𝑢̄− 𝑢̃‖2𝐿2(Ω) ≤ (𝑝− 𝑝, 𝑢̃− 𝑢̄)𝐿2(Ω) + 𝜈−1‖𝑝− 𝑝T ‖2𝐿2(Ω). (5.29)

In what follows, we estimate the term (𝑝−𝑝, 𝑢̃−𝑢̄)𝐿2(Ω). To accomplish this task, we notice that 𝑦−𝑦 ∈ 𝐻1
0 (Ω)

and 𝑝− 𝑝 ∈ 𝐻1
0 (Ω) solve

(∇(𝑦 − 𝑦),∇𝑣)𝐿2(Ω) + (𝑎(·, 𝑦)− 𝑎(·, 𝑦), 𝑣)𝐿2(Ω) = (𝑢̃− 𝑢̄, 𝑣)𝐿2(Ω) ∀𝑣 ∈ 𝐻1
0 (Ω), (5.30)

and

(∇𝑤,∇(𝑝− 𝑝))𝐿2(Ω) +
(︁

𝜕𝑎
𝜕𝑦 (·, 𝑦)(𝑝− 𝑝), 𝑤

)︁
𝐿2(Ω)

= (𝑦 − 𝑦, 𝑤)𝐿2(Ω) −
(︁
𝑝
[︁

𝜕𝑎
𝜕𝑦 (·, 𝑦)− 𝜕𝑎

𝜕𝑦 (·, 𝑦)
]︁
, 𝑤
)︁

𝐿2(Ω)
∀𝑤 ∈ 𝐻1

0 (Ω), (5.31)

respectively. Set 𝑣 = 𝑝− 𝑝 in (5.30) and 𝑤 = 𝑦 − 𝑦 in (5.31) to obtain

(𝑝− 𝑝, 𝑢̃− 𝑢̄)𝐿2(Ω) = (𝑎(·, 𝑦)− 𝑎(·, 𝑦), 𝑝− 𝑝)𝐿2(Ω) +
(︁

𝜕𝑎
𝜕𝑦 (·, 𝑦)(𝑝− 𝑝), 𝑦 − 𝑦

)︁
𝐿2(Ω)

+
(︁
𝑝
[︁

𝜕𝑎
𝜕𝑦 (·, 𝑦)− 𝜕𝑎

𝜕𝑦 (·, 𝑦)
]︁
, 𝑦 − 𝑦

)︁
𝐿2(Ω)

− ‖𝑦 − 𝑦‖2𝐿2(Ω).

In view of Taylor’s theorem, we conclude the existence of 𝜃 ∈ (0, 1) such that

𝑎(·, 𝑦) = 𝑎(·, 𝑦) + 𝜕𝑎
𝜕𝑦 (·, 𝑦)(𝑦 − 𝑦) + 𝜕2𝑎

𝜕𝑦2 (·, y)(𝑦 − 𝑦)2,

with y = 𝑦 + 𝜃(𝑦 − 𝑦). This allows us to conclude that

(𝑝−𝑝, 𝑢̃− 𝑢̄)𝐿2(Ω) =
(︁

𝜕2𝑎
𝜕𝑦2 (·, y)(𝑦 − 𝑦)2, 𝑝− 𝑝

)︁
𝐿2(Ω)

+
(︁
𝑝
[︁

𝜕𝑎
𝜕𝑦 (·, 𝑦)− 𝜕𝑎

𝜕𝑦 (·, 𝑦)
]︁
, 𝑦 − 𝑦

)︁
𝐿2(Ω)

−‖𝑦−𝑦‖2𝐿2(Ω). (5.32)

Now, in view of the results of [19,22,29] and assumptions (A.1)–(A.3), we obtain that 𝑝 ∈𝑊 1,𝑟
0 (Ω) for some

𝑟 > 𝑑; recall that 𝑝 solves (5.10). This, in conjunction with the Sobolev embedding 𝑊 1,𝑟
0 (Ω) →˓ 𝐿∞(Ω), for

𝑟 > 𝑑, implies that
‖𝑝‖𝐿∞(Ω) ≤ 𝐶stab‖𝑦 − 𝑦Ω‖𝐿2(Ω), (5.33)

with 𝐶stab > 0 being the stability constant. Invoke assumption (A.3), a generalized Hölder’s inequality, the
standard Sobolev embedding 𝐻1

0 (Ω) →˓ 𝐿4(Ω), and the stability estimate (5.33), to arrive at

(𝑝− 𝑝, 𝑢̃− 𝑢̄)𝐿2(Ω) ≤ 𝐶M𝐶
2
4‖∇(𝑦 − 𝑦)‖2𝐿2(Ω)‖𝑝− 𝑝‖𝐿2(Ω) + (𝐶M𝐶stab‖𝑦 − 𝑦Ω‖𝐿2(Ω) − 1)‖𝑦 − 𝑦‖2𝐿2(Ω).

Given 𝑞 ∈ {2, 4}, we denote by 𝐶𝑞 the best constant associated to the embedding 𝐻1
0 (Ω) →˓ 𝐿𝑞(Ω): 𝐶𝑞 is such

that ‖𝑣‖𝐿𝑞(Ω) ≤ 𝐶𝑞‖∇𝑣‖𝐿2(Ω) for all 𝑣 ∈ 𝐻1
0 (Ω).
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On the other hand, the well–posedness of problems (5.30) and (5.31) yields

‖∇(𝑦 − 𝑦)‖𝐿2(Ω) ≤ 𝐶2‖𝑢̄− 𝑢̃‖𝐿2(Ω),

and

‖∇(𝑝− 𝑝)‖𝐿2(Ω) ≤ 𝐶2
2 (1 + 𝐶M‖𝑝‖𝐿∞(Ω))‖∇(𝑦 − 𝑦)‖𝐿2(Ω) ≤ 𝐶3

2 (1 + 𝐶M𝐶stab‖𝑦 − 𝑦Ω‖𝐿2(Ω))‖𝑢̄− 𝑢̃‖𝐿2(Ω),

respectively. Hence, the combination of these estimates with the bound

‖𝑦−𝑦Ω‖𝐿2(Ω) ≤ 𝐶2‖∇𝑦‖𝐿2(Ω)+‖𝑦Ω‖𝐿2(Ω) ≤ 𝐶2
2‖𝑢̃‖𝐿2(Ω)+𝐶2

2‖𝑎(·, 0)‖𝐿2(Ω)+‖𝑦Ω‖𝐿2(Ω) ≤ 𝐶max(𝐶2
2 |Ω|

1
2 +𝐶2

2 +1),

which follows from assumption (5.27), yield

(𝑝− 𝑝, 𝑢̃− 𝑢̄)𝐿2(Ω) ≤ 𝐶M𝐶
2
4𝐶

6
2 (1 + 𝐶M𝐶stab𝐶max(𝐶2

2 |Ω|
1
2 + 𝐶2

2 + 1))‖𝑢̄− 𝑢̃‖3𝐿2(Ω)

+(𝐶M𝐶stab𝐶max(𝐶2
2 |Ω|

1
2 + 𝐶2

2 + 1)− 1)‖𝑦 − 𝑦‖2𝐿2(Ω).

Define
𝐶max := [𝐶M𝐶stab(𝐶2

2 |Ω|
1
2 + 𝐶2

2 + 1)]−1, 𝒞 := 2𝐶M𝐶
2
4𝐶

6
2 , (5.34)

and replace these constants in the previous inequality to conclude that

(𝑝− 𝑝, 𝑢̃− 𝑢̄)𝐿2(Ω) ≤ 𝒞‖𝑢̄− 𝑢̃‖3𝐿2(Ω).

We now invoke the Lipschitz property of Π[a,b] to obtain ‖𝑢̄ − 𝑢̃‖𝐿2(Ω) ≤ 𝜈−1‖𝑝 − 𝑝T ‖𝐿2(Ω). This estimate in
combination with assumption (5.27) yield

(𝑝− 𝑝, 𝑢̃− 𝑢̄)𝐿2(Ω) ≤
𝒞
𝜈
‖𝑢̄− 𝑢̃‖2𝐿2(Ω)‖𝑝− 𝑝T ‖𝐿2(Ω) ≤

𝜈

2
‖𝑢̄− 𝑢̃‖2𝐿2(Ω).

Replacing this estimate into (5.29) and invoking the auxiliary variable 𝑝, solution to (5.5), allow us to obtain

𝜈2

4 ‖𝑢̄− 𝑢̃‖2𝐿2(Ω) ≤ ‖𝑝− 𝑝T ‖2𝐿2(Ω) . (‖∇(𝑝− 𝑝)‖2𝐿2(Ω) + ‖∇(𝑝− 𝑝T )‖2𝐿2(Ω)).

This, in view of (5.8) and (5.20) (which do not rely on having second order sufficient optimality conditions),
yields the estimate

‖𝑢̄− 𝑢̃‖2𝐿2(Ω) . ℰ
2
𝑎𝑑 + ℰ2

𝑠𝑡 + ℰ2
𝑐𝑡.

Replace this estimate into (5.28) to conclude ‖𝑢̄− 𝑢̄T ‖𝐿2(Ω) . ℰ𝑎𝑑 + ℰ𝑠𝑡 + ℰ𝑐𝑡.
The control of ‖𝑦− 𝑦T ‖𝐿2(Ω) and ‖𝑝− 𝑝T ‖𝐿2(Ω) follow similar arguments to the ones developed in the proof

of Theorem 5.2. This concludes the proof. �

6. A POSTERIORI error analysis: Efficiency estimates

In this section, we prove the local efficiency of the a posteriori error indicators ℰ𝑠𝑡,𝑇 and ℰ𝑎𝑑,𝑇 and the
global efficiency of the a posteriori error estimator ℰ𝑜𝑐𝑝. To accomplish this task, we will proceed on the basis
of standard residual estimation techniques [1, 32]. Let us begin by introducing the following notation: for an
edge/face or triangle/tetrahedron 𝐺, let 𝒱(𝐺) be the set of vertices of 𝐺. With this notation at hand, we recall,
for 𝑇 ∈ T and 𝑆 ∈ S , the definition of the standard element and edge bubble functions [1, 32]

𝜙𝑇 = (𝑑+ 1)(𝑑+1)
∏︁

v∈𝒱(𝑇 )

𝜆v, 𝜙𝑆 = 𝑑𝑑
∏︁

v∈𝒱(𝑆)

𝜆v|𝑇 ′ ,
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respectively, where 𝑇 ′ ⊂ 𝒩𝑆 and 𝜆v are the barycentric coordinates of 𝑇 . Recall that 𝒩𝑆 denotes the patch
composed of the two elements of T that share 𝑆.

The following identities are essential to perform an efficiency analysis. First, since 𝑦 ∈ 𝐻1
0 (Ω) solves (4.2)

with 𝑢 = 𝑢̄, an elementwise integration by parts formula implies that

(∇(𝑦 − 𝑦T ),∇𝑣)𝐿2(Ω) + (𝑎(·, 𝑦)− 𝑎(·, 𝑦T ), 𝑣)𝐿2(Ω) = (𝑢̄− 𝑢̄T , 𝑣)𝐿2(Ω) +
∑︁

𝑇∈T

[︀
(𝑢̄T −PT 𝑎(·, 𝑦T ), 𝑣)𝐿2(𝑇 )

+ (PT 𝑎(·, 𝑦T )− 𝑎(·, 𝑦T ), 𝑣)𝐿2(𝑇 )

]︀
+
∑︁
𝑆∈S

(J∇𝑦T · 𝜈K, 𝑣)𝐿2(𝑆) (6.1)

for all 𝑣 ∈ 𝐻1
0 (Ω). Second, since 𝑝 solves (4.4) with 𝑦 = 𝑦, similar arguments yield

(∇𝑤,∇(𝑝− 𝑝T ))𝐿2(Ω) +
(︁

𝜕𝑎
𝜕𝑦 (·, 𝑦)(𝑝− 𝑝T ), 𝑤

)︁
𝐿2(Ω)

= (𝑦− 𝑦T , 𝑤)𝐿2(Ω) +
(︁[︁

𝜕𝑎
𝜕𝑦 (·, 𝑦T )− 𝜕𝑎

𝜕𝑦 (·, 𝑦)
]︁
𝑝T , 𝑤

)︁
𝐿2(Ω)

+
∑︁
𝑆∈S

(J∇𝑝T · 𝜈K, 𝑤)𝐿2(𝑆) +
∑︁

𝑇∈T

[︂(︁
𝑦T −PT 𝑦Ω −PT

[︁
𝜕𝑎
𝜕𝑦 (·, 𝑦T )𝑝T

]︁
, 𝑤
)︁

𝐿2(𝑇 )

+
(︁
PT

[︁
𝜕𝑎
𝜕𝑦 (·, 𝑦T )𝑝T

]︁
− 𝜕𝑎

𝜕𝑦 (·, 𝑦T )𝑝T , 𝑤
)︁

𝐿2(𝑇 )
+ (PT 𝑦Ω − 𝑦Ω, 𝑤)𝐿2(𝑇 )

]︂
(6.2)

for all 𝑤 ∈ 𝐻1
0 (Ω). In (6.1) and (6.2), PT denotes the 𝐿2-projection onto piecewise constant functions over T .

To derive local efficiency results, we introduce, for 𝑤 ∈ 𝐿2(Ω) and ℳ⊂ T ,

oscT (𝑤;ℳ) :=

(︃∑︁
𝑇∈ℳ

ℎ2
𝑇 ‖𝑤 −PT 𝑤‖2𝐿2(𝑇 )

)︃ 1
2

.

We are now ready to prove the local efficiency of the indicator ℰ𝑠𝑡 defined in (5.3).

Theorem 6.1 (local efficiency of ℰ𝑠𝑡). Suppose that assumptions (A.1)–(A.3) hold. Assume, in addition, that
𝑎 = 𝑎(𝑥, 𝑦) is globally Lipschitz with respect to 𝑦 ∈ R. Let 𝑢̄ ∈ U𝑎𝑑 be a local solution to (4.1)–(4.2). Let 𝑢̄T

be a local minimum of the discretization (4.13)–(4.14) with 𝑦T and 𝑝T being the associated state and adjoint
state, respectively. Then, for 𝑇 ∈ T , the local error indicator ℰ𝑠𝑡,𝑇 satisfies

ℰ𝑠𝑡,𝑇 . ‖∇(𝑦 − 𝑦T )‖𝐿2(𝒩𝑇 ) + ℎ𝑇 ‖𝑦 − 𝑦T ‖𝐿2(𝒩𝑇 ) + ℎ𝑇 ‖𝑢̄− 𝑢̄T ‖𝐿2(𝒩𝑇 ) + oscT (𝑎(·, 𝑦T ),𝒩𝑇 ), (6.3)

where 𝒩𝑇 is defined as in (3.2). The hidden constant is independent of the continuous and discrete optimal
variables, the size of the elements in the mesh T , and #T .

Proof. We estimate each term in the definition of the local error indicator ℰ𝑠𝑡,𝑇 , given in (5.3), separately.
Step 1. Let 𝑇 ∈ T . We first bound the element term ℎ2

𝑇 ‖𝑢̄T − 𝑎(·, 𝑦T )‖2𝐿2(𝑇 ). We begin with an application
of the triangle inequality to obtain

ℎ𝑇 ‖𝑢̄T − 𝑎(·, 𝑦T )‖𝐿2(𝑇 ) ≤ ℎ𝑇 ‖𝑢̄T −PT 𝑎(·, 𝑦T )‖𝐿2(𝑇 ) + oscT (𝑎(·, 𝑦T );𝑇 ).

It thus suffices to estimate the first term in the right hand side of the previous inequality. To accomplish this
task, we set 𝑣 = 𝜙𝑇 (𝑢̄T − PT 𝑎(·, 𝑦T )) in (6.1) and invoke standard properties of the bubble function 𝜙𝑇

combined with basic inequalities to obtain

‖𝑢̄T −PT 𝑎(·, 𝑦T )‖2𝐿2(𝑇 ) .
(︀
ℎ−1

𝑇 ‖∇(𝑦 − 𝑦T )‖𝐿2(𝑇 ) + ‖𝑢̄− 𝑢̄T ‖𝐿2(𝑇 )+

‖𝑎(·, 𝑦)− 𝑎(·, 𝑦T )‖𝐿2(𝑇 ) + ‖PT 𝑎(·, 𝑦T )− 𝑎(·, 𝑦T )‖𝐿2(𝑇 )

)︀
‖𝑢̄T −PT 𝑎(·, 𝑦T )‖𝐿2(𝑇 ).
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This, in view of the global Lipschitz property of 𝑎 = 𝑎(𝑥, 𝑦) with respect to 𝑦, yields

ℎ2
𝑇 ‖𝑢̄T −PT 𝑎(·, 𝑦T )‖2𝐿2(𝑇 ) . ‖∇(𝑦 − 𝑦T )‖2𝐿2(𝑇 ) + ℎ2

𝑇 ‖𝑢̄− 𝑢̄T ‖2𝐿2(𝑇 ) + ℎ2
𝑇 ‖𝑦 − 𝑦T ‖2𝐿2(𝑇 ) + oscT (𝑎(·, 𝑦T );𝑇 )2.

Step 2. Let 𝑇 ∈ T and 𝑆 ∈ S𝑇 . We bound ℎ𝑇 ‖J∇𝑦T · 𝜈K‖2𝐿2(𝑆) in (5.3). To accomplish this task, we set
𝑣 = 𝜙𝑆J∇𝑦T · 𝜈K in (6.1) and utilize standard bubble functions arguments to obtain

‖J∇𝑦T · 𝜈K‖2𝐿2(𝑆) .
∑︁

𝑇 ′∈𝒩𝑆

(︂
ℎ−1

𝑇 ′ ‖∇(𝑦 − 𝑦T )‖𝐿2(𝑇 ′) + ‖𝑎(·, 𝑦)− 𝑎(·, 𝑦T )‖𝐿2(𝑇 ′) + ‖𝑢̄− 𝑢̄T ‖𝐿2(𝑇 ′)

+ ‖𝑢̄T − 𝑎(·, 𝑦T )‖𝐿2(𝑇 ′) + ‖PT 𝑎(·, 𝑦T )− 𝑎(·, 𝑦T )‖𝐿2(𝑇 ′)

)︂
ℎ

1
2
𝑇 ‖J∇𝑦T · 𝜈K‖𝐿2(𝑆).

Using again the global Lipschitz property of 𝑎 = 𝑎(𝑥, 𝑦) with respect to 𝑦 we arrive at

ℎ𝑇 ‖J∇𝑦T · 𝜈K‖2𝐿2(𝑆) .
∑︁

𝑇 ′∈𝒩𝑆

(︁
‖∇(𝑦 − 𝑦T )‖2𝐿2(𝑇 ′) + ℎ2

𝑇 ‖𝑦 − 𝑦T ‖2𝐿2(𝑇 ′)

+ ℎ2
𝑇 ‖𝑢̄− 𝑢̄T ‖2𝐿2(𝑇 ′) + oscT (𝑎(·, 𝑦T );𝑇 ′)2

)︁
.

The collection of the estimates derived in Steps 1 and 2 concludes the proof. �

We now continue with the study of the local efficiency properties of the estimator ℰ𝑎𝑑 defined in (5.7).

Theorem 6.2 (local efficiency of ℰ𝑎𝑑). Suppose that assumptions (A.1)–(A.3) hold. Assume, in addition, that
𝜕𝑎
𝜕𝑦 = 𝜕𝑎

𝜕𝑦 (𝑥, 𝑦) is globally Lipschitz with respect to 𝑦 ∈ R. Let 𝑢̄ ∈ U𝑎𝑑 be a local solution to (4.1)–(4.2). Let 𝑢̄T

be a local minimum of the discretization (4.13)–(4.14) with 𝑦T and 𝑝T being the associated state and adjoint
state, respectively. Then, for 𝑇 ∈ T , the local error indicator ℰ𝑎𝑑,𝑇 satisfies

ℰ𝑎𝑑,𝑇 . ‖∇(𝑝− 𝑝T )‖𝐿2(𝒩𝑇 ) + (1 + ℎ𝑇 )‖𝑦 − 𝑦T ‖𝐿2(𝒩𝑇 )

+ ℎ𝑇 ‖𝑝− 𝑝T ‖𝐿2(𝒩𝑇 ) + oscT (𝑦Ω,𝒩𝑇 ) + oscT

(︁
𝜕𝑎
𝜕𝑦 (·, 𝑦T )𝑝T ,𝒩𝑇

)︁
, (6.4)

where 𝒩𝑇 is defined as in (3.2). The hidden constant is independent of the continuous and discrete optimal
variables, the size of the elements in the mesh T , and #T .

Proof. We estimate each term in the definition of the local error indicator ℰ𝑎𝑑,𝑇 , given in (5.6), separately.
Step 1. Let 𝑇 ∈ T . A simple application of the triangle inequality yields

ℎ𝑇 ‖𝑦T − 𝑦Ω − 𝜕𝑎
𝜕𝑦 (·, 𝑦T )𝑝T ‖𝐿2(𝑇 ) ≤ ℎ𝑇

⃦⃦⃦
𝑦T −PT 𝑦Ω −PT

[︁
𝜕𝑎
𝜕𝑦 (·, 𝑦T )𝑝T

]︁⃦⃦⃦
𝐿2(𝑇 )

+ oscT (𝑦Ω;𝑇 ) + oscT

(︁
𝜕𝑎
𝜕𝑦 (·, 𝑦T )𝑝T ;𝑇

)︁
.

To estimate the first term on the right hand side of the previous estimate and also to simplify the presentation
of the material, we define

R𝑎𝑑
𝑇 := 𝑦T −PT 𝑦Ω −PT

[︁
𝜕𝑎
𝜕𝑦 (·, 𝑦T )𝑝T

]︁
.

Now, set 𝑤 = 𝜙𝑇 R𝑎𝑑
𝑇 in (6.2) and invoke basic inequalities to arrive at

‖R𝑎𝑑
𝑇 ‖2𝐿2(𝑇 ) . ‖∇(𝑝− 𝑝T )‖𝐿2(𝑇 )‖∇(𝜙𝑇 R𝑎𝑑

𝑇 )‖𝐿2(𝑇 ) + ‖𝜙𝑇 R𝑎𝑑
𝑇 ‖𝐿2(𝑇 )

(︂
‖𝑦 − 𝑦T ‖𝐿2(𝑇 )+⃦⃦⃦

𝜕𝑎
𝜕𝑦 (·, 𝑦)(𝑝− 𝑝T )

⃦⃦⃦
𝐿2(𝑇 )

+ ‖PT 𝑦Ω − 𝑦Ω‖𝐿2(𝑇 ) +
⃦⃦⃦
PT

[︁
𝜕𝑎
𝜕𝑦 (·, 𝑦T )𝑝T

]︁
− 𝜕𝑎

𝜕𝑦 (·, 𝑦T )𝑝T

⃦⃦⃦
𝐿2(𝑇 )

)︂
+
⃦⃦⃦

𝜕𝑎
𝜕𝑦 (·, 𝑦)− 𝜕𝑎

𝜕𝑦 (·, 𝑦T )
⃦⃦⃦

𝐿2(𝑇 )
‖𝑝T ‖𝐿𝑑(𝑇 )‖𝜙𝑇 R𝑎𝑑

𝑇 ‖𝐿d(𝑇 ), (6.5)
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where d = ∞ if 𝑑 = 2 and d = 6 if 𝑑 = 3. On the basis of (6.5), standard inverse inequalities ([10], Lem. 4.5.3)
and bubble functions arguments yield

‖R𝑎𝑑
𝑇 ‖𝐿2(𝑇 ) . ℎ

−1
𝑇 ‖∇(𝑝− 𝑝T )‖𝐿2(𝑇 ) +

⃦⃦⃦
𝜕𝑎
𝜕𝑦 (·, 𝑦)(𝑝− 𝑝T )

⃦⃦⃦
𝐿2(𝑇 )

+ ‖𝑦 − 𝑦T ‖𝐿2(𝑇 ) + ‖PT 𝑦Ω − 𝑦Ω‖𝐿2(𝑇 )

+
⃦⃦⃦
PT

[︁
𝜕𝑎
𝜕𝑦 (·, 𝑦T )𝑝T

]︁
− 𝜕𝑎

𝜕𝑦 (·, 𝑦T )𝑝T

⃦⃦⃦
𝐿2(𝑇 )

+ ℎ−1
𝑇 ‖𝑝T ‖𝐿𝑑(𝑇 )

⃦⃦⃦
𝜕𝑎
𝜕𝑦 (·, 𝑦)− 𝜕𝑎

𝜕𝑦 (·, 𝑦T )
⃦⃦⃦

𝐿2(𝑇 )
. (6.6)

Observe now that, since 𝑑 ∈ {2, 3}, 𝐻1
0 (Ω) →˓ 𝐿𝑑(Ω). This, in combination with stability estimates for the

problems that 𝑝T and 𝑦T solve yield the estimate

‖𝑝T ‖𝐿𝑑(𝑇 ) ≤ ‖𝑝T ‖𝐿𝑑(Ω) . ‖𝑝T ‖𝐻1(Ω) . ‖𝑦Ω‖𝐿2(Ω) + ‖𝑦T ‖𝐿2(Ω) . ‖𝑦Ω‖𝐿2(Ω) + 𝜌|Ω| 12 + ‖𝑎(·, 0)‖𝐿2(Ω), (6.7)

where 𝜌 = max{|a|, |b|}. Replacing this estimate into (6.6), invoking the global Lipschitz property of 𝜕𝑎
𝜕𝑦 =

𝜕𝑎
𝜕𝑦 (𝑥, 𝑦) with respect to 𝑦 and assumption (A.3), we obtain

ℎ𝑇 ‖R𝑎𝑑
𝑇 ‖𝐿2(𝑇 ) . ‖∇(𝑝− 𝑝T )‖𝐿2(𝑇 ) + ℎ𝑇 ‖𝑝− 𝑝T ‖𝐿2(𝑇 )

+ (1 + ℎ𝑇 )‖𝑦 − 𝑦T ‖𝐿2(𝑇 ) + oscT (𝑦Ω;𝑇 ) + oscT

(︁
𝜕𝑎
𝜕𝑦 (·, 𝑦T )𝑝T ;𝑇

)︁
. (6.8)

Notice that the hidden constant is independent of the continuous and discrete optimal variables, the size of the
elements in the mesh T , and #T but depends on the continuous problem data.

Step 2. Let 𝑇 ∈ T and 𝑆 ∈ S𝑇 . We now bound the jump term ‖J∇𝑝T ·𝜈K‖𝐿2(𝑆) in (5.6). To accomplish this
task, we set 𝑤 = J∇𝑝T · 𝜈K𝜙𝑆 in (6.2) and proceed with similar arguments as the ones used in (6.5)–(6.6). We
thus obtain

‖J∇𝑝T · 𝜈K‖2𝐿2(𝑆) .
∑︁

𝑇 ′∈𝒩𝑆

(︂
ℎ−1

𝑇 ‖∇𝑝− 𝑝T ‖𝐿2(𝑇 ′) + ‖𝑦 − 𝑦T ‖𝐿2(𝑇 ′) + ‖𝑝− 𝑝T ‖𝐿2(𝑇 ′)

+
⃦⃦⃦
P𝑇 ′

[︁
𝜕𝑎
𝜕𝑦 (·, 𝑦T )𝑝T

]︁
− 𝜕𝑎

𝜕𝑦 (·, 𝑦T )𝑝T

⃦⃦⃦
𝐿2(𝑇 ′)

+ ‖P𝑇 ′𝑦Ω − 𝑦Ω‖𝐿2(𝑇 ′) + ‖R𝑎𝑑
𝑇 ‖𝐿2(𝑇 ′)

+ ℎ−1
𝑇 ‖𝑝T ‖𝐿𝑑(𝑇 ′)

⃦⃦⃦
𝜕𝑎
𝜕𝑦 (·, 𝑦)− 𝜕𝑎

𝜕𝑦 (·, 𝑦T )
⃦⃦⃦

𝐿2(𝑇 ′)

)︂
ℎ

1
2
𝑇 ‖J∇𝑝T · 𝜈K‖𝐿2(𝑆).

Finally, utilize the stability estimate (6.7), the global Lipschitz continuity of 𝜕𝑎
𝜕𝑦 = 𝜕𝑎

𝜕𝑦 (𝑥, 𝑦) with respect to 𝑦,
and estimate (6.8), to conclude

ℎ
1
2
𝑇 ‖J∇𝑝T · 𝜈K‖𝐿2(𝑆) .

∑︁
𝑇 ′∈𝒩𝑆

(︂
‖∇(𝑝− 𝑝T )‖𝐿2(𝑇 ) + ℎ𝑇 ‖𝑝− 𝑝T ‖𝐿2(𝑇 )

+ (1 + ℎ𝑇 )‖𝑦 − 𝑦T ‖𝐿2(𝑇 ) + oscT (𝑦Ω, 𝑇 ) + oscT

(︁
𝜕𝑎
𝜕𝑦 (·, 𝑦T )𝑝T , 𝑇

)︁)︂
.

Combine the estimates derived in Steps 1 and 2 to arrive at the desired estimate (6.4). �

The results of Theorems 6.1 and 6.2 immediately yield the global efficiency of ℰ𝑜𝑐𝑝.

Theorem 6.3 (global efficiency of ℰ𝑜𝑐𝑝). Suppose that assumptions (A.1)–(A.3) hold. Assume, in addition, that
𝑎 = 𝑎(𝑥, 𝑦) and 𝜕𝑎

𝜕𝑦 = 𝜕𝑎
𝜕𝑦 (𝑥, 𝑦) are globally Lipschitz with respect to 𝑦 ∈ R. Let 𝑢̄ ∈ U𝑎𝑑 be a local solution to

(4.1)–(4.2). Let 𝑢̄T be a local minimum of the discretization (4.13)–(4.14) with 𝑦T and 𝑝T being the associated
state and adjoint state, respectively. Then,

ℰ𝑜𝑐𝑝 . ‖𝑝−𝑝T ‖𝐻1(Ω)+‖𝑦−𝑦T ‖𝐻1(Ω)+‖𝑢̄−𝑢̄T ‖𝐿2(Ω)+oscT (𝑎(·, 𝑦T ); T )+oscT (𝑦Ω; T )+oscT

(︁
𝜕𝑎
𝜕𝑦 (·, 𝑦T )𝑝T ; T

)︁
.
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The hidden constant is independent of the continuous and discrete optimal variables, the size of the elements in
the mesh T , and #T .

Proof. We begin by invoking the definition of the global indicator ℰ𝑠𝑡, given by (5.3), and the local efficiency
estimate (6.3) to arrive at

ℰ𝑠𝑡 . ‖∇(𝑦 − 𝑦T )‖𝐿2(Ω) + diam(Ω)‖𝑦 − 𝑦T ‖𝐿2(Ω) + diam(Ω)‖𝑢̄− 𝑢̄T ‖𝐿2(Ω) + oscT (𝑎(·, 𝑦T ),T ). (6.9)

On the other hand, in view of (5.7), the efficiency estimate (6.4) provides the bound

ℰ𝑎𝑑 . ‖∇(𝑝− 𝑝T )‖𝐿2(Ω) + (1 + diam(Ω))‖𝑦 − 𝑦T ‖𝐿2(Ω)

+ diam(Ω)‖𝑝− 𝑝T ‖𝐿2(Ω) + oscT (𝑦Ω; T ) + oscT

(︁
𝜕𝑎
𝜕𝑦 (·, 𝑦T )𝑝T ; T

)︁
. (6.10)

It thus suffices to control ℰ𝑐𝑡. In view of (5.9), a trivial application of the triangle inequality yields

ℰ𝑐𝑡 ≤ ‖𝑢̃− 𝑢̄‖𝐿2(Ω) + ‖𝑢̄− 𝑢̄T ‖𝐿2(Ω) = ‖Π[a,b](−𝜈−1𝑝T )−Π[a,b](−𝜈−1𝑝)‖𝐿2(Ω) + ‖𝑢̄− 𝑢̄T ‖𝐿2(Ω),

where Π[a,b] is defined as in (4.6). This estimate, in conjunction with the Lipschitz property of Π[a,b] and a
Poincaré inequality, implies

ℰ𝑐𝑡 . 𝜈
−1‖∇(𝑝T − 𝑝)‖𝐿2(Ω) + ‖𝑢̄− 𝑢̄T ‖𝐿2(Ω). (6.11)

The proof concludes by gathering the estimates (6.9), (6.10), and (6.11). �

Remark 6.4 (local efficiency). For 𝑇 ∈ T , let us introduce the local error indicator

ℰ2
𝑜𝑐𝑝,𝑇 := ℰ2

𝑠𝑡,𝑇 + ℰ2
𝑎𝑑,𝑇 + ℰ2

𝑐𝑡,𝑇 . (6.12)

A local efficiency result can be obtained for ℰ𝑜𝑐𝑝,𝑇 if we measure the total error within a different norm. To be
precise, define, for (𝑣, 𝑤, 𝑧) ∈ 𝐻1(Ω)×𝐻1(Ω)× 𝐿2(Ω),

�(𝑣, 𝑤, 𝑧)�1,Ω := ‖𝑣‖𝐻1(Ω) + ‖𝑤‖𝐻1(Ω) + ‖𝑧‖𝐿2(Ω).

Let 𝑇 ∈ T . In view of (6.3) and (6.4), it suffices to bound ℰ𝑐𝑡,𝑇 . Invoke (5.9), (4.7), (4.15), and the Lipschitz
property of Π[a,b] to arrive at

ℰ𝑐𝑡,𝑇 ≤ ‖Π[a,b](−𝜈−1𝑝T )−Π[a,b](−𝜈−1𝑝)‖𝐿2(𝑇 ) + ‖𝑢̄− 𝑢̄T ‖𝐿2(𝑇 )

≤ 𝜈−1‖𝑝− 𝑝T ‖𝐿2(𝑇 ) + ‖𝑢̄− 𝑢̄T ‖𝐿2(𝑇 ) ≤ 𝜈−1‖𝑝− 𝑝T ‖𝐻1(𝑇 ) + ‖𝑢̄− 𝑢̄T ‖𝐿2(𝑇 ).

7. Extensions to the theory

We present a few extensions of the theory developed in the previous sections.

7.1. Piecewise linear approximation

In this section, we consider a similar finite element discretization as the one introduced in Section 4.3 with
the difference that to approximate the optimal control variable 𝑢̄ we employ piecewise linear functions, i.e., we
will seek for 𝑢̄T within the space U𝑎𝑑,1(T ), where

U𝑎𝑑,1(T ) := U1(T ) ∩ U𝑎𝑑, U1(T ) := {𝑢T ∈ 𝐶(Ω) : 𝑢T |𝑇 ∈ P1(𝑇 )∀ 𝑇 ∈ T }.

We propose the following discrete optimal control problem: Find min𝐽(𝑦T , 𝑢T ) subject to the discrete state
equation

𝑦T ∈ V(T ) : (∇𝑦T ,∇𝑣T )𝐿2(Ω) + (𝑎(·, 𝑦T ), 𝑣T )𝐿2(Ω) = (𝑢T , 𝑣T )𝐿2(Ω) (7.1)
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for all 𝑣T ∈ V(T ) and the discrete control constraints 𝑢T ∈ U𝑎𝑑,1(T ). The well–posedness of this solution
technique as well as first order optimality conditions follow from Theorem 3.3 of [11]. For a priori error estimates,
we refer the reader to Theorem 4.1 of [11] and Section 10 of [14].

We propose an a posteriori error estimator that accounts for the discretization of the state, adjoint state,
and control variables when the error, in each one of these variables, is measured in the 𝐿2(Ω)-norm. As it is
customary when performing an a posteriori error analysis based on duality, we assume that Ω is convex.

Assume that we have at hand, a posteriori error estimators 𝐸𝑠𝑡 and 𝐸𝑎𝑑 such that

‖𝑦 − 𝑦T ‖𝐿2(Ω) . 𝐸𝑠𝑡, ‖𝑝− 𝑝T ‖𝐿2(Ω) . 𝐸𝑎𝑑. (7.2)

We recall that the auxiliary variables 𝑦 ∈ 𝐻1
0 (Ω) and 𝑝 ∈ 𝐻1

0 (Ω) are defined as in (5.2) and (5.5), respectively.
Define, for (𝑣, 𝑤, 𝑧) ∈ 𝐿2(Ω)× 𝐿2(Ω)× 𝐿2(Ω), the norm

‖(𝑣, 𝑤, 𝑧)‖Ω := ‖𝑣‖𝐿2(Ω) + ‖𝑤‖𝐿2(Ω) + ‖𝑧‖𝐿2(Ω).

We present the following global reliability result.

Theorem 7.1 (global reliability). Suppose that assumptions (A.1)–(A.3) hold. Assume, in addition, that 𝜕𝑎
𝜕𝑦 =

𝜕𝑎
𝜕𝑦 (𝑥, 𝑦) is globally Lipschitz with respect to 𝑦 ∈ R. Let 𝑢̄ ∈ U𝑎𝑑 be a local solution to (4.1)–(4.2) satisfying the
sufficient second order condition (4.10), or equivalently (4.11). Let 𝑢̄T be a local minimum of the associated
discrete optimal control problem with 𝑦T and 𝑝T being the corresponding state and adjoint state, respectively.
Let T be a mesh such that (4.17) holds, then

‖(𝑦 − 𝑦T , 𝑝− 𝑝T , 𝑢̄− 𝑢̄T )‖Ω . 𝐸𝑠𝑡 + 𝐸𝑎𝑑 + ℰ𝑐𝑡. (7.3)

The hidden constant is independent of the continuous and discrete optimal variables, the size of the elements in
the mesh T , and #T .

Proof. The proof of the estimate (7.3) follows closely the arguments developed in the proof of Theorem 5.2. In
fact, with the estimate (5.14) at hand, we deduce

‖𝑢̄− 𝑢̃‖𝐿2(Ω) . ‖𝑝− 𝑝‖𝐿2(Ω) + ‖𝑝− 𝑝T ‖𝐿2(Ω) . ‖𝑝− 𝑝‖𝐿2(Ω) + 𝐸𝑎𝑑, (7.4)

where we have used (7.2). We thus use a Poincaré inequality in conjunction with the first estimate in (5.17) to
obtain

‖𝑝− 𝑝‖𝐿2(Ω) . ‖∇(𝑝− 𝑝)‖𝐿2(Ω) . ‖𝑦 − 𝑦T ‖𝐿2(Ω). (7.5)

The hidden constant is independent of the continuous and discrete optimal variables, the size of the elements
in the mesh T , and #T but depends on the continuous problem data. To control ‖𝑦− 𝑦T ‖𝐿2(Ω) we invoke the
auxiliary state 𝑦 defined as the solution to (5.2) and apply the triangle inequality. With these arguments we
obtain

‖𝑦 − 𝑦T ‖𝐿2(Ω) ≤ ‖𝑦 − 𝑦‖𝐿2(Ω) + ‖𝑦 − 𝑦T ‖𝐿2(Ω) . ‖𝑦 − 𝑦‖𝐿2(Ω) + 𝐸𝑠𝑡, (7.6)

where we have also used (7.2). To bound ‖𝑦 − 𝑦‖𝐿2(Ω) we set 𝑣 = 𝑦 − 𝑦 in problem (5.19). This, in view of the
fact that 𝑎 is monotone increasing with respect to 𝑦, yields

‖𝑦 − 𝑦‖𝐿2(Ω) . ‖∇(𝑦 − 𝑦)‖𝐿2(Ω) . ‖𝑢̃− 𝑢̄T ‖𝐿2(Ω) = ℰ𝑐𝑡.

Replacing this estimate into (7.6), and the obtained one into (7.5), we obtain the estimate ‖𝑝−𝑝‖𝐿2(Ω) . 𝐸𝑠𝑡+ℰ𝑐𝑡.
This, in view of (7.4), reveals the a posteriori error estimate

‖𝑢̄− 𝑢̄T ‖𝐿2(Ω) . 𝐸𝑠𝑡 + 𝐸𝑎𝑑 + ℰ𝑐𝑡.

The control of ‖𝑦− 𝑦T ‖𝐿2(Ω) and ‖𝑝− 𝑝T ‖𝐿2(Ω) follow similar arguments as the ones elaborated in the proof
of Theorem 5.2. For brevity, we skip details. �
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7.2. Sparse PDE–constrained optimization

Throughout this section, we assume that the admissible set U𝑎𝑑 is such that a < 0 < b, with a, b ∈ R. Define
𝜓 : 𝐿1(Ω) → R by 𝜓(𝑢) := ‖𝑢‖𝐿1(Ω). In this section, we present a posteriori error estimates for a semilinear
optimal control problem that involves the cost functional

J(𝑦, 𝑢) := 𝐽(𝑦, 𝑢) + 𝜗𝜓(𝑢) =
1
2
‖𝑦 − 𝑦Ω‖2𝐿2(Ω) +

𝜈

2
‖𝑢‖2𝐿2(Ω) + 𝜗‖𝑢‖𝐿1(Ω).

Here, 𝜗 > 0 denotes a sparsity parameter and 𝜈 > 0 corresponds to the so-called regularization parameter. The
cost functional involves the 𝐿1(Ω)-norm of the control variable, which is a natural measure of the control cost,
and leads to sparsely supported optimal controls [12, 34]. Observe that J is nondifferentiable; see Remark 2.1
[12]. We mention that the linear case, i.e., 𝑎 ≡ 0, has been investigated in [2].

We consider the following sparse PDE–constrained optimization problem: Find min{J(𝑦, 𝑢) : (𝑦, 𝑢) ∈ 𝐻1
0 (Ω)×

U𝑎𝑑} subject to (4.2). This problem admits at least one optimal solution (𝑦, 𝑢̄) ∈ 𝐻1
0 (Ω)×U𝑎𝑑. In addition, if 𝑢̄

is a local minimum, then there exists 𝑦 ∈ 𝐻1
0 (Ω), 𝑝 ∈ 𝐻1

0 (Ω), and 𝜆̄ ∈ 𝜕𝜓(𝑢̄) such that (4.2) and (4.4) hold and

(𝑝+ 𝜈𝑢̄+ 𝜗𝜆̄, 𝑢− 𝑢̄)𝐿2(Ω) ≥ 0 ∀ 𝑢 ∈ U𝑎𝑑;

see Theorem 3.1 of [12]. The following characterizations for the optimal control 𝑢̄ and its associated subgradient
𝜆̄ hold Corollary 3.2 of [12]:

𝜆̄(𝑥) := Π[−1,1]

(︀
−𝜗−1𝑝(𝑥)

)︀
, 𝑢̄(𝑥) = Π[a,b]

(︀
−𝜈−1

[︀
𝑝(𝑥) + 𝜗𝜆̄(𝑥)

]︀)︀
a.e. 𝑥 ∈ Ω.

We propose the following discrete optimal control problem: Find min J(𝑦T , 𝑢T ) subject to (7.1) and the
discrete control constraints 𝑢T ∈ U𝑎𝑑(T ). The existence of solutions for this scheme as well as first order
optimality conditions follow from Section 4 of [12].

Define the cones

C𝑢̄ : = {𝑣 ∈ 𝐿2(Ω) satisfying (4.8) and 𝑗′(𝑢̄)𝑣 + 𝜗𝜓′(𝑢̄; 𝑣) = 0},
C𝜏

𝑢̄ : = {𝑣 ∈ 𝐿2(Ω) satisfying (4.8) and 𝑗′(𝑢̄)𝑣 + 𝜗𝜓′(𝑢̄; 𝑣) ≤ 𝜏‖𝑣‖𝐿2(Ω)}.

Here, the term 𝜓′(𝑢̄; 𝑣) denotes the directional derivative of 𝜓 at 𝑢̄ in the direction 𝑣 equation (3.2) of [12].
Necessary and sufficient second order optimality conditions follow from Theorems 3.7 and 3.9 of [12]: If 𝑢̄ is a
local minimum, then 𝑗′′(𝑢̄)𝑣2 ≥ 0 for all 𝑣 ∈ C𝑢̄. Conversely, let 𝑢̄ ∈ U𝑎𝑑 and 𝜆 ∈ 𝜕𝜓(𝑢̄) satisfy the associated
first order optimality conditions. If 𝑗′′(𝑢̄)𝑣2 > 0 for all 𝑣 ∈ C𝑢̄ ∖ {0}, then 𝑢̄ is a local minimum. In addition, we
have the equivalence Theorem 3.8 of [12]

𝑗′′(𝑢̄)𝑣2 > 0 ∀𝑣 ∈ C𝑢̄ ∖ {0} ⇐⇒ ∃𝜇, 𝜏 > 0 : 𝑗′′(𝑢̄)𝑣2 ≥ 𝜇‖𝑣‖2𝐿2(Ω) ∀𝑣 ∈ C𝜏
𝑢̄. (7.7)

Define, for a.e. 𝑥 ∈ Ω, the auxiliary variables

𝜆̃(𝑥) := Π[−1,1]

(︀
−𝜗−1𝑝T (𝑥)

)︀
, 𝑢̃(𝑥) = Π[a,b]

(︁
−𝜈−1

[︁
𝑝T (𝑥) + 𝜗𝜆̃(𝑥)

]︁)︁
. (7.8)

To present a posteriori error estimates, we define the error indicators

ℰ2
𝑠𝑔,𝑇 := ‖𝜆̃− 𝜆̄T ‖2𝐿2(𝑇 ), ℰ2

𝑐𝑡,𝑇 := ‖𝑢̃− 𝑢̄T ‖2𝐿2(𝑇 ),

and error estimators

ℰ𝑠𝑔 :=

(︃∑︁
𝑇∈T

ℰ2
𝑠𝑔,𝑇

)︃ 1
2

, ℰ𝑐𝑡 :=

(︃∑︁
𝑇∈T

ℰ2
𝑐𝑡,𝑇

)︃ 1
2

. (7.9)
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Theorem 7.2 (global reliability). Suppose that assumptions (A.1)–(A.3) hold. Assume, in addition, that 𝜕𝑎
𝜕𝑦 =

𝜕𝑎
𝜕𝑦 (𝑥, 𝑦) is globally Lipschitz with respect to 𝑦 ∈ R. Let 𝑢̄ ∈ U𝑎𝑑 be a local solution to the sparse PDE–constrained
optimization problem satisfying the sufficient second order condition (7.7). Let 𝑢̄T be a local minimum of the
associated discrete optimal control problem with 𝑦T , 𝑝T , and 𝜆̄T being the corresponding state, adjoint state,
and subgradient, respectively. Let T be a mesh such that (4.18) holds with 𝑢̃ as in (7.8), then

�(𝑦 − 𝑦T , 𝑝− 𝑝T , 𝑢̄− 𝑢̄T )�Ω + ‖𝜆̄− 𝜆̄T ‖𝐿2(Ω) . ℰ𝑠𝑡 + ℰ𝑎𝑑 + ℰ𝑐𝑡 + ℰ𝑠𝑔.

The hidden constant is independent of the continuous and discrete optimal variables, the size of the elements in
the mesh T , and #T .

Proof. Since (4.18) is assumed to hold and it does not involve the nondifferentiable term 𝜓, the estimates of
the errors associated to the state, adjoint state, and control variables are as presented in the proof of Theorem
5.2. It thus suffices to control the error associated to the approximation of the subgradient 𝜆̄. To accomplish
this task, we invoke (7.9) and immediately conclude that

‖𝜆̄− 𝜆̄T ‖𝐿2(Ω) ≤ ‖𝜆̄− 𝜆̃‖𝐿2(Ω) + ℰ𝑠𝑔. (7.10)

The Lipschitz property of Π[−1,1] and a Poincaré inequality yield

‖𝜆̄− 𝜆̃‖𝐿2(Ω) ≤ 𝜗−1‖𝑝− 𝑝T ‖𝐿2(Ω) . ‖∇(𝑝− 𝑝T )‖𝐿2(Ω).

Replace this estimate into (7.10) and invoke (5.26) to conclude. �

Remark 7.3 (feasibility of estimate (4.18)). Notice that 𝑢̃ coincides with the discrete approximation of 𝑢̄ when
the so–called variational discretization scheme is employed. For such an approximation scheme and within the
framework of a priori error estimates, inequality (4.18) is proven in Section 5 of [12] and Lemma 4.6 of [12].

8. Numerical results

In this section, we conduct a series of numerical experiments that illustrate the performance of the devised a
posteriori error estimator ℰ𝑜𝑐𝑝 defined in (5.11). In addition, in Section 8.2, we present a computational study
related to the practical feasibility of the assumptions in (4.17).

All the experiments have been carried out with the help of a code that we implemented using C++. The
involved matrices have been assembled exactly and global linear systems were solved using the multifrontal
massively parallel sparse direct solver (MUMPS) [3, 4]. The right hand sides and terms involving the functions
𝑎(·, 𝑦) and 𝑦Ω, the approximation errors, and the error estimators are computed by quadrature formulas. In two
dimensions, we use a quadrature formula that contains seventy-three (73) evaluation points on each element
𝑇 ∈ T ; the associated numerical integration formula is exact for polynomials of degree nineteen (19). For three-
dimensional domains, the employed quadrature formula contains two hundred and thirty six (236) evaluation
points on each element 𝑇 ∈ T and is exact for polynomials of degree fourteen (14).

8.1. Performance of the error estimator ℰ𝑜𝑐𝑝
For a given partition T , we seek (𝑦T , 𝑝T , 𝑢̄T ) ∈ V(T ) × V(T ) × U𝑎𝑑(T ) that solves the discrete prob-

lem (4.13)–(4.14). This optimality system is solved by using a Newton–type primal–dual active set strat-
egy as described in Algorithms 2 and 3. To be precise, Algorithm 2 presents a variant of the well–known
primal–dual active set strategy that can be found, for instance, in Section 2.12.4 of [31]. On the other hand,
Algorithm 3 describes the also well–known Newton method Section 4.4.1 of [6]. To present the latter, we define
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Figure 1. The initial meshes used when the domain Ω is a square, a L-shaped, and a cube.

𝒳 (T ) := V(T ) × V(T ) × U(T ) and introduce, for Ψ = (𝑦T , 𝑝T , 𝑢T ) and Θ = (𝑣T , 𝑤T , 𝑡T ) in 𝒳 (T ), the
operator 𝐹T : 𝒳 (T ) → 𝒳 (T )′ as

⟨𝐹T (Ψ),Θ⟩ :=

⎛⎜⎝ (∇𝑦T ,∇𝑣T )𝐿2(Ω) + (𝑎(·, 𝑦T )− 𝑢T , 𝑣T )𝐿2(Ω)

(∇𝑤T ,∇𝑝T )𝐿2(Ω) +
(︁

𝜕𝑎
𝜕𝑦 (·, 𝑦T )𝑝T − 𝑦T + 𝑦Ω, 𝑤T

)︁
𝐿2(Ω)(︀

𝜈−1ΠT 𝑝T (1− 𝜒a − 𝜒b) + 𝑢T 1− a𝜒a − b𝜒b, 𝑡T
)︀
𝐿2(Ω)

⎞⎟⎠ .

Here, ΠT denotes 𝐿2–projection operator onto piecewise constant functions over T and ⟨·, ·⟩ denotes the duality
pairing between 𝒳 (T )′ and 𝒳 (T ). In addition,

𝜒a, 𝜒b ∈ R#T , 1 = (1, . . . , 1)ᵀ ∈ R#T .

Given an initial guess Ψ0 = (𝑦0
T , 𝑝

0
T , 𝑢

0
T ) ∈ 𝒳 (T ) and 𝑘 ∈ N0, we consider the following Newton iteration:

Ψ𝑘+1 = Ψ𝑘 + 𝜂,

where the incremental term 𝜂=(𝛿𝑦T , 𝛿𝑝T , 𝛿𝑢T ) ∈ 𝒳 (T ) solves

⟨𝐹 ′T (Ψ𝑘)(𝜂),Θ⟩ = −⟨𝐹T (Ψ𝑘),Θ⟩ ∀Θ = (𝑣T , 𝑤T , 𝑡T ) ∈ 𝒳 (T ). (8.1)

Here, 𝐹 ′T (Ψ𝑘)(𝜂) denotes the Gâteaux derivate of 𝐹T at Ψ𝑘 = (𝑦𝑘
T , 𝑝

𝑘
T , 𝑢

𝑘
T ) in the direction 𝜂.

Once the discrete solution is obtained, we use the local error indicator ℰ𝑜𝑐𝑝,𝑇 , defined as in (6.12), to drive the
adaptive procedure described in Algorithm 1. A sequence of adaptively refined meshes is thus generated from the
initial meshes shown in Figure 1. The total number of degrees of freedom is Ndof = 2dim(V(T ))+dim(U(T )).

Finally, we define 𝑒𝑦 := 𝑦− 𝑦T , 𝑒𝑝 := 𝑝− 𝑝T , 𝑒𝑢 := 𝑢̄− 𝑢̄T , and the total error 𝑒 := (𝑒𝑦, 𝑒𝑝, 𝑒𝑢). To measure
the total error we use �𝑒�Ω = �(𝑒𝑦, 𝑒𝑝, 𝑒𝑢)�Ω, where � · �Ω is defined as in (5.1).

Algorithm 1: Adaptive algorithm
Input: Initial mesh T0, constraints a and b, and regularization parameter 𝜈;
Set: 𝑖 = 0.
Active set strategy:
1: Choose an initial discrete guess (𝑦0

T𝑖
, 𝑝0

T𝑖
, 𝑢0

T𝑖
) ∈ V(T𝑖)× V(T𝑖)× U(T𝑖);

2: Compute [𝑦T𝑖 , 𝑝T𝑖 , 𝑢̄T𝑖 ] = Active-Set[T𝑖, a, b, 𝜈, 𝑦0
T𝑖

, 𝑝0
T𝑖

, 𝑢0
T𝑖

] by using Algorithm 2;
Adaptive loop:
3: For each 𝑇 ∈ T𝑖 compute the local error indicator ℰ𝑜𝑐𝑝,𝑇 defined in (6.12);
4: Mark an element 𝑇 ∈ T𝑖 for refinement if ℰ2

𝑜𝑐𝑝,𝑇 > 1
2

max𝑇 ′∈T𝑖
ℰ2

𝑜𝑐𝑝,𝑇 ′ ;
5: From step 4, construct a new mesh, using a longest edge bisection algorithm. Set 𝑖← 𝑖 + 1 and go to step 1.

In order to simplify the construction of exact solutions, we incorporate an extra source term 𝑓 ∈ 𝐿∞(Ω) in
the state equation (4.2). With such a modification, the right hand side of (4.2) now reads (𝑓 + 𝑢, 𝑣)𝐿2(Ω).
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Algorithm 2: Active set algorithm
Input: Mesh T , constraints a and b, regularization parameter 𝜈 and initial guess
(𝑦0

T , 𝑝0
T , 𝑢0

T ) ∈ V(T )× V(T )× U(T );
1: Define 𝜒𝑜𝑙𝑑

a = (𝜒𝑜𝑙𝑑
a,𝑇 )𝑇∈T ,𝜒𝑜𝑙𝑑

b = (𝜒𝑜𝑙𝑑
b,𝑇 )𝑇∈T ∈ R#T with 𝜒𝑜𝑙𝑑

a,𝑇 , 𝜒𝑜𝑙𝑑
b,𝑇 ∈ {0, 1}.

Set: 𝑗 = 0.
2: Compute [𝑦𝑗+1

T , 𝑝𝑗+1
T , 𝑢𝑗+1

T ] = Newton[T , a, b, 𝜈,𝜒𝑜𝑙𝑑
a ,𝜒𝑜𝑙𝑑

b , 𝑦𝑗
T , 𝑝𝑗

T , 𝑢𝑗
T ] by using Algorithm 3.

3: For each 𝑇 ∈ T compute

𝜒𝑛𝑒𝑤
a,𝑇 =

{︂
1 if − 1

𝜈
Π𝑇

(︀
𝑝𝑗+1

T

)︀
< a,

0 otherwise,
𝜒𝑛𝑒𝑤
b,𝑇 =

{︂
1 if − 1

𝜈
Π𝑇

(︀
𝑝𝑗+1

T

)︀
> b,

0 otherwise,

where Π𝑇 denotes the 𝐿2–projection onto piecewise constant functions over 𝑇 .

4: If
∑︁

𝑇∈T

(︁
|𝜒𝑛𝑒𝑤

a,𝑇 − 𝜒𝑜𝑙𝑑
a,𝑇 |+ |𝜒𝑛𝑒𝑤

b,𝑇 − 𝜒𝑜𝑙𝑑
b,𝑇 |
)︁

= 0, set (𝑦T , 𝑝T , 𝑢̄T ) = (𝑦𝑗+1
T , 𝑝𝑗+1

T , 𝑢𝑗+1
T ). Otherwise, set 𝜒𝑜𝑙𝑑

a := 𝜒𝑛𝑒𝑤
a ,

𝜒𝑜𝑙𝑑
b := 𝜒𝑛𝑒𝑤

b and 𝑗 ← 𝑗 + 1, and go to step 2.

Algorithm 3: Newton method
Input: Mesh T , constraints a and b, regularization parameter 𝜈, initial guess
(𝑦0

T , 𝑝0
T , 𝑢0

T ) ∈ V(T )× V(T )× U(T ) and 𝜒a,𝜒b ∈ R#T ;
Set: 𝑘 = 0.
1: Given (𝑦𝑘

T , 𝑝𝑘
T , 𝑢𝑘

T ), compute the incremental 𝜂 = (𝛿𝑦T , 𝛿𝑝T , 𝛿𝑢T ) ∈ V(T )× V(T )× U(T ) as the solution to
(8.1).
2: Set (𝑦𝑘+1

T , 𝑝𝑘+1
T , 𝑢𝑘+1

T ) = (𝑦𝑘
T , 𝑝𝑘

T , 𝑢𝑘
T ) + (𝛿𝑦T , 𝛿𝑝T , 𝛿𝑢T ).

3: If max{‖𝛿𝑦T ‖𝐿∞(Ω), ‖𝛿𝑝T ‖𝐿∞(Ω), ‖𝛿𝑢T ‖𝐿∞(Ω)} < 10−8, set (𝑦T , 𝑝T , 𝑢T ) = (𝑦𝑘+1
T , 𝑝𝑘+1

T , 𝑢𝑘+1
T ). Otherwise, set

𝑘 ← 𝑘 + 1 and go to step 1.

Example 8.1. We let Ω = (−1, 1)2 ∖ [0, 1) × (−1, 0], 𝑎(·, 𝑦) = arctan(𝑦), a = −40, b = −0.1, and 𝜈 ∈
{10−3, 10−4, 10−5} . The exact optimal state and adjoint state are given, in polar coordinates (𝑟, 𝜃), with
𝜃 ∈ [0, 3𝜋/2], by

𝑦(𝑟, 𝜃) = 𝑝(𝑟, 𝜃) = sin (𝜋/2(𝑟 sin 𝜃) + 1) sin (𝜋/2(𝑟 cos 𝜃) + 1) 𝑟2/3 sin(2𝜃/3).

The purpose of this numerical example is threefold. First, we compare the performance of our adaptive FEM
with uniform refinement. Second, we investigate the performance of the devised a posteriori error estimator when
varying the parameter 𝜈. Third, we compare the performance of our error estimator with the one presented in
Section 3 of [26]. To present the error estimator of [26], we introduce

E𝑠𝑡 := ℰ𝑠𝑡, E𝑎𝑑 := ℰ𝑎𝑑, E𝑐𝑡,𝑇 := ℎ𝑇 ‖∇𝑝T ‖𝐿2(𝑇 ), E𝑐𝑡 :=

(︃∑︁
𝑇∈T

E2
𝑐𝑡,𝑇

)︃ 1
2

,

where ℰ𝑠𝑡 and ℰ𝑎𝑑 are defined as in (5.3) and (5.7), respectively. The total error indicator can thus be defined
as follows Section 3 of [26]:

E2
𝑜𝑐𝑝,𝑇 = E2

𝑠𝑡,𝑇 + E2
𝑎𝑑,𝑇 + E2

𝑐𝑡,𝑇 . (8.2)

This error indicator can be used to perform the adaptive FEM of Algorithm 1 with ℰ𝑜𝑐𝑝,𝑇 replaced by E𝑜𝑐𝑝,𝑇 .
We shall denote by e𝑦, e𝑝, and e𝑢 the approximation errors related to the state, adjoint state, and control
variables, respectively, when the error indicator E𝑜𝑐𝑝,𝑇 is considered in Algorithm 1. We measure the total error
of the underlying AFEM with �e�Ω = �(e𝑦, e𝑝, e𝑢)�Ω, where � · �Ω is defined in (5.1). Finally, we introduce the
effectivity indices ϒℰ := ℰ𝑜𝑐𝑝/�𝑒�Ω and ϒE := E𝑜𝑐𝑝/�e�Ω.

In Figures 2 and 3 we present the results obtained for Example 8.1. In Figure 2 we present, for 𝜈 = 10−3,
experimental rates of convergence for all the individual contributions of the total error �𝑒�Ω when uniform and
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Figure 2. Example 8.1. Experimental rates of convergence for the individual contributions
‖∇𝑒𝑦‖𝐿2(Ω), ‖∇𝑒𝑝‖𝐿2(Ω), and ‖𝑒𝑢‖𝐿2(Ω) for uniform (A) and adaptive refinement (B) and the
24th adaptively refined mesh (C) for 𝜈 = 10−3.

adaptive refinement are considered. We also present the adaptively refined mesh obtained after 24 adaptive
loops. We observe that our adaptive loop outperforms uniform refinement. In addition, we observe optimal
experimental rates of convergence for all the individual contributions of the total error �𝑒�Ω. We also observe
that most of the adaptive refinement occurs near to the interface of the control variable and the geometric
singularity of the L–shaped domain, which attests to the efficiency of the devised estimator; see subfigure (C).
In Figure 3, we present, for 𝜈 ∈ {10−4, 10−5}, experimental rates of convergence for all the contributions of the
total errors �𝑒�Ω and �e�Ω and all the individual contributions of the a posteriori error estimators ℰ𝑜𝑐𝑝 and
E𝑜𝑐𝑝 as well as the effectivity indices ϒℰ and ϒE. We observe that the behavior of the individual contributions
of the total errors and error estimators associated to the state and adjoint variables are quite similar for both
adaptive strategies. However, we observe an important difference when we compare the individual contributions
associated to the control variable. In fact, as it can be observed from subfigures (B.3) and (D.3), the error
norm ‖e𝑢‖𝐿2(Ω) do not exhibit an optimal experimental rate of convergence, while the error norm ‖𝑒𝑢‖𝐿2(Ω)

associated to our devised AFEM based on the error estimator ℰ𝑜𝑐𝑝 does. Finally, we observe, from subfigures
(E) and (F), that the effectivity index ϒℰ is close to 1 for the two different values of 𝜈 that we consider. This
shows the accuracy of the proposed a posteriori error estimator ℰ𝑜𝑐𝑝 when used in the adaptive loop described
in Algorithm 1.

Example 8.2. We let Ω = (0, 1)3, a = −80, b = 100, and 𝜈 = 10−3. We consider

𝑓(𝑥1, 𝑥2, 𝑥3) = 10, 𝑦Ω(𝑥1, 𝑥2, 𝑥3) =
{︂

102𝑒
1
𝜉 cos(4𝜋𝜉), if 𝜉 < 0,

0, if 𝜉 ≥ 0,

where 𝜉 = 𝜉(𝑥1, 𝑥2, 𝑥3) = 4(𝑥1 − 0.5)2 + 4(𝑥2 − 0.5)2 + 4(𝑥3 − 0.5)2 − 1.
The purpose of this numerical example is to investigate the performance of the devised error estimator when

different choices of the nonlinear function 𝑎 are considered. Let us, in particular, consider

𝑎1(·, 𝑦) = 10𝑦3 − 2; 𝑎2(·, 𝑦) = 10 arctan(80𝑦)− 5; 𝑎3(·, 𝑦) = 10 sinh(3𝑦)− 2.

In Figure 4 we present the results obtained for Example 8.2. We show, for the considered three different
nonlinear functions 𝑎, experimental rates of convergence for all the individual contributions of the error estimator
ℰ𝑜𝑐𝑝 and the obtained 25th adaptively refined meshes. We observe optimal experimental rates of convergence
for all the individual contributions of the error estimator ℰ𝑜𝑐𝑝.

8.2. Numerical verification of assumptions (4.17)

The main goal of this section is to show that, at a computational level, the assumptions in (4.17), namely,

𝑢̃− 𝑢̄ ∈ 𝐶𝜏
𝑢̄ , ‖𝑝− 𝑝T ‖𝐿2(Ω) ≤ 𝜈𝜇(2𝐶M)−1,
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Figure 3. Example 8.1. Experimental rates of convergence for all the contributions of ℰ𝑜𝑐𝑝

and E𝑜𝑐𝑝 (A.1)–(A.3)–(C.1)–(C.3), experimental rates of convergence for all the contributions
of the total errors �𝑒�Ω and �e�Ω (B.1)–(B.3)–(D.1)–(D.3), and the effectivity indices ϒℰ and
ϒE (E)–(F) with 𝜈 = 10−4 and 𝜈 = 10−5.

are satisfied in practice. To do this, we will explore a few examples. We recall that the auxiliary variable 𝑢̃ ∈ U𝑎𝑑

is defined by 𝑢̃ := Π[a,b](−𝜈−1𝑝T ). Since, in practice, it is observed that ‖𝑝− 𝑝T ‖𝐿2(Ω) decays as the number of
degrees of freedom increases, the verification of assumption ‖𝑝 − 𝑝T ‖𝐿2(Ω) ≤ 𝜈𝜇(2𝐶M)−1 is standard. We will
thus particularly focus on the assumption 𝑢̃− 𝑢̄ ∈ 𝐶𝜏

𝑢̄ and describe, in what follows, a strategy that can be used
to verify it. In light of definition (4.9), the term 𝑣 := 𝑢̃− 𝑢̄ belongs to 𝐶𝜏

𝑢̄ if 𝑣 satisfies the sign condition (4.8)
and 𝑣(𝑥) = 0 if |p̄(𝑥)| > 𝜏 for a.e. 𝑥 ∈ Ω. Recall that p̄ = 𝑝 + 𝜈𝑢̄. We immediately notice that, since 𝑢̃ ∈ U𝑎𝑑,
then 𝑣 = 𝑢̃− 𝑢̄ satisfies the sign condition (4.8). Hence, in what follows we concentrate on the condition 𝑣(𝑥) = 0
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Figure 4. Example 8.2: Experimental rates of convergence for ℰ𝑠𝑡, ℰ𝑎𝑑, and ℰ𝑐𝑡 (A.1)–(A.3)
and adaptively refined meshes obtained after 25 adaptive loops (B.1)–(B.3) with 𝜈 = 10−3.

if |p̄(𝑥)| > 𝜏 for a.e. 𝑥 ∈ Ω. Since this requires to make point evaluations, we will evaluate 𝑣 = 𝑢̃ − 𝑢̄ at the
quadrature points associated to the integration formulas mentioned at the beginning of Section 8.

Let T be a fixed mesh in T. For each 𝑇 ∈ T , we define 𝑄𝑇 ⊂ 𝑇 as the discrete set that contains the
corresponding quadrature points of the underlying integration formula. Given 𝜏 > 0, we introduce the following
sets:

𝐶p̄,𝑇 = {𝑥 ∈ 𝑄𝑇 : |p̄(𝑥)| > 𝜏}, 𝐶𝑢̄,𝑇 = {𝑥 ∈ 𝐶p̄,𝑇 : 𝑢̃(𝑥)− 𝑢̄(𝑥) = 0}.

With these ingredients at hand, we notice that the main goal now is reduced to verify that

𝑣(𝑥) = 𝑢̃(𝑥)− 𝑢̄(𝑥) = 0 for every 𝑥 ∈
⋃︁

𝑇∈T

𝐶p̄,𝑇 ,

which is, 𝐶p̄,𝑇 = 𝐶𝑢̄,𝑇 for every 𝑇 ∈ T . To verify this condition, we introduce the quantity

𝑅𝜏 =
∑︀

𝑇∈T #𝐶𝑢̄,𝑇∑︀
𝑇∈T #𝐶p̄,𝑇

.

Since, for 𝑇 ∈ T , 𝐶𝑢̄,𝑇 ⊆ 𝐶p̄,𝑇 we have that 0 ≤ #𝐶𝑢̄,𝑇 ≤ #𝐶p̄,𝑇 , which implies that 𝑅𝜏 ≤ 1. In particular,
we observe that 𝑅𝜏 = 1 if and only if 𝐶p̄,𝑇 = 𝐶𝑢̄,𝑇 for every 𝑇 ∈ T . Therefore, when 𝑅𝜏 = 1 we will have
𝑢̃(𝑥)− 𝑢̄(𝑥) = 0 if |p̄(𝑥)| > 𝜏 for every 𝑥 ∈ ∪𝑇∈T 𝑄𝑇 , and thus 𝑢̃− 𝑢̄ ∈ 𝐶𝜏

𝑢̄ .
We now present numerical experiments where we verify the accomplishment of the condition 𝑢̃− 𝑢̄ ∈ 𝐶𝜏

𝑢̄ by
utilizing 𝑅𝜏 . Since the exact value of 𝜏 > 0 is unknown, we verify this condition for several values of 𝜏 . We
also present experimental rates of convergence for ‖𝑝−𝑝T ‖𝐿∞(Ω). In the following numerical examples, we have
considered 𝜈 = 10−1 and 𝑎(·, 𝑦) = arctan(𝑦).

Example 1 (2D Convex domain). We let Ω = (0, 1)2, a = −20, and b = −0.1. The exact optimal state
and adjoint state are given by

𝑦(𝑥1, 𝑥2) = 𝑝(𝑥1, 𝑥2) = sin (2𝜋𝑥1) sin (2𝜋𝑥2) .
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Figure 5. Experimental values of 𝑅𝜏 obtained for Example 1 (A), Example 2 (B), and Example
3 (C), with different values of 𝜏 .

Figure 6. Experimental rates of convergences of ‖𝑝− 𝑝T ‖𝐿∞(Ω) for Example 1 (A), Example
2 (B), and Example 3 (C).

Example 2 (2D Non-convex domain). We let Ω = (−1, 1)2 ∖ [0, 1)× (−1, 0], a = −20, and b = −0.1. The
exact optimal state and adjoint state are given, in polar coordinates (𝑟, 𝜃) with 𝜃 ∈ [0, 3𝜋/2], by

𝑦(𝑟, 𝜃) = 𝑝(𝑟, 𝜃) = sin (𝜋/2(𝑟 sin 𝜃) + 1) sin (𝜋/2(𝑟 cos 𝜃) + 1) 𝑟2/3 sin(2𝜃/3).

Example 3 (3D Convex domain). We let Ω = (0, 1)3, a = −5, and b = 5. The exact optimal state and
adjoint state are given by

𝑦(𝑥1, 𝑥2, 𝑥3) = 𝑝(𝑥1, 𝑥2, 𝑥3) = −2 cos (2𝜋𝑥2) sin2 (2𝜋𝑥1) sin (2𝜋𝑥2) sin2 (2𝜋𝑥3) .

In Figure 5 we present the experimental values of 𝑅𝜏 obtained for each of the three numerical examples;
we have considered different values of 𝜏 . We observe that, for all the considered values of 𝜏 , the quantity 𝑅𝜏

achieves the value 1 after a certain number of degrees of freedom; smaller values of 𝜏 requiring a bigger number
of degrees of freedom. In Figure 6 we present experimental rates of convergence for ‖𝑝− 𝑝T ‖𝐿∞(Ω): Ndof−1 for
the two-dimensional examples and Ndof−2/3 for the three-dimensional example.

8.3. Conclusions

The following conclusions can be drawn:
– Most of the refinement occurs near to the interface of the control variable. When the domain involves geo-
metric singularities, refinement is also being performed in regions that are close to them. These feature show a
competitive performance of the devised a posteriori error estimator.
– All the individual contributions of the total error �𝑒�Ω exhibit optimal experimental rates of convergence for
all the experiments and the nonlinear functions 𝑎 considered in the experiments that we have performed.
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– The devised a posteriori error estimator, defined in (5.11), is able to recognize the interface of 𝑢̄T . This
estimator also delivers, for all the numerical experiments that we have performed, optimal experimental rates
of convergence for the involved individual contributions. This is not the case when the error estimator (8.2) is
used in Algorithm 1.
– For some values of 𝜏 > 0, we have provided consistent computational evidence that condition 𝑢̃ − 𝑢̄ ∈ 𝐶𝜏

𝑢̄ is
satisfied after achieving a suitable number of degrees of freedom and is uniform withing subsequently adaptive
refinement. This suggests that the first assumption in (4.17) may hold.
– Numerical evidence shows that ‖𝑝− 𝑝T ‖𝐿∞(Ω) behaves as Ndof−1 and Ndof−2/3 in two and three dimensions,
respectively. In particular, after a certain number of degrees of freedoms, we have that ‖𝑝 − 𝑝T ‖𝐿∞(Ω) < 𝜏/2.
This guarantees that 𝑢̃ − 𝑢̄ ∈ 𝐶𝜏

𝑢̄ ; see Remark 4.6. In addition, this shows that ‖𝑝 − 𝑝T ‖𝐿2(Ω) ≤ 𝜈𝜇(2𝐶M)−1

uniformly after achieving a suitable number of degrees of freedom.
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[24] K. Kohls, A. Rösch and K.G. Siebert, A posteriori error analysis of optimal control problems with control constraints. SIAM
J. Control Optim. 52 (2014) 1832–1861.

[25] W. Liu and N. Yan, A Posteriori Error Estimates for Distributed Convex Optimal Control Problems, Adv. Comput. Math. 15
(2001) 285–309.

[26] W. Liu and N. Yan, A Posteriori Error Estimates for Control Problems Governed by Nonlinear Elliptic Equations, Vol. 47, 2nd
International Workshop on Numerical Linear Algebra, Numerical Methods for Partial Differential Equations and Optimization
(Curitiba, 2001) (2003) 173–187.

[27] R.H. Nochetto and A. Veeser, Primer of Adaptive Finite Element Methods, in Multiscale and Adaptivity: Modeling, Numerics
and Applications, Vol. 2040 of Lecture Notes in Math., Springer, Heidelberg (2012) 125–225.

[28] T. Roub́ıček, Nonlinear Partial Differential Equations with Applications, Vol. 153 of International Series of Numerical Math-
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