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STRONG BOUNDED VARIATION ESTIMATES FOR THE
MULTI-DIMENSIONAL FINITE VOLUME APPROXIMATION OF SCALAR
CONSERVATION LAWS AND APPLICATION TO A TUMOUR GROWTH
MODEL

GOPIKRISHNAN CHIRAPPURATHU REMESAN*

Abstract. A uniform bounded variation estimate for finite volume approximations of the nonlinear
scalar conservation law d:a + div(uf(a)) = 0 in two and three spatial dimensions with an initial data
of bounded variation is established. We assume that the divergence of the velocity div(u) is of bounded
variation instead of the classical assumption that div(w) is zero. The finite volume schemes analysed
in this article are set on nonuniform Cartesian grids. A uniform bounded variation estimate for finite
volume solutions of the conservation law 9« + div(F' (¢, &, a)) = 0, where divyF # 0 on nonuniform
Cartesian grids is also proved. Such an estimate provides compactness for finite volume approximations
in LP spaces, which is essential to prove the existence of a solution for a partial differential equation
with nonlinear terms in «, when the uniqueness of the solution is not available. This application is
demonstrated by establishing the existence of a weak solution for a model that describes the evolution
of initial stages of breast cancer proposed by Franks et al. [J. Math. Biol. 47 (2003) 424-452]. The
model consists of four coupled variables: tumour cell concentration, tumour cell velocity—pressure, and
nutrient concentration, which are governed by a hyperbolic conservation law, viscous Stokes system,
and Poisson equation, respectively. Results from numerical tests are provided and they complement
theoretical findings.
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1. INTRODUCTION

Consider the following scalar hyperbolic conservation law in R? with a homogeneous source term and an
initial data of bounded variation (BV):

Oa+div(uf(a)) =0  inQp and }

a(0,-) =ap inQ, (1.1)

where « is the unknown, ag : Q@ — R is known a priori function of BV, u = (u,v) is the advecting velocity,

Qr = (0,T)xQ, Q:=IxJ, I:=(a,b) CRand J:=(c,d) CR are intervals. For technical simplicity assume
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FIGURE 1. Advancing tumour in the duct (0,1) x (0, £).

that w = 0 on 9€2. The function f quantifies the amount of material advected with the velocity w and is called
the flux function. We assume that f is Lipschitz continuous with Lipschitz constant, Lip(f), which is a classical
assumption in literature [14]. Finite volume methods are extensively used to discretise and compute numerical
solutions to (1.1) since such schemes respect the conservation of mass property associated with the underlying
partial differential equation (PDE).

Motivation

Conservation laws of the form (1.1) are crucial in practical applications. Usually they model density or
concentration of a conserved quantity in a coupled system, where the conservation law is strongly entangled
with the equation that governs the advecting velocity, and with other governing equations, if present.

A wide class tumour growth models based on multiphase mixture theory [3] contain a coupled system of a
conserved variable and corresponding advecting velocity. For instance consider a model developed by Franks
et al. [15] that depicts ductal carcinoma in situ — the initial stage of breast cancer. In two spatial dimensions,
the model describes the evolution of an advancing tissue in a cylindrical domain with rigid walls, see Figure 1.

To keep the discussion simple, we consider the model with simplified kinetics, wherein the viscosity, denoted
by u, inside and outside the tumour is assumed to be uniform and divergence of the velocity field is assumed
to depend only on nutrient concentration. The domain of tumour growth is denoted by 2 = {z := (z,y) : 0 <
x < 1,0 <y </} Here, x is radial distance, y is the axial distance, and £ > 2 is the duct length. For T < oo,
time-space domain is denoted by Qr = (0,T) x Q and ¢ € (0,7') is the time variable. The model variables are
concentration of the tumour cells «(t, x), velocity of the tumour cells u(t, x) := (u(t, x), v(t, x)), pressure inside
the tumour p(¢, ), and nutrient concentration c¢(¢, ). The model seeks a four tuple («, p, u, ¢) such that, in Qr
it holds

tumour cell concetration { a@—? + div(ua) = ya(l = ¢), (1.2a)
1 .
velocity — pressure system {  ** <Au * 3V(d1v(u))) +Vp =0, (1.2b)
div(u) = v(1 — ¢), and
nutrient concentration { —Ac = Qua, (1.2¢)

with appropriate boundary conditions. In (1.2a), v is a positive constant that controls the rate of cell division
and in (1.2¢), @ is a positive constant that controls the nutrient intake by the cells.



STRONG BOUNDED VARIATION ESTIMATES 1407

Another example is the two-phase tumour spheroid growth problem [12], where velocity of the tumour cells
u is governed by

*)+
—div (pa(Vu + (Vu)?) + Aadiv(u)ly) + Vp = -V <(?1_O;))2> and
B - (1.3)
—div <1kaan> +div(u) =0,
where p and X are the viscosity coefficients, k is the traction coefficient, a* is a positive parameter that controls
intra-cellular attraction, p is the pressure, Iy is the 2 x 2 identity tensor, and « evolves with respect to (1.1)
with a nonlinear source function in a.

To show that a possible limit of discrete solutions obtained from a finite volume scheme applied to (1.1)
or (1.2a) satisfies (1.2) or (1.3), respectively and hence to prove the existence of a solution, we need to establish
that the discrete solutions converge to the limit in strong LP-norm, where p > 1. Otherwise, it becomes challeng-
ing to apply pass to the limit arguments on functions of o appearing in (1.2) and (1.3). A feasible way to obtain
strong LP-norm convergence is to show that the discrete solutions have uniform BV and invoke Helly’s selection
theorem (Thm. A.2i) to extract a strongly converging subsequence. Moreover, the velocity vector field w is not
necessarily divergence-free of which (1.2b) is an example. The divergence of the velocity field manifests as a
source term in (1.1). Hence, while attempting to obtain a uniform BV estimate on discrete solutions of (1.1),
we need to account for velocity vector fields with nonzero divergence also.

Literature

Total variation properties of weak and entropy solutions of (1.1) are rather classical results. Conway and
Smoller [7] studied conservation laws of the form

d
Oro+ Y O, fi(@) =0, (1.4)

j=1

where BV initial data and (f;);=1,... a4 are assumed to be in ¢! (R;R). They studied a finite difference scheme on
a uniform Cartesian grid (see Def. 2.2) and showed that discrete solutions have uniform BV. The limit solution
obtained from a strongly convergent subsequence is then showed to be a weak solution and is a function with BV.
Kuznetsov [18] provided early results on BV properties of entropy solutions of (1.4). This article [18] establishes
that the BV seminorm of the entropy solution to (1.4) at any time is bounded by the BV seminorm of the initial
data. Crandall and Majda [8] considered monotone finite difference approximations of (1.4) with BV initial
data on uniform Cartesian meshes and established uniform BV estimate for discrete solutions. This estimate
is used to prove the convergence of the discrete solutions to the unique entropy solution in strong L!-norm
and to prove that the entropy solution also inherits the BV property of the discrete solutions. Later, this work
was extended to nonuniform Cartesian meshes by Sanders [22]. Merlet and Vovelle [20, 21] considered linear
advection equations of the form (1.1) with f(a) = a, u € WH®(R* x R4 R?), and div(u(t,-)) = 0. The BV
seminorm of the unique weak solution of this problem, constructed using the characteristic method, is bounded
and the bound depends on the BV seminorm of the initial data. However, discrete solutions corresponding to
this problem obtained by using finite volume schemes on general polygonal meshes are not proved to satisfy a
uniform BV estimate (see [21], Rem. 1.5, p. 7). In fact, to show that the finite volume solutions converge to the
entropy solution, whose existence is known a priori, it is enough to have a weak BV estimate ([5], p. 143, [14],
p. 161) of the following form

N
D> 1f(ad) — flad)]
n=0 e

where ¢ is the temporal discretisation factor, h is the spatial discretisation factor, e is an edge of a polygon K in

the mesh, n, is the outward unit normal to e with respect to K, aép /™) are the values of a discrete solution on
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the neighbouring polygons of e. The weak BV estimate ensures convergence in nonlinear weak- sense (see [14],
Def. 6.3, p. 100) to a Young measure, called a process solution. It can be established that the process solution
is indeed a function by proving the uniqueness of the process solution. In this scenario, the nonlinear weak-*
convergence actually becomes strong L? convergence (see [14], Thms. 6.4 and 6.5, p. 187, 188). Uniqueness of
the process solution is crucial in this technique and hence, it is difficult to use it in the case of coupled systems
like (1.2) and (1.3). The relationship between process solution and function solution is not very clear in this case
and an a priori compactness result like a uniform BV estimate is necessary to obtain strong LP convergence.

A recent uniform BV estimate on finite volume solutions of conservation laws of the form (1.4) on uniform
Cartesian grid is obtained by Karlsen and Towers [17]. They consider (1.4) with an auxiliary boundary condition
f - ng = 0, where ng is the outward unit normal to 9. Chainais-Hillairet [4] also provides a uniform BV
estimate on finite volume solutions of fully nonlinear conservations laws on uniform square Cartesian grids (see
subsection 4 for details).

The convergence of finite volume solutions, existence of an entropy solution, and subsequent error estimates
on unstructured polygonal grids in R? (d > 2) presented by Eymard et al. [14] is based on weak BV estimates.
It is mentioned that these weak BV estimates may be extended to the case with div(uw) # 0. The natural
extension of the theory proposed by Eymard et al. is a proof of strong BV estimate for finite volume solutions
on unstructured polygonal meshes in multidimensions. This proof is a challenging task at the current state of
the art of analysis and this is supported by the counter example presented by Després [9]. The next closest result
is the strong BV estimate on nonuniform Cartesian meshes presented in this article and thus complements the
theory in [14]. Moreover, this work aids to prove existence of weak solutions of complex coupled problems with
nonlinear conservation laws, wherein a strong BV estimate is crucial to establish the convergence of nonlinear
terms.

It is also mentioned in [14], p. 154 that a strong BV estimate in higher dimensional Cartesian grids reduces
to a one dimensional discretisation. However, the corresponding proofs were not provided. This result is a
consequence of the strong BV estimate on nonuniform Cartesian grids (which incur severe technical difficulties)
in two and three dimensions presented in this article.

Contributions

In all of the works reviewed above, either the advecting velocity vector is component-wise constant (see (1.4))
or the advecting velocity is assumed to be divergence-free. However, these may not be realistic assumptions in
applications as evident from (1.2) and (1.3). While discretising physical models, it is imperative to refine the
regions where discontinuities of the solution are expected and to retain other regions relatively coarse so that
the scheme remains economical. A uniform BV estimate is crucial in enabling the nonlinear terms to converge
and hence to prove existence of a solution.

The main contributions of this article are stated below.

— In the conservation law (1.1), the assumption that div(w) = 0 is relaxed.

— A finite volume scheme on nonuniform Cartesian grids in two and three spatial dimensions is considered,
and the analysis holds in general for the class of monotone numerical fluxes. The nonuniformity of Cartesian
grid can be used to refine the mesh adaptively and economically.

— Finite volume solutions satisfy a uniform BV estimate in space and time and this result is extended to the
case of fully nonlinear conservation laws analysed by Chainais-Hillairet [4].

— The existence of a weak solution for (1.2) is shown by utilising the BV estimates on Cartesian grids. Compact-
ness results rendered by uniform BV present a convergent subsequence out of a family of discrete solutions
constructed by applying a finite volume scheme to (1.2a), whose limit is shown to be a weak solution of (1.2a).

The uniform BV estimate in space and time for linear and nonlinear conservation laws is obtained by com-
puting the variation of the discrete solution along orthogonal Cartesian axes separately. This method has two
major difficulties. Firstly, the term «div(u) serves as an additional source function since divergence of the
velocity field is not zero. The difference of avdiv(u) at time step t,41 across neighbouring control volumes is
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estimated in terms of the BV seminorm of div(u) and L* bound of « at time step ¢,,. Secondly, while estimating
the difference of the discrete solution across two control volumes in x direction, we obtain terms that contain
differences of numerical fluxes across the other orthogonal direction and wvice-versa. This is a potential obstacle
to the standard technique of writing the variation of the discrete solution at ¢,41 across two control volumes
as a convex linear combination of variations of the discrete solutions across neighbouring control volumes at
t,,. We introduce the idea of an intermediate nodal (edge) flux in two (three) spatial dimensions, which is the
numerical flux across control volumes sharing only a single vertex (edge), to transform the differences along y
and z directions into that along = direction and vice-versa. This helps to obtain a relation of the form

BV(n+1) < BV(n) + / A, (1.5)

n

where BV (n) is the BV seminorm of the discrete solution at ¢,,, and A(t) depends on BV seminorm of div(u) and
[Vu(t, -)[| oo (@) Finally, an application of induction on (1.5) yields the BV estimate on the discrete solution.

Organisation

This article is organised in the following fashion. In Section 2, we present the necessary notations, assumptions,
function spaces, and the finite volume scheme. The main results of this article are also presented in Section 2.
The uniform BV estimate of finite volume solutions of (1.1) is presented in Section 3. In Section 4, we show
the uniform BV estimate for conservation laws with fully nonlinear flux. The numerical results and discussion
are presented in Section 5. The semi-discrete analysis that proves the existence of a weak solution of (1.2) is
conducted in Section 6. The conclusions are presented in Section 7.

2. MAIN RESULTS

Three main results are presented in this article. The first two results establish uniform bounded variation
estimates in space and time for

— conservation laws in two spatial dimensions of the form 0, + div(uf(a)) = 0 in Theorem 2.4.
— conservation laws in two spatial dimensions with fully nonlinear flux of the form 0, + div(F (¢, z,a)) =0
in Theorem 4.1.

The third main result, see Theorem 6.10, presented in Section 6 applies Theorem 2.4 to establish the existence
of a weak solution to the practical problem of interest (1.2). The strong BV estimates in three spatial dimensions
is obtained by using analogues techniques in the two dimensional setting and hence a detailed proof is omitted,
see Remark 4.3 also.

2.1. Preliminiaries

Definition 2.1. A function 3 € L*(A), where A C R?, d > 1 is of BV if |3|gy, (4) < 0o, where

1Blava ) i= sup { /A Bdiv(e)de : ¢ € € (ARY, lplpm ) < 1}.

The space BV (A) is the vector space of functions 8 € L'(A) with BV. Recall that in this article Qp =
(0,T) x Q, where Q = (a,b) X (¢,d). Then, define the following BV seminorms for a function 8 : Qr — R:

8y, = [ 1000l i 180y, = [1802,9]5v,0 ds
J I
18(t,)|Bv.., =8t )iy, + 168 )|Lpy,,

T
BlLisv, 12/ |B8(t,-)|Bv,., dt, 8l1 BV, 12/ 18(-, 2, y)| B, 0,1y dx dy, and
0 (9]
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FIGURE 2. Rectangular grid and locations of the velocities and discrete unknowns o’ ;.

1818V, = 1Bles , Bv, +1BlLiBY, ,- (2.1)

Also, define the following norms for a function v : X7 — R? (d > 1), where X7 := (0,T) x X:
T
vl 21 Lo (xp) = / vt Mrex)ydt and |Jvllpeepi(x,) == sup |lv(t,)l|lL(x)-
0 0<t<T

For a function § : (a,b) — R, define the total variation by T -V-(3) := supp Zf:o |B(xiy1) — B(x;)|, where
P := {a=uxo,...,2741 = b} is a partition of (a,b). It is a classical result that |G|y, = T-V-(3) ([16],
Appendix A).

Definition 2.2 (Two dimensional admissible grid). Let X}, := {x,l/g,...,ml+1/2} and Y, =

{y_1/2,- - ysg1y2}, where z_y)0 = a, Trp10 = b, y_1jo = ¢ Yyp1y2 = dy ki = xip10 — Tio1y2, by =
Yj+1 — Yj—1/2, b = max; h;, and k = max; k;. The Cartesian grid X x Y}, is said to be a two dimensional

admissible grid if for a fixed constant ¢ > 0, it holds that (¢)~! < Z—J <c Vi,j. Ifk; =kViand h; = h Vj,

i

then X} x Y}, is called a uniform Cartesian grid and otherwise a nonuniform Cartesian grid, see Figure 2.
Assume that (AS.1)—(AS.3) below hold.

(AS.1) The flux f : R — R and the numerical flux g : R? — R are Lipschitz continuous with Lipschitz constants
Lip(f) and Lip(g), respectively.

(AS.2) The numerical flux g is monotonically nondecreasing in the first variable and nonincreasing in the second
variable, and satisfies g(a,a) = f(a) Va € R.

(AS.3) There exists a constant € > 0 such that

max (HUHL}LC’O(QT)a ||VU||L}L°<>(QT)» |diV(u)\Lngz,y) <E < oo

2.2. Presentation of the numerical scheme

Define the spatial discretisation factor Amax by Amax = max; ; {k;, h;}, which quantifies the size of the
Cartesian grid Xy x Yj. Let Ts defined by Ts := {tg,...,Tn} be a discretisation of (0,7"), where tg = 0 and
ty = T. Define the temporal discretisation factor by § = max,, §,,, where 6,, = t,,41 —t,. For technical simplicity
a uniform temporal discretisation is considered, wherein §,, = é Vn. However, note that the results in this article
hold with a nonuniform temporal discretisation also.
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Integrate (1.1) on the time-space control volume (t,i1,t,) X K;j, where K = (2;_1/2,%i11/2) X
(Yj—1/2,Yj+1/2) and apply the divergence theorem to obtain

tnt1 tn+1
0:/ / 8tad:ndt+/ fle)(u,v) - m;;dsdt =: I + I, (2.2)
2% 0K
where n;; is the outward unit normal to O0K,; and w = (u,v). Replace I; by the difference for-
mula k'h'(a?jl a”) Term I, in (2.2) is approximated by the numerical flux g : R? — R as
oh; ( i+1/2,j Fl-",l/gyj) + Ok; (G2j+1/2 — G2j71/2>, where
n R n + n n n— n n
Flyypy = (“z 172,59 (O‘i—l,j’ai,j) —“1-71/2@9(0%4’0%71,;'))’
Gij172 = (ij—l/Qg (ofj_1,08;) = v} 100 (osz,oz?,j_l)) ) (2.3)
a® = max(a,0), and a~ = —min(a,0) for a € R,
n+1 Yj+1/2 n+1 1+1/2
u; 1/27J ][ ][ u t s Ti_1/2,8 )dsdt and 11” 1/2—][ ][ ts S Yj— 1/2) dsdt.
Yj—1/2 Ti—1/2

Locations of the discrete unknowns o', velocities u; 1,2 ; and v; j_1/2 in a two dimensional admissible grid is

shown in Figure 2. A substitution of approximations of I; and I in (2.2) leads to

0‘?31 = Qi — i (Fz‘rjrl/z,j - Fz‘n—1/2,j) Y (G2j+1/2 - G?,j—lm) ’ (2.42)
where p; = 6/k; and A\j = 6/h;. We set the discrete initial data as follows
a?j ::][ ap(x) de. (2.4b)
; K.,
The terms F}"; and G7'; can be expressed as, for s € {—1,1}
n T (1 — 8) n
i+s/2.5 = Mits/2, [2 (i1 — aiy) + 5 (afy —aly) (2.52)

+ u?+s/27jf(oz2j) and

fits2 = Mijo [ 5 (0o —aiy) + 5= (af; —afjn) (2.5b)

072 f (),

G

where
M2 5= [ iy, Dig (00 s 0dy) +ui sy o 5 DY (0‘%0‘?—14)} ;
MY, )= [Ugtj—i_—l/Z DY (af 1. ay) + iy DYy (af, O‘Zj—l)} ;
and the difference quotient D;’; : R? — R is defined by

g(a,0) — g (a},af;)
ng(a,b)z a—b 1fa7éb7 and

0 ifa=0».
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Observe that Dgfj (a?_ljj,a?,j), Dgfj (aﬁj,a?_l,j) , Dgfj (aﬁj,a}fj_l), and DZ]. (a}fj_l,aﬁj), (hence, Mf—1/2,j
and Ml.yj_1 /2) are nonnegative due to the monotonicity of g. Use (2.5a) and (2.5b) to transform the right hand
side of (2.4a) into a convex linear combination of the terms af',,,, where (I,m) € {(7, §), (i—1,7), (i+1,7), (4,5 +1),

(1,7 — 1)}, and this yields an alternate form of the discrete scheme (2.4a)

+1 _
a;tj = O‘?,j (1 - NiMz{r—H/Q,j - >‘ng1+1/2 - NiMir—l/z,j - )‘jMiy,j—l/2>

n . x n X Y n . Z n . Y
o g M e g+ Q0 AGM g G M gy g A M

~f(aly) ( / t 1. dn()(t@)dr dw) . (26)

Definition 2.3 (Time-reconstruct). For a sequence of functions (f,)n>0y, where f, : X — R, define the
corresponding time-space reconstruct f5 s : (0,7) x X — R by, for every ¢ € (¢, tny1), f(t,-) == fu(").

The function aps : Q@ — R is the time-space reconstruct corresponding to the sequence of functions
(QZ){nzo}, where o} (x) == ajt;on K j.

Theorem 2.4 (Bounded variation). Let Xj xY}, be a two dimensional admissible grid, and assumptions (AS.1)—

(AS.3) and the Courant-Friedrichs-Lewy (CFL) condition 46 max; ;(;- + ;- )Lip(g)||w|| o 0,y < 1 hold. If ag €
i J

L>(Q) NBV4(Q), then ap s satisfies |an 5|y, ,, < €V, where €y depends on T, ag, f, g, HVUHL%LOQ(QT),

and |diV(U)|Lngz,y~

Remark 2.5 (Boundedness constant épv). The exact dependency of €y on the factors T', ag, and Lipschitz
continuity of fluxes is obtained from the proof of Propositions 3.2 and 3.4. The final expression for 4y is
described by

T
%y < TBuBa.u (1 + 4Lip(g)/ Ve L~ dt) + (Lip(Hanr + fo)ldiv(w)| 11 ),
0

where € := max (Lip(f)anr + fo,3Lip(f) + 4Lip(g)(¢ + 1) + 1), By, := exp (‘5||Vu||L%Lm(QT)), and By, =
laolBv.,, + €[ldiv(u)|[L1py, - However, the precise form of ¢y has little impact on compactness arguments
used to extract a strongly convergent subsequence from the family of time-space functions {ey, s} — for this
purpose it is sufficient that |ap s|Bv is bounded by a global constant independent of the discretisation
factors.

T,y,t

Assumptions (AS.1), (AS.2), and boundedness of |[u| 11 o (q,) described by (AS.3) are classical in the litera-
ture (see [14], p. 153, and [4], p. 130 for more details). The crucial assumptions of Theorem 2.4 are the bounded-
ness of (a) ||Vl 11z~ () and (b) [div(u)|L1py, , described by (AS.3). Condition (a) is not unexpected since a
conventional assumption in estimating BV seminorm of finite volume approximations of nonlinear conservation
laws of the form (1.1) is that u € €1 (R% x RT) [4,14], which yields (a) on compact subsets of R x RT. Though
(b) apparently seems to be restrictive, it is pivotal in bounding the difference of div(u) between two control
volumes (see (3.15)). Indeed, we can relax this assumption to div(u) € L} L (Qr), which is the formally correct
choice and is used in the seminal work [10] by DiPerna and Lions. However, with this less restrictive assump-
tion, Proposition II.1 in [10] only guarantees the existence of a weak solution o € L L(Qr). Therefore, (b) is
justified for establishing a stronger convergence of the finite volume solutions and the higher BV regularity of
the limiting solution.
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3. PROOF OF THEOREM 2.4

We let the hypotheses of Theorem 2.4 to hold throughout the sequel of this article and recall that oy, 5 is the
time-reconstruct in the sense of Definition 2.3. The proof of Theorem 2.4 is accomplished through three steps:
establish the

— boundedness of ay, 5 in Proposition 3.1,
— spatial BV estimate of ay, s in Proposition 3.2, and
— temporal BV estimate of oy, s in Proposition 3.4.

Proposition 3.1 (Boundedness). The function a5 satisfies, for every 0 <t <T,
lan,s ()| oo () < Bfu (ao + folldiV(U)HLgLoc(QT)) : (3.1)

where By, 1= exp (Lip(f)HdiV(u)||L,%Loo(szT)); a® = [l |l (), and fo = £(0).

The proof of Proposition 3.1 is based on writing o/”r1

previous time step.

as convex linear combination of values of oy s at the
Proof. The Lipschitz continuity of the function g yields [M} , , .| < Lip(g)lu ;| and |M} i 1/2|
Lip(g )|v” 1/2| fori =0,...,] and j = 0,...,J. The CFL cond1t10n in Theorem 2.4 ensures that the co-

efficient of o}'; in (2.6) is nonnegative. Use the properties of convex linear combination of {af,,}, where
(I,m)e{@,j—1),0G7 j+1),(E—1,7),(i+1,5)} in (2.6) and the Lipschitz continuity of f to obtain

tnt1
sup o T | < sup|af; [1+Lip(f)/ ([div(w)(t, -)|| Lo () dt

) , n

+ fo / " div () (¢, )| e e (3.2)

n

An application of induction on (3.2) with n as the index and (2.4b) yield (3.1). O

Proposition 3.2 (Spatial variation). The function a5 satisfies |ans(t,-)|Bv,, < Bu(lawlv,, +
€|div(u)|p1py, ) for every 0 <t < T, where By, = exp (%HVUHL%L«)(QT)) and € is defined in Remark 2.5.

The proof of Proposition 3.2 is achieved in five intermediate steps, which are as follows.

Step 1. Write the difference a";rl afﬂlj as o' — ;=o' — oy o — H; j — J; j, where H; ; collects the

variation of a;'; in z-direction and J; ; the Varlatlon of ai; 1n y—dlrectlon
Step 2. Use the intermediate nodal fluxes (see Fig. 4) to transform the vertical differences in J; ; into horizontal

differences.

Step 3. Use steps 1 and 2 to write o'} +_ a?fllj as a sum of (a) convex linear combinations of a'; — af',,,,
where (I,m) € {(¢,j —1),(¢,j+1),(i—1,5),(i+1,5)} and (b) the variation of d,u and 9yv (recall that
u = (u,v)).

Step 4. Estimate variations of d,u and dyv in terms of the BV seminorm of div(u).
Step 5. Combine the estimates from steps 3 and 4 to bound |ap 5(tns1,)|Bv,,, in terms of |ap s5(tn,-)|BV, .,
and [div(u)|ipy, , (see (3.17a)) and apply induction on n to obtain the desired conclusion.

+ n+1

1
and a;77 ;

Proof. Step 1. Consider the difference between the scheme (2.4a) written for o’

n+1 n+1 . n n . n _ mn . mn _ n
Qi T = Q5 Qg [Nz (Fi+1/2,j Fi—1/2,j) Hi—1 (Fi—1/2,j Fi—3/2,j)}
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Yj4+3/2
n
g1
+
9ij+1/2
Yj+1/2 —~
Vi j+1/2
n
Qi j
Yj-1/2
Ti—1/2

(a)

FIGURE 3. Spatial locations of the numerical fluxes g;"
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Tit1/2

Yj+3/2
n
Q1
n
Ui +1/2
Yj+1/2 —
Gij+1/2
n
Qi j
Yj—1/2
Ti—1/2
(b)
iir1ye and g o

—_——

n
/ i

+
gi—l,jV
n

Q1,5

°
+
9ij+1/2

FIGURE 4. Intermediate nodal flux connecting the fluxes on edges.

= 2 (Ginge = Gicae) = A (Ciryirye = Giryoge)|
—H.

VA

— n
a’J a,;

i—1,5

J:

4,7"

The term H; ; gathers the variation in the z-direction; use (2.5a) to rewrite H; ; as

Hij = piM )5 ; (af; =

where

.3

04?—1,3') + i M o (0‘

+ pim 1 M 1/2](04n —04?—1,3‘)4'/% 1M 3/23(0‘?—20‘_

n+1
K{j;:f(a’f] / ][ Ou(t,x)dedt — f(

n n
i o)

i— 1,])

f
+ K ;,

Lit+1/2

n+41
/ ][ u(t, ) de dt.

Step 2. The goal of this step is to transform the horizontal difference of variations between the vertical levels
(t—r,j+s)and (i —r,j —s), where (r,s) € {(0,1/2),(—1,—1/2)} appearing in J; ; of (3.3) so that the
resulting terms can be combined to form a convex linear combination of differences of ay, 5(tn, ) between

i,5+1/2 = g(az N l]+1) and gzg+1/2 = g( N ESEL

depends only on the values at the nth level throughout the proof, the dependence of g

Ji =

] 1,57

) Since g, J/+1/2

on n is not

neighbouring rectangles. Define ¢

[ j+1/2

explicitly indicated in the sequel. Use (2.3) to rewrite J; ; = where

* Y. n* * _anx * Y. nx * ok *
Jz,j = Ay (”z’,j+1/29i,j+1/2 Ui,j—1/2gi,j—1/2> Aj (Ui—l,j+1/2gi—1,j+l/2 Ui—l,j—l/Zgi—l,j—l/2)
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with x € {4, —}. The numerical fluxes involved in J;r] and J;; can be assigned with spatial locations as
in Figure 3(a) and 3(b). A re-grouping of J;; leads to

‘]Z:j = A (”Zj*-s-l/zg:,j-u/z - v?—*l,j+1/29:—1,j+1/2> —Aj (UZ;—l/zgz‘*,j—l/z - U?—*l,j—1/2g:—1,j—1/2)
— (T - (3.5)

: : : + _ n+ n n o+ n n :
We consider horizontal difference Ty = v’ 1, 59 (ai’j,ai’jﬂ) Vi 129 (aifl’j,aifl’jﬂ) for clarity.

Grouping the terms appropriately yields

n+ n n _n+ n n _ n+ _n+ n n
Yij+1/29 (fj, 00 j41) Yic1,+1/29 (of1jr0iy ) = (”i,j+1/2 Uifl,j+1/2>g(ai,j’ai,j+1)

+ U?j,jﬂ/z (9 (O‘Zjv 0‘2;‘+1) -9 (a?_l,j, 0‘?—17#1)) |
(3.6)

Introduce an artificial nodal flux g(a?fl’j, ai; 41) arising from two diagonally opposite control volumes as
in Figure 4. The nodal flux, splitting in (3.6), and some manipulations lead to

* . ) n * _ n * * _ n * _ n * *
Jij = A ((”i,j+1/2 Ui—1,j+1/2> 9ij+1/2 (Ui,j—l/Q Ui—l,j—1/2> gi,j—1/2)
n*x n n n n n

T A [Uifl,j+1/2E* (%jvai—l,jv O‘z}j+1) (az‘,j - O‘i—l,j)
n * n n n n n

= Vi1 j—12E (0f; 1 0iy o1 0;) (0f; 0 — oy q)
n * n n n n n

T 0 2B (ai,j+1’ ®i—1,5+1> ai%j) (ai,j+1 - O‘ifl,j+1)

— v 1B (0 00y 0l ) (of — O‘?fl,j)} ; (3.7a)
where the difference quotients E, : R?® — R are defined by

(1 +*)(g(a,c) —g(b,c)) + (1 — ) (g(c,a) — gle, b)) .
E*(a, b, C) = 2(&0— b) li a f Z, and

(3.7b)

Note that the sums (1 4 (4)) used in (3.7b) are understood as (1 & (£1)). Use the identity a™ = a + a~
to transform the differences (UZ;A 2 v?_ij 41 /2) and (vzjtl 2 U?fl)j_l /2) in ij and combine the

resulting negative parts with the corresponding negative parts in J; ;. This yields

. n+ _ ot + ). n+ _ gt +
()‘] (vi,j+1/2 vifl,j+1/2> 9ij+1/2 Aj (vi,j71/2 ,Uifl,jfl/Q) 91‘,;'71/2)

- </\j (02311/2 - ”?—_1,]'+1/2> 9ij+1/2 ~ Aj (’U:fj_—l/Q - U?—_l,j—l/z) gz'_,j—1/2)

+ t x; < T .
qg.. nt1 i+1/2 i—1/2
%1/2/ (][ v (t,s,yj+1/2) ds 7][ v (t,s,yj+1/2) ds) dt
J t x

n i—1/2 Ti—3/2

+ t T; T 1,7
g,’,il 9 n41 i+1/2 i—1/2
_”hi// ][ v (t,s,yj,l/g) ds —][ v (t,s,yj,l/g) ds | dt
J t Ti—1/2 Ti—3/2

n

n-— n— + - n— n— + -
A (Ui;j+1/2 N Ui—l,j+1/2) (gi,j+1/2 - gi,j+1/2) —Aj <Ui,j—1/2 - ’Ui—17j—1/2) (gi)j_l/Q - gi,j—1/2) .
(3.8)
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Step 3. Combine (3.3), (3.4a), (3.7a), (3.8) and re-group the terms to obtain

O‘?jl Oé;1+11] = (O‘Zj - 04?71,3') (1- Ci,j) - MiMiw—&-l/Zj (a?,j - a?Jrl,j) — pi—1 M —3/2,5 (04?72,;' - a?fl,j)

n * n n n n n
+ A E (*)Ui—l,j—l/QE*(ai,j—lvO‘i—l,j—ho‘i,j) (%‘,j—l - 0%‘—1,3’—1)
xe{+,—}

— ) B (s 0y s ) (0 — )

xe{+,—}
— X | (vl —o + —q. .
j [( i,j+1/2 271,]+1/2) (gz,]+1/2 gz,g+1/2)
- - + - /
(0 =i o) (55 = 90m) ) — (KL K2 (3.92)

where

Cig = My jg j + i M7y g 5+ A [z LB (ol 0l 0l00)

.t . n n n
CHIER ~(a z',jvav:—lmo%—l,j—l) Ui—l,j+1/2E— (O‘m’ai—ld’aid-l-l)
n — n n n
*_1Q71441/2E*’(ahjﬂaifljvaiflggl)}' (3.9b)

Note that in (3.9b) the terms E_ are nonpositive and E; are nonnegative. This fact along with the CFL
condition ensures that 1—c¢; ; is nonnegative. Take absolute value on both sides of (3.9a), multiply by k;, sum
oni=1,...,7and j =0,...,J, and use the condition that w = 0 on 912 to change the indices appropriately
to obtain

Zh z:k)z”“—az 1.

J I
1< h > ey — a1 —ciy)
j=0 =1
J I I
+ Zhj [Z ﬂi—le—1/2,j |04;L,j - 0‘?—1,3‘| + Z:u’iMim—l/Q,j |0‘?,j - 0‘?—1,3‘}]
j=0

=1 =1
J

I
mn * n n n n n
DI [/\J’Uifl,j+1/2(*)E* (o 01 5,08501) |of; — afy 4|
ce{ti—} im0 =1

+ v 1) (~(x)E_. (O‘Zjvayflﬁj’all,jfl)) |a2j - a?,17j|]

J—1 I
+ ZhjZ)\j
+Zh Z)\
+ Zhﬂ' Z (‘Kzfa + K
j=1  i=1

The term 1—¢; j and coefficients of |a]’; —
add up to one, and this yields

J I
Zh Z‘O‘nﬂ ot < Y T hy Y ey —aly ]
j=0 =1

U iiige U?:Ljﬂ‘ lg (@t aii1) — g (af 41, 085)]

Vij—1/2 ~ ?—1,;’—1/2’ ’9 (a?,jfl’azy‘tj) -9 (O‘?,j’a:‘tjflﬂ

) . (3.10)

i’y ;| in the second and third sum on the right hand side of (3.10)
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n— n— n n n n
Vij+1/2 — Ui—l,j+1/2‘ |9 (%jv %j+1) -9 (ozi,j+17oz,»,j)|

7=0 i=1
J I

+Zhjz>\ UZ;—1/2_U:L:1,]'—1/2’ |9 (afj_1,afy) — g (a0l ))|
j=1  i=

J I
+5Zhiz<‘K1{j+KﬁjD' (3.11)
j=1 =1

Use the Lipschitz continuity of the negative part a — a~ (with constant 1) and g, Lipschitz continuity of v
in the z-direction, and grid regularity condition of Definition 2.2 to obtain

tnt
Aj Vi a2 ”?—_1,3'—1/2‘ |9 (a7 j—1.07;) — g (o af;1)| < €lai; —af; | Lip(g)/ 1020 (¢, )| Loe (o) -
(3.12)

n

Step 4. Apply A.li on K7, (see (3.8)) to obtain

+ _ 7t t T T .
g g . n41 i+1/2 i—1/2
Kigj _ Zhit1/2 hi=1/2 / ][ v(t, 8, Yjr1/2) ds — 7[ v(t,s,yj41/2)ds | dt
’ 2hj t T; T;_3/2

n i—1/2

tn41 Tit1/2 Tit1/2
+/ ][ v(t, S,yj71/2)d3—][ v(t,s,yj—1/2)ds | dt
t Ti— Ti_3/2

n i—1/2

+ +
9; —|—gi . n+1 n41
,J+1/22 A1/2 V ][ a,ul(t d:cdtf/ ][ da:dt]
Ki 1,5

. 17951 9,2
= K7+ KJ7

Write the term Ki{j (see (3.4b)) as

n+1 n+1
Kl = f(a}, / f div(u)(t, ) da dt — / f div(u)(t, ) de dt
n+1 n+1
- (f (af;) / ][ Oyv(t,-)dzdt — / ][ ) dax dt)
tn Ki_1,;

—. 1 f:2
= K+ K]

Use the Lipschitz continuity of g, Lipschitz continuity of v in the z-direction, and Definition 2.2 to obtain

1
K7

tn+1
< Lip(g) (laf; — afj_1| +af; 4 — aiy) /t 1020 (%, )| oo (@) dt. (3.13)

n

A use of A.li on szl yields

noy _ no tnt1 tni1
Kif’jl = floty) = f(oly) / ][ div(u)(t,-) de dt +/ ][ div(u)(t,-) de dt
7 2 t K,. j t 7, 1,5
'_n_ tn+1 tn+1
+ f (a”) ) / ][ div(u dwdt—/ f div(u)(t, ) dedt| .
tn K;, t, Ki 1,j

n

Therefore, |K7 71 can be bounded by
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nt1
KL < Lip(f)laf; - afy | / v (ae) (¢, e ey
tnt1
+ (Lip(f)anr + fo)/ ][ div(w)(t, ) de — ][ div(u)(t, -) de| di.
tn K; Ki—1,
The sum Kﬁ’f + ij’f can be written as
—2f + gz + g nt1
sy - D) e 0l
+ 2f (of14) = u+1/2 — 91 / e ][ ) da dt.
Ki 1,
The Lipschitz continuity of g and f and g(a,a) = f(a) yield
| —2f (a?j) +9i+j+1/2 +9i+j 1/2| < Lip(g)|ei'; — o' ;1| + Lip(g)|af’; — a4
|2f( i— 1;) +9”+1/2 +g” 1/2| < 2Lip(f )‘O‘?,j - a?f1,j|
+ Lip(g)|ai’; — o'y 1| + Lip(g)|ag’; — o' jiql- (3.14a)

Combine the bounds (3.13)—(3.14a) to obtain

o1 ,1 2 2
KT+ K2 < KD+ K9 + | K+ K77

tnt1 tnt1
< Lip(f)la?; — a | ( / Iliv(e) ¢, )| o ey i+ 2 / 18, 0(t, L~ dt)
tn

n

tht1
+Lip(g) (laj; — iy 1|+ ]af 41 — aiyl) (5/ ([1020(t, ) oo ) + 2|0y v(t, )] Lo () dt)

n

]{{_ ,. div(u)(t, ) de — ]i div(u)(t,) de

i,7 i—1,j

tott
+ (Lip(fans + fo) /

n

dt. (3.15)

Step 5. Use (3.11), (3.12), and (3.15) to obtain

tnt1
lans(tnt1, sy, < lans(tn, )iy, +4(c+ 1) Lip(g)lans(tn, 1BV, / [Vl o (o) dt

n

tnt1
3L st Moy, [ [Vl de

n

+ip(an +fo) [ vt gy, (3.16)

n

where the piecewise constant prOJectlon 19 : BV,(Q2) — BV4(Q) for an admissible grid X x Y}, is defined
by, for 8 € BV4(2), (I19(8)) (x) fK ,Bd:c Va € K; ;. A similar argument can be obtained with ¢ and

j interchanged and when comblned Wlth (3.16) yields

tn+1
lan,s(tnr1s ) BV, < lans(te, )|V, , <1 +65/ [Vu(t, )| L= dt)
tn

tn41
+¢ [TI7, (div(w)) v, dt, (3.17a)

tn
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horizontal difference

* * * -l *

Ai_15+1/2 &5 j+1/2 &_1j41/2 1 &5 j+1/2

. 'y 'y : Py

I I I " I

) | | | | ) |

vertical 1 horlzontall vertical 1 Ivertlcal 1

o dmmmmd I . |

difference difference | difference 1 :dlﬁerencm

| | | |

1 1 1 ! 1

a* . a* . a* . 1 * .
i—1,j—1/2 i,j—1/2 i—1,j—1/2 H i,j—1/2

horizontal difference

(a) (b)

F1GURE 5. Differences between horizontal and vertical levels. Here, a} 12 = (S /29;j 1729

where 9”+1/2 g(am—, i,j+1) and g; 45 =9 (i,j+1v z',j)-

where ¢ = max (Lip(f)anr + fo, 3Lip(f) + 4Lip(g)(¢ + 1) + 1). Apply induction on (3.17a) with n as the
index and use the fact that [II) (div(u))|gy, , < |div(u)|gy, , to obtain

x,y —

T
lan,s(tn, ) BV.., < Bu <|ah,5(t07~)|BVI’y +<5/ |div(u)|Bv, , dt) . (3.17b)
0

The desired conclusion follows from (3.17b) and (2.4b).
(]

Remark 3.3 (Regrouping of J;, in (3.5)). Observe that J;/A; is the horizontal variation between differences

across two vertical levels as in Figure 5(a). However, this form does not yield any terms like o}, — oy ., where
peli+1,i—1}and r € {j +1,j,5 — 1}, and thereby annihilates any chance of expressing oz"+1 af+11j as a

linear combination of such terms, which is crucial in controlling the growth of spatial varlatlon over time. This
problem can be fixed by considering the terms J Jrj and J; ; as vertical variations between differences across two
horizontal levels, see (3.5), as in Figure 5(b).

Proposition 3.4 (Temporal variation). The function oy, s satisfies
lans|ry By, < 4By <|040|BV1,y + %\div(u)htix’y) Lip(9) | V|| 12 < o)
+ (Lip(f)aar + fo) [div(w)|L1(aq)-

The proof of Proposition 3.4 is obtained by writing a"jl a;'; in terms of the differences o

(I,m)e{(4,j—1),(,j+1),(: —1,7),(t+1,75)} and by applying Proposition 3.2.

n
T where

Proof. Use (2.6) to write

1
afft—ap; = My, )y ; (O‘?Jrlj )+)‘ MY (040 — af)
+ p ME 1/2,j O‘z 1,5 — )+>‘Mg 1/2( i,j—1 aZj)

(/tth][ div(u)(t, ) de dt) (3.18)
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Multiply both sides of (3.18) by hjk;, sum over n = 0,...,N, i = 0,...,] and j = 0,...,J, and use the
homogeneous boundary condition on w to obtain

h’JkIZ|an+1 z]|<zézh Z +1/2,j
n=0

n=0 j=0 1=0

J I

TL n
aity j — ol
=0 i=0

N J 1

I J—1
+Z5Z i MY pladt g =l Y Y hy Y MEp jlaity  — aly
n=0 =0 7=0

n=0 j—O i=1

Z5Zk Z sio1yalai 1 — ”|+ZZZf ;' </ / div(u tw)dmdt)

n=0 =0 j=1 7=0 i=0 n=0

(3.19)

Use the Lipschitz continuity of the functions f and g and (3.19) to obtain

T
[ Janstezi)lov, oy dady < aLin(a) [ [t oot v, ,
0

+ (Lip(f)an + fo)lldiv(w) || 22 (oq)- (3.20)
Use (3.20) and Proposition 3.2 to arrive at the desired result. ]

The result (2.4) in Theorem 2.4 follows from Propositions 3.2, 3.4 and (2.1). The homogeneous source term
in (1.1) can be replaced with a function &(t, x, o) that satisfies the assumption:

(AS.4) & € L}L*®(Qr) and &(t,x,z) is Lipschitz continuous with respect to z (with constant Lip,(&)),
uniformly with respect to ¢ and @, and is Lipschitz continuous with respect to x (with constant Lip,(&)),
uniformly with respect to ¢ and z.

In this case, we obtain the following corollary to Theorem 2.4.

Corollary 3.5. Let (AS.1)-(AS.4) and the Courant—Friedrichs—Lewy (CFL) condition
4 max; ; (ki + h%) Lip(g)|lullre@yy < 1 hold. If g € L®(Q) N BVg(Q) then, the time-reconstruct
ap5 : Q0 — R reconstructed from the values a;'; obtained from the scheme

n+1
afft =ap; = wi(Fi12; = Firjag) = A (Gijra2 = Gijo12) +/t ][ (t,z,a};) dtda

satisfies |anslpv,, , < CBv, where gy depends on T, oo, [, g, [[VullLiL=(ar), [div(w)|ripy, . Lipg (&),
Lip, (&), and \G\Lngz,y-

Proof. Tt is enough to estimate variation of the source term in the x direction, which can be written as
tnt1 nt1
Vi ::/ ][ (t,z,0f;) dtdx —/ ][ (t,xz,af ;) dtde. (3.21)
tn K; Ki_1,;
Add and subtract ftt"“ fK_ 6 (t,x, ", ]) dtdz to (3.21) and group the terms appropriately to obtain

n+1
Vil < / &(t,x,al;) — &(t,x, 0 ;)| dtda

n+1
/t

n

dt =: Vi + V. (322)

][ S(t, @, af 1])dsc—][ &(t,x, a4 ;) dz
K K

(2 i—1,3

Use the Lipschitz continuity of & with respect to the third argument to bound V1 by ¢ Lip,(&)[af’; — aj'y ;|-
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Sum (3.22) for i =1,...,I to obtain

I tni1
S 1Vesl < 0L (8)|ans(tns av. +Livy(®) [ IOy, at. (3.23)
t

i=1 n

Rest of the proof follows by adding the terms in the right hand side of (3.23) to the right hand side of (3.16)
and by following the steps from there on. |

4. BV ESTIMATE FOR CONSERVATION LAWS WITH FULLY NONLINEAR FLUX

Theorem 2.4 can be extended to the case with fully nonlinear flux such as

(4.1)

Oa+div(F(t,z,a)) =0  in Qp and
a(0,)) =ap in Q.

The strong BV estimate on finite volume schemes for (4.1) on square Cartesian grids is obtained by Chainais-
Hilairet [4] under the assumption that dive(F') = 0. In this article, we relax this condition and obtain bounded
variation estimates for o under the following assumptions.

(AS.5) F(t,x,z) is €' (Qr xR) and is Lipschitz continuous with respect to z (with constant Lip(F')), uniformly
with respect to (t,x), and 9,F is Lipschitz continuous with respect to @ (with constant Lip(9,F)),
uniformly with respect to t and z,

(AS.6) |dive(F)|pipy, , < oo and divg(F) is Lipschitz continuous with respect to z (with constant constant
Lip(divg(F))), uniformly with respect to t and .

Observe that assumption dive(F) = 0 manifests as div(u) = 0 in (1.1), where F(t,x,«) is same as
u(t, x) f(a). Use (AS.5) to write the flux F as F := (Fy,Fy), F} = A+ B, and F; = C + D, where A and
C are monotonically nondecreasing and B and D are monotonically nonincreasing in z, uniformly with respect
to t and @x. In this case, we can set the following finite volume scheme on an admissible grid X x Yj:

1
n+l _ n n n n n n n n
Qi = Q5 s ( ir1y2.(0iy) = Al ya (e 5) + Bl (of1,) — B 1), (%‘,j))
1 n n n n n n n n
T hs (Ci,j+1/2(o‘i,j) - Ci,j—1/2 (O‘i,j—l) + Dz‘,j+1/2 (ai,j+1) - Di,j—1/2 (O%,j)) (4.2)
J

with the initial condition (2.4b), where the numerical fluxes are defined, for v € {4, B}, and ¢ € {C, D}, by

n+1 Yj41/2
Vitp12,(s / f Y, iy1/2,Y,8)dydt  and
Yj—-1/2
n+1 i+1/2
0 j+1/2(8 / ][ o(t, x,y;41/2,s)dx dt.
Ti—1/2

Theorem 4.1 (Bounded variation for fully nonlinear flux). Let the assumptions (AS.4) and (AS.5) and the
following CFL condition hold: 46 Lip(F') max; 3(,%-1-%) < 1. Then the piecewise time-reconstruct ap 5 : Qr — R
re-constructed from the values of; obtained from the scheme (4.2) satisfies |anslpv, ,,(or) < €, where €
depends on T, aq, |divg(F )|LlBVJL ,» and Lip(div (F)).

The proof of Theorem 4.1 is based on two main ideas. Firstly, the terms in the scheme (4.2) are re-
arranged and grouped appropriately so that the term f:" fre. divg (F)(t,x, o) ;) dedt can be separately es-
timated (see (4.4)). Secondly, we employ the Lipschitz continuity of div,(F') to bound difference of the
terms {ftt"+1 fx, }divm(F)(t,m,aﬁjl)dmdt : | =1i,i+ 1} by the BV seminorms ft”“ lan5(t,-)|Bv, dt and

[t |dive (F)(t, -, sy, dt.
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Proof. Note that the scheme (4.2) can be expressed as

1 2
= A (afy 0l ;) (o —afy ;) = ATF (afy, ol ) (ady — afyy )

" 5 (cijo1y2 (afy) —cijorye (afy_1) + dijurye (@ j41) = dijaye (F5))

J
tni1

- < / ][ divm(F)(t,m,aZj)dxdt,) Ty~ Tas, (4.4)
tn Kiyj

,4?; (p —-,4?_ (q l;f (p —-13? (q
1/2,;(P) 1/2,(@) and A?’jn(p,q) _ "1/2,;(P) L1y, )
p—q ’ q—7p

where

1n(

P, q) =

It is enough to estimate |ay, s LiBV, a8 We did in the proof of Proposition 3.2. Take the difference between the
scheme (4.4) written for a?jll ; and o/”rl The difference T4 ;41 — T1; can be estimated exactly as in the proof
n+1 n+1

of Lemma 8 from [4], wherein the CFL condltlon in Theorem 4.1 enables us to express o'/~ — ;" ; as a convex

linear combination of differences at the previous time step n. Consider the difference |To ;11 — Ta;|:

tnt1
|T2i+1 — Tay] < /
t

n

tnt1
/
tn

The term Q2 can be estimated as

dt

][ divg (F)(t,z, a4 ;) de — ][ divg (F)(t,z, o ;) dz
Kit1,j 7 Kij 7

At =: Q1 + Qo.(4.5)

][ divw(F)(t,x,a?+17j)dm—][ divg (F)(t,z,a}';) dz
K j Ki j

Q2 < d|Lip(dive(F))| |afy ; — ai'l- (4.6)
Follow the proof of Lemma 8 from [4] and use (4.5) and (4.6) to obtain

lon,s(tny1,7)IBV,., < lans(tn,-)|Bv,, (1 +60Lip(0,F) + dLip(dive(F')))

tn+1
+/ I}, (dive (F))|Bv,,, dt.
tn

Apply induction on the above result and use similar arguments as in the proof of Proposition 3.4 to obtain the
desired result. O

Remark 4.2. Choice of the functions A, B, C, and D for the scheme (4.2) is not arbitrary. It is crucial that A
and C are nondecreasing, B and D are nonincreasing, and the CFL condition in Theorem 4.1 holds. We use the
following pairs to obtain the results provided in Table 10:

Aty z,y,z) = (sin((z — t)2) + M=2) /2, B(t,z,y,z) = (sin((z — t)z) — Mz)/2,
Ct,z,y,2z) = (cos((y — t)z) + Mz)/2, C(t,z,y,2) = (cos((y — t)z) — Mz)/2,

where 9t = Lip(F'). This choice of 91 ensures the monotonicity conditions required by A, B, C, and D. Moreover,
A, B, C, and D become Lipschitz continuous with Lipschitz constant Lip(F') so that the CFL condition in
Theorem 4.1 holds.

Remark 4.3 (Strong BV estimates in three dimensions). Analogous results to Theorems 2.4 and 4.1 in three
spatial dimensions are obtained by employing the same techniques used in the two dimensional framework.
The CFL conditions and constants in Theorems 2.4 and 4.1 need to be modified to accommodate the material
advection in the third dimension also.
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5. NUMERICAL EXAMPLES

We consider three examples to demonstrate the conclusions of Theorems 2.4 and 4.1. In Example 5.1, we
manufacture a source term such that the conservation law (5.1) has a smooth solution. In Example 5.2, the
source term is set to be zero and a discontinuous function is chosen as the initial data, and as a result the exact
solution also becomes discontinuous. Example 5.2 helps to understand how the discontinuities in the solution
affect the growth of BV seminorm. In Example 5.3, we consider a conservation law with fully nonlinear flux
with an exact solution and demonstrate conclusions of Theorem 4.1.

Example 5.1 (Smooth solution). We consider the spatial domain Q = (-1, 1)?, temporal domain (0, 1), velocity
vector field u = (u,v) defined by

u(t,x,y) := tsin(rzx) cos(my/2)/16 and wv(t,z,y) := tsin(wy) cos(mx/2)/16,

initial data ag(z,y) :==1 V(z,y) € ©, and an appropriate source term & such that the problem

g+ div(uf(a)) = & inQ and } (5.1)

a(O, €T, y) = O‘O(:Ev y) v (.T, y) € Qa
has the unique smooth solution a(t, z,y) = exp(t(z +y)) V(t,z,y) € Q1, where Oy = (0,1) x Q.

Example 5.2 (Discontinuous solution). The spatial domain is = (—3,3)? and the temporal domain is (0, 2).
If the flux function f in (5.1) is linear, then we set the velocity vector field w as (1, 1) and the source term & as
zero so that the problem (5.1) has the unique solution «(t, z,y) := ag(x — t,y — t). The initial data considered
is ao(,y) = Ljo>—1/4)/2 + 1[y>_1/4]/2, where 14 is the characteristic function of the set A. If the flux function
f is nonlinear, then we set the velocity vector field u = (u,v) as

u(t, z,y) = sin(mwz) cos(ry/2)/20 and v(¢,z,y) = sin(wy) cos(mwa/2)/20.

Note that in the case of nonlinear flux, the vector w is zero on the boundary of the square (—3,3)?, and as
a result we can take the boundary data (au)sq - mjsq = 0, where m)sq is the outward normal to 9€2. This
homogeneous boundary condition on w is useful since the exact solution to the problem (5.1) with a nonlinear
flux is not available. The source term and the initial condition remain the same as in the case of linear flux.

Example 5.3 (Fully nonlinear flux). The spatial and temporal domains, initial data, and exact solution are
chosen as in Example 5.1. The nonlinear conservation law considered is

dra + div (sin((z — t)a), COS((Z* t)a)) = &n in £, and } (5.2)

(0,z,9) = ag(z,y) V(z,y) € Q.

The source term Sy is chosen such that (5.2) has the smooth solution a(t, x,y) = exp(¢t(x +y)). Note that the
divergence of the flux div (sin((x — t)a), cos((y — t)a)) = acos((x —t)a) — asin((y — t)«) is not identically zero.

We consider two fluxes in the tests: (i) linear flux, f(s) = s and (ii) sinusoidal flux, f(s) = sin(2ws). The
numerical flux used is Godunov defined by

_ [l itb<a
9(a:b) = T (fs))  ifa<b.

a<s<b
The families of meshes considered are (a) Cartesian and (b) perturbed Cartesian (see Figs. 6a and 6b). A
perturbed Cartesian grid is non Cartesian and it closely approximates a Cartesian grid Xy x Y},. It consists of the

nodes (Zi11/2,Yj+1/2), wherein (%112, Yjr1/2) = (Tiv1/2,Yjr1/2) +e(ki, hy), where (w412, y541/2) € Xg X Y.
Here, € < max(h;/4,k;/4) and recall that k; := 241 /o —x;_1 /2 and h;j = y;41/2 —¥y;—1/2. Numerical experiments
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7 1
(a) (b)

FIGURE 6. Cartesian and perturbed Cartesian grid types. (a) Cartesian. (b) Perturbed Cartesian.

TABLE 1. Arrangement of contents in Tables 2-5 and Tables 6-9.

Tables showing BV norms

Example 5.1 Example 5.2 Continuous flux Grid
Table 2 Table 6 Linear, f(s) = Cartesian
Table 3 Table 7 Sinusoidal, f( ) = sin (2775) Cartesian
Table 4 Table 8 Linear, f(s) = Perturbed Cartesian
Table 5 Table 9 Sinusoidal, f (s) = sin (27rs) Perturbed Cartesian

on the perturbed Cartesian grid and comparison with the results from Cartesian grids aid to identify the
possibility of extending the analysis in this article to unstructured polygonal meshes.
The L' rate is defined by

10g (‘ahk+1,6k+1 (T7 ) ‘Ll(ﬂ) / ‘ahk,ék (T7 )|L1(Q)>
log(hk+1/hx)

Discretisation factors and BV norms corresponding to Cartesian and perturbed Cartesian grids are presented in
Tables 2-5 and Tables 6-9. The L' errors and L' rates are also included whenever an exact solution is available.
Arrangement of the contents in Tables 2-9 are outlined in Table 1 for clarity. The L' rates of the discrete
solutions obtained by applying scheme 4.2 to Example 5.3 is provided in Table 10.

The captions of Tables 2-9 are in the following format: example, continuous flux function, numerical flux
function, grid type.

L' rate =

5.1. Observations

We recall three classical results from the theory of convergence analysis of finite volume schemes for conser-
vation laws of the type (1.1).

(R.1) For a BV initial data, finite volume approximations of conservation laws of the type (1.1) on structured
Cartesian meshes converge with h'/? rate with respect to L{°L' norm [18], and this result is extended
to nearly Cartesian meshes by Cockburn et al. [6]. For generic meshes the L{°L! convergence rate is
hl/% ([14], p. 188).

(R.2) The BV seminorm of the finite volume solution grows with a rate not greater than h=1/2 ([14], p. 168).
Further details can be found in [6], p. 1777 and the references therein.

(R.3) For BV initial data finite volume approximations of nonlinear conservations of the type (5.2) converge
with h'/2 rate with respect to L;(€27) norm (see Theorem 4 and Remark 1 in [4]).

The L' error rates displayed in the tables in this section agree with results (R.1)—(R.3). When the flux is
linear, the mesh is Cartesian (uniform or nonuniform), and (1.1) possesses a smooth solution, the BV seminorm
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TABLE 2. Example 5.1, linear, Godunov, Cartesian.

h 1) Ezrlo r sze BV seminorm
5.00E-01 2.50E-01 0.1370 - 20.2
2.50E-01 1.25E-01 0.0719 0.93 23.1
1.25E-01 6.25E-02 0.0382 0.91 30.6
6.25E-02 3.12E-02 0.0198 0.95 35.3
3.12E-02 1.56E-02 0.0101 0.97 37.9

TABLE 3. Example 5.1, sinusoidal, Godunov, Cartesian.

h 1 Ezrlo ! Rslt ® BV seminorm
5.00E-01 3.97E-02 0.0332 - 24.2
2.50E-01 1.98E-02 0.0335 —0.01 32.0
1.25E-01 9.94E-03 0.0259 0.37 37.8
6.25E-02 4.97E-03 0.0164 0.65 40.3
3.12E-02 2.48E-03 0.0096 0.78 41.2

TABLE 4. Example 5.1, linear, Godunov, perturbed Cartesian.

h 1) Ezrlo ! Rlz/mfe BV seminorm
5.70E-01 2.85E-01 0.1540 - 19.7
3.01E-01 1.50E-01 0.0876 0.89 27.1
1.52E-01 7.62E-02 0.0465 0.93 33.0
8.40E-02 4.20E-02 0.0261 0.96 36.4
4.21E-02 2.10E-02 0.0133  0.98 38.4

TABLE 5. Example 5.1, sinusoidal, Godunov, perturbed Cartesian.

h 1) Ezrlor Rzmlte BV seminorm
5.70E-01 4.54E-02 0.0544 — 24.2
3.01E-01 2.40E-02 0.0374 0.58 33.1
1.52E-01 1.21E-02 0.0269 0.48 37.3
8.40E-02 6.68E-03 0.0177 0.70 41.3
4.21E-02 3.35E-03 0.0101 0.81 41.9

1425

increases but remains bounded, see Tables 2 and 3. In Example 5.2, a noticeable reduction in the L' rate is
observed due to the discontinuities in the weak solution to (1.1), see Tables 6 and 7. Here also, the BV seminorm

is bounded and increasing.

In Examples 5.1 and 5.2, the behaviour of BV seminorm on perturbed Cartesian grids is similar to that of
Cartesian grids, see Tables 4, 5, 8, and 9. This indicates the possibility of extending the analysis in this article

to perturbed Cartesian grids also.
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TABLE 6. Example 5.2, linear, Godunov, Cartesian.

Error Rate

h 1) 1 1 BV seminorm
3.00E+00 9.37E-02 0.4140 — 4.26
1.50E+00 4.68E-02 0.8160 —0.98 5.57
7.50E-01  2.34E-02 0.4740 0.78 6.33
3.75E-01 1.17E-02 0.3700 0.36 7.69
1.87E-01  5.85E-03 0.2870 0.36 8.75

TABLE 7. Example 5.2, sinusoidal, Godunov, Cartesian.

h 1 BV seminorm
3.00E+00 1.49E-02 6.32
1.50E+00 7.46E-03 6.35
7.50E-01  3.73E-03 6.60
3.75E-01 1.86E-03 6.76
1.87E-01  9.32E-04 7.08

TABLE 8. Example 5.2, linear, Godunov, perturbed Cartesian.

Error Rate

h 1) T T BV seminorm
3.42E4+00 1.06E-01 0.3980 - 4.68
1.81E4+00 5.65E-02 0.7240 —0.94 6.23
9.14E-01  2.85E-02 0.4610 0.66 6.48
5.04E-01 1.57E-02 0.3700 0.36 8.77
2.53E-01 7.91E-03 0.2850 0.38 9.51

TABLE 9. Example 5.2, sinusoidal, Godunov, perturbed Cartesian.

h 1 BV seminorm
3.42E400 1.06E-01 6.32
1.81E4+00 5.65E-02 6.54
9.14E-01  2.85E-02 6.70
5.04E-01 1.57E-02 7.57
2.53E-01 7.91E-03 7.28

For conservation laws with fully nonlinear flux, BV seminorm is increasing, however in a bounded fashion,
see Table 10. Table 10 also complements Lemma 8 and Theorem 7 in [4], which provide the boundedness of the
BV seminorm of discrete solutions corresponding to uniform Cartesian grids.

5.2. A remark on strong BV estimate for non-Cartesian grids

In the case of Cartesian mesh, note that the BV rate decreases in magnitude as h decreases and the BV
seminorm stabilises eventually, which agrees with the conclusion of Theorem 2.4. This is also supported by the
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TABLE 10. Example 5.3 — Fully nonlinear flux and Cartesian grid.

h 1) —Ezrlo r sze BV seminorm
5.00E-01 3.97E-02 0.1470 - 2.45
2.50E-01 1.98E-02 0.1080 0.43 3.58
1.25E-01 9.94E-03 0.0748 0.54 4.57
6.25E-02 4.97E-03 0.0474  0.65 5.33
3.12E-02 2.48E-03 0.0280 0.75 5.88

FIGURE 7. Staggered grid is a modification of a uniform Cartesian grid. Here, width of the
controls volumes in odd levels is half the width of control volumes in even levels.

TABLE 11. BV seminorms of the finite volume solutions corresponding to (5.3) on staggered
meshes. The parameters used are ¢ =1 and T = 1/4.

h 1 BV seminorm
1.00E-01 1.00E-01 3.90
5.00E-02 5.00E-02 5.65
2.50E-02 2.50E-02 6.86
1.25E-02 1.25E-02 9.00
6.25E-03  6.25E-03 11.90

higher values of L' rate than the theoretically predicted ones and the fact that the reduced convergence rate
stems from lack of a strong BV estimate (see result (R.1)).

Similar trends can be observed in the case of perturbed Cartesian grids also. These trends indicate there
might be a possible way by which analysis in this article and in the previous works [4] could be extended
to non-Cartesian grids also. Any such uniform estimate on strong BV immediately provides a proof for the
improved convergence rates. However, as of now any analytical proof of a strong BV estimate on meshes
other than nonuniform Cartesian grids is not available in the literature. A strong obstacle in this direction is
the counterexample provided by Després [9]. This article [9] presents an analytical proof that shows the BV
seminorms of finite volume solutions on a staggered grid, see Figure 7, to the problem

Ot + u Oy = 0, for (x,y) € (4,0 0<t<T
alt,z,y) = agle,y) for (v.y) € (~L 07, } (5:3)
with £ =1, u = 1, and «ag(z,y) = H(z — 1/2), where H is the Heaviside step function blows up with an order
greater than h~'/2. This is supported by numerical experiments also. In Table 11 it is evident that the BV
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seminorm is increasing. Considering this result also, the uniform BV estimate on non-Cartesian grids requires
a non-trivial and deeper investigation.

6. EXISTENCE RESULT FOR A DUCTAL CARCINOMA MODEL

A crucial application of Theorem 2.4 is that it enables us to prove the existence of a weak solution to coupled
problems involving a and w, such as (1.2) and (1.3). In this section, we apply Theorem 2.4 to establish the
existence of a solution to the ductal carcinoma in situ problem (1.2). The main idea is to combine a finite
volume discretisation of (1.2a) and semi-discrete variational formulation of (1.2b), and thereby reduce the
interdependence between a and w to a semi-discrete relation (o} ™', u}™!) = F(a?, u}), where (o}, u}) is the
discrete solution at time step n and h is the discretisation factor. Then, an inductive argument is used to show
that the time-reconstruct «y, 5, see Definition 2.3, constructed from (aJ),>¢ is a function of BV independent of
h and ¢. Finally, Helly’s selection theorem, see Theorem A.2i, is invoked to obtain a convergent subsequence of
{an,s}th,s and the limit function is proved to be a weak solution of (1.2a).

Initial and boundary conditions

Set © = (0,1) x (0,¢) in the sequel. Fix an ¢ such that 0 < ¢ < (£ — 1)/2 and define the auxiliary domain
Q(e) := (0,1) x (0,£ — ¢). Recall that for any A C R?, the set Ar is defined by A7 = (0,T) x A.

The initial concentration of the tumour cells and nutrient are «(0, ) = ag(x) and ¢(0,x) = co(x), respec-
tively. We assume that ag(,1)x(1,¢) = 0, which means the initial tumour occupies only a subset of (0,1) x (0, 1)
and later it spreads throughout the duct €2 as time evolves. In Proposition 6.7, we obtain a time 7} such that
the concentration of tumour cells remains zero for every (t,z,y) € (0,T%) x (0,1) x (¢ — 2¢,1). This tempo-
ral restriction is imperative as it enables us to obtain a uniform BV estimate on the finite volume solutions
from (6.10). The boundary conditions on (1.2b) and (1.2c) are as follows:

onze€{0,1}: u-n=0, Vvo-n=0, Ve-n =0, (6.1)
ony=0: u-n=0, Vu-n=0, Vc-n=0, and

ony=~£: u-7=0,Vo-n=0, Vu-7=v,c=0,p=0,

where 7 and n are the unit tangent and unit normal vectors to OS2, respectively. The boundary condition ¢ = 0
at y = 0 used in [15] is replaced by Ve-n = 0 in (6.2) and this indicates that nutrient cannot enter or leave
the interior of duct through the duct wall at y = 0. A supplementary condition Vu - 7 = v is addd in (6.3)
and this manifests from (1.2c¢) and the boundary condition ¢ = 0 at y = ¢. These changes are reasonable from
the modelling perspective as well and aid in obtaining the minimal regularity on w and c that guarantees the
convergence of discrete solutions.

The Sobolev spaces W™P(Q), H™(Q) = W™2(Q), and LP(Q), where 1 < p < oo, are defined in the
standard way. Set the product spaces W"P(2) := W™P(Q2) x W™P(Q) and H™(Q) := H™(Q) x H™(Q). For
w = (uy,...,uq) € N, WmP(Q), d € {1,2}, define the norm |[w|mp0 = 3¢, > 181<m 10Pu; || 0 (), Where
B € N* is a multi-index. Let Xioc() := {v € L2(Q) : v, € X(w) Yw CC Q}, where X = H™ or X = H™.
Define the Hilbert spaces H and V' by

1 un=0atrx=0,z=1y=0,
H := { u:=(u,v) € H(Q) and

andu-7T=0aty=1/¢
Vi={ve H(Q) : v=0aty=/(}.

For ease of notations, the explicit dependence of variables («, u, p, ¢) on time is skipped. For instance, in (6.5),
u stands for u(t, ).

Definition 6.1 (Weak solution). A weak solution of the problem (1.2a)—(1.2¢) is a four tuple (o, u, p, ¢) such
that the following conditions hold:
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(1) For Vi o = (0, V), the tumour cell concentration o € L () is such that, for every ¥ € €°([0,T) x Q),
/ ((a,ue) - Vi g0 4+ va(l —¢)v) dedt + / ap(x)3(0,z) dx = 0. (6.4)
Qr Q

(2) The velocity—pressure system is such that w € L2(0,T;H), p € L*(0,T;L?*(f)), and for every v :=
(¢1’¢2) € L2(07T7H)a w e L2<O7T7 L2(Q))v

T T
/ pa(u, ) de — / pdiv(ep) dadt = / / By dsdt, and (6.5)
0 Qr 0 l 3
/ div(u)wdedt = / v(1 = ¢) wdz dt,
QT QT

where a(v,w) := [,(Vv: Vw + dlv( Ydiv(w)) de for v,w € H'(Q).
(3) The variable ¢ € LQ(O T;V) Satlsﬁes for every ¢ € L*(0,T;V)

T T
/ /V0~V<pda: dt :/ /Qacpdw dt. (6.6)
0o Ja 0 Ja

We define a semi-discrete scheme for (1.2a)—(1.2c), wherein the tumour cell concentration is discretised using
a finite volume method, and velocity—pressure and nutrient concentration are obtained from the corresponding
weak formulations and boundary conditions (6.1)—(6.3).

Semi-discrete scheme

Let X, x Y}, be a uniform grid on Q) with h < e and 0 = tp < -+ < T = T be a uniform temporal

discretisation with 6 = ¢,,41 — ,,. Set ,u o/h. Conbtruct a finite sequence of functions (aj;, u}, pj, ci) {o<n<nN}
on 2 as follows. For n = 0, deﬁne al :Q — Rbya) = a?J, where a?j = fK_ ~ag(x)dx. For 0 < n < N,
, i

define the iterates as follows.

1) The function ¢}’ € V' is defined by, for every ¢ € V it holds
h ¥
/ (Veg - Vo — Qag ) de = 0. (6.7)
Q

(2) The functions (up,p}) € H x L*(Q) is defined by, for every (¢, q) € H x L*(Q), setting ¢ = (¢1,¢2) it
holds

ua(uz,cp)f/pZdiv(cp)d:c:/ ﬂgozds, and (6.8)
Q y=¢ 3

/Qdiv(uﬂ)qda: = /7(1 —cp) qde. (6.9)

Q

(3) Define a} ™ as the trivial extension of @} : Q(e) — R, where a; ' := ar, on Kij = (2im12 Tipa ) X
(yj—1/2, yj+1/2) is obtained by

aryt=ar; —p [(Fz’+1/2,j —Fi_1j2) = Gijsry2 +Gij- 1/2 + V‘Sf ai;(1—cy)de, (6.10)
where

on L om+ n - n An . ,nt n _,n— n
Flyyp; = Ui1y2,%—1,5 — Yi—1/2,%,5> Gijay2 = Vi j—172%,5-1 — Vi j_1/2% 5>

n+1 Yj4+1/2 n+1 Tit1/2
Ui 1/2,] ][ ]i uh Ti—1/258 )det and vz] 1/2*][ ]i (S,yj_l/g)dsdt.

j—1/2 i—1/2
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6.1. Compactness

The functions ay s, Up,s, Ph,s, and cp 5 are the time-reconstructs, see Definition 2.3, corresponding to the
family of functions (a})(n>0y, (U}) >0}, (Ph){n>01, and (c}) n>0}, respectively.

Theorem 6.2 (Compactness). Fiz a positive number apr > a® = supq |ao|. Assume that ao|(0,1)x(1,e) = 0 and
the following property on the discretisation factors § and h:

)
GlorL < PENAL (1+QEV2lan). (6.11)

where the constants € > 0 and €. > 0 are specified in Lemmas 6.5 and 6.6, respectively. Here, €. depends on ¢.
The inverse CFL constant 0 < Giapy, < Y €- (14+QEV2layy) depends on e but is independent of h and §. Then,
there exists a finite time T, < 00, a subsequence — denoted with the same indices — of the family of functions
{(ah,5, Wh.,5,Ph.6:Ch,5) th,s obtained from the semi-discrete scheme, and a four tuple of functions (o, u,p, c) such
that

a € BV(Qr,), uw e L*(0,T.; H), p € L*(0,Ty; L*(Q)), c € L*(0,T,; V)

and as h,6 — 0

— aps — a almost everywhere and in L™ weak—* on Q. , ups — u weakly in L*(0,T,; H),
— pns — p weakly in L*(0,Ty; L*(Q)), and cp s — ¢ weakly in L*(0,Ty; V).

Remark 6.3 (Necessity of strong BV estimate on ay s). The uniform boundedness on «ay, s directly yields a
subsequence that converges in weak-* topology. However, this is not sufficient to show that the second term
in the right hand side of (6.10) converges weakly. It is shown that cj s converges weakly in L?(0,T,; H*(Q)).
Therefore, to establish ap, s(1 — ¢p,5) converges weakly to a(1 — ¢), the strong convergence of ay, ¢ is required.
We employ Theorem A.2i to extract a subsequence of {a, 5} that converges almost everywhere and in L'(Qr, )
for which a strong uniform BV estimate is necessary.

The proof of Theorem 6.2 is achieved over multiple steps, which are provided below. We establish:

— in Lemma 6.5, ¢! has W2P(Q) regularity, which yields ||cs /1,000 estimate,

~ in Lemma 6.6, u} has H} .(Q) regularity, which yields local ||[u}||1 000 estimate,

— in Proposition 6.7, the finite volume solution ay s is bounded, and

— in Proposition 6.8, Corollary 3.5 and the above steps are employed to prove that oy, 5 is a function with BV.

Define the extended functions ¢y, @y := (ay,vy), and Py on Qext = (—1,2) x (—£,£) using even and odd
reflections as follows. Let a € {0,1,2} and b € {0,¢}. Then, on (a —1,a) x (b—£,b) set (Z,7) := (x(—2a*+4a —
1) + (a® —a), (2b — £)y/¢) and define

aZ(I’y) = 02@7@7 5Z(I,y) ::NCZ(E7@’ T)}rzl(xvy) = p2(57@a~and } (6 12)
w(z,y) == (—2a® + 4a — Dup(z,y), op(z,y) == (2b/¢ — 1)vp(Z, 7). ’

In (6.12), we have a compact representation of all reflections employed to construct the extended functions. A
pictorial representation of (6.12) is provided in Figure 8 for clarity. We introduced three spatial domains so far
and relations between them are represented in Figure 9.

Remark 6.4 (Auxiliary domain Q(e)). The internal regularity result, see Theorem A.2iv, only grants u} €
H?(Q(e)). The discontinuity in normal gradient of even reflection of ¢ about y = ¢ disables extending this
local regularity of u}} up to y = ¢. As a result, it is necessary to keep (e) to have enough regularity of u} to
move the analysis forward. We use the Sobolev embedding theorem to obtain uy € H?(Q(e)) — W' (Q(e)),
from which a BV estimate on oy, 5/0(c), see Corollary 3.5, is derived. By imposing a restriction on time, the BV
regularity of oy, 5 is extended to Q.
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Ta=aiCen | m-ai@n | m-oe-o
¢, = cp(=x,y) e, = cy(z,y) o =cp(2—x,y)
pr = ph(—z,y) Pi=pi(®y) | pp=pp2—a.y)
ap = —up(—z,y) uy, = up(z,y) ap = —up(2 - z,y)
T o= v (—x,y) vy = vp(z,y) vy =vp(2 —z,y)
1° ay, = ap(—z,—y) ap =ap(z,—y) |ap=al(2—z,-y)
T = ¢ (—x,—y) ey =ch(z,—y) | =c2—z,—y)
P = ph(=z,—y) pr =pilz,—y) | Dh =12 —z.—y)
up, = —up(—z, —y) uy = up (e, —y) | Uy = —up(2 -2, —y)
s oy = —vp(—z, —y) T = vz, —y) | Uh = —vh(2—2,—y)
-1 0 . 1 2

T

FIGURE 8. Extended functions on the rectangle (—1,2) x (—¢,¢).

Lemma 6.5. For every n > 0, (6.7) has a unique solution cf € V. Moreover, it holds ¢} € H (Qext),
e W2P(Q) for any p > 2, and ||cP||lap.0 < €Q(20)YP||a} 0,000, where € > 0 is a constant that depends
only on €.

Proof. An application of Lax-Milgram theorem ensures the existence of a unique ¢} € V' that satisfies (6.7).
Observe that ¢ € Hey, = {v € H' (Qext) : v = 0at y = £, —¢}. Apply change of variables to establish
erxt Ve - Vode = Q erxt afvdaz for every v € Heyy. Therefore, Theorem A.2ii yields ¢} € HZ . (Qext)-

The W2P(Q) regularity of ¢} is obtained by an application of odd reflection on ¢} about y = ¢. Set A :=
(0,1) x (0,2¢). Define the function ¢ : A — R by

. cp(z,y) if y<¢, and
h- —cp(x,2—y) if y>L.

Let f(z,y) = Qaf(z,y) if y < £ and f(z,y) = —Qaf(z,2 — y) if y > £. Then, note that ¢ € H'(A) and
[y Vér - Vode = [, fvda holds for every v € H'(A). Hence, Theorem A.2iii shows that ¢ € W*P(A), p > 1
and in particular, ||c}|2p.0 < €(20)YPQa}[|0.00.0- O

Lemma 6.6. For every n > 0, there exists a unique (u},py) € H x L*(Q) that satisfies (6.8)(6.9) for every
(p,q) € H x L*(Q). Moreover, it holds @} € Hy (Qexi) and for each & > 0

Juplls o000 <76 (1+EQV2|a}o,0.0),

where €. > 0 depends only on .

Proof. The existence of a unique solution (u},p) € H x L*(Q) follows from Ladyshenzkaya-Babuska-Brezzi
theorem ([1], p. 227). Set the space

u-n=0atzr=-1,2=2, }

H oy := {u:: (U7U)EH1(QGXt) andu-T7=0aty="0y=—/

Then, observe that the extended function (u},p}) belongs to Hey x L?(Qexs) and satisfies for every (¢,q) €
Hext X LQ(Qext)

7 / (Vay : Ve + 1div(ﬂﬁ)div(ga)) dx —/
Q 3 Q

ext ext

P div(e)da = [

M<,02ds, and
y=£,—¢ 3
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y=1/
Q \\
y=l—e > = 0
_______ -= /
- y=40—2¢
| o — ™
I Il Il
! o |
y=0
Qext
y=—L

FI1cURE 9. Relationship with domains.

/ div(uy)gdx = / v(1 —72p)gde.
Qeoxt Qext

Since Lemma 6.5 yields v(1 —¢}) € HZ .(Qext), apply Theorem A.2iv to conclude the proof. a

Lemmas 6.5 and 6.6 are crucial in obtaining the supremum norm estimates on ¢} and div(u}) on Q(e). Since
¢ € W?P(Q) from Lemma 6.5 and u} € H*(Q(e)), the Sobolev embedding theorem with p > 2 yields

leplliooe S IEt2p.0 < CRR20P|af 0,000, and (6.13)
gl S TR ls.2.00) <7E (1 +FQV2L|a}0.00.0)- (6.14)

Proposition 6.7. Fiz a positive number apr > ag. There exists a finite time T, > 0 such that for every t <T,,
supq |6 (t, )| < an holds.

Proof. Step 1. The proof employs strong induction on the time index n. Since a® < ajy, the base case holds.
To establish the inductive case, assume that supg . [an,s(t, )| < an for every k < n. We establish that
SUPg(¢) lan,s(tnt1, )] < apr holds for every t,+1 < T1, for a fixed time T3 > 0.

Step 2. Recall [|[vl 111 (o)) fo lv(t, -)[| Lo (2(e)) dt. The results in (6.14) and (6.11) imply the CFL con-
dition in Theorem 2.4. Then, PrOpOblthn 3.1 applied to (6.10) yields, for any finite time ¢ < T

llon,s(t, )|l Lo ey < B (ao + Hle(uh)HLlLOO(Q(a)T)) (6.15)

where B = exp([[div(u})|piz=(@e)r) + YT + llcplii=(e)))- Then (6.13)-(6.15) imply
llan,s(t; )l o= )y < F(T), where

F(T) := exp (Ty @ (1+CQV20ay) + TQ%(%)l/paM) (ao LTy (14 Q%\@aM)) .

Since Z#(0) —ap < 0 and & is a nonnegative and monotonically increasing function, there exists a finite
time Ty such that [|ax s, -)|| Lo (o)) < F (T1) < an for every t € [0, T].
Step 3. Next, we need to show that oy s is bounded on Q\Q(e). Note that ag(z,y) = 0 for y > 1. The finite
speed of propagation of the scheme (6.10) on Q(¢) and (6.11) yield ap,5 = 0 on (0,T3) x (¢ — 2¢,£), where
Ty = (-2 —1)/(v€. (1 + QEV2lay;). Since h < &, aj; = 0 for every K;; C (¢ — 2¢,(), see Figure 9.
Define T, = min(77,T») to obtain the conclusion.
(I
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Observe that for every (¢, z, z) € (0,T%) x Q X (—apr, anr), the function &(¢, , z) = v(1 — cp5) 2z is Lipschitz
continuous with respect to z, uniformly with respect to ¢ and & and Lipschitz continuous with respect to «,
uniformly with respect to ¢ and z. This is a direct consequence of (6.13).

Proposition 6.8. The function a5 : (0,T,) X @ — R has bounded variation. Moreover, on (0,Ty) x Q it holds
lansBV, .. < EBV, where €y is independent of h and 6.

The proof of Proposition 6.8 follows from an application of Corollary 3.5, the Lipschitz continuity of (1 —
chs(t,x))z of (t,x,2) on (0,Ty) x QX (—apr, anr), and the fact that ap s = 0 on (0, 1) x (£ — 2¢, £), see Figure 9.

Remark 6.9. The regularity wy, 5(t,, ) € H*(Q(¢)) yields |div(un,s)|LiBy, , < ¢ in the assumption (AS.3).
Here, an even stronger condition max(\@muh,ﬂL%BVI’y, |8yvh75\L%szjy) < € with up,s = (up,s,vp,5) holds. This

simplifies the proof of Proposition 6.8 as the splitting of K'-f- into K'-f’-l + K-f’-2 in step 4 of Proposition 3.2 is not

needed. Here, Ki{j is bounded rather by |[0yuns|iBv, , and lan, 5\LlBV than |div(un,s)|LiBY, ,, see (3.4b).
However, Theorem 2.4, from which the proof of Proposition 6.8 follows only demands the weaker assumption
|div(un,s)|L1By,, < €. Therefore, Theorem 2.4 provides a more generic setting that also encompasses the ductal
carcinoma in situ model.

Proof of Theorem 6.2. Recall that Qp, = (0,7%) x Q. Proposition 6.8 shows that oy, s € BV(£r,). Therefore, an
application of Theorem A.2i provides the existence of subsequence of {ap, s} — assigned with the same indices —
and a function o € BV(Qr,) such that oy, s — « almost everywhere and L> weak—* on Qr,. Lemmas 6.5 and
6.6 show that cj 5 € L*(0,T%; V) and (uns,pn,s) € L*(0,Ty; H) x L?(0,Ty; L*(Q)) for every h and 6. Observe
that L2(0,7,;V) and L?(0,T,; H) x L?(0,Ty; L?>(Q)) are Hilbert spaces. Hence, there exist subsequences of
{cn,s} and {(un,s,pns)}, and functions ¢ € L?(0,Ty; V) and (u,p) € L*(0,Ty; H) x L*(0,Ty; L?(2)) such that
ch.s — c weakly in L2(0,T,; V) and (ups,pns) — (u,p) weakly in L2(0,Ty; H) x L2(0, T\; L*(12)). O

6.2. Convergence

Theorem 6.10 (Convergence). Let (a,u,p,c) be a limit of any subsequence of the family of functions
{(ath,5, Wh.,5, Ph.ssCh,5) th,s obtained from the semi-discrete scheme in the sense of Theorem 6.2. Then, (o, u,p, c)
is a solution to the problem (1.2a)—(1.2¢) for the finite time T\ < oco.

Proof of Theorem 6.10. The proof of Theorem 6.10 has two steps.

Step 1 (Convergence of tumour cell concentration). Let « : Q7, — R be a limit provided by Theorem 6.2 such
that a, s — o almost everywhere in Qr,. Then, we show that « satisfies (6.4) for every ¥ € €°([0,T%) x Q).
Set ¢ € €2°(0,Ty) x Q) and N, = T, /0. For ease of notations let o(t,-) denote its trivial extension on
R?, for every ¢ > 0. Multiply (6.10) by h*9};, 97, = fK -)dz and sum over the indices to obtain
Ty + T3 + Ty = T, where

N.—1 I

J
Ty=h* )3 Y (ot —afy) 07,

J
T .__ 2 n—+ n u n n
Ty =h% ) ZZ( U 2 00 UL O /2 T U 12,0015+ U 50 w) Vi

N
\

Yy . 1,2 n+ o n O n n- = o
T = h*6 E E E (v ,j+1/20‘z 5 7 Viga1/2%, 41 T Vi1 0% -1 T Ui,jfl/zai,j) U5, an

nt1
T3::h2(5z ’j/ ][ Qhs 1—Ch§)dx dt.

n=0 i=0 j=

Define the piecewise constant function a?llKi,j = wa ap(x)de for 0 < i< Tand 0 < j < J. Since ﬁf\; =0
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for all 4, j, use discrete integration by parts A 1ii to arrive at
No—1 I

Ty=-h* Y ZZ (Wt —op)ap /Qag(m)ﬂ(o,m)dx. (6.16)

n=0 =0 j=0

A direct calculation shows the first term in the right hand side of (6.16) is equal to

N.,—1 I

trnt1 T.+46
- Z Z Z o/”rl / / O(t,x)de dt = —/ / aps(t, )09 (t — 9§, ) de dt.
tn Kij 5 Q

n=0 =0 5=0

Note that ajs — « almost everywhere (see Thm. 6.2) as h,0 — 0. Then, apply Lebesgue’s domi-
nated convergence theorem to show that the first term in the right hand side of (6.16) converges to
—fQT* a(t,z)0y9(t, x) dt dz. Since o) — ag in L?(£2), the second term in the right hand side of (6.16)
converges to — [¢, ao(z)0(0, x) dz.

The convergence of T3 is shown next. The steps for T follow similar steps. An application A.lii on T} leads
to

N,—1 I n o __ .n n A ()
_ 5h2 ’19 |vn. ‘Ozi,j Qi1 - |’U7l. ‘Oéi,jfl Q; j
i,j+1/2 2 i,j—1/2 9

n=0 =0 j=0
N.—1 I an n n n
,,-|—a441 a,,_1+a,,
Ly Yy (//
n=0 =0 j=0
Set o' ;11 =0 and o' _; = 0. Then,

N,—1 I J-1 on

S
[Ton <602 D0 D0 Y (0550 =90l ,j+1/2|% +0(h)

n=0 =0 j=0
N.—1 I

‘8 19(7t T ||L°° Qr,) Z 62]7‘2 |a13 - azr’tj-l-l' +O(h)7

n=0 =0 j=0

and hence (6.14) and Proposition 6.8 imply |T21| — 0 as b — 0. Use (A.1ii) to obtain

5 ||uh sllzee@r,)

N,—1 I

Tyy = —6h? Z ZZ (741 = V508 1 o= + O(h). (6.17)
n=0 =0 j=0
Add and subtract 525;81 ZLO Z;-]:O(ﬁ?jH 97 ;) ” “2ap s to (6.17) to arrive at

N,—-1 I

j+1 20‘1 J+L [ an n n n
T22 — 5h2 Z ZZ ] / (191 J+1 191 191 ,J+2 + 191'7]'4‘1)
n=0 =0 j=0

N.,—1 I

_5h2 Z ZZ S ',j+1/2;vgj—1/2azj. (6.18)

n=0 =0 j=0

Use of the definition of ¥}, mean value theorem, and CFL condition (6.11) to show that the first term in
the right hand side of (6.18) converges to zero. Define 0y 5p : Qr, — R by Oh s = (97,4 — U7;)/h on
(tn,tnt1) X K ;. Then the second term in the right hand side of (6.18) can be expressed as

/ /vhgah58h519dmdt—> / /vaa ¥ da dt,

where Lemmas A.31 and A.3ii are applied in the last step. Follow the same steps for 75 to obtain T, —
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- fOT* Jo@w- VI da dt. Rewrite T3 and apply Lemma A.3i

T. T
/ / yaps(1 — cps) dedt — / / vya(l — ¢) de dt.
o Ja 0o Jo

Plug the above in Ty + T35 + T3 = T3 to arrive the desired conclusion.
The proof of steps 2 and 3 follows from a direct application of weak convergence of (ups,pn,s) and cp 5.
Hence, we omit the proofs.

Step 2 (Convergence of pressure-velocity system). Let (u,p) : Qr, — R? be a limit provided by Theorem 6.2
such that up s — w weakly in L?(0,T,; H) and p; s — p weakly in L%(0,Ty; L?(2)). Then, (u,p) satis-
fies (1.2b) for every (v, q) € L?(0,T.; H) x L?(0,T; L*(Q)).

Step 3 (Convergence of nutrient concentration). Let ¢ : @7, — R be a limit provided by Theorem 6.2 such
that ¢j5 — ¢ weakly in L?(0,T.; V). Then c satisfies (6.6) for every p € L%(0,T; V).

O

7. CONCLUSIONS

A uniform estimate on total variation of discrete solutions obtained by applying finite volume schemes on
conservation laws of the form (1.1) in two and three spatial dimensions for nonuniform Cartesian grids is proved.
We relaxed the standard assumption that the advecting velocity vector is divergence free. This enables us to
apply the finite volume scheme to problems in which the advecting velocity vector is a nonlinear function of the
conserved variable. Since the underlying meshes are nonuniform Cartesian it is possible to adaptively refine the
mesh on regions where the solution is expected to have sharp fronts. A uniform BV estimate is also obtained for
finite volume approximations of conservation laws of the type (4.1) that has a fully nonlinear flux on nonuniform
Cartesian grids. Numerical experiments support the theoretical findings. The counterexample by B. Després and
numerical evidence from Table 11 indicate that nonuniform Cartesian grids are the current limit on which we
can obtain uniform BV estimates. Extending Theorem 2.4 to perturbed Cartesian grids (Fig. 6b) might be the
immediate future step. Theorem 6.10, which proves the existence of a weak solution of (1.2), attests to the
applicability of Theorem 2.4 in the analytical study of coupled systems involving conservation laws and elliptic
equations.

APPENDIX A.

A.1. Identities

(i) If a,b,¢,d € R, then the following identities hold: ab— cd = {&relb=d) | (a=e)t+d) g ¢ — ¢+ — g~ where
a™ = max(a,0) and a~ = — min(a, 0).

(ii) Discrete integration by parts formula ([11], Sect. D.1.7). For any families (a,)n=o,.. ~n and
(bn)n=o,....n of real numbers, it holds

N—-1 N—-1
Z (an+1 - an)bn = - Z an+1(bn+1 - bn) +anbn — agbo.
n=0 n=0

A.2. Theorems

(i) Helly’s selection theorem ([13], Thm. 4, p. 176). Let 2 C R? (d > 1) be an open and bounded set
with a Lipschitz boundary 9€, and (f,)nen be a sequence in BV(2) such that (|| fu|/Bv(q))n is uniformly
bounded. Then, there exists a subsequence (f,,), up to re-indexing and a function f € BV(2) such that as
n — 00, f, — f in L}(U) and almost everywhere in Q.
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(ii) Internal regularity of Poisson equation ([2], Thm. I11.4.2.) Let f € L?*() and Q C R? be an open
and bounded set. If u € H'(£2) is a solution of the Poisson equation —Au = f, then u € HZ (). Also, for
every bounded and open sets Q) C Qs C Qy C Q there exists a constant %' (€2;,Q2) > 0 independent of u
such that [|ull2.2,0, < €| fllo.2,0,-

(iii) Global regularity of Poisson equation ([19], Cor. 8.3.3). Set m > 2 and p > 1. Let 2 be a rectangle
and f € Wm=2P(Q). If u € HY(Q) is a solution of the boundary value problem —Au = f, where (A —
1)Vu-n+ A =0, A € {0,1}, then u € W™P(Q).

(iv) Internal regularity of Stokes equation ([2], Thms. IV.5.8, IV.6.1). Let 2 be an open and bounded
set and g € HFTY(Q), k > 0. Let (u,p) € HL.(Q) x L} _(Q) be a solution to the compressible Stokes

loc loc

system (1.2b). Then, it holds (u,p) € H T2 5 HEY1(Q). Also, for every bounded and open sets Q) C Qg C

loc

Qs C Q there exists a constant €(2, Q2) > 0 independent of w and p such that ||wg12,2,.0, + |Pllkt1,2,0, <
Cllgllerr2.0.-

A.3. Lemmas

(i) Weak—strong convergence ([11], Lem. D.8). If p € [0,00) and ¢ := p/(1 — p) are conjugate expo-
nents, f, — f strongly in LP(X), and g, — ¢ weakly in L9(X), where (X, u) is a measured space, then
Ix fagndu — [y fgdp.
The next result follows from Lebesgue’s dominated convergence theorem.

(i) Bounded-strong convergence. If f, — f in L?(X), g, — g almost everywhere on X, lgnllLe(x) is
uniformly bounded, then f,,g, converges to fg in L?(X).
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