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MATHEMATICAL MODEL OF HEAT TRANSFER THROUGH A CONDUCTIVE
PIPE *

MATKO LJULJ, EDUARD MARUSIC-PALOKA, IGOR PAZANIN AND JOSIP TAMBACA**

Abstract. The standard engineer’s model for heat transfer between the fluid flowing through the
pipe and the exterior medium neglects the effects of the pipe’s wall. The goal of this paper is to prove
that they are not always negligible. Comparing the ratio between diffusivities of the fluid and the wall
with the wall’s thickness, using rigorous asymptotic analysis, we find five different models for effective
description of the heat exchange process.
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1. INTRODUCTION

A common situation encountered by engineers is heat transfer to fluid flowing through a tube. This can occur
in heat exchangers, boilers, condensers, evaporators, radiators, and other process equipment. Therefore, it is
useful to know how to model such situation. Most frequently the wall of the pipe is neglected as it is thin and
highly conductive. However, we will show that this is not necessarily the case in all possible physical situations.
We aim to derive the effective model by taking into account possible effects coming from the pipe’s wall.

We study the heat conduction through the pipe filled with viscous fluid. There is a temperature difference
between the fluid in the pipe and the exterior medium resulting with a heat exchange. There is a significant
difference between the heat diffusivity of the wall of the pipe and the fluid, depending on both; the material the
wall is made of and on the fluid the pipe is filled with. The pipe can be made of some metal (copper, steel, ...)
that conducts the heat much better then the fluid, but it can also be made of PVC or concrete that conduct
much weaker then the fluid. It can even have some isolating layer around it to prevent the heat exchange. To
get some idea of physical coefficients we mention here that the thermal diffusivity (the coefficient appearing in
the heat-conduction equation) is defined as

k
a = —, k — the heat conductivity,

PCp
p — the density, c, — the specific heat capacity.
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The values of o (measured at room temperature in m?/s) for different materials are given in the following table:

Material Thermal diffusivity

Copper a=111 x 10~*
Steel a=188 x 107°
Aluminium o =1.43 x 1077
Glass a=34x 1077
Rubber a=08—-1.3x 1077
PVC a=8 x 1078

Water a=143 x 1077
Alcohol a="T7x 1078

In view of that, the ratio between the thermal diffusivity of the pipe’s wall and the liquid can be as high as
10% or as low as 10~ 1.

The problem of heat exchange between the pipe and the exterior medium has been extensively studied in
the literature. Asymptotic modeling in case of straight pipe can be found, for instance in [11,13], and the
references therein. The effects of curvature for the process in curved pipe was studied in [14,15]. The effects of
pipe dilatation, due to the heat, were considered in [16,17]. Similar results for heat conduction equation in a
body containing a thin interlayer with high contrast conductivity was studied in [1], Chapter 9, Section 4. Like
in our paper, the discrepancy in conductivity is described by €7. Five different cases: very poorly conductive
(v > 2), poorly conductive (y = 1), conductive (y = 0), highly conductive (y = —1) and very highly conductive
interlayer (v < —2) were found. The study of a rod with three highly contrast coefficients was studied in Chapter
2 of [20]. Study of two linearly elastic materials made of material with different stiffnesses has been done in [2]
and [8], using similar approach.

2. THE PROBLEM

After changing the variables by dividing with characteristic length R (the radius of the pipe), the pipe and
its wall are described (in cylindrical coordinates) as

P = {(r,cp,z)ERS; 0<p<2m, 0<r<1,0<z<L}
— the interior of the pipe,
P.={(r,p,2)eR’; 0<p<2m, 1<r<l+e 0<z<L}
— the wall of the pipe
Py = {(r,(p,z)eRS; O0<p<2m, 0<r<1l+e, O<z<L}.

Using standard parametrization for the cylindrical coordinates F(r,¢,2z) = (rcosg,rsing, z) we denote the
physical sets in Cartesian coordinates

P =F(P), P.=F(P.), Pi.=F(P.).

~

P1+5
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The equation of heat conduction that we are about to study is a simple stationary convection-diffusion
equation. We denote by ©¢ the temperature and by w the Hagen—Poiseuille velocity through the pipe, i.e.

¢ — Pr 2
w(r) = vy (1 —17r*),

where py and p, are the pressures on left and right ends of the pipe, respectively and p is the dynamic viscosity.
We assume that p, > p,.

10 ( 00° 1 9?0°  9%e° 00° .
o (r@r (T or ) Tz 0p? + 022 ) = Ruw(r) 0z n B, 21)

10 ([ 00° 1 9?20°  9%e° .
s (rar (r or ) T2 02 * 022 ) =0 e 22)
Qs 88% =((g—©°%) for r=1+4¢, (2.3)
O°(1—, ¢, z) = ©°(14, ¢, z) — continuity of the temperature at r =1, (2.4)
af 8; (1—,¢,2) = as ?(1—1—, ¢, z) — continuity of the flux at r =1, (2.5)

r

00°
—ay =9, 0) + Ru(r) ©°(r,¢,0) = s (Fr = ©°(r,¢,0)), 0<r<1, (2:6)
Oéf 88%(7“’()07L)_R'LU(7“) @5(7"7@7[/):)\f(Fr—@E(T"(p,L)), 0<T< 17 (27)
— 8762(7“,90,0) = X(Fp — ©°(r,p,0)) for 1<r<l+e, (2.8)
As 66%(7“7 (2 L) = )\S<FT - ®E<r7 ®, L)) for 1<r<1 +e. (29)

Here ay and «a, are the thermal diffusivities of the fluid and the solid, respectively. The heat exchange is
described by the Robin boundary condition, with renormalized transfer coefficient on pipe’s wall

(=1,
PCp
where h is the heat transfer coefficient, ¢, is the specific heat capacity and p is the density, and g is the exterior
temperature. Ay and Ag, Fy and F;. play the same role as ¢ and g on the ends of the pipe. The coefficient h is
proportional to the heat conductivity k& of the medium surrounding the pipe. That could be air or some other
fluid. Tt also depends on the geometry of the pipe as well as on the convection around the pipe (if any) and it
is usually computed from the Nusselt number of the surrounding medium. Different authors propose different
ways to compute h. We mention here the law proposed by Churchill and Chu [3] (see also [5,7])

2

PR 0.387Ra'/®
2R\ + (1 + (0.669/Pr)9/16)8/27 |~

where Ra and Pr are Rayleigh and Prandtl numbers, respectively.

As for the boundary conditions at the entry z = 0 and at the exit z = L of the pipe, for the sake of simplicity
we have imposed the Robin boundary conditions. Another possibility, that can be treated similarly, would be to
impose the Neumann condition. Imposing the Dirichlet condition on both ends has no physical sense. It would
mean to impose the temperatures of the fluid entering the pipe and exiting the pipe while we are trying to
model the process of cooling (or heating) the fluid in the pipe by surrounding medium. Bearing that in mind,
it would make sense to impose the Dirichlet condition at the entry of the pipe, and either the Neumann or the
Robin condition at the exit.
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For our analysis we prefer to write the equations in non-dimensional form. To do so we take the characteristic
temperature T, and the characteristic velocity

1 2m
V= / / w(r)rdrde = 81 (pe — pr) (the Hagen—Poiseuille velocity) .
o Jo M
Then we put
(,_)E
0°F = — === ==
T’ v(r) v 0

We define the Péclet number (for the fluid part, obviously, because in the solid part no convection appears)

_ LV
-

Pe

For the sake of our analysis we relate the ratio of two diffusivities as/a s with the relative thickness €. More
precisely, we assume that
L kel (2.10)

af

for some ¢ € R. Since for most pipes the thickness is between 1 and 5mm, and the length is measured in
meters, typical € is of order 1073, It seems reasonable to relate the ratio of thermal diffusivities with that small
parameter.

The goal of our paper is to perform the asymptotic analysis using the pipe’s wall relative thickness € as the
small parameter (relative, since ¢ is the physical thickness of the pipe’s wall divided by the radius R).

We also define the Nusselt numbers as

NT:RC, Ng:ﬁ7 N;;ﬁ
af af af
and p
G = i.
Now our problem (2.1)—(2.7) reads
10 ( 06° 1 .9%6°  0%6° d0°
ol -+ 55 P = in P, 2.11
(7‘87“ <T8r)+r2 02 * 822)+ e o(r) 0z 0 e (2.11)
10 ( 06° 1 .0%°  0%0°
-2 Il in P, 2.12
r or (T 87‘) r2 0p? * 022 0 m (2.12)
ngaﬂa_N (G —06°) for r=1+4¢
or " o ’
98(1_7()07Z) = 96(1+7(p72)a
00° 00°

o0
—E(T,@O) + Pew 0°(r,¢,0) = NZf(F[ —6%(r,9,0)) for 0 <r <1,

o0°

o (r,,L) — Pev 6°(r, o, L) = N/ (F, — 0°(r,, L)) for 0 <r <1,

g

—kel (r,p,0) = NZ(Fp — 6°(r, ¢,0)) for 1<r<1l+e,

kel (ryo, L) = N (F, —60°(r,p,L)) for 1<r<l+e (2.13)
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The weak form is now formulated on a domain Py, = [0,1+¢) x (0,27) x (0, L) by: find 6° € H'(P1.) such
that
2
00° o 106° Oy 06° oy
///(87“67" 7"8<p8<p+ 8282dddr
e p2m 0° A 1 o0° Oy 06° 9
q i il
+ e / / / < or or 7“8(,0 &p—'_raz 82’) dzdpdr

2m
fPe/ / / Hgdzdgpdr

27
+Nr(1+5)/ / 0°(L+e,0,2) (1 +6,p,2)dzdyp

1+e 2 (2 14)
l/ N.(r) 0% (r, 2, 0) (1, 0, 0) g

1+4¢ 27r
/ N.(r)6°(r, o, L) (r, ¢, L)rdrde
27
=Nm+a/(/amawua@@®w
0 0
27 1+e 27 1+e
+/ <MWHM@MMMWWW+/‘/ N.(r) Fy(r, 0) (r, 0, L) rdr dg
0 0 0 0

for any ¢ € H'(Py4.). Here we have used the notation

[N for 0<r<1,
NZ(T){N; for 1<r<1l+e

for the piecewise constant function V.. In addition we denote

N, max = max N,(r), N, win = min N, (r) > 0.

3. THE MAIN RESULT

Before we start with rigorous analysis we want to announce the main result of the paper.

Depending on the ratio between the diffusivities of the fluid inside the pipe and of the pipe’s wall, described
by the power ¢ in (2.10), we obtain five effective models for describing the problem of heat exchange between
the fluid flowing through the pipe and the exterior medium. In all cases the effective equation remains the same
heat equation

00 .5
—Af+Pev— =0 in P.
0z
The difference lies in the effective boundary condition describing the heat exchange through the pipe’s wall
(parametrized in cylindrical coordinates by S). We have

— For ¢ < —1 the thermal conductivity of the pipe’s wall is so large so the temperature is constant in the
entire wall of pipe. Only overall temperature | ¢ G influences the process. Furthermore, the effective boundary
condition is the non-local Robin condition, that we believe to be new in the literature, of the form

0(1,¢,2z) = const. on S, ?(1) =N, (é—?(l)) ,
7




632 M. LJULJ ET AL.

-~ 27 L o 27 L
0(r) :/ / O(r,p,2) dpdz, G:/ / G(p,2) dpdz
o Jo o Jo

are the mean values of the fluid temperature and the temperature of the exterior medium, respectively.

— For ¢ = —1 the thermal conductivity of the pipe’s wall is large enough that longitudinal propagation at
the boundary is important. In fact, the two processes (in the fluid and in the pipe’s wall) are of the same
order and we get the coupled boundary value problem consisting of the heat conduction equation in the fluid
and the curvilinear version of the heat equation (the Laplace-Beltrami operator replacing the Laplacean)
in the 2D pipe’s wall S. After decoupling, we get the effective wall law in the form of peculiar second order
boundary condition

where

00
E(l,gp,z)—ﬁAse(l,@,Z):NT[G((,O,Z)—G(LQQZ)} on S.

So, due to the fact that the pipe’s wall conducts very well, the heat is not only conducted across the pipe’s
wall but also along the pipe.

— For —1 < ¢ < 1 no influence of the pipe’s wall conductivity is present in the limit model (classical engineering
case), i.e. the effective boundary condition is similar to the one we started with

00

S (1.9) = N, [G(p.2) (1,9 2)] on S,
r

— In case ¢ = 1 the thermal conductivity is small enough that it reduces the effective Nusselt number in the
boundary condition from N, to

x N, K
Kk + N, K+ N, <
We get the effective boundary condition of the form
00 Kk N,
—(1 = —0(1 .
gy (L2 = [Gle,2) —0(Lp,2)] on S

— The last case is when ¢ > 1. In that case the wall of the pipe conducts the temperature so badly that it
effectively behaves as an insulator. The effective boundary condition is thus the homogeneous Neumann
condition, as if there is no heat exchange between the pipe and the exterior medium

00
or

The original € problem is formulated on a joint fluid and thin wall domain. On the other hand all obtained
effective models are given only on the fluid domain P, with different boundary conditions on the pipe’s wall.
Thus the effective models have simpler mathematical structure and can be solved more efficiently. However in a
real life situations it may be difficult to decide which effective model to use. Thus in Section 7 we also formulate
unified model (7.1) given on the fluid domain P; only which is & dependent and has the same asymptotics
with respect to € as the original € problem (2.14). Furthermore to see the qualitatively different behavior of the
solutions of the & model (2.14) in Section 8 we do numerical simulations in different regimes and compare their
results with simulations for the limit models and the unified model (7.1).

(1,,2)=0 on S.

4. A priori ESTIMATES

Before we start with the analysis let us introduce some notations. Additional sets in the cylindrical coordinates
we will use are:

Sy ={r} x{0,2m) x (0, L), re{l,1+¢e2}, S =(0,2m) x (0, L),
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'7% = [07 1) X (0,27T) X {0}7 ’7{+5 = [07 1 +5) X (0,27T) X {O}a
71 =10,1) x (0,2m) x {L}, 714 =1[0,1+¢) x (0,2m) x {L}.

Using again standard parametrization for the cylindrical coordinates F(r, ¢, z) = (rcosp,rsiny, z) we also
introduce :ohe associated images under F' of thg defined sets. We have already introduced Pl = F(P), P1+e =
F(Piy.),P. = F(P.). In addition we define S; = F(S1),S14c = F(S14:),7) = F(3]), % = F(3{),%,. =
F(vy +€),'Nyf e =F (v +e)- These sets correspond to the geometry in Cartesian coordinates. Furthermore we
introduce the notation - for functions defined in Cartesian coordinates, for instance for solution 6° we introduce
the function 6 : Py.. — R such that

0° = 6°o F.

Any function given in cylindrical coordinates is, obviously, assumed to be 2m-periodic in angular variable ¢. To
shorten the notation we will also use the following notation for integrals, for instance,

1 p2r L
/ fav = frdrdgodz:/ / / frdrdedz,
Py Py 0 Jo 0

~ _ 14-€ 27
fda= (1+5)/ flr=14e dpdz, fda:/ f(ryo,0)rdrde.
s 0 0

& 4
Sl+5 71+5

Before we start, let us rewrite the problem (2.14) in the weak formulation and in Cartesian coordinates: find
0° € H'(Py4.) such that

o ~
V6° - Vip AV + kel / Vs -V dV — Pe/ v %% 0°dv
B p, Oz
+N, [ 6 Pdat N. 6° ¢ da + N, 6° ¢ da (4.1)
Sl+s ’?{'4»5 :Y{«Fs
=N, [ éz/;da—i— Nzﬁgzzda—&— NZF'TJ)da,
Sl+s ;Yf+5 :Y{+E
for all ¢y € H 1(]31+€). Throughout this paper we assume that
G € Loo(g1+€)7 Fg € Loo(i/f+5)7 FT € LOO(’?1+5) (42)

Under that assumption, the existence of weak solution can be found, for example, in [4].

Theorem 4.1. Let §° € H'(P1y.) be a solution to the problem (2.11)-(2.18), under the assumption (4.2).
Suppose that

3nN{
Pe < 222 (4.3)
8
Then
(a) there exists a constant
O = C (NeiNor[Glpags,. o Pl ) VPl oy, ) > 0
independent on e, such that
1 = ~ |2
- L ret|VE| N, |d + |V 5l + |V <C. (44
2 ‘ L2(Py) L2(P;) L2(Sl+s L2('71+5 L2 71+E) ( )
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(b) 6° € L>(Pyy.) and there exists a constant
M = M (NeiNoo (Gl s, Frlieiag, o+ [Pl ) > 0.

independent on e, such that
| <M. (4.5)
Leo(Prye)

For the proof we use the idea of Stampacchia [21] (see also [18]). Thus we first state classical Stampacchia’s
lemma.

Lemma 4.2. Let Q C R™ be a bounded domain and G : R — R be a Lipschitz function such that G(0) = 0.
Then, for any uw € WHP(Q), 1 < p < 0o, we have G(u) € WHP(Q) and

VG(u) = G (u)Vu.

To continue we need a technical results:
Lemma 4.3. For any e € (0,1) and Ve H'(Pyy.) the following inequality holds

2

P o _12
’w L2(P =2 or + ’w L2(3 (4.6)
(Pre) T L2(Prs) (S1+e)
Proof. Let 1 be a smooth function. Then
1+e a,(/)
|’(/}(ra<pa2)| = ‘_/ E(Py%z) dp+¢(1+€7@az)
s

14¢ 9 2 3 1+6d 3
S(/T (gf(p,smz)) pdp) (/r pp> + (1 +e,9,2)|.

We take the square, estimate, multiply by r and integrate over P . to get

oy

2
/ [W(p, . 2)]" pdpdpdz < 2/ (a(p,%z)> pdpdpdz
P1+€ r

Prye

x/()1+6(ln(l+s)—lnr)r d7‘+(1+5)2/s ||

1te
~ 2

_1 2 o 7

_2(1+E) /131+€<a7“> +2/5'1+a "(/)

since ngE =(1+¢) fsl+a. O

Proof of Theorem 4.1. First of all, due to the Theorem 3.14. from [19] we know that for any solution of (2.11)-
(2.13) we have 65 € C%7(P;,.), for some 7 > 0. Furthermore, there exists some C' > 0 such that

6°(2) — 6°(y)

2

9

15

- = . + sup
CO7(Piye) L=(Piye)  a#y |z =yl
ne ~
S C < 9 LQ(PlJrE) + |G‘Loo(5'1+5) + |FT‘LOO(:YI‘+E) + |F£|LOQ(;%+E)> .
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However, as far as we know, the constant C' depends on ¢ and we have no idea how. Thus, we can use the

regularity of 6°, but the estimate is of no use to us.
We start the proof of the estimates (4.4) and (4.5). Let

0% (x) = max {07 éa(x)} , 6% (x) = max {07 —5€(x)} .

Notice that the functions G(t) = max{0,¢} and H(t) = max{0, —t} are Lipschitz and G(0) = H(0) = 0, so that
Lemma 4.2 applies. Furthermore

/ o 1, t>0 , . -1, t<O0
so that ) ~
v (x) = Ve (x) ifx is such that Hf(x) >0
+ R if x is such that 6°(x) <0’
and

. —V6°(x) ifx is such that 6°(x) < 0
0 - Z .
Vo= (x) {O if x is such that 6°(x) >0

Obviously 65 ,6° > 0 and 6 = 05 — 0, while 6¢ ‘ = 07 + 0. We derive the estimate for <. The estimate for
0% can be derived analogously. From two estimates for positive and negative part one gets directly the estimate
for 0¢.

For A > 0 we test the equations (2.11) and (2.12) by (Hj_)AH (however in Cartesian coordinates). That is a
suitable test function since we know that 05 € HY(Py,.) N L®(Pyy.). We get

(A+1) (/ Ve | (ei)u%/ AN )) /S+ (02

s [N @) [N @) -0 re [0 o) SE (47)
e Fpe Py z
=N, G )"+ NF 6T+ | NFr (0
§1+5 ’?I‘ﬁ»s :Yfﬁ»a

As for the left-hand side, we obviously have

ARG —ujgf\v[wm”é]z
so that
(A+1) (/ \ves |” (65) +ns/ vos |” (98))
= HA (/ v [(6:)" %] +nsq/ v [5)? ) -
Furthermore
_(“1)/151” (6)™" %=—% v o [0

A+1 o\ A2 c\ A2
:M(/ﬁv(@) [ ).
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The first term in the right hand side of (4.9) is positive and the second one, since v = 2(1—r?), can be estimated

as
e \M2 2/
2] <=
/v v (%) T Jar

1

2

A
(05)""7

%i, v’ =2+ ), as before, gives

A1 1 e\ A1
[ eyt =] Lere)
Sl+5 Sl+s

1 1 A + A 242 A2
S 12 <T |G|L2+)‘(§1+a)> + TIE [0

The Young inequality with r =

A+ 24+ A HIL2Ex(S140)
For
1+
(1 24 A\
S \4 1+
we get
L+A e 1 L (N e _ e
2+ @ A+2\ 1 B A+2 A+2 T A+2
and therefore
A+1 1 Nr 2+
A N )
/SHaG ( +) = Nf2 4 |G‘L2+/\(Sl+s)
N, 1+3 2
Y 0¢ 2
+ 4 (+) L2(8142)
Using the same idea we prove that for i € {r, ¢}
NE () < L (4| R o
~i AT 4N+ 2 = T peags
Vite ( +2) (ise) (4.10)
1+2
VN, 95 2 .
4 ‘ L2(3i,.)

At this point we need the assumption (4.11), i.e. that

3r NS 24 A

P _
A

(4.11)

since then there are no negative terms coming from the left hand side of (4.7). Combining (4.7)—(4.10) we arrive

at
i);) (/‘V 961+ /‘V 951+}>
2 Pl
2N
+7

422 1 22
+*/ N. | (65)"
it 2 Jse,.
242
L2+)\(’?f+s)> ‘|

41+)\
+ 2
1

2+>\ N 242 Nz FZ

(98) o
2+
( )
szu)

N, 242
+m 4 (4 |G|L2“(§1+a)) ’




MATHEMATICAL MODEL OF HEAT TRANSFER 637

Obviously, for A = 0, under the assumption that Pe is such that (4.11) holds, we get the standard variational

estimate
[orwof e [ e, [ jefe [N fe]?
Py P, Site ’~Yf+€ (4 12)
2 2 ’
\ 4 |VN: F| AN, |Glas -
ren oy, ) T AN Gl
Next step is to take the limit as A — +o0. First we can assume that A is large enough such that (4.11) holds.

We can do that, since we have imposed the condition (4.3) and limy_, i— = 1. Next, we suppose that it is
large enough to have

<4
:/{‘Fs

4

A>— =2
Z N,
thus N, > 4/(A 4 2), so that
(14X o< N,
2(1+2)° "~ 2
and
(I+2X) 22
SrA / v [(6:)" 2] +neq/ v () } / (05)""]
§1+a
41+)\ 24X 4.13
< /N, F, /N, F, (4.13)
TA+2 ( : L2 (. )> " < = Lz“(ﬁﬁe))
1 N, 24X
+ A+2 4 (4 |G|L2“(§1+a)> ’
We have two cases: ¢ > 0 and ¢ < 0.
For ¢ > 0 and ¢ small enough such that ke? < 1, we have
14 M)ret A712 22
e e A (O IR
2 (1 + %) Prye Site
FEESY 242 24X 14
< /N, F, 4 (=N, F (4.14)
TA+2 ( LM%J) ( “lraeny,. >>
1 N, 2+

et ol CHLCIPNERY

Let K > 0 be defined by

VN, F,

4

_ )
L2 (31,)

1 N,
d= L O
max{2 1 }

(1—&-)\)55‘1/ ‘0 |2+)\ 3d KA
s 7 o TS

242 /Nz F

K :max{4

and

Now (4.6) gives

or
1

124(1+3)° 7
I 2
‘9+‘L2+>\(]51+5) S <(>\+ 2)(1 4 )\)qu K. (415)
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For A > 3 a simple calculation shows that

(1+2)? 1
A+t N 3

We end up with

4d \ >
|65 |L2+A(P1+E> <K (mq) : (4.16)
As A — +00 the left hand side converges to ’9 +’ Loo(Pris)’ The right-hand side converges to K. Thus
0% |Lw(p1+5> < (4.17)
For ¢ < 0, we deduce from (4.13)
14+ A 2712 22
LN (e len ) L e
2 (1 + %) Py, Site
41+ 2+ 24+
< 2+)\/NZ F’r 2+ NZ F
TA+2 ( L“*(%af)) i ( lraencay,. ))
1 N, 24+
+373 7 (o)
and, following the same steps, we get (4.17). O

We now have the following a priori estimates:

Corollary 4.4. Let g € R and let 65 be a weak solution to the problem (2.11)-(2.13). Suppose that (4.2) and
(4.3) hold. Then, there exists C > 0 such that

e (4.18)
Lo (Pi4c)

vee| <, (4.19)
L2(P1)

he 4.20

L2(S14¢) ( )

6° <C, (4.21)
L2(37,.)

e <c (4.22)
L2(3L,.)

VO < CeE. (4.23)
L2(P.)

Since we will take some limits in the weak formulation (6.16) we rewrite the estimates related to P. from
Corollary 4.4 in cylindrical coordinates.

Corollary 4.5. Let ¢ € R and let ¢ be a weak solution to the problem (2.11)-(2.13). Then, there exists C > 0
such that

00°

’ 06°
L2py |0

L2(P;) ' 0z

q

<Ce 2
L2(P:)

’ % (4.24)

or
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Proof. The statements are consequence of change of variables and in particular since r is bounded in P., namely
1<r<l4+e<2. |

Remark 4.6. The condition (4.3) is used here for the a priori estimate and later on for uniqueness of the
solution to the effective problems. We could avoid any restriction on the Peclet number Pe by imposing the
Dirichlet boundary condition on pipe’s ends (at least on the left end). Roughly speaking, the Dirichlet condition
corresponds to the case Ng — 00.

5. TWO-SCALE CONVERGENCE FOR THIN DOMAINS

In this section we recall the definition and the basic properties of the two-scale convergence for thin domains.
The method introduced in [9] (see also [10]) was designed for deriving effective physical laws in thin domains. We
are dealing here with a junction of a thin domain with non-thin ones. The method has been applied previously on
junction problems between two thin domains in [12]. We will define it for the thin domain which appears in our
problem after change of variable by cylindrical coordinates (r, ¢, z), 4.e. for domain P. = (1, 14¢) x (0, 27) x (0, L).
For the definition of the two-scale convergence we will also need the rescaled version of this set

P2_1 = <1,2> X <0,27T> X <07L>

with variables (p, ¢, z). As usual, all functions given in cylindrical coordinates are assumed to be 2m-periodic
with respect to .

Definition 5.1. We say that a sequence {v.}.~0, such that v. € L?(P.), two- scale converges to a function
V € L?(P>_1) (we use the notation 2s convergence in the sequel) if

1 -1
g/ ve(r, 0, 2)9 (1 + TT @, Z> drdedz — V(s p,2)0(p, ¢, 2) dpdpdz
P Py

for any ¢ € L?(Pa_1).

The definition is slightly modified compared to the one from [9], due to the curved geometry of our thin domain.
We notice that the slow variable r and the fast variable p are related by formulas

r—1
p=1+

= r=1+e(p-1 = gdr:dp—i—O(s).

For such convergence, we have the following compactness result (see [9], Thm. 1).

Theorem 5.2. (a) Let the sequence {v:}eso be such that v. € L*(P.), and that

[ve|2(p.y < CVeE.

Then there exists function V.=V (p,p,z) € L?>(Ps_1) and a subsequence of {v:}c>o (denoted, for simplicity,
by the same symbol) such that
ve =V 2s. (5.1)

(b) Let the sequence {v:}eso be such that v. € H(P.), and that

el 1Py < C/e.
Then there exists a subsequence of {v:}e>o (denoted, for simplicity, by the same symbol) and functions

V =V(p,2) € H=H"((0,2r) x (0, L)),



640 M. LJULJ ET AL.

ow
Wel= {WGLQ(le); o € L*(Po-1) }7
such that
ve — V' 2s,
174 5.2
Vv, — V%Zv + 8787« 2s, ( )
dp
where oV v
v<p7zv - E (P + % e‘P

is the tangential (intrinsic) gradient on the pipe’s side.
(c) Let the sequence {ve}eso be such that v. € HY(P.), and that

[velL2(py < CVE,
€ |V7)5|L2(PE) < Chv/e.
Then there exist a subsequence of {ve}eso (denoted, for simpliity, by the same symbol) and function W € ),

such that
ve = W 2s, (5.3)
ow
e Vo — a—per 2s. (5.4)

We notice that our tangential gradient differs from the tangential part of the gradient in cylindrical coordinates
0 10
a—J; e, + - % €,.
It is due to the fact that on P, we obviously have r = 14 O(e). If we had a cylinder of radius R there would be
ow 1 oW
7 e, + 7 % €.
In the above text, instead of saying that (¢, z) € (0,27) x (0, L) and imposing the periodicity with respect to

p, we could just say that it is defined on a side of a cylinder S. But that is a manifold and we would have to
adapt the theory from [9] to curved geometry.

Lemma 5.3. Let {v.}.~0 C L?(P.) two-scale converges to a function V€ L?(Py_1). Then rv. — V two-scale,
i.€.

1 r—1

— | ve(r,p,2) {1+ —— 9,z ) rdrdpdz — Vi(p,,2)¢(p, 0, 2) dpdpdz

€ JPp. € Py_1
for any ¢ € L*(Pa_1).

Proof. Let v. — V two-scale. For a ¢ € L?(P,_1) we consider

1 -1
g/ Us(T»%ZW <1 + TE,QO,Z) rdrdcpdz

1 -1 -1
:f/ ve(r, @, 2)d (1+T,<p,z> (1+T>Edrdcpdz
e Jp. € €

1 r—1
+ 7/ ve(ry @, 2)¢ (1 + ,gp,z) (1-¢)drdedz.
g P. g
By a standard results for the two-scale convergence we have that |ev.[z2(p.y — 0, so the first term in the above
equation tends to zero. For the second we apply the definition of two scale convergence and obtain the result of
the lemma. 0



MATHEMATICAL MODEL OF HEAT TRANSFER

6. CONVERGENCE

641

From the Corollaries 4.4 and 4.5 we deduce that there exists some § € H'(P;) N L>°(P,), associated 6 =

o F € L*°(Py), © € L*(P,_1) and T € Y such that, after possible extraction of a subsequence,

6° — 0 weak *in L>(P,),

6° -6 in L*(P),

V6* —~ VO weakly in L2(Py),

6° in L*(3%), a=r¢,

— 0

0 i
° —-0 2,
00

for ¢ <1, 5V95—>a—er 2s, OcH & Te),
P

for <1, eV -0 28 = O =0(pz2),
oT

ap
for g< -1, VO*F -0 28 = O = const.

for ¢ < -1, V6 - V.0 + 2s, Oc)y,

Furthermore, as the following theorem gives, for ¢ < 1 on the contact of the fluid and the pipe’s wall we obtain

the continuity of the temperature.

Theorem 6.1. Let ¢ <1, 0 € H'(Py) be the weak limit from (6.1)-(6.3) and let © be the two-scale limit from

(6.5). Then
@(1,@,2) = 9(1790’2) in L2(<0,2’/T> X <07L>)

Here 0(1, ¢, 2) and ©(1, ¢, z) denote the traces.

(6.10)

Proof. Let ¢y be a smooth function defined in P; and let ¢; be a smooth function defined in P,_; such that

$1(2, p, z) = 0. Furthermore let
¢O(17 1) Z) = ¢1(17 1) Z)

We define ( ) ( )
_ QSOT)QDWZ, e,z €P17
®(ryp,2) = {¢1 1+ =2 0,2), (r,0,2) € P..

This function is admissible test function so we get

0= / O (0°®r) drdpdz.
Piyc
Calculating the partial derivative we obtain

0= / (0,-0° por + 6°0rpor + 6°¢g) drdpdz
P

+/ (&05(%%2)% (1 + HW,Z) r
P. €

1 r—1
+ 96(r,¢,z)gap¢1 (1 + 6,30,2) r

-1
+0°(r, ¢, 2) 1 (1 + Tg,ga,z) > drdepdz.
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Now we use convergences for ¢ < 1 and take the limit in each term to obtain

—1

0= / (9,0607 + 00, dor + 0¢0) dr dpdz + / (ap@¢1 + @ap¢1)dp dpdz.
Py P>

This implies

0=/ 0, (0gor) drdpdz + / 0, (©¢1)dpdedz
Py Py

and therefore, using the properties of test functions ¢y and ¢, we obtain
0= [ 60.9.200(1,p.2) - BlL 2, )1 (L ,2) diod.
s
Arbitrariness of test functions implies the statement of the theorem.

6.1. Case g < —1

In this case the diffusion through pipe’s wall is very strong. In fact, so strong that the temperature is constant
in the whole wall. However this constant is not prescribed, but depends on the solution. Furthermore, we get
an interesting non-local boundary condition on the wall of the pipe. Basically it says that the total temperature
flux through the wall of the pipe is proportional to the difference of the average exterior temperature and the

temperature on the wall (which is constant). More precisely, we get the following result.

Theorem 6.2. Let ¢ < —1 and let 6 € H*(Py1.) be the solution to the problem (2.11)-(2.13). Suppose that

the conditions (4.2) and (4.3) hold. Then

0° — 6 weak *in L>®(P)),
0° — 60 weakly in H'(P,),

where € H'(P,) N L>®(Py) is the unique solution to the problem

_Ad+pesd? g in P,
0z
o0 - .
— —+Pevf=NI(F-6) on A,
0z
a0 - . o,
%fPevﬂzsz(FrfG) on 41,
6 = const . on 5'1,
08

where

(6.11)

(6.12)

(6.13)

(6.14)

(6.15)



MATHEMATICAL MODEL OF HEAT TRANSFER 643

Proof. First of all, we know from the convergence (6.9) and Theorem 6.1 that the weak limit 0 is constant at
the boundary S;. Thus it belongs to

Vicoo,—1) = {(5 € H1(151) ; 45|r:1 = const}.
Let us denote 6y = é\rzl. Then we take 1/? € V(—oo,—1), similarly denote 1[)0 = 1/~1|T:1 € R and define

T ,ll; in jjlv
\IJ = ~ ~
{’lﬂo in P5~

For U as a test function, the weak formulation (2.14) reads

V6e - VU dV — Pe/ 6558—\11 dv
~ ﬁ’l a

P z
+ / N.6°0 da + N.0°Uda+ N, [ 6°Yoda (6.16)
’_Yf#»e :YI‘+E Site
— [ N.E¥dart / N.E¥da+ N, [ Gioda.
:Yf+5 g/IJrE Sl+5

Now we take the limit in this equation and use the convergences for ¢ and 6°. For the first two terms on the
left hand side we use (6.3) and (6.1). For the third and the fourth term in the left hand side we use estimates
(4.21) and (4.22) to obtain for « € {I,7}

/ N,0°U da
A7 \AE

Thus application of (6.4) implies

< Nz,max |0~6‘L2(ﬁf‘+5)|12)0|L2(’3’f+5\’7?) < Ce.

NzéglifdaHsz/ 00 da, ae{lr}

:Yﬂ-s 71

/

For the last term on the left hand side we argue as follows

Similarly we obtain

F,¥da — / F,¥da, ac{lr}.
;)'/LY

o
1+e

/ észzoda:d?o(1+s)/95(1+5,g0,z)d<pdz
Sl+5 S

e 96
<t9€(17 0, 2) + / a—(r, ©»,2) dr> depdz
r

1

Ll(m)) '

) Ve < Ce for ¢ < —1, so using (6.2) and (6.3) we obtain

:1/30(1+5)/

S

S1 8T

- ~ 06°
Po(l+¢) ( i 95da+‘

<C 26°

By (4.24) we have that |22 ey = C 1%

or

L2(P:

S1

/ B0 da — Ty / fda = 2 L.
Site
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Similar argument gives

o da = (1 + ) /S Glp, 2) dpdz — 1 /S Glp, 2) dpdz = 20T

Site

Collecting all these convergences in (6.16) we obtain

Vé-ViZdV—Pe/ v98¢ dv
P B 0z
+ N/ [ 6pda+ NS / 0v da + N,27 LOyi)o (6.17)
4 gt

=N/ / Eyppda+ NS / F.ipda + N,27Giby.

7t 1
The existence of solution of the two-scale problem has been proved by the limiting procedure (although it could
be proved by the Lax & Milgram theorem on an appropriate two scale space). The uniqueness, however, has to
be proved. Since the problem is linear it is standard procedure to assume the existence of two solutions ¢, and
05 and to look at their difference U = 6y — 2. Then Uy = 01 ],—1 — 02|,=1 = const. Now we use that same U for
the test function in (6.17). It leads to

C|vUP dV—Pe/~

vU—dV+Nf/ UQda+sz/ U?da+ N, 2r L U2 =0. (6.18)
Py Py

T

A simple computation gives

p 2 p
—Pe/ oW qy=_Pe [ 59U 4 _Pe /UQda—/ U2da | .
B 0z 2 Jp, Oz 2 5 a7

So that (using (4.3))

—Pe/ an—Udv+Ng‘/ U2da2(szPe>/ U?da > 0.
Pl 82 ~r 5

71

Now we have
VU dV+NZf/ U?da =0
Py ot

implying that U = 0. Therefore the problem: find 6 € V(~o0,—1y such that (6.17) holds for any e V(—o0,—1)
has a unique solution, meaning that the whole family

6° —~ 0 weaklyin H(P)

and not just a subsequence.
The decoupling gives (6.11)—(6.13). O

6.2. Case ¢ = —1

In this case the processes in the fluid and in the pipe’s wall are of the same order and can both be seen in
the effective model. We obtain the coupled model consisting of the convection-diffusion equation in the fluid
and the Laplace—Beltrami equation on the 2D surface representing the pipe’s wall, coupled via the continuity
of the temperature.



MATHEMATICAL MODEL OF HEAT TRANSFER 645

Theorem 6.3. Let g = —1 and let §° € H'(P1.) be the weak solution to the problem (2.11)-(2.13). Suppose
that (4.2) and (4.3) hold. Then

0° — 0 weak *in L>®(P)),
6° — 60 weakly in H'(P,),
0° — O 2s,

where (0,0) € [Hl (P1) N L‘X’(Pl)} X H is the unique solution to the two-scale problem (6.21). Furthermore
0(1,¢,2) = O(p, 2)
in the sense of traces, and the problem (6.21) is equivalent to the decoupled system

a0

— A +Pe 5, =0 in P, (6.19)
~ Y pes = NI(F - B) on 5L,
0z

a0 - - .

%—Pevﬂzsz(F,.—Q) on 41,

a0 ~ ~ - o

5 kAghl+ N,.0 =N, G in Sy, (6.20)
6

%“:1 =0 for z=0, L.

Here
“op T o
and Sy is the side (curved part of the boundary) of the cylinder P,.

Proof. We proceed as in the previous section with the difference that now we take
beVv, = {03 e HY(P); ¢(1,-) = do F(1, -) € H ((0,27) x (0,L>)}.
We then put, as before 3 3
~ in Pj,
v {gh—l in 15;

Let us denote ¥ = 1; o F. The only difference comparing with (6.16) are in the integrals over P. and 51+a~ To
treat the integral over P. we use the two-scale convergence (6.8) giving

1/ <aos oF  106° O  96° OF
Pe

o \"or o Tr a0 00 T o: s

) drdedz

1 (100 o 067 o
2 [ (F55099) 5ot 1) GolLp) ) drdods

08 9 00 oy
N / <a¢ (.2) (L0 2) + 5 (0:2) azu,w,z)) dz dp

= [ V.0 V,ida,
S1
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where V., denotes the tangential gradient. It can be expressed by intrinsic gradient through V.00F = V.20

That produces one additional term in the limit problem.
For the treatment of the integrals over S;4. we do as follows:

[ és‘i/daz(1—1—6)/95(1+€,30,z)w(1,<p,z)d<pdz
S s

14-€ e
=(1 —|—€)/S¢(1,g0,z) (95(1,@,2) —|—/1 %ir(r,ga,z) dr) dpdz

|1¢’|L2<PE>) :
L2(P.)

Since |63—9:|L2(P ) < Ce'/? by (4.24) and [Ylp2(py < Ce'/? using the convergences (6.1) and (6.3) together with
the trace theorem we obtain

/~ éelilda—>/9(1,30,2)1,&(1,<p,z)d<pdz= Oy da.
Site s

S1

0
= (1+) (/S 10l dpds + |5

The two-scale problem now reads: find 0 € V_; such that
- O - -
Vo -VidV — Pe 00— dV + K V.0 -V da,
A B 02 g
+N/ | 0pda+ NS | 0pda+ N, | O6Pda (6.21)
gt g 51
=N/ / Fppda+ N7 / Fapda+ N, [ Gida
gt gl 51
holds for any ¥ € V_;.
Like in the previous case ¢ < —1, the existence follows from the limiting procedure, and the proof of uniqueness
is analogous. Indeed, assuming that we have two solutions 91 and 92 and taking the difference U = 91 — 02, we
find that U satisfies

IVU|” dV — Pe/ s av + n/ V.U da
Py p 0z 3
(6.22)
+sz/ U2da+Nj/ U?da+ N, | U*da=0.
7 h S

Repeating the same procedure as in case ¢ < —1, and using the condition (4.3) implies U = 0.
Uniqueness of the solution, implies that the whole family

6° —~ 0 weaklyin HY(P)

and not just a subsequence.
To decouple the two-scale problem we first easily conclude that

- o0 -
—A0+Pev—=0 in P,
0z
in the sense of distributions. On the other hand, the boundary condition on the pipes wall » = 1 is of the second
order and contains the Laplace—Beltrami operator
a0

——KJAS@"‘Nré:NTé on 51;
or
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with
~ 0%0 0%
(ASG)OF— 87@2—’— @

6.3. Case -1 <qg<1

This is the case when we obtain the model that is usually found in the engineering literature. The wall of the
pipe is not present in the effective model and we have the Robin boundary condition between the fluid in the
pipe and the surrounding medium, as if the wall was not there.

Theorem 6.4. Let —1 < g <1 and let 6° € H'(Py.) be a weak solution to the problem (2.11)-(2.13) and let
the data satisfy (4.2). Furthermore, let Pe and N£ be such that (4.3) holds. Then

0° — 0 weak *in L®(P)),
0° — 0 weakly in H'(P,),

where § € H'(P,) N L>(Py) is the unique solution to the problem

— Af + Pe agi =0 in P, (6.23)
g§+Pe1~)ész(Fg9~> on 7,
gi—Pef)é—sz@)—é) on 4,
gf — N, (é — é) on 5. (6.24)

Proof. The test function is constructed like in the proofs of Theorems 6.2 and 6.3. The passage to the limit is
also the same as in the proofs of Theorems 6.2 and 6.3, with the only difference in the integral over P.. In this

case for a test function ¥ € C'(Py.)and using estimate (4.23) we have
ek /P VO - VU AV < CeVO| 125 [V oo ) |P.|z < Ce 2" — 0.

Thus the limit problem now reads: find 6 € Vici) = H'(Py) such that
Vo -V dV — Pe/ 2% av

P B 0z
+ NS / G da+ NI / djda+ N, | 6dda (6.25)
ok A S1
= Nj/ Fopda + Ng”/ Fpda+ N, [ Gyda,
;\;/Z

1 " 51

for all ¥ € C1(Py) (which is the restriction of ¥ on Py). Since 01(1571) is dense in V_; 1) we obtain the weak
formulation of (6.23) and (6.24). Uniqueness can be proved as in the previous cases and the conclusions follow
easily. O
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6.4. Case g =1

Since the diffusivity of the pipe’s wall is small, although we get the same kind of the effective boundary
condition (Robin), the heat transfer coefficient is lower than the original one.

Theorem 6.5. Let ¢ =1 and let 65 € H'(Py,.) be the solution to the problem (2.11)-(2.13) and let (4.2) and
(4.8) hold. Then

0° — 0 weak *in L>®(P)), (6.26)
0° — 0 weakly in H'(P), (6.27)
0° -0 s, (6.28)
eV — g—? e, 2s, (6.29)
where § € H'(P) N L>®(Py) is the unique solution to the problem
_ad+pes? g in Py, (6.30)
0z
~ Y e i = NS(F, - B) on 3,
0z

00 s . .

E—Pev@zNZf(FT—G) on A7,

o0 KN, ~ ~

= — — . 31

= TN (G 9) on 5 (6.31)

Proof. Again, the only difference is in the treatment of the integrals over P. and §1+5~ Since for ¢ = 1 from
(4.24) we have

E‘V95|L2(p5) < Cye
the assertion (c) from Theorem 5.2 applies and gives (6.29). Now we need an appropriate test function. Let &
be a smooth function defined on

Py ={(p,p,z) ER® : pe(0,2),p€(0,2m),2€(0,L)}

and ® = ® o F. We define ( )
[ D(rp,2 in Py,
\I/s(ra 2 Z) = {(I) (1 + r—1 ., Z) in Pg- (632)

€

Then we have using the two-scale convergence (6.29)

5/ ( 00° 0V, 106° 0¥, 00° 0¥,
PE

"or or +;6<p Oy +Taz 8z)drd<pdz

1 00¢ 0P r—1
-z el (.
E Psear (ryp,2) 8;)( + . ,cp,z) drdedz 4+ O(e)
00 0P
- T2 (0, 0.2) L2 (p, 0, 2) dpdepds.
szlap(’w )Gp(pso ) dpdyp

Another integral that needs additional attention is

/ 0°. da = (1 + z—:)/ 0F(1+¢,0,2) D(2,¢0,2)dpdz
Siie S
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1+e 27 g
/ / 89 (ryp,2) ®(2,p,2)drdpdz
0

27
+ / 0°(1, 0, ) B(2, 0, 2) dp .
0 0

For the second integral from (6.1) and (6.3) and the trace theorem, we obviously have

2 L 2 L
/ /05<1,¢7z> ‘I’(27<P,Z)dsodz—>/ /9(1,w> (2,0, 2) dpdz.
0 0 0 0

For the first term we apply the two-scale convergence (6.29) and obtain

1 I3
- 8; (ryp,2) ®(2,0,2)rdrdpdz — aa(j(p7np,z) D(2,¢,2) dpdpdz.
Py

Newton—Leibniz theorem and continuity of temperature at the contact, i.e. ©],—1 = 0|,=1, now implies that
- 1 -
/ 0°V.da — / O(2,0,2) ®(2,p,2)dpdz == | OPda.
Siie S 2 Sa
Thus the two-scale problem reads

V@-Vfi)dV—Pe/ f;éa—q’dv+/ 8®a©dpd¢dz
5 0z P, Op Op

Py
+Nf/ 9<1>da+Nf/ 69 da + §NT ~ ©dda (6.33)
i Sa
- 1 -
/ F,®da+ N/ / F.&da+ N, | GPda.
7 h 2 /s,
Choosing ® to be compactly supported in P;_1, i.e. equal zero for 0 < r < 1, we arrive at

/{/ 00 90 dpdydz + N, / 0(2,¢,2) ®(2,p,2)dpdz
Py 8[) 8

S

Thus e 5
67(;):0 for 1< p<2, “??:NT(G’@) for p = 2.

Furthermore continuity of the temperature implies

9(17 Lp’ Z) = 9(17 4107 Z)'

By simple integration we get
O(p, . 2) = Alp,2)p + By, 2),

and then the boundary conditions give
KA=N,(G-2A-B)=0 & A+B=0(1,9,2)

which implies

N,
K+ N,

A= (G—0(1,,2)).
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Now we go back to (6.33) and take the test function ® such that ®(2, ¢, z) = 0. Since now
00 0P 0P
K ——dpdapdz—n/ A(p,2) =— (p,p,2) dpdpdz
| Sa [ A2, e
= —%/A(%Z)‘I’(L%Z) dpdedz,
S

we get the model: find § € H'(P;) such that

~vé.v<i>dv_13e/ Paven /éé a+Ng/ G da
! Py ¥ v

i (6.34)

:N;/ Ey®da+ N7 F<I>da+
g

"

N

for all & € H'(P,).
The uniqueness of solution of (6.34) is deduced as in the previous cases. Finally, we conclude that the
differential form of our problem now reads (6.30) and (6.31). O

6.5. Case g > 1

In the last case the diffusivity of the pipe’s wall is very small so that it acts as an isolator. There is no heat
exchange between the fluid and the exterior medium. Thus the effective boundary condition is the homogeneous
Neumann boundary condition.

Theorem 6.6. Let g > 1 and let 0° € H'(Py.) be a weak solution to the problem (2.11)-(2.13). Assume that
(4.2) and (4.3) hold. Then

0° =6 weak *in L>®(P), (6.35)
0° — 0 weakly in H'(P)), (6.36)

where § € H'(P,) N L>(Py) is the unique solution to the problem

. _00 5
— A +Ped o 0 in Py, (6.37)
_ Y pes = NI(F —B) on ¢,
0z

00 s . o
a—Pevﬁzsz(Fr—Q) on A7,

00 .

a =0 on Sl. (638)

Proof. We proceed as in the case ¢ = 1 and take the test function ¥, as in (6.32). However now we have

06° oV 106° oV 06° oV
q € - € g
€ / (r a or + " g Do +r 5 2 ) drdedz — 0.

On the other hand, due to the a priori estimate (4.20), we have

/ 10°(14¢,0,2)]* dpdz < C
s
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so that
we(‘ﬁ, Z) = 98(1 + 67 90’ Z)

is bounded in H. Thus, extracting the subsequence if necessary, we have
we = w weakly in H,

for some w € ‘H. Now
(1+e) / 0°(1 1 e, 0,2) D(2,0,2) dpdz — / (i, 2) B(2,0,2) dp.
S S

Consequently the limit problem reads

vé-védV—Pe/ 658—@&/
Py B 0z

+ N/ [ 6®da+ NS / 0dda+ N, | wdda (6.39)
£ ;YI*

:Yl S2

_ N [ BddatN! / Fdda+ N, [ Goda.

:Yf :Yl S2

Choosing again the test function ® to be compactly supported in P51 (i.e. equal zero for 0 < r < 1) we get
w = G and therefore the model is given by: find § € H(Py) such that

_ _0d . .
V9~V<I>dePe/ @oa—dv+sz/ 9<1>da+Nj/ 0® da
P P 0z b4 s
Py Py it 7 (6.40)
:Ng/ FgédaJerf/ Fdbda
1

ot

for all @ € H'(P;). This implies (6.37) and (6.38). Uniqueness of the solution of (6.40) implies the convergence
of the whole families as before. O

7. UNIFIED MODEL WITH THE SAME ASYMPTOTICS IN EACH OF THE CASES

The original € problem from which we start the asymptotic analysis is done on a fluid domain P; and on
the pipe’s wall P.. In the asymptotic analysis we obtained five different effective models which are formulated
on only on the fluid domain with a difference in the boundary condition on the interface between the pipe and
the wall. In a real life situation one is left to choose either to use € problem or to decide which of the effective
models to use. The drawback of using € model is twofold, its mathematical structure is more complicated and
the small thickness of the pipe’s wall in simulations implies that regular triangulation of the pipe’s wall is very
large leading to time consuming computations. On the other hand usually it is not completely clear how to read
from the real data which effective model to use. Thus in this section we formulate unified model given on P
which has the same asymptotics as the original problem (2.11)—(2.13). The model we formulate in (7.1) is given
on the fluid domain P, only and thus is of numerical complexity of the limit models, however its asymptotic
limits are the same as of the initial ¢ problem. The model is given for two unknown functions, f(¢) which is the
temperature in the pipe and belongs to

Vo= {1; € H'(P):doF ¢ Hl(S)}
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and y(g) € L?(S;) the function that can be considered as the temperature at the outer (and sometimes inner)
pipe’s wall. The model reads: find (6(¢),0o(c)) € V_1 x L?(S1) such that

] V§(€)~V¢~JdV—Pe/~ @é(g)%f av
Py

Py

+6q+1ﬁ/ VTé(s)-VTzZJdaqLeq’ln/

S S1

(0(2) = 6(2)) (Yo — ) da
+N.(1+¢) [ 90(5)1/~)oda+sz[Z

S1 Y1
:J\fr(1+e)/~ éz[;oda+sz/ Flz;da+sz/ Fyda,

o 74 S

é(swdaJerf/ 3(e) da
Y

for all (¢,10) € V_1 x L%(S)).

Note that the term with €971 is an approximation of the term 8,68, with 6 playing the role of temperature
at outer side of the pipe’s wall. Note also that the term (1 + &) multiplies the coefficient N, as in the original
problem (2.14) in order for this approximation model to be closer to the original problem. For limits this factor
is irrelevant.

Lemma 7.1 (A priori estimates for the unified model). Let (6(¢),00(c)) € V_1 x L%(S1) be the solution of
(7.1). Suppose that (4.2) and (4.3) hold. Then for all ¢ € R the families

|é(€)‘H1(P1)> |é0(5>2|L2(ﬁf)7 |9~0(5>2|L2(ﬂ')7
g+1

- o - 1~ - .
160(£)%112(5,y> € 2 IV-0(6)] 125, e |0(e) - O0(e) 125,y 100()|L2(s,)
are uniformly bounded with respect to e € (0,1).

Proof. The main obstacle in the proof is the term with Pe. However applying the same technique as in the proof
of Theorem 4.1 the statement of the lemma follows. O

Theorem 7.2. Limits of the model given by (7.1) when ¢ tends to zero in the same regimes are the same as in
the case of (4.1).

Proof. From the a priori estimates we obtain that there exist 6 € Hl(pl), 0y,0,,0, € L? (51)7 such that the
following weak convergences (at a subsequence) hold

6(s) =60 in HY(P,),

~0(6 — éo mn L2 51 s

e (0() — Bo(e)) — 6, in L2(Sy),
EQTIVTé

)
) )
) )
g) =0, in L?(S,), (7.2)
) )
) )
) )

For ¢ < —1 the convergences (7.2) imply that 0 is a constant on Sy and that 6 = é|g1 Thus 0 € Voo, —1)-
Then for ¢ € V(—o0,—1y and the constant o = ngl in the limit of (7.1) we obtain the model (6.17).

For ¢ = —1 the convergences (7.2) imply that 6 € V_; and that 6y = 6|5, . Then for ¢ € V_; and ¢ = |5,
in the limit of (7.1) we obtain the model (6.21).
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For ¢ € (—1,1) the convergences (7.2) imply that § € H'(P;) and that 6y = §|§1 Then for ¢ € V_; and
Yo = 1;\51 in the limit of (7.1) we obtain the model (6.25).

For ¢ = 1 the convergences (7.2) imply that § € H'(P;) and that fy() — 8y € L?(S;). Then for ¢» € V_; in
the limit of (7.1) we obtain the equation

PlVé-Vz/?dV—Pe/Plﬁégde—i—m/gl (éo—é) (&o—i/?) da

+N, [ dododa+N! [ Gdda+ NI / G da (7.3)
R ¢ 1

=N, éqzodaJrNg/ Fl&dajtzvj/ F.¢ da.
S1 ¥4 o

From the equation for the test function 1210 we obtain the expression for 6y. Namely
< [ (-8)dodat N, [ Gudoda=n, [ Ginda
s 5 S
implies that (x + Nr)éo — Kkl = Nr(?, i.e.

_ ko~ N.
0y = 0 "_G.
0 K+ N, +/<;+NT

Now we insert this in (7.3) for the test function + and obtain the model (6.34). 3
Finally in the case ¢ > 1, the convergences (7.2) imply that § € H'(P;) and 6y € L?(S;) and that in the
limit we obtain

V@Vq[defPe/ 56 2% av
P p z
N, [ Gododat NS / Gida+N! [ 6da (7.4)
S1 At att
-n, | G‘zﬁodaJerf/ Fidda+ Ng/ P da.,
S1 At ot

From the equation for the test function 1[)0 we obtain that §y = G and then the equation (7.4) is exactly equal
to (6.40).

Uniqueness of solutions of the all limit problems implies that actually all € families are convergent. O

8. NUMERICAL EXAMPLES

In this section we present numerical simulations of the original € problem (4.1) and the unified model (7.1) in
five different regimes, in particular for the values of parameter ¢ € {—5, —1,0, 1,5} to illustrate different behavior
of the solution in different regimes. Moreover, we compare the results of both models together with five limit
models to get an idea if the model (7.1) is a good approximation of the original problem. In all computations
all parameters, besides of the parameter ¢, are the same and given in Table 1. We present computations only
for ¢ = 1/8 which corresponds to rather thick pipe’s wall compared to the inner radius of the pipe since in this
case the the error of the limit model is already small, less then 5%. For smaller e the limit model and the unified
model should provide only better approximation.

The computation is done in cylindrical coordinates but with assumed independence of all unknowns on the
variable ¢, so the solution can be represented by a two-variable function. This significantly reduces the size of
the problem and still provides qualitative behavior of the solution. The mesh for the numerical approximation
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TABLE 1. The set of parameters in numerical examples.

Parameter Value

€ 273

K 1

Pe 0

L 1

R 1

Qf 1

as kel

N, 1

N, 0

G (z—05)+1

FIGURE 1. Mesh for the solution using FreeFem++.

TABLE 2. Minimal and maximal values of the temperature in each of the cases.

q Min Max

-5 1 1

-1 0.9647 1.035
0 0.8825 1.117
1 0.7361  1.264
5 0.5 1.5

of the solution of the original problem (4.1) using FreeFem++ (see [6]) is plotted in Figure 1. The thin layer of
the pipe’s wall can be clearly seen from the figure. For the unified model from Section 7 and the limit models
we use the same mesh only on the fluid domain [0, 1]2.

To get more detailed description only half of the fluid domain is plotted, namely for r € [0.5,1 + €]. In order
to see only the effects of the difference in thermal conductivities of the fluid and the material of the pipe’s wall
we take the Peclet number as well as the Nusselt number N/ to be zero.

In order to get a clear difference among solutions all plots are plotted on the same scale adjusted according
to the case ¢ = —1, but the minimal and maximal values of the solution in all of the cases are given in Table 2.
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temp

[].035e+00
-1.02

1

0.98
9.647e-01

FI1GURE 2. Solution for ¢ = —5.

temp

[ 1.035e+00
-1.02

1

0.98
9.647e-01

F1GURE 3. Solution for ¢ = —1.

The solutions of the original problem (4.1) are given in Figures 2-6. In the Figure 2 the solution for ¢ = —5
is plotted. In this case the thermal conductivity of the pipe’s wall is so large that the temperature in the wall
and in the pipe is constant. The constant is exactly equal to the mean value of the outer temperature G which,
in this case, is equal to 1.

In Figure 3 the simulation for the value of parameter ¢ = —1 is given. In this case the thermal conductivity is
a bit smaller, but still large enough so the longitudinal conductivity is important. This leads to some difference
in the maximal and minimal temperature but which is significantly smaller than in the classical engineering
case ¢ € (—1,1) for which the simulation is given in Figure 4.

In Figure 5 the simulation for ¢ = 1 is given. The pipe’s wall still conducts the heat significantly enough so it
influences the temperature of the fluid, however the effective thermal coefficient is smaller. Finally in Figure 6
the thermal conduction is much smaller in the pipe’s wall so the wall is effectively an insulator. There is largest
difference in the temperature, which is exactly equal to the difference in the outer temperature G, but this
difference is only in the pipe’s wall, while in the fluid part the temperature is almost constant.

We also made numerical simulations for the unified model (7.1) and five limit models. However we skip
the plots since they are qualitatively the same as the results of the original model (4.1), but we compare the
differences between different approximations in Tables 3-5.

In Table 3 the relative H' norm of differences of the numerical approximation of the original problem (4.1),
the unified model (7.1) and the corresponding limit model, but only inside the pipe, i.e. in [0, 1]?, are presented
for the same values of ¢. First note that all differences between the solution of the original problem (4.1) and the
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temp

[ 1.035e+00

FI1GURE 4. Solution for ¢ = 0.

temp

[1 .035e+00
-1.02

1

-0.98
9.647e-01

FIGURE 5. Solution for ¢ = 1.

temp
1.035e+00

Lo

3

1098
9.647-01

FIGURE 6. Solution for ¢ = 5.
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TABLE 3. Relative H! differences of the numerical approximation of the problem (4.1), unified
model (7.1) and the corresponding limit model.

H*' differences, [0,1]> ¢= —5 qg=-1 q=0 g=1 q=>5

(4.1)~(7.1) 1.22x 1075 2.97x107% 446 x107% 1.63x107® 1.83x107°
(4.1)-limit 1.36 x 107°  9.04 x 107*  4.37x 1072 213 x 1073 522x107°
(7.1)-limit 148 x 107°  3.83x107% 3.93x107? 510x10™* 5.05x107°

TABLE 4. Relative L> differences of the numerical approximation of the problem (4.1), unified
model (7.1) and the corresponding limit model.

L differences, [0,1]> ¢= -5 qg=-1 q=0 g=1 q=>5

(4.1)~(7.1) 9.85x 1077 237x107® 3.87x107% 1.38x107% 1.28x107°
(4.1)-limit 1.05x 107° 597 x 107*  3.39x 1072 1.80 x 107 4.10x 107°
(7.1)-limit 1.14 x 107° 289 x107% 3.01 x 1072 4.24 x10™* 4.01 x 107°

TABLE 5. Relative L? and L™ differences of the numerical approximation of the original prob-
lem (4.1) and the unified model (7.1) in the pipe’s wall (in [0,1] x [1,1 + €]).

Differences in pipe’s wall q= -5 q=-1 q=0 qg=1 q=>5

L? differences in [0,1] x [1,1+¢] 1.11x 1075 297 x107® 6.49x 107 6.50 x 107% 2.97 x 1073
L™ differences in [0,1] x [1,14+¢] 223 x107% 622x107% 1.75x 1072 2.62x 1072 1.33 x 1072
L? differences on [0,1] x {¢} 1.34 x 107°  3.68 x 107% 8.74x 107 9.81x107® 1.10x107°

corresponding limit model are at most 4.5% which implies that the limit models are rather good approximation
of the original problem. However, when we consider the approximation of the original problem (4.1) by the
unified model (7.1) we see that the error is at most 0.46% which we find to be excellent. Also note that in all
cases except ¢ = —1 the approximation by the unified model (7.1) is better then by the corresponding limit
model. Furthermore, in the case ¢ = —1 the error of the unified model is less then 0.145%.

Since the max temperature may be significant in Table 4 we present the relative L differences as well. The
behavior of the differences is quite similar to the observed one for the H' norm.

The unified model (and limit models as well) is given only on the domain of the pipe’s interior. Thus
to compare its solution with the solution of the original problem (4.1) in the pipe’s wall we have to build an
approximation in it. However in the case of the unified model (7.1) we have an additional unknown function 6y (e)
which corresponds to the temperature at the outer boundary of the pipe’s wall (as already noted (fy(e) —8(e))/e
is an approximation for 8T§). Thus it is natural to build the affine approximation in the pipe’s wall over the
cross—section, i.e. the variable r. We compare this approximation with the solution of the original problem (4.1)
in L2 and L® norm in Table 5.

In Table 5 we also compare the function ég(s) with the solution of the original problem on the outer boundary
of the pipe’s wall. Having in mind that the chosen ¢ = 1/8 is not small for the asymptotics we find the affine
approximation excellent.
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