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MATHEMATICAL MODEL OF HEAT TRANSFER THROUGH A CONDUCTIVE
PIPE ⋆

Matko Ljulj, Eduard Marušić-Paloka, Igor Pažanin and Josip Tambača**

Abstract. The standard engineer’s model for heat transfer between the fluid flowing through the
pipe and the exterior medium neglects the effects of the pipe’s wall. The goal of this paper is to prove
that they are not always negligible. Comparing the ratio between diffusivities of the fluid and the wall
with the wall’s thickness, using rigorous asymptotic analysis, we find five different models for effective
description of the heat exchange process.
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1. Introduction

A common situation encountered by engineers is heat transfer to fluid flowing through a tube. This can occur
in heat exchangers, boilers, condensers, evaporators, radiators, and other process equipment. Therefore, it is
useful to know how to model such situation. Most frequently the wall of the pipe is neglected as it is thin and
highly conductive. However, we will show that this is not necessarily the case in all possible physical situations.
We aim to derive the effective model by taking into account possible effects coming from the pipe’s wall.

We study the heat conduction through the pipe filled with viscous fluid. There is a temperature difference
between the fluid in the pipe and the exterior medium resulting with a heat exchange. There is a significant
difference between the heat diffusivity of the wall of the pipe and the fluid, depending on both; the material the
wall is made of and on the fluid the pipe is filled with. The pipe can be made of some metal (copper, steel, . . .)
that conducts the heat much better then the fluid, but it can also be made of PVC or concrete that conduct
much weaker then the fluid. It can even have some isolating layer around it to prevent the heat exchange. To
get some idea of physical coefficients we mention here that the thermal diffusivity (the coefficient appearing in
the heat-conduction equation) is defined as

𝛼 =
𝑘

𝜌𝑐𝑝
, 𝑘 – the heat conductivity,

𝜌 – the density, 𝑐𝑝 – the specific heat capacity.
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The values of 𝛼 (measured at room temperature in 𝑚2/𝑠) for different materials are given in the following table:

Material Thermal diffusivity

Copper 𝛼 = 1.11 × 10−4

Steel 𝛼 = 1.88 × 10−5

Aluminium 𝛼 = 1.43 × 10−7

Glass 𝛼 = 3.4 × 10−7

Rubber 𝛼 = 0.8− 1.3 × 10−7

PVC 𝛼 = 8 × 10−8

Water 𝛼 = 1.43 × 10−7

Alcohol 𝛼 = 7 × 10−8

In view of that, the ratio between the thermal diffusivity of the pipe’s wall and the liquid can be as high as
104 or as low as 10−1.

The problem of heat exchange between the pipe and the exterior medium has been extensively studied in
the literature. Asymptotic modeling in case of straight pipe can be found, for instance in [11, 13], and the
references therein. The effects of curvature for the process in curved pipe was studied in [14,15]. The effects of
pipe dilatation, due to the heat, were considered in [16, 17]. Similar results for heat conduction equation in a
body containing a thin interlayer with high contrast conductivity was studied in [1], Chapter 9, Section 4. Like
in our paper, the discrepancy in conductivity is described by 𝜀𝛾 . Five different cases: very poorly conductive
(𝛾 ≥ 2), poorly conductive (𝛾 = 1), conductive (𝛾 = 0), highly conductive (𝛾 = −1) and very highly conductive
interlayer (𝛾 ≤ −2) were found. The study of a rod with three highly contrast coefficients was studied in Chapter
2 of [20]. Study of two linearly elastic materials made of material with different stiffnesses has been done in [2]
and [8], using similar approach.

2. The problem

After changing the variables by dividing with characteristic length 𝑅 (the radius of the pipe), the pipe and
its wall are described (in cylindrical coordinates) as

𝑃1 =
{︀

(𝑟, 𝜙, 𝑧) ∈ R3; 0 < 𝜙 < 2𝜋, 0 ≤ 𝑟 < 1, 0 < 𝑧 < 𝐿
}︀

− the interior of the pipe,
𝑃𝜀 =

{︀
(𝑟, 𝜙, 𝑧) ∈ R3 ; 0 < 𝜙 < 2𝜋, 1 < 𝑟 < 1 + 𝜀, 0 < 𝑧 < 𝐿

}︀
− the wall of the pipe

𝑃1+𝜀 =
{︀

(𝑟, 𝜙, 𝑧) ∈ R3 ; 0 < 𝜙 < 2𝜋, 0 ≤ 𝑟 < 1 + 𝜀, 0 < 𝑧 < 𝐿
}︀
.

Using standard parametrization for the cylindrical coordinates 𝐹 (𝑟, 𝜙, 𝑧) = (𝑟 cos𝜙, 𝑟 sin𝜙, 𝑧) we denote the
physical sets in Cartesian coordinates

𝑃1 = 𝐹 (𝑃1), 𝑃𝜀 = 𝐹 (𝑃𝜀), 𝑃1+𝜀 = 𝐹 (𝑃1+𝜀).

𝑃1�

𝑃𝜀
�

𝑃1+𝜀
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The equation of heat conduction that we are about to study is a simple stationary convection-diffusion
equation. We denote by Θ𝜀 the temperature and by 𝑤 the Hagen–Poiseuille velocity through the pipe, i.e.

𝑤(𝑟) =
𝑝ℓ − 𝑝𝑟

4𝜇
(1− 𝑟2),

where 𝑝ℓ and 𝑝𝑟 are the pressures on left and right ends of the pipe, respectively and 𝜇 is the dynamic viscosity.
We assume that 𝑝ℓ > 𝑝𝑟.

𝛼𝑓

(︂
1
𝑟

𝜕

𝜕𝑟

(︂
𝑟
𝜕Θ𝜀

𝜕𝑟

)︂
+

1
𝑟2
𝜕2Θ𝜀

𝜕𝜙2
+
𝜕2Θ𝜀

𝜕𝑧2

)︂
= 𝑅𝑤(𝑟)

𝜕Θ𝜀

𝜕𝑧
in 𝑃1, (2.1)

𝛼𝑠

(︂
1
𝑟

𝜕

𝜕𝑟

(︂
𝑟
𝜕Θ𝜀

𝜕𝑟

)︂
+

1
𝑟2
𝜕2Θ𝜀

𝜕𝜙2
+
𝜕2Θ𝜀

𝜕𝑧2

)︂
= 0 in 𝑃𝜀, (2.2)

𝛼𝑠
𝜕Θ𝜀

𝜕𝑟
= 𝜁(𝑔 −Θ𝜀) for 𝑟 = 1 + 𝜀, (2.3)

Θ𝜀(1−, 𝜙, 𝑧) = Θ𝜀(1+, 𝜙, 𝑧) – continuity of the temperature at 𝑟 = 1, (2.4)

𝛼𝑓
𝜕Θ𝜀

𝜕𝑟
(1−, 𝜙, 𝑧) = 𝛼𝑠

𝜕Θ𝜀

𝜕𝑟
(1+, 𝜙, 𝑧) – continuity of the flux at 𝑟 = 1, (2.5)

− 𝛼𝑓
𝜕Θ𝜀

𝜕𝑧
(𝑟, 𝜙, 0) +𝑅𝑤(𝑟) Θ𝜀(𝑟, 𝜙, 0) = 𝜆𝑓 (𝐹ℓ −Θ𝜀(𝑟, 𝜙, 0)) , 0 < 𝑟 < 1, (2.6)

𝛼𝑓
𝜕Θ𝜀

𝜕𝑧
(𝑟, 𝜙, 𝐿)−𝑅𝑤(𝑟) Θ𝜀(𝑟, 𝜙, 𝐿) = 𝜆𝑓 (𝐹𝑟 −Θ𝜀(𝑟, 𝜙, 𝐿)), 0 < 𝑟 < 1, (2.7)

− 𝛼𝑠
𝜕Θ𝜀

𝜕𝑧
(𝑟, 𝜙, 0) = 𝜆𝑠(𝐹ℓ −Θ𝜀(𝑟, 𝜙, 0)) for 1 < 𝑟 < 1 + 𝜀, (2.8)

𝛼𝑠
𝜕Θ𝜀

𝜕𝑧
(𝑟, 𝜙, 𝐿) = 𝜆𝑠(𝐹𝑟 −Θ𝜀(𝑟, 𝜙, 𝐿)) for 1 < 𝑟 < 1 + 𝜀. (2.9)

Here 𝛼𝑓 and 𝛼𝑠 are the thermal diffusivities of the fluid and the solid, respectively. The heat exchange is
described by the Robin boundary condition, with renormalized transfer coefficient on pipe’s wall

𝜁 =
ℎ

𝜌𝑐𝑝
,

where ℎ is the heat transfer coefficient, 𝑐𝑝 is the specific heat capacity and 𝜌 is the density, and 𝑔 is the exterior
temperature. 𝜆𝑓 and 𝜆𝑠, 𝐹ℓ and 𝐹𝑟 play the same role as 𝜁 and 𝑔 on the ends of the pipe. The coefficient ℎ is
proportional to the heat conductivity 𝑘 of the medium surrounding the pipe. That could be air or some other
fluid. It also depends on the geometry of the pipe as well as on the convection around the pipe (if any) and it
is usually computed from the Nusselt number of the surrounding medium. Different authors propose different
ways to compute ℎ. We mention here the law proposed by Churchill and Chu [3] (see also [5, 7])

ℎ =
𝑘

2𝑅

(︃
0.6 +

0.387Ra1/6

(1 + (0.669/Pr)9/16)8/27

)︃2

,

where Ra and Pr are Rayleigh and Prandtl numbers, respectively.
As for the boundary conditions at the entry 𝑧 = 0 and at the exit 𝑧 = 𝐿 of the pipe, for the sake of simplicity

we have imposed the Robin boundary conditions. Another possibility, that can be treated similarly, would be to
impose the Neumann condition. Imposing the Dirichlet condition on both ends has no physical sense. It would
mean to impose the temperatures of the fluid entering the pipe and exiting the pipe while we are trying to
model the process of cooling (or heating) the fluid in the pipe by surrounding medium. Bearing that in mind,
it would make sense to impose the Dirichlet condition at the entry of the pipe, and either the Neumann or the
Robin condition at the exit.
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For our analysis we prefer to write the equations in non-dimensional form. To do so we take the characteristic
temperature 𝑇𝑐 and the characteristic velocity

𝑉 =
∫︁ 1

0

∫︁ 2𝜋

0

𝑤(𝑟)𝑟 d𝑟 d𝜙 =
𝜋

8𝜇
(𝑝ℓ − 𝑝𝑟) (the Hagen–Poiseuille velocity) .

Then we put

𝜃𝜀 =
Θ𝜀

𝑇𝑐
, 𝑣(𝑟) =

𝑤(𝑟)
𝑉

=
2
𝜋

(1− 𝑟2).

We define the Péclet number (for the fluid part, obviously, because in the solid part no convection appears)

Pe =
𝐿𝑉

𝛼𝑓
·

For the sake of our analysis we relate the ratio of two diffusivities 𝛼𝑠/𝛼𝑓 with the relative thickness 𝜀. More
precisely, we assume that

𝛼𝑠

𝛼𝑓
= 𝜅 𝜀𝑞, (2.10)

for some 𝑞 ∈ R. Since for most pipes the thickness is between 1 and 5 mm, and the length is measured in
meters, typical 𝜀 is of order 10−3. It seems reasonable to relate the ratio of thermal diffusivities with that small
parameter.

The goal of our paper is to perform the asymptotic analysis using the pipe’s wall relative thickness 𝜀 as the
small parameter (relative, since 𝜀 is the physical thickness of the pipe’s wall divided by the radius 𝑅).

We also define the Nusselt numbers as

𝑁𝑟 =
𝑅 𝜁

𝛼𝑓
, 𝑁𝑓

𝑧 =
𝜆𝑓

𝛼𝑓
, 𝑁𝑠

𝑧 =
𝜆𝑠

𝛼𝑓

and
𝐺 =

𝑔

𝑇𝑐
·

Now our problem (2.1)–(2.7) reads

−
(︂

1
𝑟

𝜕

𝜕𝑟

(︂
𝑟
𝜕𝜃𝜀

𝜕𝑟

)︂
+

1
𝑟2
𝜕2𝜃𝜀

𝜕𝜙2
+
𝜕2𝜃𝜀

𝜕𝑧2

)︂
+ Pe 𝑣(𝑟)

𝜕𝜃𝜀

𝜕𝑧
= 0 in 𝑃1, (2.11)

1
𝑟

𝜕

𝜕𝑟

(︂
𝑟
𝜕𝜃𝜀

𝜕𝑟

)︂
+

1
𝑟2
𝜕2𝜃𝜀

𝜕𝜙2
+
𝜕2𝜃𝜀

𝜕𝑧2
= 0 in 𝑃𝜀, (2.12)

𝜅𝜀𝑞 𝜕𝜃
𝜀

𝜕𝑟
= 𝑁𝑟 (𝐺− 𝜃𝜀) for 𝑟 = 1 + 𝜀,

𝜃𝜀(1−, 𝜙, 𝑧) = 𝜃𝜀(1+, 𝜙, 𝑧),
𝜕𝜃𝜀

𝜕𝑟
(1−, 𝜙, 𝑧) = 𝜅𝜀𝑞 𝜕𝜃

𝜀

𝜕𝑟
(1+, 𝜙, 𝑧),

−𝜕𝜃
𝜀

𝜕𝑧
(𝑟, 𝜙, 0) + Pe 𝑣 𝜃𝜀(𝑟, 𝜙, 0) = 𝑁𝑓

𝑧 (𝐹ℓ − 𝜃𝜀(𝑟, 𝜙, 0)) for 0 < 𝑟 < 1,

𝜕𝜃𝜀

𝜕𝑧
(𝑟, 𝜙, 𝐿)− Pe 𝑣 𝜃𝜀(𝑟, 𝜙, 𝐿) = 𝑁𝑓

𝑧 (𝐹𝑟 − 𝜃𝜀(𝑟, 𝜙, 𝐿)) for 0 < 𝑟 < 1,

−𝜅𝜀𝑞 𝜕𝜃
𝜀

𝜕𝑧
(𝑟, 𝜙, 0) = 𝑁𝑠

𝑧 (𝐹ℓ − 𝜃𝜀(𝑟, 𝜙, 0)) for 1 < 𝑟 < 1 + 𝜀,

𝜅𝜀𝑞 𝜕𝜃
𝜀

𝜕𝑧
(𝑟, 𝜙, 𝐿) = 𝑁𝑠

𝑧 (𝐹𝑟 − 𝜃𝜀(𝑟, 𝜙, 𝐿)) for 1 < 𝑟 < 1 + 𝜀. (2.13)
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The weak form is now formulated on a domain 𝑃1+𝜀 = [0, 1 + 𝜀)× (0, 2𝜋)× (0, 𝐿) by: find 𝜃𝜀 ∈ 𝐻1(𝑃1+𝜀) such
that ∫︁ 1

0

∫︁ 2𝜋

0

∫︁ 𝐿

0

(︂
𝑟
𝜕𝜃𝜀

𝜕𝑟

𝜕𝜓

𝜕𝑟
+

1
𝑟

𝜕𝜃𝜀

𝜕𝜙

𝜕𝜓

𝜕𝜙
+ 𝑟

𝜕𝜃𝜀

𝜕𝑧

𝜕𝜓

𝜕𝑧

)︂
d𝑧 d𝜙d𝑟

+ 𝜅𝜀𝑞

∫︁ 1+𝜀

1

∫︁ 2𝜋

0

∫︁ 𝐿

0

(︂
𝑟
𝜕𝜃𝜀

𝜕𝑟

𝜕𝜓

𝜕𝑟
+

1
𝑟

𝜕𝜃𝜀

𝜕𝜙

𝜕𝜓

𝜕𝜙
+ 𝑟

𝜕𝜃𝜀

𝜕𝑧

𝜕𝜓

𝜕𝑧

)︂
d𝑧 d𝜙d𝑟

− Pe
∫︁ 1

0

∫︁ 2𝜋

0

∫︁ 𝐿

0

𝑣(𝑟)
𝜕𝜓

𝜕𝑧
𝜃𝜀 d𝑧 d𝜙d𝑟

+𝑁𝑟 (1 + 𝜀)
∫︁ 2𝜋

0

∫︁ 𝐿

0

𝜃𝜀(1 + 𝜀, 𝜙, 𝑧) 𝜓(1 + 𝜀, 𝜙, 𝑧) d𝑧 d𝜙

+
∫︁ 1+𝜀

0

∫︁ 2𝜋

0

𝑁𝑧(𝑟) 𝜃𝜀(𝑟, 𝜙, 0) 𝜓(𝑟, 𝜙, 0) 𝑟 d𝑟 d𝜙

+
∫︁ 1+𝜀

0

∫︁ 2𝜋

0

𝑁𝑧(𝑟) 𝜃𝜀(𝑟, 𝜙, 𝐿) 𝜓(𝑟, 𝜙, 𝐿) 𝑟 d𝑟 d𝜙

= 𝑁𝑟(1 + 𝜀)
∫︁ 2𝜋

0

∫︁ 𝐿

0

𝐺(𝜙, 𝑧) 𝜓(1 + 𝜀, 𝜙, 𝑧) d𝑧 d𝜙

+
∫︁ 2𝜋

0

∫︁ 1+𝜀

0

𝑁𝑧(𝑟)𝐹ℓ(𝑟, 𝜙) 𝜓(𝑟, 𝜙, 0) 𝑟 d𝑟 d𝜙+
∫︁ 2𝜋

0

∫︁ 1+𝜀

0

𝑁𝑧(𝑟)𝐹𝑟(𝑟, 𝜙) 𝜓(𝑟, 𝜙, 𝐿) 𝑟 d𝑟 d𝜙

(2.14)

for any 𝜓 ∈ 𝐻1(𝑃1+𝜀). Here we have used the notation

𝑁𝑧(𝑟) =
{︂
𝑁𝑓

𝑧 for 0 ≤ 𝑟 < 1,
𝑁𝑠

𝑧 for 1 ≤ 𝑟 ≤ 1 + 𝜀

for the piecewise constant function 𝑁𝑧. In addition we denote

𝑁𝑧,max = max
𝑟
𝑁𝑧(𝑟), 𝑁𝑧,min = min

𝑟
𝑁𝑧(𝑟) > 0.

3. The main result

Before we start with rigorous analysis we want to announce the main result of the paper.
Depending on the ratio between the diffusivities of the fluid inside the pipe and of the pipe’s wall, described

by the power 𝑞 in (2.10), we obtain five effective models for describing the problem of heat exchange between
the fluid flowing through the pipe and the exterior medium. In all cases the effective equation remains the same
heat equation

−∆𝜃 + Pe 𝑣
𝜕𝜃

𝜕𝑧
= 0 in 𝑃1.

The difference lies in the effective boundary condition describing the heat exchange through the pipe’s wall
(parametrized in cylindrical coordinates by 𝑆). We have

– For 𝑞 < −1 the thermal conductivity of the pipe’s wall is so large so the temperature is constant in the
entire wall of pipe. Only overall temperature

∫︀
𝑆
𝐺 influences the process. Furthermore, the effective boundary

condition is the non-local Robin condition, that we believe to be new in the literature, of the form

𝜃(1, 𝜙, 𝑧) = const . on 𝑆,
𝜕𝜃

𝜕𝑟
(1) = 𝑁𝑟

(︀
𝐺− 𝜃(1)

)︀
,
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where

𝜃(𝑟) =
∫︁ 2𝜋

0

∫︁ 𝐿

0

𝜃(𝑟, 𝜙, 𝑧) d𝜙d𝑧, 𝐺 =
∫︁ 2𝜋

0

∫︁ 𝐿

0

𝐺(𝜙, 𝑧) d𝜙d𝑧

are the mean values of the fluid temperature and the temperature of the exterior medium, respectively.
– For 𝑞 = −1 the thermal conductivity of the pipe’s wall is large enough that longitudinal propagation at

the boundary is important. In fact, the two processes (in the fluid and in the pipe’s wall) are of the same
order and we get the coupled boundary value problem consisting of the heat conduction equation in the fluid
and the curvilinear version of the heat equation (the Laplace–Beltrami operator replacing the Laplacean)
in the 2D pipe’s wall 𝑆. After decoupling, we get the effective wall law in the form of peculiar second order
boundary condition

𝜕𝜃

𝜕𝑟
(1, 𝜙, 𝑧)− 𝜅∆𝑆𝜃(1, 𝜙, 𝑧) = 𝑁𝑟 [𝐺(𝜙, 𝑧)− 𝜃(1, 𝜙, 𝑧) ] on 𝑆.

So, due to the fact that the pipe’s wall conducts very well, the heat is not only conducted across the pipe’s
wall but also along the pipe.

– For −1 < 𝑞 < 1 no influence of the pipe’s wall conductivity is present in the limit model (classical engineering
case), i.e. the effective boundary condition is similar to the one we started with

𝜕𝜃

𝜕𝑟
(1, 𝜙, 𝑧) = 𝑁𝑟 [𝐺(𝜙, 𝑧)− 𝜃(1, 𝜙, 𝑧) ] on 𝑆.

– In case 𝑞 = 1 the thermal conductivity is small enough that it reduces the effective Nusselt number in the
boundary condition from 𝑁𝑟 to

𝜅 𝑁𝑟

𝜅+𝑁𝑟
= 𝑁𝑟

𝜅

𝜅+𝑁𝑟
< 𝑁𝑟.

We get the effective boundary condition of the form

𝜕𝜃

𝜕𝑟
(1, 𝜙, 𝑧) =

𝜅 𝑁𝑟

𝜅+𝑁𝑟
[𝐺(𝜙, 𝑧)− 𝜃(1, 𝜙, 𝑧)] on 𝑆.

– The last case is when 𝑞 > 1. In that case the wall of the pipe conducts the temperature so badly that it
effectively behaves as an insulator. The effective boundary condition is thus the homogeneous Neumann
condition, as if there is no heat exchange between the pipe and the exterior medium

𝜕𝜃

𝜕𝑟
(1, 𝜙, 𝑧) = 0 on 𝑆.

The original 𝜀 problem is formulated on a joint fluid and thin wall domain. On the other hand all obtained
effective models are given only on the fluid domain 𝑃1 with different boundary conditions on the pipe’s wall.
Thus the effective models have simpler mathematical structure and can be solved more efficiently. However in a
real life situations it may be difficult to decide which effective model to use. Thus in Section 7 we also formulate
unified model (7.1) given on the fluid domain 𝑃1 only which is 𝜀 dependent and has the same asymptotics
with respect to 𝜀 as the original 𝜀 problem (2.14). Furthermore to see the qualitatively different behavior of the
solutions of the 𝜀 model (2.14) in Section 8 we do numerical simulations in different regimes and compare their
results with simulations for the limit models and the unified model (7.1).

4. A priori estimates

Before we start with the analysis let us introduce some notations. Additional sets in the cylindrical coordinates
we will use are:

𝑆𝑟 = {𝑟} × ⟨0, 2𝜋⟩ × ⟨0, 𝐿⟩, 𝑟 ∈ {1, 1 + 𝜀, 2}, 𝑆 = ⟨0, 2𝜋⟩ × ⟨0, 𝐿⟩,



MATHEMATICAL MODEL OF HEAT TRANSFER 633

𝛾ℓ
1 = [0, 1)× (0, 2𝜋)× {0}, 𝛾ℓ

1+𝜀 = [0, 1 + 𝜀)× (0, 2𝜋)× {0},
𝛾𝑟
1 = [0, 1)× (0, 2𝜋)× {𝐿}, 𝛾𝑟

1+𝜀 = [0, 1 + 𝜀)× (0, 2𝜋)× {𝐿}.

Using again standard parametrization for the cylindrical coordinates 𝐹 (𝑟, 𝜙, 𝑧) = (𝑟 cos𝜙, 𝑟 sin𝜙, 𝑧) we also
introduce the associated images under 𝐹 of the defined sets. We have already introduced 𝑃1 = 𝐹 (𝑃1), 𝑃1+𝜀 =
𝐹 (𝑃1+𝜀), 𝑃𝜀 = 𝐹 (𝑃𝜀). In addition we define 𝑆1 = 𝐹 (𝑆1), 𝑆1+𝜀 = 𝐹 (𝑆1+𝜀), 𝛾𝑟

1 = 𝐹 (𝛾𝑟
1), 𝛾ℓ

1 = 𝐹 (𝛾ℓ
1), 𝛾𝑟

1+𝜀 =
𝐹 (𝛾𝑟

1+𝜀), 𝛾ℓ
1+𝜀 = 𝐹 (𝛾ℓ

1+𝜀). These sets correspond to the geometry in Cartesian coordinates. Furthermore we
introduce the notation ·̃ for functions defined in Cartesian coordinates, for instance for solution 𝜃𝜀 we introduce
the function 𝜃𝜀 : 𝑃1+𝜀 → R such that

𝜃𝜀 = 𝜃𝜀 ∘ 𝐹.

Any function given in cylindrical coordinates is, obviously, assumed to be 2𝜋-periodic in angular variable 𝜙. To
shorten the notation we will also use the following notation for integrals, for instance,∫︁

𝑃1

𝑓 d𝑉 =
∫︁

𝑃1

𝑓 𝑟 d𝑟 d𝜙d𝑧 =
∫︁ 1

0

∫︁ 2𝜋

0

∫︁ 𝐿

0

𝑓 𝑟 d𝑟 d𝜙d𝑧,∫︁
𝑆1+𝜀

𝑓 d𝑎 = (1 + 𝜀)
∫︁

𝑆

𝑓 |𝑟=1+𝜀 d𝜙d𝑧,
∫︁

𝛾ℓ
1+𝜀

𝑓 d𝑎 =
∫︁ 1+𝜀

0

∫︁ 2𝜋

0

𝑓(𝑟, 𝜙, 0) 𝑟 d𝑟 d𝜙.

Before we start, let us rewrite the problem (2.14) in the weak formulation and in Cartesian coordinates: find
𝜃𝜀 ∈ 𝐻1(𝑃1+𝜀) such that∫︁

𝑃1

∇𝜃𝜀 · ∇𝜓 d𝑉 + 𝜅𝜀𝑞

∫︁
𝑃𝜀

∇𝜃𝜀 · ∇𝜓 d𝑉 − Pe
∫︁

𝑃1

𝑣
𝜕𝜓

𝜕𝑧
𝜃𝜀 d𝑉

+𝑁𝑟

∫︁
𝑆1+𝜀

𝜃𝜀 𝜓 d𝑎+
∫︁

𝛾ℓ
1+𝜀

𝑁𝑧 𝜃
𝜀 𝜓 d𝑎+

∫︁
𝛾𝑟
1+𝜀

𝑁𝑧 𝜃
𝜀 𝜓 d𝑎

= 𝑁𝑟

∫︁
𝑆1+𝜀

𝐺̃ 𝜓 d𝑎+
∫︁

𝛾ℓ
1+𝜀

𝑁𝑧 𝐹ℓ 𝜓 d𝑎+
∫︁

𝛾𝑟
1+𝜀

𝑁𝑧 𝐹𝑟 𝜓 d𝑎,

(4.1)

for all 𝜓 ∈ 𝐻1(𝑃1+𝜀). Throughout this paper we assume that

𝐺̃ ∈ 𝐿∞(𝑆1+𝜀), 𝐹ℓ ∈ 𝐿∞(𝛾ℓ
1+𝜀), 𝐹𝑟 ∈ 𝐿∞(𝛾𝑟

1+𝜀). (4.2)

Under that assumption, the existence of weak solution can be found, for example, in [4].

Theorem 4.1. Let 𝜃𝜀 ∈ 𝐻1(𝑃1+𝜀) be a solution to the problem (2.11)–(2.13), under the assumption (4.2).
Suppose that

Pe <
3𝜋𝑁𝑓

𝑧

8
· (4.3)

Then

(a) there exists a constant

𝐶 = 𝐶
(︁
𝑁𝑟, 𝑁𝑧, |𝐺|𝐿2(𝑆1+𝜀) , |𝐹𝑟|𝐿2(𝛾𝑟

1+𝜀) , |𝐹ℓ|𝐿2(𝛾ℓ
1+𝜀)

)︁
> 0,

independent on 𝜀, such that

1
2

⃒⃒⃒
∇𝜃𝜀

⃒⃒⃒2
𝐿2(𝑃1)

+ 𝜅𝜀𝑞
⃒⃒⃒
∇𝜃𝜀

⃒⃒⃒2
𝐿2(𝑃𝜀)

+𝑁𝑟

⃒⃒⃒
𝜃𝜀
⃒⃒⃒2
𝐿2(𝑆1+𝜀)

+
⃒⃒⃒√︀

𝑁𝑧 𝜃𝜀
⃒⃒⃒2
𝐿2(𝛾𝑟

1+𝜀)
+
⃒⃒⃒√︀

𝑁𝑧 𝜃𝜀
⃒⃒⃒2
𝐿2(𝛾ℓ

1+𝜀)
≤ 𝐶. (4.4)
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(b) 𝜃𝜀 ∈ 𝐿∞(𝑃1+𝜀) and there exists a constant

𝑀 = 𝑀
(︁
𝑁𝑟, 𝑁𝑧, |𝐺|𝐿∞(𝑆1+𝜀) , |𝐹𝑟|𝐿∞(𝛾𝑟

1+𝜀) , |𝐹ℓ|𝐿∞(𝛾ℓ
1+𝜀)

)︁
> 0,

independent on 𝜀, such that ⃒⃒⃒
𝜃𝜀
⃒⃒⃒
𝐿∞(𝑃1+𝜀)

≤𝑀. (4.5)

For the proof we use the idea of Stampacchia [21] (see also [18]). Thus we first state classical Stampacchia’s
lemma.

Lemma 4.2. Let Ω ⊂ R𝑛 be a bounded domain and 𝒢 : R → R be a Lipschitz function such that 𝒢(0) = 0.
Then, for any 𝑢 ∈𝑊 1,𝑝(Ω), 1 < 𝑝 <∞, we have 𝒢(𝑢) ∈𝑊 1,𝑝(Ω) and

∇𝒢(𝑢) = 𝒢′(𝑢)∇𝑢.

To continue we need a technical results:

Lemma 4.3. For any 𝜀 ∈ ⟨0, 1⟩ and 𝜓 ∈ 𝐻1(𝑃1+𝜀) the following inequality holds

⃒⃒⃒
𝜓
⃒⃒⃒2
𝐿2(𝑃1+𝜀)

≤ 2

⎛⎝⃒⃒⃒⃒⃒𝜕𝜓𝜕𝑟
⃒⃒⃒⃒
⃒
2

𝐿2(𝑃1+𝜀)

+
⃒⃒⃒
𝜓
⃒⃒⃒2
𝐿2(𝑆1+𝜀)

⎞⎠ . (4.6)

Proof. Let 𝜓 be a smooth function. Then

|𝜓(𝑟, 𝜙, 𝑧)| =
⃒⃒⃒⃒
−
∫︁ 1+𝜀

𝑟

𝜕𝜓

𝜕𝑟
(𝜌, 𝜙, 𝑧) d𝜌+ 𝜓(1 + 𝜀, 𝜙, 𝑧)

⃒⃒⃒⃒

≤

(︃∫︁ 1+𝜀

𝑟

(︂
𝜕𝜓

𝜕𝑟
(𝜌, 𝜙, 𝑧)

)︂2

𝜌 d𝜌

)︃ 1
2 (︂∫︁ 1+𝜀

𝑟

d𝜌
𝜌

)︂ 1
2

+ |𝜓(1 + 𝜀, 𝜙, 𝑧)| .

We take the square, estimate, multiply by 𝑟 and integrate over 𝑃1+𝜀 to get∫︁
𝑃1+𝜀

|𝜓(𝜌, 𝜙, 𝑧)|2 𝜌d𝜌d𝜙d𝑧 ≤ 2
∫︁

𝑃1+𝜀

(︂
𝜕𝜓

𝜕𝑟
(𝜌, 𝜙, 𝑧)

)︂2

𝜌 d𝜌d𝜙d𝑧

×
∫︁ 1+𝜀

0

(ln(1 + 𝜀)− ln 𝑟)𝑟 d𝑟 + (1 + 𝜀)2
∫︁

𝑆1+𝜀

|𝜓|2

=
1
2

(1 + 𝜀)2
∫︁

𝑃1+𝜀

(︃
𝜕𝜓

𝜕𝑟

)︃2

+ 2
∫︁

𝑆1+𝜀

⃒⃒⃒
𝜓
⃒⃒⃒2
,

since
∫︀

𝑆1+𝜀
= (1 + 𝜀)

∫︀
𝑆1+𝜀

. �

Proof of Theorem 4.1. First of all, due to the Theorem 3.14. from [19] we know that for any solution of (2.11)–
(2.13) we have 𝜃𝜀 ∈ 𝐶0,𝛾(𝑃1+𝜀), for some 𝛾 > 0. Furthermore, there exists some 𝐶 > 0 such that

⃒⃒⃒
𝜃𝜀
⃒⃒⃒
𝐶0,𝛾(𝑃1+𝜀)

=
⃒⃒⃒
𝜃𝜀
⃒⃒⃒
𝐿∞(𝑃1+𝜀)

+ sup
𝑥 ̸=𝑦

⃒⃒⃒
𝜃𝜀(𝑥)− 𝜃𝜀(𝑦)

⃒⃒⃒
|𝑥− 𝑦|

≤ 𝐶

(︂⃒⃒⃒
𝜃𝜀
⃒⃒⃒
𝐿2(𝑃1+𝜀)

+ |𝐺|𝐿∞(𝑆1+𝜀) + |𝐹𝑟|𝐿∞(𝛾𝑟
1+𝜀) + |𝐹ℓ|𝐿∞(𝛾ℓ

1+𝜀)

)︂
.
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However, as far as we know, the constant 𝐶 depends on 𝜀 and we have no idea how. Thus, we can use the
regularity of 𝜃𝜀, but the estimate is of no use to us.

We start the proof of the estimates (4.4) and (4.5). Let

𝜃𝜀
+(x) = max

{︁
0, 𝜃𝜀(x)

}︁
, 𝜃𝜀

−(x) = max
{︁

0,−𝜃𝜀(x)
}︁
.

Notice that the functions 𝒢(𝑡) = max{0, 𝑡} and ℋ(𝑡) = max{0,−𝑡} are Lipschitz and 𝒢(0) = ℋ(0) = 0, so that
Lemma 4.2 applies. Furthermore

𝒢′(𝑡) =
{︂

1, 𝑡 > 0
0, 𝑡 < 0 , ℋ′(𝑡) =

{︂
−1, 𝑡 < 0
0, 𝑡 > 0 ,

so that

∇𝜃𝜀
+(x) =

{︂
∇𝜃𝜀(x) if x is such that 𝜃𝜀(x) > 0
0 if x is such that 𝜃𝜀(x) < 0

,

and

∇𝜃𝜀
−(x) =

{︂
−∇𝜃𝜀(x) if x is such that 𝜃𝜀(x) < 0
0 if x is such that 𝜃𝜀(x) > 0

.

Obviously 𝜃𝜀
+, 𝜃

𝜀
− ≥ 0 and 𝜃𝜀 = 𝜃𝜀

+ − 𝜃𝜀
−, while

⃒⃒⃒
𝜃𝜀
⃒⃒⃒

= 𝜃𝜀
+ + 𝜃𝜀

−. We derive the estimate for 𝜃𝜀
+. The estimate for

𝜃𝜀
− can be derived analogously. From two estimates for positive and negative part one gets directly the estimate

for 𝜃𝜀.
For 𝜆 ≥ 0 we test the equations (2.11) and (2.12) by

(︀
𝜃𝜀
+

)︀𝜆+1 (however in Cartesian coordinates). That is a
suitable test function since we know that 𝜃𝜀 ∈ 𝐻1(𝑃1+𝜀) ∩ 𝐿∞(𝑃1+𝜀). We get

(𝜆+ 1)
(︂∫︁

𝑃1

⃒⃒
∇𝜃𝜀

+

⃒⃒2 (︀
𝜃𝜀
+

)︀𝜆 + 𝜅𝜀𝑞

∫︁
𝑃𝜀

⃒⃒
∇𝜃𝜀

+

⃒⃒2 (︀
𝜃𝜀
+

)︀𝜆)︂+𝑁𝑟

∫︁
𝑆1+𝜀

(︀
𝜃𝜀
+

)︀𝜆+2

+
∫︁

𝛾𝑟
1+𝜀

𝑁𝑧

(︀
𝜃𝜀
+

)︀𝜆+2 +
∫︁

𝛾ℓ
1+𝜀

𝑁𝑧

(︀
𝜃𝜀
+

)︀𝜆+2 − (𝜆+ 1) Pe
∫︁

𝑃1

𝑣
(︀
𝜃𝜀
+

)︀𝜆+1 𝜕𝜃𝜀
+

𝜕𝑧

= 𝑁𝑟

∫︁
𝑆1+𝜀

𝐺
(︀
𝜃𝜀
+

)︀𝜆+1 +
∫︁

𝛾𝑟
1+𝜀

𝑁𝑧 𝐹
𝜀
𝑟

(︀
𝜃𝜀
+

)︀𝜆+1 +
∫︁

𝛾ℓ
1+𝜀

𝑁𝑧 𝐹
𝜀
ℓ

(︀
𝜃𝜀
+

)︀𝜆+1
.

(4.7)

As for the left-hand side, we obviously have

⃒⃒
∇𝜃𝜀

+

⃒⃒2 (︀
𝜃𝜀
+

)︀𝜆 =
1(︀

1 + 𝜆
2

)︀2 ⃒⃒⃒∇ [︁(︀𝜃𝜀
+

)︀1+ 𝜆
2
]︁⃒⃒⃒2

so that

(𝜆+ 1)
(︂∫︁

𝑃1

⃒⃒
∇𝜃𝜀

+

⃒⃒2 (︀
𝜃𝜀
+

)︀𝜆 + 𝜅𝜀𝑞

∫︁
𝑃𝜀

⃒⃒
∇𝜃𝜀

+

⃒⃒2 (︀
𝜃𝜀
+

)︀𝜆)︂
=

1 + 𝜆(︀
1 + 𝜆

2

)︀2 (︂∫︁
𝑃1

⃒⃒⃒
∇
[︁(︀
𝜃𝜀
+

)︀1+ 𝜆
2
]︁⃒⃒⃒2

+ 𝜅𝜀𝑞

∫︁
𝑃𝜀

⃒⃒⃒
∇
[︁(︀
𝜃𝜀
+

)︀1+ 𝜆
2
]︁⃒⃒⃒2)︂

.
(4.8)

Furthermore

−(𝜆+ 1)
∫︁

𝑃1

𝑣
(︀
𝜃𝜀
+

)︀𝜆+1 𝜕𝜃𝜀
+

𝜕𝑧
= −𝜆+ 1

𝜆+ 2

∫︁
𝑃1

𝑣
𝜕

𝜕𝑧

[︁(︀
𝜃𝜀
+

)︀𝜆+2
]︁

=
𝜆+ 1
2 + 𝜆

(︃∫︁
𝛾ℓ
1

𝑣
(︀
𝜃𝜀
+

)︀𝜆+2 −
∫︁

𝛾𝑟
1

𝑣
(︀
𝜃𝜀
+

)︀𝜆+2

)︃
.

(4.9)
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The first term in the right hand side of (4.9) is positive and the second one, since 𝑣 = 2
𝜋 (1−𝑟2), can be estimated

as ∫︁
𝛾𝑟
1

𝑣
(︀
𝜃𝜀
+

)︀𝜆+2 ≤ 2
𝜋

∫︁
𝛾𝑟
1

⃒⃒⃒(︀
𝜃𝜀
+

)︀1+ 𝜆
2

⃒⃒⃒2
.

The Young inequality with 𝑟 = 2+𝜆
1+𝜆 , 𝑟

′ = 2 + 𝜆, as before, gives∫︁
𝑆1+𝜀

𝐺
(︀
𝜃𝜀
+

)︀𝜆+1 =
∫︁

𝑆1+𝜀

1
𝜏
𝐺 𝜏

(︀
𝜃𝜀
+

)︀𝜆+1

≤ 1
𝜆+ 2

(︂
1
𝜏
|𝐺|𝐿2+𝜆(𝑆1+𝜀)

)︂2+𝜆

+
1 + 𝜆

2 + 𝜆
𝜏

2+𝜆
1+𝜆

⃒⃒
𝜃𝜀
+

⃒⃒𝜆+2

𝐿2+𝜆(𝑆1+𝜀)
.

For

𝜏 =
(︂

1
4

2 + 𝜆

1 + 𝜆

)︂ 1+𝜆
2+𝜆

we get
1 + 𝜆

2 + 𝜆
𝜏

2+𝜆
1+𝜆 =

1
4
,

1
𝜆+ 2

(︂
1
𝜏

)︂2+𝜆

=
(︂

4
𝜆+ 1
𝜆+ 2

)︂1+𝜆 1
𝜆+ 2

<
41+𝜆

𝜆+ 2

and therefore

𝑁𝑟

∫︁
𝑆1+𝜀

𝐺
(︀
𝜃𝜀
+

)︀𝜆+1 ≤ 1
𝜆+ 2

𝑁𝑟

4

(︁
4 |𝐺|𝐿2+𝜆(𝑆1+𝜀)

)︁2+𝜆

+
𝑁𝑟

4

⃒⃒⃒(︀
𝜃𝜀
+

)︀1+ 𝜆
2

⃒⃒⃒2
𝐿2(𝑆1+𝜀)

.

Using the same idea we prove that for 𝑖 ∈ {𝑟, ℓ}∫︁
𝛾𝑖
1+𝜀

𝑁𝑧𝐹𝑖

(︀
𝜃𝜀
+

)︀𝜆+1 ≤ 1
4(𝜆+ 2)

(︂
4
⃒⃒⃒

2+𝜆
√︀
𝑁𝑧 𝐹𝑖

⃒⃒⃒
𝐿2+𝜆(𝛾𝑖

1+𝜀)

)︂2+𝜆

+
1
4

⃒⃒⃒√︀
𝑁𝑧

(︀
𝜃𝜀
+

)︀1+ 𝜆
2

⃒⃒⃒2
𝐿2(𝛾𝑖

1+𝜀)
.

(4.10)

At this point we need the assumption (4.11), i.e. that

Pe <
3𝜋𝑁𝑓

𝑧

8
2 + 𝜆

1 + 𝜆
, (4.11)

since then there are no negative terms coming from the left hand side of (4.7). Combining (4.7)–(4.10) we arrive
at

(1 + 𝜆)

2
(︀
1 + 𝜆

2

)︀2 (︂∫︁
𝑃1

⃒⃒⃒
∇
[︁(︀
𝜃𝜀
+

)︀1+ 𝜆
2
]︁⃒⃒⃒2

+ 𝜅𝜀𝑞

∫︁
𝑃𝜀

⃒⃒⃒
∇
[︁(︀
𝜃𝜀
+

)︀1+ 𝜆
2
]︁⃒⃒⃒2)︂

+
𝑁𝑟

2

∫︁
𝑆1+𝜀

⃒⃒⃒(︀
𝜃𝜀
+

)︀1+ 𝜆
2

⃒⃒⃒2
+

1
2

∫︁
𝛾ℓ
1+𝜀

𝑁𝑧

⃒⃒⃒(︀
𝜃𝜀
+

)︀1+ 𝜆
2

⃒⃒⃒2
≤ 41+𝜆

𝜆+ 2

[︃(︂⃒⃒⃒
2+𝜆
√︀
𝑁𝑧 𝐹𝑟

⃒⃒⃒
𝐿2+𝜆(𝛾𝑟

1+𝜀)

)︂2+𝜆

+
(︂⃒⃒⃒

2+𝜆
√︀
𝑁𝑧 𝐹ℓ

⃒⃒⃒
𝐿2+𝜆(𝛾ℓ

1+𝜀)

)︂2+𝜆
]︃

+
1

𝜆+ 2
𝑁𝑟

4

(︁
4 |𝐺|𝐿2+𝜆(𝑆1+𝜀)

)︁2+𝜆

.
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Obviously, for 𝜆 = 0, under the assumption that Pe is such that (4.11) holds, we get the standard variational
estimate ∫︁

𝑃1

⃒⃒
∇𝜃𝜀

+

⃒⃒2 + 𝜅𝜀𝑞

∫︁
𝑃𝜀

⃒⃒
∇𝜃𝜀

+

⃒⃒2 +𝑁𝑟

∫︁
𝑆1+𝜀

⃒⃒
𝜃𝜀
+

⃒⃒2 +
∫︁

𝛾ℓ
1+𝜀

𝑁𝑧

⃒⃒
𝜃𝜀
+

⃒⃒2
≤ 4

⃒⃒⃒√︀
𝑁𝑧 𝐹𝑟

⃒⃒⃒2
𝐿2(𝛾𝑟

1+𝜀)
+ 4

⃒⃒⃒√︀
𝑁𝑧 𝐹ℓ

⃒⃒⃒2
𝐿2(𝛾ℓ

1+𝜀)
+ 4𝑁𝑟 |𝐺|2𝐿2(𝑆1+𝜀) .

(4.12)

Next step is to take the limit as 𝜆 → +∞. First we can assume that 𝜆 is large enough such that (4.11) holds.
We can do that, since we have imposed the condition (4.3) and lim𝜆→∞

𝜆+2
𝜆+1 = 1. Next, we suppose that it is

large enough to have

𝜆 ≥ 4
𝑁𝑟

− 2

thus 𝑁𝑟 ≥ 4/(𝜆+ 2), so that
(1 + 𝜆)

2
(︀
1 + 𝜆

2

)︀2 ≤ 𝑁𝑟

2

and
(1 + 𝜆)

2
(︀
1 + 𝜆

2

)︀2
(︃∫︁

𝑃1

⃒⃒⃒
∇
[︁(︀
𝜃𝜀
+

)︀1+ 𝜆
2
]︁⃒⃒⃒2

+ 𝜅𝜀𝑞

∫︁
𝑃𝜀

⃒⃒⃒
∇
[︁(︀
𝜃𝜀
+

)︀1+ 𝜆
2
]︁⃒⃒⃒2

+
∫︁

𝑆1+𝜀

⃒⃒⃒(︀
𝜃𝜀
+

)︀1+ 𝜆
2

⃒⃒⃒2)︃

≤ 41+𝜆

𝜆+ 2

[︃(︂⃒⃒⃒
2+𝜆
√︀
𝑁𝑧 𝐹𝑟

⃒⃒⃒
𝐿2+𝜆(𝛾𝑟

1+𝜀)

)︂2+𝜆

+
(︂⃒⃒⃒

2+𝜆
√︀
𝑁𝑧 𝐹ℓ

⃒⃒⃒
𝐿2+𝜆(𝛾ℓ

1+𝜀)

)︂2+𝜆
]︃

+
1

𝜆+ 2
𝑁𝑟

4

(︁
4 |𝐺|𝐿2+𝜆(𝑆1+𝜀)

)︁2+𝜆

.

(4.13)

We have two cases: 𝑞 > 0 and 𝑞 ≤ 0.
For 𝑞 > 0 and 𝜀 small enough such that 𝜅𝜀𝑞 ≤ 1, we have

(1 + 𝜆)𝜅𝜀𝑞

2
(︀
1 + 𝜆

2

)︀2
(︃∫︁

𝑃1+𝜀

⃒⃒⃒
∇
[︁(︀
𝜃𝜀
+

)︀1+ 𝜆
2
]︁⃒⃒⃒2

+
∫︁

𝑆1+𝜀

⃒⃒⃒(︀
𝜃𝜀
+

)︀1+ 𝜆
2

⃒⃒⃒2)︃

≤ 41+𝜆

𝜆+ 2

[︃(︂⃒⃒⃒
2+𝜆
√︀
𝑁𝑧 𝐹𝑟

⃒⃒⃒
𝐿2+𝜆(𝛾𝑟

1+𝜀)

)︂2+𝜆

+
(︂⃒⃒⃒

2+𝜆
√︀
𝑁𝑧 𝐹ℓ

⃒⃒⃒
𝐿2+𝜆(𝛾ℓ

1+𝜀)

)︂2+𝜆
]︃

+
1

𝜆+ 2
𝑁𝑟

4

(︁
4 |𝐺|𝐿2+𝜆(𝑆1+𝜀)

)︁2+𝜆

.

(4.14)

Let 𝐾 > 0 be defined by

𝐾 = max
{︂

4
⃒⃒⃒

2+𝜆
√︀
𝑁𝑧 𝐹𝑟

⃒⃒⃒
𝐿2+𝜆(𝛾𝑟

1+𝜀)
, 4
⃒⃒⃒

2+𝜆
√︀
𝑁𝑧 𝐹ℓ

⃒⃒⃒
𝐿2+𝜆(𝛾ℓ

1+𝜀)
, 4 |𝐺|𝐿2+𝜆(𝑆1+𝜀)

}︂
and

𝑑 = max
{︂

1
2
,
𝑁𝑟

4

}︂
·

Now (4.6) gives
(1 + 𝜆)𝜅𝜀𝑞

4
(︀
1 + 𝜆

2

)︀2 ∫︁
𝑃1+𝜀

⃒⃒
𝜃𝜀
+

⃒⃒2+𝜆 ≤ 3𝑑
𝜆+ 2

𝐾2+𝜆.

or ⃒⃒
𝜃𝜀
+

⃒⃒
𝐿2+𝜆(𝑃1+𝜀)

≤

(︃
12 𝑑

(︀
1 + 𝜆

2

)︀2
(𝜆+ 2)(1 + 𝜆)𝜅 𝜀𝑞

)︃ 1
2+𝜆

𝐾. (4.15)
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For 𝜆 > 3 a simple calculation shows that (︀
1 + 𝜆

2

)︀2
(𝜆+ 2)(1 + 𝜆)

<
1
3
·

We end up with ⃒⃒
𝜃𝜀
+

⃒⃒
𝐿2+𝜆(𝑃1+𝜀)

≤ 𝐾

(︂
4 𝑑
𝜅 𝜀𝑞

)︂ 1
2+𝜆

. (4.16)

As 𝜆→ +∞ the left hand side converges to
⃒⃒
𝜃𝜀
+

⃒⃒
𝐿∞(𝑃1+𝜀)

. The right-hand side converges to 𝐾. Thus⃒⃒
𝜃𝜀
+

⃒⃒
𝐿∞(𝑃1+𝜀)

≤ 𝐾. (4.17)

For 𝑞 < 0, we deduce from (4.13)

(1 + 𝜆)

2
(︀
1 + 𝜆

2

)︀2
(︃∫︁

𝑃1+𝜀

⃒⃒⃒
∇
[︁(︀
𝜃𝜀
+

)︀1+ 𝜆
2
]︁⃒⃒⃒2

+
∫︁

𝑆1+𝜀

⃒⃒⃒(︀
𝜃𝜀
+

)︀1+ 𝜆
2

⃒⃒⃒2)︃

≤ 41+𝜆

𝜆+ 2

[︃(︂⃒⃒⃒
2+𝜆
√︀
𝑁𝑧 𝐹𝑟

⃒⃒⃒
𝐿2+𝜆(𝛾𝑟

1+𝜀)

)︂2+𝜆

+
(︂⃒⃒⃒

2+𝜆
√︀
𝑁𝑧 𝐹ℓ

⃒⃒⃒
𝐿2+𝜆(𝛾ℓ

1+𝜀)

)︂2+𝜆
]︃

+
1

𝜆+ 2
𝑁𝑟

4

(︁
4 |𝐺|𝐿2+𝜆(𝑆1+𝜀)

)︁2+𝜆

.

and, following the same steps, we get (4.17). �

We now have the following a priori estimates:

Corollary 4.4. Let 𝑞 ∈ R and let 𝜃𝜀 be a weak solution to the problem (2.11)–(2.13). Suppose that (4.2) and
(4.3) hold. Then, there exists 𝐶 > 0 such that⃒⃒⃒

𝜃𝜀
⃒⃒⃒
𝐿∞(𝑃1+𝜀)

≤ 𝐶, (4.18)⃒⃒⃒
∇𝜃𝜀

⃒⃒⃒
𝐿2(𝑃1)

≤ 𝐶, (4.19)⃒⃒⃒
𝜃𝜀
⃒⃒⃒
𝐿2(𝑆1+𝜀)

≤ 𝐶, (4.20)⃒⃒⃒
𝜃𝜀
⃒⃒⃒
𝐿2(𝛾𝑟

1+𝜀)
≤ 𝐶, (4.21)⃒⃒⃒

𝜃𝜀
⃒⃒⃒
𝐿2(𝛾ℓ

1+𝜀)
≤ 𝐶, (4.22)⃒⃒⃒

∇𝜃𝜀
⃒⃒⃒
𝐿2(𝑃𝜀)

≤ 𝐶𝜀−
𝑞
2 . (4.23)

Since we will take some limits in the weak formulation (6.16) we rewrite the estimates related to 𝑃𝜀 from
Corollary 4.4 in cylindrical coordinates.

Corollary 4.5. Let 𝑞 ∈ R and let 𝜃𝜀 be a weak solution to the problem (2.11)–(2.13). Then, there exists 𝐶 > 0
such that ⃒⃒⃒⃒

𝜕𝜃𝜀

𝜕𝑟

⃒⃒⃒⃒
𝐿2(𝑃𝜀)

,

⃒⃒⃒⃒
𝜕𝜃𝜀

𝜕𝜙

⃒⃒⃒⃒
𝐿2(𝑃𝜀)

,

⃒⃒⃒⃒
𝜕𝜃𝜀

𝜕𝑧

⃒⃒⃒⃒
𝐿2(𝑃𝜀)

≤ 𝐶𝜀−
𝑞
2 . (4.24)
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Proof. The statements are consequence of change of variables and in particular since 𝑟 is bounded in 𝑃𝜀, namely
1 ≤ 𝑟 ≤ 1 + 𝜀 ≤ 2. �

Remark 4.6. The condition (4.3) is used here for the a priori estimate and later on for uniqueness of the
solution to the effective problems. We could avoid any restriction on the Peclet number Pe by imposing the
Dirichlet boundary condition on pipe’s ends (at least on the left end). Roughly speaking, the Dirichlet condition
corresponds to the case N𝑓

𝑧 →∞.

5. Two-scale convergence for thin domains

In this section we recall the definition and the basic properties of the two-scale convergence for thin domains.
The method introduced in [9] (see also [10]) was designed for deriving effective physical laws in thin domains. We
are dealing here with a junction of a thin domain with non-thin ones. The method has been applied previously on
junction problems between two thin domains in [12]. We will define it for the thin domain which appears in our
problem after change of variable by cylindrical coordinates (𝑟, 𝜙, 𝑧), i.e. for domain 𝑃𝜀 = ⟨1, 1+𝜀⟩×⟨0, 2𝜋⟩×⟨0, 𝐿⟩.
For the definition of the two-scale convergence we will also need the rescaled version of this set

𝑃2−1 = ⟨1, 2⟩ × ⟨0, 2𝜋⟩ × ⟨0, 𝐿⟩

with variables (𝜌, 𝜙, 𝑧). As usual, all functions given in cylindrical coordinates are assumed to be 2𝜋-periodic
with respect to 𝜙.

Definition 5.1. We say that a sequence {𝑣𝜀}𝜀>0, such that 𝑣𝜀 ∈ 𝐿2(𝑃𝜀), two- scale converges to a function
𝑉 ∈ 𝐿2(𝑃2−1) (we use the notation 2s convergence in the sequel) if

1
𝜀

∫︁
𝑃𝜀

𝑣𝜀(𝑟, 𝜙, 𝑧)𝜑
(︂

1 +
𝑟 − 1
𝜀

, 𝜙, 𝑧

)︂
d𝑟 d𝜙d𝑧 →

∫︁
𝑃2−1

𝑉 (𝜌, 𝜙, 𝑧)𝜑(𝜌, 𝜙, 𝑧) d𝜌d𝜙d𝑧

for any 𝜑 ∈ 𝐿2(𝑃2−1).

The definition is slightly modified compared to the one from [9], due to the curved geometry of our thin domain.
We notice that the slow variable 𝑟 and the fast variable 𝜌 are related by formulas

𝜌 = 1 +
𝑟 − 1
𝜀

⇒ 𝑟 = 1 + 𝜀 (𝜌− 1) ⇒ 𝑟

𝜀
d𝑟 = d𝜌+𝑂(𝜀).

For such convergence, we have the following compactness result (see [9], Thm. 1).

Theorem 5.2. (a) Let the sequence {𝑣𝜀}𝜀>0 be such that 𝑣𝜀 ∈ 𝐿2(𝑃𝜀), and that

|𝑣𝜀|𝐿2(𝑃𝜀) ≤ 𝐶
√
𝜀.

Then there exists function 𝑉 = 𝑉 (𝜌, 𝜙, 𝑧) ∈ 𝐿2(𝑃2−1) and a subsequence of {𝑣𝜀}𝜀>0 (denoted, for simplicity,
by the same symbol) such that

𝑣𝜀 → 𝑉 2s. (5.1)

(b) Let the sequence {𝑣𝜀}𝜀>0 be such that 𝑣𝜀 ∈ 𝐻1(𝑃𝜀), and that

|𝑣𝜀|𝐻1(𝑃𝜀) ≤ 𝐶
√
𝜀.

Then there exists a subsequence of {𝑣𝜀}𝜀>0 (denoted, for simplicity, by the same symbol) and functions

𝑉 = 𝑉 (𝜙, 𝑧) ∈ ℋ = 𝐻1(⟨0, 2𝜋⟩ × ⟨0, 𝐿⟩),
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𝑊 ∈ 𝒴 =
{︂
𝑊 ∈ 𝐿2(𝑃2−1) ;

𝜕𝑊

𝜕𝜌
∈ 𝐿2(𝑃2−1)

}︂
,

such that
𝑣𝜀 → 𝑉 2s,

∇𝑣𝜀 → ∇𝜙,𝑧𝑉 +
𝜕𝑊

𝜕𝜌
e𝑟 2s,

(5.2)

where
∇𝜙,𝑧𝑉 =

𝜕𝑉

𝜕𝑧
e𝑧 +

𝜕𝑉

𝜕𝜙
e𝜙

is the tangential (intrinsic) gradient on the pipe’s side.
(c) Let the sequence {𝑣𝜀}𝜀>0 be such that 𝑣𝜀 ∈ 𝐻1(𝑃𝜀), and that

|𝑣𝜀|𝐿2(𝑃𝜀) ≤ 𝐶
√
𝜀,

𝜀 |∇𝑣𝜀|𝐿2(𝑃𝜀) ≤ 𝐶
√
𝜀.

Then there exist a subsequence of {𝑣𝜀}𝜀>0 (denoted, for simpliity, by the same symbol) and function 𝑊 ∈ 𝒴,
such that

𝑣𝜀 → 𝑊 2s, (5.3)

𝜀 ∇𝑣𝜀 →
𝜕𝑊

𝜕𝜌
e𝑟 2s. (5.4)

We notice that our tangential gradient differs from the tangential part of the gradient in cylindrical coordinates

𝜕𝑓

𝜕𝑧
e𝑧 +

1
𝑟

𝜕𝑓

𝜕𝜙
e𝜙.

It is due to the fact that on 𝑃𝜀 we obviously have 𝑟 = 1 +𝑂(𝜀). If we had a cylinder of radius 𝑅 there would be

𝜕𝑊

𝜕𝑧
e𝑧 +

1
𝑅

𝜕𝑊

𝜕𝜙
e𝜙.

In the above text, instead of saying that (𝜙, 𝑧) ∈ ⟨0, 2𝜋⟩ × ⟨0, 𝐿⟩ and imposing the periodicity with respect to
𝜙, we could just say that it is defined on a side of a cylinder 𝑆. But that is a manifold and we would have to
adapt the theory from [9] to curved geometry.

Lemma 5.3. Let {𝑣𝜀}𝜀>0 ⊂ 𝐿2(𝑃𝜀) two-scale converges to a function 𝑉 ∈ 𝐿2(𝑃2−1). Then 𝑟𝑣𝜀 → 𝑉 two-scale,
i.e.

1
𝜀

∫︁
𝑃𝜀

𝑣𝜀(𝑟, 𝜙, 𝑧)𝜑
(︂

1 +
𝑟 − 1
𝜀

, 𝜙, 𝑧

)︂
𝑟 d𝑟 d𝜙d𝑧 →

∫︁
𝑃2−1

𝑉 (𝜌, 𝜙, 𝑧)𝜑(𝜌, 𝜙, 𝑧) d𝜌 d𝜙d𝑧

for any 𝜑 ∈ 𝐿2(𝑃2−1).

Proof. Let 𝑣𝜀 → 𝑉 two-scale. For a 𝜑 ∈ 𝐿2(𝑃2−1) we consider

1
𝜀

∫︁
𝑃𝜀

𝑣𝜀(𝑟, 𝜙, 𝑧)𝜑
(︂

1 +
𝑟 − 1
𝜀

, 𝜙, 𝑧

)︂
𝑟 d𝑟 d𝜙d𝑧

=
1
𝜀

∫︁
𝑃𝜀

𝑣𝜀(𝑟, 𝜙, 𝑧)𝜑
(︂

1 +
𝑟 − 1
𝜀

, 𝜙, 𝑧

)︂(︂
1 +

𝑟 − 1
𝜀

)︂
𝜀d𝑟 d𝜙d𝑧

+
1
𝜀

∫︁
𝑃𝜀

𝑣𝜀(𝑟, 𝜙, 𝑧)𝜑
(︂

1 +
𝑟 − 1
𝜀

, 𝜙, 𝑧

)︂
(1− 𝜀) d𝑟 d𝜙d𝑧.

By a standard results for the two-scale convergence we have that |𝜀𝑣𝜀|𝐿2(𝑃𝜀) → 0, so the first term in the above
equation tends to zero. For the second we apply the definition of two scale convergence and obtain the result of
the lemma. �
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6. Convergence

From the Corollaries 4.4 and 4.5 we deduce that there exists some 𝜃 ∈ 𝐻1(𝑃1) ∩ 𝐿∞(𝑃1), associated 𝜃 =
𝜃 ∘ 𝐹 ∈ 𝐿∞(𝑃1), Θ ∈ 𝐿2(𝑃2−1) and 𝑇 ∈ 𝒴 such that, after possible extraction of a subsequence,

𝜃𝜀 ⇀ 𝜃 weak * in 𝐿∞(𝑃1), (6.1)

𝜃𝜀 → 𝜃 in 𝐿2(𝑃1), (6.2)

∇𝜃𝜀 ⇀ ∇𝜃 weakly in 𝐿2(𝑃1), (6.3)

𝜃𝜀
⃒⃒⃒
𝛾𝛼
1

→ 𝜃
⃒⃒⃒
𝛾𝛼
1

in 𝐿2(𝛾𝛼
1 ), 𝛼 = 𝑟, ℓ, (6.4)

𝜃𝜀 → Θ 2s , (6.5)

for 𝑞 ≤ 1, 𝜀∇𝜃𝜀 → 𝜕Θ
𝜕𝜌

e𝑟 2s, Θ ∈ ℋ & 𝑇 ∈ 𝒴, (6.6)

for 𝑞 < 1, 𝜀∇𝜃𝜀 → 0 2s ⇒ Θ = Θ(𝜙, 𝑧), (6.7)

for 𝑞 ≤ −1, ∇𝜃𝜀 → ∇𝜙𝑧Θ +
𝜕𝑇

𝜕𝜌
e𝑟 2s, Θ ∈ 𝒴, (6.8)

for 𝑞 < −1, ∇𝜃𝜀 → 0 2s ⇒ Θ = const . (6.9)

Furthermore, as the following theorem gives, for 𝑞 ≤ 1 on the contact of the fluid and the pipe’s wall we obtain
the continuity of the temperature.

Theorem 6.1. Let 𝑞 ≤ 1, 𝜃 ∈ 𝐻1(𝑃1) be the weak limit from (6.1)–(6.3) and let Θ be the two-scale limit from
(6.5). Then

Θ(1, 𝜙, 𝑧) = 𝜃(1, 𝜙, 𝑧) in 𝐿2(⟨0, 2𝜋⟩ × ⟨0, 𝐿⟩). (6.10)

Here 𝜃(1, 𝜙, 𝑧) and Θ(1, 𝜙, 𝑧) denote the traces.

Proof. Let 𝜑0 be a smooth function defined in 𝑃1 and let 𝜑1 be a smooth function defined in 𝑃2−1 such that
𝜑1(2, 𝜙, 𝑧) = 0. Furthermore let

𝜑0(1, 𝜙, 𝑧) = 𝜑1(1, 𝜙, 𝑧).

We define

Φ(𝑟, 𝜙, 𝑧) =
{︂
𝜑0(𝑟, 𝜙, 𝑧), (𝑟, 𝜙, 𝑧) ∈ 𝑃1,
𝜑1

(︀
1 + 𝑟−1

𝜀 , 𝜙, 𝑧
)︀
, (𝑟, 𝜙, 𝑧) ∈ 𝑃𝜀.

This function is admissible test function so we get

0 =
∫︁

𝑃1+𝜀

𝜕𝑟 (𝜃𝜀Φ𝑟) d𝑟 d𝜙d𝑧.

Calculating the partial derivative we obtain

0 =
∫︁

𝑃1

(𝜕𝑟𝜃
𝜀𝜑0𝑟 + 𝜃𝜀𝜕𝑟𝜑0𝑟 + 𝜃𝜀𝜑0) d𝑟 d𝜙d𝑧

+
∫︁

𝑃𝜀

(︂
𝜕𝑟𝜃

𝜀(𝑟, 𝜙, 𝑧)𝜑1

(︂
1 +

𝑟 − 1
𝜀

, 𝜙, 𝑧

)︂
𝑟

+ 𝜃𝜀(𝑟, 𝜙, 𝑧)
1
𝜀
𝜕𝜌𝜑1

(︂
1 +

𝑟 − 1
𝜀

, 𝜙, 𝑧

)︂
𝑟

+ 𝜃𝜀(𝑟, 𝜙, 𝑧)𝜑1

(︂
1 +

𝑟 − 1
𝜀

, 𝜙, 𝑧

)︂)︂
d𝑟 d𝜙d𝑧.
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Now we use convergences for 𝑞 ≤ 1 and take the limit in each term to obtain

0 =
∫︁

𝑃1

(𝜕𝑟𝜃𝜑0𝑟 + 𝜃𝜕𝑟𝜑0𝑟 + 𝜃𝜑0) d𝑟 d𝜙d𝑧 +
∫︁

𝑃2−1

(︁
𝜕𝜌Θ𝜑1 + Θ𝜕𝜌𝜑1

)︁
d𝜌d𝜙d𝑧.

This implies

0 =
∫︁

𝑃1

𝜕𝑟 (𝜃𝜑0𝑟) d𝑟 d𝜙d𝑧 +
∫︁

𝑃2−1

𝜕𝜌 (Θ𝜑1) d𝜌d𝜙d𝑧

and therefore, using the properties of test functions 𝜑0 and 𝜑1 we obtain

0 =
∫︁

𝑆

(𝜃(1, 𝜙, 𝑧)𝜑0(1, 𝜙, 𝑧)−Θ(1, 𝜙, 𝑧)𝜑1(1, 𝜙, 𝑧)) d𝜙d𝑧.

Arbitrariness of test functions implies the statement of the theorem. �

6.1. Case 𝑞 < −1

In this case the diffusion through pipe’s wall is very strong. In fact, so strong that the temperature is constant
in the whole wall. However this constant is not prescribed, but depends on the solution. Furthermore, we get
an interesting non-local boundary condition on the wall of the pipe. Basically it says that the total temperature
flux through the wall of the pipe is proportional to the difference of the average exterior temperature and the
temperature on the wall (which is constant). More precisely, we get the following result.

Theorem 6.2. Let 𝑞 < −1 and let 𝜃𝜀 ∈ 𝐻1(𝑃1+𝜀) be the solution to the problem (2.11)–(2.13). Suppose that
the conditions (4.2) and (4.3) hold. Then

𝜃𝜀 ⇀ 𝜃 weak * in 𝐿∞(𝑃1),
𝜃𝜀 ⇀ 𝜃 weakly in 𝐻1(𝑃1),

where 𝜃 ∈ 𝐻1(𝑃1) ∩ 𝐿∞(𝑃1) is the unique solution to the problem

−∆𝜃 + Pe 𝑣
𝜕𝜃

𝜕𝑧
= 0 in 𝑃1, (6.11)

− 𝜕𝜃

𝜕𝑧
+ Pe 𝑣 𝜃 = 𝑁𝑓

𝑧 (𝐹ℓ − 𝜃) on 𝛾ℓ
1,

𝜕𝜃

𝜕𝑧
− Pe 𝑣 𝜃 = 𝑁𝑓

𝑧 (𝐹𝑟 − 𝜃) on 𝛾𝑟
1 ,

𝜃 = const . on 𝑆1, (6.12)

𝜕𝜃

𝜕𝑟
(1) = 𝑁𝑟

(︀
𝐺− 𝜃(1)

)︀
, (6.13)

where

𝐺 =
1

2𝜋𝐿

∫︁
𝑆

𝐺(𝜙, 𝑧) d𝜙d𝑧, (6.14)

𝜃(𝑟) =
1

2𝜋𝐿

∫︁
𝑆

𝜃(𝑟, 𝜙, 𝑧) d𝜙d𝑧. (6.15)
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Proof. First of all, we know from the convergence (6.9) and Theorem 6.1 that the weak limit 𝜃 is constant at
the boundary 𝑆1. Thus it belongs to

𝒱⟨−∞,−1⟩ =
{︁
𝜑 ∈ 𝐻1(𝑃1) ; 𝜑|𝑟=1 = const

}︁
.

Let us denote 𝜃0 = 𝜃|𝑟=1. Then we take 𝜓 ∈ 𝒱⟨−∞,−1⟩, similarly denote 𝜓0 = 𝜓|𝑟=1 ∈ R and define

Ψ̃ =
{︂
𝜓 in 𝑃1,

𝜓0 in 𝑃𝜀.

For Ψ as a test function, the weak formulation (2.14) reads∫︁
𝑃1

∇𝜃𝜀 · ∇Ψ̃ d𝑉 − Pe
∫︁

𝑃1

𝑣𝜃𝜀 𝜕Ψ̃
𝜕𝑧

d𝑉

+
∫︁

𝛾ℓ
1+𝜀

𝑁𝑧𝜃
𝜀Ψ̃ d𝑎+

∫︁
𝛾𝑟
1+𝜀

𝑁𝑧𝜃
𝜀Ψ̃ d𝑎+𝑁𝑟

∫︁
𝑆1+𝜀

𝜃𝜀𝜓0 d𝑎

=
∫︁

𝛾ℓ
1+𝜀

𝑁𝑧𝐹ℓΨ̃ d𝑎+
∫︁

𝛾𝑟
1+𝜀

𝑁𝑧𝐹𝑟Ψ̃ d𝑎+𝑁𝑟

∫︁
𝑆1+𝜀

𝐺̃𝜓0 d𝑎.

(6.16)

Now we take the limit in this equation and use the convergences for 𝜃𝜀 and 𝜃𝜀. For the first two terms on the
left hand side we use (6.3) and (6.1). For the third and the fourth term in the left hand side we use estimates
(4.21) and (4.22) to obtain for 𝛼 ∈ {𝑙, 𝑟}⃒⃒⃒⃒

⃒
∫︁

𝛾𝛼
1+𝜀∖𝛾𝛼

1

𝑁𝑧𝜃
𝜀Ψ̃ d𝑎

⃒⃒⃒⃒
⃒ ≤ 𝑁𝑧,max |𝜃𝜀|𝐿2(𝛾𝛼

1+𝜀)|𝜓0|𝐿2(𝛾𝛼
1+𝜀∖𝛾𝛼

1 ) ≤ 𝐶𝜀.

Thus application of (6.4) implies∫︁
𝛾𝛼
1+𝜀

𝑁𝑧𝜃
𝜀Ψ̃ d𝑎→ 𝑁𝑓

𝑧

∫︁
𝛾𝛼
1

𝜃Ψ̃ d𝑎, 𝛼 ∈ {𝑙, 𝑟}.

Similarly we obtain ∫︁
𝛾𝛼
1+𝜀

𝐹𝛼Ψ̃ d𝑎→
∫︁

𝛾𝛼
1

𝐹𝛼Ψ̃ d𝑎, 𝛼 ∈ {𝑙, 𝑟}.

For the last term on the left hand side we argue as follows∫︁
𝑆1+𝜀

𝜃𝜀𝜓0 d𝑎 = 𝜓0(1 + 𝜀)
∫︁

𝑆

𝜃𝜀(1 + 𝜀, 𝜙, 𝑧) d𝜙d𝑧

= 𝜓0(1 + 𝜀)
∫︁

𝑆

(︂
𝜃𝜀(1, 𝜙, 𝑧) +

∫︁ 1+𝜀

1

𝜕𝜃𝜀

𝜕𝑟
(𝑟, 𝜙, 𝑧) d𝑟

)︂
d𝜙d𝑧

= 𝜓0(1 + 𝜀)

(︃∫︁
𝑆1

𝜃𝜀 d𝑎+
⃒⃒⃒⃒
𝜕𝜃𝜀

𝜕𝑟

⃒⃒⃒⃒
𝐿1(𝑃𝜀)

)︃
.

By (4.24) we have that
⃒⃒
𝜕𝜃𝜀

𝜕𝑟

⃒⃒
𝐿1(𝑃𝜀)

≤ 𝐶
⃒⃒
𝜕𝜃𝜀

𝜕𝑟

⃒⃒
𝐿2(𝑃𝜀)

√
𝜀 ≤ 𝐶𝜀 for 𝑞 < −1, so using (6.2) and (6.3) we obtain∫︁

𝑆1+𝜀

𝜃𝜀𝜓0 d𝑎→ 𝜓0

∫︁
𝑆1

𝜃 d𝑎 = 2𝜋𝐿𝜓0𝜃0.
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Similar argument gives∫︁
𝑆1+𝜀

𝐺̃𝜓0 d𝑎 = 𝜓0(1 + 𝜀)
∫︁

𝑆

𝐺(𝜙, 𝑧) d𝜙d𝑧 → 𝜓0

∫︁
𝑆

𝐺(𝜙, 𝑧) d𝜙d𝑧 = 2𝜋𝜓0𝐺.

Collecting all these convergences in (6.16) we obtain∫︁
𝑃1

∇𝜃 · ∇𝜓 d𝑉 − Pe
∫︁

𝑃1

𝑣 𝜃
𝜕𝜓

𝜕𝑧
d𝑉

+𝑁𝑓
𝑧

∫︁
𝛾ℓ
1

𝜃𝜓 d𝑎+𝑁𝑓
𝑧

∫︁
𝛾𝑟
1

𝜃𝜓 d𝑎+𝑁𝑟2𝜋𝐿𝜃0𝜓0

= 𝑁𝑓
𝑧

∫︁
𝛾ℓ
1

𝐹ℓ𝜓 d𝑎+𝑁𝑓
𝑧

∫︁
𝛾𝑟
1

𝐹𝑟𝜓 d𝑎+𝑁𝑟2𝜋𝐺𝜓0.

(6.17)

The existence of solution of the two-scale problem has been proved by the limiting procedure (although it could
be proved by the Lax & Milgram theorem on an appropriate two scale space). The uniqueness, however, has to
be proved. Since the problem is linear it is standard procedure to assume the existence of two solutions 𝜃1 and
𝜃2 and to look at their difference 𝑈 = 𝜃1− 𝜃2. Then 𝑈0 = 𝜃1|𝑟=1− 𝜃2|𝑟=1 = const . Now we use that same 𝑈 for
the test function in (6.17). It leads to∫︁

𝑃1

|∇𝑈 |2 d𝑉 − Pe
∫︁

𝑃1

𝑣 𝑈
𝜕𝑈

𝜕𝑧
d𝑉 +𝑁𝑓

𝑧

∫︁
𝛾ℓ
1

𝑈2 d𝑎+𝑁𝑓
𝑧

∫︁
𝛾𝑟
1

𝑈2 d𝑎+𝑁𝑟 2𝜋 𝐿 𝑈2
0 = 0. (6.18)

A simple computation gives

−Pe
∫︁

𝑃1

𝑣 𝑈
𝜕𝑈

𝜕𝑧
d𝑉 = −Pe

2

∫︁
𝑃1

𝑣
𝜕𝑈2

𝜕𝑧
d𝑉 =

Pe
2

(︃∫︁
𝛾ℓ
1

𝑈2 d𝑎−
∫︁

𝛾𝑟
1

𝑈2 d𝑎

)︃
.

So that (using (4.3))

−Pe
∫︁

𝑃1

𝑣 𝑈
𝜕𝑈

𝜕𝑧
d𝑉 +𝑁𝑓

𝑧

∫︁
𝛾𝑟
1

𝑈2 d𝑎 ≥
(︂
𝑁𝑓

𝑧 −
Pe
𝜋

)︂∫︁
𝛾𝑟
1

𝑈2 d𝑎 ≥ 0.

Now we have ∫︁
𝑃1

|∇𝑈 |2 d𝑉 +𝑁𝑓
𝑧

∫︁
𝛾ℓ
1

𝑈2 d𝑎 = 0

implying that 𝑈 = 0. Therefore the problem: find 𝜃 ∈ 𝒱⟨−∞,−1⟩ such that (6.17) holds for any 𝜓 ∈ 𝒱⟨−∞,−1⟩
has a unique solution, meaning that the whole family

𝜃𝜀 ⇀ 𝜃 weakly in 𝐻1(𝑃1)

and not just a subsequence.
The decoupling gives (6.11)–(6.13). �

6.2. Case 𝑞 = −1

In this case the processes in the fluid and in the pipe’s wall are of the same order and can both be seen in
the effective model. We obtain the coupled model consisting of the convection-diffusion equation in the fluid
and the Laplace–Beltrami equation on the 2D surface representing the pipe’s wall, coupled via the continuity
of the temperature.
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Theorem 6.3. Let 𝑞 = −1 and let 𝜃𝜀 ∈ 𝐻1(𝑃1+𝜀) be the weak solution to the problem (2.11)–(2.13). Suppose
that (4.2) and (4.3) hold. Then

𝜃𝜀 ⇀ 𝜃 weak * in 𝐿∞(𝑃1),
𝜃𝜀 ⇀ 𝜃 weakly in 𝐻1(𝑃1),
𝜃𝜀 → Θ 2s,

where (𝜃,Θ) ∈
[︁
𝐻1(𝑃1) ∩ 𝐿∞(𝑃1)

]︁
×ℋ is the unique solution to the two-scale problem (6.21). Furthermore

𝜃(1, 𝜙, 𝑧) = Θ(𝜙, 𝑧)

in the sense of traces, and the problem (6.21) is equivalent to the decoupled system

−∆𝜃 + Pe 𝑣
𝜕𝜃

𝜕𝑧
= 0 in 𝑃1, (6.19)

− 𝜕𝜃

𝜕𝑧
+ Pe 𝑣 𝜃 = 𝑁𝑓

𝑧 (𝐹ℓ − 𝜃) on 𝛾ℓ
1,

𝜕𝜃

𝜕𝑧
− Pe 𝑣 𝜃 = 𝑁𝑓

𝑧 (𝐹𝑟 − 𝜃) on 𝛾𝑟
1 ,

𝜕𝜃

𝜕𝑟
− 𝜅∆𝑆𝜃 +𝑁𝑟 𝜃 = 𝑁𝑟 𝐺̃ in 𝑆1, (6.20)

𝜕𝜃

𝜕𝑧
|𝑟=1 = 0 for 𝑧 = 0, 𝐿.

Here (︁
∆𝑆𝜃

)︁
∘ 𝐹 =

𝜕2𝜃

𝜕𝜙2
+
𝜕2𝜃

𝜕𝑧2
·

and 𝑆1 is the side (curved part of the boundary) of the cylinder 𝑃1.

Proof. We proceed as in the previous section with the difference that now we take

𝜓 ∈ 𝒱−1 =
{︁
𝜑 ∈ 𝐻1(𝑃1) ; 𝜑(1, · ) = 𝜑 ∘ 𝐹 (1, · ) ∈ 𝐻1 (⟨0, 2𝜋⟩ × ⟨0, 𝐿⟩)

}︁
.

We then put, as before

Ψ̃ =
{︂
𝜓 in 𝑃1,

𝜓|𝑟=1 in 𝑃𝜀.

Let us denote 𝜓 = 𝜓 ∘ 𝐹 . The only difference comparing with (6.16) are in the integrals over 𝑃𝜀 and 𝑆1+𝜀. To
treat the integral over 𝑃𝜀 we use the two-scale convergence (6.8) giving

1
𝜀

∫︁
𝑃𝜀

(︃
𝑟
𝜕𝜃𝜀

𝜕𝑟

𝜕Ψ̃
𝜕𝑟

+
1
𝑟

𝜕𝜃𝜀

𝜕𝜙

𝜕Ψ̃
𝜕𝜙

+ 𝑟
𝜕𝜃𝜀

𝜕𝑧

𝜕Ψ̃
𝜕𝑧

)︃
d𝑟 d𝜙d𝑧

=
1
𝜀

∫︁
𝑃𝜀

(︂
1
𝑟

𝜕𝜃𝜀

𝜕𝜙
(𝑟, 𝜙, 𝑧)

𝜕𝜓

𝜕𝜙
(1, 𝜙, 𝑧) + 𝑟

𝜕𝜃𝜀

𝜕𝑧
(𝑟, 𝜙, 𝑧)

𝜕𝜓

𝜕𝑧
(1, 𝜙, 𝑧)

)︂
d𝑟 d𝜙d𝑧

→
∫︁

𝑃2−1

(︂
𝜕Θ
𝜕𝜙

(𝜙, 𝑧)
𝜕𝜓

𝜕𝜙
(1, 𝜙, 𝑧) +

𝜕Θ
𝜕𝑧

(𝜙, 𝑧)
𝜕𝜓

𝜕𝑧
(1, 𝜙, 𝑧)

)︂
d𝑧 d𝜙

=
∫︁

𝑆1

∇𝜏𝜃 · ∇𝜏𝜓 d𝑎,
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where ∇𝜏 denotes the tangential gradient. It can be expressed by intrinsic gradient through ∇𝜏𝜃 ∘ 𝐹 = ∇𝜙,𝑧𝜃.
That produces one additional term in the limit problem.

For the treatment of the integrals over 𝑆1+𝜀 we do as follows:∫︁
𝑆1+𝜀

𝜃𝜀Ψ̃ d𝑎 = (1 + 𝜀)
∫︁

𝑆

𝜃𝜀(1 + 𝜀, 𝜙, 𝑧)𝜓(1, 𝜙, 𝑧) d𝜙d𝑧

= (1 + 𝜀)
∫︁

𝑆

𝜓(1, 𝜙, 𝑧)
(︂
𝜃𝜀(1, 𝜙, 𝑧) +

∫︁ 1+𝜀

1

𝜕𝜃𝜀

𝜕𝑟
(𝑟, 𝜙, 𝑧) d𝑟

)︂
d𝜙d𝑧

= (1 + 𝜀)

(︃∫︁
𝑆

𝜃𝜀(1, 𝜙, 𝑧)𝜓(1, 𝜙, 𝑧) d𝜙d𝑧 +
⃒⃒⃒⃒
𝜕𝜃𝜀

𝜕𝑟

⃒⃒⃒⃒
𝐿2(𝑃𝜀)

|𝜓|𝐿2(𝑃𝜀)

)︃
.

Since
⃒⃒
𝜕𝜃𝜀

𝜕𝑟

⃒⃒
𝐿2(𝑃𝜀)

≤ 𝐶𝜀1/2 by (4.24) and |𝜓|𝐿2(𝑃𝜀) ≤ 𝐶𝜀1/2 using the convergences (6.1) and (6.3) together with
the trace theorem we obtain∫︁

𝑆1+𝜀

𝜃𝜀Ψ̃ d𝑎→
∫︁

𝑆

𝜃(1, 𝜙, 𝑧)𝜓(1, 𝜙, 𝑧) d𝜙d𝑧 =
∫︁

𝑆1

𝜃𝜓 d𝑎.

The two-scale problem now reads: find 𝜃 ∈ 𝒱−1 such that∫︁
𝑃1

∇𝜃 · ∇𝜓 d𝑉 − Pe
∫︁

𝑃1

𝑣𝜃
𝜕𝜓

𝜕𝑧
d𝑉 + 𝜅

∫︁
𝑆1

∇𝜏𝜃 · ∇𝜏𝜓 d𝑎,

+𝑁𝑓
𝑧

∫︁
𝛾ℓ
1

𝜃𝜓 d𝑎+𝑁𝑓
𝑧

∫︁
𝛾𝑟
1

𝜃𝜓 d𝑎+𝑁𝑟

∫︁
𝑆1

𝜃𝜓 d𝑎

= 𝑁𝑓
𝑧

∫︁
𝛾ℓ
1

𝐹ℓ𝜓 d𝑎+𝑁𝑓
𝑧

∫︁
𝛾𝑟
1

𝐹𝑟𝜓 d𝑎+𝑁𝑟

∫︁
𝑆1

𝐺̃𝜓 d𝑎

(6.21)

holds for any 𝜓 ∈ 𝒱−1.
Like in the previous case 𝑞 < −1, the existence follows from the limiting procedure, and the proof of uniqueness

is analogous. Indeed, assuming that we have two solutions 𝜃1 and 𝜃2 and taking the difference 𝑈 = 𝜃1 − 𝜃2, we
find that 𝑈 satisfies ∫︁

𝑃1

|∇𝑈 |2 d𝑉 − Pe
∫︁

𝑃1

𝑣 𝑈
𝜕𝑈

𝜕𝑧
d𝑉 + 𝜅

∫︁
𝑆1

|∇𝜏𝑈 |2 d𝑎

+𝑁𝑓
𝑧

∫︁
𝛾ℓ
1

𝑈2 d𝑎+𝑁𝑓
𝑧

∫︁
𝛾𝑟
1

𝑈2 d𝑎+𝑁𝑟

∫︁
𝑆1

𝑈2 d𝑎 = 0.
(6.22)

Repeating the same procedure as in case 𝑞 < −1, and using the condition (4.3) implies 𝑈 = 0.
Uniqueness of the solution, implies that the whole family

𝜃𝜀 ⇀ 𝜃 weakly in 𝐻1(𝑃1)

and not just a subsequence.
To decouple the two-scale problem we first easily conclude that

−∆𝜃 + Pe 𝑣
𝜕𝜃

𝜕𝑧
= 0 in 𝑃1

in the sense of distributions. On the other hand, the boundary condition on the pipes wall 𝑟 = 1 is of the second
order and contains the Laplace–Beltrami operator

𝜕𝜃

𝜕𝑟
− 𝜅∆𝑆𝜃 +𝑁𝑟 𝜃 = 𝑁𝑟 𝐺̃ on 𝑆1,



MATHEMATICAL MODEL OF HEAT TRANSFER 647

with

(∆𝑆𝜃) ∘ 𝐹 =
𝜕2𝜃

𝜕𝜙2
+
𝜕2𝜃

𝜕𝑧2
·

�

6.3. Case −1 < 𝑞 < 1

This is the case when we obtain the model that is usually found in the engineering literature. The wall of the
pipe is not present in the effective model and we have the Robin boundary condition between the fluid in the
pipe and the surrounding medium, as if the wall was not there.

Theorem 6.4. Let −1 < 𝑞 < 1 and let 𝜃𝜀 ∈ 𝐻1(𝑃1+𝜀) be a weak solution to the problem (2.11)–(2.13) and let
the data satisfy (4.2). Furthermore, let Pe and N𝑓

𝑧 be such that (4.3) holds. Then

𝜃𝜀 ⇀ 𝜃 weak * in 𝐿∞(𝑃1),

𝜃𝜀 ⇀ 𝜃 weakly in 𝐻1(𝑃1),

where 𝜃 ∈ 𝐻1(𝑃1) ∩ 𝐿∞(𝑃1) is the unique solution to the problem

−∆𝜃 + Pe 𝑣
𝜕𝜃

𝜕𝑧
= 0 in 𝑃1, (6.23)

− 𝜕𝜃

𝜕𝑧
+ Pe 𝑣 𝜃 = 𝑁𝑓

𝑧

(︁
𝐹ℓ − 𝜃

)︁
on 𝛾ℓ

1,

𝜕𝜃

𝜕𝑧
− Pe 𝑣 𝜃 = 𝑁𝑓

𝑧

(︁
𝐹𝑟 − 𝜃

)︁
on 𝛾𝑟

1 ,

𝜕𝜃

𝜕𝑟
= 𝑁𝑟

(︁
𝐺̃− 𝜃

)︁
on 𝑆1. (6.24)

Proof. The test function is constructed like in the proofs of Theorems 6.2 and 6.3. The passage to the limit is
also the same as in the proofs of Theorems 6.2 and 6.3, with the only difference in the integral over 𝑃𝜀. In this
case for a test function Ψ̃ ∈ 𝐶1(𝑃1+𝜀)and using estimate (4.23) we have

𝜀𝑞 𝜅

∫︁
𝑃𝜀

∇𝜃𝜀 · ∇Ψ̃ d𝑉 ≤ 𝐶𝜀𝑞|∇𝜃𝜀|𝐿2(𝑃𝜀)|∇Ψ̃|𝐿∞(𝑃𝜀) |𝑃𝜀|
1
2 ≤ 𝐶𝜀

1+𝑞
2 → 0.

Thus the limit problem now reads: find 𝜃 ∈ 𝒱⟨−1,1⟩ := 𝐻1(𝑃1) such that∫︁
𝑃1

∇𝜃 · ∇𝜓 d𝑉 − Pe
∫︁

𝑃1

𝑣𝜃
𝜕𝜓

𝜕𝑧
d𝑉

+𝑁𝑓
𝑧

∫︁
𝛾ℓ
1

𝜃𝜓 d𝑎+𝑁𝑓
𝑧

∫︁
𝛾𝑟
1

𝜃𝜓 d𝑎+𝑁𝑟

∫︁
𝑆1

𝜃𝜓 d𝑎

= 𝑁𝑓
𝑧

∫︁
𝛾ℓ
1

𝐹ℓ𝜓 d𝑎+𝑁𝑓
𝑧

∫︁
𝛾𝑟
1

𝐹𝑟𝜓 d𝑎+𝑁𝑟

∫︁
𝑆1

𝐺̃𝜓 d𝑎,

(6.25)

for all 𝜓 ∈ 𝐶1(𝑃1) (which is the restriction of Ψ̃ on 𝑃1). Since 𝐶1(𝑃1) is dense in 𝒱⟨−1,1⟩ we obtain the weak
formulation of (6.23) and (6.24). Uniqueness can be proved as in the previous cases and the conclusions follow
easily. �
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6.4. Case 𝑞 = 1

Since the diffusivity of the pipe’s wall is small, although we get the same kind of the effective boundary
condition (Robin), the heat transfer coefficient is lower than the original one.

Theorem 6.5. Let 𝑞 = 1 and let 𝜃𝜀 ∈ 𝐻1(𝑃1+𝜀) be the solution to the problem (2.11)–(2.13) and let (4.2) and
(4.3) hold. Then

𝜃𝜀 ⇀ 𝜃 weak * in 𝐿∞(𝑃1), (6.26)
𝜃𝜀 ⇀ 𝜃 weakly in 𝐻1(𝑃1), (6.27)
𝜃𝜀 → Θ 2s, (6.28)

𝜀∇𝜃𝜀 → 𝜕Θ
𝜕𝜌

e𝑟 2s, (6.29)

where 𝜃 ∈ 𝐻1(𝑃1) ∩ 𝐿∞(𝑃1) is the unique solution to the problem

−∆𝜃 + Pe 𝑣
𝜕𝜃

𝜕𝑧
= 0 in 𝑃1, (6.30)

− 𝜕𝜃

𝜕𝑧
+ Pe 𝑣 𝜃 = 𝑁𝑓

𝑧 (𝐹ℓ − 𝜃) on 𝛾ℓ
1,

𝜕𝜃

𝜕𝑧
− Pe 𝑣 𝜃 = 𝑁𝑓

𝑧 (𝐹𝑟 − 𝜃) on 𝛾𝑟
1 ,

𝜕𝜃

𝜕𝑟
=

𝜅𝑁𝑟

𝜅+𝑁𝑟

(︁
𝐺− 𝜃

)︁
on 𝑆1. (6.31)

Proof. Again, the only difference is in the treatment of the integrals over 𝑃𝜀 and 𝑆1+𝜀. Since for 𝑞 = 1 from
(4.24) we have

𝜀|∇𝜃𝜀|𝐿2(𝑃𝜀) ≤ 𝐶
√
𝜀

the assertion (c) from Theorem 5.2 applies and gives (6.29). Now we need an appropriate test function. Let Φ
be a smooth function defined on

𝑃2 =
{︀

(𝜌, 𝜙, 𝑧) ∈ R3 : 𝜌 ∈ ⟨0, 2⟩, 𝜙 ∈ ⟨0, 2𝜋⟩, 𝑧 ∈ ⟨0, 𝐿⟩
}︀

and Φ = Φ̃ ∘ 𝐹 . We define

Ψ𝜀(𝑟, 𝜙, 𝑧) =
{︂

Φ(𝑟, 𝜙, 𝑧) in 𝑃1,
Φ
(︀
1 + 𝑟−1

𝜀 , 𝜙, 𝑧
)︀

in 𝑃𝜀.
(6.32)

Then we have using the two-scale convergence (6.29)

𝜀

∫︁
𝑃𝜀

(︂
𝑟
𝜕𝜃𝜀

𝜕𝑟

𝜕Ψ𝜀

𝜕𝑟
+

1
𝑟

𝜕𝜃𝜀

𝜕𝜙

𝜕Ψ𝜀

𝜕𝜙
+ 𝑟

𝜕𝜃𝜀

𝜕𝑧

𝜕Ψ𝜀

𝜕𝑧

)︂
d𝑟 d𝜙d𝑧

=
1
𝜀

∫︁
𝑃𝜀

𝜀
𝜕𝜃𝜀

𝜕𝑟
(𝑟, 𝜙, 𝑧)

𝜕Φ
𝜕𝜌

(︂
1 +

𝑟 − 1
𝜀

, 𝜙, 𝑧

)︂
d𝑟 d𝜙d𝑧 +𝑂(𝜀)

→
∫︁

𝑃2−1

𝜕Θ
𝜕𝜌

(𝜌, 𝜙, 𝑧)
𝜕Φ
𝜕𝜌

(𝜌, 𝜙, 𝑧) d𝜌d𝜙d𝑧.

Another integral that needs additional attention is∫︁
𝑆1+𝜀

𝜃𝜀Ψ̃𝜀 d𝑎 = (1 + 𝜀)
∫︁

𝑆

𝜃𝜀(1 + 𝜀, 𝜙, 𝑧) Φ(2, 𝜙, 𝑧) d𝜙d𝑧
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=
∫︁ 1+𝜀

1

∫︁ 2𝜋

0

∫︁ 𝐿

0

𝜕𝜃𝜀

𝜕𝑟
(𝑟, 𝜙, 𝑧) Φ(2, 𝜙, 𝑧) d𝑟 d𝜙d𝑧

+
∫︁ 2𝜋

0

∫︁ 𝐿

0

𝜃𝜀(1, 𝜙, 𝑧) Φ(2, 𝜙, 𝑧) d𝜙d𝑧.

For the second integral from (6.1) and (6.3) and the trace theorem, we obviously have∫︁ 2𝜋

0

∫︁ 𝐿

0

𝜃𝜀(1, 𝜙, 𝑧) Φ(2, 𝜙, 𝑧) d𝜙d𝑧 →
∫︁ 2𝜋

0

∫︁ 𝐿

0

𝜃(1, 𝜙, 𝑧) Φ(2, 𝜙, 𝑧) d𝜙d𝑧.

For the first term we apply the two-scale convergence (6.29) and obtain

1
𝜀

∫︁
𝑃𝜀

𝜀
𝜕𝜃𝜀

𝜕𝑟
(𝑟, 𝜙, 𝑧) Φ(2, 𝜙, 𝑧) 𝑟 d𝑟 d𝜙d𝑧 →

∫︁
𝑃2−1

𝜕Θ
𝜕𝜌

(𝜌, 𝜙, 𝑧) Φ(2, 𝜙, 𝑧) d𝜌d𝜙d𝑧.

Newton–Leibniz theorem and continuity of temperature at the contact, i.e. Θ|𝑟=1 = 𝜃|𝑟=1, now implies that∫︁
𝑆1+𝜀

𝜃𝜀Ψ̃𝜀 d𝑎→
∫︁

𝑆

Θ(2, 𝜙, 𝑧) Φ(2, 𝜙, 𝑧) d𝜙d𝑧 =
1
2

∫︁
𝑆2

Θ̃Φ d𝑎.

Thus the two-scale problem reads∫︁
𝑃1

∇𝜃 · ∇Φ̃ d𝑉 − Pe
∫︁

𝑃1

𝑣𝜃
𝜕Φ̃
𝜕𝑧

d𝑉 + 𝜅

∫︁
𝑃2−1

𝜕Θ
𝜕𝜌

𝜕Φ
𝜕𝜌

d𝜌d𝜙d𝑧

+𝑁𝑓
𝑧

∫︁
𝛾ℓ
1

𝜃Φ̃ d𝑎+𝑁𝑓
𝑧

∫︁
𝛾𝑟
1

𝜃Φ̃ d𝑎+
1
2
𝑁𝑟

∫︁
𝑆2

Θ̃Φ̃ d𝑎

= 𝑁𝑓
𝑧

∫︁
𝛾ℓ
1

𝐹ℓΦ̃ d𝑎+𝑁𝑓
𝑧

∫︁
𝛾𝑟
1

𝐹𝑟Φ̃ d𝑎+
1
2
𝑁𝑟

∫︁
𝑆2

𝐺̃Φ̃ d𝑎.

(6.33)

Choosing Φ to be compactly supported in 𝑃2−1, i.e. equal zero for 0 < 𝑟 < 1, we arrive at

𝜅

∫︁
𝑃2−1

𝜕Θ
𝜕𝜌

𝜕Φ
𝜕𝜌

d𝜌d𝜙d𝑧 +𝑁𝑟

∫︁
𝑆

Θ(2, 𝜙, 𝑧) Φ(2, 𝜙, 𝑧) d𝜙d𝑧

= 𝑁𝑟

∫︁
𝑆

𝐺(𝜙, 𝑧) Φ(2, 𝜙, 𝑧) d𝜙d𝑧.

Thus
𝜕2Θ
𝜕𝜌2

= 0 for 1 < 𝜌 < 2, 𝜅
𝜕Θ
𝜕𝜌

= 𝑁𝑟(𝐺−Θ) for 𝜌 = 2.

Furthermore continuity of the temperature implies

Θ(1, 𝜙, 𝑧) = 𝜃(1, 𝜙, 𝑧).

By simple integration we get
Θ(𝜌, 𝜙, 𝑧) = 𝐴(𝜙, 𝑧)𝜌+𝐵(𝜙, 𝑧),

and then the boundary conditions give

𝜅𝐴 = 𝑁𝑟(𝐺− 2𝐴−𝐵) = 0 & 𝐴+𝐵 = 𝜃(1, 𝜙, 𝑧)

which implies

𝐴 =
𝑁𝑟

𝜅+𝑁𝑟
(𝐺− 𝜃(1, 𝜙, 𝑧)).
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Now we go back to (6.33) and take the test function Φ such that Φ(2, 𝜙, 𝑧) = 0. Since now

𝜅

∫︁
𝑃2−1

𝜕Θ
𝜕𝜌

𝜕Φ
𝜕𝜌

d𝜌d𝜙d𝑧 = 𝜅

∫︁
𝑃2−1

𝐴 (𝜙, 𝑧)
𝜕Φ
𝜕𝜌

(𝜌, 𝜙, 𝑧) d𝜌d𝜙d𝑧

= −𝜅
∫︁

𝑆

𝐴 (𝜙, 𝑧) Φ (1, 𝜙, 𝑧) d𝜌d𝜙d𝑧,

we get the model: find 𝜃 ∈ 𝐻1(𝑃1) such that∫︁
𝑃1

∇𝜃 · ∇Φ̃ d𝑉 − Pe
∫︁

𝑃1

𝑣𝜃
𝜕Φ̃
𝜕𝑧

d𝑉 +𝑁𝑓
𝑧

∫︁
𝛾ℓ
1

𝜃Φ̃ d𝑎+𝑁𝑓
𝑧

∫︁
𝛾𝑟
1

𝜃Φ̃ d𝑎

= 𝑁𝑓
𝑧

∫︁
𝛾ℓ
1

𝐹ℓΦ̃ d𝑎+𝑁𝑓
𝑧

∫︁
𝛾𝑟
1

𝐹𝑟Φ̃ d𝑎+
𝜅𝑁𝑟

𝜅+𝑁𝑟

∫︁
𝑆1

(𝐺̃− 𝜃)Φ̃ d𝑎,
(6.34)

for all Φ̃ ∈ 𝐻1(𝑃1).
The uniqueness of solution of (6.34) is deduced as in the previous cases. Finally, we conclude that the

differential form of our problem now reads (6.30) and (6.31). �

6.5. Case 𝑞 > 1

In the last case the diffusivity of the pipe’s wall is very small so that it acts as an isolator. There is no heat
exchange between the fluid and the exterior medium. Thus the effective boundary condition is the homogeneous
Neumann boundary condition.

Theorem 6.6. Let 𝑞 > 1 and let 𝜃𝜀 ∈ 𝐻1(𝑃1+𝜀) be a weak solution to the problem (2.11)–(2.13). Assume that
(4.2) and (4.3) hold. Then

𝜃𝜀 ⇀ 𝜃 weak * in 𝐿∞(𝑃1), (6.35)
𝜃𝜀 ⇀ 𝜃 weakly in 𝐻1(𝑃1), (6.36)

where 𝜃 ∈ 𝐻1(𝑃1) ∩ 𝐿∞(𝑃1) is the unique solution to the problem

−∆𝜃 + Pe 𝑣
𝜕𝜃

𝜕𝑧
= 0 in 𝑃1, (6.37)

− 𝜕𝜃

𝜕𝑧
+ Pe 𝑣 𝜃 = 𝑁𝑓

𝑧 (𝐹ℓ − 𝜃) on 𝛾ℓ
1,

𝜕𝜃

𝜕𝑧
− Pe 𝑣 𝜃 = 𝑁𝑓

𝑧 (𝐹𝑟 − 𝜃) on 𝛾𝑟
1 ,

𝜕𝜃

𝜕𝑟
= 0 on 𝑆1. (6.38)

Proof. We proceed as in the case 𝑞 = 1 and take the test function Ψ𝜀 as in (6.32). However now we have

𝜀𝑞

∫︁
𝑃𝜀

(︂
𝑟
𝜕𝜃𝜀

𝜕𝑟

𝜕Ψ𝜀

𝜕𝑟
+

1
𝑟

𝜕𝜃𝜀

𝜕𝜙

𝜕Ψ𝜀

𝜕𝜙
+ 𝑟

𝜕𝜃𝜀

𝜕𝑧

𝜕Ψ𝜀

𝜕𝑧

)︂
d𝑟 d𝜙d𝑧 → 0.

On the other hand, due to the a priori estimate (4.20), we have∫︁
𝑆

|𝜃𝜀(1 + 𝜀, 𝜙, 𝑧)|2 d𝜙d𝑧 < 𝐶
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so that
𝜔𝜀(𝜙, 𝑧) = 𝜃𝜀(1 + 𝜀, 𝜙, 𝑧)

is bounded in ℋ. Thus, extracting the subsequence if necessary, we have

𝜔𝜀 ⇀ 𝜔 weakly in ℋ,

for some 𝜔 ∈ ℋ. Now

(1 + 𝜀)
∫︁

𝑆

𝜃𝜀(1 + 𝜀, 𝜙, 𝑧) Φ(2, 𝜙, 𝑧) d𝜙d𝑧 →
∫︁

𝑆

𝜔(𝜙, 𝑧) Φ(2, 𝜙, 𝑧) d𝜙.

Consequently the limit problem reads∫︁
𝑃1

∇𝜃 · ∇Φ̃ d𝑉 − Pe
∫︁

𝑃1

𝑣𝜃
𝜕Φ̃
𝜕𝑧

d𝑉

+𝑁𝑓
𝑧

∫︁
𝛾ℓ
1

𝜃Φ̃ d𝑎+𝑁𝑓
𝑧

∫︁
𝛾𝑟
1

𝜃Φ̃ d𝑎+𝑁𝑟

∫︁
𝑆2

𝜔Φ d𝑎

= 𝑁𝑓
𝑧

∫︁
𝛾ℓ
1

𝐹ℓΦ̃ d𝑎+𝑁𝑓
𝑧

∫︁
𝛾𝑟
1

𝐹𝑟Φ̃ d𝑎+𝑁𝑟

∫︁
𝑆2

𝐺Φ d𝑎.

(6.39)

Choosing again the test function Φ to be compactly supported in 𝑃2−1 (i.e. equal zero for 0 < 𝑟 < 1) we get
𝜔 = 𝐺 and therefore the model is given by: find 𝜃 ∈ 𝐻1(𝑃1) such that∫︁

𝑃1

∇𝜃 · ∇Φ̃ d𝑉 − Pe
∫︁

𝑃1

𝑣𝜃
𝜕Φ̃
𝜕𝑧

d𝑉 +𝑁𝑓
𝑧

∫︁
𝛾ℓ
1

𝜃Φ̃ d𝑎+𝑁𝑓
𝑧

∫︁
𝛾𝑟
1

𝜃Φ̃ d𝑎

= 𝑁𝑓
𝑧

∫︁
𝛾ℓ
1

𝐹ℓΦ̃ d𝑎+𝑁𝑓
𝑧

∫︁
𝛾𝑟
1

𝐹𝑟Φ̃ d𝑎
(6.40)

for all Φ̃ ∈ 𝐻1(𝑃1). This implies (6.37) and (6.38). Uniqueness of the solution of (6.40) implies the convergence
of the whole families as before. �

7. Unified model with the same asymptotics in each of the cases

The original 𝜀 problem from which we start the asymptotic analysis is done on a fluid domain 𝑃1 and on
the pipe’s wall 𝑃𝜀. In the asymptotic analysis we obtained five different effective models which are formulated
on only on the fluid domain with a difference in the boundary condition on the interface between the pipe and
the wall. In a real life situation one is left to choose either to use 𝜀 problem or to decide which of the effective
models to use. The drawback of using 𝜀 model is twofold, its mathematical structure is more complicated and
the small thickness of the pipe’s wall in simulations implies that regular triangulation of the pipe’s wall is very
large leading to time consuming computations. On the other hand usually it is not completely clear how to read
from the real data which effective model to use. Thus in this section we formulate unified model given on 𝑃1

which has the same asymptotics as the original problem (2.11)–(2.13). The model we formulate in (7.1) is given
on the fluid domain 𝑃1 only and thus is of numerical complexity of the limit models, however its asymptotic
limits are the same as of the initial 𝜀 problem. The model is given for two unknown functions, 𝜃(𝜀) which is the
temperature in the pipe and belongs to

𝒱−1 =
{︁
𝜓 ∈ 𝐻1(𝑃1) : 𝜓 ∘ 𝐹 ∈ 𝐻1(𝑆)

}︁
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and 𝜃0(𝜀) ∈ 𝐿2(𝑆1) the function that can be considered as the temperature at the outer (and sometimes inner)
pipe’s wall. The model reads: find (𝜃(𝜀), 𝜃0(𝜀)) ∈ 𝒱−1 × 𝐿2(𝑆1) such that∫︁

𝑃1

∇𝜃(𝜀) · ∇𝜓 d𝑉 − Pe
∫︁

𝑃1

𝑣 𝜃(𝜀)
𝜕𝜓

𝜕𝑧
d𝑉

+ 𝜀𝑞+1𝜅

∫︁
𝑆1

∇𝜏𝜃(𝜀) · ∇𝜏𝜓 d𝑎+ 𝜀𝑞−1𝜅

∫︁
𝑆1

(︁
𝜃0(𝜀)− 𝜃(𝜀)

)︁(︁
𝜓0 − 𝜓

)︁
d𝑎

+𝑁𝑟(1 + 𝜀)
∫︁

𝑆1

𝜃0(𝜀)𝜓0 d𝑎+𝑁𝑓
𝑧

∫︁
𝛾ℓ
1

𝜃(𝜀)𝜓 d𝑎+𝑁𝑓
𝑧

∫︁
𝛾𝑟
1

𝜃(𝜀)𝜓 d𝑎

= 𝑁𝑟(1 + 𝜀)
∫︁

𝑆1

𝐺̃𝜓0 d𝑎+𝑁𝑓
𝑧

∫︁
𝛾ℓ
1

𝐹𝑙𝜓 d𝑎+𝑁𝑓
𝑧

∫︁
𝛾𝑟
1

𝐹𝑟𝜓 d𝑎,

(7.1)

for all (𝜓,𝜓0) ∈ 𝒱−1 × 𝐿2(𝑆1).
Note that the term with 𝜀𝑞−1 is an approximation of the term 𝜕𝑟𝜃𝜕𝑟𝜓 with 𝜃0 playing the role of temperature

at outer side of the pipe’s wall. Note also that the term (1 + 𝜀) multiplies the coefficient 𝑁𝑟 as in the original
problem (2.14) in order for this approximation model to be closer to the original problem. For limits this factor
is irrelevant.

Lemma 7.1 (A priori estimates for the unified model). Let (𝜃(𝜀), 𝜃0(𝜀)) ∈ 𝒱−1 × 𝐿2(𝑆1) be the solution of
(7.1). Suppose that (4.2) and (4.3) hold. Then for all 𝑞 ∈ R the families

|𝜃(𝜀)|𝐻1(𝑃1)
, |𝜃0(𝜀)2|𝐿2(𝛾ℓ

1)
, |𝜃0(𝜀)2|𝐿2(𝛾𝑟

1 ),

|𝜃0(𝜀)2|𝐿2(𝑆1)
, 𝜀

𝑞+1
2 |∇𝜏𝜃(𝜀)|𝐿2(𝑆1)

, 𝜀
𝑞−1
2 |𝜃(𝜀)− 𝜃0(𝜀)|𝐿2(𝑆1)

, |𝜃0(𝜀)|𝐿2(𝑆1)

are uniformly bounded with respect to 𝜀 ∈ ⟨0, 1⟩.

Proof. The main obstacle in the proof is the term with Pe. However applying the same technique as in the proof
of Theorem 4.1 the statement of the lemma follows. �

Theorem 7.2. Limits of the model given by (7.1) when 𝜀 tends to zero in the same regimes are the same as in
the case of (4.1).

Proof. From the a priori estimates we obtain that there exist 𝜃 ∈ 𝐻1(𝑃1), 𝜃0, 𝜃𝑟, 𝜃𝜏 ∈ 𝐿2(𝑆1), such that the
following weak convergences (at a subsequence) hold

𝜃(𝜀) ⇀ 𝜃 in 𝐻1(𝑃1),

𝜃0(𝜀) ⇀ 𝜃0 in 𝐿2(𝑆1),

𝜀
𝑞−1
2 (𝜃(𝜀)− 𝜃0(𝜀)) ⇀ 𝜃𝑟 in 𝐿2(𝑆1),

𝜀
𝑞+1
2 ∇𝜏𝜃(𝜀) ⇀ 𝜃𝜏 in 𝐿2(𝑆1),

𝜃(𝜀) ⇀ 𝜃 in 𝐿2(𝑆1),

𝜃(𝜀) ⇀ 𝜃 in 𝐿2(𝛾ℓ
1),

𝜃(𝜀) ⇀ 𝜃 in 𝐿2(𝛾𝑟
1).

(7.2)

For 𝑞 < −1 the convergences (7.2) imply that 𝜃 is a constant on 𝑆1 and that 𝜃0 = 𝜃|𝑆1
. Thus 𝜃 ∈ 𝒱⟨−∞,−1⟩.

Then for 𝜓 ∈ 𝒱⟨−∞,−1⟩ and the constant 𝜓0 = 𝜓|𝑆1
in the limit of (7.1) we obtain the model (6.17).

For 𝑞 = −1 the convergences (7.2) imply that 𝜃 ∈ 𝒱−1 and that 𝜃0 = 𝜃|𝑆1
. Then for 𝜓 ∈ 𝒱−1 and 𝜓0 = 𝜓|𝑆1

in the limit of (7.1) we obtain the model (6.21).
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For 𝑞 ∈ ⟨−1, 1⟩ the convergences (7.2) imply that 𝜃 ∈ 𝐻1(𝑃1) and that 𝜃0 = 𝜃|𝑆1
. Then for 𝜓 ∈ 𝒱−1 and

𝜓0 = 𝜓|𝑆1
in the limit of (7.1) we obtain the model (6.25).

For 𝑞 = 1 the convergences (7.2) imply that 𝜃 ∈ 𝐻1(𝑃1) and that 𝜃0(𝜀) ⇀ 𝜃0 ∈ 𝐿2(𝑆1). Then for 𝜓 ∈ 𝒱−1 in
the limit of (7.1) we obtain the equation∫︁

𝑃1

∇𝜃 · ∇𝜓 d𝑉 − Pe
∫︁

𝑃1

𝑣 𝜃
𝜕𝜓

𝜕𝑧
d𝑉 + 𝜅

∫︁
𝑆1

(︁
𝜃0 − 𝜃

)︁(︁
𝜓0 − 𝜓

)︁
d𝑎

+𝑁𝑟

∫︁
𝑆1

𝜃0𝜓0 d𝑎+𝑁𝑓
𝑧

∫︁
𝛾ℓ
1

𝜃𝜓 d𝑎+𝑁𝑓
𝑧

∫︁
𝛾𝑟
1

𝜃𝜓 d𝑎

= 𝑁𝑟

∫︁
𝑆1

𝐺̃𝜓0 d𝑎+𝑁𝑓
𝑧

∫︁
𝛾ℓ
1

𝐹𝑙𝜓 d𝑎+𝑁𝑓
𝑧

∫︁
𝛾𝑟
1

𝐹𝑟𝜓 d𝑎.

(7.3)

From the equation for the test function 𝜓0 we obtain the expression for 𝜃0. Namely

𝜅

∫︁
𝑆1

(︁
𝜃0 − 𝜃

)︁
𝜓0 d𝑎+𝑁𝑟

∫︁
𝑆1

𝜃0𝜓0 d𝑎 = 𝑁𝑟

∫︁
𝑆1

𝐺̃𝜓0 d𝑎

implies that (𝜅+𝑁𝑟)𝜃0 − 𝜅𝜃 = 𝑁𝑟𝐺̃, i.e.

𝜃0 =
𝜅

𝜅+𝑁𝑟
𝜃 +

𝑁𝑟

𝜅+𝑁𝑟
𝐺̃.

Now we insert this in (7.3) for the test function 𝜓 and obtain the model (6.34).
Finally in the case 𝑞 > 1, the convergences (7.2) imply that 𝜃 ∈ 𝐻1(𝑃1) and 𝜃0 ∈ 𝐿2(𝑆1) and that in the

limit we obtain ∫︁
𝑃1

∇𝜃 · ∇𝜓 d𝑉 − Pe
∫︁

𝑃1

𝑣 𝜃
𝜕𝜓

𝜕𝑧
d𝑉

+𝑁𝑟

∫︁
𝑆1

𝜃0𝜓0 d𝑎+𝑁𝑓
𝑧

∫︁
𝛾ℓ
1

𝜃𝜓 d𝑎+𝑁𝑓
𝑧

∫︁
𝛾𝑟
1

𝜃𝜓 d𝑎

= 𝑁𝑟

∫︁
𝑆1

𝐺̃𝜓0 d𝑎+𝑁𝑓
𝑧

∫︁
𝛾ℓ
1

𝐹𝑙𝜓 d𝑎+𝑁𝑓
𝑧

∫︁
𝛾𝑟
1

𝐹𝑟𝜓 d𝑎.

(7.4)

From the equation for the test function 𝜓0 we obtain that 𝜃0 = 𝐺̃ and then the equation (7.4) is exactly equal
to (6.40).

Uniqueness of solutions of the all limit problems implies that actually all 𝜀 families are convergent. �

8. Numerical examples

In this section we present numerical simulations of the original 𝜀 problem (4.1) and the unified model (7.1) in
five different regimes, in particular for the values of parameter 𝑞 ∈ {−5,−1, 0, 1, 5} to illustrate different behavior
of the solution in different regimes. Moreover, we compare the results of both models together with five limit
models to get an idea if the model (7.1) is a good approximation of the original problem. In all computations
all parameters, besides of the parameter 𝑞, are the same and given in Table 1. We present computations only
for 𝜀 = 1/8 which corresponds to rather thick pipe’s wall compared to the inner radius of the pipe since in this
case the the error of the limit model is already small, less then 5%. For smaller 𝜀 the limit model and the unified
model should provide only better approximation.

The computation is done in cylindrical coordinates but with assumed independence of all unknowns on the
variable 𝜙, so the solution can be represented by a two-variable function. This significantly reduces the size of
the problem and still provides qualitative behavior of the solution. The mesh for the numerical approximation
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Table 1. The set of parameters in numerical examples.

Parameter Value

𝜀 2−3

𝜅 1
Pe 0
𝐿 1
𝑅 1
𝛼𝑓 1
𝛼𝑠 𝜅𝜀𝑞

𝑁𝑟 1
𝑁𝑧 0
𝐺 (𝑧 − 0.5) + 1

Figure 1. Mesh for the solution using FreeFem++.

Table 2. Minimal and maximal values of the temperature in each of the cases.

𝑞 Min Max

−5 1 1
−1 0.9647 1.035
0 0.8825 1.117
1 0.7361 1.264
5 0.5 1.5

of the solution of the original problem (4.1) using FreeFem++ (see [6]) is plotted in Figure 1. The thin layer of
the pipe’s wall can be clearly seen from the figure. For the unified model from Section 7 and the limit models
we use the same mesh only on the fluid domain [0, 1]2.

To get more detailed description only half of the fluid domain is plotted, namely for 𝑟 ∈ [0.5, 1 + 𝜀]. In order
to see only the effects of the difference in thermal conductivities of the fluid and the material of the pipe’s wall
we take the Peclet number as well as the Nusselt number 𝑁𝑓

𝑧 to be zero.
In order to get a clear difference among solutions all plots are plotted on the same scale adjusted according

to the case 𝑞 = −1, but the minimal and maximal values of the solution in all of the cases are given in Table 2.
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Figure 2. Solution for 𝑞 = −5.

Figure 3. Solution for 𝑞 = −1.

The solutions of the original problem (4.1) are given in Figures 2–6. In the Figure 2 the solution for 𝑞 = −5
is plotted. In this case the thermal conductivity of the pipe’s wall is so large that the temperature in the wall
and in the pipe is constant. The constant is exactly equal to the mean value of the outer temperature 𝐺 which,
in this case, is equal to 1.

In Figure 3 the simulation for the value of parameter 𝑞 = −1 is given. In this case the thermal conductivity is
a bit smaller, but still large enough so the longitudinal conductivity is important. This leads to some difference
in the maximal and minimal temperature but which is significantly smaller than in the classical engineering
case 𝑞 ∈ ⟨−1, 1⟩ for which the simulation is given in Figure 4.

In Figure 5 the simulation for 𝑞 = 1 is given. The pipe’s wall still conducts the heat significantly enough so it
influences the temperature of the fluid, however the effective thermal coefficient is smaller. Finally in Figure 6
the thermal conduction is much smaller in the pipe’s wall so the wall is effectively an insulator. There is largest
difference in the temperature, which is exactly equal to the difference in the outer temperature 𝐺, but this
difference is only in the pipe’s wall, while in the fluid part the temperature is almost constant.

We also made numerical simulations for the unified model (7.1) and five limit models. However we skip
the plots since they are qualitatively the same as the results of the original model (4.1), but we compare the
differences between different approximations in Tables 3–5.

In Table 3 the relative 𝐻1 norm of differences of the numerical approximation of the original problem (4.1),
the unified model (7.1) and the corresponding limit model, but only inside the pipe, i.e. in [0, 1]2, are presented
for the same values of 𝑞. First note that all differences between the solution of the original problem (4.1) and the
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Figure 4. Solution for 𝑞 = 0.

Figure 5. Solution for 𝑞 = 1.

Figure 6. Solution for 𝑞 = 5.
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Table 3. Relative 𝐻1 differences of the numerical approximation of the problem (4.1), unified
model (7.1) and the corresponding limit model.

𝐻1 differences, [0, 1]2 𝑞 = −5 𝑞 = −1 𝑞 = 0 𝑞 = 1 𝑞 = 5

(4.1)–(7.1) 1.22× 10−6 2.97× 10−3 4.46× 10−3 1.63× 10−3 1.83× 10−6

(4.1)–limit 1.36× 10−5 9.04× 10−4 4.37× 10−2 2.13× 10−3 5.22× 10−5

(7.1)–limit 1.48× 10−5 3.83× 10−3 3.93× 10−2 5.10× 10−4 5.05× 10−5

Table 4. Relative 𝐿∞ differences of the numerical approximation of the problem (4.1), unified
model (7.1) and the corresponding limit model.

𝐿∞ differences, [0, 1]2 𝑞 = −5 𝑞 = −1 𝑞 = 0 𝑞 = 1 𝑞 = 5

(4.1)–(7.1) 9.85× 10−7 2.37× 10−3 3.87× 10−3 1.38× 10−3 1.28× 10−6

(4.1)–limit 1.05× 10−5 5.97× 10−4 3.39× 10−2 1.80× 10−3 4.10× 10−5

(7.1)–limit 1.14× 10−5 2.89× 10−3 3.01× 10−2 4.24× 10−4 4.01× 10−5

Table 5. Relative 𝐿2 and 𝐿∞ differences of the numerical approximation of the original prob-
lem (4.1) and the unified model (7.1) in the pipe’s wall (in [0, 1]× [1, 1 + 𝜀]).

Differences in pipe’s wall 𝑞 = −5 𝑞 = −1 𝑞 = 0 𝑞 = 1 𝑞 = 5

𝐿2 differences in [0, 1]× [1, 1 + 𝜀] 1.11× 10−6 2.97× 10−3 6.49× 10−3 6.50× 10−3 2.97× 10−3

𝐿∞ differences in [0, 1]× [1, 1 + 𝜀] 2.23× 10−6 6.22× 10−3 1.75× 10−2 2.62× 10−2 1.33× 10−2

𝐿2 differences on [0, 1]× {𝜀} 1.34× 10−6 3.68× 10−3 8.74× 10−3 9.81× 10−3 1.10× 10−5

corresponding limit model are at most 4.5% which implies that the limit models are rather good approximation
of the original problem. However, when we consider the approximation of the original problem (4.1) by the
unified model (7.1) we see that the error is at most 0.46% which we find to be excellent. Also note that in all
cases except 𝑞 = −1 the approximation by the unified model (7.1) is better then by the corresponding limit
model. Furthermore, in the case 𝑞 = −1 the error of the unified model is less then 0.145%.

Since the max temperature may be significant in Table 4 we present the relative 𝐿∞ differences as well. The
behavior of the differences is quite similar to the observed one for the 𝐻1 norm.

The unified model (and limit models as well) is given only on the domain of the pipe’s interior. Thus
to compare its solution with the solution of the original problem (4.1) in the pipe’s wall we have to build an
approximation in it. However in the case of the unified model (7.1) we have an additional unknown function 𝜃0(𝜀)
which corresponds to the temperature at the outer boundary of the pipe’s wall (as already noted (𝜃0(𝜀)−𝜃(𝜀))/𝜀
is an approximation for 𝜕𝑟𝜃). Thus it is natural to build the affine approximation in the pipe’s wall over the
cross–section, i.e. the variable 𝑟. We compare this approximation with the solution of the original problem (4.1)
in 𝐿2 and 𝐿∞ norm in Table 5.

In Table 5 we also compare the function 𝜃0(𝜀) with the solution of the original problem on the outer boundary
of the pipe’s wall. Having in mind that the chosen 𝜀 = 1/8 is not small for the asymptotics we find the affine
approximation excellent.
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[10] S. Marušić and E. Marušić-Paloka, Reduction of dimension for parabolic equations via two-scale convergence. In: Proceedings
of ApplMat 99, Dubrovnik, 1999, Department of Mathematics, University of Zagreb (2001) 155–164.
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