ESAIM: M2AN 55 (2021) 561-594 ESAIM: Mathematical Modelling and Numerical Analysis
https://doi.org/10.1051 /m2an /2021001 WWW.esalm-m2an.org

ON ERROR ESTIMATION FOR REDUCED-ORDER MODELING OF LINEAR
NON-PARAMETRIC AND PARAMETRIC SYSTEMS

LiHoNG FENG!* AND PETER BENNER!?

Abstract. Motivated by a recently proposed error estimator for the transfer function of the reduced-
order model of a given linear dynamical system, we further develop more theoretical results in this
work. Moreover, we propose several variants of the error estimator, and compare those variants with the
existing ones both theoretically and numerically. It is shown that some of the proposed error estimators
perform better than or equally well as the existing ones. All the error estimators considered can be
easily extended to estimate the output error of reduced-order modeling for steady linear parametric
systems.
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1. INTRODUCTION

Many model order reduction (MOR) methods have been proposed during the last decades [1-3,5,7-12]. For
many problems, especially parametric time-dependent problems, efficient error estimation of the reduced-order
model (ROM) is still critical.

It is well-known that many a-posteriori error bounds/estimators [17,22,26,30,31] need compute the inf-sup
constant, which appears as the denominator of the error estimator. In the numerically discretized space, the
inf-sup constant corresponds to the smallest singular value of a large matrix. For many models arising from, e.g.,
circuit simulation or Micro-Electro-Mechanical Systems (MEMS) simulation, the smallest singular value can be
zero at some samples of the parameter due to resonances [21], making the error bound unavailable at those
samples. Besides, computing the smallest singular value at many samples of the parameter is time-consuming
for large-scale problems. Although some algorithms are proposed to compute a lower bound of the inf-sup
constant [24], they are found to be inefficient for many problems [29]. The error bound often overestimates
the true error, especially for those systems whose smallest singular values are close to zero at many parameter
values. Often, the residual of the solution to the ROM is simply used to form a heuristic error indicator, see,
e.g., [13,14,18,25] to name a few.

In recent work [16], a new estimator for the transfer function error, as well as for the output error of MOR for
steady parametric systems, is proposed. The proposed error estimator avoids computing the singular values of
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any matrix, and depends mainly on the ROM. It is applicable to any system whose ROMs are computed using
a projection based MOR method. It is illustrated by the numerical results that the error estimator is much
sharper than the error bound in [17] for those systems with small inf-sup constants. Using the proposed error
estimation, the adaptive greedy algorithm converges much faster than using the error bound from [17]. The error
estimator was used in the greedy algorithm to select expansion/sampling points for MOR in frequency domain.
Searching good expansion/sampling points can also be tackled by optimization with respect to system-theoretic
measures, such as the Ho-norm and Ha X Lo-norm, see, e.g., [6,19,23].

Error estimation based on randomized residual for parametric steady systems is proposed in [29]. The output
error estimation proposed there is also free of computing the inf-sup constant and can be used to estimate the
transfer function error in frequency domain. We will show in this work that the error estimator in [29] more likely
underestimates the true error as compared with the error estimators in [16] and the proposed error estimators.

Another error estimation, which is independent of the inf-sup constant, is proposed in [20]. This error estima-
tion is used to estimate the error of the state (solution vector). It simply uses the error between two approximate
solutions computed from two ROMs divided by a saturation constant as the error estimator. As for estimation
of the transfer function error or output error, trivially multiplying the output matrix norm ||C(u)|| (C(u) will
be defined precisely in the next section) with the error estimator could also estimate the output error, but may
lead to slow error decay if ||C'(p)]|| is large. Moreover, a saturation constant needs to be estimated for the error
estimator in [20], which needs extra computations and may cause inefficiency of the error estimator if computed
without sufficient accuracy.

The error bound in [28] is proposed for nonlinear systems and also requires the computation of the inf-sup
constant or its lower bound. Numerical issues concerning computing these quantities remain. Moreover, some
assumptions on the magnitude of the inf-sup constant is needed in order to derive the error estimator. For
problems whose inf-sup constants are close to zero, e.g. O(10712), as for the examples presented in this work,
the error bound might not be tight anymore. From Lemma 2 in [28], it is not difficult to check that for linear
problems, the error bound in [28] is an upper bound of the error estimator A}" (will be detailed in Sect. 4.2)
proposed in this work when the output matrix satisfies C'(u) = I, the identity matrix. The residual system
needed for computing AY" is called error equation in [28], where a ROM of the error equation needs also to
be constructed. This ROM is constructed by running a separate greedy algorithm at each iteration of the main
greedy algorithm. In contrast, we simultaneously construct the ROM of the residual system (error equation)
and that of the original system in one greedy algorithm.

In this work, we further explore the property of the error estimator in [16] and propose some variants of
it. Sensitivity analyses are presented to show that the proposed error estimators may behave as error bounds
when influenced with a small constant. The proposed variants are theoretically and numerically analyzed, and
compared with the existing ones. Furthermore, the more general MOR framework based on Petrov-Galerkin
projection is used to analyze the error estimators and to explore the corresponding theoretical and numerical
properties. In the next section, we first review the error estimator in [16] and develop more theoretical results.
Variants of the error estimator and corresponding theoretical analyses are provided in Section 4. Section 5
theoretically compares the new error estimators with the existing ones. Section 6 provides greedy algorithms for
constructing the ROMs based on the error estimators. Numerical results of all the error estimators for various
problems are presented and compared in Section 7. Conclusions are drawn in the end.

2. PRELIMINARIES AND NOTATION

We use the following form of a linear system (with or without parameters) as an example to introduce
projection based MOR,

E(p) St p) = A(pz(t, p) + B(p)u(t),

y(t,p) = Cp)a(t, ). (2.1)
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Here z(t,n) € R™ is the state vector, n is often referred to as the order of the system. The vector p :=
(U1, -y pm) € RYX™ includes all of the geometrical and physical parameters. The system matrices E(u), A(u) €
R™*™ and B(u) € R™*™, C(u) € R *™ may depend on the parameters.

The reduced-order model (ROM) of the original system can be obtained via Petrov—Galerkin projection and
can be written as

B) §2(t.1) = Aozt o) + Blpyu(®), (2.2)

gt ) = Cp)2(t, p),
where E(u) = WTE(u)V € R™", A(n) = WTA(u)V € R™", B(u) = WTB(1) € R™™ C(u) = C(Q)V €
R™0*" and z(t,u) € R” with r < n. Then x(¢, ) can be recovered by z(t, u) = Vz(t, u). Here, range(V) and

range(W) are the trial space and the test space for Petrov—Galerkin projection, respectively.
The transfer function of the original system is defined as

H(f) = C(1)Q() " B(w), (2.3)

where Q(1) = sE(u) — A(un) and i := (u, s) with s € C, the Laplace variable in frequency domain. Similarly,
the transfer function of the ROM is

H(p) = C(p) Qi)™ B(p),
where Q(f1) = sE(u) — A(p).

Note that the error estimators discussed in this work does not require that the transfer function must be
derived from the linear system given in (2.1). In fact, the proposed error estimators apply to any system
with transfer function in the form of H (i) = C(i)Q(iz) 'B(j1)[4,5]. For example, the parametric model in
Section 7 has a transfer function H(ii) = CQ(i)™'B, with Q(1) = s>M(u) + sD(p) + T(p) being derived
from a second-order parametric system. Time-delay systems have transfer functions with Q(&) = Q(s) being a
non-rational matrix function of s. Many systems in computational electromagnectics need to compute output
quantities y(ii) = C()Q(ji1) "1 B(f1), where fi = (f1(s),..., fi(s))T and f;(s),i = 1,...,l, are (rational) functions
of s. The error of the reduced output 3(fi) can also be estimated by the proposed error estimators. Therefore,
in the following parts of the paper, our discussions are based on the transfer function in the general form
H(fi) = C(3)Q(f1) ' B(fi). The corresponding reduced transfer function is given as H(fi) = C(1)Q() " B(f1).

We define a primal system and a dual system, whose solutions depict the right part Q(i) "1 B(ji) and the left
part C(f1)Q(j1)~! of the transfer function H(fi), respectively. A primal system in frequency domain is defined
as

Q(R)xpr (i) = B(f1). (2.4)
The reduced primal system is then defined as
Qi) zpr (1) = B(R), (2.5)
where Q(f1) = WTQ(f1)V, which is Q(fi) = sE(u) — A(u) for the ROM of (2.1). Define a dual system
QT (W)rau(f) = CT (1), (2.6)
where x4, (ft) solves the dual system. The ROM of the dual system is
Qau(fi)zau (1) = Caulji), (2.7)

where Quu (1) = WE QT (i) Vi, Cau(fi) = WL CT (ji), such that &gy, (i) := Viuzau(it) well approximates ., (fi)-
Analogously, range(Vy,,) and range(Wy,,) are the trial space and the test space for Petrov—Galerkin projection
of the dual system (2.6), respectively. The ROMs of the primal and the dual systems introduce two residuals,
respectively, i.e., the primal residual

Tpr (/1) = B(ﬁ) - Q(/})"@pr(/j) (2'8)
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and the dual residual

rau(it) = CT (1) — Q" (1) Zau(f1)- (2.9)
Here, &, (it) := V2, (ft) is obtained from the reduced primal system (2.5) and approximates z,,(it). In the
following, we first review the error estimator in [16], then develop more theoretical results. Several variants of
the error estimator and corresponding theoretical analyses are proposed afterwards. We only consider single-
input single-output (SISO) systems. Extension of the error estimator to multiple-input multiple-output (MIMO)
systems as well as to output error estimation for steady linear parametric systems is detailed in [16] and will
not be repeated in this work. | - | denotes the absolute value of a scalar.

3. ERROR ESTIMATOR IN [16] AND EXTENSIONS
It is not difficult to obtain the following proposition, based on which several error estimators are proposed.

Proposition 3.1. The error of the reduced transfer function fI([L) satisfies

[H(R) = H()| = g (R)rpr (R
where x4, (1) solves the dual system in (2.6) and r,,(ft) is defined in (2.8).

Proof. Tt follows from the definition of H(fi) and the reduced primal system (2.5) that

\H () — H(f)| = |C()(Q~ () B(j) — VQ~' (1) B(i))|
= |C(W)Q~ (1) (B(f1) — Q) VQ™ (1) B(i))
N————

Zpr (B):=V zpr (1]

Note that computing 27 (fi) in the last equality of (3.1) needs to solve the dual system of original large scale
n. If we solve the ROM of the dual system instead, then 27 (fi) can be approximated by 4. (ft) ~ Z4u(fi) =
Vauzau(ft). Consequently, the error of H(fz) can be estimated as

|H (i) — H(f)| = Av(f1) = |25, (7)rpr ()] (3.2)

Clearly, the error estimator Aj(fi) might underestimate the true error. To reduce the probability of under-
estimation, a more robust error estimator is proposed in [16], which is based on the following error bound.

Theorem 3.2 ([16]). The error of the reduced transfer function H(fi) can be bounded as

[H () = H(@)| < As (@) + o, () (7)), (3-3)
where x,,, (fi) is the solution to the dual-residual system defined as
QT (), (1) = rau(it)- (3-4)

Proof. See [16]. O
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Again, computing z,,, () in (3.3) requires solving a large system in (3.4). Instead, we compute the ROM
of (3.4),

Q1) zry, (1) = Tau(ft), (3.5)

where Q() = W QT(i)Vey., Pau(i) = WE rau(@). Then 2, (3) & #1,,(7) = Vi 2., (). Finally we
replace x,,, (i) in the error bound (3.3) with &,,, (@), and get the error estimator:

[H(f) = H(@)| S Av(R) + |7, (@)rpe ()] =: Ao ().

Theorem 3.3. The error of the reduced transfer function fI(ﬂ) can be bounded as
Ai(f) = e1 < [H (@) — H(R)| < A () + e, (3.6)

where £1 = |(2au (i) — Zau (i) 7pr ()] 2 0.

Proof. On the one hand, by Proposition 3.1

[H (1) = H ()| = |k, (@)rpe ()] + |25, ()rpr ()] = 123, (2)rpr ()|

= A1jt) + |2y (B)rpr ()] = |G, (@)rpr ()] (3.7)
< Ay (f1) + 1.
On the other hand,
Av () = |28, (@)rpr(2)] + |2, (@)ree (2)] — |24, (@)re- ()|
= |H (i) = H(i)| + |25, (2)rpr ()] = |25, (2)rpr ()] (3.8)
< |H () — H(@)| + &1

O

Here, £1 can be very small if the reduced solution Z 4, (ft) approximates the solution x4, (f) to the original dual
system well and/or if the primal system solution z,,(f) is well approximated by the reduced primal solution
Zpr (1), so that ||rp.(&)||2 is small. Both approximations can be made as accurate as possible through a greedy
process using the proposed error estimators, which will be discussed in detail in Section 6. Theorem 3.3 shows
that the true error is both lower bounded and upper bounded by A;(f) with the influence of a small-valued ;.

Theorem 3.4. The error of the reduced transfer function f[(ﬁ) can be bounded as
Ao(f1) = 62 —e1 < [H (1) — H()| < Ao(j1) + &2 (3.9)

where €3 := |(Zry, (1) = ra, (1) Trpr(B)] 20, 82 = |20y, (7)) rpr ()]
Proof. From (3.3),

|H(ii) — H(@)| < Ar(i) + |22, (@)rpe ()]
= Ay (@) + 2, (@)rpe(i)] — 22, (@)rpe ()] + |22, (@)rpe ()] (3.10)
= Do (1) + |2F, ()rpe ()] — |2F, (2)rpe (/1)]
< Ag(f) + eo.

The proof of the lower bound is a direct result from the lower bound of Theorem 3.3 and the relation between
Al(/]) and Az(ﬂ) O
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€1 and €2 involve computing the solutions xg, (i) and z,,, (f) to the original dual system and the original
dual-residual system, respectively. Since the original dual system and the original dual-residual system are of
high dimension n, computing the lower bounds and upper bounds in (3.3) and (3.4) is as expensive as computing
the true error. Instead of the lower and upper bounds, the error estimators Aq(ft), Az(jz) can be computed and
used in practice, as they involve only computations in the reduced r dimensions. Theorem 3.4 shows that the
error estimator Ay(fi) cannot underestimate the true error too much, since Aq(ft) > |H (i) — H(ft)| — €2 and
€9 can be made very small by letting Z,, (i) approximate ., (i) well. On the other hand, when 5 is small,
Theorem 3.4 implies that As(fi) is a tight error estimator from above. Furthermore, Theorem 3.4 also provides
a lower bound for the true error using As(jz) and two small valued variables €5 and d5. Here, d2 cannot be large
when both 7, (&) and 74, (it) become small. Note that 74,(ft) appears on the right-hand side of the reduced
dual-residual system (3.5) from which &} (f) in 03 is computed.

4. ERROR ESTIMATOR VARIANTS

In the following, we derive some error estimators, which can be seen as variants of the error estimators Aq(f)
and Ag(ft), respectively. Again, the lower bounds and upper bounds proved in the following theorems are used
to show how close the proposed error estimators are to the true error and are not computed in practice. As
mentioned at the end of the previous section, computing them is as expensive as computing the true error. This
is the main motivation for proposing the error estimators.

4.1. Variant 1
From the error bound in (3.3) and (3.4), we get
[H () — H()| < Ay(i) + |rd, ()Q ™ (W)rpr (A)]- (4.1)

We see that instead of solving the dual-residual system (3.4), one can also solve the primal-residual system as
below,

Q(i)zr,, (1) = rpr(R)- (4.2)
Replacing Q' () rpr (1) in (4.1) with 2, (f1) in (4.2), we obtain
[H(f) = H()| < A7) + g (@), (7). (4.3)
If we construct the ROM of the primal-residual system in (4.2), i.e
W QUi v, (1) = Wyl 1y (i), (4.4)

then we obtain a variant of Ay (f1),

[H () = H(@)| S A1(R) + |rgu ()2, ()] =: A5 (@),
where Z, (i) =V,

rpr 21y 18 computed from (4.4), the ROM of the primal-residual system and approximates the
state vector x,, (fi) of the primal-residual system. We obtain a similar sensitivity analysis for A5"(fi) presented
in Theorem 4.1.

Theorem 4.1. The error of the reduced transfer function H (ir) can be bounded as
A (1) — 65" —e1 < |H(f) — H(7)| < AY(f) + <5 (4.5)
where 8" := |rg, (i) (@r,, () = v, (7)) 2 0 and 8" = |rg, (A)dr,, (A)]-

Proof. The result can be obtained by using (4.3) and following similar steps as in the proof of
Theorem 3.4. ]

Note that e5” will be of small value once the reduced solution &, (fi) approximates x,  (f), the solution to
the primal-residual system (4.2), well.
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4.2. Variant 2

From (3.1), we know R
|H () — H(a)| = |C(R)Q™ (@)ryr ().
Similarly, if we use the solution to the primal-residual system (4.2) to replace Q' (ji)rp- (i), then we get

[H () — H(@)| = |C(i)@r,, ()] (4.6)

If further using the ROM (4.4) to compute an approximate state, then x,, (/) in (4.6) can be approximated by
#,,, (). We obtain the following error estimation

[H () = H(R)| & |C(@)ir,, ()] = A7 (f),
that can be considered as a variant of Ay (fi).
Theorem 4.2. The error of the reduced transfer function H(fi) can be bounded as
AV () — " < |H(f) — H(R)| < AT (7) + €5, (4.7)
where & = |C(i) (2, (7) — v,y ()] = 0.
Proof. The proof is similar to that of Theorem 3.3 and therefore not be repeated here. (]
4.3. Variant 3

The next theorem presents an error bound based on A} (), from which we get another variant of As(f).

Theorem 4.3. The error of the reduced transfer function H(,&) can be bounded as

[H(p) = H(@)| < AT (7) + legu (@), ()],

where v, is the residual of the approvimate solution &, (fi) to the primal-residual system in (4.2), i.e., v, =

Tpr( ) — erpr(~)'
Proof. From (4.6), the true error can be presented as

[H(p) = H()| = |C(R)ar,, (7). (4.8)
and its estimator A" (f1) = |C(i1) 2, (f1)]:

|C(@)ar,, (1)) = 1C(@)Er,, (1) < |C(HQ™ rpr (i) — C(A)Er,, ()]
|C( ) [rpr( )_ erp,(ﬂ)]‘ (4.9)

=Trpr (ﬁ)

We check the distance between the true error |C(fi)z.,, (/1)

Combining (4.8) and (4.9), we get

[H(R) = H(@)| < |C(@)r,, ()] + C(RQ T, (i)

— ATG) + [ (i), (). (+.10)

Similarly, we get the following error estimator by approximating g, (1) with Z g, (i)

[H (i) = H(@)| S AV () + |80, (W), ()] = As ().
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Theorem 4.4. The error of the reduced transfer function ﬁ(ﬁ) can be bounded as

Ag(fi) = 05 — eb" < |H (1) — H(f1)| < As(fi) + 3 (4.11)

where e := |(2au(1) — Fau(@)"rpr ()] = 0 and 8 = [£3, (D)rs,, ().

Proof. The result can be obtained by using (4.10), the relation between As(ji) and AY" (1), and the lower bound
of Theorem 4.2, then following similar steps as in the proof of Theorem 3.4. (I

Analogously, €3 is also a small number, since &4, (j1) is close enough to x4, (@) if it is a good approximation
computed from the ROM of the dual system.

4.4. Variant 4

In (4.10), if we consider @~ 'r, and seek the solution to the primal-residual-residual system,

pr

Qa)zr,,, (1) = v, (1), (4.12)
then the error bound in (4.10) becomes
|H () — H(@)| < AT(2) + [C (@), ()] (4.13)

Certainly, we can compute the ROM of (4.12),

W QUi)Vr,y, Zry, () = W e, (1), (4.14)

Trpr Trpr

and replace ., (1) in (4.13) with its approximation Z,., , () =V,

rrpr Zrrpe (1) computed from the ROM. Finally,
we get the error estimator

H() — H ()| S 1AV (D) + |C(),, ()] = AY (7).
From (4.13), we can get the following lower and upper bound using the error estimator A% (f).
Theorem 4.5. The error of the reduced transfer function fI(ﬂ) can be bounded as

AL (1) — 05 — e < |H () — H(ji)| < AY (@) + " (4.15)
where 8 = |C(R) (@, () — v,y ()] 2 0 and 88 = |C(@)2,,,, ().

Proof. The result can be obtained by using (4.13) and following similar steps as in the proof of
Theorem 4.4. g

4.5. Relations among the error estimators

In this section we explore relations among the error estimators discussed in the previous two sections and
present the following propositions.

Proposition 4.6. If Wy, =V, and Vg, = W, then A1(it) = 0.
Proof.

= |24 () (B() — QUu)V(WTQ(m)V) ' W B(f)] (4.16)
= |24 () B(f1) — &4, (R)Q()V(WTQ(A)V) " WTB(j)].
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The first part of the last equation in (4.16) is

24, (1) B(R) = Vau(W,Q" (1) Vau) ' WL,CT ()] B(2)
— C(AVWTQE)V) "W B(f) (if Wy = V and Vi, = W).

If Wg,, =V and Vg, = W, the second part of the last equation in (4.16) becomes

(4.17)

S5 (BVVTQIV) W B() = [Vau(WEHQT ()Vau) " WECT ()] " Q()V (WTQ(@)V) ™' W B(f)
= C(RVWTQLV) ' WTQ(R)V(WTQ()V) W' B(j1)
= C(RVWTQ(mV) "W B(p).
(4.18)
Comparing (4.17) and (4.18), we get the conclusion. O

Remark 4.7. Proposition 4.6 points out that if Wy, = V and Vg, = W, then A;(f) is always zero, and
cannot be a good error estimator. This is not the case for most problems. However, if the system is symmetric,
i.e., Q(1) = QT(), and B(f1) = CT(fi), this will likely happen, since in this case, the primal system and
the dual system are identical. We will show later that for systems that are almost symmetric, i.e., Q(f) =
QT (1) and/or B(ji) ~ CT (1), Ai(f1) also behaves badly. One possibility of avoiding Aq(f) bemg Zero or
improving the performance of A;(fi) is to construct (Wg,, Vay,) and (W, V) from different subspaces of the
solution (state) manifold. More specifically, when using time domain methods, different snapshots should be
chosen for (Wy,,, Vi) and (W, V), respectively; or different expansion points should be taken if using frequency
domain methods, e.g., moment-matching.

Remark 4.8. Using Galerkin projection, i.e., W =V, Wy, = Vy,, then V4, = V leads to A;(iz) = 0.
Proposition 4.9. If W,,, = Wy, then the second part of Az(f) is always zero, i.e., |1 (a)rp ()] = 0.

Proof.
& (@)rpr() = Ve, @ (@) (WL rau ()] rpr (1)

T o (4.19)
= 5 (W WauQ T ()V,E o () (Gf Wiy, = Waw).
Considering the first two terms in the last equation, we get
(5, W) = WE(CT () = QT () Vauzau () w20
=0 (due to (2.7)). '
O

Remark 4.10. Proposition 4.9 points out that if W,.,, = Wy, then As(ft) reduces to Aq(fz), and cannot be
more robust than A (). Therefore, W, should be carefully constructed to avoid being equal to Wy,. For
example, it could be computed from different snapshots if the reduced basis method is used for MOR; when
(multi-)moment-matching is used for MOR, different expansion points should be chosen for W,., and Wy,,

respectively. More details can be found in Section 6. In the case of Galerkin projection, i.e., W, ,, =V, and
Waw = Vi, Vr,, = Vau leads to the same result in Proposition 4.9.

Proposition 4.11. If W, =W, then &, (i) = 0.
Proof. From the ROM of the primal-residual system in (4.4)

Zryp (1) = Vi, (W Q) Ve, )T (W rpr (1))
= Vo, (W QUa)Ve,, ) (W Ty () (i Wy, = W)
= Vo, (W) Q(a)Ve,, )" WH(B(f1) — Q()V zpr (1)) (4.21)
= Vo, (W Q(a)Ve,, ) WP B(j1) = WTQ(R)V zpr (f1)]
=0. (dueto (2.5))
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Remark 4.12. Proposition 4.11 implicates that if W, = W, then the second part of A} (ji) is always zero,
i.e., [r, ()&, ()] = 0, and AL"(fi) equals to Aq(fi). Also, &, (/1) = 0 makes A}"(f) zero, meaning the first
part of As(f1) and the first part of A§"(fi) are all zeros. Therefore, W, should also be carefully constructed
to avoid being equal to W. For Galerkin projection, i.e., W, =V, —and W =V, Proposition 4.11 reads: If
Vi, =V, then &, (1) =0.
Proposition 4.13. If W, =W, . then &,  (fi)=0.
Proof. From the ROM of the primal-residual-residual system in (4.14),

1y (8) = Ve, (WE, QY )N WE, o, (). (422)

The last tow terms of the right-hand side of (4.22) are

W Tre () = Wi vy, () (GE W = W)

=W (rpr(i) = QVry 2, (/1))
=0 (due to (4.4)).

O

Remark 4.14. From Proposition 4.13, we see that if W, = W, ., then the second part of AL (f1) is always
zero, i.e., |C(f1)Zr,, ()] = 0, so that AY"(fi) is no better than AJ"(fi) in underestimating the true error.
Similarly, in case of Galerkin projection, i.e., W, = V. —and W, _ = V,_ ., Proposition 4.13 reads: If
Virpe = Ve, then 2. (fi) = 0.

Trpr

4.6. Constructing projection matrices for the ROMs

The key components for computing the error estimators are the projection matrix pairs (W, V'), Wy, Vau),
(W Veg) or (We Ve ), (W5 Vi, ), which are used to construct the reduced systems in (2.5), (2.7), (3.5)
or in (4.4), (4.14), respectively. For simplicity and clarity of analysis, we only use Galerkin projection for all the
reduced systems, so that only one projection matrix V, Vyy, V;,, or V., V. needs to be computed for each
reduced system. The analysis in this subsection can be extended to Petrov—Galerkin projection without many
difficulties and could be addressed in a future work.

By definition of the reduced primal system (2.5), V' is also the projection matrix for constructing the ROM
of the original model. Since the proposed error estimator does not depend on the MOR method, V' can be com-
puted either using time-domain MOR methods, such as the reduced basis (RB) method, the proper orthogonal
decomposition (POD) method [8,10], which use the snapshots in time domain (trajectories of the state vector x)
to obtain V or using frequency domain methods, such as multi-moment-matching [15].

The dual system (2.6), the dual-residual system (3.4), as well as the primal-residual system (4.2), the primal-
residual-residual system (4.12) are parametric systems in frequency domain, with & = s or i = (p,s) being
the vector of parameters. Similarly, we can compute the projection matrices for MOR of these systems either
through snapshot based methods, or the multi-moment-matching method. The snapshots do not represent the
trajectory of the solution in time domain, instead, they are the solution vectors at different samples of the
parameter fi.

In order to be consistent with the previous work in [16,17], and to be comparable with existing results, we
apply the frequency domain method, i.e., the multi-moment-matching method [15] to derive the ROMs for all
the systems contributing to the error estimator. To be self-contained, we also review the construction of V, Vy,
and V., , though it is detailed in [16]. It is illustrated in [16] that the reduced basis method can be seen as a
special case of the multi-moment-matching method for systems in frequency domain.
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4.6.1. Constructing V using the multi-moment-matching method [15]

When using the multi-moment-matching method proposed in [15] to construct the ROM, then V' can be
computed as follows. We first consider the state vector z(¢, 1) in frequency domain, i.e., the state vector z(f)
of the primal system. Assume that Q(fi) has the following affine decomposition

Q1) = Qo+ hi()Q1 + ... + hyp(j1)Qp,

where h;(ft) : C™ — C,j =1,...,p are scalar functions of fi. Qo,...,Q, € R"*" are constant matrices, so are
parameter independent. From the series expansion of z(ji),

z(i) = [Q()] ' B(i)
= [Qo + hi()Q1 + ... + hy(W)Q,) ' B(i1)

= [I— (0’1M1 +... +UpMp)]_1BM (423)
= ki_o:o(a'lMl 4+ ...+ O'pMp)kBM,
where o; = h;(f) — hi(i'), Bu = [QUA)]'B(R), M; = —[Q(A)]'Q; j = 1,2,....,p; h(i) =

(ha(@"), ..., hy(i")) is the expansion point at which the above power series of x(fi) is derived. Since h(ji’)
is uniquely determined by fi’, we call i’ the expansion point in the following text, for simplicity. The super-
script i fixes the parameter fi to a specific value fi*. It corresponds to the ith expansion point used in (4.26),
i =1,...,1. There exist recursions between the coefficients of the series expansion as below,

Ry = By,
Ry = [MiR,..., MRy,
Ry = [MiRy, ..., MRy,
(4.24)

Rq = [Mqu—la ceey Mqu—lL

Here, By = By, if B(fi) does not depend on y, i.e., B(fi) = B. Otherwise, By = By, -, Bu,)s Bu, =

Q(a")]'Bj, j = 1,...,p, if B(it) can be written in an affine form, e.g., B(fi) = Biai(u) + ... + Bpay(p),
a;(p) : C™ +— C. Then Vj: is computed as

range(Vj:) = span{Ro, R1,..., Ry} i, (4.25)

where usually we require ¢ < 1 to avoid exponential increase of column dimension. The matrix V;: depends on
the expansion point . Finally, V can be constructed as

V=orth{Vz,...,Vu}. (4.26)

The matrices Rj,j =0,..., in (4.24) depend on the expansion point x‘, so that they can be written as R;(ji‘).
The multi-moments corresponding to the expansion point x' are defined as C(i*)R;(f%),j = 0,..., where R;
includes the jth order multi-moments. Corresponding multi-moments of the ROM (2.2) can also be defined
using the projected reduced system matrices, i.e., C(i*)R;(ji'),j = 0,..., where R; = VT R;V. When C(j1)
is a constant matrix C, it is proved in [15] that the multi-moments CA’}A%] (i%),7 = 0,...q,45 = 1,...,1, of the
ROM (2.2) are equal to those of the FOM (2.1), if the projection matrix V' is constructed as in (4.26). An
analogous proof applies to the case of parameter dependent C(jz) to show a similar moment-matching property:
C(i)R; (i) = C(i")R;(fi*),j = 0,...q,i = 1,...,1. In this sense, the multi-moments of the FOM are matched
by the ROM till order g at each expansion point &’, fori =1,...,1L
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4.6.2. Constructing Vg, using multi-moment-matching

If using the multi-moment-matching method, Vg, can also be constructed similarly as V. Considering the
dual system in (2.6), x4, (1) can be written as

zau() = Q)] ~TCT (i)
= [Q +m(WQT + ...+ hy(WQF'CT ()

= [I— (UlMl +...+UpMp)]_1CM (427)
= Z (UlMl + ...+ UpMp)kCM,
k=0

where Cyy = [Q(i))]"TCT (), Mj = —[Q(u")]"T ;‘F, j=1,2,...,p. The recursions between the coefficients of
the series expansion in (4.27) are . )
Ry = Cy,
Rl - [MlRo, ey Mpéo],
Ry = [MiRy,..., M,Rq],
(4.28)

Rq = [Mqu—la RN Mqu—lL

Here, Cyy = C, if C() does not depend on 4, i.e., C(ft) = C. Otherwise, Cas = [Cary,...,Crr], O, =
Q(a)]~'Cy, 5 =1,...,p, if C(i) can be written in an affine form, e.g., C(ii) = C151 () + ...+ CpBp(1). Then
Vl{ﬂ“ is computed as

range(V;i“) = span {Ro, Ri,... ,Rq}

%
Finally, V4, can be constructed as

Vi = orth {Vgﬂ, o V;ﬁ“} . (4.30)
4.6.3. Constructing V,,,

Vig. 18 used to construct the ROM of the dual-residual system and the error estimator As(fi). From the state
vector of the dual-residual system (3.4), we see that

Ty, () = Q_T(ﬂ)rdu(ﬂ)
=Q T(B)CT (i) — &au(f) (4.31)
= Q T (w)CT () — Vauzau (),

where QT (71)CT (1) is nothing but the state vector z4,(ft) of the dual system.

Considering the series expansion of x4, (ft) in (4.27), we see that taking the same expansion point as in (4.27),
the series expansion leads to the subspace range(Vy,). Finally, Q=7 (2)C” (i) in the last equality of (4.31)
provides no new information than Vy,, so that we can use range(Vy,) as the subspace for approximating the
trajectory space of x,,, (i), i.e., V,,, = Va,. However, from Proposition 4.9, we know that V,,, should be
different from Vi, . Therefore, if we use expansion points different from those used for Vg, to obtain a second
projection matrix Vrldu, which is different from Vj,,, then the projection matrix V;.,, := orth {VT,ldu, Vdu} should
represent the trajectory of ., (i) well.

V.~ can be computed using the multi-moment-matching method as in (4.29) and (4.30), by choosing expan-
sion points that are different from those used there, i.e.,

range(V;;’“) = span {RO, Ri,... ,Rq}~j jg=1,...,1 (4.32)

f
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Finally,
range(V,., ) = orth {ngu, VT Vdu} . (4.33)

The 7 in (4.32) can be selected by a greedy algorithm searching the maximum of |2}, (ji)rpr(2)|, the first part
of Aq(f1) associated with Z,,,, and are usually different from i’ used for computing Vg,.

4.6.4. Constructing V.,

From the state vector of the primal-residual system (4.2), we get

:L.Tp'r(ﬂ) =Q! (ﬁ)rpr( )
= Q' (1) B(f1) — Zpr (1) (4.34)
=Q @) B(j1) — Vapr (i),

where Q~1(j1) B(j1) is exactly the state vector z(fi) of the primal system.

Similarly to constructing V;.,,, we use expansion points different from those used for V' to obtain a second
projection matrix Vrlpr whose columns span a subspace that is different from the one spanned by the columns
of V', then the projection matrix

v

e = orth {V2 V) (4.35)

should represent the trajectory of x, (i) well.

4.6.5. Constructing V.

From the state vector of the primal-residual-residual system (4.12), we see that

rpT

Ty, () = )7ry
ﬂ)(rpr(~) Q(f )Vrm Zrpr (f2))

)(rpr () = Vi, 20, (1)) (4.36)
“HE)(B(f) — QV 2pr (1)) = Vi, 20, (1)

) ) Vzpr( ) — Vrprzrm (N)

Taking the same expansion point as in (4.23), the series expansion of Q~1(1) B(f1) in the last equation of (4.36)
gives rise to the projection matrix V. Consequently, the subspace for x,. , (fi) is range(V, V;. ), which is equiva-
lent with range(V,.,, ), since V' is already included in V,. in (4.35). This is in contradiction with Proposition 4.13
that V,, . should be different from V., . Therefore, Q' (f1) B(f1) in the last equation of (4.36) cannot be expanded
using the same expansion points as those for both V' and V. . Recall that V. is used to construct the ROM
of the primal-residual-residual system (4.12) and contributes "o the error estimator A 2"(f). Then the expansion
points for series expansion of Q~1(f1)B(ji) in the last equation of (4.36) can be iteratively chosen by searching
the maximum of |C(p)&,,, ()|, the second part of AL"(f1), which purely depends on the ROM built by V,
Greedy algorithms computing the projection matrices are presented in Section 6.

Trpr:®

5. COMPARING THE PROPOSED ERROR ESTIMATORS WITH THE EXISTING ONES

In this section, the proposed error estimators are compared with the existing and closely related error esti-
mators: the randomized error estimator in [29], where some dual residual systems are employed to construct
the error estimator, and the error bound in [17] using the inf-sup constant. We first briefly review the random-
ized error estimator in Section 5.1, then compare it with the proposed error estimators in the next subsection,
where the proposed error estimators are also compared with regard to their similarities and differences. The
comparison is only done for error estimators with high relevance or with comparability.
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5.1. Review of the error estimator in [29]

State error estimation as well as output error estimation for parametric linear steady systems is proposed
in [29] based on randomized residuals. Given the system has only a single input, the output error estimation
can be used to estimate the transfer function error in frequency domain. The transfer function error ey (f) :
H(fi) — H(f) can be measured using the 2-norm ||ex (71)||2. The error estimator is given as

(K 1/2
ler (A)llz ~ 2 <Z 53) =: A (j1), (5.1)
i=1
where §; = (2%, (1)) rp-(f1), and 2%, (i) solves the ith random dual system,

Q) xh, (i) = z,i=1,... K, (5.2)

where z; ~ N(0,CT(f1)C(j1)) is a random vector following the normal distribution with zero mean and covari-
ance matrix C7(1)C(j1) € R™*". According to Remark 2.6 in [29], the random dual systems reduce to

where & ~ N(0,1) is a random variable (scalar) with standard normal random distribution. Therefore, %, (j)
can be obtained by first solving the dual system in (2.6) to get x4, (jz) and then multiplying x4, (&) with &;, i.e.,
2 () = Eivau (i),
It is stated in [29] (Corollary 2.5) that under certain conditions, A, is an error estimator of the true error
with the probability
P{w™ A (i) < llen(@)ll2 < wA (), € E} > 1 -4, (5.4)

where w > /e, e is the Euler number, and = is a finite set of parameter samples, 0 < § < 1. Note that the dual
system (2.6) with large size n needs to be solved at least once for every parameter to obtain z?%,, this is still
costly. Therefore, for single output systems, x4, is replaced by 4., so that only the reduced dual system in (2.7)
needs to be solved. For multiple output systems, each of the random dual systems in (5.2) is first reduced to
a small system and then z’,, is approximated by the approximate solutions £, computed from the reduced
random dual systems. Finally, we have
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where &; = (&%, (7)) "y ()-
5.2. Robustness comparison

This subsection gives more insights into the proposed error estimators by comparing them with the existing
ones and by comparing highly relevant ones among them. The comparison mainly focuses on the robustness of
the error estimators in predicting the true error in the following sense: we discuss whether some are more likely
to underestimate or overestimate the true error than others.

— Ay(fn) vs. A" (f1): To compute Aq(fi), we need reduce both a primal system and a dual system. Whereas, the
primal system and the primal-residual system are reduced to obtain A}" (). Although it is not clear which
one better estimates the true error theoretically, numerical results nevertheless show obvious superiority of

AV () over Aq(f).
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— Aq(f1) vs. Ag(fi): it is clear that As(fi) is an upper bound of Aq(f), though it is not an upper bound of the
true error. This means, Aq(f1) is more likely to underestimate the true error than Aq(f), if Wi, # Wy, due
to Proposition 4.9.

— Ay(jz) vs. AL (f1): analogously, A (fi) is more likely to underestimate the true error than AY" (i), if W, # W
due to Proposition 4.11.

— AV"(@) vs. As(@): AP (@) is more likely to underestimate the true error than As(j).

— A (1) vs. AL"(f1): AT (f1) is more likely to underestimate the true error than AL"(f), if W,. = # W, = due
to Proposmon 4.13.

— Ag(fr) vs. AB"(f1): the only difference between Ay and AB"(f) is the difference between their second parts,
where the ROM of the dual residual system (£4,(j1)) is used for As(fi), whereas the ROM of the primal-
residual system (&, (f1)) is used for AY"(fi). They also behave similarly in the numerical experiments.

— Ag(j1) vs. Ag(fi): the first term 2], (f)rp,(i1)] of Ag(fi) results from the ROM of the primal system and
that of the dual system. The first term |C(f)2,, (i) of Az(fi) results from reducing the primal system and
the primal-residual system. As for their second terms: |27, (i)rp, ()] of Ag(f) and |21, (A)rr,, ()| of As(f),
7pr(f1) is the residual from the ROM of the primal system, but 7, _(j) is the residual from the ROM of the
primal-residual system. .., (/i) is the result of two-step model reduction, whereas 7, results from one step
of MOR. Numerical results show that A (jz) is more robust than Az(f), when As(fi) is computed properly,
especially for near symmetric systems.

— As(fr) vs. AL (f1): The only difference between Asz(i) and AL"(i) is the difference between their second
parts, where xdu( ), the quantity computed from the ROM of the dual system is used for As(f), whereas,
&y, (fi), the quantity computed from the ROM of the primal-residual-residual system is used for AL"(f1).
Numerical results in the next section show little difference between their effectivities.

— Ao(fr) vs. Ag(fr) in [17]: It is shown in [16] that Ag(f) has motivated the derivation of Ag(fi) and can be
seen as an upper bound of Ay(f1). Although Ag() is an error bound of the transfer function error, it is
much more time consuming to compute as compared with As(fi), since the smallest singular value of a large
matrix (of the original model size n) needs to be solved for every parameter value in a given training set.
Ay () avoids this computational issue. Numerical tests on several models in [16] have shown that As(f) is
much tighter than Ag(ft) and behaves as an error bound, except for very small true errors close to machine
precision.

— A,(f1) in [29] vs. Aq(ji): From the proof of Theorem 1, we see that the quantity |27, (f1)r,. ()] in (3.1) is
exactly the true error. Using a similar description as in (5.4), |22 (@)r,,| satisfies

P{w ™ a g, () rpe| < llem(@)ll2 < wlag, ()ryr(7)], Vi € E,VE € D} =1, (5.6)

with w = 1, which is an exact estimation of the true error not only for any & in a given = as in (5.4),
but also for any fi in D. Here, D is the continuous parameter domain. Comparing (5.6) with (5.4), we
know that A, (i) in (5.1) and (5.4) is an error estimator, whereas |22 (i)r,.(ii)| in (3.1) and (5.6) is the
true error. Furthermore, the error estimator A;(ji) is derived based on |z% (fi)r,-(ft)| by replacing the true
dual solution x4, (1) in |21, (72)rp(/1)| with the approximate dual solution 24, (f); whereas A,.(ji) is derived
based on A,.(f1) in (5.1) also by replacing g, (f) in A, (i) with &4, (f1). In summary, Aq(f) is only a one-step
approximation of the true error, whereas, A, (i) is a two- step approximation of the true error. It is therefore
not difficult to see that A;(ji) should be tighter than A,.(j). Simulation results also show that A, (j) is
often not as tight as Ay (f1). From the previous analyses, A;(f) is less accurate than all the other proposed
error estimators, which can also be seen from the numerical results in Section 7. Therefore, it appears to be
unnecessary to compare Ar(ﬁ) with the other estimators.

5.3. Computational complexity comparison

Computing any of the error estimators discussed in this work needs to construct a ROM of the primal system.
It is noticed that the projection matrix V used to construct the ROM of the primal system (2.4) is the same
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matrix used to derive the ROM of the original system. Therefore, the ROM of the primal system can be derived
for free in the sense that V is obtained without additional computation. Except for constructing the ROM of
the primal system, we list the following additional costs required by different error estimators.

— Computing Ag(fi) involves constructing the ROM of the dual system (2.6), and computing the inf-sup
constant at each f in the training set =.

— Computing A;(z) or A" (f1) involves constructing the ROM of the dual system or the ROM of the primal-
residual system (4.2).

— Computing As(f1), AY" (i) or As(jz) involves constructing the ROM of the dual system (2.6), and addition-
ally the ROM of a corresponding residual system needs to be constructed: the ROM of the dual-residual
system (3.4) or the ROM of the primal-residual system (4.2).

— Computing A% (1) involves constructing the ROMs of two residual systems: the primal-residual system (4.2)
and the primal-residual-residual system (4.12).

— Computing A,(f1) involves constructing the ROM of the dual system if the output matrix C is a vector,
otherwise, K ROMs of the K random dual systems in (5.2) must be constructed.

From Section 4.6, we see that to construct the ROMs of the dual system, or any of the residual systems, one
only has to solve several linear systems to compute the coefficients in the series expansion of the corresponding
solution vector. For interpolatory MOR methods in frequency domain, the cost of constructing the ROM of any
of the above mentioned system is equivalent to the cost of constructing the ROM of the original system. This
means, in order to compute any of the error estimators, one or two additional ROMs need to be constructed at
each iteration of the greedy algorithm. Except for constructing the ROMs, where linear systems of the original
dimension need to be solved at the expansion points, no extra large-scale computations are needed to compute
the error estimators. However, the error bound Ag(ji) has the highest computational cost, since computing
the inf-sup constant means solving a large eigenvalue problem at each i in = per iteration. Furthermore, from
the proposed greedy algorithms in the next section, the additional ROMs are constructed simultaneously with
the ROM (2.2) of the original system, no separate greedy algorithms are required as in [28].

6. GREEDY ALGORITHMS FOR CONSTRUCTING THE PROJECTION MATRICES

The aim of an efficient error estimator is to construct a ROM of the original system with satisfying accuracy
and high reliability. In the following, we show algorithms for constructing the ROM of the original system, where
an error estimator acts as a guidance for greedy constructing the projection matrix V for the ROM. Again, we
use Galerkin projection to compute the ROM of the original systems and the ROMs of the other systems, which
are involved in computing the error estimators. To compute any of the proposed error estimators, corresponding
projection matrices Vau, Viy, Vips Vi, need to be constructed simultaneously with V.

As compared with the algorithms in [16], we have included the proposed variants of the error estimator and
computation of their corresponding projection matrices into the algorithms. The performance of the proposed
error estimators as well as the existing ones are compared in the next section.

We first present the greedy scheme for non-parametric systems in Algorithm 1. The standard moment-
matching method [7] is used to compute the projection matrices. The variable €, is defined as the tolerance
for the error of the reduced transfer function. Once the maximal error estimator over the whole sample set = is
below the tolerance, the greedy algorithm stops. In every iteration, the s sample corresponding to the maximal

error estimator is chosen as the next expansion point s; (Step 21). Steps 5, 8, 12, 15 and Step 19 orthogonalize
the vectors in V'(s;) and Vi (si), Vi, (58), Vi, (58), Vi (sf) against the existing vectors in V and Vg, V.,
Viprs Vi, T€SPectively.

In Algorithm 1, some steps are only implemented for certain error estimators, depending on which error
estimator is being used. The expansion point s is chosen to iteratively construct V;,, or V. ., while sf is
7pr+ Lhe choice of the expansion points si* or s? depends on the part of the error estimator

that is solely decided by the corresponding projection matrices V;.,,, V;. , or V. . As for AV (), since s; is

chosen to construct V,

du?
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chosen according to A", s¢ is chosen according to the norm of Tr,. to avoid V;. = being identical with V' due to

Tpr
Proposition 4.11.

Algorithm 1. Greedy ROM construction for non-parametric systems (2.1).

Input: System matrices E, A, B, C, €t01, Z: a set of samples of s covering the interesting frequency range.
Output: The projection matrix V for constructing the ROM in (2.2).

1: V=], Vau=[,\Vep, = [l Vrm =[, Verpr =[], set € = €11 + 1,¢ > 1.

2: Initial expansion point: s; € Z, for V, Vau; si* € E, for V.., (or V,,,.); sf €g, forV,,,.,i=1

3: while € > ¢, do

4:  range(V(s;)) = span {B(sl), R (A(si))qflé(si)}, where A~(s) =(sE—-A)'E, B(s) =(sE—A)"'B,and g < n
5.V =orth{V,V(s;)}.

6: if A(s) € {Al(s),Ag(s),AéiT(s),Ag(s)} then i i i

7 range(Va.(s;)) = span {C(si), ey (Ac(si))q_lC(si)}, where A.(s) = (sE — A)"TET, C(s) = (sE — A)~TCT.
8: Vigu = orth {Vdu, Vdu(sz)}

9: end if
10:  if A(s) = Az(s) then
11: range(V,,., (s{)) = span {C (s%),...,(Ac (s8)*71C (sf‘)}

12: Vigw = 0rth {Vau, Viy s Voo (s7) 1
13:  else if A(s) € {AY"(s), Ab"(s), As(s), Apr( )} then

14 range(Vs,, (7)) =span { B (s7) ..., (A(s2))" B (s) },
15: Vipe = orth {V rprs Vepr (55 )}
16:  end if

17 if A(s) = A"(s) then

18: range (VWW (5?)) = span {B (sf) ey (,Zl (s.ﬂ
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195 Vi =orth {V, Vi, Vi Ve (5) )

20:  end if

21 i=1i+1, sz—arglglea_xA( s).

22:  if A(s) = Az(s) then

23: s§ = arg max |27, (8)rpr(s)]. %second part of Az(s)
24:  else if A(s) = AL"(s) then

25: s§ = arg max |7 a0 (8)Zr (8)]- %second part of A5 (s)
26:  else if A(s) = Al"(s) then

27: si = arg r£1EaEx||npr (8)ll2- vy (s) is defined in (4.9).

28:  else if A(s) = As(s), or AL"(s) then

29: 5§ = arg max AP (s). %first part of Az(s) or AL (s)
30: end if

31:  if A(s) = AL"(s) then

32: 57 = arg max |Cir,,,. (5)]. %second part of AL (s)
33:  end if

34 €= A(s).

35: end while

Algorithm 2 shows the adaptive scheme for linear parametric systems. Algorithm 2 is similar with Algorithm 1.
Its only difference from Algorithm 1 is in computing the projection matrices at a chosen expansion point in
Steps 4, 7, 11, 14 and Step 18, where the multi-moment-matching method instead of the moment-matching
method is used.
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In greedy algorithms, large linear systems are solved only at the expansion points selected from a training
set =, to construct the corresponding projection matrices for MOR and for computing the error estimators. For
each projection matrix, only a single expansion point is selected at each iteration step of the greedy algorithm,
requiring a quite limited number of large-scale linear solves. Finally, if the greedy algorithm converges in a few
iterations, large-scale linear solves are performed only at a few samples in the training set =.

Algorithm 2. Greedy ROM construction for parametric systems (2.1).

Input: System matrices E(u), A(u), B(u), C(1), €01, Z: a set of samples of fi covering the interesting parameter domain.
Output: The projection matrix V for constructing the ROM in (2.2).

LV =[, Vau=[Veg, =, Vo =1, Vi =[], st € = €1a1 + 1.

2: Initial expansion point: fi’ € E for V, Vau; fil, for V., (or Vy,.); i for Vi, i=1.

3: while € > €01 do

4:  compute Vi following (4.25).
5 V =orth{V, Vi }
6 if A(f) € {Al( , Aa(fi), AR (fi), As(i)} then
7 compute Vﬂ“ followmg (4.29).
8 V4w = orth {Vdu, V;i“}.
9: end if
10:  if A(fr) = A2(f) then
11: compute fo“ following (4.32).
12: Vr,. = orth {Vdu,vm, Tdu
13:  else if A( )E {AT" (@), AW( ), As(i), AY" (@)} then
14: compute V.,’” following (4.25).
15 V., =orth {v Vi, Vir ).
16:  end if
17: if A(p) = Ap’"( ) then
18: compute V_ 77 following (4.25).
Ay

19: Vippr = orth {V Viprs Verprs V:rpr }

5
20:  end if

21: di=i+1, @ :argmaXA(ﬁ).
22: if A(f) = A2(fr) then

23: jil, = arg max |25, ()rpr ()] %second part of Ax(f1)
24:  else if A(s ) Apr( ) then
25: Al = arg max |7 d () Zr ()] %second part of A5 (i)
26:  else if A( ) AW( ) then
27: jil, = arg max 17y, (2)]]2- % Trp, (1) is defined in (4.9).
28:  else if A(fi ) As( ), or AL"(2) then
29: fie, = argmax AV (f1).
REE
30: end if
31:  if A(p) = AY"(fi) then
32: fip = arg max |C (1) r, e ()] %second part of AL (i)
REE
33:  end if

34: e = A(gY).
35: end while
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We point out in Remark 4.7, Section 4.5 that when a system is almost symmetric, Aq(ft) performs badly,
which will in turn, affect the behavior of As(1) and AL (). From the simulation results in the next section,
we will see that, except for the CD player model, A;(i) is not a good estimator. It is observed that for the
RLCtree model, Q(s) is symmetric, and only two elements are different between the input vector B and the
transpose of the output vector C. For the MIMO example, the matrix F is symmetric and B = C”. For the
parametric example, the mass matrix M (u) is symmetric. The stiffness matrix is unsymmetric, but the maximal
magnitude of the elements in the matrix 77 (1) — T'(1) is O(10718) for all the parameters. This implicates that
T(w) is very likely symmetric in theory, and the small differences between T'(u) and its transpose are probably
caused by numerical errors. The damping matrix is unsymmetric, but the maximal magnitude of the elements
in the damping matrix D(u) is O(10711). Whereas, the maximal magnitude of the elements in T'(u) is O(1).
Since the matrix Q(ji1) is composed of M(u), T(u) and D(u), i.e., Q(f) = s*2M(u) + sD(u) + T(u), and
s =2nf, f € [50,250], it can be concluded that Q(f) is almost symmetric. All the three examples are close to
the symmetric case indicated in Remark 4.7.

In the following, we propose two algorithms: Algorithms 3 and 4, aiming at improving the behavior of Ay (fi),
Aq(fr) and AL (f1) for nearly symmetric systems. Their main difference from Algorithm 1 and 2 is that instead of
using the same expansion point for Vg, and V, different expansion points (s] or /]iy) are chosen for Vg, according
to a different error criterion that directly depends on Vg, see Steps 21-25 in Algorithm 3 and Algorithm 4,
respectively.

7. SIMULATION RESULTS

In this section, we show the performance of the proposed error estimators and the existing ones. Detailed
analyses for each of them are presented accordingly. Since the error bound Ag(f) in [17] has been compared
in detail with the error estimator As(ji) in a recent work [16], we do not repeat this comparison. Furthermore,
since Ag(ft) was shown to be less tight than Ag(f), it will not be compared with other error estimators either,
as it will be clear from the results below that Ag(i) may not outperform most of the error estimators.

We use the same four models as in [16] to show the robustness of the error estimators. The first two are
non-parametric SISO systems. One is a well-known MOR, benchmark example, the model of a CD player (with
order n = 120), the other is a model of an RLC tree circuit with order n = 6134. The third example is a circuit
model with n = 980. It has 4 inputs and 4 outputs, and no parameters. Both the CD player model and the
third multi-input multi-output (MIMO) circuit model are from the SLICOT benchmark collection'. The last
one is the model of a butterfly-shaped micro-gyroscope, available from the MOR benchmark collection?. It is a
second-order parametric system with n = 17 931.

The interesting frequency band for the CD player model is [0,1 MHz]. The frequency range of interest for
the second and the third models is [0,3 GHz]. The Gyroscope model is a low frequency problem with f €
[50 Hz, 250 Hz).

The error tolerance €, used in the greedy algorithms, i.e., the error tolerance for the error of the ROM of the
original system, is set as 1 x 1073 for the first three examples, while for the last example, we set €] = 1 x 1077,
since the transfer function H(p) has the smallest magnitude of 2.8 x 1077.

For all the non-parametric examples, we use ¢ = 3 (order of moments matched) in Algorithm 1 and
Algorithm 3. For the parametric model, we use Ry, Ry (]:?o,él) to generate the matrices Vi, V[‘fi“, V[fz“;

—_

V;}’T and V;f P" in Algorithms 2 and 4. At each iteration, the maximal error estimator in =, is computed,
a B
and is used as the error control for the ROM (2.2) of the original system. Therefore, the maximal true error

Emax = Max,icz (p’) is used for comparison, where e(u’) is the true error of the ROM evaluated at ', at
the current iteration of the algorithm. Different error estimators produce ROMs with different accuracy at each

1 http://www.icm.tu-bs.de/NICONET/benchmodred.html.
2 https://morwiki.mpi-magdeburg.mpg.de/morwiki.
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Algorithm 3. Improving A;(f1), Aa(jz) and AL"(f2) for nearly symmetric and non-parametric systems (2.1).

Input: System matrices E, A, B, C, €01, =: a set of samples of s covering the interesting frequency range.
Output: The projection matrix V for constructing the ROM in (2.2).

LV =[,Vau=1[, Vigo =1, Vipr. =[] st € = €101 + 1,¢ > 1.

2: Initial expansion point: i = 1, s; € Z for V; s € 2 for V., (or V;.,,.); s] € E for Vgu.

3: while € > €01 do

4:  range(V(s;)) = span {B(sl), cey (A(si))""*lB(si)}.

5.V =orth{V,V(s;)}

6:  range(Vau(s])) = span {6(53)7 e (flc(sj))q*lé(sj)}

7 Viu = orth {Vdu7 Vdu(s;-y)}.

8: if A(s) = Az(s) then

9 range(V;,,, (s7')) = span {é’ (58, ..., (Ae (s2))91C (5?)}

10: Ve = orth{Vay, Vi, , Vi, (s5) 1.

11:  else if A(s) = AL"(s) then

12: range(V;.,, (s7')) = span {B (58),..., (A(s¥)) B (s‘j‘)}
13: Vi = orth {V, Vo, , Vi, (s7) }.

14:  end if

15 i=i+1, s = argmea_XA(s).
16:  if A(s) = Az(s) then

17: si = argmax |27, (8)rpr(s)]. %second part of Az(s)
18:  else if A(s) = Ab"(s) then

19: 5§ = arg max |7 a0 (8)Zrp, (8)]- %second part of A5 (s)
20:  end if

21:  if A(s) = Aq(s) then

22: s] = arg max |7 dw(s)]|2-

23:  else if A(s) € {A2(s),AL"} then

24: s} = arg max Aq(s). %first part of Ag(s) or AL”
25:  end if

26: €= A(s;).

27: end while

iteration of the greedy algorithm. In the tables below, we write enmax(A) to indicate the maximal true error
corresponding to a specific error estimator A. Here, A represents any of the error estimators listed in the tables.

For Algorithms 1 and 2, the initial expansion point s, or fi! for computing V, Vg, is taken as the first sample
in =, and the initial expansion point s¢ or il for computing V., , V. is taken as the last sample in = to make
the two expansion points different from each other. The expansion point sf or [L}B is for V. It is taken as the
midpoint in Z. Algorithms 3 and 4 are for (nearly) symmetric systems, and the initial expansion points sy, ji!
for V are different from s7, [L,ly for Vy,,. Therefore, s; or i! is taken as the first sample in = and s] or /1}{ is taken

as the midpoint in Z. The initial point s or il for V., , V.., is taken as the last point in =.

rpr’

7.1. The CD player model

The training set = for this model contains 60 samples of s, and then the finally obtained ROM in (2.2) is
validated at 600 samples of s covering the whole interesting frequency range. The samples are taken from the
interval [0,1 MHz] using the MATLAB function “logspace”. The results of Algorithm 1 using different error
estimators are shown in Tables 1-3, where the error estimators and the corresponding true errors €y, of the
ROMs at each iteration of the Algorithm, are listed. Note that different ROMs are derived by using different
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Algorithm 4. Improving Aq(j1), As(jz) and AL 7"( ) for nearly symmetric and parametric systems (2.1).

Input: System matrices E(u), A(u), B(u), C(1), €01, Z: a set of samples of fi covering the interesting frequency range.
Output: The projection matrix V for constructing the ROM in (2.2).

LV =1, Viau=1[l, Vra, []Vv = [, set € = eco + 1.

2: Initial expansion point: ji’ € E for V; fi, € E for Vy,, (or V;.,,,); [}, € Z for Vgu; i = 1.

3: while € > €, do

4:  compute Vi following (4.25).

5: V:orth{v Vaiy}-

6: compute Vﬂ; following (4.29).

7. Vie = orth {Vdu, Vfi“}
8 if A(f) = Az(fr) then

9: compute V7 following (4.32).
10: Vg = orth {Vdu, Vigus r.du }
11:  else if A(a) =AY (i )then
12: compute Vf” following (4.25).
13: Vy,,. = orth {V Viprs ’7’”}.
14:  end if

15:  i=i+41, i@ :argmaxA(/l).
16:  if A(jz) = Aa(f1) then

17: flo, = arg max 125, (R)rpr ()] %second part of As(f1)

18:  else if A(j ) AW( ) then

19: jit, = arg max |7 d (1) E 7y (7)) %second part of AB"(f1)
REE

20:  end if

21:  if A(i) = A1(fi) then

22: fir, = argrirtlax [I7aw ()]

23:  else if A(j1) € {Az(f1), AS ()} then

24: [, = arg max Al( ). %first part of Ag(fi) or AV (i)

25:  end if

26: €= A(ji).
27: end while

error estimators, therefore the true errors depend on the error estimators and are usually different. This also
applies to analogous results listed in the other tables for other examples.

In Table 1, we also show the results for A,(s) from [29], where K in (5.5) is taken as K = 20, which is
shown to produce better results than K = 10 [29]. In this table and other tables that follow, “~” means the
algorithm terminated at the previous iteration and no further results are given. During the greedy iteration,
A, (s) always underestimates the maximal true error. AP underestimates the true error at the first 5 iterations,
but then becomes an accurate estimator at the last two iterations. A;(s) is better than A,(s), but is no better
than the other estimators. As(s) and its primal version AY"(s) behave like error bounds. A" (s), As(s) and
AL"(s) have underestimation only at the first several iterations. In general, once they bound error from above,
they are very tight.

We further validate the ROM obtained by the error estimators at samples in Zye, including 600 samples
randomly taken from [0,1MHz], the results are presented in Table 4 and plotted in Figures 1-4. In Table 4,
we compare the effectivity defined as eff(s) := A(s)/e(s), the ratio between the given error estimator and
its corresponding true error. A, (s) still underestimates the true error at most samples. A" (s), As(s), As(s),
AL"(s) are equally well, whereas A;(s) and AY"(s) underestimate the true error too much (min(eff) < 0.1) at
some samples. However, we observe that underestimation happens only at samples with very small true errors
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TABLE 1. CD player, ey = 1072, ¢ = 3, r = 44(A,), r = 52(Aq), r = 56(Al").

Iteration 4 smax(Ar) Ar(si) Emax (A1) Aq(si) Emax(A]") A (s4)

1 61.63 21.88 40.75 34.93 40.75 2.56

2 51.98 18.46 19.34 33.92 19.34 1.07

3 14.49 5.14 0.59 1.47 14.48 0.64

4 0.76 0.27 0.31 0.26 14.45 5.46

5 0.11 0.04 0.06 0.11 0.26 0.26

6 0.0016 5.86 x 107%  0.04 0.04 0.0024 0.0024

7 - - 6.81 x107* 765x107% 1.28x107° 1.28 x107°

TABLE 2. CD player, €y, = 1073, ¢ = 3, r = 52.

Iteration ¢ emax(A2) Aa(s;) Emax (A7) AP (s:)

1 40.75 51 40.75 46.1

2 30.16 35.75 19.34 52.2

3 0.75 5.41 0.59 1.95

4 0.32 0.4 0.31 0.38

5 0.03 0.03 0.06 0.19

6 0.002 0.002 0.04 0.04

7 828 x 107* 838 x107* 6.82x107* 848 x107*

TABLE 3. CD player, ey, = 1073, ¢ = 3, r = 52.

Iteration ¢ emax(A3) As(s;) emax(AL") AF(s:)

1 40.75 35.45 40.75 34.95

2 19.34 35.19 16.81 51.76

3 0.59 0.84 9.1 9.1

4 0.31 0.4 0.21 0.24

5 0.05 0.05 0.03 0.03

6 0.002 0.002 0.0016 0.0016

7 827 x107* 827 x107* 757x107* 757 x107%

£(s) being smaller than 107!, which may be caused by rounding errors. If we check the error estimators only
at true errors larger than 10~ ', then we obtain the last two columns in the table, which show that except for
A,(s) the other estimators are tight.

Figure 1 further shows the inaccuracy of Ar(s) validated at the 600 samples in Eye,. A1(s) in Figure 1 behaves
slightly worse than the other proposed estimators, see Figures 2—4. In the following, we will omit the results of
Ar(ﬂ) for the other examples, since it is always worse than the others.

7.2. The RLC tree model

We use a training set Z with 90 frequency samples covering the whole frequency range [0, 3 GHz]. The samples
s; are taken using the function f; = 3 x 10719, s; = 27wy,4 = 1,...,90. Here, 7 is the imaginary unit. The results
of the greedy algorithm using different error estimators are listed in Tables 5-7. A;(s) always underestimates
the true error, and finally it makes the greedy algorithm stop before the true error .« is below the tolerance.
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TABLE 4. CD player, effectivity of the error estimators.

. For all £(s) For (s) > 107!
Estimator - -
min (eff) max (eff) min (eff)  max (eff)
A, 0.09 1.82 0.26 0.26
Ay 0.02 80 0.9211 1.1785
AP 0.28 20.39 0.9988 1.0046
As 0.12 17.32 0.9987 1.1653
AP 0.02 80 1.0000 1.3643
As 0.12 10.97 0.9993 1.0004
AE" 0.1 9.13 0.9998 5.31
2_5><10'3 ‘ 1.2x10'3
—A,
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FIGURE 1. CD player: A,.(s) and A;(s) vs. the respective true errors at 600 frequency samples.
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FIGURE 2. CD player: A" (s) vs. the true errors at 600 frequency samples.
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FIGURE 3. CD player: Ay(s) and AL"(s) vs. the respective true errors at 600 frequency samples.

10 102
10° t
10"
10
—A,
---------------- True error
102 L . . . 107 . i i
0 200 400 600 800 1000 0 200 400 600 800 1000
Frequency (Hz) Frequency (Hz)

FIGURE 4. CD player: As(s) and A%L"(s) vs. the respective true errors at 600 frequency samples.

TABLE 5. RLCtree, g0 = 1073, ¢ = 3, r = 12(A1), r = 20(A}").

Iteration @ emax(A1)  A1(Si)  emax(AL") A" (s4)

1 0.19 0.01 0.19 0.22
2 0.06 0.006  0.02 0.02
3 - - 254 x107% 2.55 x 107

The other estimators behave like tight upper bounds for the true error in this example, especially Asz(s) and
AL"(s), which actually measure the true error almost exactly at the last two iterations.

The derived ROMs using different error estimators are validated on a validation set =y with 900 samples in
the interesting frequency range. The effectivity of every error estimator is listed in Table 8. If considering the
overall effectivity, then all the estimators underestimate the true error too much except for AL"(s). However,
if only considering true errors that are bigger than 107!, then A}"(s), A3(s) and AL"(s) are the best ones,
As(s) is also good, AL"(s) overestimate the true error more than many others. It is clear that A;(s) is not a
good error estimator any more. Figures 5-7 further show the behaviors of the error estimators over the sample
set Eyer including 900 samples, which are in agreement with the above analysis for the data in Table 8.
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TABLE 6. RLCtree, g4 = 1073, ¢ = 3, 7 = 20(Az), r = 19(A").

Iteration ¢ emax(A2) Ao(s;) Emax(AL") AP (s;)

1 0.19 0.63 0.19 0.22

2 0.02 0.06 0.02 0.05

3 6.13x107% 6.45x107% 225x107° 1.05x107*

TABLE 7. RLCtree, €40 = 1073, ¢ = 3, r = 20.

Iteration ¢ emax(As3) As(s;) Emax (A7) AE"(s5)

1 0.19 0.22 0.19 0.29

2 0.02 0.02 0.02 0.02

3 254x107% 255x107% 254x107% 2.54x 1076

TABLE 8. RLCtree, effectivity of the error estimators.

Estimator For all &(s) For e(s) > 107!
gl_in (eff)  max (eff) gl:in (eff) max (eff)
Ay 0.002 285 0.006 132
Afr 0.002 253 0.9001 1.0826
Ao 0.004 244 0.37 51
Agr 0.56 102 0.68 102
Az 0.008 258 0.9 1.2337
AgT 0.008 258 0.9 1.0894
0.08 10"
—A,
.07 e True error
0.06+
0.05-
0.04-
0.03-
0.02+
0.01+ 1™ _Agr
- True error
0
: : ‘ : : 10 : . : : ‘
0 0.5 1 1.5 2 25 3 0 0.5 1 1.5 2 25 3
Frequency (Hz) x10° Frequency (Hz) x10°

FIGURE 5. RCLtree: A;(s) and A" (s) vs. the respective true errors at 900 frequency samples.
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FIGURE 6. RLCtree: Ay(s) and AL"(s) vs. the respective true errors at 900 frequency samples.
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FIGURE 7. RLCtree: Az(s) and AL"(s) vs. the respective true errors at 900 frequency samples.

7.3. MIMO example

This example has the same frequency range as the second example, therefore we use the same = as for the
RLC tree model. The error estimator is the maximal error estimator defined as

A(s) = max Aj;(s),
ij

where A (s) estimates the true error €;;(s) = |Hy;(s)— Hy;(s)|. Here Hy;(s) and H;j(s) are the transfer functions
corresponding to the jth input port and ith output port of the original model and the ROM, respectively. The
true error is the maximal true error €(s) = max;; |€;;(s)|, and emax = maxscz €(s) as defined before.

The results of Algorithm 1 using different error estimators are listed in Tables 9-11. Algorithm 1 stops before
the true error €pay is below the tolerance when using Aj (s), whereas A" (s), As(s) and AL"(s) exactly estimate
the true error at each iteration step. A (s) and its primal variation AY"(s) produce the same results and make
the algorithm converge in 3 iterations. Note that Ag(s) and AL"(s) also yield the same results.

The ROMs constructed by Algorithm 1 using the error estimators are further validated over a validation set
Ever With 900 samples, respectively. Table 12 lists the effectivity values of the error estimators. Among them,
As(s) and its primal variation A" (s) are the best ones and have the same effectivity values. A" (s), As(s) and
A%"(s) have similar results and are still good.
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TABLE 9. MIMO example, g4 = 1073, ¢ = 3, 7 = 20(Ay), r = 52(Al").

Iteration ¢ emax(A1)  Ai(s;) Emax (A7) A" (s5)
1 0.28 3.16 x 107°  0.28 0.28
2 —~ —~ 591 x 107° 5.91 x 1075

TABLE 10. MIMO example, £, = 1073, ¢ = 3, r = 73.

Iteration ¢ emax(A2) Ao(s;) Emax(AL") AP (s;)

1 0.28 0.28 0.28 0.28

2 591 x107° 2.3x1073 591 x107° 2.3x1073
3 472x107% 143 x1077 4.72x107% 143 x1077

TABLE 11. MIMO example, g0 = 1073, ¢ = 3, r = 52.

Iteration ¢ emax(As) As(sq) Emax(AL") AB"(s5)
1 0.28 0.28 0.28 0.28
2 591 x107° 591x107° 591 x107°% 591x107°

TABLE 12. MIMO example, effectivity of the error estimators.

For all £(s)

For g(s) > 107

Estimator min (eff) max (eff)  min (eff) max (eff)
SEEver SEEver SEEver SEEver

Ay 878 x 1078  2.53 878 x 1078 1.43

AP 0.1 40 0.2 26

Ag 0.1 5 0.2 3.5

AP 0.1 5 0.2 3.5

As 0.1 25 0.2 21

AE" 0.1 28 0.2 25

o987

Figures 8-10 plot the error estimators and the corresponding true errors of the ROMs. The waveforms of the
error estimators well reflect the data in Table 12. It is noticed that the maximal true errors over the validation
sample set =y, obtained by A"(s), As(s) and AE"(s) are still bigger than the error tolerance, though they
are exactly reproduced by the error estimators. Since the error estimators accurately measure the maximal true

error, the ROMs can be further improved by adding one more expansion point from Zye, (rather than

) at

which the error estimators are maximal. This will certainly incur more computational costs. Therefore, As(s)
and Ab"(s) outperform the other ones for this model.

7.4. Parametric example

The micro-gyroscope model is a second-order parametric system with four parameters,

M(p)i(p,t) + D(p)a(p,t) + T(p)z(p, t)

Bu(t),
y(u,t) = Ca(p,t).
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FIGURE 8. MIMO example: A;(s) and A}"(s) vs. the respective true errors at 900 frequency
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FIGURE 10. MIMO example: Ag(s) and A" (s) vs. the respective true errors at 900 frequency
samples.
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TABLE 13. Gyroscope, €0 = 1072, ¢ =1, r = 84(A1), r = 94(A}").

Iteration ¢ Emax(Al) Al(ﬂl) gmax(Alljr) Azlyr(ﬂl)

1 0.028 0.04 0.028 0.025

2 0.006 0.007 0.001 0.006

3 0.004 3.2x107*  0.003 0.003

4 4%x107° 518 x 107* 3.85x107* 3.78 x 107*
5 334x107% 299x107° 1.69x107% 1.69x 107°
6 295 x 1077 388x 1077 3.48x 1077 347x1077
7 791x107% 8.03x107® 1.39x1077 1.45x1077
8 - - 8.49 x 1078 8.44 x 1078

Here, i1 = (0, a,3,d), M(p) = (My + dM>), T(p) = (Ty + 3To 4+ dT3), D(p) = 6(D1 + dD2) + oM (d) + BT (d) €
R™*™ n = 17,913. The parameters are d,60,«, 3. d € [100%,200%], the width of the bearing, taken as the
percentage of the base value, and § € [10~7,10~°]MHz, the rotation velocity along the x-axis. v, 3 define to the
proportional damping [27].

After Laplace transform, the system in frequency domain is

s M (p)x(p, s) + sD(p)a(p, s) + T(p)x = Bug(s),
y(u, s) = Cx(p, s).

The above system can be rewritten into the affine form,

Q) (i) = Bur(f),
y(f) = Ca(p),

where Q (1) = Th + fu My + fio My + fi3 D1 + fig Do + fis My + fig Mo 4 fiz Ty + fisTs + fioT3 + firoTs + fi11 T3. Here
fi = (fi1,...,fi11)" includes the newly generated parameters, ji; = s2, jip = s2d, jiz = s0, iy = s0d, jis = sa,
ﬁg = SOld, /NJ,7 = Sﬁ, [Lg = S,B/d, [Lg = Sﬂd7 /110 = :l/d7 /jL11 =d.

For this example, we use 75 random samples (3 for 6, 5 for s, 5 for d) to set up the training set = with 3 =0
and a = 0. Afterwards, the ROMs are validated at a validation set Eye, including 2500 samples (5 for 6, 10 for
s, 5 for d), with 8 =107 and a = 0.1 being nonzero.

The results of Algorithm 2 using different error estimators are listed in Tables 13—15. Except for Aj (i), all the
other error estimators tightly estimate the true error at each iteration of the algorithm. The ROMs obtained
via the error estimators are further validated at samples in Zye,, and the effectivity of each is presented in
Table 16. Again, Aq(f) is the worst. The others perform similarly well. We plot the true error of the ROMs and
the corresponding error estimators in Figures 11-13. A4 (ji) almost always underestimates the true error, while
A" (1), As(i) and AL"(j2) are almost indistinguishable from the true error.

7.5. Performances of Aj(f1), Ax(z) and A% (i1) using Algorithms 3-4

In this subsection, we show the results of Algorithms 3—4 for symmetric systems, where the expansion points
for Vy, are selected differently from those for V. The results are listed in Tables 17-19.

Comparing Tables 17-19 with Tables 8, 12, 16, respectively, we see that the performance of A;(f) is improved
in general, those of Ay(f1), and AS"(i) are only partially improved. The performance of Ag(f1)) is improved,
especially for the RLC tree example. However, the performance of AY"(ji) does not become uniformly better,
especially for the MIMO example. Although A;(s) behaves better when using Algorithm 3 and 4, it is still
worse than its upper bound As(j1) or AE" ().

It is worth pointing out that the order ¢ = 3 is used for all the non-parametric examples and all error
estimators, while ¢ = 1 is used for the parametric system and for all error estimators. Different choices of ¢
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TABLE 14. Gyroscope, g0 = 1072, ¢ =1, r = 86(Ag), r = 80(A5").

Iteration i emax(A2) Aq (i) Emax(A") AR (i)

1 453 x 107*  0.002 0.002 0.004

2 415%x107* 6.16 x 107* 4.14x107* 5.83x 107*
3 1.71 x 107 853 x107° 1.61x107* 2.69x 1074
4 877Tx107% 822x107°% 97x107° 1.57x107*
5 144 x107% 1.07x107% 9.80x 1077 9.81x 107"
6 3.09x107% 341x107% 1.89x 1077 2.06 x 1077
7 - - 721x107% 8.14x 1078

TABLE 15. Gyroscope, €01 = 1072, ¢ = 1, r = 73(A3), r = 83(AL").

Iteration ¢ emax(As3) Az (ph) Emax (A7) AR (i)

1 0.009 0.005 5.42 x 10™*  0.002

2 0.009 0.005 5.60 x 107*  5.26 x 10~*
3 8.85x107° 8.85x107° 9.35x107° 6.59 x 107
4 220x107% 220x107* 5.36x107% 5.36 x 107°
5 1.78x107% 148 x107% 1.31x107% 1.30x10°°
6 856 x107% 851x107% 578x1077 5.78x 1077
7 - — 5.60 x 1078  5.59 x 1078

TABLE 16. Gyroscope, effectivity of the error estimators.

Estimator

For all £(s)

For e(s) > 107!

nin (eff) Inax (eff) Jin (eff) Jnax (eff)
Ay 0.025 8.87 0.025 8.87
NG 0.2 3.65 0.2 3.65
Ao 0.38 15 0.38 15
NG 0.2 3.68 0.2 3.68
As 0.34 9.34 0.34 9.34
AP 0.5 2 0.5 2

TABLE 17. Algorithm 3: RLCtree, effectivity of the error estimators.

For all (s)

For e(s) > 107!

Estimator — et max (eff)  min (eff)  max (eff)
SEZver SEZver SEEver SEEver

Ay 3.4488 x 107* 38 0.05 6.5

A, 0.01 25 0.7 25

AP 0.004 244 1 25
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TABLE 18. Algorithm 3: MIMO example, effectivity of the error estimators.

Estimator For all £(s) For (s) > 107!
min (eff) max (eff) min (eff) max (eff)
SEEver S€=ver S€=ver S€Ever

Ay 0.14 46 0.14 46

As 0.2 15 0.1 9

AT 0.32 164 0.32 75

TABLE 19. Algorithm 4: Gyroscope, effectivity of the error estimators.

Estimator For all (s) For ¢(s) > 107!
min (eff) max (eff) min (eff) max (eff)
SE€E=ver S€=ver SE€=ver SE€=ver

Ay 0.096 28 0.096 28

Ao 0.35 11 0.35 11

ABT 0.22 3.68 0.22 3.68

may lead to different performance of the greedy algorithms employing different error estimators. In the next
subsection, we use the MIMO example and the parametric example to show the performance of Algorithm 1
and Algorithm 2 using the proposed error estimators when the order of moments ¢ varies. In particular, we
present the iteration numbers and the wall-clock time of each algorithm for different ¢, corresponding to each
error estimator.

7.6. Performance of the error estimators when g varies

We list in Tables 20 and 21 the number of iterations and wall-clock time of Algorithm 1 for the MIMO
example as well as those of Algorithm 2 for the parametric example, when different error estimators are used
and q varies. For the MIMO example, when ¢ increases, the number of iterations may decrease, but the runtime
of each error estimator increases in general. For a fixed ¢, except for A;(s) that uses much less runtime, the
other estimators make the algorithm converge without too much difference in time. Not a single estimator is
always the best. However, A(s) does not lead to a reliable ROM, since it underestimates the true error also
for difference values of ¢ and for both examples. For the parametric example, there is a different phenomenon
for ¢ = 0, where Algorithm 2 actually does not converge when using many of the error estimators. The error
estimator as well as the corresponding true errors, do not go below the tolerance after all the 75 training
parameter samples have been chosen as expansion points. Therefore, in the second column of Table 21, there is
75 for many error estimators, except for As(f). For ¢ = 1,2, we have similar observations: not a single estimator
is always the best. However, it can be concluded that matching too few moments (¢ = 0) or too many moments
(¢ = 2) for the parametric model lead to no better behavior of the greedy algorithm than using ¢ = 1 in general.
Furthermore, using ¢ = 2 derives a ROM with more than twice the size of the ROM derived using ¢ = 1. Larger
ROM will make the online simulation much slower. Since this work does not focus on discussing the efficiency of
the greedy algorithm combined with the moment-matching method, which is one of the possible ways of showing
the robustness of the proposed estimators, we do not further elaborate on this discussion. Finally, each error
estimator has similar effectivity as shown in the previous tables when ¢ changes. The corresponding effectivities
are not listed here to avoid repetitions.
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TABLE 20. Performance of Algorithm 1 for the MIMO example when ¢ varies.

. q=20 q=3 q=>5
Estimator Tter Time(s) Iter Time(s) Iter Time(s)
Ay 1 1.97 1 4.52 1 7.84
AP 4 9.48 2 16.68 2 31.63
Ao 5 14.73 3 28.45 2 26.56
AP 5 14.58 3 27.93 2 26.94
Az 5 14.78 2 18.31 2 31.27
AR 4 12.29 2 27.23 2 41.56

TABLE 21. Performance of Algorithm 2 for the parametric example when ¢ varies.

. q=20 qg=1 q=2
Estimator — o Tter  Time Tter Time
A 75 2075 6 2568 2 423.6
AP" 75 2121 6 349.9 2 369.4
Ao 75 2454 6 3123 3 994.8
NG 75 2824 6 3854 3 910.7
As 17 4422 6 3965 3 664.3
A" 75 2663 6 4797 2 599.7

8. CONCLUSIONS

We propose some a posteriori error estimators for the transfer function error of ROMs that are obtained
by any (Petrov-)Galerkin-type MOR method. Detailed simulation comparison demonstrates the performance of
each. It is clear that neither A,.(fz) nor A;(j1) are good error estimators and therefore they are not recommended
as reliable error estimators. All others perform similarly, especially the primal version of A;(f): A" (1) behaves
unexpectedly well and is almost as good as its bounds As(i) and A" (i) for any of the examples. Among
the robust error estimators Ao(f), ALY (@), AV (R), As(a) and AR"(i), the estimator A" needs the least
computational cost, since only two ROMs (constructed by V.V, ) need to be computed. For nearly symmetric
systems, Ao(ft) and its variant AY"(7) are not really improved when choosing different expansion points for
V and Vg, i.e., when using Algorithms 3 and 4. As future work, more theoretical analysis and numerical

simulations might be explored to further explain the numerical behaviors of the proposed error estimators.
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