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ON ERROR ESTIMATION FOR REDUCED-ORDER MODELING OF LINEAR
NON-PARAMETRIC AND PARAMETRIC SYSTEMS

Lihong Feng1,* and Peter Benner1,2

Abstract. Motivated by a recently proposed error estimator for the transfer function of the reduced-
order model of a given linear dynamical system, we further develop more theoretical results in this
work. Moreover, we propose several variants of the error estimator, and compare those variants with the
existing ones both theoretically and numerically. It is shown that some of the proposed error estimators
perform better than or equally well as the existing ones. All the error estimators considered can be
easily extended to estimate the output error of reduced-order modeling for steady linear parametric
systems.
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1. Introduction

Many model order reduction (MOR) methods have been proposed during the last decades [1–3,5, 7–12]. For
many problems, especially parametric time-dependent problems, efficient error estimation of the reduced-order
model (ROM) is still critical.

It is well-known that many a-posteriori error bounds/estimators [17, 22, 26, 30, 31] need compute the inf-sup
constant, which appears as the denominator of the error estimator. In the numerically discretized space, the
inf-sup constant corresponds to the smallest singular value of a large matrix. For many models arising from, e.g.,
circuit simulation or Micro-Electro-Mechanical Systems (MEMS) simulation, the smallest singular value can be
zero at some samples of the parameter due to resonances [21], making the error bound unavailable at those
samples. Besides, computing the smallest singular value at many samples of the parameter is time-consuming
for large-scale problems. Although some algorithms are proposed to compute a lower bound of the inf-sup
constant [24], they are found to be inefficient for many problems [29]. The error bound often overestimates
the true error, especially for those systems whose smallest singular values are close to zero at many parameter
values. Often, the residual of the solution to the ROM is simply used to form a heuristic error indicator, see,
e.g., [13, 14,18,25] to name a few.

In recent work [16], a new estimator for the transfer function error, as well as for the output error of MOR for
steady parametric systems, is proposed. The proposed error estimator avoids computing the singular values of
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any matrix, and depends mainly on the ROM. It is applicable to any system whose ROMs are computed using
a projection based MOR method. It is illustrated by the numerical results that the error estimator is much
sharper than the error bound in [17] for those systems with small inf-sup constants. Using the proposed error
estimation, the adaptive greedy algorithm converges much faster than using the error bound from [17]. The error
estimator was used in the greedy algorithm to select expansion/sampling points for MOR in frequency domain.
Searching good expansion/sampling points can also be tackled by optimization with respect to system-theoretic
measures, such as the ℋ2-norm and ℋ2 × ℒ2-norm, see, e.g., [6, 19,23].

Error estimation based on randomized residual for parametric steady systems is proposed in [29]. The output
error estimation proposed there is also free of computing the inf-sup constant and can be used to estimate the
transfer function error in frequency domain. We will show in this work that the error estimator in [29] more likely
underestimates the true error as compared with the error estimators in [16] and the proposed error estimators.

Another error estimation, which is independent of the inf-sup constant, is proposed in [20]. This error estima-
tion is used to estimate the error of the state (solution vector). It simply uses the error between two approximate
solutions computed from two ROMs divided by a saturation constant as the error estimator. As for estimation
of the transfer function error or output error, trivially multiplying the output matrix norm ‖𝐶(𝜇)‖ (𝐶(𝜇) will
be defined precisely in the next section) with the error estimator could also estimate the output error, but may
lead to slow error decay if ‖𝐶(𝜇)‖ is large. Moreover, a saturation constant needs to be estimated for the error
estimator in [20], which needs extra computations and may cause inefficiency of the error estimator if computed
without sufficient accuracy.

The error bound in [28] is proposed for nonlinear systems and also requires the computation of the inf-sup
constant or its lower bound. Numerical issues concerning computing these quantities remain. Moreover, some
assumptions on the magnitude of the inf-sup constant is needed in order to derive the error estimator. For
problems whose inf-sup constants are close to zero, e.g. 𝑂(10−12), as for the examples presented in this work,
the error bound might not be tight anymore. From Lemma 2 in [28], it is not difficult to check that for linear
problems, the error bound in [28] is an upper bound of the error estimator ∆𝑝𝑟

1 (will be detailed in Sect. 4.2)
proposed in this work when the output matrix satisfies 𝐶(𝜇) = 𝐼, the identity matrix. The residual system
needed for computing ∆𝑝𝑟

1 is called error equation in [28], where a ROM of the error equation needs also to
be constructed. This ROM is constructed by running a separate greedy algorithm at each iteration of the main
greedy algorithm. In contrast, we simultaneously construct the ROM of the residual system (error equation)
and that of the original system in one greedy algorithm.

In this work, we further explore the property of the error estimator in [16] and propose some variants of
it. Sensitivity analyses are presented to show that the proposed error estimators may behave as error bounds
when influenced with a small constant. The proposed variants are theoretically and numerically analyzed, and
compared with the existing ones. Furthermore, the more general MOR framework based on Petrov–Galerkin
projection is used to analyze the error estimators and to explore the corresponding theoretical and numerical
properties. In the next section, we first review the error estimator in [16] and develop more theoretical results.
Variants of the error estimator and corresponding theoretical analyses are provided in Section 4. Section 5
theoretically compares the new error estimators with the existing ones. Section 6 provides greedy algorithms for
constructing the ROMs based on the error estimators. Numerical results of all the error estimators for various
problems are presented and compared in Section 7. Conclusions are drawn in the end.

2. Preliminaries and notation

We use the following form of a linear system (with or without parameters) as an example to introduce
projection based MOR,

𝐸(𝜇) d
d𝑡𝑥(𝑡, 𝜇) = 𝐴(𝜇)𝑥(𝑡, 𝜇) + 𝐵(𝜇)𝑢(𝑡),

𝑦(𝑡, 𝜇) = 𝐶(𝜇)𝑥(𝑡, 𝜇).
(2.1)
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Here 𝑥(𝑡, 𝜇) ∈ R𝑛 is the state vector, 𝑛 is often referred to as the order of the system. The vector 𝜇 :=
(𝜇1, . . . , 𝜇𝑚) ∈ R1×𝑚 includes all of the geometrical and physical parameters. The system matrices 𝐸(𝜇), 𝐴(𝜇) ∈
R𝑛×𝑛, and 𝐵(𝜇) ∈ R𝑛×𝑛𝐼 , 𝐶(𝜇) ∈ R𝑛𝑂×𝑛 may depend on the parameters.

The reduced-order model (ROM) of the original system can be obtained via Petrov–Galerkin projection and
can be written as

𝐸̂(𝜇) d
d𝑡𝑧(𝑡, 𝜇) = 𝐴(𝜇)𝑧(𝑡, 𝜇) + 𝐵̂(𝜇)𝑢(𝑡),

𝑦(𝑡, 𝜇) = 𝐶(𝜇)𝑧(𝑡, 𝜇),
(2.2)

where 𝐸̂(𝜇) = 𝑊𝑇 𝐸(𝜇)𝑉 ∈ R𝑟×𝑟, 𝐴(𝜇) = 𝑊𝑇 𝐴(𝜇)𝑉 ∈ R𝑟×𝑟, 𝐵̂(𝜇) = 𝑊𝑇 𝐵(𝜇̃) ∈ R𝑟×𝑛𝐼 , 𝐶(𝜇) = 𝐶(𝜇̃)𝑉 ∈
R𝑛𝑂×𝑟, and 𝑧(𝑡, 𝜇) ∈ R𝑟 with 𝑟 ≪ 𝑛. Then 𝑥(𝑡, 𝜇) can be recovered by 𝑥(𝑡, 𝜇) ≈ 𝑉 𝑧(𝑡, 𝜇). Here, range(𝑉 ) and
range(𝑊 ) are the trial space and the test space for Petrov–Galerkin projection, respectively.

The transfer function of the original system is defined as

𝐻(𝜇̃) = 𝐶(𝜇)𝑄(𝜇̃)−1𝐵(𝜇), (2.3)

where 𝑄(𝜇̃) = 𝑠𝐸(𝜇) − 𝐴(𝜇) and 𝜇̃ := (𝜇, 𝑠) with 𝑠 ∈ C, the Laplace variable in frequency domain. Similarly,
the transfer function of the ROM is

𝐻̂(𝜇̃) = 𝐶(𝜇)𝑄̂(𝜇̃)−1𝐵̂(𝜇),

where 𝑄̂(𝜇̃) = 𝑠𝐸̂(𝜇)−𝐴(𝜇).
Note that the error estimators discussed in this work does not require that the transfer function must be

derived from the linear system given in (2.1). In fact, the proposed error estimators apply to any system
with transfer function in the form of 𝐻(𝜇̃) = 𝐶(𝜇̃)𝑄(𝜇̃)−1𝐵(𝜇̃)[4, 5]. For example, the parametric model in
Section 7 has a transfer function 𝐻(𝜇̃) = 𝐶𝑄(𝜇̃)−1𝐵, with 𝑄(𝜇̃) = 𝑠2𝑀(𝜇) + 𝑠𝐷(𝜇) + 𝑇 (𝜇) being derived
from a second-order parametric system. Time-delay systems have transfer functions with 𝑄(𝜇̃) = 𝑄(𝑠) being a
non-rational matrix function of 𝑠. Many systems in computational electromagnectics need to compute output
quantities 𝑦(𝜇̃) = 𝐶(𝜇̃)𝑄(𝜇̃)−1𝐵(𝜇̃), where 𝜇̃ = (𝑓1(𝑠), . . . , 𝑓𝑙(𝑠))𝑇 and 𝑓𝑖(𝑠), 𝑖 = 1, . . . , 𝑙, are (rational) functions
of 𝑠. The error of the reduced output 𝑦(𝜇̃) can also be estimated by the proposed error estimators. Therefore,
in the following parts of the paper, our discussions are based on the transfer function in the general form
𝐻(𝜇̃) = 𝐶(𝜇̃)𝑄(𝜇̃)−1𝐵(𝜇̃). The corresponding reduced transfer function is given as 𝐻̂(𝜇̃) = 𝐶(𝜇̃)𝑄̂(𝜇̃)−1𝐵̂(𝜇̃).

We define a primal system and a dual system, whose solutions depict the right part 𝑄(𝜇̃)−1𝐵(𝜇̃) and the left
part 𝐶(𝜇̃)𝑄(𝜇̃)−1 of the transfer function 𝐻(𝜇̃), respectively. A primal system in frequency domain is defined
as

𝑄(𝜇̃)𝑥𝑝𝑟(𝜇̃) = 𝐵(𝜇̃). (2.4)

The reduced primal system is then defined as

𝑄̂(𝜇̃)𝑧𝑝𝑟(𝜇̃) = 𝐵̂(𝜇̃), (2.5)

where 𝑄̂(𝜇̃) = 𝑊𝑇 𝑄(𝜇̃)𝑉 , which is 𝑄̂(𝜇̃) = 𝑠𝐸̂(𝜇)−𝐴(𝜇) for the ROM of (2.1). Define a dual system

𝑄𝑇 (𝜇̃)𝑥𝑑𝑢(𝜇̃) = 𝐶𝑇 (𝜇̃), (2.6)

where 𝑥𝑑𝑢(𝜇̃) solves the dual system. The ROM of the dual system is

𝑄̂𝑑𝑢(𝜇̃)𝑧𝑑𝑢(𝜇̃) = 𝐶𝑑𝑢(𝜇̃), (2.7)

where 𝑄̂𝑑𝑢(𝜇̃) = 𝑊𝑇
𝑑𝑢𝑄𝑇 (𝜇̃)𝑉𝑑𝑢, 𝐶𝑑𝑢(𝜇̃) = 𝑊𝑇

𝑑𝑢𝐶𝑇 (𝜇̃), such that 𝑥̂𝑑𝑢(𝜇̃) := 𝑉𝑑𝑢𝑧𝑑𝑢(𝜇̃) well approximates 𝑥𝑑𝑢(𝜇̃).
Analogously, range(𝑉𝑑𝑢) and range(𝑊𝑑𝑢) are the trial space and the test space for Petrov–Galerkin projection
of the dual system (2.6), respectively. The ROMs of the primal and the dual systems introduce two residuals,
respectively, i.e., the primal residual

𝑟𝑝𝑟(𝜇̃) = 𝐵(𝜇̃)−𝑄(𝜇̃)𝑥̂𝑝𝑟(𝜇̃) (2.8)
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and the dual residual
𝑟𝑑𝑢(𝜇̃) = 𝐶𝑇 (𝜇̃)−𝑄𝑇 (𝜇̃)𝑥̂𝑑𝑢(𝜇̃). (2.9)

Here, 𝑥̂𝑝𝑟(𝜇̃) := 𝑉 𝑧𝑝𝑟(𝜇̃) is obtained from the reduced primal system (2.5) and approximates 𝑥𝑝𝑟(𝜇̃). In the
following, we first review the error estimator in [16], then develop more theoretical results. Several variants of
the error estimator and corresponding theoretical analyses are proposed afterwards. We only consider single-
input single-output (SISO) systems. Extension of the error estimator to multiple-input multiple-output (MIMO)
systems as well as to output error estimation for steady linear parametric systems is detailed in [16] and will
not be repeated in this work. | · | denotes the absolute value of a scalar.

3. Error estimator in [16] and extensions

It is not difficult to obtain the following proposition, based on which several error estimators are proposed.

Proposition 3.1. The error of the reduced transfer function 𝐻̂(𝜇̃) satisfies

|𝐻(𝜇̃)− 𝐻̂(𝜇̃)| = |𝑥𝑇
𝑑𝑢(𝜇̃)𝑟𝑝𝑟(𝜇̃)|,

where 𝑥𝑑𝑢(𝜇̃) solves the dual system in (2.6) and 𝑟𝑝𝑟(𝜇̃) is defined in (2.8).

Proof. It follows from the definition of 𝐻̂(𝜇̃) and the reduced primal system (2.5) that

|𝐻(𝜇̃)− 𝐻̂(𝜇̃)| = |𝐶(𝜇̃)(𝑄−1(𝜇̃)𝐵(𝜇̃)− 𝑉 𝑄̂−1(𝜇̃)𝐵̂(𝜇̃))|
= |𝐶(𝜇̃)𝑄−1(𝜇̃)(𝐵(𝜇̃)−𝑄(𝜇̃) 𝑉 𝑄̂−1(𝜇̃)𝐵̂(𝜇̃))⏟  ⏞  

𝑥̂𝑝𝑟(𝜇̃):=𝑉 𝑧𝑝𝑟(𝜇̃)|
= |𝐶(𝜇̃)𝑄−1(𝜇̃)𝑟𝑝𝑟(𝜇̃)|
= |𝑥𝑇

𝑑𝑢(𝜇̃)𝑟𝑝𝑟(𝜇̃)|.

(3.1)

�

Note that computing 𝑥𝑇
𝑑𝑢(𝜇̃) in the last equality of (3.1) needs to solve the dual system of original large scale

𝑛. If we solve the ROM of the dual system instead, then 𝑥𝑇
𝑑𝑢(𝜇̃) can be approximated by 𝑥𝑑𝑢(𝜇̃) ≈ 𝑥̂𝑑𝑢(𝜇̃) =

𝑉𝑑𝑢𝑧𝑑𝑢(𝜇̃). Consequently, the error of 𝐻̂(𝜇̃) can be estimated as

|𝐻(𝜇̃)− 𝐻̂(𝜇̃)| ≈ ∆1(𝜇̃) := |𝑥̂𝑇
𝑑𝑢(𝜇̃)𝑟𝑝𝑟(𝜇̃)|. (3.2)

Clearly, the error estimator ∆1(𝜇̃) might underestimate the true error. To reduce the probability of under-
estimation, a more robust error estimator is proposed in [16], which is based on the following error bound.

Theorem 3.2 ([16]). The error of the reduced transfer function 𝐻̂(𝜇̃) can be bounded as

|𝐻(𝜇̃)− 𝐻̂(𝜇̃)| ≤ ∆1(𝜇̃) + |𝑥𝑇
𝑟𝑑𝑢

(𝜇̃)𝑟𝑝𝑟(𝜇̃)|, (3.3)

where 𝑥𝑟𝑑𝑢
(𝜇̃) is the solution to the dual-residual system defined as

𝑄𝑇 (𝜇̃)𝑥𝑟𝑑𝑢
(𝜇̃) = 𝑟𝑑𝑢(𝜇̃). (3.4)

Proof. See [16]. �
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Again, computing 𝑥𝑟𝑑𝑢
(𝜇̃) in (3.3) requires solving a large system in (3.4). Instead, we compute the ROM

of (3.4),
𝑄̃(𝜇̃)𝑧𝑟𝑑𝑢

(𝜇̃) = 𝑟𝑑𝑢(𝜇̃), (3.5)

where 𝑄̃(𝜇̃) = 𝑊𝑇
𝑟𝑑𝑢

𝑄𝑇 (𝜇̃)𝑉𝑟𝑑𝑢
, 𝑟𝑑𝑢(𝜇̃) = 𝑊𝑇

𝑟𝑑𝑢
𝑟𝑑𝑢(𝜇̃). Then 𝑥𝑟𝑑𝑢

(𝜇̃) ≈ 𝑥̂𝑟𝑑𝑢
(𝜇̃) := 𝑉𝑟𝑑𝑢

𝑧𝑟𝑑𝑢
(𝜇̃). Finally we

replace 𝑥𝑟𝑑𝑢
(𝜇̃) in the error bound (3.3) with 𝑥̂𝑟𝑑𝑢

(𝜇̃), and get the error estimator:

|𝐻(𝜇̃)− 𝐻̂(𝜇̃)| . ∆1(𝜇̃) + |𝑥̂𝑇
𝑟𝑑𝑢

(𝜇̃)𝑟𝑝𝑟(𝜇̃)| =: ∆2(𝜇̃).

Theorem 3.3. The error of the reduced transfer function 𝐻̂(𝜇̃) can be bounded as

∆1(𝜇̃)− 𝜀1 ≤ |𝐻(𝜇̃)− 𝐻̂(𝜇̃)| ≤ ∆1(𝜇̃) + 𝜀1, (3.6)

where 𝜀1 := |(𝑥𝑑𝑢(𝜇̃)− 𝑥̂𝑑𝑢(𝜇̃))𝑇 𝑟𝑝𝑟(𝜇̃)| ≥ 0.

Proof. On the one hand, by Proposition 3.1

|𝐻(𝜇̃)− 𝐻̂(𝜇̃)| = |𝑥𝑇
𝑑𝑢(𝜇̃)𝑟𝑝𝑟(𝜇̃)|+ |𝑥̂𝑇

𝑑𝑢(𝜇̃)𝑟𝑝𝑟(𝜇̃)| − |𝑥̂𝑇
𝑑𝑢(𝜇̃)𝑟𝑝𝑟(𝜇̃)|

= ∆1𝜇̃) + |𝑥𝑇
𝑑𝑢(𝜇̃)𝑟𝑝𝑟(𝜇̃)| − |𝑥̂𝑇

𝑑𝑢(𝜇̃)𝑟𝑝𝑟(𝜇̃)|
≤ ∆1(𝜇̃) + 𝜀1.

(3.7)

On the other hand,
∆1(𝜇̃) = |𝑥̂𝑇

𝑑𝑢(𝜇̃)𝑟𝑝𝑟(𝜇̃)|+ |𝑥𝑇
𝑑𝑢(𝜇̃)𝑟𝑝𝑟(𝜇̃)| − |𝑥𝑇

𝑑𝑢(𝜇̃)𝑟𝑝𝑟(𝜇̃)|
= |𝐻(𝜇̃)− 𝐻̂(𝜇̃)|+ |𝑥̂𝑇

𝑑𝑢(𝜇̃)𝑟𝑝𝑟(𝜇̃)| − |𝑥𝑇
𝑑𝑢(𝜇̃)𝑟𝑝𝑟(𝜇̃)|

≤ |𝐻(𝜇̃)− 𝐻̂(𝜇̃)|+ 𝜀1.

(3.8)

�

Here, 𝜀1 can be very small if the reduced solution 𝑥̂𝑑𝑢(𝜇̃) approximates the solution 𝑥𝑑𝑢(𝜇̃) to the original dual
system well and/or if the primal system solution 𝑥𝑝𝑟(𝜇̃) is well approximated by the reduced primal solution
𝑥̂𝑝𝑟(𝜇̃), so that ||𝑟𝑝𝑟(𝜇̃)||2 is small. Both approximations can be made as accurate as possible through a greedy
process using the proposed error estimators, which will be discussed in detail in Section 6. Theorem 3.3 shows
that the true error is both lower bounded and upper bounded by ∆1(𝜇̃) with the influence of a small-valued 𝜀1.

Theorem 3.4. The error of the reduced transfer function 𝐻̂(𝜇̃) can be bounded as

∆2(𝜇̃)− 𝛿2 − 𝜀1 ≤ |𝐻(𝜇̃)− 𝐻̂(𝜇̃)| ≤ ∆2(𝜇̃) + 𝜀2 (3.9)

where 𝜀2 := |(𝑥𝑟𝑑𝑢
(𝜇̃)− 𝑥̂𝑟𝑑𝑢

(𝜇̃))𝑇 𝑟𝑝𝑟(𝜇̃)| ≥ 0, 𝛿2 := |𝑥̂𝑟𝑑𝑢
(𝜇̃))𝑇 𝑟𝑝𝑟(𝜇̃)|.

Proof. From (3.3),

|𝐻(𝜇̃)− 𝐻̂(𝜇̃)| ≤ ∆1(𝜇̃) + |𝑥𝑇
𝑟𝑑𝑢

(𝜇̃)𝑟𝑝𝑟(𝜇̃)|
= ∆1(𝜇̃) + |𝑥̂𝑇

𝑟𝑑𝑢
(𝜇̃)𝑟𝑝𝑟(𝜇̃)| − |𝑥̂𝑇

𝑟𝑑𝑢
(𝜇̃)𝑟𝑝𝑟(𝜇̃)|+ |𝑥𝑇

𝑟𝑑𝑢
(𝜇̃)𝑟𝑝𝑟(𝜇̃)|

= ∆2(𝜇̃) + |𝑥𝑇
𝑟𝑑𝑢

(𝜇̃)𝑟𝑝𝑟(𝜇̃)| − |𝑥̂𝑇
𝑟𝑑𝑢

(𝜇̃)𝑟𝑝𝑟(𝜇̃)|
≤ ∆2(𝜇̃) + 𝜀2.

(3.10)

The proof of the lower bound is a direct result from the lower bound of Theorem 3.3 and the relation between
∆1(𝜇̃) and ∆2(𝜇̃). �
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𝜀1 and 𝜀2 involve computing the solutions 𝑥𝑑𝑢(𝜇̃) and 𝑥𝑟𝑑𝑢
(𝜇̃) to the original dual system and the original

dual-residual system, respectively. Since the original dual system and the original dual-residual system are of
high dimension 𝑛, computing the lower bounds and upper bounds in (3.3) and (3.4) is as expensive as computing
the true error. Instead of the lower and upper bounds, the error estimators ∆1(𝜇̃), ∆2(𝜇̃) can be computed and
used in practice, as they involve only computations in the reduced 𝑟 dimensions. Theorem 3.4 shows that the
error estimator ∆2(𝜇̃) cannot underestimate the true error too much, since ∆2(𝜇̃) ≥ |𝐻(𝜇̃) − 𝐻̂(𝜇̃)| − 𝜀2 and
𝜀2 can be made very small by letting 𝑥̂𝑟𝑑𝑢

(𝜇̃) approximate 𝑥𝑟𝑑𝑢
(𝜇̃) well. On the other hand, when 𝜀2 is small,

Theorem 3.4 implies that ∆2(𝜇̃) is a tight error estimator from above. Furthermore, Theorem 3.4 also provides
a lower bound for the true error using ∆2(𝜇̃) and two small valued variables 𝜀2 and 𝛿2. Here, 𝛿2 cannot be large
when both 𝑟𝑝𝑟(𝜇̃) and 𝑟𝑑𝑢(𝜇̃) become small. Note that 𝑟𝑑𝑢(𝜇̃) appears on the right-hand side of the reduced
dual-residual system (3.5) from which 𝑥̂𝑇

𝑟𝑑𝑢
(𝜇̃) in 𝛿2 is computed.

4. Error estimator variants

In the following, we derive some error estimators, which can be seen as variants of the error estimators ∆1(𝜇̃)
and ∆2(𝜇̃), respectively. Again, the lower bounds and upper bounds proved in the following theorems are used
to show how close the proposed error estimators are to the true error and are not computed in practice. As
mentioned at the end of the previous section, computing them is as expensive as computing the true error. This
is the main motivation for proposing the error estimators.

4.1. Variant 1

From the error bound in (3.3) and (3.4), we get

|𝐻(𝜇̃)− 𝐻̂(𝜇̃)| ≤ ∆1(𝜇̃) + |𝑟𝑇
𝑑𝑢(𝜇̃)𝑄−1(𝜇̃)𝑟𝑝𝑟(𝜇̃)|. (4.1)

We see that instead of solving the dual-residual system (3.4), one can also solve the primal-residual system as
below,

𝑄(𝜇̃)𝑥𝑟𝑝𝑟 (𝜇̃) = 𝑟𝑝𝑟(𝜇̃). (4.2)

Replacing 𝑄−1(𝜇̃)𝑟𝑝𝑟(𝜇̃) in (4.1) with 𝑥𝑟𝑝𝑟
(𝜇̃) in (4.2), we obtain

|𝐻(𝜇̃)− 𝐻̂(𝜇̃)| ≤ ∆1(𝜇̃) + |𝑟𝑇
𝑑𝑢(𝜇̃)𝑥𝑟𝑝𝑟

(𝜇̃)|. (4.3)

If we construct the ROM of the primal-residual system in (4.2), i.e.,

𝑊𝑇
𝑟𝑝𝑟

𝑄(𝜇̃)𝑉𝑟𝑝𝑟
𝑧𝑟𝑝𝑟

(𝜇̃) = 𝑊𝑇
𝑟𝑝𝑟

𝑟𝑝𝑟(𝜇̃), (4.4)

then we obtain a variant of ∆2(𝜇̃),

|𝐻(𝜇̃)− 𝐻̂(𝜇̃)| . ∆1(𝜇̃) + |𝑟𝑇
𝑑𝑢(𝜇̃)𝑥̂𝑟𝑝𝑟

(𝜇̃)| =: ∆𝑝𝑟
2 (𝜇̃),

where 𝑥̂𝑟𝑝𝑟
(𝜇̃) = 𝑉𝑟𝑝𝑟

𝑧𝑟𝑝𝑟
is computed from (4.4), the ROM of the primal-residual system and approximates the

state vector 𝑥𝑟𝑝𝑟 (𝜇̃) of the primal-residual system. We obtain a similar sensitivity analysis for ∆𝑝𝑟
2 (𝜇̃) presented

in Theorem 4.1.

Theorem 4.1. The error of the reduced transfer function 𝐻̂(𝜇̃) can be bounded as

∆𝑝𝑟
2 (𝜇̃)− 𝛿𝑝𝑟

2 − 𝜀1 ≤ |𝐻(𝜇̃)− 𝐻̂(𝜇̃)| ≤ ∆𝑝𝑟
2 (𝜇̃) + 𝜀𝑝𝑟

2 (4.5)

where 𝜀𝑝𝑟
2 := |𝑟𝑇

𝑑𝑢(𝜇̃)(𝑥𝑟𝑝𝑟
(𝜇̃)− 𝑥̂𝑟𝑝𝑟

(𝜇̃))| ≥ 0 and 𝛿𝑝𝑟
2 := |𝑟𝑇

𝑑𝑢(𝜇̃)𝑥̂𝑟𝑝𝑟
(𝜇̃)|.

Proof. The result can be obtained by using (4.3) and following similar steps as in the proof of
Theorem 3.4. �

Note that 𝜀𝑝𝑟
2 will be of small value once the reduced solution 𝑥̂𝑟𝑝𝑟 (𝜇̃) approximates 𝑥𝑟𝑝𝑟 (𝜇̃), the solution to

the primal-residual system (4.2), well.
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4.2. Variant 2

From (3.1), we know
|𝐻(𝜇̃)− 𝐻̂(𝜇̃)| = |𝐶(𝜇̃)𝑄−1(𝜇̃)𝑟𝑝𝑟(𝜇̃)|.

Similarly, if we use the solution to the primal-residual system (4.2) to replace 𝑄−1(𝜇̃)𝑟𝑝𝑟(𝜇̃), then we get

|𝐻(𝜇̃)− 𝐻̂(𝜇̃)| = |𝐶(𝜇̃)𝑥𝑟𝑝𝑟
(𝜇̃)|. (4.6)

If further using the ROM (4.4) to compute an approximate state, then 𝑥𝑟𝑝𝑟 (𝜇̃) in (4.6) can be approximated by
𝑥̂𝑟𝑝𝑟

(𝜇̃). We obtain the following error estimation

|𝐻(𝜇̃)− 𝐻̂(𝜇̃)| ≈ |𝐶(𝜇̃)𝑥̂𝑟𝑝𝑟
(𝜇̃)| =: ∆𝑝𝑟

1 (𝜇̃),

that can be considered as a variant of ∆1(𝜇̃).

Theorem 4.2. The error of the reduced transfer function 𝐻̂(𝜇̃) can be bounded as

∆𝑝𝑟
1 (𝜇̃)− 𝜀𝑝𝑟

1 ≤ |𝐻(𝜇̃)− 𝐻̂(𝜇̃)| ≤ ∆𝑝𝑟
1 (𝜇̃) + 𝜀𝑝𝑟

1 , (4.7)

where 𝜀𝑝𝑟
1 := |𝐶(𝜇̃)(𝑥𝑟𝑝𝑟

(𝜇̃)− 𝑥̂𝑟𝑝𝑟
(𝜇̃))| ≥ 0.

Proof. The proof is similar to that of Theorem 3.3 and therefore not be repeated here. �

4.3. Variant 3

The next theorem presents an error bound based on ∆𝑝𝑟
1 (𝜇̃), from which we get another variant of ∆2(𝜇̃).

Theorem 4.3. The error of the reduced transfer function 𝐻̂(𝜇̃) can be bounded as

|𝐻(𝜇̃)− 𝐻̂(𝜇̃)| ≤ ∆𝑝𝑟
1 (𝜇̃) + |𝑥𝑇

𝑑𝑢(𝜇̃)𝑟𝑟𝑝𝑟 (𝜇̃)|,

where 𝑟𝑟𝑝𝑟
is the residual of the approximate solution 𝑥̂𝑟𝑝𝑟

(𝜇̃) to the primal-residual system in (4.2), i.e., 𝑟𝑟𝑝𝑟
=

𝑟𝑝𝑟(𝜇̃)−𝑄𝑥̂𝑟𝑝𝑟 (𝜇̃).

Proof. From (4.6), the true error can be presented as

|𝐻(𝜇̃)− 𝐻̂(𝜇̃)| = |𝐶(𝜇̃)𝑥𝑟𝑝𝑟 (𝜇̃)|. (4.8)

We check the distance between the true error |𝐶(𝜇̃)𝑥𝑟𝑝𝑟 (𝜇̃)| and its estimator ∆𝑝𝑟
1 (𝜇̃) = |𝐶(𝜇̃)𝑥̂𝑟𝑝𝑟 (𝜇̃)|:

|𝐶(𝜇̃)𝑥𝑟𝑝𝑟
(𝜇̃)| − |𝐶(𝜇̃)𝑥̂𝑟𝑝𝑟

(𝜇̃)| ≤ |𝐶(𝜇̃)𝑄−1𝑟𝑝𝑟(𝜇̃)− 𝐶(𝜇̃)𝑥̂𝑟𝑝𝑟
(𝜇̃)|

= |𝐶(𝜇̃)𝑄−1[𝑟𝑝𝑟(𝜇̃)−𝑄𝑥̂𝑟𝑝𝑟 (𝜇̃)⏟  ⏞  
=:𝑟𝑟𝑝𝑟 (𝜇̃)

]|. (4.9)

Combining (4.8) and (4.9), we get

|𝐻(𝜇̃)− 𝐻̂(𝜇̃)| ≤ |𝐶(𝜇̃)𝑥̂𝑟𝑝𝑟
(𝜇̃)|+ |𝐶(𝜇̃)𝑄−1𝑟𝑟𝑝𝑟

(𝜇̃)|
= ∆𝑝𝑟

1 (𝜇̃) + |𝑥𝑇
𝑑𝑢(𝜇̃)𝑟𝑟𝑝𝑟 (𝜇̃)|.

(4.10)

�

Similarly, we get the following error estimator by approximating 𝑥𝑑𝑢(𝜇̃) with 𝑥̂𝑑𝑢(𝜇̃).

|𝐻(𝜇̃)− 𝐻̂(𝜇̃)| . ∆𝑝𝑟
1 (𝜇̃) + |𝑥̂𝑇

𝑑𝑢(𝜇̃)𝑟𝑟𝑝𝑟 (𝜇̃)| =: ∆3(𝜇̃).
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Theorem 4.4. The error of the reduced transfer function 𝐻̂(𝜇̃) can be bounded as

∆3(𝜇̃)− 𝛿3 − 𝜀𝑝𝑟
1 ≤ |𝐻(𝜇̃)− 𝐻̂(𝜇̃)| ≤ ∆3(𝜇̃) + 𝜀3 (4.11)

where 𝜀3 := |(𝑥𝑑𝑢(𝜇̃)− 𝑥̂𝑑𝑢(𝜇̃))𝑇 𝑟𝑝𝑟(𝜇̃)| ≥ 0 and 𝛿3 = |𝑥̂𝑇
𝑑𝑢(𝜇̃)𝑟𝑟𝑝𝑟

(𝜇̃)|.

Proof. The result can be obtained by using (4.10), the relation between ∆3(𝜇̃) and ∆𝑝𝑟
1 (𝜇̃), and the lower bound

of Theorem 4.2, then following similar steps as in the proof of Theorem 3.4. �

Analogously, 𝜀3 is also a small number, since 𝑥̂𝑑𝑢(𝜇̃) is close enough to 𝑥𝑑𝑢(𝜇̃) if it is a good approximation
computed from the ROM of the dual system.

4.4. Variant 4

In (4.10), if we consider 𝑄−1𝑟𝑟𝑝𝑟
and seek the solution to the primal-residual-residual system,

𝑄(𝜇̃)𝑥𝑟𝑟𝑝𝑟
(𝜇̃) = 𝑟𝑟𝑝𝑟

(𝜇̃), (4.12)

then the error bound in (4.10) becomes

|𝐻(𝜇̃)− 𝐻̂(𝜇̃)| ≤ ∆𝑝𝑟
1 (𝜇̃) + |𝐶(𝜇̃)𝑥𝑟𝑟𝑝𝑟

(𝜇̃)|. (4.13)

Certainly, we can compute the ROM of (4.12),

𝑊𝑇
𝑟𝑟𝑝𝑟

𝑄(𝜇̃)𝑉𝑟𝑟𝑝𝑟𝑧𝑟𝑟𝑝𝑟 (𝜇̃) = 𝑊𝑇
𝑟𝑟𝑝𝑟

𝑟𝑟𝑝𝑟
(𝜇̃), (4.14)

and replace 𝑥𝑟𝑟𝑝𝑟 (𝜇̃) in (4.13) with its approximation 𝑥̂𝑟𝑟𝑝𝑟 (𝜇̃) = 𝑉𝑟𝑟𝑝𝑟𝑧𝑟𝑟𝑝𝑟 (𝜇̃) computed from the ROM. Finally,
we get the error estimator

|𝐻(𝜇̃)− 𝐻̂(𝜇̃)| . |∆𝑝𝑟
1 (𝜇̃)|+ |𝐶(𝜇̃)𝑥̂𝑟𝑟𝑝𝑟

(𝜇̃)| =: ∆𝑝𝑟
3 (𝜇̃).

From (4.13), we can get the following lower and upper bound using the error estimator ∆𝑝𝑟
3 (𝜇̃).

Theorem 4.5. The error of the reduced transfer function 𝐻̂(𝜇̃) can be bounded as

∆𝑝𝑟
3 (𝜇̃)− 𝛿𝑝𝑟

3 − 𝜀𝑝𝑟
1 ≤ |𝐻(𝜇̃)− 𝐻̂(𝜇̃)| ≤ ∆𝑝𝑟

3 (𝜇̃) + 𝜀𝑝𝑟
3 (4.15)

where 𝜀𝑝𝑟
3 := |𝐶(𝜇̃)(𝑥𝑟𝑟𝑝𝑟

(𝜇̃)− 𝑥̂𝑟𝑟𝑝𝑟
(𝜇̃))| ≥ 0 and 𝛿𝑝𝑟

3 := |𝐶(𝜇̃)𝑥̂𝑟𝑟𝑝𝑟
(𝜇̃)|.

Proof. The result can be obtained by using (4.13) and following similar steps as in the proof of
Theorem 4.4. �

4.5. Relations among the error estimators

In this section we explore relations among the error estimators discussed in the previous two sections and
present the following propositions.

Proposition 4.6. If 𝑊𝑑𝑢 = 𝑉 , and 𝑉𝑑𝑢 = 𝑊 , then ∆1(𝜇̃) = 0.

Proof.
∆1(𝜇̃) = |𝑥̂𝑇

𝑑𝑢(𝜇̃)𝑟𝑝𝑟(𝜇̃)|
= |𝑥̂𝑇

𝑑𝑢(𝜇̃)(𝐵(𝜇̃)−𝑄(𝜇̃)𝑉 (𝑊𝑇 𝑄(𝜇̃)𝑉 )−1𝑊𝑇 𝐵(𝜇̃)|
= |𝑥̂𝑇

𝑑𝑢(𝜇̃)𝐵(𝜇̃)− 𝑥̂𝑇
𝑑𝑢(𝜇̃)𝑄(𝜇̃)𝑉 (𝑊𝑇 𝑄(𝜇̃)𝑉 )−1𝑊𝑇 𝐵(𝜇̃)|.

(4.16)
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The first part of the last equation in (4.16) is

𝑥̂𝑇
𝑑𝑢(𝜇̃)𝐵(𝜇̃) = [𝑉𝑑𝑢(𝑊𝑇

𝑑𝑢𝑄𝑇 (𝜇̃)𝑉𝑑𝑢)−1𝑊𝑇
𝑑𝑢𝐶𝑇 (𝜇̃)]𝑇 𝐵(𝜇̃)

= 𝐶(𝜇̃)𝑉 (𝑊𝑇 𝑄(𝜇̃)𝑉 )−1𝑊𝑇 𝐵(𝜇̃) (if 𝑊𝑑𝑢 = 𝑉 and 𝑉𝑑𝑢 = 𝑊 ).
(4.17)

If 𝑊𝑑𝑢 = 𝑉 and 𝑉𝑑𝑢 = 𝑊 , the second part of the last equation in (4.16) becomes

𝑥̂𝑇
𝑑𝑢(𝜇̃)𝑉 (𝑊𝑇 𝑄(𝜇̃)𝑉 )−1𝑊𝑇 𝐵(𝜇̃) =

[︀
𝑉𝑑𝑢(𝑊𝑇

𝑑𝑢𝑄𝑇 (𝜇̃)𝑉𝑑𝑢)−1𝑊𝑇
𝑑𝑢𝐶𝑇 (𝜇̃)

]︀𝑇
𝑄(𝜇̃)𝑉 (𝑊𝑇 𝑄(𝜇̃)𝑉 )−1𝑊𝑇 𝐵(𝜇̃)

= 𝐶(𝜇̃)𝑉 (𝑊𝑇 𝑄(𝜇̃)𝑉 )−1𝑊𝑇 𝑄(𝜇̃)𝑉 (𝑊𝑇 𝑄(𝜇̃)𝑉 )−1𝑊𝑇 𝐵(𝜇̃)
= 𝐶(𝜇̃)𝑉 (𝑊𝑇 𝑄(𝜇̃)𝑉 )−1𝑊𝑇 𝐵(𝜇̃).

(4.18)
Comparing (4.17) and (4.18), we get the conclusion. �

Remark 4.7. Proposition 4.6 points out that if 𝑊𝑑𝑢 = 𝑉 and 𝑉𝑑𝑢 = 𝑊 , then ∆1(𝜇̃) is always zero, and
cannot be a good error estimator. This is not the case for most problems. However, if the system is symmetric,
i.e., 𝑄(𝜇̃) = 𝑄𝑇 (𝜇̃), and 𝐵(𝜇̃) = 𝐶𝑇 (𝜇̃), this will likely happen, since in this case, the primal system and
the dual system are identical. We will show later that for systems that are almost symmetric, i.e., 𝑄(𝜇̃) ≈
𝑄𝑇 (𝜇̃) and/or 𝐵(𝜇̃) ≈ 𝐶𝑇 (𝜇̃), ∆1(𝜇̃) also behaves badly. One possibility of avoiding ∆1(𝜇̃) being zero or
improving the performance of ∆1(𝜇̃) is to construct (𝑊𝑑𝑢, 𝑉𝑑𝑢) and (𝑊, 𝑉 ) from different subspaces of the
solution (state) manifold. More specifically, when using time domain methods, different snapshots should be
chosen for (𝑊𝑑𝑢, 𝑉𝑑𝑢) and (𝑊, 𝑉 ), respectively; or different expansion points should be taken if using frequency
domain methods, e.g., moment-matching.

Remark 4.8. Using Galerkin projection, i.e., 𝑊 = 𝑉 , 𝑊𝑑𝑢 = 𝑉𝑑𝑢, then 𝑉𝑑𝑢 = 𝑉 leads to ∆1(𝜇̃) = 0.

Proposition 4.9. If 𝑊𝑟𝑑𝑢
= 𝑊𝑑𝑢, then the second part of ∆2(𝜇̃) is always zero, i.e., |𝑥̂𝑇

𝑟𝑑𝑢
(𝜇̃)𝑟𝑝𝑟(𝜇̃)| = 0.

Proof.
𝑥̂𝑇

𝑟𝑑𝑢
(𝜇̃)𝑟𝑝𝑟(𝜇̃) = [𝑉𝑟𝑑𝑢

𝑄̃−1(𝜇̃)(𝑊𝑇
𝑟𝑑𝑢

𝑟𝑑𝑢(𝜇̃))]𝑇 𝑟𝑝𝑟(𝜇̃)

= 𝑟𝑇
𝑑𝑢(𝜇̃)𝑊𝑑𝑢𝑄̃−𝑇 (𝜇̃)𝑉 𝑇

𝑟𝑑𝑢
𝑟𝑝𝑟(𝜇̃) (if 𝑊𝑟𝑑𝑢

= 𝑊𝑑𝑢).
(4.19)

Considering the first two terms in the last equation, we get

(𝑟𝑇
𝑑𝑢(𝜇̃)𝑊𝑑𝑢)𝑇 = 𝑊𝑇

𝑑𝑢(𝐶𝑇 (𝜇̃)−𝑄𝑇 (𝜇̃)𝑉𝑑𝑢𝑧𝑑𝑢(𝜇̃))
= 0 (due to (2.7)).

(4.20)

�

Remark 4.10. Proposition 4.9 points out that if 𝑊𝑟𝑑𝑢
= 𝑊𝑑𝑢, then ∆2(𝜇̃) reduces to ∆1(𝜇̃), and cannot be

more robust than ∆1(𝜇̃). Therefore, 𝑊𝑟𝑑𝑢
should be carefully constructed to avoid being equal to 𝑊𝑑𝑢. For

example, it could be computed from different snapshots if the reduced basis method is used for MOR; when
(multi-)moment-matching is used for MOR, different expansion points should be chosen for 𝑊𝑟𝑑𝑢

and 𝑊𝑑𝑢,
respectively. More details can be found in Section 6. In the case of Galerkin projection, i.e., 𝑊𝑟𝑑𝑢

= 𝑉𝑟𝑑𝑢
and

𝑊𝑑𝑢 = 𝑉𝑑𝑢, 𝑉𝑟𝑑𝑢
= 𝑉𝑑𝑢 leads to the same result in Proposition 4.9.

Proposition 4.11. If 𝑊𝑟𝑝𝑟 = 𝑊 , then 𝑥̂𝑟𝑝𝑟 (𝜇̃) = 0.

Proof. From the ROM of the primal-residual system in (4.4),

𝑥̂𝑟𝑝𝑟
(𝜇̃) = 𝑉𝑟𝑝𝑟

(𝑊𝑇
𝑟𝑝𝑟

𝑄(𝜇̃)𝑉𝑟𝑝𝑟
)−1(𝑊𝑇

𝑟𝑝𝑟
𝑟𝑝𝑟(𝜇̃))

= 𝑉𝑟𝑝𝑟 (𝑊𝑇
𝑟𝑝𝑟

𝑄(𝜇̃)𝑉𝑟𝑝𝑟 )−1(𝑊𝑇 𝑟𝑝𝑟(𝜇̃)) (if 𝑊𝑟𝑝𝑟 = 𝑊 )
= 𝑉𝑟𝑝𝑟

(𝑊𝑇
𝑟𝑝𝑟

𝑄(𝜇̃)𝑉𝑟𝑝𝑟
)−1𝑊𝑇 (𝐵(𝜇̃)−𝑄(𝜇̃)𝑉 𝑧𝑝𝑟(𝜇̃))

= 𝑉𝑟𝑝𝑟 (𝑊𝑇
𝑟𝑝𝑟

𝑄(𝜇̃)𝑉𝑟𝑝𝑟 )−1[𝑊𝑇 𝐵(𝜇̃)−𝑊𝑇 𝑄(𝜇̃)𝑉 𝑧𝑝𝑟(𝜇̃)]
= 0. (due to (2.5)).

(4.21)

�
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Remark 4.12. Proposition 4.11 implicates that if 𝑊𝑟𝑝𝑟
= 𝑊 , then the second part of ∆𝑝𝑟

2 (𝜇̃) is always zero,
i.e., |𝑟𝑇

𝑑𝑢(𝜇̃)𝑥̂𝑟𝑝𝑟
(𝜇̃)| = 0, and ∆𝑝𝑟

2 (𝜇̃) equals to ∆1(𝜇̃). Also, 𝑥̂𝑟𝑝𝑟
(𝜇̃) = 0 makes ∆𝑝𝑟

1 (𝜇̃) zero, meaning the first
part of ∆3(𝜇̃) and the first part of ∆𝑝𝑟

3 (𝜇̃) are all zeros. Therefore, 𝑊𝑟𝑝𝑟 should also be carefully constructed
to avoid being equal to 𝑊 . For Galerkin projection, i.e., 𝑊𝑟𝑝𝑟

= 𝑉𝑟𝑝𝑟
and 𝑊 = 𝑉 , Proposition 4.11 reads: If

𝑉𝑟𝑝𝑟 = 𝑉 , then 𝑥̂𝑟𝑝𝑟 (𝜇̃) = 0.

Proposition 4.13. If 𝑊𝑟𝑟𝑝𝑟
= 𝑊𝑟𝑝𝑟

, then 𝑥̂𝑟𝑟𝑝𝑟
(𝜇̃) = 0.

Proof. From the ROM of the primal-residual-residual system in (4.14),

𝑥̂𝑟𝑟𝑝𝑟
(𝜇̃) = 𝑉𝑟𝑟𝑝𝑟

(𝑊𝑇
𝑟𝑟𝑝𝑟

𝑄(𝜇̃)𝑉𝑟𝑟𝑝𝑟
)−1(𝑊𝑇

𝑟𝑟𝑝𝑟
𝑟𝑟𝑝𝑟

(𝜇̃)). (4.22)

The last tow terms of the right-hand side of (4.22) are

𝑊𝑇
𝑟𝑟𝑝𝑟

𝑟𝑟𝑝𝑟
(𝜇̃) = 𝑊𝑇

𝑟𝑝𝑟
𝑟𝑟𝑝𝑟

(𝜇̃) (if 𝑊𝑟𝑟𝑝𝑟
= 𝑊𝑟𝑝𝑟

)
= 𝑊𝑇

𝑟𝑝𝑟
(𝑟𝑝𝑟(𝜇̃)−𝑄𝑉𝑟𝑝𝑟

𝑧𝑟𝑝𝑟
(𝜇̃))

= 0 (due to (4.4)).

�

Remark 4.14. From Proposition 4.13, we see that if 𝑊𝑟𝑟𝑝𝑟
= 𝑊𝑟𝑝𝑟

, then the second part of ∆𝑝𝑟
3 (𝜇̃) is always

zero, i.e., |𝐶(𝜇̃)𝑥̂𝑟𝑟𝑝𝑟 (𝜇̃)| = 0, so that 𝛥𝑝𝑟
3 (𝜇̃) is no better than ∆𝑝𝑟

1 (𝜇̃) in underestimating the true error.
Similarly, in case of Galerkin projection, i.e., 𝑊𝑟𝑝𝑟

= 𝑉𝑟𝑝𝑟
and 𝑊𝑟𝑟𝑝𝑟

= 𝑉𝑟𝑟𝑝𝑟
, Proposition 4.13 reads: If

𝑉𝑟𝑟𝑝𝑟
= 𝑉𝑟𝑝𝑟

, then 𝑥̂𝑟𝑟𝑝𝑟
(𝜇̃) = 0.

4.6. Constructing projection matrices for the ROMs

The key components for computing the error estimators are the projection matrix pairs (𝑊, 𝑉 ), (𝑊𝑑𝑢, 𝑉𝑑𝑢),
(𝑊𝑟𝑑𝑢

, 𝑉𝑟𝑑𝑢
) or (𝑊𝑟𝑝𝑟

, 𝑉𝑟𝑝𝑟
), (𝑊𝑟𝑟𝑝𝑟

, 𝑉𝑟𝑟𝑝𝑟
), which are used to construct the reduced systems in (2.5), (2.7), (3.5)

or in (4.4), (4.14), respectively. For simplicity and clarity of analysis, we only use Galerkin projection for all the
reduced systems, so that only one projection matrix 𝑉, 𝑉𝑑𝑢, 𝑉𝑟𝑑𝑢

or 𝑉𝑟𝑝𝑟
, 𝑉𝑟𝑟𝑝𝑟

needs to be computed for each
reduced system. The analysis in this subsection can be extended to Petrov–Galerkin projection without many
difficulties and could be addressed in a future work.

By definition of the reduced primal system (2.5), 𝑉 is also the projection matrix for constructing the ROM
of the original model. Since the proposed error estimator does not depend on the MOR method, 𝑉 can be com-
puted either using time-domain MOR methods, such as the reduced basis (RB) method, the proper orthogonal
decomposition (POD) method [8,10], which use the snapshots in time domain (trajectories of the state vector 𝑥)
to obtain 𝑉 or using frequency domain methods, such as multi-moment-matching [15].

The dual system (2.6), the dual-residual system (3.4), as well as the primal-residual system (4.2), the primal-
residual-residual system (4.12) are parametric systems in frequency domain, with 𝜇̃ = 𝑠 or 𝜇̃ = (𝜇, 𝑠) being
the vector of parameters. Similarly, we can compute the projection matrices for MOR of these systems either
through snapshot based methods, or the multi-moment-matching method. The snapshots do not represent the
trajectory of the solution in time domain, instead, they are the solution vectors at different samples of the
parameter 𝜇̃.

In order to be consistent with the previous work in [16, 17], and to be comparable with existing results, we
apply the frequency domain method, i.e., the multi-moment-matching method [15] to derive the ROMs for all
the systems contributing to the error estimator. To be self-contained, we also review the construction of 𝑉, 𝑉𝑑𝑢

and 𝑉𝑟𝑑𝑢
, though it is detailed in [16]. It is illustrated in [16] that the reduced basis method can be seen as a

special case of the multi-moment-matching method for systems in frequency domain.
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4.6.1. Constructing 𝑉 using the multi-moment-matching method [15]

When using the multi-moment-matching method proposed in [15] to construct the ROM, then 𝑉 can be
computed as follows. We first consider the state vector 𝑥(𝑡, 𝜇) in frequency domain, i.e., the state vector 𝑥(𝜇̃)
of the primal system. Assume that 𝑄(𝜇̃) has the following affine decomposition

𝑄(𝜇̃) = 𝑄0 + ℎ1(𝜇̃)𝑄1 + . . . + ℎ𝑝(𝜇̃)𝑄𝑝,

where ℎ𝑗(𝜇̃) : C𝑚 ↦→ C, 𝑗 = 1, . . . , 𝑝 are scalar functions of 𝜇̃. 𝑄0, . . . , 𝑄𝑝 ∈ R𝑛×𝑛 are constant matrices, so are
parameter independent. From the series expansion of 𝑥(𝜇̃),

𝑥(𝜇̃) = [𝑄(𝜇̃)]−1𝐵(𝜇̃)
= [𝑄0 + ℎ1(𝜇̃)𝑄1 + . . . + ℎ𝑝(𝜇̃)𝑄𝑝]−1𝐵(𝜇̃)
= [𝐼 − (𝜎1𝑀1 + . . . + 𝜎𝑝𝑀𝑝)]−1𝐵𝑀

=
∞∑︀

𝑘=0

(𝜎1𝑀1 + . . . + 𝜎𝑝𝑀𝑝)𝑘𝐵𝑀 ,

(4.23)

where 𝜎𝑗 = ℎ𝑗(𝜇̃) − ℎ𝑗(𝜇̃𝑖), 𝐵𝑀 = [𝑄(𝜇̃𝑖)]−1𝐵(𝜇̃), 𝑀𝑗 = −[𝑄(𝜇̃𝑖)]−1𝑄𝑗 , 𝑗 = 1, 2, . . . , 𝑝; ℎ(𝜇̃𝑖) :=
(ℎ1(𝜇̃𝑖), . . . , ℎ𝑝(𝜇̃𝑖)) is the expansion point at which the above power series of 𝑥(𝜇̃) is derived. Since ℎ(𝜇̃𝑖)
is uniquely determined by 𝜇̃𝑖, we call 𝜇̃𝑖 the expansion point in the following text, for simplicity. The super-
script 𝑖 fixes the parameter 𝜇̃ to a specific value 𝜇̃𝑖. It corresponds to the 𝑖th expansion point used in (4.26),
𝑖 = 1, . . . , 𝑙. There exist recursions between the coefficients of the series expansion as below,

𝑅0 = 𝐵̃𝑀 ,

𝑅1 = [𝑀1𝑅0, . . . ,𝑀𝑝𝑅0],
𝑅2 = [𝑀1𝑅1, . . . ,𝑀𝑝𝑅1],

...
𝑅𝑞 = [𝑀1𝑅𝑞−1, . . . ,𝑀𝑝𝑅𝑞−1],

...

(4.24)

Here, 𝐵̃𝑀 = 𝐵𝑀 , if 𝐵(𝜇̃) does not depend on 𝜇, i.e., 𝐵(𝜇̃) = 𝐵. Otherwise, 𝐵̃𝑀 = [𝐵𝑀1 , . . . , 𝐵𝑀𝑝
], 𝐵𝑀𝑗

=
[𝑄(𝜇̃𝑖)]−1𝐵𝑗 , 𝑗 = 1, . . . , 𝑝, if 𝐵(𝜇̃) can be written in an affine form, e.g., 𝐵(𝜇̃) = 𝐵1𝛼1(𝜇) + . . . + 𝐵𝑝𝛼𝑝(𝜇),
𝛼𝑖(𝜇) : C𝑚 ↦→ C. Then 𝑉𝜇̃𝑖 is computed as

range(𝑉𝜇̃𝑖) = span{𝑅0, 𝑅1, . . . , 𝑅𝑞}𝜇̃𝑖 , (4.25)

where usually we require 𝑞 ≤ 1 to avoid exponential increase of column dimension. The matrix 𝑉𝜇̃𝑖 depends on
the expansion point 𝜇̃𝑖. Finally, 𝑉 can be constructed as

𝑉 = orth
{︀
𝑉𝜇̃1 , . . . , 𝑉𝜇̃𝑙

}︀
. (4.26)

The matrices 𝑅𝑗 , 𝑗 = 0, . . . , in (4.24) depend on the expansion point 𝜇𝑖, so that they can be written as 𝑅𝑗(𝜇̃𝑖).
The multi-moments corresponding to the expansion point 𝜇𝑖 are defined as 𝐶(𝜇̃𝑖)𝑅𝑗(𝜇̃𝑖), 𝑗 = 0, . . ., where 𝑅𝑗

includes the 𝑗th order multi-moments. Corresponding multi-moments of the ROM (2.2) can also be defined
using the projected reduced system matrices, i.e., 𝐶(𝜇̃𝑖)𝑅̂𝑗(𝜇̃𝑖), 𝑗 = 0, . . ., where 𝑅̂𝑗 = 𝑉 𝑇 𝑅𝑗𝑉 . When 𝐶(𝜇̃)
is a constant matrix 𝐶, it is proved in [15] that the multi-moments 𝐶𝑅̂𝑗(𝜇̃𝑖), 𝑗 = 0, . . . 𝑞, 𝑖 = 1, . . . , 𝑙, of the
ROM (2.2) are equal to those of the FOM (2.1), if the projection matrix 𝑉 is constructed as in (4.26). An
analogous proof applies to the case of parameter dependent 𝐶(𝜇̃) to show a similar moment-matching property:
𝐶(𝜇̃𝑖)𝑅̂𝑗(𝜇̃𝑖) = 𝐶(𝜇̃𝑖)𝑅𝑗(𝜇̃𝑖), 𝑗 = 0, . . . 𝑞, 𝑖 = 1, . . . , 𝑙. In this sense, the multi-moments of the FOM are matched
by the ROM till order 𝑞 at each expansion point 𝜇̃𝑖, for 𝑖 = 1, . . . , 𝑙.
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4.6.2. Constructing 𝑉𝑑𝑢 using multi-moment-matching

If using the multi-moment-matching method, 𝑉𝑑𝑢 can also be constructed similarly as 𝑉 . Considering the
dual system in (2.6), 𝑥𝑑𝑢(𝜇̃) can be written as

𝑥𝑑𝑢(𝜇̃) = [𝑄(𝜇̃)]−𝑇 𝐶𝑇 (𝜇̃)
= [𝑄𝑇

0 + ℎ1(𝜇̃)𝑄𝑇
1 + . . . + ℎ𝑝(𝜇̃)𝑄𝑇

𝑝 ]−1𝐶𝑇 (𝜇̃)

= [𝐼 − (𝜎1𝑀̃1 + . . . + 𝜎𝑝𝑀̃𝑝)]−1𝐶𝑀

=
∞∑︀

𝑘=0

(𝜎1𝑀̃1 + . . . + 𝜎𝑝𝑀̃𝑝)𝑘𝐶𝑀 ,

(4.27)

where 𝐶𝑀 = [𝑄(𝜇̃𝑖)]−𝑇 𝐶𝑇 (𝜇̃), 𝑀̃𝑗 = −[𝑄(𝜇̃𝑖)]−𝑇 𝑄𝑇
𝑗 , 𝑗 = 1, 2, . . . , 𝑝. The recursions between the coefficients of

the series expansion in (4.27) are
𝑅̃0 = 𝐶𝑀 ,

𝑅̃1 = [𝑀̃1𝑅̃0, . . . , 𝑀̃𝑝𝑅̃0],

𝑅̃2 = [𝑀̃1𝑅̃1, . . . , 𝑀̃𝑝𝑅̃1],
...

𝑅̃𝑞 = [𝑀̃1𝑅̃𝑞−1, . . . , 𝑀̃𝑝𝑅̃𝑞−1],
...

(4.28)

Here, 𝐶𝑀 = 𝐶𝑀 , if 𝐶(𝜇̃) does not depend on 𝜇, i.e., 𝐶(𝜇̃) = 𝐶. Otherwise, 𝐶𝑀 = [𝐶𝑀1 , . . . , 𝐶𝑀𝑝 ], 𝐶𝑀𝑖 =
[𝑄(𝜇̃𝑖)]−1𝐶𝑗 , 𝑗 = 1, . . . , 𝑝, if 𝐶(𝜇̃) can be written in an affine form, e.g., 𝐶(𝜇̃) = 𝐶1𝛽1(𝜇) + . . . + 𝐶𝑝𝛽𝑝(𝜇). Then
𝑉 𝑑𝑢

𝜇̃𝑖 is computed as

range(𝑉 𝑑𝑢
𝜇̃𝑖 ) = span

{︁
𝑅̃0, 𝑅̃1, . . . , 𝑅̃𝑞

}︁
𝜇̃𝑖

. (4.29)

Finally, 𝑉𝑑𝑢 can be constructed as
𝑉𝑑𝑢 = orth

{︁
𝑉 𝑑𝑢

𝜇̃1 , . . . , 𝑉 𝑑𝑢
𝜇̃𝑙

}︁
. (4.30)

4.6.3. Constructing 𝑉𝑟𝑑𝑢

𝑉𝑟𝑑𝑢
is used to construct the ROM of the dual-residual system and the error estimator ∆2(𝜇̃). From the state

vector of the dual-residual system (3.4), we see that

𝑥𝑟𝑑𝑢
(𝜇̃) = 𝑄−𝑇 (𝜇̃)𝑟𝑑𝑢(𝜇̃)

= 𝑄−𝑇 (𝜇̃)𝐶𝑇 (𝜇̃)− 𝑥̂𝑑𝑢(𝜇̃)
= 𝑄−𝑇 (𝜇̃)𝐶𝑇 (𝜇̃)− 𝑉𝑑𝑢𝑧𝑑𝑢(𝜇̃),

(4.31)

where 𝑄−𝑇 (𝜇̃)𝐶𝑇 (𝜇̃) is nothing but the state vector 𝑥𝑑𝑢(𝜇̃) of the dual system.
Considering the series expansion of 𝑥𝑑𝑢(𝜇̃) in (4.27), we see that taking the same expansion point as in (4.27),

the series expansion leads to the subspace range(𝑉𝑑𝑢). Finally, 𝑄−𝑇 (𝜇̃)𝐶𝑇 (𝜇̃) in the last equality of (4.31)
provides no new information than 𝑉𝑑𝑢, so that we can use range(𝑉𝑑𝑢) as the subspace for approximating the
trajectory space of 𝑥𝑟𝑑𝑢

(𝜇̃), i.e., 𝑉𝑟𝑑𝑢
= 𝑉𝑑𝑢. However, from Proposition 4.9, we know that 𝑉𝑟𝑑𝑢

should be
different from 𝑉𝑑𝑢. Therefore, if we use expansion points different from those used for 𝑉𝑑𝑢 to obtain a second
projection matrix 𝑉 1

𝑟𝑑𝑢
, which is different from 𝑉𝑑𝑢, then the projection matrix 𝑉𝑟𝑑𝑢

:= orth
{︀
𝑉 1

𝑟𝑑𝑢
, 𝑉𝑑𝑢

}︀
should

represent the trajectory of 𝑥𝑟𝑑𝑢
(𝜇̃) well.

𝑉 1
𝑟𝑑𝑢

can be computed using the multi-moment-matching method as in (4.29) and (4.30), by choosing expan-
sion points that are different from those used there, i.e.,

range(𝑉 𝑟𝑑𝑢

𝜇̃𝑗 ) = span
{︁

𝑅̃0, 𝑅̃1, . . . , 𝑅̃𝑞

}︁
𝜇̃𝑗

, 𝑗 = 1, . . . , 𝑙. (4.32)
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Finally,

range(𝑉𝑟𝑑𝑢
) = orth

{︁
𝑉 𝑟𝑑𝑢

𝜇̃1 , . . . , 𝑉 𝑟𝑑𝑢

𝜇̃𝑙 , 𝑉𝑑𝑢

}︁
. (4.33)

The 𝜇̃𝑗 in (4.32) can be selected by a greedy algorithm searching the maximum of |𝑥̂𝑇
𝑟𝑑𝑢

(𝜇̃)𝑟𝑝𝑟(𝜇̃)|, the first part
of ∆2(𝜇̃) associated with 𝑥̂𝑟𝑑𝑢

, and are usually different from 𝜇̃𝑖 used for computing 𝑉𝑑𝑢.

4.6.4. Constructing 𝑉𝑟𝑝𝑟

From the state vector of the primal-residual system (4.2), we get

𝑥𝑟𝑝𝑟
(𝜇̃) = 𝑄−1(𝜇̃)𝑟𝑝𝑟(𝜇̃)

= 𝑄−1(𝜇̃)𝐵(𝜇̃)− 𝑥̂𝑝𝑟(𝜇̃)
= 𝑄−1(𝜇̃)𝐵(𝜇̃)− 𝑉 𝑧𝑝𝑟(𝜇̃),

(4.34)

where 𝑄−1(𝜇̃)𝐵(𝜇̃) is exactly the state vector 𝑥(𝜇̃) of the primal system.
Similarly to constructing 𝑉𝑟𝑑𝑢

, we use expansion points different from those used for 𝑉 to obtain a second
projection matrix 𝑉 1

𝑟𝑝𝑟
whose columns span a subspace that is different from the one spanned by the columns

of 𝑉 , then the projection matrix

𝑉𝑟𝑝𝑟
:= orth

{︁
𝑉 1

𝑟𝑝𝑟
, 𝑉
}︁

(4.35)

should represent the trajectory of 𝑥𝑟𝑝𝑟 (𝜇̃) well.

4.6.5. Constructing 𝑉𝑟𝑟𝑝𝑟

From the state vector of the primal-residual-residual system (4.12), we see that

𝑥𝑟𝑟𝑝𝑟 (𝜇̃) = 𝑄−1(𝜇̃)𝑟𝑟𝑝𝑟 (𝜇̃)
= 𝑄−1(𝜇̃)(𝑟𝑝𝑟(𝜇̃)−𝑄(𝜇̃)𝑉𝑟𝑝𝑟

𝑧𝑟𝑝𝑟
(𝜇̃))

= 𝑄−1(𝜇̃)(𝑟𝑝𝑟(𝜇̃)− 𝑉𝑟𝑝𝑟
𝑧𝑟𝑝𝑟

(𝜇̃))
= 𝑄−1(𝜇̃)(𝐵(𝜇̃)−𝑄𝑉 𝑧𝑝𝑟(𝜇̃))− 𝑉𝑟𝑝𝑟𝑧𝑟𝑝𝑟 (𝜇̃)
= 𝑄−1(𝜇̃)𝐵(𝜇̃)− 𝑉 𝑧𝑝𝑟(𝜇̃)− 𝑉𝑟𝑝𝑟

𝑧𝑟𝑝𝑟
(𝜇̃).

(4.36)

Taking the same expansion point as in (4.23), the series expansion of 𝑄−1(𝜇̃)𝐵(𝜇̃) in the last equation of (4.36)
gives rise to the projection matrix 𝑉 . Consequently, the subspace for 𝑥𝑟𝑟𝑝𝑟

(𝜇̃) is range(𝑉, 𝑉𝑟𝑝𝑟
), which is equiva-

lent with range(𝑉𝑟𝑝𝑟
), since 𝑉 is already included in 𝑉𝑟𝑝𝑟

in (4.35). This is in contradiction with Proposition 4.13
that 𝑉𝑟𝑟𝑝𝑟 should be different from 𝑉𝑟𝑝𝑟 . Therefore, 𝑄−1(𝜇̃)𝐵(𝜇̃) in the last equation of (4.36) cannot be expanded
using the same expansion points as those for both 𝑉 and 𝑉𝑟𝑝𝑟

. Recall that 𝑉𝑟𝑟𝑝𝑟
is used to construct the ROM

of the primal-residual-residual system (4.12) and contributes to the error estimator ∆𝑝𝑟
3 (𝜇̃). Then the expansion

points for series expansion of 𝑄−1(𝜇̃)𝐵(𝜇̃) in the last equation of (4.36) can be iteratively chosen by searching
the maximum of |𝐶(𝜇)𝑥̂𝑟𝑟𝑝𝑟

(𝜇̃)|, the second part of ∆𝑝𝑟
3 (𝜇̃), which purely depends on the ROM built by 𝑉𝑟𝑟𝑝𝑟

.
Greedy algorithms computing the projection matrices are presented in Section 6.

5. Comparing the proposed error estimators with the existing ones

In this section, the proposed error estimators are compared with the existing and closely related error esti-
mators: the randomized error estimator in [29], where some dual residual systems are employed to construct
the error estimator, and the error bound in [17] using the inf-sup constant. We first briefly review the random-
ized error estimator in Section 5.1, then compare it with the proposed error estimators in the next subsection,
where the proposed error estimators are also compared with regard to their similarities and differences. The
comparison is only done for error estimators with high relevance or with comparability.
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5.1. Review of the error estimator in [29]

State error estimation as well as output error estimation for parametric linear steady systems is proposed
in [29] based on randomized residuals. Given the system has only a single input, the output error estimation
can be used to estimate the transfer function error in frequency domain. The transfer function error 𝑒𝐻(𝜇̃) :=
𝐻(𝜇̃)− 𝐻̂(𝜇̃) can be measured using the 2-norm ‖𝑒𝐻(𝜇̃)‖2. The error estimator is given as

‖𝑒𝐻(𝜇̃)‖2 ≈
1
𝐾

(︃
𝐾∑︁

𝑖=1

𝛿2
𝑖

)︃1/2

=: ∆𝑟(𝜇̃), (5.1)

where 𝛿𝑖 = (𝑥𝑖
𝑑𝑢(𝜇̃))𝑇 𝑟𝑝𝑟(𝜇̃), and 𝑥𝑖

𝑑𝑢(𝜇̃) solves the 𝑖th random dual system,

𝑄(𝜇̃)𝑇 𝑥𝑖
𝑑𝑢(𝜇̃) = 𝑧𝑖, 𝑖 = 1, . . . ,𝐾, (5.2)

where 𝑧𝑖 ∼ 𝒩 (0, 𝐶𝑇 (𝜇̃)𝐶(𝜇̃)) is a random vector following the normal distribution with zero mean and covari-
ance matrix 𝐶𝑇 (𝜇̃)𝐶(𝜇̃) ∈ R𝑛×𝑛. According to Remark 2.6 in [29], the random dual systems reduce to

𝑄(𝜇̃)𝑇 𝑥𝑖
𝑑𝑢(𝜇̃) = 𝜉𝑖𝐶

𝑇 (𝜇̃), 𝑖 = 1, . . . ,𝐾, (5.3)

where 𝜉𝑖 ∼ 𝒩 (0, 1) is a random variable (scalar) with standard normal random distribution. Therefore, 𝑥𝑖
𝑑𝑢(𝜇̃)

can be obtained by first solving the dual system in (2.6) to get 𝑥𝑑𝑢(𝜇̃) and then multiplying 𝑥𝑑𝑢(𝜇̃) with 𝜉𝑖, i.e.,
𝑥𝑖

𝑑𝑢(𝜇̃) = 𝜉𝑖𝑥𝑑𝑢(𝜇̃).
It is stated in [29] (Corollary 2.5) that under certain conditions, ∆𝑟 is an error estimator of the true error

with the probability
P{𝑤−1∆𝑟(𝜇̃) ≤ ‖𝑒𝐻(𝜇̃)‖2 ≤ 𝑤∆𝑟(𝜇̃),∀𝜇̃ ∈ Ξ} ≥ 1− 𝛿, (5.4)

where 𝑤 >
√

𝑒, 𝑒 is the Euler number, and Ξ is a finite set of parameter samples, 0 < 𝛿 < 1. Note that the dual
system (2.6) with large size 𝑛 needs to be solved at least once for every parameter to obtain 𝑥𝑖

𝑑𝑢, this is still
costly. Therefore, for single output systems, 𝑥𝑑𝑢 is replaced by 𝑥̂𝑑𝑢, so that only the reduced dual system in (2.7)
needs to be solved. For multiple output systems, each of the random dual systems in (5.2) is first reduced to
a small system and then 𝑥𝑖

𝑑𝑢 is approximated by the approximate solutions 𝑥̂𝑖
𝑑𝑢 computed from the reduced

random dual systems. Finally, we have

‖𝑒(𝜇̃)‖2 ≈ 1
𝐾

(︂
𝐾∑︀

𝑖=1

𝛿2
𝑖

)︂1/2

=: ∆𝑟(𝜇̃)

≈ 1
𝐾

(︂
𝐾∑︀

𝑖=1

𝛿2
𝑖

)︂1/2

=: ∆̃𝑟(𝜇̃),

(5.5)

where 𝛿𝑖 = (𝑥̂𝑖
𝑑𝑢(𝜇̃))𝑇 𝑟𝑝𝑟(𝜇̃).

5.2. Robustness comparison

This subsection gives more insights into the proposed error estimators by comparing them with the existing
ones and by comparing highly relevant ones among them. The comparison mainly focuses on the robustness of
the error estimators in predicting the true error in the following sense: we discuss whether some are more likely
to underestimate or overestimate the true error than others.

– ∆1(𝜇̃) vs. ∆𝑝𝑟
1 (𝜇̃): To compute ∆1(𝜇̃), we need reduce both a primal system and a dual system. Whereas, the

primal system and the primal-residual system are reduced to obtain ∆𝑝𝑟
1 (𝜇̃). Although it is not clear which

one better estimates the true error theoretically, numerical results nevertheless show obvious superiority of
∆𝑝𝑟

1 (𝜇̃) over ∆1(𝜇̃).
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– ∆1(𝜇̃) vs. ∆2(𝜇̃): it is clear that ∆2(𝜇̃) is an upper bound of ∆1(𝜇̃), though it is not an upper bound of the
true error. This means, ∆1(𝜇̃) is more likely to underestimate the true error than ∆2(𝜇̃), if 𝑊𝑟𝑑𝑢

̸= 𝑊𝑑𝑢 due
to Proposition 4.9.

– ∆1(𝜇̃) vs. ∆𝑝𝑟
2 (𝜇̃): analogously, ∆1(𝜇̃) is more likely to underestimate the true error than ∆𝑝𝑟

2 (𝜇̃), if 𝑊𝑟𝑝𝑟
̸= 𝑊

due to Proposition 4.11.
– ∆𝑝𝑟

1 (𝜇̃) vs. ∆3(𝜇̃): ∆𝑝𝑟
1 (𝜇̃) is more likely to underestimate the true error than ∆3(𝜇̃).

– ∆𝑝𝑟
1 (𝜇̃) vs. ∆𝑝𝑟

3 (𝜇̃): ∆𝑝𝑟
1 (𝜇̃) is more likely to underestimate the true error than ∆𝑝𝑟

3 (𝜇̃), if 𝑊𝑟𝑟𝑝𝑟
̸= 𝑊𝑟𝑝𝑟

due
to Proposition 4.13.

– ∆2(𝜇̃) vs. ∆𝑝𝑟
2 (𝜇̃): the only difference between ∆2 and ∆𝑝𝑟

2 (𝜇̃) is the difference between their second parts,
where the ROM of the dual residual system (𝑥̂𝑑𝑢(𝜇̃)) is used for ∆2(𝜇̃), whereas the ROM of the primal-
residual system (𝑥̂𝑟𝑝𝑟

(𝜇̃)) is used for ∆𝑝𝑟
2 (𝜇̃). They also behave similarly in the numerical experiments.

– ∆2(𝜇̃) vs. ∆3(𝜇̃): the first term |𝑥̂𝑇
𝑟𝑑𝑢

(𝜇̃)𝑟𝑝𝑟(𝜇̃)| of ∆2(𝜇̃) results from the ROM of the primal system and
that of the dual system. The first term |𝐶(𝜇̃)𝑥̂𝑟𝑝𝑟 (𝜇̃)| of ∆3(𝜇̃) results from reducing the primal system and
the primal-residual system. As for their second terms: |𝑥̂𝑇

𝑑𝑢(𝜇̃)𝑟𝑝𝑟(𝜇̃)| of ∆2(𝜇̃) and |𝑥̂𝑇
𝑑𝑢(𝜇̃)𝑟𝑟𝑝𝑟

(𝜇̃)| of ∆3(𝜇̃),
𝑟𝑝𝑟(𝜇̃) is the residual from the ROM of the primal system, but 𝑟𝑟𝑝𝑟 (𝜇̃) is the residual from the ROM of the
primal-residual system. 𝑟𝑟𝑝𝑟

(𝜇̃) is the result of two-step model reduction, whereas 𝑟𝑝𝑟 results from one step
of MOR. Numerical results show that ∆2(𝜇̃) is more robust than ∆3(𝜇̃), when ∆2(𝜇̃) is computed properly,
especially for near symmetric systems.

– ∆3(𝜇̃) vs. ∆𝑝𝑟
3 (𝜇̃): The only difference between ∆3(𝜇̃) and ∆𝑝𝑟

3 (𝜇̃) is the difference between their second
parts, where 𝑥̂𝑑𝑢(𝜇̃), the quantity computed from the ROM of the dual system is used for ∆3(𝜇̃), whereas,
𝑥̂𝑟𝑟𝑝𝑟

(𝜇̃), the quantity computed from the ROM of the primal-residual-residual system is used for ∆𝑝𝑟
3 (𝜇̃).

Numerical results in the next section show little difference between their effectivities.
– ∆0(𝜇̃) vs. ∆2(𝜇̃) in [17]: It is shown in [16] that ∆0(𝜇̃) has motivated the derivation of ∆2(𝜇̃) and can be

seen as an upper bound of ∆2(𝜇̃). Although ∆0(𝜇̃) is an error bound of the transfer function error, it is
much more time consuming to compute as compared with ∆2(𝜇̃), since the smallest singular value of a large
matrix (of the original model size 𝑛) needs to be solved for every parameter value in a given training set.
∆2(𝜇̃) avoids this computational issue. Numerical tests on several models in [16] have shown that ∆2(𝜇̃) is
much tighter than ∆0(𝜇̃) and behaves as an error bound, except for very small true errors close to machine
precision.

– ∆̃𝑟(𝜇̃) in [29] vs. ∆1(𝜇̃): From the proof of Theorem 1, we see that the quantity |𝑥𝑇
𝑑𝑢(𝜇̃)𝑟𝑝𝑟(𝜇̃)| in (3.1) is

exactly the true error. Using a similar description as in (5.4), |𝑥𝑇
𝑑𝑢(𝜇̃)𝑟𝑝𝑟| satisfies

P{𝑤−1|𝑥𝑇
𝑑𝑢(𝜇̃)𝑟𝑝𝑟| ≤ ‖𝑒𝐻(𝜇̃)‖2 ≤ 𝑤|𝑥𝑇

𝑑𝑢(𝜇̃)𝑟𝑝𝑟(𝜇̃)|,∀𝜇̃ ∈ Ξ,∀Ξ ∈ 𝒟} = 1, (5.6)

with 𝑤 = 1, which is an exact estimation of the true error not only for any 𝜇̃ in a given Ξ as in (5.4),
but also for any 𝜇̃ in 𝒟. Here, 𝒟 is the continuous parameter domain. Comparing (5.6) with (5.4), we
know that ∆𝑟(𝜇̃) in (5.1) and (5.4) is an error estimator, whereas |𝑥𝑇

𝑑𝑢(𝜇̃)𝑟𝑝𝑟(𝜇̃)| in (3.1) and (5.6) is the
true error. Furthermore, the error estimator ∆1(𝜇̃) is derived based on |𝑥𝑇

𝑑𝑢(𝜇̃)𝑟𝑝𝑟(𝜇̃)| by replacing the true
dual solution 𝑥𝑑𝑢(𝜇̃) in |𝑥𝑇

𝑑𝑢(𝜇̃)𝑟𝑝𝑟(𝜇̃)| with the approximate dual solution 𝑥̂𝑑𝑢(𝜇̃); whereas ∆̃𝑟(𝜇̃) is derived
based on ∆𝑟(𝜇̃) in (5.1) also by replacing 𝑥𝑑𝑢(𝜇̃) in ∆𝑟(𝜇̃) with 𝑥̂𝑑𝑢(𝜇̃). In summary, ∆1(𝜇̃) is only a one-step
approximation of the true error, whereas, ∆̃𝑟(𝜇̃) is a two-step approximation of the true error. It is therefore
not difficult to see that ∆1(𝜇̃) should be tighter than ∆̃𝑟(𝜇̃). Simulation results also show that ∆̃𝑟(𝜇̃) is
often not as tight as ∆1(𝜇̃). From the previous analyses, ∆1(𝜇̃) is less accurate than all the other proposed
error estimators, which can also be seen from the numerical results in Section 7. Therefore, it appears to be
unnecessary to compare ∆̃𝑟(𝜇̃) with the other estimators.

5.3. Computational complexity comparison

Computing any of the error estimators discussed in this work needs to construct a ROM of the primal system.
It is noticed that the projection matrix 𝑉 used to construct the ROM of the primal system (2.4) is the same
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matrix used to derive the ROM of the original system. Therefore, the ROM of the primal system can be derived
for free in the sense that 𝑉 is obtained without additional computation. Except for constructing the ROM of
the primal system, we list the following additional costs required by different error estimators.

– Computing ∆0(𝜇̃) involves constructing the ROM of the dual system (2.6), and computing the inf-sup
constant at each 𝜇̃ in the training set Ξ.

– Computing ∆1(𝜇̃) or ∆𝑝𝑟
1 (𝜇̃) involves constructing the ROM of the dual system or the ROM of the primal-

residual system (4.2).
– Computing ∆2(𝜇̃), ∆𝑝𝑟

2 (𝜇̃) or ∆3(𝜇̃) involves constructing the ROM of the dual system (2.6), and addition-
ally the ROM of a corresponding residual system needs to be constructed: the ROM of the dual-residual
system (3.4) or the ROM of the primal-residual system (4.2).

– Computing ∆𝑝𝑟
3 (𝜇̃) involves constructing the ROMs of two residual systems: the primal-residual system (4.2)

and the primal-residual-residual system (4.12).
– Computing ∆𝑟(𝜇̃) involves constructing the ROM of the dual system if the output matrix 𝐶 is a vector,

otherwise, 𝐾 ROMs of the 𝐾 random dual systems in (5.2) must be constructed.

From Section 4.6, we see that to construct the ROMs of the dual system, or any of the residual systems, one
only has to solve several linear systems to compute the coefficients in the series expansion of the corresponding
solution vector. For interpolatory MOR methods in frequency domain, the cost of constructing the ROM of any
of the above mentioned system is equivalent to the cost of constructing the ROM of the original system. This
means, in order to compute any of the error estimators, one or two additional ROMs need to be constructed at
each iteration of the greedy algorithm. Except for constructing the ROMs, where linear systems of the original
dimension need to be solved at the expansion points, no extra large-scale computations are needed to compute
the error estimators. However, the error bound ∆0(𝜇̃) has the highest computational cost, since computing
the inf-sup constant means solving a large eigenvalue problem at each 𝜇̃ in Ξ per iteration. Furthermore, from
the proposed greedy algorithms in the next section, the additional ROMs are constructed simultaneously with
the ROM (2.2) of the original system, no separate greedy algorithms are required as in [28].

6. Greedy algorithms for constructing the projection matrices

The aim of an efficient error estimator is to construct a ROM of the original system with satisfying accuracy
and high reliability. In the following, we show algorithms for constructing the ROM of the original system, where
an error estimator acts as a guidance for greedy constructing the projection matrix 𝑉 for the ROM. Again, we
use Galerkin projection to compute the ROM of the original systems and the ROMs of the other systems, which
are involved in computing the error estimators. To compute any of the proposed error estimators, corresponding
projection matrices 𝑉𝑑𝑢, 𝑉𝑟𝑑𝑢

, 𝑉𝑟𝑝𝑟
, 𝑉𝑟𝑟𝑝𝑟

need to be constructed simultaneously with 𝑉 .
As compared with the algorithms in [16], we have included the proposed variants of the error estimator and

computation of their corresponding projection matrices into the algorithms. The performance of the proposed
error estimators as well as the existing ones are compared in the next section.

We first present the greedy scheme for non-parametric systems in Algorithm 1. The standard moment-
matching method [7] is used to compute the projection matrices. The variable 𝜖tol is defined as the tolerance
for the error of the reduced transfer function. Once the maximal error estimator over the whole sample set Ξ is
below the tolerance, the greedy algorithm stops. In every iteration, the 𝑠 sample corresponding to the maximal
error estimator is chosen as the next expansion point 𝑠𝑖 (Step 21). Steps 5, 8, 12, 15 and Step 19 orthogonalize
the vectors in 𝑉 (𝑠𝑖) and 𝑉𝑑𝑢(𝑠𝑖), 𝑉𝑟𝑑𝑢

(𝑠𝛼
𝑖 ), 𝑉𝑟𝑝𝑟 (𝑠𝛼

𝑖 ), 𝑉𝑟𝑟𝑝𝑟

(︁
𝑠𝛽

𝑖

)︁
against the existing vectors in 𝑉 and 𝑉𝑑𝑢, 𝑉𝑟𝑑𝑢

,
𝑉𝑟𝑝𝑟

, 𝑉𝑟𝑟𝑝𝑟
, respectively.

In Algorithm 1, some steps are only implemented for certain error estimators, depending on which error
estimator is being used. The expansion point 𝑠𝛼

𝑖 is chosen to iteratively construct 𝑉𝑟𝑑𝑢
or 𝑉𝑟𝑝𝑟 , while 𝑠𝛽

𝑖 is
chosen to construct 𝑉𝑟𝑟𝑝𝑟 . The choice of the expansion points 𝑠𝛼

𝑖 or 𝑠𝛽
𝑖 depends on the part of the error estimator

that is solely decided by the corresponding projection matrices 𝑉𝑟𝑑𝑢
, 𝑉𝑟𝑝𝑟

, or 𝑉𝑟𝑟𝑝𝑟
. As for ∆𝑝𝑟

1 (𝜇̃), since 𝑠𝑖 is
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chosen according to ∆𝑝𝑟
1 , 𝑠𝛼

𝑖 is chosen according to the norm of 𝑟𝑟𝑝𝑟
to avoid 𝑉𝑟𝑝𝑟

being identical with 𝑉 due to
Proposition 4.11.

Algorithm 1. Greedy ROM construction for non-parametric systems (2.1).
Input: System matrices 𝐸, 𝐴, 𝐵, 𝐶, 𝜖tol, Ξ: a set of samples of 𝑠 covering the interesting frequency range.
Output: The projection matrix 𝑉 for constructing the ROM in (2.2).
1: 𝑉 = [], 𝑉𝑑𝑢 = [],𝑉𝑟𝑑𝑢 = [], 𝑉𝑟𝑝𝑟 = [], 𝑉𝑟𝑟𝑝𝑟 = [], set 𝜖 = 𝜖tol + 1, 𝑞 > 1.

2: Initial expansion point: 𝑠𝑖 ∈ Ξ, for 𝑉, 𝑉𝑑𝑢; 𝑠𝛼
𝑖 ∈ Ξ, for 𝑉𝑟𝑑𝑢(or 𝑉𝑟𝑝𝑟 ); 𝑠𝛽

𝑖 ∈ Ξ, for 𝑉𝑟𝑟𝑝𝑟 , 𝑖 = 1.
3: while 𝜖 > 𝜖tol do

4: range(𝑉 (𝑠𝑖)) = span
{︁

𝐵̃(𝑠𝑖), . . . , (𝐴(𝑠𝑖))
𝑞−1𝐵̃(𝑠𝑖)

}︁
, where 𝐴(𝑠) = (𝑠𝐸 −𝐴)−1𝐸, 𝐵̃(𝑠) = (𝑠𝐸 −𝐴)−1𝐵, and 𝑞 ≪ 𝑛

5: 𝑉 = orth {𝑉, 𝑉 (𝑠𝑖)} .
6: if Δ(𝑠) ∈ {Δ1(𝑠), Δ2(𝑠), Δ

𝑝𝑟
2 (𝑠), Δ3(𝑠)} then

7: range(𝑉𝑑𝑢(𝑠𝑖)) = span
{︁

𝐶(𝑠𝑖), . . . , (𝐴𝑐(𝑠𝑖))
𝑞−1𝐶(𝑠𝑖)

}︁
, where 𝐴𝑐(𝑠) = (𝑠𝐸 −𝐴)−𝑇 𝐸𝑇 , 𝐶(𝑠) = (𝑠𝐸 −𝐴)−𝑇 𝐶𝑇 .

8: 𝑉𝑑𝑢 = orth {𝑉𝑑𝑢, 𝑉𝑑𝑢(𝑠𝑖)}.
9: end if

10: if Δ(𝑠) = Δ2(𝑠) then

11: range(𝑉𝑟𝑑𝑢 (𝑠𝛼
𝑖 )) = span

{︁
𝐶 (𝑠𝛼

𝑖 ) , . . . , (𝐴𝑐 (𝑠𝛼
𝑖 ))𝑞−1𝐶 (𝑠𝛼

𝑖 )
}︁

.

12: 𝑉𝑟𝑑𝑢 = orth {𝑉𝑑𝑢, 𝑉𝑟𝑑𝑢 , 𝑉𝑟𝑑𝑢 (𝑠𝛼
𝑖 )}.

13: else if Δ(𝑠) ∈ {Δ𝑝𝑟
1 (𝑠), Δ𝑝𝑟

2 (𝑠), Δ3(𝑠), Δ
𝑝𝑟
3 (𝑠)} then

14: range(𝑉𝑟𝑝𝑟 (𝑠𝛼
𝑖 )) = span

{︁
𝐵̃ (𝑠𝛼

𝑖 ) , . . . , (𝐴 (𝑠𝛼
𝑖 ))𝑞−1𝐵̃ (𝑠𝛼

𝑖 )
}︁

.

15: 𝑉𝑟𝑝𝑟 = orth
{︀
𝑉, 𝑉𝑟𝑝𝑟 , 𝑉𝑟𝑝𝑟 (𝑠𝛼

𝑖 )
}︀
.

16: end if
17: if Δ(𝑠) = Δ𝑝𝑟

3 (𝑠) then

18: range
(︁
𝑉𝑟𝑟𝑝𝑟

(︁
𝑠𝛽

𝑖

)︁)︁
= span

{︂
𝐵̃
(︁
𝑠𝛽

𝑖

)︁
, . . . ,

(︁
𝐴
(︁
𝑠𝛽

𝑖

)︁)︁𝑞−1

𝐵̃
(︁
𝑠𝛽

𝑖

)︁}︂
.

19: 𝑉𝑟𝑟𝑝𝑟 = orth
{︁

𝑉, 𝑉𝑟𝑝𝑟 , 𝑉𝑟𝑟𝑝𝑟 , 𝑉𝑟𝑟𝑝𝑟

(︁
𝑠𝛽

𝑖

)︁}︁
.

20: end if
21: 𝑖 = 𝑖 + 1, 𝑠𝑖 = arg max

𝑠∈Ξ
Δ(𝑠).

22: if Δ(𝑠) = Δ2(𝑠) then
23: 𝑠𝛼

𝑖 = arg max
𝑠∈Ξ

|𝑥̂𝑇
𝑟𝑑𝑢

(𝑠)𝑟𝑝𝑟(𝑠)|. %second part of Δ2(𝑠)

24: else if Δ(𝑠) = Δ𝑝𝑟
2 (𝑠) then

25: 𝑠𝛼
𝑖 = arg max

𝑠∈Ξ
|𝑟𝑇

𝑑𝑢(𝑠)𝑥̂𝑟𝑝𝑟 (𝑠)|. %second part of Δ𝑝𝑟
2 (𝑠)

26: else if Δ(𝑠) = Δ𝑝𝑟
1 (𝑠) then

27: 𝑠𝛼
𝑖 = arg max

𝑠∈Ξ
‖𝑟𝑟𝑝𝑟 (𝑠)‖2. 𝑟𝑟𝑝𝑟(𝑠) is defined in (4.9).

28: else if Δ(𝑠) = Δ3(𝑠), or Δ𝑝𝑟
3 (𝑠) then

29: 𝑠𝛼
𝑖 = arg max

𝑠∈Ξ
Δ𝑝𝑟

1 (𝑠). %first part of Δ3(𝑠) or Δ𝑝𝑟
3 (𝑠)

30: end if
31: if Δ(𝑠) = Δ𝑝𝑟

3 (𝑠) then

32: 𝑠𝛽
𝑖 = arg max

𝑠∈Ξ
|𝐶𝑥̂𝑟𝑟𝑝𝑟 (𝑠)|. %second part of Δ𝑝𝑟

3 (𝑠)

33: end if
34: 𝜖 = Δ(𝑠𝑖).
35: end while

Algorithm 2 shows the adaptive scheme for linear parametric systems. Algorithm 2 is similar with Algorithm 1.
Its only difference from Algorithm 1 is in computing the projection matrices at a chosen expansion point in
Steps 4, 7, 11, 14 and Step 18, where the multi-moment-matching method instead of the moment-matching
method is used.



578 L. FENG AND P. BENNER

In greedy algorithms, large linear systems are solved only at the expansion points selected from a training
set Ξ, to construct the corresponding projection matrices for MOR and for computing the error estimators. For
each projection matrix, only a single expansion point is selected at each iteration step of the greedy algorithm,
requiring a quite limited number of large-scale linear solves. Finally, if the greedy algorithm converges in a few
iterations, large-scale linear solves are performed only at a few samples in the training set Ξ.

Algorithm 2. Greedy ROM construction for parametric systems (2.1).
Input: System matrices 𝐸(𝜇), 𝐴(𝜇), 𝐵(𝜇), 𝐶(𝜇), 𝜖tol, Ξ: a set of samples of 𝜇̃ covering the interesting parameter domain.
Output: The projection matrix 𝑉 for constructing the ROM in (2.2).
1: 𝑉 = [], 𝑉𝑑𝑢 = [],𝑉𝑟𝑑𝑢 = [], 𝑉𝑟𝑝𝑟 = [], 𝑉𝑟𝑟𝑝𝑟 = [], set 𝜖 = 𝜖tol + 1.

2: Initial expansion point: 𝜇̃𝑖 ∈ Ξ for 𝑉, 𝑉𝑑𝑢; 𝜇̃𝑖
𝛼 for 𝑉𝑟𝑑𝑢(or 𝑉𝑟𝑝𝑟 ); 𝜇̃𝑖

𝛽 for 𝑉𝑟𝑟𝑝𝑟 , 𝑖 = 1.
3: while 𝜖 > 𝜖tol do
4: compute 𝑉𝜇̃𝑖 following (4.25).

5: 𝑉 = orth
{︀
𝑉, 𝑉𝜇̃𝑖)

}︀
.

6: if Δ(𝜇̃) ∈ {Δ1(𝜇̃), Δ2(𝜇̃), Δ𝑝𝑟
2 (𝜇̃), Δ3(𝜇̃)} then

7: compute 𝑉 𝑑𝑢
𝜇̃𝑖 following (4.29).

8: 𝑉𝑑𝑢 = orth
{︁

𝑉𝑑𝑢, 𝑉 𝑑𝑢
𝜇̃𝑖

}︁
.

9: end if
10: if Δ(𝜇̃) = Δ2(𝜇̃) then
11: compute 𝑉

𝑟𝑑𝑢

𝜇̃𝑖
𝛼

following (4.32).

12: 𝑉𝑟𝑑𝑢 = orth
{︁

𝑉𝑑𝑢, 𝑉𝑟𝑑𝑢 , 𝑉
𝑟𝑑𝑢

𝜇̃𝑖
𝛼

}︁
.

13: else if Δ(𝜇̃) ∈ {Δ𝑝𝑟
1 (𝜇̃), Δ𝑝𝑟

2 (𝜇̃), Δ3(𝜇̃), Δ𝑝𝑟
3 (𝜇̃)} then

14: compute 𝑉
𝑟𝑝𝑟

𝜇̃𝑖
𝛼

following (4.25).

15: 𝑉𝑟𝑝𝑟 = orth
{︁

𝑉, 𝑉𝑟𝑝𝑟 , 𝑉
𝑟𝑝𝑟

𝜇̃𝑖
𝛼

}︁
.

16: end if
17: if Δ(𝜇̃) = Δ𝑝𝑟

3 (𝜇̃) then
18: compute 𝑉

𝑟𝑟𝑝𝑟

𝜇̃𝑖
𝛽

following (4.25).

19: 𝑉𝑟𝑟𝑝𝑟 = orth

{︂
𝑉, 𝑉𝑟𝑝𝑟 , 𝑉𝑟𝑟𝑝𝑟 , 𝑉

𝑟𝑟𝑝𝑟

𝜇̃𝑖
𝛽

}︂
.

20: end if
21: 𝑖 = 𝑖 + 1, 𝜇̃𝑖 = arg max

𝜇̃∈Ξ
Δ(𝜇̃).

22: if Δ(𝜇̃) = Δ2(𝜇̃) then
23: 𝜇̃𝑖

𝛼 = arg max
𝜇̃∈Ξ

|𝑥̂𝑇
𝑟𝑑𝑢

(𝜇̃)𝑟𝑝𝑟(𝜇̃)|. %second part of Δ2(𝜇̃)

24: else if Δ(𝑠) = Δ𝑝𝑟
2 (𝜇̃) then

25: 𝜇̃𝑖
𝛼 = arg max

𝑠∈Ξ
|𝑟𝑇

𝑑𝑢(𝜇̃)𝑥̂𝑟𝑝𝑟 (𝜇̃)|. %second part of Δ𝑝𝑟
2 (𝜇̃)

26: else if Δ(𝜇̃) = Δ𝑝𝑟
1 (𝜇̃) then

27: 𝜇̃𝑖
𝛼 = arg max

𝜇̃∈Ξ
‖𝑟𝑟𝑝𝑟 (𝜇̃)‖2. % 𝑟𝑟𝑝𝑟 (𝜇̃) is defined in (4.9).

28: else if Δ(𝜇̃) = Δ3(𝜇̃), or Δ𝑝𝑟
3 (𝜇̃) then

29: 𝜇̃𝑖
𝛼 = arg max

𝜇̃∈Ξ
Δ𝑝𝑟

1 (𝜇̃).

30: end if
31: if Δ(𝜇̃) = Δ𝑝𝑟

3 (𝜇̃) then
32: 𝜇̃𝑖

𝛽 = argmax
𝜇̃∈Ξ

|𝐶(𝜇)𝑥̂𝑟𝑟𝑝𝑟 (𝜇̃)|. %second part of Δ𝑝𝑟
3 (𝜇̃)

33: end if
34: 𝜖 = Δ(𝜇̃𝑖).
35: end while
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We point out in Remark 4.7, Section 4.5 that when a system is almost symmetric, ∆1(𝜇̃) performs badly,
which will in turn, affect the behavior of ∆2(𝜇̃) and ∆𝑝𝑟

2 (𝜇̃). From the simulation results in the next section,
we will see that, except for the CD player model, ∆1(𝜇̃) is not a good estimator. It is observed that for the
RLCtree model, 𝑄(𝑠) is symmetric, and only two elements are different between the input vector 𝐵 and the
transpose of the output vector 𝐶. For the MIMO example, the matrix 𝐸 is symmetric and 𝐵 = 𝐶𝑇 . For the
parametric example, the mass matrix 𝑀(𝜇) is symmetric. The stiffness matrix is unsymmetric, but the maximal
magnitude of the elements in the matrix 𝑇𝑇 (𝜇)− 𝑇 (𝜇) is 𝑂(10−18) for all the parameters. This implicates that
𝑇 (𝜇) is very likely symmetric in theory, and the small differences between 𝑇 (𝜇) and its transpose are probably
caused by numerical errors. The damping matrix is unsymmetric, but the maximal magnitude of the elements
in the damping matrix 𝐷(𝜇) is 𝑂(10−11). Whereas, the maximal magnitude of the elements in 𝑇 (𝜇) is 𝑂(1).
Since the matrix 𝑄(𝜇̃) is composed of 𝑀(𝜇), 𝑇 (𝜇) and 𝐷(𝜇), i.e., 𝑄(𝜇̃) = 𝑠2𝑀(𝜇) + 𝑠𝐷(𝜇) + 𝑇 (𝜇), and
𝑠 = 2𝜋𝑓, 𝑓 ∈ [50, 250], it can be concluded that 𝑄(𝜇̃) is almost symmetric. All the three examples are close to
the symmetric case indicated in Remark 4.7.

In the following, we propose two algorithms: Algorithms 3 and 4, aiming at improving the behavior of ∆1(𝜇̃),
∆2(𝜇̃) and ∆𝑝𝑟

2 (𝜇̃) for nearly symmetric systems. Their main difference from Algorithm 1 and 2 is that instead of
using the same expansion point for 𝑉𝑑𝑢 and 𝑉 , different expansion points (𝑠𝛾

𝑖 or 𝜇̃𝑖
𝛾) are chosen for 𝑉𝑑𝑢 according

to a different error criterion that directly depends on 𝑉𝑑𝑢, see Steps 21–25 in Algorithm 3 and Algorithm 4,
respectively.

7. Simulation results

In this section, we show the performance of the proposed error estimators and the existing ones. Detailed
analyses for each of them are presented accordingly. Since the error bound ∆0(𝜇̃) in [17] has been compared
in detail with the error estimator ∆2(𝜇̃) in a recent work [16], we do not repeat this comparison. Furthermore,
since ∆0(𝜇̃) was shown to be less tight than ∆2(𝜇̃), it will not be compared with other error estimators either,
as it will be clear from the results below that ∆0(𝜇̃) may not outperform most of the error estimators.

We use the same four models as in [16] to show the robustness of the error estimators. The first two are
non-parametric SISO systems. One is a well-known MOR benchmark example, the model of a CD player (with
order 𝑛 = 120), the other is a model of an RLC tree circuit with order 𝑛 = 6134. The third example is a circuit
model with 𝑛 = 980. It has 4 inputs and 4 outputs, and no parameters. Both the CD player model and the
third multi-input multi-output (MIMO) circuit model are from the SLICOT benchmark collection1. The last
one is the model of a butterfly-shaped micro-gyroscope, available from the MOR benchmark collection2. It is a
second-order parametric system with 𝑛 = 17 931.

The interesting frequency band for the CD player model is [0, 1 MHz]. The frequency range of interest for
the second and the third models is [0, 3 GHz]. The Gyroscope model is a low frequency problem with 𝑓 ∈
[50 Hz, 250 Hz].

The error tolerance 𝜖tol used in the greedy algorithms, i.e., the error tolerance for the error of the ROM of the
original system, is set as 1×10−3 for the first three examples, while for the last example, we set 𝜖tol = 1×10−7,
since the transfer function 𝐻(𝜇) has the smallest magnitude of 2.8× 10−7.

For all the non-parametric examples, we use 𝑞 = 3 (order of moments matched) in Algorithm 1 and
Algorithm 3. For the parametric model, we use 𝑅0, 𝑅1 (𝑅̃0, 𝑅̃1) to generate the matrices 𝑉𝜇̃𝑖 , 𝑉 𝑑𝑢

𝜇̃𝑖 , 𝑉 𝑟𝑑𝑢

𝜇̃𝑖
𝛼

,
𝑉

𝑟𝑝𝑟

𝜇̃𝑖
𝛼

and 𝑉
𝑟𝑟𝑝𝑟

𝜇̃𝑖
𝛽

in Algorithms 2 and 4. At each iteration, the maximal error estimator in Ξ, is computed,

and is used as the error control for the ROM (2.2) of the original system. Therefore, the maximal true error
𝜀max = max𝜇𝑖∈Ξ 𝜀(𝜇𝑖) is used for comparison, where 𝜀(𝜇𝑖) is the true error of the ROM evaluated at 𝜇𝑖, at
the current iteration of the algorithm. Different error estimators produce ROMs with different accuracy at each

1 http://www.icm.tu-bs.de/NICONET/benchmodred.html.
2 https://morwiki.mpi-magdeburg.mpg.de/morwiki.

http://www.icm.tu-bs.de/NICONET/benchmodred.html
https://morwiki.mpi-magdeburg.mpg.de/morwiki
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Algorithm 3. Improving ∆1(𝜇̃), ∆2(𝜇̃) and ∆𝑝𝑟
2 (𝜇̃) for nearly symmetric and non-parametric systems (2.1).

Input: System matrices 𝐸, 𝐴, 𝐵, 𝐶, 𝜖tol, Ξ: a set of samples of 𝑠 covering the interesting frequency range.
Output: The projection matrix 𝑉 for constructing the ROM in (2.2).
1: 𝑉 = [], 𝑉𝑑𝑢 = [], 𝑉𝑟𝑑𝑢 = [], 𝑉𝑟𝑝𝑟 = [] set 𝜖 = 𝜖tol + 1, 𝑞 > 1.
2: Initial expansion point: 𝑖 = 1, 𝑠𝑖 ∈ Ξ for 𝑉 ; 𝑠𝛼

𝑖 ∈ Ξ for 𝑉𝑟𝑑𝑢(or 𝑉𝑟𝑝𝑟 ); 𝑠𝛾
𝑖 ∈ Ξ for 𝑉𝑑𝑢.

3: while 𝜖 > 𝜖tol do

4: range(𝑉 (𝑠𝑖)) = span
{︁

𝐵̃(𝑠𝑖), . . . , (𝐴(𝑠𝑖))
𝑞−1𝐵̃(𝑠𝑖)

}︁
.

5: 𝑉 = orth {𝑉, 𝑉 (𝑠𝑖)}
6: range(𝑉𝑑𝑢(𝑠𝛾

𝑖 )) = span
{︁

𝐶(𝑠𝛾
𝑖 ), . . . , (𝐴𝑐(𝑠

𝛾
𝑖 ))𝑞−1𝐶(𝑠𝛾

𝑖 )
}︁

.

7: 𝑉𝑑𝑢 = orth {𝑉𝑑𝑢, 𝑉𝑑𝑢(𝑠𝛾
𝑖 )}.

8: if Δ(𝑠) = Δ2(𝑠) then

9: range(𝑉𝑟𝑑𝑢 (𝑠𝛼
𝑖 )) = span

{︁
𝐶 (𝑠𝛼

𝑖 ) , . . . , (𝐴𝑐 (𝑠𝛼
𝑖 ))𝑞−1𝐶 (𝑠𝛼

𝑖 )
}︁

.

10: 𝑉𝑟𝑑𝑢 = orth {𝑉𝑑𝑢, 𝑉𝑟𝑑𝑢 , 𝑉𝑟𝑑𝑢 (𝑠𝛼
𝑖 )}.

11: else if Δ(𝑠) = Δ𝑝𝑟
2 (𝑠) then

12: range(𝑉𝑟𝑝𝑟 (𝑠𝛼
𝑖 )) = span

{︁
𝐵̃ (𝑠𝛼

𝑖 ) , . . . , (𝐴 (𝑠𝛼
𝑖 ))𝑞−1𝐵̃ (𝑠𝛼

𝑖 )
}︁

.

13: 𝑉𝑟𝑝𝑟 = orth
{︀
𝑉, 𝑉𝑟𝑝𝑟 , 𝑉𝑟𝑝𝑟 (𝑠𝛼

𝑖 )
}︀
.

14: end if
15: 𝑖 = 𝑖 + 1, 𝑠𝑖 = arg max

𝑠∈Ξ
Δ(𝑠).

16: if Δ(𝑠) = Δ2(𝑠) then
17: 𝑠𝛼

𝑖 = arg max
𝑠∈Ξ

|𝑥̂𝑇
𝑟𝑑𝑢

(𝑠)𝑟𝑝𝑟(𝑠)|. %second part of Δ2(𝑠)

18: else if Δ(𝑠) = Δ𝑝𝑟
2 (𝑠) then

19: 𝑠𝛼
𝑖 = arg max

𝑠∈Ξ
|𝑟𝑇

𝑑𝑢(𝑠)𝑥̂𝑟𝑝𝑟 (𝑠)|. %second part of Δ𝑝𝑟
2 (𝑠)

20: end if
21: if Δ(𝑠) = Δ1(𝑠) then
22: 𝑠𝛾

𝑖 = arg max
𝑠∈Ξ

‖𝑟𝑑𝑢(𝑠)‖2.
23: else if Δ(𝑠) ∈ {Δ2(𝑠), Δ

𝑝𝑟
2 } then

24: 𝑠𝛾
𝑖 = arg max

𝑠∈Ξ
Δ1(𝑠). %first part of Δ2(𝑠) or Δ𝑝𝑟

2

25: end if
26: 𝜖 = Δ(𝑠𝑖).
27: end while

iteration of the greedy algorithm. In the tables below, we write 𝜀max(∆) to indicate the maximal true error
corresponding to a specific error estimator ∆. Here, ∆ represents any of the error estimators listed in the tables.

For Algorithms 1 and 2, the initial expansion point 𝑠1 or 𝜇̃1 for computing 𝑉, 𝑉𝑑𝑢 is taken as the first sample
in Ξ, and the initial expansion point 𝑠𝛼

1 or 𝜇̃1
𝛼 for computing 𝑉𝑟𝑑𝑢

, 𝑉𝑟𝑝𝑟 is taken as the last sample in Ξ to make
the two expansion points different from each other. The expansion point 𝑠𝛽

1 or 𝜇̃1
𝛽 is for 𝑉𝑟𝑟𝑝𝑟 . It is taken as the

midpoint in Ξ. Algorithms 3 and 4 are for (nearly) symmetric systems, and the initial expansion points 𝑠1, 𝜇̃
1

for 𝑉 are different from 𝑠𝛾
1 , 𝜇̃1

𝛾 for 𝑉𝑑𝑢. Therefore, 𝑠1 or 𝜇̃1 is taken as the first sample in Ξ and 𝑠𝛾
1 or 𝜇̃1

𝛾 is taken
as the midpoint in Ξ. The initial point 𝑠𝛼

1 or 𝜇̃1
𝛼 for 𝑉𝑟𝑑𝑢

, 𝑉𝑟𝑝𝑟
is taken as the last point in Ξ.

7.1. The CD player model

The training set Ξ for this model contains 60 samples of 𝑠, and then the finally obtained ROM in (2.2) is
validated at 600 samples of 𝑠 covering the whole interesting frequency range. The samples are taken from the
interval [0, 1 MHz] using the MATLAB function “logspace”. The results of Algorithm 1 using different error
estimators are shown in Tables 1–3, where the error estimators and the corresponding true errors 𝜖max of the
ROMs at each iteration of the Algorithm, are listed. Note that different ROMs are derived by using different
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Algorithm 4. Improving ∆1(𝜇̃), ∆2(𝜇̃) and ∆𝑝𝑟
2 (𝜇̃) for nearly symmetric and parametric systems (2.1).

Input: System matrices 𝐸(𝜇), 𝐴(𝜇), 𝐵(𝜇), 𝐶(𝜇), 𝜖tol, Ξ: a set of samples of 𝜇̃ covering the interesting frequency range.
Output: The projection matrix 𝑉 for constructing the ROM in (2.2).
1: 𝑉 = [], 𝑉𝑑𝑢 = [], 𝑉𝑟𝑑𝑢 = [], 𝑉𝑟𝑝𝑟 = [], set 𝜖 = 𝜖tol + 1.

2: Initial expansion point: 𝜇̃𝑖 ∈ Ξ for 𝑉 ; 𝜇̃𝑖
𝛼 ∈ Ξ for 𝑉𝑟𝑑𝑢(or 𝑉𝑟𝑝𝑟 ); 𝜇̃𝑖

𝛾 ∈ Ξ for 𝑉𝑑𝑢; 𝑖 = 1.
3: while 𝜖 > 𝜖tol do
4: compute 𝑉𝜇̃𝑖 following (4.25).

5: 𝑉 = orth
{︀
𝑉, 𝑉𝜇̃𝑖)

}︀
.

6: compute 𝑉 𝑑𝑢
𝜇̃𝑖

𝛾
following (4.29).

7: 𝑉𝑑𝑢 = orth
{︁

𝑉𝑑𝑢, 𝑉 𝑑𝑢
𝜇̃𝑖

𝛾

}︁
.

8: if Δ(𝜇̃) = Δ2(𝜇̃) then
9: compute 𝑉

𝑟𝑑𝑢

𝜇̃𝑖
𝛼

following (4.32).

10: 𝑉𝑟𝑑𝑢 = orth
{︁

𝑉𝑑𝑢, 𝑉𝑟𝑑𝑢 , 𝑉
𝑟𝑑𝑢

𝜇̃𝑖
𝛼

}︁
.

11: else if Δ(𝜇̃) = Δ𝑝𝑟
2 (𝜇̃) then

12: compute 𝑉
𝑟𝑝𝑟

𝜇̃𝑖
𝛼

following (4.25).

13: 𝑉𝑟𝑝𝑟 = orth
{︁

𝑉, 𝑉𝑟𝑝𝑟 , 𝑉
𝑟𝑝𝑟

𝜇̃𝑖
𝛼

}︁
.

14: end if
15: 𝑖 = 𝑖 + 1, 𝜇̃𝑖 = arg max

𝜇̃∈Ξ
Δ(𝜇̃).

16: if Δ(𝜇̃) = Δ2(𝜇̃) then
17: 𝜇̃𝑖

𝛼 = arg max
𝜇̃∈Ξ

|𝑥̂𝑇
𝑟𝑑𝑢

(𝜇̃)𝑟𝑝𝑟(𝜇̃)|. %second part of Δ2(𝜇̃)

18: else if Δ(𝜇̃) = Δ𝑝𝑟
2 (𝜇̃) then

19: 𝜇̃𝑖
𝛼 = arg max

𝜇̃∈Ξ
|𝑟𝑇

𝑑𝑢(𝜇̃)𝑥̂𝑟𝑝𝑟 (𝜇̃)|. %second part of Δ𝑝𝑟
2 (𝜇̃)

20: end if
21: if Δ(𝜇̃) = Δ1(𝜇̃) then
22: 𝜇̃𝑖

𝛾 = argmax
𝜇̃∈Ξ

‖𝑟𝑑𝑢(𝜇̃)‖.

23: else if Δ(𝜇̃) ∈ {Δ2(𝜇̃), Δ𝑝𝑟
2 (𝜇̃)} then

24: 𝜇̃𝑖
𝛾 = argmax

𝜇̃∈Ξ
Δ1(𝜇̃). %first part of Δ2(𝜇̃) or Δ𝑝𝑟

2 (𝜇̃)

25: end if
26: 𝜖 = Δ(𝜇̃𝑖).
27: end while

error estimators, therefore the true errors depend on the error estimators and are usually different. This also
applies to analogous results listed in the other tables for other examples.

In Table 1, we also show the results for ∆̃𝑟(𝑠) from [29], where 𝐾 in (5.5) is taken as 𝐾 = 20, which is
shown to produce better results than 𝐾 = 10 [29]. In this table and other tables that follow, “–” means the
algorithm terminated at the previous iteration and no further results are given. During the greedy iteration,
∆̃𝑟(𝑠) always underestimates the maximal true error. ∆𝑝𝑟

1 underestimates the true error at the first 5 iterations,
but then becomes an accurate estimator at the last two iterations. ∆1(𝑠) is better than ∆̃𝑟(𝑠), but is no better
than the other estimators. ∆2(𝑠) and its primal version ∆𝑝𝑟

2 (𝑠) behave like error bounds. ∆𝑝𝑟
1 (𝑠), ∆3(𝑠) and

∆𝑝𝑟
3 (𝑠) have underestimation only at the first several iterations. In general, once they bound error from above,

they are very tight.
We further validate the ROM obtained by the error estimators at samples in Ξver including 600 samples

randomly taken from [0, 1 MHz], the results are presented in Table 4 and plotted in Figures 1–4. In Table 4,
we compare the effectivity defined as eff(𝑠) := ∆(𝑠)/𝜀(𝑠), the ratio between the given error estimator and
its corresponding true error. ∆̃𝑟(𝑠) still underestimates the true error at most samples. ∆𝑝𝑟

1 (𝑠), ∆2(𝑠), ∆3(𝑠),
∆𝑝𝑟

3 (𝑠) are equally well, whereas ∆1(𝑠) and ∆𝑝𝑟
2 (𝑠) underestimate the true error too much (min(eff) < 0.1) at

some samples. However, we observe that underestimation happens only at samples with very small true errors
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Table 1. CD player, 𝜀tol = 10−3, 𝑞 = 3, 𝑟 = 44(∆𝑟), 𝑟 = 52(∆1), 𝑟 = 56(∆𝑝𝑟
1 ).

Iteration 𝑖 𝜀max(Δ̃𝑟) Δ̃𝑟(𝑠𝑖) 𝜀max(Δ1) Δ1(𝑠𝑖) 𝜀max(Δ
𝑝𝑟
1 ) Δ𝑝𝑟

1 (𝑠𝑖)

1 61.63 21.88 40.75 34.93 40.75 2.56
2 51.98 18.46 19.34 33.92 19.34 1.07
3 14.49 5.14 0.59 1.47 14.48 0.64
4 0.76 0.27 0.31 0.26 14.45 5.46
5 0.11 0.04 0.06 0.11 0.26 0.26
6 0.0016 5.86× 10−4 0.04 0.04 0.0024 0.0024
7 – – 6.81× 10−4 7.65× 10−4 1.28× 10−5 1.28× 10−5

Table 2. CD player, 𝜀tol = 10−3, 𝑞 = 3, 𝑟 = 52.

Iteration 𝑖 𝜀max(Δ2) Δ2(𝑠𝑖) 𝜀max(Δ
𝑝𝑟
2 ) Δ𝑝𝑟

2 (𝑠𝑖)

1 40.75 51 40.75 46.1
2 30.16 35.75 19.34 52.2
3 0.75 5.41 0.59 1.95
4 0.32 0.4 0.31 0.38
5 0.03 0.03 0.06 0.19
6 0.002 0.002 0.04 0.04
7 8.28× 10−4 8.38× 10−4 6.82× 10−4 8.48× 10−4

Table 3. CD player, 𝜀tol = 10−3, 𝑞 = 3, 𝑟 = 52.

Iteration 𝑖 𝜀max(Δ3) Δ3(𝑠𝑖) 𝜀max(Δ
𝑝𝑟
3 ) Δ𝑝𝑟

3 (𝑠𝑖)

1 40.75 35.45 40.75 34.95
2 19.34 35.19 16.81 51.76
3 0.59 0.84 9.1 9.1
4 0.31 0.4 0.21 0.24
5 0.05 0.05 0.03 0.03
6 0.002 0.002 0.0016 0.0016
7 8.27× 10−4 8.27× 10−4 7.57× 10−4 7.57× 10−4

𝜀(𝑠) being smaller than 10−11, which may be caused by rounding errors. If we check the error estimators only
at true errors larger than 10−11, then we obtain the last two columns in the table, which show that except for
∆̃𝑟(𝑠) the other estimators are tight.

Figure 1 further shows the inaccuracy of ∆̃𝑟(𝑠) validated at the 600 samples in Ξver. ∆1(𝑠) in Figure 1 behaves
slightly worse than the other proposed estimators, see Figures 2–4. In the following, we will omit the results of
∆̃𝑟(𝜇̃) for the other examples, since it is always worse than the others.

7.2. The RLC tree model

We use a training set Ξ with 90 frequency samples covering the whole frequency range [0, 3 GHz]. The samples
𝑠𝑖 are taken using the function 𝑓𝑖 = 3× 10𝑖/10, 𝑠𝑖 = 2𝜋𝚥, 𝑖 = 1, . . . , 90. Here, 𝚥 is the imaginary unit. The results
of the greedy algorithm using different error estimators are listed in Tables 5–7. ∆1(𝑠) always underestimates
the true error, and finally it makes the greedy algorithm stop before the true error 𝜀max is below the tolerance.
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Table 4. CD player, effectivity of the error estimators.

Estimator
For all 𝜀(𝑠) For 𝜀(𝑠) ≥ 10−11

min
𝑠∈Ξver

(eff) max
𝑠∈Ξver

(eff) min
𝑠∈Ξver

(eff) max
𝑠∈Ξver

(eff)

Δ̃𝑟 0.09 1.82 0.26 0.26
Δ1 0.02 80 0.9211 1.1785
Δ𝑝𝑟

1 0.28 20.39 0.9988 1.0046
Δ2 0.12 17.32 0.9987 1.1653
Δ𝑝𝑟

2 0.02 80 1.0000 1.3643
Δ3 0.12 10.97 0.9993 1.0004
Δ𝑝𝑟

3 0.1 9.13 0.9998 5.31

Figure 1. CD player: ∆𝑟(𝑠) and ∆1(𝑠) vs. the respective true errors at 600 frequency samples.

Figure 2. CD player: ∆𝑝𝑟
1 (𝑠) vs. the true errors at 600 frequency samples.
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Figure 3. CD player: ∆2(𝑠) and ∆𝑝𝑟
2 (𝑠) vs. the respective true errors at 600 frequency samples.

Figure 4. CD player: ∆3(𝑠) and ∆𝑝𝑟
3 (𝑠) vs. the respective true errors at 600 frequency samples.

Table 5. RLCtree, 𝜀tol = 10−3, 𝑞 = 3, 𝑟 = 12(∆1), 𝑟 = 20(∆𝑝𝑟
1 ).

Iteration 𝑖 𝜀max(Δ1) Δ1(𝑠𝑖) 𝜀max(Δ
𝑝𝑟
1 ) Δ𝑝𝑟

1 (𝑠𝑖)

1 0.19 0.01 0.19 0.22
2 0.06 0.006 0.02 0.02
3 – – 2.54× 10−6 2.55× 10−6

The other estimators behave like tight upper bounds for the true error in this example, especially ∆3(𝑠) and
∆𝑝𝑟

3 (𝑠), which actually measure the true error almost exactly at the last two iterations.
The derived ROMs using different error estimators are validated on a validation set Ξver with 900 samples in

the interesting frequency range. The effectivity of every error estimator is listed in Table 8. If considering the
overall effectivity, then all the estimators underestimate the true error too much except for ∆𝑝𝑟

2 (𝑠). However,
if only considering true errors that are bigger than 10−11, then ∆𝑝𝑟

1 (𝑠), ∆3(𝑠) and ∆𝑝𝑟
3 (𝑠) are the best ones,

∆2(𝑠) is also good, ∆𝑝𝑟
2 (𝑠) overestimate the true error more than many others. It is clear that ∆1(𝑠) is not a

good error estimator any more. Figures 5–7 further show the behaviors of the error estimators over the sample
set Ξver including 900 samples, which are in agreement with the above analysis for the data in Table 8.
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Table 6. RLCtree, 𝜀tol = 10−3, 𝑞 = 3, 𝑟 = 20(∆2), 𝑟 = 19(∆𝑝𝑟
2 ).

Iteration 𝑖 𝜀max(Δ2) Δ2(𝑠𝑖) 𝜀max(Δ
𝑝𝑟
2 ) Δ𝑝𝑟

2 (𝑠𝑖)

1 0.19 0.63 0.19 0.22
2 0.02 0.06 0.02 0.05
3 6.13× 10−6 6.45× 10−6 2.25× 10−5 1.05× 10−4

Table 7. RLCtree, 𝜀tol = 10−3, 𝑞 = 3, 𝑟 = 20.

Iteration 𝑖 𝜀max(Δ3) Δ3(𝑠𝑖) 𝜀max(Δ
𝑝𝑟
3 ) Δ𝑝𝑟

3 (𝑠𝑖)

1 0.19 0.22 0.19 0.29
2 0.02 0.02 0.02 0.02
3 2.54× 10−6 2.55× 10−6 2.54× 10−6 2.54× 10−6

Table 8. RLCtree, effectivity of the error estimators.

Estimator
For all 𝜀(𝑠) For 𝜀(𝑠) ≥ 10−11

min
𝑠∈Ξver

(eff) max
𝑠∈Ξver

(eff) min
𝑠∈Ξver

(eff) max
𝑠∈Ξver

(eff)

Δ1 0.002 285 0.006 132
Δ𝑝𝑟

1 0.002 253 0.9001 1.0826
Δ2 0.004 244 0.37 51
Δ𝑝𝑟

2 0.56 102 0.68 102
Δ3 0.008 258 0.9 1.2337
Δ𝑝𝑟

3 0.008 258 0.9 1.0894

Figure 5. RCLtree: ∆1(𝑠) and ∆𝑝𝑟
1 (𝑠) vs. the respective true errors at 900 frequency samples.
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Figure 6. RLCtree: ∆2(𝑠) and ∆𝑝𝑟
2 (𝑠) vs. the respective true errors at 900 frequency samples.

Figure 7. RLCtree: ∆3(𝑠) and ∆𝑝𝑟
3 (𝑠) vs. the respective true errors at 900 frequency samples.

7.3. MIMO example

This example has the same frequency range as the second example, therefore we use the same Ξ as for the
RLC tree model. The error estimator is the maximal error estimator defined as

∆(𝑠) = max
𝑖𝑗

∆𝑖𝑗(𝑠),

where ∆𝑖𝑗(𝑠) estimates the true error 𝜖𝑖𝑗(𝑠) = |𝐻𝑖𝑗(𝑠)−𝐻̂𝑖𝑗(𝑠)|. Here 𝐻𝑖𝑗(𝑠) and 𝐻̂𝑖𝑗(𝑠) are the transfer functions
corresponding to the 𝑗th input port and 𝑖th output port of the original model and the ROM, respectively. The
true error is the maximal true error 𝜖(𝑠) = max𝑖𝑗 |𝜖𝑖𝑗(𝑠)|, and 𝜖max = max𝑠∈Ξ 𝜖(𝑠) as defined before.

The results of Algorithm 1 using different error estimators are listed in Tables 9–11. Algorithm 1 stops before
the true error 𝜖max is below the tolerance when using ∆1(𝑠), whereas ∆𝑝𝑟

1 (𝑠), ∆3(𝑠) and ∆𝑝𝑟
3 (𝑠) exactly estimate

the true error at each iteration step. ∆2(𝑠) and its primal variation ∆𝑝𝑟
2 (𝑠) produce the same results and make

the algorithm converge in 3 iterations. Note that ∆3(𝑠) and ∆𝑝𝑟
3 (𝑠) also yield the same results.

The ROMs constructed by Algorithm 1 using the error estimators are further validated over a validation set
Ξver with 900 samples, respectively. Table 12 lists the effectivity values of the error estimators. Among them,
∆2(𝑠) and its primal variation ∆𝑝𝑟

2 (𝑠) are the best ones and have the same effectivity values. ∆𝑝𝑟
1 (𝑠), ∆3(𝑠) and

∆𝑝𝑟
3 (𝑠) have similar results and are still good.
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Table 9. MIMO example, 𝜀tol = 10−3, 𝑞 = 3, 𝑟 = 20(∆1), 𝑟 = 52(∆𝑝𝑟
1 ).

Iteration 𝑖 𝜀max(Δ1) Δ1(𝑠𝑖) 𝜀max(Δ
𝑝𝑟
1 ) Δ𝑝𝑟

1 (𝑠𝑖)

1 0.28 3.16× 10−5 0.28 0.28
2 – – 5.91× 10−5 5.91× 10−5

Table 10. MIMO example, 𝜀tol = 10−3, 𝑞 = 3, 𝑟 = 73.

Iteration 𝑖 𝜀max(Δ2) Δ2(𝑠𝑖) 𝜀max(Δ
𝑝𝑟
2 ) Δ𝑝𝑟

2 (𝑠𝑖)

1 0.28 0.28 0.28 0.28
2 5.91× 10−5 2.3× 10−3 5.91× 10−5 2.3× 10−3

3 4.72× 10−8 1.43× 10−7 4.72× 10−8 1.43× 10−7

Table 11. MIMO example, 𝜀tol = 10−3, 𝑞 = 3, 𝑟 = 52.

Iteration 𝑖 𝜀max(Δ3) Δ3(𝑠𝑖) 𝜀max(Δ
𝑝𝑟
3 ) Δ𝑝𝑟

3 (𝑠𝑖)

1 0.28 0.28 0.28 0.28
2 5.91× 10−5 5.91× 10−5 5.91× 10−5 5.91× 10−5

Table 12. MIMO example, effectivity of the error estimators.

Estimator
For all 𝜀(𝑠) For 𝜀(𝑠) ≥ 10−11

min
𝑠∈Ξver

(eff) max
𝑠∈Ξver

(eff) min
𝑠∈Ξver

(eff) max
𝑠∈Ξver

(eff)

Δ1 8.78× 10−8 2.53 8.78× 10−8 1.43
Δ𝑝𝑟

1 0.1 40 0.2 26
Δ2 0.1 5 0.2 3.5
Δ𝑝𝑟

2 0.1 5 0.2 3.5
Δ3 0.1 25 0.2 21
Δ𝑝𝑟

3 0.1 28 0.2 25

Figures 8–10 plot the error estimators and the corresponding true errors of the ROMs. The waveforms of the
error estimators well reflect the data in Table 12. It is noticed that the maximal true errors over the validation
sample set Ξver obtained by ∆𝑝𝑟

1 (𝑠), ∆3(𝑠) and ∆𝑝𝑟
3 (𝑠) are still bigger than the error tolerance, though they

are exactly reproduced by the error estimators. Since the error estimators accurately measure the maximal true
error, the ROMs can be further improved by adding one more expansion point from Ξver (rather than Ξ) at
which the error estimators are maximal. This will certainly incur more computational costs. Therefore, ∆2(𝑠)
and ∆𝑝𝑟

2 (𝑠) outperform the other ones for this model.

7.4. Parametric example

The micro-gyroscope model is a second-order parametric system with four parameters,

𝑀(𝜇)𝑥̈(𝜇, 𝑡) + 𝐷(𝜇)𝑥̇(𝜇, 𝑡) + 𝑇 (𝜇)𝑥(𝜇, 𝑡) = 𝐵𝑢(𝑡),
𝑦(𝜇, 𝑡) = 𝐶𝑥(𝜇, 𝑡).
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Figure 8. MIMO example: ∆1(𝑠) and ∆𝑝𝑟
1 (𝑠) vs. the respective true errors at 900 frequency

samples.

Figure 9. MIMO example: ∆2(𝑠) and ∆𝑝𝑟
2 (𝑠) vs. the respective true errors at 900 frequency

samples.

Figure 10. MIMO example: ∆3(𝑠) and ∆𝑝𝑟
3 (𝑠) vs. the respective true errors at 900 frequency

samples.
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Table 13. Gyroscope, 𝜀tol = 10−3, 𝑞 = 1, 𝑟 = 84(∆1), 𝑟 = 94(∆𝑝𝑟
1 ).

Iteration 𝑖 𝜀max(Δ1) Δ1(𝜇̃
𝑖) 𝜀max(Δ

𝑝𝑟
1 ) Δ𝑝𝑟

1 (𝜇̃𝑖)

1 0.028 0.04 0.028 0.025
2 0.006 0.007 0.001 0.006
3 0.004 3.2× 10−4 0.003 0.003
4 4× 10−5 5.18× 10−4 3.85× 10−4 3.78× 10−4

5 3.34× 10−6 2.99× 10−5 1.69× 10−6 1.69× 10−6

6 2.95× 10−7 3.88× 10−7 3.48× 10−7 3.47× 10−7

7 7.91× 10−8 8.03× 10−8 1.39× 10−7 1.45× 10−7

8 – – 8.49× 10−8 8.44× 10−8

Here, 𝜇 = (𝜃, 𝛼, 𝛽, 𝑑), 𝑀(𝜇) = (𝑀1 + 𝑑𝑀2), 𝑇 (𝜇) = (𝑇1 + 1
𝑑𝑇2 + 𝑑𝑇3), 𝐷(𝜇) = 𝜃(𝐷1 + 𝑑𝐷2) + 𝛼𝑀(𝑑) + 𝛽𝑇 (𝑑) ∈

R𝑛×𝑛, 𝑛 = 17, 913. The parameters are 𝑑, 𝜃, 𝛼, 𝛽. 𝑑 ∈ [100%, 200%], the width of the bearing, taken as the
percentage of the base value, and 𝜃 ∈ [10−7, 10−5]MHz, the rotation velocity along the x-axis. 𝛼, 𝛽 define to the
proportional damping [27].

After Laplace transform, the system in frequency domain is

𝑠2𝑀(𝜇)𝑥(𝜇, 𝑠) + 𝑠𝐷(𝜇)𝑥(𝜇, 𝑠) + 𝑇 (𝜇)𝑥 = 𝐵𝑢ℒ(𝑠),
𝑦(𝜇, 𝑠) = 𝐶𝑥(𝜇, 𝑠).

The above system can be rewritten into the affine form,

𝑄(𝜇̃)𝑥(𝜇̃) = 𝐵𝑢ℒ(𝜇̃),
𝑦(𝜇̃) = 𝐶𝑥(𝜇̃),

where 𝑄(𝜇̃) = 𝑇1 + 𝜇̃1𝑀1 + 𝜇̃2𝑀2 + 𝜇̃3𝐷1 + 𝜇̃4𝐷2 + 𝜇̃5𝑀1 + 𝜇̃6𝑀2 + 𝜇̃7𝑇1 + 𝜇̃8𝑇2 + 𝜇̃9𝑇3 + 𝜇̃10𝑇2 + 𝜇̃11𝑇3. Here
𝜇̃ = (𝜇̃1, . . . , 𝜇̃11)𝑇 includes the newly generated parameters, 𝜇̃1 = 𝑠2, 𝜇̃2 = 𝑠2𝑑, 𝜇̃3 = 𝑠𝜃, 𝜇̃4 = 𝑠𝜃𝑑, 𝜇̃5 = 𝑠𝛼,
𝜇̃6 = 𝑠𝛼𝑑, 𝜇̃7 = 𝑠𝛽, 𝜇̃8 = 𝑠𝛽/𝑑, 𝜇̃9 = 𝑠𝛽𝑑, 𝜇̃10 = 1/𝑑, 𝜇̃11 = 𝑑.

For this example, we use 75 random samples (3 for 𝜃, 5 for 𝑠, 5 for 𝑑) to set up the training set Ξ with 𝛽 = 0
and 𝛼 = 0. Afterwards, the ROMs are validated at a validation set Ξver including 2500 samples (5 for 𝜃, 10 for
𝑠, 5 for 𝑑), with 𝛽 = 10−9 and 𝛼 = 0.1 being nonzero.

The results of Algorithm 2 using different error estimators are listed in Tables 13–15. Except for ∆1(𝜇̃), all the
other error estimators tightly estimate the true error at each iteration of the algorithm. The ROMs obtained
via the error estimators are further validated at samples in Ξver, and the effectivity of each is presented in
Table 16. Again, ∆1(𝜇̃) is the worst. The others perform similarly well. We plot the true error of the ROMs and
the corresponding error estimators in Figures 11–13. ∆1(𝜇̃) almost always underestimates the true error, while
∆𝑝𝑟

1 (𝜇̃), ∆3(𝜇̃) and ∆𝑝𝑟
3 (𝜇̃) are almost indistinguishable from the true error.

7.5. Performances of Δ1(𝜇̃), Δ2(𝜇̃) and Δ𝑝𝑟2 (𝜇̃) using Algorithms 3–4

In this subsection, we show the results of Algorithms 3–4 for symmetric systems, where the expansion points
for 𝑉𝑑𝑢 are selected differently from those for 𝑉 . The results are listed in Tables 17–19.

Comparing Tables 17–19 with Tables 8, 12, 16, respectively, we see that the performance of ∆1(𝜇̃) is improved
in general, those of ∆2(𝜇̃), and ∆𝑝𝑟

2 (𝜇̃) are only partially improved. The performance of ∆2(𝜇̃)) is improved,
especially for the RLC tree example. However, the performance of ∆𝑝𝑟

2 (𝜇̃) does not become uniformly better,
especially for the MIMO example. Although ∆1(𝑠) behaves better when using Algorithm 3 and 4, it is still
worse than its upper bound ∆2(𝜇̃) or ∆𝑝𝑟

2 (𝜇̃).
It is worth pointing out that the order 𝑞 = 3 is used for all the non-parametric examples and all error

estimators, while 𝑞 = 1 is used for the parametric system and for all error estimators. Different choices of 𝑞



590 L. FENG AND P. BENNER

Table 14. Gyroscope, 𝜀tol = 10−3, 𝑞 = 1, 𝑟 = 86(∆2), 𝑟 = 80(∆𝑝𝑟
2 ).

Iteration 𝑖 𝜀max(Δ2) Δ2(𝜇̃
𝑖) 𝜀max(Δ

𝑝𝑟
2 ) Δ𝑝𝑟

2 (𝜇̃𝑖)

1 4.53× 10−4 0.002 0.002 0.004
2 4.15× 10−4 6.16× 10−4 4.14× 10−4 5.83× 10−4

3 1.71× 10−5 8.53× 10−5 1.61× 10−4 2.69× 10−4

4 8.77× 10−6 8.22× 10−6 9.7× 10−5 1.57× 10−4

5 1.44× 10−6 1.07× 10−6 9.80× 10−7 9.81× 10−7

6 3.09× 10−8 3.41× 10−8 1.89× 10−7 2.06× 10−7

7 – – 7.21× 10−8 8.14× 10−8

Table 15. Gyroscope, 𝜀tol = 10−3, 𝑞 = 1, 𝑟 = 73(∆3), 𝑟 = 83(∆𝑝𝑟
3 ).

Iteration 𝑖 𝜀max(Δ3) Δ3(𝜇̃
𝑖) 𝜀max(Δ

𝑝𝑟
3 ) Δ𝑝𝑟

3 (𝜇̃𝑖)

1 0.009 0.005 5.42× 10−4 0.002
2 0.009 0.005 5.60× 10−4 5.26× 10−4

3 8.85× 10−5 8.85× 10−5 9.35× 10−5 6.59× 10−4

4 2.20× 10−4 2.20× 10−4 5.36× 10−6 5.36× 10−6

5 1.78× 10−6 1.48× 10−6 1.31× 10−6 1.30× 10−6

6 8.56× 10−8 8.51× 10−8 5.78× 10−7 5.78× 10−7

7 – – 5.60× 10−8 5.59× 10−8

Table 16. Gyroscope, effectivity of the error estimators.

Estimator
For all 𝜀(𝑠) For 𝜀(𝑠) ≥ 10−11

min
𝑠∈Ξver

(eff) max
𝑠∈Ξver

(eff) min
𝑠∈Ξver

(eff) max
𝑠∈Ξver

(eff)

Δ1 0.025 8.87 0.025 8.87
Δ𝑝𝑟

1 0.2 3.65 0.2 3.65
Δ2 0.38 15 0.38 15
Δ𝑝𝑟

2 0.2 3.68 0.2 3.68
Δ3 0.34 9.34 0.34 9.34
Δ𝑝𝑟

3 0.5 2 0.5 2

Table 17. Algorithm 3: RLCtree, effectivity of the error estimators.

Estimator
For all 𝜀(𝑠) For 𝜀(𝑠) ≥ 10−11

min
𝑠∈Ξver

(eff) max
𝑠∈Ξver

(eff) min
𝑠∈Ξver

(eff) max
𝑠∈Ξver

(eff)

Δ1 3.4488× 10−4 38 0.05 6.5
Δ2 0.01 25 0.7 25
Δ𝑝𝑟

2 0.004 244 1 25
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Figure 11. Gyroscope: ∆1(𝜇̃) and ∆𝑝𝑟
1 (𝜇̃) vs. the respective true errors at 2500 parameter samples.

Figure 12. Gyroscope: ∆2(𝜇̃) and ∆𝑝𝑟
2 (𝜇̃) vs. the respective true errors at 2500 parameter samples.

Figure 13. Gyroscope: ∆3(𝜇̃) and ∆𝑝𝑟
3 (𝜇̃) vs. the respective true errors at 2500 parameter samples.



592 L. FENG AND P. BENNER

Table 18. Algorithm 3: MIMO example, effectivity of the error estimators.

Estimator
For all 𝜀(𝑠) For 𝜀(𝑠) ≥ 10−11

min
𝑠∈Ξver

(eff) max
𝑠∈Ξver

(eff) min
𝑠∈Ξver

(eff) max
𝑠∈Ξver

(eff)

Δ1 0.14 46 0.14 46
Δ2 0.2 15 0.1 9
Δ𝑝𝑟

2 0.32 164 0.32 75

Table 19. Algorithm 4: Gyroscope, effectivity of the error estimators.

Estimator
For all 𝜀(𝑠) For 𝜀(𝑠) ≥ 10−11

min
𝑠∈Ξver

(eff) max
𝑠∈Ξver

(eff) min
𝑠∈Ξver

(eff) max
𝑠∈Ξver

(eff)

Δ1 0.096 28 0.096 28
Δ2 0.35 11 0.35 11
Δ𝑝𝑟

2 0.22 3.68 0.22 3.68

may lead to different performance of the greedy algorithms employing different error estimators. In the next
subsection, we use the MIMO example and the parametric example to show the performance of Algorithm 1
and Algorithm 2 using the proposed error estimators when the order of moments 𝑞 varies. In particular, we
present the iteration numbers and the wall-clock time of each algorithm for different 𝑞, corresponding to each
error estimator.

7.6. Performance of the error estimators when 𝑞 varies

We list in Tables 20 and 21 the number of iterations and wall-clock time of Algorithm 1 for the MIMO
example as well as those of Algorithm 2 for the parametric example, when different error estimators are used
and 𝑞 varies. For the MIMO example, when 𝑞 increases, the number of iterations may decrease, but the runtime
of each error estimator increases in general. For a fixed 𝑞, except for ∆1(𝑠) that uses much less runtime, the
other estimators make the algorithm converge without too much difference in time. Not a single estimator is
always the best. However, ∆1(𝑠) does not lead to a reliable ROM, since it underestimates the true error also
for difference values of 𝑞 and for both examples. For the parametric example, there is a different phenomenon
for 𝑞 = 0, where Algorithm 2 actually does not converge when using many of the error estimators. The error
estimator as well as the corresponding true errors, do not go below the tolerance after all the 75 training
parameter samples have been chosen as expansion points. Therefore, in the second column of Table 21, there is
75 for many error estimators, except for ∆3(𝜇̃). For 𝑞 = 1, 2, we have similar observations: not a single estimator
is always the best. However, it can be concluded that matching too few moments (𝑞 = 0) or too many moments
(𝑞 = 2) for the parametric model lead to no better behavior of the greedy algorithm than using 𝑞 = 1 in general.
Furthermore, using 𝑞 = 2 derives a ROM with more than twice the size of the ROM derived using 𝑞 = 1. Larger
ROM will make the online simulation much slower. Since this work does not focus on discussing the efficiency of
the greedy algorithm combined with the moment-matching method, which is one of the possible ways of showing
the robustness of the proposed estimators, we do not further elaborate on this discussion. Finally, each error
estimator has similar effectivity as shown in the previous tables when 𝑞 changes. The corresponding effectivities
are not listed here to avoid repetitions.
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Table 20. Performance of Algorithm 1 for the MIMO example when 𝑞 varies.

Estimator
𝑞 = 0 𝑞 = 3 𝑞 = 5

Iter Time(s) Iter Time(s) Iter Time(s)

Δ1 1 1.97 1 4.52 1 7.84
Δ𝑝𝑟

1 4 9.48 2 16.68 2 31.63
Δ2 5 14.73 3 28.45 2 26.56
Δ𝑝𝑟

2 5 14.58 3 27.93 2 26.94
Δ3 5 14.78 2 18.31 2 31.27
Δ𝑝𝑟

3 4 12.29 2 27.23 2 41.56

Table 21. Performance of Algorithm 2 for the parametric example when 𝑞 varies.

Estimator
𝑞 = 0 𝑞 = 1 𝑞 = 2

Iter Time Iter Time Iter Time

Δ1 75 2075 6 256.8 2 423.6
Δ𝑝𝑟

1 75 2121 6 349.9 2 369.4
Δ2 75 2454 6 312.3 3 994.8
Δ𝑝𝑟

2 75 2824 6 385.4 3 910.7
Δ3 17 442.2 6 396.5 3 664.3
Δ𝑝𝑟

3 75 2663 6 479.7 2 599.7

8. Conclusions

We propose some a posteriori error estimators for the transfer function error of ROMs that are obtained
by any (Petrov-)Galerkin-type MOR method. Detailed simulation comparison demonstrates the performance of
each. It is clear that neither ∆𝑟(𝜇̃) nor ∆1(𝜇̃) are good error estimators and therefore they are not recommended
as reliable error estimators. All others perform similarly, especially the primal version of ∆1(𝜇̃): ∆𝑝𝑟

1 (𝜇̃) behaves
unexpectedly well and is almost as good as its bounds ∆3(𝜇̃) and ∆𝑝𝑟

3 (𝜇̃) for any of the examples. Among
the robust error estimators ∆2(𝜇̃), ∆𝑝𝑟

2 (𝜇̃), ∆𝑝𝑟
1 (𝜇̃), ∆3(𝜇̃) and ∆𝑝𝑟

3 (𝜇̃), the estimator ∆𝑝𝑟
1 needs the least

computational cost, since only two ROMs (constructed by 𝑉, 𝑉𝑟𝑝𝑟
) need to be computed. For nearly symmetric

systems, ∆2(𝜇̃) and its variant ∆𝑝𝑟
2 (𝜇̃) are not really improved when choosing different expansion points for

𝑉 and 𝑉𝑑𝑢, i.e., when using Algorithms 3 and 4. As future work, more theoretical analysis and numerical
simulations might be explored to further explain the numerical behaviors of the proposed error estimators.
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