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PHASE-FIELD DYNAMICS WITH TRANSFER OF MATERIALS: THE
CAHN-HILLIARD EQUATION WITH REACTION RATE DEPENDENT

DYNAMIC BOUNDARY CONDITIONS"

PaTrIK KNoPF'*, KEI FONG LAM?, CHUN LIU® AND STEFAN METZGER?

Abstract. The Cahn—Hilliard equation is one of the most common models to describe phase separation
processes of a mixture of two materials. For a better description of short-range interactions between
the material and the boundary, various dynamic boundary conditions for the Cahn—Hilliard equation
have been proposed and investigated in recent times. Of particular interests are the model by Goldstein
et al. [Phys. D 240 (2011) 754-766] and the model by Liu and Wu [Arch. Ration. Mech. Anal. 233
(2019) 167-247]. Both of these models satisfy similar physical properties but differ gr eatly in their
mass conservation behaviour. In this paper we introduce a new model which interpolates between these
previous models, and investigate analytical properties such as the existence of unique solutions and
convergence to the previous models mentioned above in both the weak and the strong sense. For the
strong convergences we also establish rates in terms of the interpolation parameter, which are supported
by numerical simulations obtained from a fully discrete, unconditionally stable and convergent finite
element scheme for the new interpolation model.

Mathematics Subject Classification. 3 5A01, 35A02, 3 5A35, 3 5B40, 6 5M60, 65M12.

Received April 30, 2020. Accepted December 21, 2020.

1. INTRODUCTION

The Cahn-Hilliard equation was originally introduced in [7] to model phase separation and de-mixing pro-
cesses in binary alloys, while later applications have been found in mathematical models of phenomena arising in
material sciences, life sciences and image processing. In certain applications (e.g., in hydrodynamic applications
such as contact line problems), it turned out to be essential to model short-range interactions of the binary
mixture with the solid wall of the container more accurately. To this end, several dynamic boundary conditions
have recently been proposed and investigated in the literature. Below we review two such models in more detail
and introduce a new system with dynamic boundary conditions which can be regarded as an interpolation
between these two previous models.
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The standard Cahn—Hilliard equation as introduced in [7] reads as follows:

Oyu = moApu in Qr:=Qx(0,7), (1.1a)
p=—cAu+e'F'(u) inQr, (1.1b)
ult=0 = ugp in Q. (1.1c)

Here, Q C R? (where d € {2,3}) denotes a bounded domain with boundary I' := 9 whose unit outer normal
vector field is denoted by n. The functions v = u(z,t) and p = p(z,t) depend on time ¢ € [0,7] (with fixed
but arbitrary T > 0) and position z € . The symbol A denotes the Laplace operator in . The symbol
mgq denotes a mobility parameter which is assumed to be a positive constant. This is a typical assumption,
although non-constant mobilities find a use in some situations (see e.g. [17]). In order to describe a mixture
of two materials, the phase-field variable u represents the difference of two local relative concentrations. After
a short period of time, the solution u will attain values close to 41 in large regions of the domain 2. These
regions, which correspond to the pure phases of the materials, are separated by a small interfacial region whose
thickness is proportional to a small parameter ¢ > 0. As the time evolution of the phase-field variable u is
governed by chemical reactions, the function p stands for the chemical potential in the bulk (i.e., in Q). It can
be expressed as the Fréchet derivative of the following free energy of Ginzburg-Landau type:

1
Eyux(u) = / %|Vu|2 + = F(u)dx. (1.2)
Q 3

In this context, the function F' represents the bulk potential which usually has a double-well shape, i.e., it
attains its minima at —1 and 1 and has a local maximum at 0. A typical choice is the smooth double-well
potential F(s) = (s? — 1) (see Rem. 2.1). As the time-evolution of u is considered in a bounded domain,
suitable boundary conditions have to be imposed. The homogeneous Neumann conditions

Oapp =0, Ohu=0 on XUp:=Tx(0,T). (1.3)

are the classical choice. The no-flux condition (1.3); leads to mass conservation in the bulk

/Qu(t)dx:/ﬂu(O)dz, tel0,T] (1.4)

and both conditions in (1.3) imply that the bulk free energy satisfies the following maximal dissipation law:

€ B (u(t)) + ma / Vude =0, te (0,7). (15)
We point out that the Cahn—Hilliard equation subject to the boundary conditions (1.3) can be interpreted as a
gradient flow of type H~! of the bulk free energy Epuy [14].

The Cahn-Hilliard equation (1.1) with homogeneous Neumann conditions (1.3) is already very well under-
stood and there exists an extensive literature (see, e.g., [1,4,9,17,19,40,43,45,51]). However, it became clear
that this model is not satisfactory in some situations as it neglects certain influences of the boundary to the
bulk dynamics, such as separate chemical reactions occurring on the boundary are not taken into account. To
provide a better description of interactions between the solid wall and the binary mixture, physicists suggested
to add a surface free energy that is also of Ginzburg-Landau type (cf. [20,21, 31]):

K0 1
Fat(u) = / 50\ puf? + ~G(u) dT. (1.6)
r 2 0
Hence, the total free energy F = Epyx + Esurt reads as

1 § 1
E(u) = / §|Vu|2 + =F(u)dz —|—/ % |Vrul? + SG(U) dr. (1.7)
Q € r
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Here Vr denotes the surface gradient on I', G is a surface potential, x is a non-negative parameter acting as a
weight for surface diffusion effects and § > 0 is related to the thickness of the interfacial regions on the boundary.
In the case k = 0 this problem is related to the moving contact line problem [48]. In view of this energy E,
various dynamic boundary conditions have been proposed and analysed in the literature, of which we mention
[10,12,13,22-24,34,39,41,42, 44,49, 50].

In particular, we now want to highlight two Cahn—Hilliard models with dynamic boundary conditions in more
detail. In both models, the dynamic boundary conditions have a Cahn—Hilliard type structure and both systems
can be interpreted as a gradient flow of type H~! of the total free energy E (see [26], Sect. 3). However, these
models have completely different mass conservation properties.

The GMS model. The following model with dynamic boundary condition has been introduced by Goldstein
et al. [27):

u = moAp, p=—cAu+e ' F'(u) in Qr, (1.8a)
uy = mrArf — Bmainp, 0= —6kAru+ 6 G (u) +€0pu  on T, (1.8b)
s, = B0 on X, (1.8¢)
u(0) = ug on ), (1.8d)

where 3 > 0. The symbol Ar denotes the Laplace-Beltrami operator on the surface I'. For convenience, we
use the authors’ initials and call it the GMS model. It can be regarded as an extension of a model previously
introduced by Gal [23] who proposed the equation u; = —30y, 1 + v, for some constant +, instead of (1.8b);.
In (1.8), the parameter mr denotes the mobility on the boundary and is assumed to be a positive constant.
To describe chemical reactions occurring only at the boundary, an additional chemical potential # has been
introduced, and so, chemical reactions between the bulk and the surface are taken into account by the coupling
condition (1.8c). This means that in this model, the chemical potentials in the bulk and on the boundary can
differ by the factor 3, i.e., they are directly proportional. In [27], § is even allowed to be a uniformly positive
function in L*°(T"). We can thus say that, by the relation (1.8¢c), the potentials u and 6 are in a chemical
equilibrium.
We observe that a (sufficiently regular) solution to the GMS equation satisfies the mass conservation law

6/Qu(t)dx—|—/ru(t)df‘:ﬂ/ﬂu(O)der/Fu(O)dF, t e 0,77, (1.9)

which allows one to interpret the parameter 5 as a weight of the bulk mass compared to the surface mass.
Moreover, the maximal energy dissipation law

%E(u(t))+mg/ﬂ|Vu(t)|2dx+mp/r|Vp0(t)|2dF:O (1.10)

is satisfied for all ¢ € [0, T]. In particular, we observe that the dissipation rate is greatly influenced by the values
of the mobilities mgq and mr.
In addition to [27], the GMS model is also discussed in the recent book [40].

The LW model. Another model with dynamic boundary condition has been derived by an energetic variational
approach by the third author and Wu [35]:

ug = molAp, p=—cAu+e 'F'(u) in Qr, (1.11a)
ug = mprArd, 0= —5kAru+0'G'(u) + €0pu on T, (1.11b)
Onp =0 on X, (1.11c)
u(0) = ug on (1.11d)
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which we will refer to as the LW model. Again, the function # can be interpreted as the chemical potential on the
boundary T'. The crucial difference to the GMS model is that (1.8¢) is replaced by the no mass flux condition
Onpt = 0. This means that the chemical potentials p and 6 are not directly coupled. However, mechanical
interactions between the bulk and the surface materials are still taken into account by the trace relation for
the phase-field variables. This is reflected in the equations as the elliptic subproblems ((1.11a),,(1.11c)) and
(1.11b), are coupled only by the trace relation for u,.

Compared to (1.9), we obtain distinctly different mass conservation laws

/Qu(t)dx:/gu(())dx and /Fu(t)dl“:/ru(O)dF, te[0,T], (1.12)

meaning that the bulk mass and the surface mass are conserved separately. However, the maximal energy
dissipation law (1.10) is still satisfied by solutions of this system.

For an efficient numerical treatment of system (1.11), we refer the reader to [38].

Let us mention that a variant of the system (1.11) was proposed and investigated in [32], where equation
(1.11b) is replaced by

v = mprArf, 0= —0kArv+ 0 G (v) +e0pu  on X,

with a function v that can be interpreted as the difference in volume fractions of two different materials restricted
to the boundary. The relation between v and v is described by the Robin type transmission condition

eKOpu=H@w)—u onXr

with K > 0 and a function H € C?(R) satisfying suitable growth conditions. In particular, it is rigorously
established in [32] that, in the case H(s) = s, solutions of this model converge to solutions of (1.11) in the limit
K — 0 in some suitable sense.

A more general class of dynamic boundary conditions based on finite, positive reaction rates. To
provide a more general description of the interactions between the materials in the bulk and the materials on
the surface, we now propose that p and 6 are coupled by the Robin type boundary condition LI, = 50 — p
where L > 0 acts as a relaxation parameter. The system of equations then reads as

up = molp, = —eAu+e  F (u) in Qr, (1.13a)
ug = mrArl — Bmaipp, 0= —0kAru+0"'G'(u) +€dpu  on Xr, (1.13b)
LOpp = 60— p on X, (1.13¢)
u(0) = ug in Q, (1.13d)

where 8 # 0 and L > 0. Here, in contrast to the GMS model (1.8), the chemical potentials 1 and 6 are generally
not directly proportional, i.e., they are not in equilibrium. Reactions between the materials are taken into
account by the relation (1.13c) where the constant 1/L can be interpreted as the reaction rate. Here, the term
reactions is to be understood in a general sense including chemical reactions as well as adsorption or desorption
processes. The mass flux Oy, i.e., the motion of the materials towards and away from the boundary, is directly
driven by differences in the chemical potentials.

We observe that solutions of (1.13) satisfy the same mass conservation law (1.9) as solutions of the GMS model
(1.8). However, we obtain an additional term in the dissipation rate depending on the relaxation parameter L.
To be precise, it holds that

d

aE(u(t))—l—mQ/ﬂ|V,u(t)\2dm+mp/r|Vp0(t)|2df+%/r(ﬂ9—,u)2 dl' =0 (1.14)
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for all t € [0, T]. In particular, this implies that the total free energy F is decreasing along solutions and since it
is bounded from below (at least for reasonable choices of F and G), we infer that < E(u(t)) converges to zero as
t — oco. As a consequence, the chemical potentials will tend to the equilibrium g = 360 over the course of time.

The Robin type condition (1.13c) now allows us to establish a connection between the GMS model (1.8) and
the LW model (1.11) despite their very different chemical and physical properties. Suppose that 3 > 0 and that
(uL, wh, HL) is a solution of the system (1.13) corresponding to the parameter L > 0. Let (ux, fix, 0«) denote its
formal limit as L — 0 and let (u*, u*, 6*) denote its formal limit as L — oco. Passing to the limit in the Robin
boundary condition, we deduce that

00, =p, onXr and 9d,u" =0 on Xr.

This corresponds to the limit cases of instantaneous reactions (1/L — 00), where the chemical potentials are
always in equilibrium, and a vanishing reaction rate (1/L — 0). We infer that (u., s, 0s) is a solution to
the GMS model while (u*, u*,0*) is a solution to the LW model. These formal considerations are established
rigorously in Section 4. In this regard, the Cahn—Hilliard system (1.13) can be interpreted as an interpolation
between the GMS model and the LW model by using finite, positive reaction rates.

Structure of this paper. Our paper is structured as follows: In Section 2 we introduce some notation, assump-
tions, preliminaries and important tools. Section 3 is devoted to the existence, uniqueness and regularity of weak
solutions to (1.13), as well as a summary of the well-posedness results for the GMS model (1.8) and the LW
model (1.11). In Section 4 we investigate the asymptotic limits L — oo and L — 0, establishing also conver-
gence rates for these limits. In Section 5 we present an efficient, unconditionally stable numerical scheme to
solve the problems (1.8), (1.11), and (1.13), demonstrating also the convergence of discrete solutions. Finally,
in Section 6 we present and interpret the plots of several numerical simulations to illustrate the convergence
results for L — 0 and L — oo. We also measure some of the corresponding numerical convergence rates and
discuss to what extent they match our analytical predictions.

2. NOTATION AND PRELIMINARIES

Notation. Throughout this paper we use the following notation: For any 1 < p < co and k > 0, the standard
Lebesgue and Sobolev spaces defined on (2 are denoted as L?(2) and W*?(Q), along with the norms [|-||1.»(q) and
|- |lwr.e () For the case p = 2, these spaces become Hilbert spaces and we use the notation H*(€) = W*2(Q).
Note that H°(Q) can be identified with L?(Q). A similar notation is used for Lebesgue and Sobolev spaces on
I'. For any Banach space X, we denote its dual space by X’ and the associated duality pairing by (-, -)x. If X
is a Hilbert space, we denote its inner product by (-,)x. We define

<u> ﬁ(u,l)Hl(Q) ifue Hl(Q)/,
T Jpude if u e L(Q)

as the spatial mean of u, where || denotes the d-dimensional Lebesgue measure of 2. The spatial mean for
v € HYT) and v € LY(T) can be defined analogously. The definition of a tangential gradient on a Lipschitz
surface can be found in Definition 3.1 of [6]. For brevity, we also use the notation

LP:=LP(Q) x LP(T') and HF:= H*(Q) x H*(T) for all p € [1,00] and k > 0.

Assumptions

(A1) We take Q C R? with d € {2,3} to be a bounded domain whose Lipschitz boundary is denoted by T.
Moreover, we fix an arbitrary final time T' > 0 and we write Q7 := Q x (0,T) as well as 7 :=T x (0,T).
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(A2) We assume that the constants that are involved in the systems (1.8), (1.11) and (1.13) satisfy mq, mr, &, >
0, L >0,k >0and 3 # 0. In Sections 3 and 4, we set mg =mr =¢ =3¢ =1 in (1.1) as their values have
no impact on the mathematical analysis we will carry out. Since the regularity of weak solutions to the
systems (1.13), (1.8) and (1.11) will depend on the parameter £ > 0, it is convenient to use the following
notation:

1/2 . _ 1 ’ . o
XK:{H (T) if k=0, yR::{H () if k=0, 21

HYI)  ifr>0, L)  if k> 0.

(A3) We assume that the potentials F' and G are non-negative and exhibit a decomposition F' = Fj + F» and
G = Gy + Gy with Fy, Fy,G1,Gy € C1(R) such that the following properties hold:
(A3i) Fy and G are convex non-negative functions.
(A3ii) There exist exponents p,q > 2 as well as constants ap,crp > 0 and bp > 0 such that for all s € R,
ap|s|® —brp < F(s) <cp(1+]s]"),
ag|s|" —=bg < G(s) <ca(l+]s]"),

ap 5" = bp < |F/()] < em (141577

A

ag 5|71 — ber < |G'()] < e (1 + |s|q—1) .

This means that F' and G have polynomial growth of order p and g, respectively.
(A3iii) Fj and GY are Lipschitz continuous. Consequently, there exist positive constants dp, dg, dpr and
d¢ such that for all s € R,

|F(s)| < dpr (14 s]),  |Gy(s)| < dar (14 [s])
|Fo(s)| < d (1 n |s|2) L [Ga(s)] < de (1 n |s|2) .

(A4) For the higher regularity results we additionally assume that € is of class C?, that p < 4 in (A3ii) and
that there exist a positive constants cg:,cqg» > 0 such that

0< F{(s) Sepr (1415772, 0<G{(s) < {ZZ: e g
for all s € R.
Remark 2.1. We point out that the smooth double well potential
Waels) =1 (2 - 1)°, seR

is a suitable choice for F' and G as it satisfies (A3) with p = 4 and ¢ = 4. However, singular potentials like the
logarithmic potential or the obstacle potential are not admissible.

Preliminaries
(P1) For fixed k > 0 we define the Hilbert space

e Q1o HY(Q) : dlr e HI(D)}, k>0,
o HI(Q)v k=Y,

endowed with the inner product and its induced norm

(60 ::{((b’w)m(m+(¢|F’wlr)m(“’ T ol = 6.0

(¢7 w)Hl(Q)7 k=0,
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Moreover, we use the notation V := V! = {¢ € H'(Q) : ¢|r € H'(T')} and we define

(9, Cv.p = B(d, Oy + (P, O mrr)

for all functions ¢ € V' and ¢ € V. If 8 > 0, this product defines a duality pairing of V' and V which is
equivalent to the standard one. In particular,

¢l == sup { [{¢, Ov,p| = ¢ €V with [[([ly =1}  for ¢ € V'

defines a norm on the space V' which is equivalent to the standard norm.
(P2) For any 8 # 0 and m € R, we define

Hpm = {(0,6) € H' = B1Q (n)o + [T (E)r =m}.
For any L > 0 and 3 # 0 we introduce an inner product on Hg o by

(00008~ [ Vo- o+ [ Voo Vee+ 136 - 6)(5¢ — ) ar,

for all (¢, ), (n,£) € Hg,o. Its induced norm is given || - ||zg := (-, )IL/Z

(P3) For any 8 # 0, m € R and any x > 0, we define
Wi m i={n e V™ : B1Q] (n)a + L] (n)r =m} C V",
WEo) ™ i={o e (V7) : 19 {(d)a + T {g)r =0} € (V7).

Let ¢ € (Wj,)~" be arbitrary. From Theorem 3.3 of [33] we infer the existence of a unique weak solution

)

S(¢) = (Sa(¢),Sr(¢)) € Hpo to the elliptic problem

—ASqg =—¢ in €, (2.2a)
—ArSr + 80,80 = —¢ on I (2.2b)
OnSa = %(ﬁSF —8q) on I (2.2¢)

This means that S(¢) satisfies the weak formulation

(S(8), (¢, ) 5 = =0, Qmra) — (6: &) 1 (r) (2.3)

for all test functions (¢,€) € H!. Thus, we can define the solution operator

S: (WS,O)_l - 7_([3,07 (b = S(¢) = (SQ(¢)7SF(¢))7
and according to Corollary 3.5 of [33],

1/2 _

(¢7¢)L76,* = (8(¢)7S(¢))L755 [ llz,6% = (-, ')L/’g,* for all 9,9 € (Wg,o) !
defines an inner product and its induced norm on the space (Wj o)~'. Since Wg o € Wj )71, (-, VL g
can also be used as an inner product on Wj ;. Moreover, || - ||r5,« is also a norm on Wj ; but Wj  is not

complete with respect to this norm.

Remark 2.2. To motivate the implicit time discretisation used in the proof of the well-posedness result Theo-
rem 3.1, we point out that the Cahn—Hilliard system (1.13) can be expressed as a gradient flow of the energy E
that was introduced in (1.7) with respect to the inner product (-,-); 5, on (W} )" The gradient flow equation
reads as follows:

OF(u
D)y =~ for all € Wi N ¥ (), e € L¥(T) (2.4

The requirement dyu € (V\/g’o)*1 will be verified in Theorem 3.1. For a more detailed derivation of the gradient
flow equation in similar situations see Section 3 of [26] and Section 3 of [32].
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We will also need the following interpolation type inequality:

Lemma 2.3. Suppose that (A1) and (A2) hold. Then, for any o > 0, there exists a constant Co, > 0 depending
only on L, a, 8 and 2 such that for all u € Wj ),

[ullF20) + lullZ2) < allVull7zig) + Callull? .

The proof can be found in the Appendix A.

3. WELL-POSEDNESS

3.1. Weak well-posedness of the reaction rate dependent model

Theorem 3.1 (Weak well-posedness for the system (1.13)). Suppose that (A1)-(A3) hold and let m € R be
arbitrary. Then, for any initial datum uy € W5 satisfying F(ug) € L*(Q) and G(ug) € L*(T'), there exists a

B,m
unique weak solution (u, u,0) of the system (1.1) in the following sense:

(i) The functions (u, p,0) have the following regularity
we %z ([0,T]; H'(Q)') nc®1 ([0,T]; L*(Q))
NL>® (0, 7; H (Q) N LP(Q)) N H' (0,T; H'(Q)'),
uls, € C%2 ([0,T]; HY(T)) N C ([0, T); L*(T))

3.1
NL>®(0,T;x*NLYT))NnH" (0,T; H(I)), (3:1)
uls, € C¥1 ([0,T); L3(T))  if K >0,
peL?(0,T; H(Q)), 0 L?0,T; H\(T)).
and it holds that u(t) € Wj . for all t € [0,T].
(ii) The weak formulation
(Oru, w) gy = —/ V- Vwdzx —|—/ %(60 — p)wdl, (3.2a)
Q r
(Oyu, 2) g (ry = —/ Vr6 - Vrzdl — / 1(80 — p)Bzdr, (3.2b)
r r
/ undx + / Ondl’ = / Vu-Vn+ F'(u)ndz
@ r @ (3.2¢)

+ / kVru-Vrn+ G (u)ndl
r
is satisfied almost everywhere in [0,T) for all test functions w € HY(Q), z € HY(T'), n € V* N L*>(Q) with

nlr € L*>(T'). Moreover, the initial condition u(0) = uq is satisfied a.e. in ).
(iii) For E as defined in (1.7), the energy inequality

1 [t 1
E (u(t)) + 5/0 IVu(s)1Z20) + IIVr0(s) |72y + ZHM(S) — ()72 () ds

(3.3)
< E(uo)
is satisfied for all t € [0,T].
If we additionally assume that (A4) holds, then
ue L?(0,T; H*()), and uly, € L* (0,T;H*(T))  ifx >0,
(3.4)

ue L2 (0,T;H5/2(Q)) . and ulg, € L2 (0,T; HX(I))  ifr=0.
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To prove the assertions, we construct approximate solutions via an implicit time discretisation of the gradient
flow equation (2.4). This technique which goes back to [3] was first applied on a Cahn-Hilliard problem with
dynamic boundary conditions in [26], and later also in [32]. In the subsequent proof, we will employ the same
strategy. Although some of the steps will be similar to those in [26] or [32], a lot of arguments require a different
reasoning.

Due to the Robin type coupling condition (1.13c), the vector-spaces and the inner product involved in the
gradient flow equation (2.4) differ greatly from those in [26,32]. The crucial difference is that in the LW model,
the chemical potentials are not coupled via the boundary condition d,pu = 0, and as a consequence, the bulk
and surface contribution in the inner product can be considered separately. This is not the case in the gradient
flow equation (2.4) as the space Wy, and the inner product (-,-), 5, already comprises an interaction of bulk
and surface quantities. In particular, we thus require a new customized estimate for functions in Wi (see
Lem. 2.3).

Proof. In this proof, we use the letter C' to denote generic positive constants independent of N, n and 7 that
may change their value from line to line. The proof is split into several steps.

Step 1: Implicit time discretisation. Let N € N be arbitrary and let 7 := T/N denote the step size in time.
For n € {0,..., N}, we define functions u™ recursively by the following construction. The iterate with index
zero is defined as the initial datum, i.e., u® = ug. If u™ is already constructed, we choose ©™*! as a minimiser
of the functional

K 1 n
Tn i Wom = R, ws o lu— "5, + B(u) (3.5)

where W5 . is defined in (P3). Note that J,, may attain the value +o00o, see Section 4 of [32]. The existence of
such a minimiser will be addressed in Step 2. As F} and G; are convex, we can proceed as in Lemma 3.2 of [25]
to infer that the Euler-Lagrange equation

un-i—l —ut 1 1
0= <,ﬁ> —|—/Vu"+ VA + F (v fida
T L,B,* Q
+ / kVpu" . Vrn + G (u”“) Adl (3.6)
r

holds for all directions 7 € Wj o N L>(€2) with #j|r € L°°(T). This can be interpreted as a discretisation of the
gradient flow equation (2.4). A straightforward computation shows that (3.6) is equivalent to

/ﬁ”+1ﬁdx+/§"+1ﬁdr: /vu"+1.Vﬁ+F’ (u™1) i da
Q T Q

+ / kVru"t Ve + G (u" ) fdl (3.7)
r
for all /) € Wj , N L>(Q) with 7|r € L>(T), where
(fﬂ“, 9"”“) =8 (L = uM) € Hay. (3.8)
For arbitrary 7 € V* N L*>(Q) with n|pr € L>°(I"), we see that if 5|Q| + [T'| # 0, then
A ﬂfgndz+frndf
=+ co, S
R Blel+ [T

satisfies 77 € Wj o N L>°(Q) with | € L>°(T). Then, we define a constant ¢**' € R independent of the test
function n by

n+1l _ fQ F’ (un-i-l) _ ﬁn—&-l dz + fF el (un+1) _ é"""l dr

& )
A1 + T
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so that the pair of functions
‘un+1 — l&nJrl +ﬂcn+1 and 0n+1 — énJrl _|_Cn+1 (39)

satisfies for arbitrary n € V* N L>°(Q) with n|p € L>(T),
/ p" iy da + / 0"t pdl = / Vurtt o Vn+ F (u" ) pda
Q r Q

(3.10)
+ / kVpu" T Ven+ G (0" ndl.
r

In the case 3|2 +|T'| = 0, the above constant ¢ is not defined. Hence, we consider fixing an arbitrary ¢ € C°(Q)
that is not identically zero, and define

B Jondz+ [ndl
ﬁfﬂgdx ’

which satisfies /) € Wj ;N L>(Q2) with 7| € L>°(I"). Then, we define the constant ¢t € R that is independent
of n as

77:77—1_014-7 1= —

Jo F! (u"*) ¢ — pm ¢ + V- V(de
B [, ¢dx

so that p"*! and "' as defined in (3.9) satisfy (3.10). By this construction, we find that the triplet
(u"t, 0t satisfies the equations

Cn—i—l _

/ L(w ! —u")wdz = —/ vyt Vw de +/ L (B! — ") wdl, (3.11a)

Q Q r

/;(U"H —u") zdl = — / Vr" - Vrzdl — / + (8" — ) Bz, (3.11b)
r r r

/ pyde + / 0"t lpdl = / Vurtt Vi + F (W) nda
Q r Q
+ / kVru" T Ven+ G (u" ) pdl, (3.11c)
r

for all test functions w € H'(Q), 2 € HY(T') and n € VN L>®(Q) with nlp € L(T). This system can
be interpreted as an implicit time discretisation of the weak formulation (3.2). In this context, the collection

(u", ™, 0™) =1, ~ represents a time-discrete approximate solution. For ¢ € [0,T] and n € {1,2,...,N}, we
define the piecewise constant extension
(U'N7 HN, 9]\/’) ('7 t) = (U'?Vv /”‘Rﬁ 9?/’) = (una /’Ln, en) ) (312)
for ¢ € ((n — 1)7,n7] and the piecewise linear extension
(aN7,D'N7§N) (7t) ZQ(U?V,ILL?V,Q?V)—F(I—O()( - hu)n ! 0" 1) (313)

for any o € [0,1] and t = ant + (1 — a)(n — 1)7.

Step 2: Existence of a minimiser. We apply the direct method in the calculus of variations to show that the
functional J,, has at least one minimiser in the set Wj - To this end, we assume that u" is already constructed
as described in Step 1. Recalling the definition of the energy functional (1.7) and that the potentials F' and G
are bounded from below according to (A3ii), we infer that

Jp(u) > —C* where C* :=bp|Q|+bg |, (3.14)
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for all u € Wy .. Consequently, M := infyys .J, exists and is finite, and we can find a minimising sequence
(uk)ren C ng such that ’

klim Jp(ug) =M, and J,(ur) <M+1 forall keN.
From the definition of the functional J, (see (3.5)) we deduce that
1 K
IV + 5 IVrulaqr, —&-/QF(uk)d:c—i—/FG(uk)dF <c (3.15)

for all k € N. Now the growth estimates (A3ii) for F' and G imply that the sequence (uy) is bounded in V*.
Hence, according to the Banach—Alaoglu theorem, there exists a function @ € V" such that uy — @ in V¥
along a non-relabelled subsequence. Recalling the compact embeddings H*(Q2) — L?*(Q) and H!(Q) — L*(T),
consequently uy — @ in L*() and uy — @ in L*(T') along a non-relabelled subsequence, so that @ € Wj .
It remains to show that @ is actually a minimser of the functional J,,. Since F' and G are continuous and
non-negative, we can use Fatou’s lemma to infer that

/F da < hmmf F(up)dz, and /G dI' < hmmf G(uy)dl (3.16)

Q r

As all other components of the energy are continuous and convex, we conclude that

Jn(a) < likm infJ, (ug) = M.

This proves that « is a minimiser of .J,, on the set Wg .
Step 3: Uniform estimates. Next, we establish uniform estimates for the piecewise constant extension. We

claim that
lun |l oo o,7:81 ()nLr ) + lun]lLos 0, 7305 ALa (1)) (3.17)
+ w2070 9) + 10N 20,7581 (1)) < C. '

To prove this assertion, we follow the reasoning in Section 4 of [26] and Section 5 of [32]. As u"™! is a
minimiser of the functional .J,, on the set Wgym, we obtain the a priori estimate

1
Q—Hu"H —u"|} .+ E@W'™) <E@") foralne{01,...,N—1}. (3.18)
- B,

By induction we conclude that E(u™) < E(ug) for all n € {0,1,..., N}. Thanks to the definition of E (see
(1.7)), we infer that

1 K *
§‘|Vun+1||%2(g) + §|\Vru"+1||%z(p) + /Q F (Un+1) dx + /F G (u"“) dr < E(UQ) + C*. (319)

From the growth assumptions (A3ii) we deduce the uniform bound
lun @) + lunllze@) + lunllas + [lun]Lor < C. (3.20)

To derive a uniform bound on ux we can argue as in Section 4 of [26] and Section 5 [32]. Proceeding this way,
we use a generalised Poincaré inequality (see [2], p. 242) to obtain the estimate

1"l z20) < C (L4 Va2 (3.21)

for all n € {0,1,...,N — 1}. To bound ||Vu""||12(q) we first show that an energy dissipation law holds true
on the discrete level. We recall that, according to (3.12),

(un, un, On) (s) = (un, pn, On) () = (ui, w3, O%)
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forall se (¢t —7,t],n € {l,...,N — 1} where t = 7n is fixed. Using the definitions of uy and Oy and recalling
(3.8) as well as the a priori estimate (3.18), a straightforward computation shows that

1/t 1
E(un(t)) + 5/t IIWN(S)H%z(Q) + IIVFGN(S)H%z(p) + ZHWN(S) - uN(S)II%zm ds

1 t
= Blun®) + 53 [ huwls) —un(s =Dl ds

< E(un(t) + %HUN(t) —un(t =)L 5. <E(un(t—r1)).

Performing a simple induction we conclude that

1/t 1
E (un(t)) + 5/0 IIVuN(S)Iliz(Q) + IIVF9N(S)II%z(p> + leﬁﬁN(S) - uN(S)II%z@) ds

(3.22)

In particular, for t = N7 =T, we get
HVIJNH%?(O,T;H(Q)) + HVF9N||2L?(O,T;L2(F)) < 2E(ug) < C. (3.23)
In combination with (3.21) we infer that uy is uniformly bounded in L2(0,T; H*(£2)). It remains to establish

the uniform bound on 6. From the growth estimates (A3ii) (particularly, the upper bounds for F’ and G’) and
(3.20) we obtain that

/Q P/ ()| dz < €+ Cllum 50, < C

[l @) <o, <c.

for all n € {0,..., N}. Now, testing (3.11c) with 7 = 1 and using the above estimates yields

forrtar| < o4 o .
T

Using Poincaré’s inequality on I" and the estimate (3.21), it follows that
10" |2y < C (1 + VR 22e0) + V00" | L2y (3.24)

for all n € {0,1,..., N — 1}. Hence, by (3.23) we conclude that f, is uniformly bounded in L? (0,T; H*(T")).
Step 4: Holder-in-time estimates. We now use interpolation type arguments to show that the piecewise linear
extension is Holder continuous in time. In particular, we claim that for all ¢, s € [0, 7],

i () — n () 22y < CJt 5|7, (3.25a)
lJun (£) — an ()| 20y < 71, (3.25b)
lun (t) — an(s)|| 1y + [Jun(t) — an(s)|| gy < CJt— 8|% (3.25¢)
lune () = i @)l @ + llun (8) = an (&) 0y < CT7, (3.25d)
lan (t) — an (s)|| 2y < Clt— |t if k>0, (3.25¢)
lun (t) — @n(8)|| p2ry < CT7 if k>0 (3.25f)
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as well as
Hat’l_l,N||L2(07T;H1(Q)/) + ||at'ELNHL2(O,T;H1(F)/) S O (326)
To prove this claim, we first infer from (3.11a) and (3.11b) that for any w € H*(Q), 2 € HY(T") and almost
all r € [0, T,
(Orun (1), w) g1(q) = —/ Vun(r) - Vwdz +/ +(BON(r) — pn(r) wdr, (3.27a)
Q r
(Orun(r),2) Hr(ry = —/ VrOn(r) - Vypzdl — / 1 (BON(r) — pn(r)) BzdT. (3.27b)
r r

Let s,t € [0,T] be arbitrary and without loss of generality suppose s < t. Integrating (3.27a) from s to t and
choosing w = un(t) — un(s) yields

an (t) — an (5)l|72(q) < 2Mlan Lo 0,000 @) (lan 20,150 @) + 1808 — pnll 20,7522 (0))) [t — 512,

which is (3.25a). Similarly, if £ > 0, then integrating (3.27b) from s to ¢, choosing z = un(t) — an(s) leads to
(3.25¢). Moreover, it is clear that (3.26) follows directly from (3.27) and previous uniform estimates on Vyp,
VFGN and 69]\/ — UN-

For almost all r € [0, 7], applying the Cauchy-Schwarz inequality and the continuous embedding H!(Q) —
L3(T) to (3.27a) yields

(vt (r), w) ey | < C (14 72 ) (IVin Dllz2q) + S8 () = v Dllzam) lwlliney. (3:28)

For arbitrary s < t, using (3.22), (3.28) and Hoélder’s inequality, we conclude that

lan(®) —an(s)lmwy = swp |(an(0) - an(s), who)|
kuyl(g)zl

t
< sup /
HwHHl(Q):l s

t
<1+ %) [ 190l + 100 () = i (D lzzey dr

N

<at’a]\7(7'), w>H1(Q) ’ d?"

N

IN

i t
O (14 ) It sl ( 19 ) ey + 2130 () = e ) dr)
<C(1+dp)lt—sl*.
In a similar fashion, we can derive the estimate
1
lan (t) = an () ey < € (14 ) 1t = sl

which proves (3.25¢) as C' may depend on L. Next, for any ¢ € [0,7] we can choose n € {1,...,N} and « € [0, 1]
such that t = ant + (1 — a)(n — 1)7. Hence, it follows immediately that
lan (t) = un (t)l|x < llaw” + (1 = a)uy (8) — ui (t)llx
= (1 - a)[[uf (t) — uy ' @)llx = (1 = a) |an(n7) = an((n = 1)7)|x

for X = L%*(Q) or L3(T") or HY(Q)" or H(T')'. Choosing t = n7 and s = (n — 1)7 in (3.25a), (3.25¢), (3.25¢)
leads to (3.25b), (3.25d) and (3.25f), respectively.
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Step 5: Convergence assertions and regularity of the limit. We now claim that there exist functions (u, u, 6) sat-
isfying the regularity condition (3.1) such that the following convergence properties hold along a non-relabelled
subsequence:
UN — U weakly-* in L (0,T; H' () N LP(Q)),
strongly in L* (O,T; LQ(Q)) , and a.e. in Q,

un|s, — uln,  weakly-*in L (0,7; X" N LYT)),
strongly in L*°(0,T;Y"), and a.e. in X,

Un — u weakly in H' (0,T; H'(Q)'),
strongly in C%7 ([0, T]; H'(€2)") for all v € (0,3),
and strongly in C'%7 ([O,T]; LQ(Q)) for all v € (O, %) ,

Un|s, — uls, weakly in H' (0,7; H'(T)'),
strongly in C%7 ([0, T]; H'(T')’) for all v € (0,3),
and strongly in C%7 ([0, T7; L*(I)) for all v €

2
iy — g weakly in L? (0,T; H'(Q)) , and weakly in L (o T H1/2(F)) :
On — 0 weakly in L (0,7; H'(T')) .

These convergence assertions can be established using the same methods as in Section 4.5 of [26] and
Section 5 of [32]. Moreover, recalling the compact embedding H*(Q) < H3/4(Q) and the continuous embedding
H3/4(Q) — H'(Q)', we infer from the Aubin-Lions lemma [46] that u € C([0,T]; H*/*(Q)). By the continuous
embedding H3/%(Q) — L?(I"), this additionally yields

uls, € C ([0,T]; L*(T)).

Hence, the regularity assertion (3.1) is established.

Step 6: Existence of weak solutions. We finally show that the limit (u, u,6) is a weak solution of the system
(1.1). We already know from Step 5 that the limit (u,u,0) enjoys the regularity demanded in (3.1). Using
the convergence results from Step 5 we may pass to the limit in (3.27) after multiplying by an arbitrary
¢(t) € C*(0,T) and integrating over (0,7). By a standard density argument, this directly implies that (3.2a)
and (3.2b) are satisfied. Moreover, we deduce that F'(uy) — F'(u) a.e. in Qr and G'(un) — G'(u) a.e. on Tp.
Recalling the growth estimates on F’ and G’ and the uniform bounds on wuy, we can apply Lebesgue’s general
convergence theorem (see [2], p. 60) to obtain

/ F'(un)¢(t)ndx dt — ; F'(u)((t)n dx dt,

G/(UN)C(t)ndl—‘ dt — G/(U)C(t)ndr dt.
St Zr

This allows us obtain (3.2c) from passing to the limit in (3.11c). Hence, the triplet (u, u,0) satisfies the weak
formulation (3.2). Proceeding as in Step 2 we get

/ F(u(t))de < liminf [ F(un(t))dz,

N—o0 Q

/G )drr < hmlnf G(un(t))dT,

N —o0 Q

for almost all ¢ € [0,T]. As all other contributions of the energy functional E are continuous and convex, we
can use the convergence properties from Step 5 to verify the energy inequality (3.3) from (3.22).
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Step 7: Uniqueness. Suppose that (uj, p1,61) and (ug, po,02) are two weak solutions to the system (1.13)
corresponding to the same initial data. We denote the difference of these solutions by

(@, @, 0) == (u1, p1, 01) — (u2, 2, 62).

We point out that a(t) € Wj, for all ¢ € [0,T]. Let now to € (0,T], w € L*(0,T; H'(€)) and z €
L?(0,T; H'(T)) be arbitrary. In the following we use the notation Q, = Q x (0,%), £y, = I’ x (0,%9). We
set

to . to .
_ w(-,s)ds, ift <t - z(-,8)ds, ift<tp
Gt) = Jr W as ©and 3( )= {0 A0S ’ 3.29
(1) {0 if t >t and (%) 0 if ¢ > to, (3.29)

and thus, w € L? (0, T; H(Q)) N H' (0,T; L*(Q)) and Z € L? (0,T; H'(T')) N H* (0, T; L*(I)). Plugging w into

(3.2a) and Z into (3.2b), we find that
t t
/ uzdl'dt = —/ V(/ ,uds)-dexdt —/ Vr (/ 9ds>-szdth
Q Qo 0 St 0
1 t t
——/ (ﬁ/ 9ds—/ uds) (Bz —w) dI" dt.
LJs 0 0

In view of the solution operator S from (P3) we obtain the identifications

ﬂwdxdt+/

to St

to

t t
Sg(a):/ fds + fe, Sp(a):/ fds+c
0 0
for some constant ¢ € R, and thus,
0:Sa(u) = i, 0:Sr(u) = 0.
We now choose w = ji and z = 6. Using %(0) = 0 and S(0) = 0, we find that

J

For M > 0, we define the projection Py : R — [—M, M] as

s if |s| < M,

. 1
afdr dt = —§||a(t0)uiﬁy*. (3.30)

to

updx dt + /
to b

Now, for any M > 0, the test function n = X[, P (1) belongs to L2(0,T; V5) N L=(Qr) and satisfies
N, € NL®(Zr). Hence, it can be used as a test function in (3.2¢). Recalling the monotonicity of F} and G7,
we infer that

/ WPy (ﬂ) dx dt + é'PM (ﬁ) di*dt > Vu-VPuy (ﬁ) + (FQ/ (ul) — F2/ (’LLQ)) Prr (ﬂ) dx dt
Qg g Qi

+ /Z KVr@ - VP (@) + (Gh(uy) — Gh(us)) Pag (@) dD dt. (3.32)

to

Applying the dominated convergence theorem, we can pass to the limit M — oo, leading to (3.32) with Py, (@)
replaced by 4. Now, in combination with (3.30), we get

1, _ _ _ _
5”“(%)“%,5,* + HVUHQL?(QtD) + HHVFUHQL%ZW) < CLip <||“||2L2(Q,,0) + ||U|\%2(zt0)) (3.33)
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where the constant Cp;, depends only on the Lipschitz constants of Iy and G5. Invoking Lemma 2.3 with
a = (2CLip) ! we deduce from (3.33) that

1, 1, o
gt .+ 51Vl < CuinCo [ 101 5.

Since t was arbitrary this estimate holds for all ¢y € [0, T|. Hence, we can apply Gronwall’s lemma to infer that

IS@llz,s = llallz,px =0

Recalling that S(@) is the weak solution of the system (2.2) to the right-hand side @, we finally conclude that
@ =0 a.e. in Qp and 4|y, =0 a.e. on Xp. In view of (3.2¢) for the difference of solutions, we obtain

/Q,:m dw—i—/F@_n dl' =0 (3.34)

for arbitrary n € V*NL>(Q) such that n|r € L (T"). We first consider n € C2°(€2) and applying the fundamental
lemma of calculus of variations to deduce that i = 0 a.e. in Q. Then, the first term of (3.34) vanishes and
consequently we infer that = 0 a.e. on I'. Hence, we obtain the uniqueness of weak solutions.

Step 8: Higher regularity. By arguing as in Section 4 of [32], one can establish under assumption (A4) the
additional regularity u € L?(0,T; H?(Q)) for any x > 0 and also u € L?(0,T; H*(T")) if x > 0. Let us sketch
the arguments for the regularity assertions in (3.4). For k > 0, since p, F'(u) € L?(0,T; H*(Q)) and u|s, €
L?(0,T; H*(T)), elliptic regularity theory gives u € L?(0,T; H>/2(Q2)). Together with Au € L?(Qr), a variant of
the trace theorem implies d,u € L?(0,T; H(T)). Then, as 6, G'(u) € L*(0,T; HY(T)), by elliptic regularity we
have uls, € L?(0,T; H3(T')). Employing this more regular boundary trace for u with elliptic regularity yields
u € L%(0,T; H3(Q)).

On the other hand, for k = 0, we only have u € L?(0,T; H*()) from [32]. However, from (1.13b),, since
0,G'(u) € L?(0,T; HY(T)), we infer that d,u € L%(0,T; H*(T')). Then, by elliptic regularity theory we obtain
u € L?(0,T; H%/2(Q2)) and by the trace theorem ulx, € L?(0,T; H*(T)).

Now, as all assertions are established, the proof of Theorem 3.1 is complete. (I

3.2. Improved regularity and strong solutions

Theorem 3.2. Let m € R be arbitrary. Suppose that (A1)-(A4) hold and that ug € Wj ,,, with (ug,uolr) € H3
if k> 0 or with ug € H3(Y) if k = 0. Let (u,p,0) denote the unique weak solution of the system (1.13) to the

initial datum wo in the sense of Theorem 3.1. Then, in addition to the reqularity properties (3.1) and (3.4), it
holds that

{ we HY0,T; V"), pe L= (0,T; H(Q) N L2 (0,T; H()) (3.35)

Onp € L* (0,T;L*(I)),  6€L>®(0,T;H (")) N L*(0,T; H*()) .
This means that (u, u,0) is a strong solution of the system (1.13).

Proof. To prove the assertion we will argue similar to the approach in Section 4.4 of [11]. Here, we use the letter
C to denote generic positive constants independent of N, n and 7 that may change their value from line to line.
Let N, 7 and (u™,u™,0™), n =0,...,N be as defined in Step 1 of the proof of Theorem 3.1. For brevity, we
introduce the notation

n 9n+1 — 9"

n+1l _
funtt=" "W g it B TR g gt T 77 (3.36)
T T T



PHASE-FIELD DYNAMICS WITH TRANSFER OF MATERIALS 245

to denote the backward difference quotient in time. Let n € {0,1,..., N — 1} be arbitrary. Testing (3.11a) with
w=—0,u"t € HY(Q), (3.11b) with z = —9,6""* € H'(T') and adding the resulting equations leads to

—/&u”“&u"“ dx—/@ﬂt"“&@"“ dr
Q r

1 " . . .
=9 (”vﬂ +1||2L2(Q) — IV ||2L2(Q) + |V (™t = ) ‘|%2(Q))
1 n . . )
tar (IVe8™ 4 20y = 906" W32y + 1908 = 6|3 ry ) (3.37)
1 o . . .
5= (1807 — ey = 1180 — 1”2y

+ |8 (0n+1 _ en) _ (‘unJrl _ Mn) ||2L2(F)) .

Since (A4) holds, the variational equation (3.11c) now holds for more general test functions n € V*. Taking the
difference of (3.11c) for indices n and n + 1, and then choosing n = 19, u"*! € Wy gives

/ O p" o u da + / 8-0" 1 "t dr
Q r

1
= IV u" 172y + K Vrd w72 oy —I—/ = (F' (u"') = F'(u™)) 0-u™ ' da (3.38)

oT

—|—/ 1 (G (u") = G'(u™)) Oru" T dI.
r

T

Using the monotonicity of F| and G, the Lipschitz continuity of Fj and G5, after summing (3.37) and (3.38)
and neglecting some non-negative terms we arrive at

IV 220y = IVE 20y + V00" [ F 20y = (V00" 172
1 n n 1 n n
+ ZHﬂH o +1||2L2(r) - f||59 —p ||2L2(r)

3.39
+ 27 (||V87u”+1 H%Q(Q) + /1||VF87u"+1||2L2(F)> ( )

< Cip (100" 200y + 100 3o )

where Cpi, > 0 depends only on the Lipschitz constants of Fj and Gj. Since 9,u"*!

Lemma 2.3 (with o = CI:i;) to see that

€ Wi, we invoke

Crip (104" 122 () + 10-0" T2 r)) < VO |12 gy + CllO-u™ [ ... (3.40)
According to (3.8) and (3.9), the functions p"*! and "' can be expressed as
p = So (0,u" ) + BT, 0T = Sp(0,um ) + T
It thus follows that
10-u" 1T 50 = 1S@ru )1Z

=[|Vu +1||%2(Q) + Vo +1||2L2(1“) + ZHﬂg o +1||2L2(1")-
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Substituting the estimate (3.40) and the identity (3.41) into (3.39), we get
HvﬂnHH%%Q) - ||VM"||%2(Q) + ||VF9"+1||2L2(F) - ||VF‘9n||2L2(r)
180" = By — 186 — " ey
+7(IVOru™ L2 ) + £ Vo u" T2 )

n n 1 n n
< Or (I8 By + 1956 ey + 198 = e )

(3.42)

Now we sum the inequalities (3.42) from n = 0 to an arbitrary index kK < N — 1. With the help of the piecewise
constant extensions (3.12) and piecewise linear extensions (3.13), we find that

1
||Vﬂk+1||2L2(Q) + ||VF0k+1||i2(F) + ZHBG’“H - /JkH”QH(F)

kT
+ / IV ()20 + £ V0 (5) 2 r ds
0 (3.43)

T
1
< C/O IVun ()1 72) + IVrOn (s) 1 72ry + EHWN(S) — N (9|72 ds
1
+IVun (0) 1720y + I1VrOn (0)][ 72y + ZHﬁaN(O) — v (0|72 (ry,

where the prime indicates the derivative with respect to the time variable. We now recall that px(0) = u° and
On(0) = 0°, which according to (3.11c) satisfy

/ pOnda + / °ndl = [ Vu® -V + F'(u")nde + / kVru® - Vrn 4+ G (u®)ndl (3.44)
Q r Q r

for all n € V*. We can first take n € C2°(2) C V" to deduce that
p’ = —Au® + F’(ug) in the sense of distributions in €.

By assumption of ug € H3(2), it holds that u° € H(£2) and the above identity holds a.e. in Q. Then, returning
to (3.44), we use the above identity to deduce that

0° = —kAru® + G'(u°) + 9,u’ in the sense of distributions on T'.
If & > 0, by the assumptions ug|lr € H*(T) and (A3), we infer that 6° € H'(T), and if x = 0, then by the
assumption ug € H3(Q) C H2(T), we see that d,u’ € HY(T') and thus §° € H'(T') as well. Hence, recalling

the uniform estimate (3.22), we infer that the right-hand side of (3.43) can be bounded by a constant C' > 0
independent of N, x and 7. As k was arbitrary, we conclude that

1
IVin ()72 + IVEON ()12 + 718N () ~ pn (D12 0y < €, (3.45)
T
/O IV ()220 + £l Vit (s) |22y ds < C (3.46)

for any ¢t € (0,T]. From the estimates (3.21) and (3.24) we now deduce that

”,uN(t)H%z(Q) + ||9N(t)||%2(1—~) <C forallte (O,T]
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Moreover, invoking Lemma 2.3, (3.22), (3.41) and (3.46), it holds that

T T
/0 e ()20 + N (8)[ 2y s < / IV () 22y + Clln ()12, 5.0 ds

T
<O+ C [ ITan e + IVe0x gy B4D
1
+ T180x () — ()] 3aqry ds < €.
Hence, in addition to (3.17) and (3.26), we infer from (3.45)-(3.47) the following uniform estimates

ln lzos 0,751 () + 10N | Lo 0,11 (r)) + 1808 — vl 2w 0,7522(0)) < €

1@l 22 0.0 () + 1@ | 20,72 () + BV EU L2 0.2y < C
leading to limit functions (u, u,d) exhibiting the additional regularity
u€ HY0,T; V%), peL>®0,T;H (Q), 60cL>0,T;HYT)).

Returning to (3.2a) and (3.2b), which are the weak formulations of the elliptic problems

{Au = Owu in Q, Arf = dyu + %ﬁ(ﬁ@ —p) onT,

Onp=1(B0—p) onT,

we invoke elliptic regularity theory (see, e.g., [47], Sect. 5, Prop. 7.7 for the system in the bulk and [47], Sect. 5,
Thm. 1.3 for the equation on the boundary) to find that

el 2y < C(1ARN L2 @) + Il a1 @) + 1Onkll vz mry)
= C([|0wull L2 ) + llullar @) + 0]l 2 (1))
161120y < C (1AL L2(ry + (10l 21 ry)
< O(l10eull L2y + 0] ey + el )

Hence, we conclude that
pe L*(0,T; H*(Q), Opp € L*(0,T;L*(T)), 6 € L*(0,T; H*(T))
and thus, the proof is complete. O

3.3. Well-posedness results for the LW model and the GMS model

For the reader’s convenience, we now also present the well-posedness results for the LW model (1.11) and the
GMS model (1.8).

Proposition 3.3 (Well-posedness of the LW model). Suppose that (A1)-(A3) hold and let m = (my, ms) € R?
be arbitrary. Then for any

uy € V5 ={v eV : (v)g =mp, (V)r =ms} (3.48)

satisfying F(ul) € LY(Q) and G(ul) € LY(T), there exists a unique weak solution (u*,u*,0*) to (1.11) in the
following sense:
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(i) The functions (u*, u*,0%) have the following regularity
u* € C([0,T); L*(Q) N L>® (0,T; H(Q) N LP(Q)) N H'(0,T; H' (Q)"),
u*|s, € C([0,T]; L*(I")) N L>=(0,T; X" N LYT)) N H'(0,T; HY(T")'),
p* € L2(0,T; H'(Q)), 0* € L*(0,T; HY(T))

and it holds that u*(t) € V., for all t € [0,T].
(ii) The weak formulation

0 = (uf,w) g1 () —|—/ Vi - Vwde, (3.49a)
Q
0= (uf,z)g(r) + / Vrb* - Vrzdl, (3.49b)
r
0= / Vu* - Vn+ F' (u*)n — p*ndx + / kVru* - Vrn+ G (u*)n— 6*ndl, (3.49¢)
Q r

is satisfied almost everywhere in [0, T] for all test functions w € H*(), 2 € HY(T') and n € V=N L>(Q)
with n|p € L>=(T"). Moreover, the initial condition u*(0) = uf is satisfied a.e. in Q.
(iil) For E as defined in (1.7), the energy inequality

* 1 ¢ * * *
E(u (t))+§/0 Vi ()1 220y + VPO () |72(ry ds < E(ug) (3.50)

is satisfied for all t € [0,T].
If we additionally assume that (A4) holds, then the regularity assertions (3.4) also hold.
The above well-posedness assertion was first established in Theorems 3.1 and 3.2 [35]. In the case k = 0 the
authors needed a strong assumption on the domain € and its boundary T'. However, it was later shown in [26]
that this assumption can actually be omitted if a slightly weaker notion of weak solutions is used. For a proof

of Proposition 3.3 see Theorem 2.1 of [32], while the regularity assertion (3.4) can be shown with the arguments
in Step 8 of Section 3.1.

Proposition 3.4 (Well-posedness of the GMS model). Suppose that (A1)-(A3) hold with 3 > 0 and let m € R
be arbitrary. Then for any uo . € W, satisfying F(uo.) € L*() and G(ug«) € L*(T), there exists a unique
weak solution (us, s, ) to the system (1.8) in the following sense

(i) The functions (ux, fi«, 0x) have the following regularity

u, € C([0,T); L*(Q) N L™ (0, T; H'(Q) N LP(Q)) N H'(0,T; V'),
.|z, € C([0,T]; L*(T)) N L®(0, T; X% N LY(T)), (3.51)
pe € L*(0,T; H'()), 6. € L*(0,T; H(I))

and it holds that 30, = .|, a.e. on Xr. Moreover, u.(t) € Wi, for all t € [0,T].
(ii) The weak formulation

0= (U, w)y g+ ﬁ/ Vi - Vwdz + / Vb, - Vrwdl, (3.52a)
Q r

0= / VYV, - Vi + F'(u)n — pendr + / kYU - Vin + G (ue)n — 0, dD (3.52b)
Q r

is satisfied almost everywhere in [0,T] for allw € V and n € V* N L>(Q) with n|r € L>(TI"). Moreover, the
initial condition u.(0) = ug . s satisfied a.e. in Q.
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(iii) For E as defined in (1.7), the energy inequality

1 t
E(U*(t))+§/0 IV () 122y + V05 (5) |2y ds < Euo,) (3.53)

is satisfied for all t € [0,T].
If we additionally assume that (A4) holds, then the regularity assertions (3.4) also hold.

A proof of the well-posedness assertion can be found in Theorem 3.2 of [27]. We point out that the regularity
results u. € C([0,7]; L*(Q2)) and u,|x, € C([0,T]; L*(T)) are not mentioned in Theorem 3.2 of [27] but follow
straightforwardly from the Aubin—Lions lemma, see Step 5 of Section 3.1.

To establish the convergence rates in Section 4, we will need the following regularity result for solutions of
the GMS model in the case k > 0.

Proposition 3.5 (Higher regularity for the GMS model). Suppose that (A1)-(A8) hold with k,5 > 0 and let
m € R be arbitrary. Then, if ug + € W5 with (ug«, Uo «|r) € H? the unique weak solution (U, ji«,0.) to the
system (1.8) satisfies the further regularity
u. € H(0,T; L*(Q)), f € L2°(0,T5 L*(2)) N L*(0,T; H*(Q)),
Ul € HYOTSTAT)),  puals, € L%(0,T5 L3(T)) 1 L2(0, T H3(T)).

This means that (us, p«, 0x) is a strong solution of the system (1.8).

The assertions of Proposition 3.5 do not follow immediately from the results in [11]. However, they can be
established with slight modifications in the proof of Theorem 3.2, which follows the line of argument in [11].

4. ASYMPTOTIC LIMITS

In this section we investigate the asymptotic limits L — oo and L — 0 of the system (1.13). We first present
some general estimates for solutions to the system (1.13).

Uniform estimates. Suppose that (A1)-(A3) hold and let ug € W ,, be any initial datum satisfying F'(uo) €
LY (Q) and G(ug) € L* (T"). For any L > 0, let (uL, uk, G‘L) denote the corresponding weak solution to the system
(1.13) in the sense of Theorem 3.1. In the following, we use the letter C' to denote generic positive constants
independent of L. From the energy inequality (3.3) we conclude that

" Loe 0,757 () + U] Lo 0,100 (0)) + 10| e 0,m520%) + ¥ Loe 0,100 () < C,

(4.1)
IV 122y + IVPO L2 (s + 160" — p* |72z, < C.
Arguing as in Step 3 of the proof Theorem 3.1, we additionally infer that
151 22 @y + 10" |22y < C. (4.2)

Proceeding similarly as in Step 4 of the proof of Theorem 3.1 and exploiting the energy inequality (3.3), we
derive the uniform estimate

g | 220,30 () + ud | 20,7501 (ryy < C (1 + \%L) : (4.3)

Let now w € V be an arbitrary test function, then testing (3.2a) with Sw and (3.2b) with w, summing and
integrating the resulting equations yields the bound

HutL”Lz(O,T;V’) S C if ﬁ > 07 (44)



250 P. KNOPF ET AL.

where V' is endowed with the norm || - ||y~ g as introduced in (P1).
Assume additionally that (A4) holds, we note that the arguments to the regularity assertion (3.4) do not
involve the parameter L, and so we deduce that

||(’U/L,UL|ET)||L2(O’T;H3) S C lf K > 0, (4 5)
(" w50 )| 20,572 (@) x a2y < C if & = 0.

These uniform estimates can now be used to establish our convergence results.

4.1. Convergence to the LW model as L — oo

Theorem 4.1 (Asymptotic limit L — o0o). Suppose that (A1)-(A3) hold and let (my,ms) € R2, 3 # 0 and
k > 0 be arbitrary. For any initial datum ug € Wp . with m = B|Qmy, + [Clms, (uf)a = mp, (ug)r = ms,
F(uy) € L'(Q) and G(ug) € L*(T), let (u”, u,0%) denote the unique weak solution of the system (1.13) in the
sense of Theorem 3.1. Then there exist functions (u*, u*,0*) such that

ul — v weakly-* in L* (0,T; H'(Q) N LP(Q)) ,

weakly in H' (0,T; H'(Q)'),

and strongly in C ([0, T]; L*(Q)) ,
u|s, — u*lg, weakly-* in L™ (0,T; X" N LY(T)),

weakly in H' (0,7; H* (")),

and strongly in C ([O,T]; LQ(F)) ,

ph— weakly in L? (O7T; Hl(Q)) ,
0F — o* weakly in L? (0,75 H'(I)) ,
L (80" — pn*|s,) — 0 strongly in L*(X7),
as L — oo, and the limit (u*, pu*,0%) is the unique weak solution of the LW model (1.11) to the initial datum
ug.
If additionally

~ (A4) holds, then

L?(0,T;H?) iftk>0

L , L * )k . y Ly ;

— k1

(u%, ) = (7, wlmy) wealdy in {L2 (0,T; HY/2(Q) x HX(T))  if x=0.

— (A4) holds and (uy,ul|r) € H3 if K > 0 or ul € H3(Q) if kK = 0, then there exists a constant C > 0
independent of L and k such that

* " C
IV (u" = u*) [l2(Qqp) + VE IVE (0 = u*) 20y < —=,

\/Z
/0 t Onpu®(s)ds <

+ |Ont" |25y < —=-

~ (A4) holds, k> 0 and (uf,ul|r) € H3, then there exists a constant C > 0 independent of L such that

* * C
lu® = ul| o 0,7s220) + 0™ = WL o,mi22(0)) < LA

sup
te(0,T)

Proof. In this proof we use the letter C' to denote generic positive constants independent of L, N, n and 7 that
may change their value from line to line.
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Step 1: Convergence in the limit L — oo. Let (Lg)ren C [1,00) denote an arbitrary sequence satisfying
Ly — 00 as k — oo. For any k € N, let (u¥, u¥ 6%) = (ul*, ul* 6Fr) denote the unique weak solution to the
system (1.13) corresponding to the parameter Lj. Hence, from the uniform bounds (4.1)-(4.3) we infer the
existence of functions (u*, u*, 6*) such that

uf —wu* weakly-* in L>(0,T; H(Q) N LP(Q)) (4.6a)
weakly in H'(0,T; H*(Q)), (4.6b)
uF|s, — u*|g, weakly-* in L>(0,T; X" N LY(T)) (4.6¢)
weakly in H'(0,T; HY(T')), (4.6d)
pk — weakly in L2(0,T; H'(Q)), (4.6e)
0% — 0*  weakly in L?(0,T; H'(T)), (4.6f)

as k — oo along a non-relabelled subsequence. By the Aubin—Lions lemma we deduce that
uf — u* strongly in C([0,T]; L*(Q)) (4.6g)
uFlg, — w*[g,  strongly in C([0,TT; L*(I")), (4.6h)

as k — oo after another subsequence extraction. Moreover, from (4.1) it follows that
1 c

— 186" — u* <——=—0 ask : 4.7
Lk Hﬁ H ||L2(ZT) = m - as v — 00 ( )

It is clear from the convergence properties in (4.6) that the triplet (u*, u*,6*) has the desired regularity as
stated in item (i) of Proposition 3.3. For arbitrary w € H(Q2), 2 € HY(I') and n € V* N L* with n|r € L>(T),
from the weak formulation (3.2) of the system (1.13) written for (u*, u*, 6%):

1
(Opu®, W) g1(Q) = —/ Vit Vwdz + —/ (69k — ,uk) wdl, (4.8a)
Q Ly Jr
1
(Ouu*, 2) g oy = _/ Vp* - Vpzdl — f/ (86* — j*) Bz, (4.8b)
T k Jr

/ pFnde + / 6Fndl = / Vu¥ -V + F (u¥)nda

@ r @ (4.8¢)

+ / kVru - Vrn + G’ (uk) ndl,
r

We multiply all equations in (4.8) with arbitrary test functions in C2°([0,7]) depending only on ¢, integrate
with respect to ¢ from 0 to T, and pass to the limit k¥ — oo with the help of the convergence results (4.6)
and (4.7). For the terms involving F’(u*) and G’(u*) the generalised dominated convergence theorem [2], p. 60
can be used. Hence, we infer that (u*, u*, 6*) satisfies the weak formulation (3.49). Moreover, using weak lower
semicontinuity arguments, we can pass to the limit in the energy inequality (3.3) for (uk, uk, gk ) whilst neglecting
the non-negative boundary integral term involving Ly, leading to the energy inequality (3.50). Lastly, choosing
w=1in (4.8a) and z = 1 in (4.8b), multiplying by a C°([0,T]) function, integrating over [0, 7] and passing to
the limit leads to the property that for all ¢ € (0, 7],

(' ()a = (ug)a =mp,  (u*())r = (ug)r = ms.

This means u*(t) € V(;,,, ., for all t € [0,T]. This proves that (u*,u",6") is a weak solution of the LW model
(1.11) in the sense of Proposition 3.3.

If (A4) holds, then (4.5) implies the weak convergence of (u*,u*|s,) to (u*,u*|s,) in L2(0,T;H?) if £ > 0
and in L?(0,T; H/?(Q) x H*(T")) if & = 0. Suppose further that the initial condition satisfies (ug,uj|r) € H>
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if Kk > 0 or ul € H*(Q) if K = 0, then by Theorem 3.2, the solution (uk, wk, 9’“) is a strong solution to (1.13),
and thus we have the relation

1
Ot = " (B6* — u¥) holding a.e. on S,
k

and (4.7) implies the estimate

C
[0t || 2 (20 < VI

By uniqueness of solutions to the LW model, which is independent of the choice of the extracted subsequence,
we conclude by standard arguments that the above convergence results hold true for the whole sequence.
Moreover, as the sequence (Ly)reny was arbitrary, the convergence assertions are established for L — oc.

Step 2: Convergence rates. For L € [1,00), let (uL,ML, GL) denote the unique weak solution to (1.13) corre-
sponding to initial data uj. Recall that LO,u®* = 36% — p holds a.e. on Y1, we define

(ﬁ,ﬂ,é) = (uL — ot pt— et — 0*) )

Then, it follows from the weak formulations (3.2) and (3.49) that
(g, w) (o) = / Vi - Vwdz + / OppFwdl, (4.9a)
(e, 2) pri(ry = — / Vrf - Vrzdl — / OpplBzdrl, (4.9b)

r r
/ jindz + / Ondl = / Vi - Vn+ (F' (uL) — F' (u*)) ndx
@ r @ (4.9¢)
=+ / KVFQ . VF’U + (G/ (UL) - Gl (U*)) ndrv
r

for all test functions w € H(Q), 2 € HY(T) and n € V* N L*® with n|r € L*®(T). Let now ¢, € (0,7,
w € L?(0,T; H'(Q)) and z € L? (0,T; H*(T')) be arbitrary. In the following we use once more the notation
Q, = Q2 x (0,t0), By, =T x (0,%9). Proceeding as in Step 7 of the proof of Theorem 3.1, we find that

t t
/ ﬂwdxdt+/ uzdl'dt = / V(/ ﬂds) -Vwdzdt 7/ Vr (/ éds)~szdth
Q = to z 0

0 g (4.10)
/Eto </ 30" — >(@zw)drdt.

In the following, we use the notation

to

(1% f)(t / f(s (4.11)

Here, f may be scalar or vector-valued. In particular, this implies the relations

G5 Liasnopa= [ aen - s
(4.12)

dt2/|1 PO AT = /F(l*f)(t)'f(t)dl“.
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Now, plugging w = i and z = 0 into (4.10) and using the relations (4.12) as well as the decomposition

[ (0 0un®) 0 (5000 = 0) T = [ (15 0,0%) (0) (LOuH(0) = (907 = ") () .

T

for almost all ¢t € (0,7, a straightforward computation yields

(IV (L% @) (t0) 320y + Ve (1) (o) 132(ry + Il (1% Buis™) ()21 )

:—/ ﬁﬂd:z:dt—/ ﬁédade—/ (1*8n,uL)(69*—,u*)dth.
Q = =

to to to
Furthermore, proceeding as in Step 7 of the proof of Theorem 3.1 we obtain

1
2 (4.13)

IVl g,y +FIVrl. s, ) < /Q aidodt+ [ ibdedt+Cuip (Jillaq, )+ Nilss,)) (419
to

to

where the constant Crip, > 0 depends only on the Lipschitz constants of Fj and G%. Adding (4.13) and (4.14)
and applying Young’s inequality now gives

1 . 1 N L
SIV (W ) (20)l[F200) + 51V (140) (t0) [Fry + 51| (1 Fnis®) (t0)l[F2r)

to
+ [ 19+ el de
. X (4.15)
< / S (U Bt () 3oy + 57 190° — 1 oy

to
+/0 CLip (||ﬁ||%2(9) + ||11H%2(r)) dt.

By the trace theorem as well as the chain of compact embeddings H'(Q) — H3/*(Q) < H~1(Q) (where H(Q)
denotes the dual space to HZ(£2)), we obtain the estimate (cf. [27], (3.67))

N N N 1o _
Cuip (Nl iy + 1813200 ) < Clillrsay < 51VlE2(0 + Clldl-q)- (416)

To control the H~'-norm of i, we introduce the function D(4) € H2(2) N H () as the solution to Poisson’s
equation with homogeneous Dirichlet boundary condition and source term a, i.e.,

—AD(4) =4 inQ,
D(a) =0 on T,

for a.e. t € (0,T). It is well-known that | VD(-)||12(q) is an equivalent norm to || || g—1 (o) on H~'(£2). Moreover,
after integrating (4.9a) in time and testing with D(4(t)), we deduce that

()1 0y < IVD(@®)Z20) = /be(t)D(ﬂ(t))dw

SOV @ x @) () 2@ I VD(@(t)] 220
< CIVA* @) (@) 22 lla) | a1

for a.e. t € (0,T). Consequently, for a.e. t € (0,7,

e g1 < CIVA* @) B) L2 (4.17)
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Substituting this estimate into (4.16) and plugging the resulting estimate into (4.15), we obtain

1 . 1 A L
SIV (W ) (20)l[F200) + 1VE (1%0) (o) [Fqry + 51| (1 D™ (t0)l1F2ry

to 1
+ [ 31Vl + Rl Vil o (4.18)

to 1, 1 A
S/O S 1% 0npi™) (Ol 72 0y + 7 189" = w117y + CIV (1% 1) (B)]|72 o dt

Now, since ty was arbitrary, a Gronwall argument implies the existence of a constant C' independent of L and
k such that

sup (I (1% ) (320 + V0 (1%0) () 20) + LI (15 nit®) B)lF2r))
te(0,T)

+ ||Vﬁ||2L2(QT) + K||VF'&||%2(ET)

. C
Hﬂ@ —H ||L2(2T) A

From this we obtain the convergence rates

C
IVillz2@qr) + VEIIVrill ey < —= N <7 (4.19)
te(0,T)

[

for a positive constant C' independent of x and L. Next, assume x > 0 and testing (4.9b) with z = 4 yields after
integration for a.e. t € (0,7),

L2<r>

t
[a(t)] 72y < 2/0 Vel L2y Vil 2oy + |8110ni™ || 2oyl 2y ds

t
<C||Vr (9L —0") 2 I Vrall 25y + C||3nMLH%2(2T) +/0 ||@||2L2(r) ds

C ¢ ~
<. / 22, ds

on account of the uniform bound (4.1) and the estimate (4.19). By Gronwall’s inequality we then infer that

]l oo (0,7522(r)) < L4

Then, testing (4.9a) with w = 4 yields after integration for a.e. t € (0,T),

. . . . C
a2 < CIV (1" = 1) 2@ IVl L2(@r) + 10ni" | 2@ 18]l L2(2r) < ViR

and thus, the proof of Theorem 4.1 is complete. O

4.2. Convergence to the GMS model as L — 0

Theorem 4.2 (Asymptotic limit L — 0). Suppose that (A1)-(A3) hold and let m € R,k > 0 and 5 > 0 be
arbitrary. For any initial datum ug . € Wj ., with F(ug.) € L'(Q) and G(ug ) € L'(T), let (u*, u*,0%) denote
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the unique weak solution of the system (1.13) in the sense of Theorem 3.1. Then there exist functions (s, fi«, 04)
such that

ul — u, weakly in H'(0,T;V'),
ul — u, weakly-* in L™ (O,T; HY(Q)N L”(Q)) ,
and strongly in C ([0, T]; L*(Q)) ,
u|s, — uils,  weakly-* in L™ (0,T; X" N LYT)),
and strongly in C ([0, T]; L*(T)) ,

wt— . weakly in L? (O,T; HI(Q)) ,
0F — 0, weakly in L? (0,7; H'(I)) ,
oL — ptls, —0 strongly in L? (X7)

as L — 0, with
186" = ¥l L2z < CVEL,

and the limit (s, ps,05) is the unique weak solution of the GMS model (1.8) to the initial datum ug . with
| = 004 a.e. on L.
If additionally

~ (A4) holds, then

L?(0,T; H3) if K > 0,

L , L :
x5 Us kl .
(u* u¥zr) = (e talzy) weakly in {L2(0,T;H5/2(Q) x H*T))  if k=0,

~ (A4) holds and (ug s, uo «|r) € H> if & > 0 or ug. € H3(Q) if K = 0, then there exists a constant C' > 0
independent of L and k such that

190~ wllz2@ny + Vi 19r(u? — )l < OVE,

/t (BOF — u) (s)ds <CL,
0

L*(T)

sup
te(0,T)

~ (A4) holds, > 0 and (ugx, uo «|r) € H?, then there exists a constant C > 0 independent of L such that

[t — w|| poo 0,7 2200)) + 10" = il oo 0,122 (ry) < CLY™.

Proof. In this proof we use the letter C' to denote generic positive constants independent of L, N, n and 7 that
may change their value from line to line.

Step 1: Convergence in the limit L — 0. Let (Lg)gen C (0, 1] denote an arbitrary sequence satisfying Ly — 0
as k — oo. For any k € N, let (ug, i, 0x) = (uLk,uLk,GLk) denote the unique weak solution to the system
(1.13) corresponding to the parameter Lj. Then, in the limit ¥ — oo, we infer from (4.1) to (4.4) the existence
of limit functions (u, t«,0x) such that

U — Us weakly in H'(0,T;V"), (4.20a)

U, — Us weakly-* in L™ (0,T; H' () N LP(Q)) , (4.20b)

Ug|oy = Us]ny  weakly-* in L (0,T; X" N LYT)), (4.20¢)

L — [bs weakly in L? (O,T; Hl(Q)) , (4.204d)

0, — 0, weakly in L? (O, T; Hl(F)) , (4.20e)

B0x — pklsy — 0 strongly in L? (37). (4.20f)
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along a non-relabelled subsequence. In particular, (4.20f) implies that p.|n, = (0.. Using the Aubin—Lions
lemma, we conclude that

Up — Us strongly in C([0,T]; L*(9)), (4.20g)
Ug|s, — usln,  strongly in C([0,T]; L*(T)). (4.20h)

It is clear from the convergence properties in (4.20) that the triplet (w., i«,6) has the desired regularity as
stated in item (i) of Proposition 3.4. For arbitrary w € V and n € V* N L> with n|r € L>°(T"), testing (3.2a)
with Sw, (3.2b) with w and (3.2¢) with n gives

(Opug, w)y g = —ﬁ/ Vi - Vwdr — / Vb - Vrwdl,
Q r

/ukndx—l—/ekndl’ = / Vuy, - Vn—l—F’(uk)ndx—i—//@Vruk -Vrn+ G'(ug)ndrl.
Q r Q r

After multiplying the above by arbitrary test functions in C2°([0,T]) and integrating with respect to ¢ from 0
to T, we can apply the convergence properties (4.20) to pass to the limit in the resulting equations, leading
to the assertion that (u., u«, 6,) satisfies (3.52). Again by weak lower semicontinuity arguments, passing to the
limit in the energy inequality (3.3) leads to (3.53), and so (ux, i+, 65) is the unique weak solution of the GMS
model (1.8) in the sense of Proposition 3.4.

If additionally (A4) holds, then we obtain as before the weak convergence of (ug,ug|sy) t0 (U, tus|sy) in
L?(0,T;H?) if & > 0 and in L?(0,T; H>/?(Q) x H*(T)) if & = 0.

By uniqueness of solutions to the GMS model, which is independent of the choice of the extracted subsequence,
we conclude by standard arguments that the above convergence results hold true for the whole sequence.
Moreover, as the sequence (Ly)ren was arbitrary, the convergence assertions for L — 0 are established.

Step 2: Convergence rates. For L € (0,1], let (uL,uL, HL) denote the unique solution to (1.13) corresponding
to the initial data ug . in the sense of Theorem 3.1. We now use the notation

(ﬁ,ﬂ,é) = (uL — u*,uL —,u*ﬁL — 9*) ,
Recalling that 86, — u. = 0 a.e. on X7, the convergence rate
186" — 1" |2z = 1180 = All2sp) < CVL

follows directly from (4.1), with a constant C independent of L and k. Under (A4) and the assumption
(w4, uo|r) € H® if & > 0 or up,. € H*(Q) if & = 0, the triplet (u”, ", 6%) is a strong solution to (1.13)
in the sense of Theorem 3.2. In light of Proposition 3.5 for the limit solutions (u., tu,6), we see that

0 = (t¢, w) g1 () —|—/ Vi-Vwdr — / Onfrwdl, (4.21a)
Q r

0 = ({y, Z>H1(p) + / Vpé -Vrz 4 Opffzdl, (4.21b)
r

0= / Vi - Vn+ (F' (u") = F'(u,) — p) nda
@ (4.21c)
+ /1“ kVrd - Vrn + (G’ (u") — G’ (us) — é) ndT,

for almost all t € (0,7) and for all w € H*(Q2), z € HY(T') and n € V* N L*°(Q) with n|r € L>(T). The only
difference to (4.9) is that here 9,,u” is replaced by 9y, 1. Let now ty € (0,T] be arbitrary. Once more, we write
Q1 = 2 x (0,%0) and Xy =T x (0,t0) and we use the notation introduced in (4.11). Recalling that

Onfi = Ot — Onpt = L (B0% — p2) — O = L <ﬁé - ﬂ) — Onpte  a.e. on T, (4.22)
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and thus,
N A o~ _ 1 A A A o
/F (1% Opfi) (t) (@9 u) (t)dr /F (1* [L (59 M) éw*D (t) (59 ﬂ) (t)dD (4.23)

for almost all ¢ € (0,7). Invoking also the relation (4.12) we can proceed as in the derivation of (4.18) to
conclude that

1 X 1 A 1 .
SV (1% ) () 320y + 511Ve (1%0) (to)lEeqry + 571 (1% [ 80— 4] ) (to)I2qey

to
+ / IVl + A1 Vra] 2 dt (4.24)

< C/Ot" IV (1% @) (t)||%2(g) dt + /Ot" /F (1 % Onpex) (2) (ﬁé(t) - ﬂ(t)) dr dt.

By Fubini’s theorem, the Cauchy—Schwarz inequality and Young’s inequality, we see that

/Oto /F (1% D) (t) (ﬂé(t)—ﬂ(t)) dr dt = /F /Oto /Stﬂ O i (5) (gé(t)_ ﬂ(t)) gt ds T
_ /oto/ranu*(s) (1% (80— ) (to) — (1x (86 - 1)) (9)] daras

< [ 10ntun(o)lzzary 115 (80~ ) to)acry + 1% (86 = ) (9| ds
0
to 1 ~ R 1 A N
< | CLOmpe () ey + gy % (80— ) 9)Faqryds + g7 10w (50— ) o)y
Plugging this estimate into (4.24) we arrive at
1

1 X 1 A .
SV (1% ) ()22 + 511Ve (1%0) (to)l3eqry + 771 (1% [ 60— 4] ) (to)laqry

to
+ / V()220 + 5ITra@)]2: 0 dt

to 1 ~
< CLIOnptal32 5,y + C / (nvu * ) (02 + 571l (1% 80— 1)) <t>||izm) dr.

Invoking the integral form of Gronwall’s inequality, we deduce the existence of a constant C' independent of L
and x such that

X A 1 .
sup (I (L A1) By + IV (L O)0) [y + 7 10 (80— D)) )
te(0,T)

+ HV’[J'”%?(QT) + HHVF@H%"‘(ET)
<CL

which implies the convergence rates

IVl r2@r + VE | Vel p2nm < CVL, S(%pT)
te (0,

< CL. (4.25)

L2(T)

/ (80— ) (s) ds

Now, assuming x > 0 and choose w = (4 in (4.21a) and z = 4 in (4.21Db), so that upon summing and integrating
in time over (0,t), we obtain

Bla)3 2y + 21720y < BIVAl L2 @ I VillL2(@r) + 1VE0llz2(sm Vil 22 (s
<OVL
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after invoking (4.25) and the uniform boundedness of Vul and Vr8L due to (4.1). As 8 > 0, this leads to the
convergence rate

]| L 0,7522(2)) + 1@l L 0, 7522(r)) < CLM*,

and thus, the proof of Theorem 4.2 is complete. O

5. NUMERICAL ANALYSIS

In this section, we assume that 3,k > 0. We derive an unconditionally stable, fully discrete finite element
scheme which allows us to investigate the model (1.13) as well as the limit models (1.8) and (1.11) numerically.
We establish the existence of discrete solutions to this scheme and prove convergence for arbitrary L € [0, co]
in the limit of vanishing spatial and temporal discretisation parameters. For simplicity, we also set mg = mp =
e = 0 =1 in the subsequent approach, although different values are used for the simulations in Section 6.

As the model (1.13) interpolates between the GMS model and the LW model, it naturally inherits the
peculiarities of both. Therefore, a discrete scheme that can be applied to the complete family of models needs to
cope with the intricacies of both approaches. In particular, the scheme has to include both chemical potentials
w and 6, while ensuring 86 = p|x, for L\, 0 and Onu = 0 for L / co. Furthermore, extending the ideas from
[38] to derive explicit, u-dependent expressions for the chemical potentials is deemed to be necessary to prevent
the discrete scheme from becoming ill-conditioned for small time increments (see [38], Sect. 5).

5.1. Technical preliminaries
Concerning the discretisation in time, we consider

(T) the time interval I := [0,7") that is subdivided into intervals I, := [t,, tn41) With to = 0 and tp41 =t + 7
for time increments 7, > 0 and n = 0,..., N — 1 with ¢ty = T. For simplicity, we take 7,, = 7 = % for
n=20,...,N—1.

Throughout this section we assume the spatial domain @ C R? d € {2,3} to be bounded, convex, and
polygonal (if d = 2) or polyhedral (if d = 3) to avoid additional technicalities. When considering a smoother
domain, one has to approximate € and I" by an h-dependent family of polygonal domains {2, }, with boundaries
{Tx},, (cf. [15,16,18]). This approach of course introduces an additional geometric error which also has to be
considered. For the application of this technique to the GMS model, we refer the reader to [30], where an error
estimate for a semi-discrete finite element scheme for (1.8) was derived.

We introduce partitions 7;, of Q and 7;'' of T' = 9 depending on a spatial discretisation parameter i > 0
satisfying the following assumptions:

(S1) Let {7n}),( a quasiuniform family (in the sense of [5]) of partitions of £ into disjoint, open, non-obtuse
simplices K, so that

Q

U K  with max diam (K) < h.
KeTy,
KTy,

(S2) Let {7;}“ a quasiuniform family of partitions of I" into disjoint, open, non-obtuse simplices K, so that

Frso
VKT ¢ I 31K € 7, such that KT = KNT,
and

I'= U KU  with max diam (KF) < h.
KreTl
KTeTl h
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The above assumption implies that 7,1 is compatible to 7j in the sense that all elements in 7, are edges (if
d = 2) or faces (if d = 3) of elements in 7. For the approximation of the phase-field u and the chemical potential
[ we use continuous, piecewise linear finite element functions on 7j. This space, denoted by U, ,?, is spanned by
basis functions {xnk}r = 1,... dimv® that also form a dual basis to the vertices {®x} — 1,... dimv® of 7, i.e.,
x;hk(sck) = 5k,l for k‘,l = 1, ‘e ,dim U}?.

Analogously, we denote the space of continuous, piecewise linear finite element functions on 7;'' by U}, which is
spanned by basis functions {Xl;;,k}k —1,...,dimu? that also form a dual basis to the vertices {acl,:}k —1,...,dimU"

of T}, i.e., Xl}:,k (a:l,;) = 0y, for k,l =1,...,dimU}". Due to the compatibility condition for 7;, and 7;"', we have

U,F = span{(h|p :(p € Uf}} (5.1)

Without loss of generality, we assume that the first dimU }1; vertices of 7; are located on T, i.e.,
{w};}k —1,..., dimUT = {Tr}p=1. . dimpur- As all functions in U,? are continuous in €2, we will often suppress
the trace operator -|r to simplify the notation. We define the nodal interpolation operators I, : C°(Q) — U}
and Z} : C%(T') — U} by

dim U} dim U}
Tn{a} = Y a(xi)xne, and  Zi{a}:= > a(@r)xi s (5.2)
k=1 k=1

It is well-known that on the finite element spaces Uj? and U} the discrete L2-norms given by ([, Zx{|-|*} dz) 1z

and ([ ZF{|-[*}dI) Y2 are equivalent to || - ||12(q) and || - [[z2(r), respectively. Furthermore, the following
estimates (that can be found in [38], Lem. 2.1) hold true:

Lemma 5.1. Let 7;, and 7,0 satisfy (S1) and (S2). Furthermore, let p € [1,00), 1 < ¢ < 00, and ¢* = % for
qg<ooorq* =1 for q=oc. Then,

(I = Zu){ fngn ey < CP|IV fullra@) IV gn |l Loa (0 (5.3)
||(I_I}I;){f~h§h}HLP(F) < Ch?HVthHLm(F)||VF§hHLm*(r)~ (5.4)

holds true for all fy, gn € U,? and f, gn € UL

In the forthcoming analysis, we consider any initial datum (ug, uo|r) € H?, and potentials F' and G satisfying
(A3) with p = ¢ = 4. In addition we make the following assumption:

(D) The convex parts F; and Gy as well as the concave parts Fy and Gy can be further decomposed into a
polynomial part of degree four and an additional part having a globally Lipschitz continuous first derivative.

In particular, we may thus choose the penalised double-well potential
W(s) = i(1—52)2+%max{|s| —1,0)° (5.5)

with 0 < ¢’ << 1. The assumption (ug, uo|r) € H? allows us to define the discrete initial condition uf) € US! via
u) := Tp{uo}. An immediate consequence is

/|vu2\2dx+/zh{F(u2)}dx+/|vru2|2dr+/I,E{G(u2)}drgC(uo), (5.6a)
Q Q r r

[uh, — ol (o) + [[uf) — wolr|l gy — 0 for A\, 0. (5.6b)

When passing to the limit (h,7) N\, (0,0), we will also need a compatibility condition for h and 7. In particular,
we will assume that
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(C) h; . 0 when passing to the limit (h,7) \ (0,0).

Furthermore, we introduce the matrices

(Mg),; = /th{thXhi}(h? Vi,j=1,...,dimU, (5.7a)
(Mp),; ;:/Fzg{xgjx};.}dr Vi,j=1,...,dimU}, (5.7b)
(LQ)ij = /QVXM - Vxn; dz Vi,j=1,...,dim U,?, (5.7¢)
(Lp),; = /vaxgj - Vrxh; dl Vi,j=1,...,dimU}, (5.7d)

and with a slight misuse of notation, we write f(U™) when we apply a function f to all components of U™. Due
to our consideration that the first dim U }: vertices of 7} are located on I', we can define an extension operator
Qh . RdimU; _, pdim Uy via

Rdim U}: S5 A— <Ig> c Rdim U}SJ

Lo . Q s T . . . . .
and the restriction operator -|r : RAm U RAmUs which restricts a vector to its first dim U, ,5 entries. For
matrices, we define analogous restriction operators by splitting a matrix A € R4mUn xdimU" into submatrices

A] € RAim U}, xdim Uy, A| . € Rrdim Uy, x (dim U} —dim U}, )
TxT.h ’ I'xO,h ,
A|o ¢ R(dim U}l —dim UE)Xdime’ A|o . ¢ R(AmU—dim U)x (dim U} —dim U,f)7
QxT,h S5
Al g, €RIm Uy, xdim U} Alo ¢ R(dimUY —dim U}) xdim U}? (5-8)
I'xQ,h ) SxTh ,
A|ﬁxr,h € Rdim Ustxdim U,l:’ A‘ﬂ&’z c RdIm U x (dim U}’ —dim U}:)7
such that
A A _
ac (Bl i) _ (Alran) _al,al 5.9
A|Q A}o o A‘o _ QxIh “Ulgxa,n ) .
QxT',h QxQ,h QxQ,h

o}
In the above, we employed the notation €2 to denote the collection of degrees of freedoms correspogding tg the
=005 . il . T . .
interior nodal points of 2. We also define an extension operator [0 . RAm U, xdimUy,_, RdimUp'xdimUy" i

RAMUExdimUF 5 A <xg g) c RAm US xdim U
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5.2. Derivation of the numerical scheme

For L € (0,00), a finite element discretisation of the model (1.13) reads as

/ In{0; upwy } + Vup - Vwp de — L1 / TH{(B67 — pi)wy} dT = 0, (5.10a)
Q r
/I};{a;u;jzh} + Vr0? - Vrz, + BLTYTE{(B07 — i)z, } AT = 0, (5.10b)
r
/ In{ppnn} de + / TH {0, } dT = / Vuy -V, de + Ii/ Vruy, - Ven, dT (5.10¢)
Q r Q r

+ [ Tl (R + By )} o
o A (CTEARN AT TR

holding for all wy, € U, }?, 2y € U,l; ,and n, € U }? In the above we have used the backward difference quotient
d-a" == 77 (a" — a™ '), and so, for given u}' " € U, we search for u?, up € US! and 07 € U} satisfying
(5.10). Unlike the scheme used in Section 3, (5.10) is based on a convex-concave decomposition of the nonlinear
functions F' and G, as this approach allows for an unconditionally stable discrete scheme (¢f. Lem. 5.3).

Using the matrix notation introduced in the previous section, and collecting the nodal values of uy, uZ_l,

up, and 07 into the vectors U", Un=1 P" and ©", we can express (5.10) equivalently as

Q,h

MoU™ — MoU™ ! + 7LoP" — 7L~ [MF (ﬁ@)" ~ P, h)} —0, (5.11a)

Mp 0|, = Mp U™+ 7Lr®" + 7L M (5(9” . pn|m) —0, (5.11b)
Q Q,h
Mg P" 4 [MpO"]| " = LoU™ + & [Lp U”\M} ] + Mg (F{(U™) + F(U™Y)

+ e (i (0],) + (o ) (5.110)

Restricting (5.11a) to the boundary and comparing with (5.11b) leads to the compatibility condition

L -1 1 —1 _ L pnp-1 T 1
+1 [MQ LQP”] ‘F,h — 11 Mg I'xT,h Mr(ﬁ@" - Pn!r,h) = M Lr®" + b (56” - Pn‘r,h)'

(5.12)
Upon rearranging and recalling that Mg, is a diagonal matrix, (5.12) can be written as
L -1 1 -1 1 n
(TH Mg, |F><F7h LQ’FXF,h + I Mg, |F><F7h Mr + 5m1) P ‘Rh (5.13)
=:A
L —1 n _ L -1 1 —1 2 1 n
+ (L+1 Mg ’I‘><F,h LQ‘FX&,) P |§’2’h = <T+1MF Lr + A7 Mg |F><F,h Mr + 8 TH]I) or.

=B =:C

Combining (5.11¢) with (5.13), we are able to determine P" and ©" for given U™ and U™! by solving the
linear system

MQ‘FXF,}L 0 Mr Pn|r,h Rr(U™)
n — o n
0 Molg s, 0 ||F lé’h = | R3(U™) (5.14)

A B -C or 0
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with

Re(U") = Lol g, U" + Malp g, (FI(U") + F(U")

+ KLp U™, + M, (G’l (Un’F,h) en (Un_l ‘F,h))’
R&U™) = LQ|S%x§h Uum + MQ‘&XQ,}L (FL(U™) + Fy(U™Y),

where we have suppressed the dependence of Rr and R§ on U™~ !, as U™~ ! is known from the last time step.
Solving (5.14) for P"|p p, P™|§ 5, and ©" gives the equations

©" = — My Malp, ., P"|p, + My Re(U™), (5.15a)

n _ -1 o n
P }m = MQ|§X5)h R&(U™), (5.15b)
AP, =-BP +CO" (5.15¢)

s

Plugging (5.15a) and (5.15b) into (5.15¢) and multiplying by Mgq|r«r,4, we obtain
n -1 o} n — n
NP"[., =-Ma|. ;,B MQ|§X5 Ra(U™) + Moy, ., CMp ' Rr(U™) (5.16)

with

o 1
N:= MQ|FxF,h A+ MQ|F><F,h CMp MQ‘FXF,h
_ L —1 -1
= Ii1 <L9|rxr,h + M9|rxr,h My LrMyp MQ|F><F,h) (5.17)

1 2 —1
+ T+1<MF + 2ﬁMQ|F><F,h +6 MQ‘FXF,h My MQ‘FXF,h)'

By following along similar lines of argument in Lemma 2.4 of [38], the matrix N is symmetric and positive
definite. Therefore, (5.16), (5.15b), and (5.15a) provide explicit, U"-dependent expressions for P™ and O™.
Multiplying (5.11b) with 8~! and adding to (5.11a), we obtain using (5.15a) the discrete scheme

. an
P ’F,h} ‘ =0
(5.18)

_ Q ﬁ,h n n— n - - n —
<M9+5 1MF’ ’ >(U —U" ") +1LoP" + 13 I[LFMFlRF(U ) — LrMp' Mg I'xD,h

with P™ given by (5.16) and (5.15b). Since the parameter L only appears in the numerical scheme as prefactors
L%rl and LLH, the proposed scheme is also well-defined for L = 0 and the formal limit L = oo, whereby in the
latter we set L%rl = 0 and LL_H = 1. In the following, we will analyze (5.18) and show that we indeed recover
discretisations of (1.8) and (1.11) for L \, 0 and L " oo, respectively.
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As the compatibility condition (5.12) will be a crucial ingredient for the analysis of the proposed scheme, we
will verify that our expressions for P and ©" satisfy (5.12). From (5.15a) and (5.15b), we obtain

LL-H [MﬁlLQPn] ’r,h L+1 1LF®n

1 —1 7 1 e
— 11 Mg ’FxF,hMF(ﬁG)n - PL’F,h) _5T+1<ﬁ9 L _Pnlr,h)
_ L -1 n L 1 -1 o (TN
= THMQ |1"><1",hLQ‘1"><F,hP |F,h+mMQ |1“><1“,hLQ|FX§7hMQ|§X§7hRQ(U )
L 1 -1 n 1 -1 n
JFTHMF LrML MQ|FthP |F,h L+1M LrM; Rr(U™)
1 n 1 —1 n —1 n
+mﬁp |F,h_6THMQ ‘FxF,hRF(U )"'THMQ |F><F,hMFP ‘F,h
1 2 —1 n 1 2 —1 n 1 n
+Tﬂﬂ M MQ|1"><FhP |Fh_TJr15 Mp " Rr (U )+TH6P ’F,h
NP"|., — 257 Mp ' Le My ' Rp(U™)

Qyzl 2 Ra(U")

-1
Q |F><F,h

L 1
+ 11 Mg ’I‘><1",h LQ‘FX&h

- ﬂ%ﬂ Mél‘rxnh Rp(U") — Tﬂﬁ2M IR )

=M.

1 n -1 o n —1 n
Q |FxF,hNP ’F,h+BMQ|§X§’hRQ(U )_CMF Rr(U™),

which vanishes due to (5.16).
Although (5.18) is based on the sum of (5.11a) and (5.11b) multiplied by 37, solutions to (5.18), if they

exist, satisfy (5.11a) and (5.11b) individually.
Lemma 5.2. For any L > 0 such that L+1’ L+1 € [0,1], let U™ be a solution to (5.18) for given U""L. Then,
U™ satisfies

h

=0, (5.19)

Mo (U = U™ + 7L P+ 574 [Mp (U7, = UYL ) + 7Lrer
B M (UM, = U, ) + 787 e o r M (50" - P ) =0 (5.20)
with P" and ©" defined in (5.16), (5.15b), and (5.15a). Furthermore, U™, U"~', P", and O™ satisfy (5.11c).

Proof. The validity of (5.11c) follows directly from the definitions (5.15b), (5.15a) and the definitions of Rp(U™)
and RZ(U™). Moreover, using (5.15a), a solution of (5.18) clearly satisfies (5.19). Therefore, it remains to show
that it also satisfies (5.20). By (5.19) it holds that

0= L+1 ((MQ|F><F Wt B IMF) (Un|r,h - Un71|r,h) +787 L0 + 7 [LQPnHF,h)
1 n n—1
= L+1(<MQ|F><Fh+ﬁ MF) (U ’I‘,h_U |F,h>>
+ T (MQ}FXF,h + ﬁ_lMF) (Mp'Lre")
+ TLL—H Lo P |F,h - TLLH <MQ|FxF,h MElLF@”)'
Using the following identity from the rearrangement of (5.12)

ﬁﬁM§1|rxr,h <MQ|F><F,h + ﬁ_lMF> (ﬁgn - Pn‘F,h) = LLH [MélLQPn] |F,h L+1 M Lro",
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we arrive at
L —1 n n—1
0= L+1(<MQ|F><F,h+6 MF) (U |F,h -U |F,h))
L —1 -1
T (MQ’I‘XF,h +8 MF) (Mp'LrO")

+ Tﬁﬂ(MQ‘FXr’h + 571MI‘> (59n - Pn‘l“,h)'

—1
Multiplying by (MQ|FXrAh n ﬂ*lMp) and then by 5~"Mr yields (5.20). O

Lemma 5.3. Given Un~! € RYmUY | et U € RE™U pe g solution to (5.18) with P" € Rdm UP and O™ €

RAMUL be defined in (5.16), (5.15b), and (5.15a). Under (T), (51), (52) and (A3), the following estimate holds
true:
%UnTLQUn + %(Un o Unil)TLQ (Un _ Unfl)

1 T n 1 -1 T -1
+ §“Un‘r,h Lr UI‘F,h + §K(Un’F,h -ur ‘F,h) Lr (Un‘r,h -u" ’I‘,h)
+1TMoF(U™) + 1EMrG(U™) 4 7P Lo P" + 70" TLrO™ 4 B, (5.21)
1rrn—1T n—1_, 1,_.7m-1|T n—1
<3U LoU +3KU ’F,hLFU |F,h
+1"MoF(U") + 1{MrG(U™ ),
with 1:= (1,...,1)" e R¥™ UV 10 .= 1|, and
—1 T .
B, | L8O = Prl,) Mr(gen - P, ) L >0,
0 if L=0.
Furthermore, we have O™ = P"|F , if L=0.

Proof. Multiplying (5.18) by the transpose of the vector

— -1 Q,h
_ axQ,h n _ -1 nll”
(Mg+ﬁ v ) MqP" + [(MQyFXmJFﬁ 'Mr) Mo ]

(5.22)

)

and using (5.15a) we obtain

0= PnTMQ (Un . Unfl) + @nTMF (Un|r,h o Un71|r7h>
— -1
+7'PnTLQ (MQ—Fﬂl MF|QXQ,h> MQP”

-1

+70" Mp (MQ‘FXF,h + 5_1MF) (Lo P"] |F,h

1 T _ -1 n
+7p7P ‘F,h MQ|FxF,h (MQ|FxF,h +5 1MF) LrO

-1
oMy (MQ|Fxr e frlmp) LpO"
=: 11 +IQ—|—I3+I4—|—I5—|—IG
By the convexity of F; and concavity of Fb, it is easy to see that for any a,b € R,

Fi(a) = F1(b) < Fi(a)(a —b),  Fa(a) = Fy(b) < F3(b)(a —b).



PHASE-FIELD DYNAMICS WITH TRANSFER OF MATERIALS 265
Then, testing (5.11c) with (U™ — U""!) leads to
L+ L > 0T LU + L(Ur — U L (U — Uun ) = Lo Laun
+ %“Un‘?,h Lr Un’r,h + %”(Unyr,h - Un_1|r,h)TLF (Uﬂ}r,h - Un_1|r,h>

(5.23)
— LU L Lo UYL, + 1T Mg F(U™) — 1M F (U™ )

+1fMrG(U™) — 1EMrG (U™ ).
For the terms I, ..., Is, we use the compatibility condition (5.12). For the case L > 0, (5.12) can be written as
Mg LoP"]|p, ~ M7 Le®" = BL MG (Mol g, + 67 Mr) (807 = P21 ). (5.24)

Then, using the symmetry of the matrices M and Mr, we find that

1 T _ -1 _ "
Is +1s =70 Lp ‘F,h Mp (MQ’FXF,h +5 1MF> MQ|FxF,h [MQILQP ”F,h
- n|T n n — n - -1 n
— L7 P, M (80" = P ) + 787 0" M (Ml + 87 M) Lr6",
On the other hand,
axan)
I3+ I, =7P""Lg (MQ +67 M| ) MgqP"
-1
+7em" Mﬂ{rxr,h (MQ{FXF,h + 671MF> Lr®" + BL~1r0" My <ﬂ@n B Pn|F:h)’
and so we infer
T
It ot Ig= 7L (ﬂ@" — P, h) M (6@" ~ P, h) +70"TLpO" + 7P Lo P (5.25)

Combining with the inequality for I; + I we arrive at (5.21) for the case L > 0. Meanwhile, for the case L = 0,
we directly infer from the compatibility condition (5.12) that 0™ = P™|r ;. Then, we obtain directly

I+ 1y =7P""LoP", I5+ Iy =70""LrO",
which leads to (5.21) for the case L = 0. O

Next, we use the a priori estimate established in Lemma 5.3 to prove the existence of discrete solutions.

Lemma 5.4. Given U"~! € RI™UY ynder (T), (S1), (S2), and (A8), there exists at least one vector U™ €
RAMUL solying (5.18).

Proof. Firstly, we note that P™ and ©" are uniquely determined if U™ and U™~ ! are given. Hence, for given
U™~ ! and an arbitrary vector U, we use the notation P(U) and ©(U) to denote the corresponding vectors for
the chemical potentials. In particular, P(U™) = P™ and O(U™) = O".

Next, testing (5.18) by 1 shows that

1" (MQ +p571 MF|QXQ’h> (ur—-ur ) =o,
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and so, without loss of generality we assume that 17 <MQ + 571 MF|QXQ’}L> UY% = 0, which in turn implies

17 <MQ e Mp|‘““’h) U'=0 Vn>1. (5.26)

A consequence is the following Poincaré-type inequality: There exists a positive constant ¢ such that for all
vectors U fulfilling (5.26),

UT (MQ + ﬁ_l MF’QXQ,}L> U<e <UT (LQ + ﬁ_l LF’QXQ,}L) U) . (5.27)

Recalling the definition of the matrices M and Lq, if we associate the vector U to a function u, € U, ,? then
the above inequality (5.27) reads as

lunl2aay + 87 Nunl3aqey < ¢ (IVunl3a@) + 67 IV runlfar) )

for functions u, € US such that 3|Q| (un)a + |T| (up)r = 0. We mention the proof of this Poincaré-type
inequality follows from the usual contradiction argument using the condition 3|Q| (u)q + |T'| (u)r = 0.

We can establish the existence of discrete solutions as follows. Assuming that (5.18) has no solution in the
closed set

Bp = {W € REmUY . 1T (MQ 141 MF|QXQ’h)W — 0 and WIMoW < RZ}

for any R > 0, the function
-1 _

N\ -1 _
GU):=U-U"" + T(MQ +57! MF]QXQ’h> LoP(U) + 787 (MQ +57! Mp]mﬂ’h> Leo@))|™"
has no roots in Br, and consequently, the function
g()
G(U) " Mag(U)

is a continuous mapping from B to 0Br C Bpr. According to Brouwer’s fixed point theorem, there exists at
least one fixed point U* of H. In the following, we show that U* satisfies

HU) :=-R

(5.28)

0 < U (Mo P(U™) + Mro (™))" ) < 0 (5.29)

for R sufficiently large. This contradiction shows that our initial assumption on the non-existence of roots of G
in Bp is false, implying the existence of solutions to (5.18)

For convenience we denote V.= MqP(U*) + [MrO(U*)] |Q’h. To obtain the first inequality in (5.29), we use
(5.15a), (5.15b), Young’s inequality with 0 < a <« 1, and the convex-concave decomposition of F' and G to
deduce that

UtV =U Mo P(U*) + U*|. . MpO(U*)

|€,h
=U"LoU" + kU*[[, Lo U*| .,

+ U Mo (F{(U*) + F3(0)) + U*"Mq (F5 (U"™Y) — F3(0))

+ U1, M (G (U7, ) + Ga(0)) + U [, M (G (U, ) = GA(0))
> min(1, k3)U*” (LQ + 7! LF|QXQ’h) U* + 17 Mq(F(U*) — F(0))

— U "TMoU* + 1rMp (G (U*

F,h) - G(O)) —aU*|}, My U*

r'h Ca
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for some constant C,, > 0 depending only on o, U™, FJ(U"1), F}(0), G4(U™™1), and G4(0). Since F and

G are bounded from below, after applying the Poincaré-type inequality (5.27), we obtain for some positive
constant ¢ independent of U* that

MpU*

o —C,.

UtV > evrT (MQ +p7 MF|QXQ”L) U* — aU* " MoU* - aU*| [,

Choosing « sufficiently small, we absorb the second and third term into the first term and infer for positive
constants ¢ and C' independent of U* that

vy > e T (MQ +87! Mpymﬂ’h> U* - C > e T (Mo)U* — C = éR? — C.

Then, choosing R sufficiently large yields the first inequality U*TV > 0. To derive the second inequality in
(5.29), we recall the computations from the proof of Lemma 5.3 and (5.27) which provide

GU*V > e’ <LQ +87! LF\QXQ’h)U* oz’ <MQ +57 Mpy‘““’h> U*—C >R -C,

where the right-hand side is positive for R sufficiently large. Hence, using (5.28), we see that Q(U*)TV >0 is
equivalent to the second inequality U*7V < 0 in (5.29). O

5.3. Uniform bounds

In this section, we collect uniform bounds on the discrete solutions established in the last section. As shown

in Lemma 5.2, given u}z*l eU ,?7 for any L > 0, the proposed scheme is equivalent to finding u} € U, ,? satisfying

/ {07 ufwp } + Vi - Vw, dz + 71 / I, {07 upwy } + Vb - Vrwy, dT' = 0, (5.30a)
Q T
T /F L(Z, {07 ujzn } + Vb - Vrzy) + B(BO) — ppt)zp dl = 0, (5.30b)
[ Tty do+ [ ZHOEmAC = [ V0 Von o+ T (L 0R) + B (0 )} do

Q T Q

+ / &Vrup - Ve, + Iy { (G (up) + Go (u) ™) )y} dT, (5.30c)
T

for all wy,,n, € Us? and z;, € U}, with pj, € U2, 6, € UL uniquely prescribed by uy, u}~' € US. It is worth
noting that in the limit L — oo, (5.30a) and (5.30b) become

/ {07 upwy } + Vi - Vwy, = 0dz, /I};{a;ugzh} + V) - Vrz,dl =0, (5.31)
Q r

which together with (5.30c) is a discretisation of (1.11) that was analysed in [38]. On the other hand, for the
case L = 0, (5.30b) reduces to [ Z} {(80} — uy')z;,} AT = 0, and together with (5.30a) and (5.30c) we obtain a
discretisation of (1.8).
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Lemma 5.5. Givenu) ' € U, under (T), (S1), (S2), and (A3), let (u}, i, 0%) € UL x Ut x UL be a solution
to (5.30) forn=1,...,N. Then, there exists a constant C' > 0 depending only on ug and k such that

s ot oy + e[ TPy e+ max g

.....

N N
+ g [ TG+ 3 1V = Vi ey + 3 1900 = Ve e
e n=1 n=1
N N
o 3 g By 7 D0 16 s ey < € (532
n=1 n=1

Additionally it holds that
N
> 1865 = pill72ry < CL.
n=1

Proof. Summing (5.21) over the time steps from n = 0 to n = k < N, applying (5.6a) and then take the
maximum over k yields

.....

N
T n 1 n n—1|2
+7L=Hllf.i.}.(,N/FIh{G(uh)}dF+;Q/Q‘VU}L — Vuy ‘ dz
N ) N N
+> g/ Vi — Veup | dr + TZ/ Vupl® da + 7 Z/ (Vo |* AT < C(uo).
n=1 r n=1 Q n=1 r
Furthermore, we have

N
e [ 2h{io - iy ar < ot
n=1

where the statement for L = 0 is trivial due to Lemma 5.3. By (A3ii), the bounds on Z,{ F(u})} and Z} {G(u})}
also provide bounds on Ih{\uﬂz} and I};{|uﬁ|2} which allows us to deduce the bounds in the H!-norms. For

the L?-norms on u' and 07, we can employ similar arguments used above in Step 3 of Section 3.1, see also
Corollary 4.1 of [38]. O

Lemma 5.6. Suppose that (T), (S1), (S2) and (A3) hold. Given u}~* € US}, let (u}, ut,0%) € Ut x Ut x UL
be a solution to (5.30) forn=1,...,N. Then, the following estimates hold

N—1 N—1
k1 k k1 k
T Z Huh+ - UhHiz(sz) +7 Z Huh+ - UhHiz(r) < C7l,
k=0 k=0

forle{l,...,N} with C > 0 independent of I, L, h, and 7.
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Proof. For 0 < k < N —1, we test (5.30a) by wy, = (uﬁ“ — uﬁ), sum from n = k+1 to k + [ and employ (5.32)
which yields

/th{|u;g+l b de 4 g7 /Fz;{\ugﬂ —ufar

Kt k+l
<|T Z Vg - V(u]fL'H - u’fb) de|+p71 |7 Z / Vb - Vr (UE-H - u’fb) dr
n=k+1 Q n=k+1 r
k41
<7 Z ||VMZ||L2(Q)||VUZH - VUZHL?(Q)
n=k+1
kAl
+87 Y IVeO @) I Voupt = Veuk]| .-
n=k+1

Multiplying by 7 and summing from k& = 0 to N — [, we infer that with the help of (5.32) that
N—-l N—I
fetl
Ty My = uilZe) Y lup ™ =z
k=0 k=0

! /N-I /2 /Ny 1/2
<y (z [Tk - wmm) (z ||w’,i+’“%zm>>
m=1 k=0 k=0

l

N—l /2 /Ny 1/2
+orr Yy <Z I Vrulbt — VFUZl%z(F)> (Z ||vrgg+m|%2(r)>
k=0

m=1 k=0

12/ N 1/2
2
< Crl (TNHZI??)_(,NHVUZHL%Q)) (TZ1 ||VMZ||L2(Q)>

12/ N 1/2
+C7l <7’N n:HllaXN ||VruZ||2LQ(F)> <7’ Z:l ||VF0}?L2(F)>
< CrTl.

Thus, the proof is complete. U

5.4. Passing to the limit

Let Ly € [0, 00] be arbitrary. To pass to the limit (h, T, L) — (0,0, Lo), we define three interpolation functions

for a collection of time-discrete functions {a"})_ as follows:

am(-,t) = =g () 4 et g1, te [, n > 1, (5.33a)

T T -

a™t(,t) == a"(-) a” (1) == a" (), te (t”*l,tn]7 n>1. (5.33b)
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If a statement is valid for a”, ™%, and a™~, we will use a™*). Using this notation, we are able to write the
uniform bounds established in the last section as

(£ (£
||Uh( )||2Loo(o,T;H1(Q)) + ||Uh( )||2Loo(o,T;H1(r))

- , - - + -
+7 1||VU;+—VU; ||2L2(0,T;L2(Q))+7' 1HVFU;TL - Vruy, ||2L2(0,T;L2(F))

+ ||M;’+|\%2(0,T;H1(Q)) + ||9;7+||%2(0,T;H1(F)) <C, (5.34a)
1805 — /’(’;—L’+H%2(O,T;L2(F)) < CL, (5.34b)
luy (- +17) =y ()32 0.0,12(09) < O, (5.34¢)
(- +17) =y P 30,0020y < L (5.34d)

Lemma 5.7. Under (T), (S1), (52), and (AS3), there exist functions (u,ur,u,0) and a subsequence, denoted
b { T,(x)  T,(£) 0T,(i)} " .
YyUn sy Y h,r, L 50 isfying

we L®(0,T; HY(Q)NLYQ)),  up € L®(0,T; H(I) N LY(T)), (5.35)
pe L*(0,T; H (), 0 L*(0,T; H () ’
such that uls, = ur a.e. on L, and as (h,7,L) — (0,0, Lg),
u;’(i) —u weakly* in L™ (O, T, Hl(Q)), (5.36a)
strongly in L"(0,T;L*(€)) with r < oo, s € [1, %), (5.36b)
uy® |5, —ur weakly* in L (0, T; H'(T)), (5.36¢)
strongly in L"(0,T; L°(T")) with r,s < oo, (5.36d)
= weakly in L*(0,T; H' (), (5.36¢)
w7 s — pls, weakly in 120,75 HY2(T)), (5.36f)
07t —0 weakly in L?(0,T; H'(T')). (5.36g)
If Ly = 0, we additionally obtain
BO7t — it s, — 0 strongly in L (0,75 L*(I)). (5.37)

Proof. The convergences expressed in (5.36a), (5.36¢), (5.36e), and (5.36g) are direct consequences of bounds
established in (5.34a). To obtain the strong convergence in (5.36b) and (5.36d), we have combined (5.34a) with
(5.34¢), (5.34d), and apply a compactness result ([46], Sect. 8, Thm. 5).

As M}TL’+ is uniformly bounded in L? (07 T:H 1(Q)), the trace theorem provides an additional uniform bound
in L2(0,T; H/2(T")). Consequently, there is a subsequence of {1}, |5, } converging weakly towards some limit

function v € L?(0,T; HY/*(T)). The identification of v with |5, follows from similar arguments as in [38],
while the remaining convergence property stated in (5.37) follows from (5.34b). (I
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In (5.30), we now consider test functions wy, 0, € L? (07T; U}?) and z, € L? (O,T; U,l;) Then, summing over

n=0,...,N — 1, we see that the time-interpolation functions satisfy
/ Tn{0wujwy} dadt + 71 / T} {0pufwy } AT dt (5.38a)
T X
+ [ V't -Vw,dzdt+ 871 [ Ve - Vew, dDdt = 0,
Qr S
= /E T {Ouj 2} AT dt + 25 /2 Vit Vi, dU dt (5.38b)
T T

+ 5#1/2 I { (B0 — pp ) zn AL dt =0,

T

/ Tn{py  np} dedt + / I3 {07 np b dD de (5.38¢)
Qr Zr

— [ vt Vi dedi+ / T {(F{(ap ™) + Fy (™))} ded
QT T

vr [ VrulT - Ve drde+ / I (™) + G (ul ™)) ) dT .
X7

7
We aim to pass to the limit (h, 7, L) — (0,0, Lo) to deduce the convergence of our numerical solutions.

Theorem 5.8 (Convergence of numerical solutions). Under (T), (S1), (52), (A3), (D), and (C), the limit
triplet (u, p,0) obtained from Lemma 5.7 by passing to the limit (h,7,L) — (0,0, Lg) solves (1.13) in the
following weak sense:

B (uo — w)Oyw + V- Vwdz dt + / (uwo — w)Oyw + Vb - VrwdI' dt = 0, (5.39a)
Qr Er

/ Lo(uo — )@z + LoV - Viz + B(50 — p)zdldt =0 if Lo € [0, 00),
X

(5.39b)
/ (up — u)Opz + Vb - Vpzdl'dt =0 if Ly = oo,
T
/ ;mdxdtJr/ Ondl’dt
T T (5.39¢)
= Vu-Vn+ F'(u)ndzdt + / kVru - Vin+ G (u)ndl dt
Qr Er

for all w € H*(0,T;V) satisfying w(-,T) =0, z € H'(0,T; H'(T')) satisfying z(-,T) = 0, and n € L*(0,T;V).

Proof. For an arbitrary w € C’l([O,T]; C> (ﬁ)) with w(-,T) = 0, we denote its interpolation as wy, := Zp{w},
which allows us to interchange the interpolation and the trace operator, i.e., (Zp{w})|s, = Z}, {w|s, }. For the
first term in (5.38a), we obtain

/ Tn{Opujwp} dadt = / Opujwp, da dt — / (I — Zp){Orujwp } de dt =: Ay + As.
T Qr

T

Integrating by parts, applying the fact w;, — w in L?(0,T; H(Q)) (see [5]) and (5.6b), we obtain

A = —/ U;—lat’LUhdJ}dt—/ugwh('aO) dz — — u@twdxdt—/uow(~70)d$
- Q

Qr Q

- / (up — u)Ohw da dt.
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Concerning Ay, we employ Lemma 5.1 with assumption (C) to obtain
2 T T, —
|[Ao| < Ol 2 |IVuy ™ = Vuy ||z o,r,02 ) [ Vwn 22 0,7:22(0)) — 0, (5.40)

due to the uniform estimates in (5.34a). Similar arguments provide the convergence of the second term in (5.38a),
and the convergence of the remaining terms in (5.38a) follows from (5.36e), (5.36¢), and the strong convergences
Tn{w} — w in L2(0,T; H'(Q)) and I} {w|s, } — w|s, in L*(0,T; H(T)). Hence, we recover (5.39a) in the
limit (h, 7, L) — (0,0, Lo).

We refer the reader to Proof of Theorem 4.4 from [38] for the arguments to pass to the limit in (5.38¢) to
recover (5.39¢), as the equation treated there is identical to (5.38¢c). Hence, to finish the proof, it remains to pass
to the limit in (5.38b). For arbitrary z € C*([0,T]; C>°(T)) satisfying z(-,T) = 0, we consider the interpolation
function zp, := Z {z}. Then, for the case Lo € (0, 00) the first two terms in (5.38b) can be treated with analogous
arguments used above. Meanwhile for the third term in (5.38b), we see that

f=y g BT (B0 — 1y ng) 20} AT dt (5.41)
T
— %H/z: B(BOT — sy )z Al dE — ﬁl/Z B —T)){(BO7F — T sy )20 T dt.
T T

For the first term on the right-hand side, thanks to (5.36f) and (5.36g) we find that

LLH/E B(BOTF — uT* |ng)zn dT dt — ﬁ/z B(BO — plss, )z dl dt,
T T

while for the second term on the right-hand side, by (5.34b), Lemma 5.1 and a standard inverse estimate
IVrap |2y < Ch™ Y anl L2y (see e.g., [5], Thm. 4.5.11), we have

_1
L+1

o= T {007 = ) v

T

< C%ﬂhL_1||59;7+ - M;7+|ZT||L2(0,T;L2(F))||VFZh||L2(0,T;L2(p)) < Ch—0.

Therefore, the second term on the right-hand side of (5.41) vanishes for all L > 0 as h \, 0. Hence, for the
case Lo € (0,00), passing to the limit (h,7,L) — (0,0, Lg) in (5.38b) yields (5.39b). For the case Ly = 0, the
uniform estimate (5.34) imply the first two terms in (5.38b) converge to zero in the limit, and thus we obtain
from passing to the limit in (5.41) the identity

36 pls)edra=o,
Xr
which is (5.39b) with Lo = 0. For the case Ly = oo, we multiply (5.38b) with ZL, leading to

/ T 0wfzn} + Vet - Vpz, dU dt + ﬂ%/ (805" — )z} dldt = 0,
ET ET

and passing to the limit (h,7,L) — (0,0,00) yields (5.39b). Hence, (5.39a) and (5.39b) hold for all w €
C’l([O,T];C’OO(ﬁ)) satisfying w(-,T) = 0, z € C([0,T]; C>(T)) satisfying 2(0,T) = 0, and the proof is com-
plete after employing the density of C*([0,7]; C*°(Q)) in H*(0,T;V) and the density of C*([0,7]; C°°(I)) in
H'(0,T; HY(T)). 0

Corollary 5.9. Suppose that (T), (S1), (52), (A3), (D) and (C) hold, and let (u, u, 0) denote the triplet obtained
by Lemma 5.7.
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(a) If Lo =0, then (u,p, 0) is a weak solution of the GMS model (1.8) in the sense of Proposition 3.4.

(b) If 0 < Lo < o0, then (u, i, 0) is a weak solution of the reaction rate dependent model (1.13) in the sense of
Theorem 3.1 (with L = Lg).

(¢) If Ly = oo, then (u, u,0) is a weak solution of the LW model (1.11) in the sense of Proposition 3.3.

Proof. As the proof is rather straightforward, we merely sketch the most important steps.

The case Lo = 0. By the definition of a weak derivative, we infer that d;u exists and belongs to L2(0,T;V").
In particular, testing (5.39a) with @ = w¢ where w € V and ¢ € H((0,T)) are arbitrary, we can use the
fundamental theorem of calculus of variations to conclude that

<8tu,w>v’g+ﬂ/v,u~dex+/Vp9~prdF:0
Q r

for all w € V. This verifies (3.52a) whereas (3.52b) follows immediately from (5.39¢). Furthermore, we obtain
from (5.39b) that u|s, = B0 a.e. on 7. From d,u € L*(0,T;V") and (5.35), we deduce that (3.51) holds where
the conditions u € C([0,T]; L*(Q)) and u|r € C([0,T]; L*(T)) can be obtained a posteriori by the Aubin—Lions
lemma. The energy inequality (3.53) can be verified similarly to Step 6 of the proof of Theorem 3.1. This implies
that (u, p, ) is indeed a weak solution to the system (1.8).

The case 0 < Lo < co. We proceed similarly as in the case Ly = 0. Here we use both (5.39a) and (5.39b) to
infer that dyu € L?(0,T; H*(Q)') and dyuls, € L*(0,T; H (T')’) with

(Oru, w) g1 () :—/ Vu~dex+/ L%(ﬁ&—u)wdf,
Q r

<8tu,z>H1(p) :—/FvIﬂ'VFZdF—/FLLO(ﬁe—M)ﬂZdF

for all test functions w € V and z € H'(T"). By a density argument, the first line remains valid for all w € H*(£2).
Along with (5.39¢), we conclude that the weak formulation (3.2) is satisfied. The regularity condition (3.1) follows
from Oyu € L2(0,T; H(Q)), dyuls, € L*(0,T; HY(T')'), and (5.35). We point out that the Hélder regularities
can be obtained a posteriori by proceeding as in Step 4 of the proof of Theorem 3.1. The energy inequality
(3.3) can be verified by following the line of argument in Step 6 of the proof of Theorem 3.1. This proves that
(u, i, 0) is a weak solution to the system (1.13).

The case Ly = oo. The assertion can be established similarly to the approach in the case 0 < Ly < oo.
Therefore, we do not present the details.
Thus, the proof is complete. U

Remark 5.10. The accuracy of discrete scheme discussed in this section can be improved by approximating
the derivative of the polynomial double-well potential by a difference quotient and replacing fQ Vup - Vi, do
and [, Vruj - Vroy, dI in (5.10¢) by

a/ Vull - Vi dr + (1 — a)/ Vu =t Vi, da

Q Q

and 6&/ Vruy - Venp dl' + (1 — d) / Vpuﬁ_l -V, dl,
r r

with «, & € (0.5,1]. For more details we refer the reader to [29,37].
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FIGURE 1. Initial datum.

TABLE 1. Parameters used for the simulations presented in this section.

€ 5 K maq mr S

0.01 0.02 025 1 04 4

6. SIMULATIONS

In this section, we investigate the convergence of discrete solutions for L / oo and L \, 0 numerically. The
discrete scheme proposed in the last section is implemented in the C++ framework EconDrop (cf. [8,28,29,36,37]).
In principle, this framework allows for adaptivity in space and time using the ideas presented in [28], i.e., we
are able to use meshes with a high resolution in the evolving interfacial area and a lower resolution in the
bulk phases where u ~ £1. Similarly, the time increments can be varied such that they are small, when the
solution changes rapidly and larger when the solution is almost stationary. However, as we are interested in the
dependence on L and therefore want to omit any additional effects which might be introduced by adaptivity,
we choose to use a fixed time increment and mesh.

We consider the domain €2 := (0, 1)2 C R? and place an elliptical shaped droplet with with barycenter at
(0.1,0.5), a maximal horizontal elongation of 0.6814, and a maximal vertical elongation of 0.367 (see Fig. 1).
The domain Q is discretised using a triangulation 7;, with h = v/2 - 278, which provides a partition of I" into
elements of length 278, This corresponds to dim U;? = 66049 and dimU; = 1024. Choosing F' and G of the
form (5.5) with % = 250 and the remaining parameters as specified in Table 1, we simulate the behaviour of the
droplet from ¢t = 0 to t = T = 0.05 using a fixed time increment 7 = 6 x 10~7. The discretization parameters
h and 7 used for the presented simulations are chosen very small, as we are interested in the convergence with
respect to the parameter L and therefore want to reduce the impact of the spatial and temporal approximations.

The evolution of the droplet is visualised in Figure 2 for different values of L. The corresponding evolution
of fQ uwdx and fr udl are plotted in Figure 3. In the case L = oo, the integral of u is conserved in 2 and on
' individually (cf. the red, continuous line in Fig. 3). Therefore, the contact area in this case can not change.
However, the elliptical droplet still tries to attain circular shape with constant mean curvature (cf. Fig. 2a). For
L < oo, the individual conservation is relaxed (see Fig. 3) to fQ udx + fr udIl', which allows the contact area
to grow ([ udl is increasing in Fig. 3b), while the droplet’s bulk volume is decreasing (cf. Fig. 3a). The effect
intensifies for decreasing L (cf. Figs. 2b—2e), i.e., for larger reaction rates. However, we want to emphasise that
in this scenario our implementation allows for a perfect conservation of 3 fQ udr + fF udl.

According to (1.14), the total free energy F = Epyix + Fsurf is non-increasing over time. In the two-dimensional
scenario discussed in this section, the boundary I' is only one-dimensional and the interface given as the zero
level set of u cuts I' always in two points. Therefore the surface free energy Fgu,+ depends mainly on the profile of



PHASE-FIELD DYNAMICS WITH TRANSFER OF MATERIALS

(b

()

UV 9 © @

B
)
)
?

b
r
P

FIGURE 2. Phase-field at ¢ = 0.004, ¢ = 0.02, t = 0.04, and ¢ = 0.05. (a) L = co. (b) L = 10.

() L=1.(d) L=0.1. (e) L =0.

(
(

d
e)

275



276 P. KNOPF ET AL.

T
—28 11— L= =
....... L =100
—929||---L=10 |
—0.75 - B e L=1
L=01
% —3 |- - L=o0.01 ,./ -
g e L =0 ra
\d —0.81 | —r —3.1F .,f’” 4
"‘!’ -
—3.2F ’_f - e 1
//, JSUUPEL L
—0.85 . —331 ¢ T T i ieeaieeaaneeneee et |
1 1 1 1 1 1 1 1 1 1 1 1
0 1 2 3 4 5 0 1 2 3 4 5
time 1072 time 102
(a) (b)

FIGURE 3. Time evolution of the bulk mass and the surface mass of u. (a) Evolution of / wdz.
Q

(b) Evolution of/udI‘.

r
1f g
0.480 - i
09 5
0.475 :
= w
Lv'qg L =00 - ;,
0.8 . ,_ 1 R 0470 —L=o |
...... L =100 bo ... weeees L= 100
--- L=10 Y AR - L=10
- L=1 *a N L —-L=1 |
o1 . 0.465 o
0.7F|- - L=o0.01 RS n o - L—001
"""" L=o T 0.460 —-—2=0 |
[ [ | | | L | | | | 1 1
0 1 2 3 4 5 0 1 2 3 4 5
time 102 time 102
(a) (b)

1.4

Eypux + Esurt
—
w
T

time _10—2
(©)

FIGURE 4. Evolution of the energy. (a) Evolution of Epu(u). (b) Evolution of Egu¢(u).
(c) Evolution of E(u) = Epuk(u) + Esure(u).



PHASE-FIELD DYNAMICS WITH TRANSFER OF MATERIALS 277

N
N

‘i’:s:
2
0

3
R
N

O

OO

S
X8
%

%
XX
g
0.0

%

9%

%

A/

7

FIGURE 5. Overlay of level sets of u for L = 0 (red) and L = oo (blue).

TABLE 2. Comparison of the phase-field parameters for different L with the solution for L =0
(left) and L = oo (right).

u u

L - ||L2(0,T;L2(Q)) EOC L1 - ||L2(07T;L2<Q>) EOC
0.0001 4.01E-05 - 0.0001 6.12E-05 —

0.0002 8.02E-05 1.00 0.0002 1.22E-04 0.99
0.0003 1.20E-04 1.00 0.0003 1.82E-04 0.99
0.0004 1.60E-04 1.00 0.0004 2.42E-04 0.99
0.0005 2.00E-04 0.99 0.0005 3.01E-04 0.98
0.00075  2.98E-04 0.99 0.00075  4.47E-04 0.97
0.001 3.96E-04 0.99 0.001 5.90E-04 0.97
0.01 3.58E-03 0.96 0.01 4.46E-03 0.88
0.1 2.16E-02 0.78 0.1 2.06E-02 0.66
1 5.66E-02 0.42 1 5.32E-02 0.41

u|y, in the transition regions. However, as the optimal u-profile in the transition region is given by a hyperbolic
tangent which attains the values £1 only infinitely far away from the zero level set of the phase-field variable,
the length of the section covered by the droplet might still have a small influence on the surface free energy. As
we start with an interface profile which is close to the stationary one, we expect only little changes in Fg,t. The
bulk free energy FEpux, however, depends mainly on the droplet’s surface area. As the initial surface area is not
minimal, we can expect a significant decrease in FEj,x. The evolution of the energy is plotted in Figure 4 for
several values of L. As expected, the bulk free energy and the total free energy depicted in Figures 4a and 4c
decrease over time. Comparing the evolution of Eyy for different values of L, we notice that after an initial
drop which occurs for all L, the further evolution of the energy depends significantly on L. In the case L = oo,
the rate of energy decrease diminishes and Ey attains a stationary value, the energy decrease continues for
L < 0.

As the initial shape of the droplet is elliptical, the right tip of the droplet exhibits high curvature and
therefore vanishes quickly when the droplet optimises its shape, thus causing the initial energy drop. As fF udl
is conserved for L = oo, the droplet is not able to decrease its overall surface by increasing the contact area.
Consequently, Fyy,k stagnates in this case. On the other hand, for L < oo, only fQ udx + fF u dI' is conserved
and the droplet’s surface area can be further decreased by increasing the contact area which results in a further
decrease of Fuy. As expected, the rate of energy reduction increases with decreasing L, while the total energy
decrease is bounded by the energetically optimal droplet shape.

While the bulk free energy is decreasing, the surface free energy Egy,+ which is depicted in Figure 4b increases.
To explain the initial rapid increase in Fg,.f, we want to point out that our discrete initial condition does not
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TABLE 3. Comparison of the phase-field parameters for different L with the solution for L =0
(left) and L = oo (right).

ulET U‘ET

L - HL2(07T;L2(F)) EOC L1 - ||L2(0,T;L2(F)) EOC
0.0001 6.78E-05 - 0.0001 1.07E-04 -

0.0002 1.35E-04 1.00 0.0002 2.13E-04 0.99
0.0003 2.03E-04 1.00 0.0003 3.18E-04 0.99
0.0004 2.70E-04 1.00 0.0004 4.22E-04 0.99
0.0005 3.37E-04 0.99 0.0005 5.25E-04 0.98
0.00075  5.04E-04 0.99 0.00075  7.79E-04 0.97
0.001 6.70E-04 0.99 0.001 1.03E-03 0.96
0.01 6.05E-03 0.96 0.01 7.41E-03 0.86
0.1 3.71E-02 0.79 0.1 3.12E-02 0.62
1 1.00E-01 0.43 1 8.86E-02 0.45

TABLE 4. Comparison of the chemical potentials for different I with the solution for L = 0
(left) and L = oo (right).

H M

L H : HLZ(O,T;L?(Q)) EOC L' H : HL2(0,T;L2(Q)) EOC
0.0001 5.54E-05 - 0.0001 6.05E-05 —

0.0002 1.11E-04 1.00 0.0002 1.20E-04 0.99
0.0003 1.66E-04 1.00 0.0003 1.80E-04 0.99
0.0004 2.21E-04 0.99 0.0004 2.38E-04 0.98
0.0005 2.75E-04 0.99 0.0005 2.96E-04 0.98
0.00075 4.12E-04 0.99 0.00075  4.39E-04 0.97
0.001 5.47TE-04 0.99 0.001 5.78E-04 0.96
0.01 4.92E-03 0.95 0.01 4.00E-03 0.84
0.1 2.99E-02 0.78 0.1 1.44E-02 0.56
1 8.41E-02 0.45 1 4.45E-02 0.49

TABLE 5. Comparison of the chemical potentials for different L with the solution for L = 0
(left) and L = oo (right).

0 0
L M- ||L2(07T;L2(F)) EOC L1 IE \|L2(0,T;L2(r>) EOC
0.0001 2.72E-05 - 0.0001 1.66E-03 -
0.0002 5.43E-05 0.99 0.0002 3.30E-03 0.99

0.0003 8.13E-05 1.00 0.0003 4.93E-03 0.99
0.0004 1.08E-04 0.99 0.0004 6.54E-03 0.98
0.0005 1.35E-04 0.99 0.0005 8.13E-03 0.98
0.00075  2.02E-04 0.99 0.00075  1.20E-02 0.97
0.001 2.68E-04 0.99 0.001 1.58E-02 0.95
0.01 2.41E-03 0.95 0.01 1.02E-01 0.81
0.1 1.50E-02 0.79 0.1 2.43E-01 0.38

1 5.17E-02 0.54 1 2.98E-01 0.09
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TABLE 6. Difference between 86 and p|s,. for different L.

860 — N|2T
L W2 o,rip2ayy  EOC I Tzoe 0. 7:Lo (1)
0 1.19E-08 = 1.17E-05
0.0001  5.93E-05 - 4.22E-02
0.0002  1.19E-04 1.00 8.35E-02
0.0003  1.78E-04 1.00 1.24 E-01
0.0004  2.37E-04 1.00 1.63E-01
0.0005  2.96E-04 1.00 2.02E-01
0.00075  4.44E-04 1.00 2.95E-02
0.001  5.91E-04 1.00 3.84E-01
0.01 5.76E-03 0.99 2.06E-00
0.1 4.98E-02 0.94 3.77E-00
1 2.97E-01 0.78 4.12E-00
10 9.88E-01 0.52 4.16E-00
100 2.08E-00 0.32 4.17E-00

exhibit the optimal u-profile in the transition region and that the parameters in this scenario are chosen in
a way that the optimal transition profiles in € and on I' differ. Therefore, optimizing the profile in Q to
reduce Epyx leads to a slight increase in Egu¢. After this initial incline, evolution of Fgu+ depends on L, as
the contact angle determines how the u-profile in 2 influences the profile on I'. It is also worth mentioning
that the transition profiles are almost identical. Figure 5 shows an overlay of level sets of u for L = 0 (red)
and L = oo (blue) at t = T = 0.05. It is striking that the distances between the depicted level sets for
u = {£0.9,+0.8,£0.7, £0.6, £0.5, +£0.4, +0.3, +0.2, +0.1,0} are completely identical. However, as Fg,s does
not attain the same value for all L at ¢ = 0.05, the profiles have to differ for |u| > 0.9. This might be a result
of the small size of the wetted section of I' for L = co and L = 100 and the resulting interactions between the
transition regions.

In order to deduce an experimental order of convergence (EOC) for the phase-field u for L \, 0, we compare
discrete solutions uy, € Uj} for a decreasing sequence {L;} with the discrete solution u, € U’ obtained for
L =0 and define the corresponding error as

errr, = [lur, — ul|L2(0,7:02(0))- (6.1)

Here, the time integral is approximated using the trapezoidal rule with time increment 7 = 1.02 x 107°. The
experimental order is then defined as

erry,

EOC(L;) := loig((L;+))

For L / oo and the convergence of u|s,., 1, and 8, we proceed analogously. The results for the convergence of
u on Qr which are collected Table 2 indicate that for L < 1 x 1073 the convergence rate is almost 1. A similar
pattern emerges for the EOC of uly,. which is displayed in Table 3, the EOC of p displayed in Table 4, and the
EOC of 6 that can be found in Table 5.

As a last test case, we investigate the behaviour of 6 and uls,. for L X\, 0. According to the theoretical results,
180 — plsi || z2(sp) — O with a rate of at least v/L. As shown in Table 6, the numerical errors we obtain in the
case L = 0 for [|80 — pu| s | L2(0,7;2(r)) are only of order 1078 and of order 10~? if we use the L>°(0,T; L>°(T'))-
norm. Similar to the results described above, our simulations yield an experimental order of convergence rate
of 1 for small values of L, but still reach the expected rate of 0.5 for L = 10.
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APPENDIX A.

Proof of Lemma 2.3. We prove the assertion by contradiction. To this end, we assume that the estimate is false.
This means we can find an a > 0 such that for any k € N there exists a function uj, € Wf , with

lurlFz ) + llunlizwy > el VarllZs ) + klurlZ g . (A1)

Now we define a sequence (4 )ren C V" by

Uk

1/2
(k220 + el 1 )

Uk =

for all k£ € N. By this construction, it holds that
w220 + llakl7zy =1 (A.2)
as well as i, € Wj , for all k € N. Moreover, it follows from (A.1) that
al| Va3 + kllakl3 5. <1 forallk €N (A.3)

Consequently, the sequence (7iy,) is bounded in H'(Q2). Hence, according to the Banach—Alaoglu theorem, there
exists u € H'(Q) such that i, — u in H!(Q) along a non-relabelled subsequence. We now deduce from the
compact embeddings H'(Q2) — L?(Q) and H'(Q) — L*(T) that @ — w in L*(Q) and @y — u in L*(T) after
another subsequence extraction. In particular, this implies u € Wj , C (Wf)~! and ||u||%2(m + ||“||2L2(1‘) =1.
It now follows from (A.3) that

- N 1
IS@0l7.6 = laal} . < <1 forall k €N. (A4)

Hence, the Banach—Alaoglu theorem yields the existence of a function S§* € Hg, ¢ such that S(d) — S* with
respect to the inner product (-,); 5 on Hpo as k — oo. As S(@g) is the weak solution of the system (2.2) to
the right-hand side @y we can pass to the limit in the weak formulation (see (2.3)) to conclude that $* = S(u).

Since the norm || - ||,g on Hg,o is weakly lower semicontinuous, we can use (A.3) to obtain
1
S < liminf ||S(% < liminf — = 0 for allk € N. A5
IS@lles < HninflIS(@) ]z < liminf == orall k€ (A.5)

This means that
VSa(u) =0 ae inQ and VpSr(u) =0, 8Sr(u) —Sq(u) =0 a.e.onT.

Finally, as S(u) is the weak solution of (2.2) (with ¢ = w), this is enough to conclude that u =0 a.e. in © and
also ulr = 0 a.e. on I'. However, this is a contradiction to |u z2(q) + ||u||L2(ry = 1. This completes the proof.
]
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