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HYPERBOLIC MODELS FOR THE SPREAD OF EPIDEMICS ON NETWORKS:
KINETIC DESCRIPTION AND NUMERICAL METHODS

Giulia Bertaglia* and Lorenzo Pareschi

Abstract. We consider the development of hyperbolic transport models for the propagation in space
of an epidemic phenomenon described by a classical compartmental dynamics. The model is based on
a kinetic description at discrete velocities of the spatial movement and interactions of a population of
susceptible, infected and recovered individuals. Thanks to this, the unphysical feature of instantaneous
diffusive effects, which is typical of parabolic models, is removed. In particular, we formally show how
such reaction-diffusion models are recovered in an appropriate diffusive limit. The kinetic transport
model is therefore considered within a spatial network, characterizing different places such as villages,
cities, countries, etc. The transmission conditions in the nodes are analyzed and defined. Finally, the
model is solved numerically on the network through a finite-volume IMEX method able to maintain
the consistency with the diffusive limit without restrictions due to the scaling parameters. Several
numerical tests for simple epidemic network structures are reported and confirm the ability of the
model to correctly describe the spread of an epidemic.
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1. Introduction

The ongoing COVID-19 pandemic has led to a strong interest from researchers around the world in building
and studying new epidemiological models capable of describing the progress of the epidemic (see e.g. [2, 8, 16,
19, 21, 22, 28] and the references therein). Mathematical models can help make scenarios of the evolution of
a pandemic and are an indispensable tool to support government decision-making on the control of infectious
diseases. Together with computer simulations, they permit to build and test hypothesis, quantify the uncertainty
related to random input parameter values, and estimate key parameters from collected data. Usually, SIR-type
compartmental models, inspired by the seminal work of Kermack and McKendrick, are adopted [15,24]. In the
classical setting the population is assumed to be divided in three classes: susceptible (S), who can contract
the disease, infectious (I), who have contracted the disease and can transmit it, and removed or recovered
(R), consisting of those with permanent infection-acquired immunity (eventually, even deceased). More complex
models include additional classes of individuals, like the SEIR model, which considers also a subgroup of exposed
subjects (E), individuating people in the latent period, who are infected but not yet infectious; or like the MSEIR
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model, which includes also the class M of infants with passive immunity [24]. The choice of which compartments
to include in a model depends on the characteristics of the infectious disease analyzed and the aim of the model.
Models including several compartments have been especially designed to deal with the COVID-19 pandemic
(see e.g. [21, 22]).

All these classical compartmental models represent the spread of the epidemic only concerning the temporal
evolution of the disease among the population, but not taking into account spatial effects. In many cases, the
concept of the average behavior of a large population is sufficient to provide useful guidance on the development
of the epidemic. However, the importance of the spatial component of many transmission systems is being
increasingly recognized, especially when there is a need to consider spatially heterogeneous interventions, as
happened for COVID-19 [38]. Thus, to describe the spread of epidemics in a more detailed way, and design
effective confinement strategies, several spatially extended models, based on systems of parabolic reaction-
diffusion equations, have been proposed [33,39,42]. However, the parabolic character of these models leads the
disease to propagate instantaneously in space, with infinite speeds. This unphysical feature has been avoided
through hyperbolic systems based on relaxation approximations [6, 7] or nonlocal interactions [16].

Furthermore, networks (or graphs) are extremely flexible tools for representing complex systems of interacting
components. Each component is represented by a node and each arc (or edge) between nodes describes some
sort of interaction between them. Because of their flexibility, networks have been used to model infection spread
in different forms. Nodes can describe single individuals, groups of individuals (e.g. households, farms, cities)
or locations to which individuals are connected [26,36]. Links can represent infectious attempts or transmission
events or simply social relationships through which the infection can spread, movements of animals between
farm, flight routes, streets [5,30,36]. We refer to [21,28] for recent applications of these ideas to the specific case
of COVID-19.

In this work, without claiming to provide an answer to the complex problem of spatial propagation of an
epidemic phenomenon, we try to provide a contribution in this direction by building models based on hyperbolic
partial derivative equations that allow a more realistic description of the dynamics of the individuals involved
in the epidemic phenomenon. The model, inspired by two-velocity kinetic equations [29], is based on a kinetic
description of the diffusive spread of the epidemic governed by a SIR-type dynamics. In particular, it is shown
that under a suitable scaling limit the model permits to recover the classical reaction-diffusion SIR-type system
[39, 42]. Although, to simplify our presentation, we have focused on a simple SIR-type dynamic, the approach
can be naturally extended to more realistic compartmental descriptions including more populations.

Subsequently, the hyperbolic system is considered on a spatial network where the nodes represent groups of
individuals, typically villages, cities, regions or even countries that evolve through a standard SIR model. In
addition, suitable transmission conditions are derived at each arc-node interface. We emphasize that the notion
of network used here and in transport based models (so typically a network composed by few nodes where
we are interested also on the solution over the arcs) and the notion of network in social sciences (so typically
composed by a random graph with a large number of nodes) are very different. Note also, that here, unlike
other network models based on hyperbolic balance laws and kinetic equations, such as in chemotaxis and traffic
flows [12–14,18,37], the nodes themselves are evolving. The resulting system of equations is then solved on each
arc using a suitable IMEX finite-volume approach that permits to achieve uniform second order accuracy even
in stiff regimes where the diffusive behavior dominates [11,23,34].

Clearly, a model on spatial network schematizes a simplified reality of a two-dimensional model. Such models
find particular application in the case in which the directions of displacement are characterized essentially by
monodimensional dynamics, as in the case of road traffic and related problems [13, 14, 37]. The model here
presented aims precisely at describing the spread of an epidemic on the basis of transport dynamics between
cities, towns and other inhabited centers, due to the mobility that typically takes place on spatial networks of
connection.

The rest of the manuscript is organized as follows. In Section 2 we introduce the mathematical model.
First, we discuss the one-dimensional model in a bounded domain, its main properties, and formally derive the
diffusion limit. Then, in Section 2.3, the model is considered in a spatial network with appropriate transmission
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conditions. Section 3 is dedicated to the description of the adopted IMEX finite-volume scheme, which allows
to preserve the limiting parabolic behavior of the system. Several numerical examples, including networks with
different arcs and nodes are presented in Section 4, to illustrate the ability of the model to correctly describe
the spread of the epidemic. Some conclusions are reported in the last section.

2. Mathematical model

2.1. A SIR-type discrete kinetic transport model

One of the standard compartmental models widely used in epidemiology is the so-called SIR model, in which
the population is assumed to be divided in three classes: the susceptible (S), the infectious (I), and the removed
or recovered (R). Let us assume to have a population with similar individuals, without prior immunity, which are
uniformly mixed and that do not present behavioral changes during the epidemic, and neglect the vital dynamics
represented by births and deaths because of the time scale considered. In the simplest one dimensional (1D) case,
if we consider individuals moving in two opposite directions (indicated by signs “+” and “−”), with velocities
±𝜆𝑆 for susceptible, ±𝜆𝐼 for infectious and ±𝜆𝑅 for recovered, we can describe the spatio-temporal dynamics
of the population through the following SIR-type discrete velocity model

𝜕𝑆+

𝜕𝑡
+ 𝜆𝑆

𝜕𝑆+

𝜕𝑥
= −𝑓
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)︀
− 1

2𝜏𝑆

(︀
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𝜕𝑆−
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1
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1
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)︀
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(2.1)

In the above system, individuals 𝑆(𝑥, 𝑡), 𝐼(𝑥, 𝑡) and 𝑅(𝑥, 𝑡), representing, respectively, the number of susceptible,
infectious and recovered, at location 𝑥 ∈ Ω ⊆ R and time 𝑡 > 0 (expressed in relative value with respect to the
total reference population size 𝑁 = 𝑆 + 𝐼 + 𝑅), are defined as

𝑆 = 𝑆+ + 𝑆−, 𝐼 = 𝐼+ + 𝐼−, 𝑅 = 𝑅+ + 𝑅−.

The parameter 𝛾 represents the recovery rate, while the transmission of the infection is governed by an incidence
function 𝑓(𝑆±, 𝐼) modeling the transmission of the disease. We assume local interactions characterize the general
incidence function

𝑓(𝑆±, 𝐼) = 𝛽
𝑆±𝐼𝑝

1 + 𝑘𝐼
, (2.2)

where the classic bilinear case corresponds to 𝑝 = 1, 𝑘 = 0, even though it has been observed that an incidence
rate that increases more than linearly with respect to the number of infectious 𝐼 can occur under certain
circumstances [6, 15, 27, 31]. The parameter 𝛽 characterizes the contact rate [24], whereas the case 𝑘 > 0 takes
into account social distancing and other control effects which occur during the progress of the disease [19, 43].
Notice that, when 𝑝 = 1, for an infection prevalence that tends to 1 (in relative values), the corresponding
incidence rate is approximately 𝑓 ≈ 𝛽

𝑘 𝑆, giving a purely frequency-dependent transmission, with 𝑘 acting like
a damping parameter. On the other hand, for a low infection prevalence, the transmission is purely density-
dependent, resulting approximately 𝑓 ≈ 𝛽𝑆𝐼. In general, although for simplicity of notations we have omitted
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the spatial dependence, the parameters 𝛾 and 𝛽 can depend on the position 𝑥, as well as the positive relaxation
times 𝜏𝑆 , 𝜏𝐼 , and 𝜏𝑅. It is important to notice that in this model the class of 𝐼 includes also the asymptomatic
population, which still acts like infected and can transmit the disease, even if never developing symptoms.
Moreover, it is assumed that an individual, after recovering, always becomes immune.

The model must then be supplemented with appropriate initial and boundary data. A more detailed discussion
about boundary conditions is postponed to Section 2.3 where system (2.1) is considered within a spatial network.
A structural property of (2.1) is that the first four equations are independent of the last two. Once 𝐼± are known,
the explicit forms of 𝑅± can be determined directly by solving the last two equations.

The standard threshold of epidemic models is the well-known reproduction number 𝑅0, which defines the
average number of secondary infections produced when one infected individual is introduced into a host popu-
lation in which everyone is susceptible [24]. This number determines when an infection can invade and persist
in a new host population. For many deterministic infectious disease models, an infection begin in a fully sus-
ceptible population if and only if 𝑅0 > 1. More precisely, assuming no inflow/outflow boundary conditions in
Ω, summing up the third and fourth equations in (2.1) and integrating over space we have

𝜕

𝜕𝑡

∫︁
Ω

𝐼(𝑥, 𝑡) d𝑥 =
∫︁

Ω

𝑓(𝑆, 𝐼) d𝑥−
∫︁

Ω

𝛾(𝑥)𝐼(𝑥, 𝑡) d𝑥 ≥ 0

when

𝑅0(𝑡) =

∫︀
Ω

𝑓(𝑆, 𝐼) d𝑥∫︀
Ω

𝛾(𝑥)𝐼(𝑥, 𝑡) d𝑥
≥ 1. (2.3)

The above quantity therefore defines the basic reproduction number for system (2.1) describing the space
averaged instantaneous variation of the number of infective individuals at time 𝑡 > 0.

Let us also observe that, under the same no inflow/outflow boundary conditions, summing up the equations
in (2.1) and integrating in Ω yields the conservation of the total population number

𝜕

𝜕𝑡

∫︁
Ω

(𝑆(𝑥, 𝑡) + 𝐼(𝑥, 𝑡) + 𝑅(𝑥, 𝑡)) d𝑥 = 0.

If we now introduce the fluxes, defined by

𝐽𝑆 = 𝜆𝑆

(︀
𝑆+ − 𝑆−

)︀
, 𝐽𝐼 = 𝜆𝐼

(︀
𝐼+ − 𝐼−

)︀
, 𝐽𝑅 = 𝜆𝑅

(︀
𝑅+ −𝑅−

)︀
, (2.4)

we obtain a hyperbolic model equivalent to (2.1), but presenting in the following formulation a macroscopic
description of the propagation of the epidemic at finite speeds

𝜕𝑆

𝜕𝑡
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𝐽𝐼

𝜏𝐼

𝜕𝐽𝑅

𝜕𝑡
+ 𝜆2

𝑅
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𝜆𝑅
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𝐽𝑅

𝜏𝑅
·

(2.5)

Formally, the above system (2.5) is a system of balance laws which can be rewritten in a compact form as

𝜕𝑡U + 𝜕𝑥V = F(U)

𝜕𝑡V + Λ2𝜕𝑥U = G(U,V) + H(V),
(2.6)
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in which

U =

⎛⎝𝑆
𝐼
𝑅

⎞⎠ , V =

⎛⎝𝐽𝑆

𝐽𝐼

𝐽𝑅

⎞⎠ , Λ =

⎛⎝𝜆𝑆 0 0
0 𝜆𝐼 0
0 0 𝜆𝑅

⎞⎠ ,

F(U) =

⎛⎝ −𝑓(𝑆, 𝐼)
𝑓(𝑆, 𝐼)− 𝛾𝐼

𝛾𝐼

⎞⎠ , G(U,V) =

⎛⎝ −𝑓(𝐽𝑆 , 𝐼)
𝜆𝐼

𝜆𝑆
𝑓(𝐽𝑆 , 𝐼)− 𝛾𝐽𝐼

𝜆𝑅

𝜆𝐼
𝛾𝐽𝐼

⎞⎠ , H(V) = −

⎛⎝𝐽𝑆/𝜏𝑆

𝐽𝐼/𝜏𝐼

𝐽𝑅/𝜏𝑅

⎞⎠ .

It is immediate to see that system (2.6) is symmetric hyperbolic in the sense of Friedrichs-Lax [20], with real
finite characteristic velocities (eigenvalues) 𝜆𝑆 , 𝜆𝐼 , 𝜆𝑅, and a complete set of linearly independent eigenvectors.
All the eigenvectors are associated with genuinely non-linear fields, defining shocks and rarefactions, and the
Riemann invariants of the system correspond to the kinetic variables

𝑆± =
1
2

(︂
𝑆 ± 𝐽𝑆

𝜆𝑆

)︂
, 𝐼± =

1
2

(︂
𝐼 ± 𝐽𝐼

𝜆𝐼

)︂
, 𝑅± =

1
2

(︂
𝑅± 𝐽𝑅

𝜆𝑅

)︂
· (2.7)

Furthermore, the symmetric hyperbolicity of the system guarantees the well-posedness of the Cauchy problem
(i.e. existence, uniqueness and continuous dependence of the solutions on the initial data) for suitable smooth
initial data (see [3, 32]).

2.2. Diffusion limit

Let us now consider the behavior of the model in diffusive regimes. To this aim, let us introduce the diffusion
coefficients

𝐷𝑆 = 𝜆2
𝑆𝜏𝑆 , 𝐷𝐼 = 𝜆2

𝐼𝜏𝐼 , 𝐷𝑅 = 𝜆2
𝑅𝜏𝑅, (2.8)

which characterize the diffusive transport mechanism of susceptible, infectious and recovered, respectively. The
diffusion limit of the system is formally recovered letting the relaxation times 𝜏𝑆 , 𝜏𝐼 , 𝜏𝑅 → 0, and simultaneously
the characteristic speeds 𝜆𝑆 , 𝜆𝐼 , 𝜆𝑅 →∞, while keeping the diffusion coefficients (2.8) finite. Under this scaling,
from the last three equations in (2.5) we get a proportionality relation between the fluxes and the spatial
derivatives

𝐽𝑆 = −𝐷𝑆
𝜕𝑆

𝜕𝑥
, 𝐽𝐼 = −𝐷𝐼

𝜕𝐼

𝜕𝑥
, 𝐽𝑅 = −𝐷𝑅

𝜕𝑅

𝜕𝑥
, (2.9)

which inserted into the first three equations, lead to the parabolic reaction-diffusion system [33]

𝜕𝑆

𝜕𝑡
= −𝑓(𝑆, 𝐼) +

𝜕

𝜕𝑥

(︂
𝐷𝑆

𝜕𝑆

𝜕𝑥

)︂
𝜕𝐼

𝜕𝑡
= 𝑓(𝑆, 𝐼)− 𝛾𝐼 +

𝜕

𝜕𝑥

(︂
𝐷𝐼

𝜕𝐼

𝜕𝑥

)︂
𝜕𝑅

𝜕𝑡
= 𝛾𝐼 +

𝜕

𝜕𝑥

(︂
𝐷𝑅

𝜕𝑅

𝜕𝑥

)︂
·

(2.10)

We refer to [29] concerning rigorous results on the diffusion limit of discrete velocity kinetic models of type (2.1).
Here we limit ourselves to note that these results cannot be straightforwardly extended to our case, since the
epidemic reaction terms destroy the typical monotone behavior of solutions for such discrete kinetic systems.
Although interesting this aspect goes beyond the scopes of the present manuscript and will be the subject of
future investigations.

Before considering the extension of the model to the case of a spatial network, some considerations should
be made.
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a
1

a
2

0 L1 0 L2

n1 n2 n3

Figure 1. Schematic representation of a simple network composed by 3 nodes (𝑛1, 𝑛2, 𝑛3) and
2 arcs (𝑎1, 𝑎2).

Remark 2.1. – The hyperbolic model (2.5) differs from the models proposed in [6,7] where a simple relaxation
approximation was used to avoid the paradox of infinite propagation speed. In particular, in [7] a different
asymptotic behavior was considered, corresponding to the case 𝜏𝑆 , 𝜏𝐼 , 𝜏𝑅 →∞, in which the dynamics can be
reduced to a pair of coupled second order wave equations for 𝑆 and 𝐼 eliminating the fluxes 𝐽𝑆 and 𝐽𝐼 . It is
easy to verify that this simplification is not possible in (2.5) due to the presence of the incidence function and
recovery rate on the r.h.s. of the flux equations.

– Although the model here discussed, for simplicity of presentation, is based on a simple SIR structure, the
approach can be extended naturally to more realistic compartmental models like SEIR/MSEIR [24] or models
especially designed to deal with the COVID-19 pandemic [21,22]. Similarly, the analogous diffusion limit permits
to recover the corresponding diffusive system for the specific compartmental dynamic.

2.3. The SIR-type kinetic transport model on networks

A network or a connected graph 𝒢 = (𝒩 ,𝒜) is composed of two finite sets: a set of 𝑁 nodes (or vertices) 𝒩
and a set of 𝐴 arcs (or edges) 𝒜, such that an arc connects a pair of nodes [37]. Arcs are bidirectional, as the
graph is non-oriented, but an artificial orientation needs to be fixed in order to define a sign for the velocities
and therefore the fluxes. At a node 𝑛 ∈ 𝒩 , two different types of edges are present: incoming and outgoing
[13,14].

For instance, in the simple network shown in Figure 1, at node 𝑛2 there is an incoming arc (𝑎1) and an
outgoing one (𝑎2). The 𝐴 arcs of the network are parametrized as intervals 𝑎𝑖 = [0, 𝐿𝑖], 𝑖 = 1, . . . , 𝐴. For an
incoming arc, 𝐿𝑖 is the abscissa of the node, whereas for an outgoing arc the same abscissa is 0 (see Fig. 1).

In the model here proposed, the nodes of the network identify a particular location of interest (a municipality,
a province, a region, a nation. . . ), while each arc represents the whole set of paths connecting each location to
the others. Hence, each node is considered with its own initial population and a localized social dynamics, which
can be influenced by those individuals moving from and to the different locations considered in the network,
traveling through the arcs. This produces a network model in which on each arc the spatial 1D system (2.5) is
solved, while on each node the SIR compartmental model with speed alignment is evaluated [24]. To ensure the
correct coupling between nodes and arcs, specific transmission conditions must be prescribed at nodes.

It is worth to highlight that, unlike other network models based on hyperbolic balance laws and kinetic
equations, such as in chemotaxis and traffic flows [13,14,37], in the here proposed model the nodes themselves
are evolving. This slightly changes the transmission conditions, which result simply doubled for each node
with respect to networks having non-evolutive nodes. The reason behind this duplication lays on the difference
between left and right boundary states, which is due to the evolution of the epidemic at the node. Without the
epidemic evolution in time at the nodes, the two boundary states would coincide.

2.3.1. Transmission conditions at nodes

The imposition of transmission conditions at arc-node interfaces is a delicate point, since the behavior of
the solution will consistently vary according to the chosen conditions [14]. To define transmission conditions
at a generic node 𝑛 ∈ 𝒩 having 𝑎𝑖 ∈ 𝒜, 𝑖 = 1, . . . , 𝑁𝑎,𝐿 incoming arcs and 𝑎𝑗 ∈ 𝒜, 𝑗 = 1, . . . , 𝑁𝑎,0 outgoing
arcs, we need to consider (1 + 𝑁𝑎,𝐿 + 𝑁𝑎,0) states at time 𝑡, 𝑄𝐿,𝑖, 𝑄𝑛 and 𝑄0,𝑗 , separated by the interface of
incoming arcs (L) and the interface of outgoing arcs (0), as shown in Figure 2. If variables are discontinuous
across these interfaces, (1 + 𝑁𝑎,𝐿) new states originate at interface L, 𝑄*

𝐿,𝑖 and 𝑄*
𝐿,𝑛, and (1 + 𝑁𝑎,0) new states
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t t

t+Δt t+Δt

Qn

u+

L,i u+

n u−

0,j

QL,i Q0,j

Q*L,i Q*0,jQ*L,n Q*0,n

interface L interface 0

u−

n

Figure 2. Layout of the Riemann problems solved to calculate the states at time 𝑡 + ∆𝑡,
imposing the transmission conditions at the left (𝐿) and right (0) boundary of a generic node
𝑛 ∈ 𝒩 at which, respectively, 𝑎𝑖 ∈ 𝒜, 𝑖 = 1, . . . , 𝑁𝑎,𝐿 and 𝑎𝑗 ∈ 𝒜, 𝑗 = 1, . . . , 𝑁𝑎,0 arcs converge.

originate at interface 0, 𝑄*
0,𝑛 and 𝑄*

0,𝑗 , at time 𝑡 + ∆𝑡 [37]. To compute them, we sought for the solution of
(2 + 𝑁𝑎𝐿

+ 𝑁𝑎,0) Riemann problems, recurring to the Riemann Invariants (or kinetic variables) of the system,
defined in equation (2.7), and to the principle of conservation of fluxes at interfaces [13,14].

For each one of the three compartments of individuals of the SIR-type model discussed in Section 2.1, for
ease of notation, let us indicate with 𝑢 the number of individuals of the compartment, with 𝑣 the corresponding
analytical flux, with 𝜆 its characteristic velocity, and with 𝑢± the Riemann Invariants. To impose the trans-
mission conditions at interface L, we need to solve the following system (for each compartment of the model):

1
2

(︂
𝑢*𝐿,𝑖 +

𝑣*𝐿,𝑖

𝜆𝑖

)︂
= 𝑢+

𝐿,𝑖

1
2

(︂
𝑢*𝐿,𝑖 −

𝑣*𝐿,𝑖

𝜆𝑖

)︂
=

𝑁𝑎,𝐿∑︁
𝑘=1

𝛼𝑖,𝑘𝑢+
𝐿,𝑘 + 𝛼𝑖,𝑛𝑢−𝑛

1
2

(︂
𝑢*𝐿,𝑛 −

𝑣*𝐿,𝑛

𝜆𝑛

)︂
= 𝑢−𝑛

1
2

(︂
𝑢*𝐿,𝑛 +

𝑣*𝐿,𝑛

𝜆𝑛

)︂
=

𝑁𝑎,𝐿∑︁
𝑘=1

𝛼𝑛,𝑘𝑢+
𝐿,𝑘 + 𝛼𝑛,𝑛𝑢−𝑛 .

(2.11)

This linear system can be written in matrix form, resulting:

𝐴𝐿𝑄*
𝐿 = 2 𝑆𝐿, (2.12)

with

𝑄*
𝐿 =

⎛⎜⎜⎝
𝑢*𝐿,𝑖

𝑣*𝐿,𝑖

𝑢*𝐿,𝑛

𝑣*𝐿,𝑛

⎞⎟⎟⎠ , 𝐴𝐿 =

⎛⎜⎜⎝
1 1

𝜆𝑖
0 0

1 − 1
𝜆𝑖

0 0
0 0 1 − 1

𝜆𝑛

0 0 1 1
𝜆𝑛

⎞⎟⎟⎠ , 𝑆𝐿 =

⎛⎜⎜⎜⎝
𝑢+

𝐿,𝑖∑︀𝑁𝑎,𝐿

𝑘=1 𝛼𝑖,𝑘𝑢+
𝐿,𝑘 + 𝛼𝑖,𝑛𝑢−𝑛

𝑢−𝑛∑︀𝑁𝑎,𝐿

𝑘=1 𝛼𝑛,𝑘𝑢+
𝐿,𝑘 + 𝛼𝑛,𝑛𝑢−𝑛

⎞⎟⎟⎟⎠ .
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On the other hand, to impose the transmission conditions at interface 0, we need to solve the following system:

1
2

(︂
𝑢*0,𝑛 +

𝑣*0,𝑛

𝜆𝑛

)︂
= 𝑢+

𝑛

1
2

(︂
𝑢*0,𝑛 −

𝑣*0,𝑛

𝜆𝑛

)︂
=

𝑁𝑎,0∑︁
𝑘=1

𝛼𝑛,𝑘𝑢−0,𝑘 + 𝛼𝑛,𝑛𝑢+
𝑛

1
2

(︂
𝑢*0,𝑗 −

𝑣*0,𝑗

𝜆𝑗

)︂
= 𝑢−0,𝑗

1
2

(︂
𝑢*0,𝑗 +

𝑣*0,𝑗

𝜆𝑗

)︂
=

𝑁𝑎,0∑︁
𝑘=1

𝛼𝑗,𝑘𝑢−0,𝑘 + 𝛼𝑗,𝑛𝑢+
𝑛 ,

(2.13)

which, written in compact form, reads:

𝐴0𝑄
*
0 = 2 𝑆0, (2.14)

with

𝑄*
0 =

⎛⎜⎜⎝
𝑢*0,𝑗

𝑣*0,𝑗

𝑢*0,𝑛

𝑣*0,𝑛

⎞⎟⎟⎠ , 𝐴0 =

⎛⎜⎜⎜⎝
1 − 1

𝜆𝑗
0 0

1 1
𝜆𝑗

0 0
0 0 1 1

𝜆𝑛

0 0 1 − 1
𝜆𝑛

⎞⎟⎟⎟⎠ , 𝑆0 =

⎛⎜⎜⎜⎝
𝑢−0,𝑗∑︀𝑁𝑎,0

𝑘=1 𝛼𝑗,𝑘𝑢−0,𝑘 + 𝛼𝑗,𝑛𝑢+
𝑛

𝑢+
𝑛∑︀𝑁𝑎,0

𝑘=1 𝛼𝑛,𝑘𝑢−0,𝑘 + 𝛼𝑛,𝑛𝑢+
𝑛

⎞⎟⎟⎟⎠ .

Constants 𝛼𝑖,𝑗 ∈ [0, 1] are the transmission coefficients and represent the probability that an individual at a
generic interface decides to move across that interface from the 𝑗th location to the 𝑖th location, also including
the turnabout on the same location. The choice of the transmission coefficients is very relevant since these
coefficients deeply affect the mobility flows of the network. It is worth to notice that the condition differs when
considering an incoming or an outgoing flux, due to the artificial orientation that has been fixed. Indeed, for
each incoming arc, we need to use 𝑢+

𝐿,𝑖 from the arc and 𝑢−𝑛 from the node; while for each outgoing arc we
consider 𝑢−0,𝑗 from the arc and 𝑢+

𝑛 from the node [14].
Furthermore, to guarantee the conservation of fluxes at the interface, therefore ensuring that the global mass

of the system is conserved over time, the following must hold [13,14]:

𝑣*𝐿,𝑛 =
𝑁𝑎,𝐿∑︁
𝑖=1

𝑣*𝐿,𝑖, 𝑣*0,𝑛 =
𝑁𝑎,0∑︁
𝑗=1

𝑣*0,𝑗 . (2.15)

To respect these conditions, it is enough to impose at interface L

𝜆𝑖 =
𝑁𝑎,𝐿∑︁
𝑘=1

𝛼𝑘,𝑖𝜆𝑘 + 𝛼𝑛,𝑖𝜆𝑛, 𝜆𝑛 =
𝑁𝑎,𝐿∑︁
𝑘=1

𝛼𝑘,𝑛𝜆𝑘 + 𝛼𝑛,𝑛𝜆𝑛, (2.16)

and at interface 0:

𝜆𝑛 =
𝑁𝑎,0∑︁
𝑘=1

𝛼𝑘,𝑛𝜆𝑘 + 𝛼𝑛,𝑛𝜆𝑛, 𝜆𝑗 =
𝑁𝑎,0∑︁
𝑘=1

𝛼𝑘,𝑗𝜆𝑘 + 𝛼𝑛,𝑗𝜆𝑛. (2.17)
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It is straightforward to analytically solve system (2.11), obtaining

𝑢*𝐿,𝑖 = 𝑢+
𝐿,𝑖 +

𝑁𝑎,𝐿∑︁
𝑘=1

𝛼𝑖,𝑘𝑢+
𝐿,𝑘 + 𝛼𝑖,𝑛𝑢−𝑛

𝑣*𝐿,𝑖 = 𝜆𝑖

⎛⎝𝑢+
𝐿,𝑖 −

𝑁𝑎,𝐿∑︁
𝑘=1

𝛼𝑖,𝑘𝑢+
𝐿,𝑘 − 𝛼𝑖,𝑛𝑢−𝑛

⎞⎠
𝑢*𝐿,𝑛 = 𝑢−𝑛 +

𝑁𝑎,𝐿∑︁
𝑘=1

𝛼𝑛,𝑘𝑢+
𝐿,𝑘 + 𝛼𝑛,𝑛𝑢−𝑛

𝑣*𝐿,𝑛 = −𝜆𝑛

⎛⎝𝑢−𝑛 −
𝑁𝑎,𝐿∑︁
𝑘=1

𝛼𝑛,𝑘𝑢+
𝐿,𝑘 − 𝛼𝑛,𝑛𝑢−𝑛

⎞⎠ .

(2.18)

The same applies for system (2.13), which gives

𝑢*0,𝑛 = 𝑢+
𝑛 +

𝑁𝑎,0∑︁
𝑘=1

𝛼𝑛,𝑘𝑢−0,𝑘 + 𝛼𝑛,𝑛𝑢+
𝑛

𝑣*0,𝑛 = 𝜆𝑛

⎛⎝𝑢+
𝑛 −

𝑁𝑎,0∑︁
𝑘=1

𝛼𝑛,𝑘𝑢−0,𝑘 − 𝛼𝑛,𝑛𝑢+
𝑛

⎞⎠
𝑢*0,𝑗 = 𝑢−0,𝑗 +

𝑁𝑎,0∑︁
𝑘=1

𝛼𝑗,𝑘𝑢−0,𝑘 + 𝛼𝑗,𝑛𝑢+
𝑛

𝑣*0,𝑗 = −𝜆𝑗

⎛⎝𝑢−0,𝑗 −
𝑁𝑎,0∑︁
𝑘=1

𝛼𝑗,𝑘𝑢−0,𝑘 − 𝛼𝑗,𝑛𝑢+
𝑛

⎞⎠ .

(2.19)

Remark 2.2. We underline that the hypothesis of constant transmission coefficients 𝛼𝑖,𝑗 (which corresponds
to imposing fixed transport velocities) may be realistic only over relatively short time spans, after which the
prevailing direction of movement might change or even reverse. In fact, it is possible to consider time-varying
mobility fluxes acting on the transmission coefficients at nodes of the proposed model, simply imposing a time
dependence on them. However, since this aspect is out of the scope of this work, in the following only constant
transmission coefficients will be taken into account.

2.3.2. Boundary conditions

Nodes located at the extremes of the domain are without any incoming arc, when concerning inlet boundaries,
or without any outgoing arc, when concerning outlet boundaries. At these nodes, in order to ensure that there are
no individuals entering to or exiting from the network (hence considering a population which remains constant
in time), we just recover the standard zero-flux boundary conditions [37], which consists in imposing at inlet
nodes

𝑣*𝐿,𝑛 = 0, 𝑢*𝐿,𝑛 = 𝑢𝑛 −
𝑣𝑛

𝜆𝑛
; (2.20)

while at outlet nodes:

𝑣*0,𝑛 = 0, 𝑢*0,𝑛 = 𝑢𝑛 +
𝑣𝑛

𝜆𝑛
· (2.21)
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3. Numerical method

Numerical methods for hyperbolic balance laws and kinetic equations in the diffusive limit have a long history
(see [11, 23, 25, 34] and the references therein). Here, to design a numerical scheme for system (2.5), we follow
the Implicit-Explicit (IMEX) Runge–Kutta approach recently proposed in [11] for hyperbolic systems with
multiscale relaxation.

3.1. IMEX finite volume schemes

IMEX Runge–Kutta schemes can be easily represented by a double tableau (explicit on the left, implicit on
the right) in the usual Butcher notation [11,35]

𝑐 𝐴

𝑏̃𝑇

𝑐 𝐴
𝑏𝑇 ·

Matrices 𝐴 = (𝑎̃𝑘𝑗), with 𝑎̃𝑘𝑗 = 0 for 𝑗 ≥ 𝑘, and 𝐴 = (𝑎𝑘𝑗) are 𝑠× 𝑠 matrices, with 𝑠 number of Runge–Kutta
stages. It is always preferable in terms of computational efficiency to deal with diagonally implicit Runge–Kutta
(DIRK) schemes, which ensure that the explicit part of the scheme term is always evaluated explicitly [4], hence
𝑎𝑘𝑗 = 0 for 𝑗 > 𝑘. The coefficient vectors 𝑐 and 𝑐 are given by

𝑐𝑘 =
𝑘−1∑︁
𝑗=1

𝑎̃𝑘𝑗 , 𝑐𝑘 =
𝑘∑︁

𝑗=1

𝑎𝑘𝑗 ,

and vectors 𝑏̃ = (𝑏̃1, . . . , 𝑏̃𝑠)𝑇 and 𝑏 = (𝑏1, . . . , 𝑏𝑠)𝑇 are the quadrature weights that permit to combine the
internal Runge–Kutta stages. Furthermore, referring to [11], if the following relations hold, the method is said
to be globally stiffly accurate (GSA).

Definition 3.1. An IMEX-RK method is said to be globally stiffly accurate (GSA) if not only the corresponding
diagonally implicit Runge–Kutta (DIRK) method is stiffly accurate, namely

𝑎𝑘𝑗 = 𝑏𝑗 , 𝑗 = 1, . . . , 𝑠,

but also the explicit method satisfies

𝑎̃𝑘𝑗 = 𝑏̃𝑗 , 𝑗 = 1, . . . , 𝑠− 1.

It is worth to notice that this definition states also that the numerical solution of a GSA IMEX-RK scheme
coincides exactly with the last internal stage of the scheme.

In system (2.5), once the diffusion coefficients in (2.8) have been fixed, the scaling depends on the relaxation
times 𝜏𝑆 , 𝜏𝐼 , 𝜏𝑅. Indeed, these relaxation terms modify the nature of the behavior of the solution, which
can result either hyperbolic or parabolic. Standard IMEX Runge–Kutta methods for hyperbolic systems with
relaxation terms loose their efficiency [11, 23, 25, 34] and a different approach must be adopted to guarantee
asymptotic preservation (AP) in stiff regimes (i.e. the consistency of the scheme with the equilibrium system is
guaranteed and the order of accuracy is maintained in the stiff limit).

Following [11], the IMEX Runge–Kutta approach that we consider for system (2.6) consists in computing the
internal stages

U(𝑘) = U𝑛 −∆𝑡

𝑘∑︁
𝑗=1

𝑎𝑘𝑗𝜕𝑥V(𝑗) + ∆𝑡

𝑘−1∑︁
𝑗=1

𝑎̃𝑘𝑗F
(︁
U(𝑗)

)︁

V(𝑘) = V𝑛 −∆𝑡

𝑘−1∑︁
𝑗=1

𝑎̃𝑘𝑗

(︁
Λ2𝜕𝑥U(𝑗) −G

(︁
U(𝑗),V(𝑗)

)︁)︁
+ ∆𝑡

𝑘∑︁
𝑗=1

𝑎𝑘𝑗H
(︁
V(𝑗)

)︁
,

(3.1)
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followed by the numerical solution

U𝑛+1 = U𝑛 −∆𝑡

𝑠∑︁
𝑘=1

𝑏𝑘𝜕𝑥V(𝑘) + ∆𝑡

𝑠∑︁
𝑘=1

𝑏̃𝑘F
(︁
U(𝑘)

)︁
V𝑛+1 = V𝑛 −∆𝑡

𝑠∑︁
𝑘=1

𝑏̃𝑘

(︁
Λ2𝜕𝑥U(𝑘) −G

(︁
U(𝑘),V(𝑘)

)︁)︁
+ ∆𝑡

𝑠∑︁
𝑘=1

𝑏𝑘H
(︁
V(𝑘)

)︁
,

(3.2)

with a time step size ∆𝑡 = 𝑡𝑛+1 − 𝑡𝑛 that, ignoring the reaction terms, for small values of the relaxation
time of each compartment 𝜏ℎ, ℎ = 1, 2, 3, follows the less restrictive between the standard hyperbolic Courant–
Friedrichs–Levy condition ∆𝑡 ≤ CFL Δ𝑥

max{𝜆𝑆 ,𝜆𝐼 ,𝜆𝑅} , and the parabolic stability restriction ∆𝑡 ≤ 𝜈 Δ𝑥2

max{𝐷𝑆 ,𝐷𝐼 ,𝐷𝑅}
given by the diffusive components of the system, where ∆𝑥 is the size of the space grid, and CFL and 𝜈 are
suitable stability constants (see [11]). Note that the non stiff reaction terms, which are evaluated explicitly,
impose a weaker restriction on the time step of the type ∆𝑡 ≤ 1

max{𝛽,𝛾} .

3.2. Numerical diffusion limit

The scheme (3.1) and (3.2) permits to treat implicitly the stiff terms and explicitly all the rest, maintaining
a consistent discretization of the limit system in the diffusive regime, represented by system (2.10), i.e. the
AP property. To verify the AP property, let us denote by 𝑢

(𝑗)
ℎ , 𝑣

(𝑗)
ℎ , 𝑓

(𝑗)
ℎ , 𝑔

(𝑗)
ℎ , 𝑢𝑛

ℎ, and 𝑣𝑛
ℎ , ℎ = 1, 2, 3, the SIR

components of U(𝑗), V(𝑗), F(U(𝑗)), G
(︀
U(𝑗),V(𝑗)

)︀
, U𝑛, and V𝑛, respectively. Then, the IMEX scheme (3.1)

and (3.2) can be rewritten highlighting the scale parameters as follows

uℎ = 𝑢𝑛
ℎe−∆𝑡𝐴𝜕𝑥vℎ + ∆𝑡𝐴fℎ

vℎ = 𝑣𝑛
ℎe−∆𝑡𝐴

(︂
𝐷ℎ

𝜏ℎ
𝜕𝑥uℎ − gℎ

)︂
− ∆𝑡

𝜏ℎ
𝐴vℎ,

(3.3)

where uℎ =
(︁
𝑢

(1)
ℎ , . . . , 𝑢

(𝑠)
ℎ

)︁𝑇

, vℎ =
(︁
𝑣
(1)
ℎ , . . . , 𝑣

(𝑠)
ℎ

)︁𝑇

, fℎ =
(︁
𝑓

(1)
ℎ , . . . , 𝑓

(𝑠)
ℎ

)︁𝑇

, gℎ =
(︁
𝑔
(1)
ℎ , . . . , 𝑔

(𝑠)
ℎ

)︁𝑇

, e =

(1, . . . , 1)𝑇 ∈ R𝑠, and we use notations 𝜏ℎ and 𝐷ℎ to denote the relaxation times and diffusion constant of each
compartment. The final solution therefore reads

𝑢𝑛+1
ℎ = 𝑢𝑛

ℎ −∆𝑡𝑏𝑇 𝜕𝑥vℎ + ∆𝑡𝑏̃𝑇 fℎ

𝑣𝑛+1
ℎ = 𝑣𝑛

ℎ −∆𝑡𝑏̃𝑇

(︂
𝐷ℎ

𝜏ℎ
𝜕𝑥uℎ − gℎ

)︂
− ∆𝑡

𝜏ℎ
𝑏𝑇 vℎ.

(3.4)

From the second equation in (3.3) we obtain

vℎ =
(︁ 𝜏ℎ

∆𝑡
𝐼𝑑 + 𝐴

)︁−1 (︁ 𝜏ℎ

∆𝑡
𝑣𝑛

ℎe−𝐴 (𝐷ℎ𝜕𝑥uℎ − 𝜏ℎgℎ)
)︁

, (3.5)

which substituted into the first equation of (3.3) gives

uℎ = 𝑢𝑛
ℎe−∆𝑡𝐴

(︁ 𝜏ℎ

∆𝑡
𝐼𝑑 + 𝐴

)︁−1

𝜕𝑥

(︁ 𝜏ℎ

∆𝑡
𝑣𝑛

ℎe + 𝐴𝜏ℎgℎ

)︁
+ ∆𝑡𝐴

(︁ 𝜏ℎ

∆𝑡
𝐼𝑑 + 𝐴

)︁−1

𝐴𝜕𝑥 (𝐷ℎ𝜕𝑥uℎ) + ∆𝑡𝐴fℎ.

(3.6)

Now, as 𝜏ℎ → 0 we get
uℎ = 𝑢𝑛

ℎe + ∆𝑡𝐴𝜕𝑥(𝐷ℎ𝜕𝑥uℎ) + ∆𝑡𝐴fℎ, (3.7)

and thus, the internal stages correspond to the stages of the explicit scheme applied to the reaction-diffusion
system (2.10).
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However, this is not enough to guarantee that the scheme satisfies the AP property, since we need to verify
the same consistency property on the final numerical solution.

To this aim, let us rewrite (3.5) as

vℎ =
𝜏ℎ

∆𝑡
𝐴−1𝑣𝑛

ℎe + 𝐴−1
(︁
𝐼𝑑 −

𝜏ℎ

∆𝑡
𝐴−1

)︁
𝐴𝐷ℎ𝜕𝑥uℎ + 𝜏ℎ𝐴−1𝐴gℎ +𝒪

(︀
𝜏2
ℎ

)︀
,

which substituted into the second equation of (3.4) leads to

𝑣𝑛+1
ℎ =

(︀
1− 𝑏𝑇 𝐴−1𝑒

)︀
𝑣𝑛

ℎ −
(︁
𝑏𝑇 𝐴−1𝐴− 𝑏̃𝑇

)︁ ∆𝑡

𝜏ℎ
𝐷ℎ𝜕𝑥uℎ

− 𝑏𝑇 𝐴−2𝐴𝐷ℎ𝜕𝑥uℎ −∆𝑡
(︁
𝑏𝑇 𝐴−1𝐴− 𝑏̃𝑇

)︁
gℎ +𝒪 (𝜏ℎ) .

In order to pass to the limit 𝜏ℎ → 0, we must require that 𝑏𝑇 𝐴−1𝐴 − 𝑏̃𝑇 = 0, which is satisfied if the IMEX
scheme is GSA. Indeed, in GSA methods, 𝑏𝑇 = e𝑇

𝑠 𝐴 and 𝑏̃𝑇 = e𝑇
𝑠 𝐴, therefore 𝑏𝑇 𝐴−1𝐴 − 𝑏̃𝑇 = e𝑇

𝑠 𝐴 − 𝑏̃𝑇 = 0.
Thus, in the limit 𝜏ℎ → 0 we finally get

𝑣𝑛+1
ℎ = −𝑏𝑇 𝐴−2𝐴𝐷ℎ𝜕𝑥uℎ,

and the resulting numerical solution for 𝑢𝑛+1
ℎ satisfies

𝑢𝑛+1
ℎ = 𝑢𝑛

ℎ + ∆𝑡𝑏̃𝑇 𝜕𝑥(𝐷ℎ𝜕𝑥uℎ) + ∆𝑡𝑏̃𝑇 fℎ, (3.8)

which, combined with (3.7), proves the AP-property of the IMEX scheme with respect to the reaction-diffusion
system (2.10).

Therefore, we have shown the following result.

Proposition 3.1. If the IMEX Runge–Kutta method satisfies the GSA property, then the scheme (3.3) and
(3.4) applied to system (2.6) for 𝜏ℎ → 0, ℎ = 1, 2, 3, provides the explicit Runge–Kutta scheme (3.7) and (3.8)
for the limiting reaction-diffusion system (2.10).

3.3. Removing the parabolic stiffness

For 𝒪(1) values of the diffusion coefficients 𝐷𝑆 , 𝐷𝐼 , 𝐷𝑅 the classical parabolic stability condition ∆𝑡 =
𝒪(∆𝑥2) of the explicit scheme applied to the limiting reaction-diffusion system may be too restrictive. This
drawback can be avoided by modifying the IMEX Runge–Kutta approach, taking the following partitioning for
the equations for V in (3.1) and (3.2)

V(𝑘) = V𝑛 + ∆𝑡

𝑘−1∑︁
𝑗=1

𝑎̃𝑘𝑗G
(︁
U(𝑗),V(𝑗)

)︁
−∆𝑡

𝑘∑︁
𝑗=1

𝑎𝑘𝑗

(︁
Λ2𝜕𝑥U(𝑗) −H

(︁
V(𝑗)

)︁)︁
,

V𝑛+1 = V𝑛 + ∆𝑡

𝑠∑︁
𝑘=1

𝑏̃𝑘G
(︁
U(𝑘),V(𝑘)

)︁
−∆𝑡

𝑠∑︁
𝑘=1

𝑏𝑘

(︁
Λ2𝜕𝑥U(𝑘) −H

(︁
V(𝑘)

)︁)︁
.

(3.9)

Now, using the same notations as in the previous section, the IMEX-scheme leads to

vℎ =
(︁ 𝜏ℎ

∆𝑡
𝐼𝑑 + 𝐴

)︁−1 (︁ 𝜏ℎ

∆𝑡
𝑣𝑛

ℎe−𝐷ℎ𝐴𝜕𝑥uℎ + 𝜏ℎ𝐴gℎ

)︁
, (3.10)

and
uℎ = 𝑢𝑛

ℎe−∆𝑡𝐴𝜕𝑥

(︁ 𝜏ℎ

∆𝑡
𝐼𝑑 + 𝐴

)︁−1 (︁ 𝜏ℎ

∆𝑡
𝑣𝑛

ℎe + 𝐴𝜏ℎgℎ

)︁
+ ∆𝑡𝐴

(︁ 𝜏ℎ

∆𝑡
𝐼𝑑 + 𝐴

)︁−1

𝐴𝜕𝑥 (𝐷ℎ𝜕𝑥uℎ) + ∆𝑡𝐴fℎ.

(3.11)
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The above equation, as 𝜏ℎ → 0, yields an IMEX-scheme for the reaction-diffusion system (2.10)

uℎ = 𝑢𝑛
ℎe + ∆𝑡𝐴𝜕𝑥(𝐷ℎ𝜕𝑥uℎ) + ∆𝑡𝐴fℎ. (3.12)

In a similar way, we can analyze the numerical solution, and show that under the GSA assumption in the limit
𝜏ℎ → 0 it reduces to

𝑢𝑛+1
ℎ = 𝑢𝑛

ℎ + ∆𝑡𝑏𝑇 𝜕𝑥(𝐷ℎ𝜕𝑥uℎ) + ∆𝑡𝑏̃𝑇 fℎ. (3.13)

Summarizing we have now the following result.

Proposition 3.2. If the IMEX Runge–Kutta method satisfies the GSA property, then the scheme (3.3) and
(3.4) applied to system (2.6), where the equations for V(𝑘) and V𝑛+1 are replaced by (3.9), for 𝜏ℎ → 0, ℎ = 1, 2, 3,
provides the IMEX-scheme (3.12) and (3.13) for the limiting reaction-diffusion system (2.10).

Since the GSA property is essential to preserve the correct diffusion limit, in the sequel, the GSA BPR(4,4,2)
scheme presented in [11] is chosen, characterized by 𝑠 = 4 stages for the implicit part, 4 stages for the explicit
part and 2nd order of accuracy, which is defined by the following tableau (explicit on the left and implicit on
the right)

0 0 0 0 0 0
1/4 1/4 0 0 0 0
1/4 13/4 −3 0 0 0
3/4 1/4 0 1/2 0 0
1 0 1/3 1/6 1/2 0

0 1/3 1/6 1/2 0

0 0 0 0 0 0
1/4 0 1/4 0 0 0
1/4 0 0 1/4 0 0
3/4 0 1/24 11/24 1/4 0
1 0 11/24 1/6 1/8 1/4

0 11/24 1/6 1/8 1/4

. (3.14)

3.3.1. Choice of the space discretization

To obtain a fully discrete scheme, we consider a finite volume method for the spatial discretization, and
uniform grid with mesh spacing ∆𝑥 = 𝑥𝑖+1/2 − 𝑥𝑖−1/2. For each internal step of the IMEX scheme, numerical
fluxes are evaluated following the Dumbser-Osher-Toro (DOT) solver, which coincides with the Godunov flux
based on the exact Riemann solver for linear hyperbolic systems with constant Jacobian matrix [9, 10, 17].
Boundary-extrapolated values on the two sides of the interface within cell 𝑖 are computed by piecewise linear
reconstruction, recurring to the minmod slope limiter to obtain a TVD scheme [40] and achieve second order
of accuracy for smooth solutions also in space. We point out that in the case of scheme (3.9), the stages of
the IMEX scheme are implemented in the form (3.11), where the second order derivative is discretized directly
using a second order accurate central scheme of the form

𝜕𝑥 (𝐷ℎ𝜕𝑥uℎ) ≈
𝐷ℎ(𝑥1+1/2)0 (uℎ(𝑥𝑖+1)− uℎ(𝑥𝑖))−𝐷ℎ(𝑥1−1/2)(uℎ(𝑥𝑖)− uℎ(𝑥𝑖−1))

(∆𝑥)2
·

This permits an efficient inversion of the corresponding linear system, thus avoiding the adoption of iterative
procedures (e.g. Newton-Raphson method or similar ones), and the creation of large non compact stencils in
the discretization of the resulting second order terms.

4. Numerical results

In this section, we present some numerical results to support the validity of the proposed model, both in
the simple 1D configuration and in the network characterization. The accuracy of the scheme is verified for
different values of the relaxation times, including the stiff regime of the purely diffusive system. Furthermore,
we analyze the behavior of the model concerning spatially heterogeneous environments, taking into account a
spatially variable contact rate, with respect to two different scenarios: 𝑅0 < 1 and 𝑅0 > 1. Two test cases
are then designed and simulated to observe the spread of infectious diseases with respect to the mobility of
individuals on networks. In all test cases we assume 𝑝 = 1 in (2.2).
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Table 1. Results of the accuracy analysis performed using the AP-explicit form of the scheme.
𝐿1 error norms and empirical order of accuracy of the variables 𝑆, 𝐼, 𝐽𝑆 and 𝐽𝐼 resulting from
accuracy analysis performed choosing different values of relaxation times (and characteristic
velocities). 𝑁𝑥 indicates the number of cells in the computational domain.

𝑁𝑥 𝜏 = 1.0 𝜏 = 10−2 𝜏 = 10−6

𝐿1 𝒪
(︀
𝐿1
)︀

𝐿1 𝒪
(︀
𝐿1
)︀

𝐿1 𝒪
(︀
𝐿1
)︀

𝑆 15 7.8183e-02 6.3566e-02 5.7368e-02
45 1.1983e-02 1.7072 6.8991e-03 2.0214 6.1980e-03 2.0255
135 1.4804e-03 1.9035 7.5256e-04 2.0168 6.7867e-04 2.0133
405 1.5235e-04 2.0698 7.4838e-05 2.1010 6.7836e-05 2.0963

𝐼 15 7.9779e-02 4.6081e-02 3.9811e-02
45 1.1861e-02 1.7349 4.9662e-03 2.0278 4.0831e-03 2.0729
135 1.4852e-03 1.8912 5.4088e-04 2.0182 4.4396e-04 2.0197
405 1.5351e-04 2.0658 5.4262e-05 2.0930 4.4342e-05 2.0970

𝐽𝑆 15 6.7762e-02 7.8869e-02 8.5108e-02
45 1.0832e-02 1.6689 9.1743e-03 1.9583 8.9856e-03 2.0465
135 1.2654e-03 1.9544 1.0350e-03 1.9861 8.4277e-04 2.1542
405 1.2807e-04 2.0849 1.1343e-04 2.0126 9.0422e-05 2.0318

𝐽𝐼 15 1.1164e-01 6.2077e-02 6.4906e-02
45 1.7386e-02 1.6926 8.3184e-03 1.8295 6.4301e-03 2.1044
135 2.1539e-03 1.9009 9.6011e-04 1.9654 5.9580e-04 2.1653
405 2.2147e-04 2.0706 1.0974e-04 1.9742 6.3867e-05 2.0327

Table 2. Results of the accuracy analysis performed using the AP-implicit form of the scheme.
𝐿1 error norms and empirical order of accuracy of the variables 𝑆, 𝐼, 𝐽𝑆 and 𝐽𝐼 resulting from
accuracy analysis performed choosing different values of relaxation times (and characteristic
velocities). 𝑁𝑥 indicates the number of cells in the computational domain.

𝑁𝑥 𝜏 = 1.0 𝜏 = 10−2 𝜏 = 10−6

𝐿1 𝒪
(︀
𝐿1
)︀

𝐿1 𝒪
(︀
𝐿1
)︀

𝐿1 𝒪
(︀
𝐿1
)︀

𝑆 15 8.2209e-02 3.2899e-02 3.5143e-02
45 1.0171e-02 1.9022 3.4339e-03 2.0569 2.2120e-03 2.5173
135 1.1178e-03 2.0099 5.0689e-04 1.7414 2.3935e-04 2.0241
405 1.1118e-04 2.1008 5.6847e-05 1.9915 2.5405e-05 2.0416

𝐼 15 7.6661e-02 4.8115e-02 4.4768e-02
45 1.0756e-02 1.7876 5.8666e-03 1.9154 4.4697e-03 2.0973
135 1.2890e-03 1.9312 7.6165e-04 1.8583 5.0683e-04 1.9815
405 1.3126e-04 2.0794 8.1642e-05 2.0327 5.1867e-05 2.0749

𝐽𝑆 15 4.9000e-02 8.4703e-02 3.6605e-02
45 6.9525e-03 1.7774 1.7916e-02 1.4140 1.1223e-02 1.0761
135 7.7558e-04 1.9964 2.2137e-03 1.9033 1.6154e-03 1.7644
405 7.7205e-05 2.1001 2.4000e-04 2.0224 1.7523e-04 2.0219

𝐽𝐼 15 6.5263e-02 5.5500e-02 7.5371e-02
45 1.0642e-02 1.6508 2.1501e-02 0.8632 1.1732e-02 1.6932
135 1.2714e-03 1.9340 3.1556e-03 1.7467 1.6338e-03 1.7944
405 1.2910e-04 2.0820 3.7132e-04 1.9478 1.7689e-04 2.0236
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Figure 3. Numerical results of the spatially heterogeneous test case with hyperbolic config-
uration of relaxation times and characteristic velocities (𝜏 = 1.0, 𝜆2 = 1.0) and reproduction
number 𝑅0 < 1. Time and spatial evolution of 𝑆 presented in (a), (b) and (c); evolution of 𝐼
shown in (d), (e) and (f).
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Figure 4. Numerical results of the spatially heterogeneous test case with parabolic configu-
ration of relaxation times and characteristic velocities (𝜏 = 10−5, 𝜆2 = 105) and reproduction
number 𝑅0 < 1. Time and spatial evolution of 𝑆 presented in (a), (b) and (c); evolution of 𝐼
shown in (d), (e) and (f).
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Figure 5. Numerical results of the spatially heterogeneous test case with hyperbolic config-
uration of relaxation times and characteristic velocities (𝜏 = 1.0, 𝜆2 = 1.0) and reproduction
number 𝑅0 > 1. Time and spatial evolution of 𝑆 presented in (a), (b) and (c); evolution of 𝐼
shown in (d), (e) and (f).

4.1. Accuracy analysis

To verify the order of accuracy of the scheme, even in stiff regimes, an accuracy analysis is conducted
considering periodic boundary conditions and the following initial conditions

𝑆(𝑥, 0) = 0.5
(︂

1 + sin
2𝜋𝑥

𝐿

)︂
, 𝐼(𝑥, 0) = 1− 𝑆(𝑥, 0), 𝑅(𝑥, 0) = 0.0,

with 𝑥 ∈ [−1; 1], hence a domain length 𝐿 = 2, and null initial fluxes. In these tests, the contact rate is 𝛽 = 10.0
and the recovery rate is 𝛾 = 4.0, with 𝑘 = 0 as the classical bilinear case. In each simulation, relaxation times
and characteristic velocities are fixed equal for all the compartments of the population 𝜆𝑆 = 𝜆𝐼 = 𝜆𝑅 = 𝜆,
taking into account three different cases, corresponding to a hyperbolic system (𝜏 = 1.0, 𝜆2 = 1.0), a mildly
diffusive system (𝜏 = 10−2, 𝜆2 = 102) and a purely diffusive system (𝜏 = 10−6, 𝜆2 = 106). The stability
condition is satisfied imposing ∆𝑡 = ∆𝑥 max {CFL/𝜆; 𝜈∆𝑥}. The final time of the simulations is 𝑡𝑒𝑛𝑑 = 0.1. The
refinement of the computational grid is made with a factor 3, to work with embedded grids, and the time step
∆𝑡 decreases with ∆𝑥 accordingly to the stability condition. Values obtained with 𝑁𝑥 = 1215 cells are taken as
reference solutions.

The analysis is performed with both the IMEX-BPR(4,4,2) scheme in the AP-explicit form following equa-
tions (3.5), (3.6), and the IMEX-BPR(4,4,2) scheme in the AP-implicit form presented in equations (3.10) and
(3.11). When using the AP-explicit form, in the stability condition CFL = 0.9 and 𝜈 = 0.5; when using the
AP-implicit form, CFL = 0.9 and 𝜈 = 0.5/∆𝑥.

Results are presented for variables 𝑆, 𝐼, 𝐽𝑆 and 𝐽𝐼 in Table 1 for the AP-explicit scheme and in Table 2 for
the AP-implicit scheme. Errors are reported in terms of 𝐿1 norms and related order of accuracy, evaluated as

𝒪
(︀
𝐿1

)︀
= log3

(︂
||𝐸Δ𝑥||
||𝐸Δ𝑥/3||

)︂
,
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Figure 6. Numerical results of the spatially heterogeneous test case with parabolic configu-
ration of relaxation times and characteristic velocities (𝜏 = 10−5, 𝜆2 = 105) and reproduction
number 𝑅0 > 1. Time and spatial evolution of 𝑆 presented in (a), (b) and (c); evolution of 𝐼
shown in (d), (e) and (f).

with ||𝐸Δ𝑥|| the relative error computed with grid size ∆𝑥. We observe that the second-order of accuracy of the
method is satisfied by both versions of the scheme uniformly in all regimes. It is worth to underline that the
expected accuracy is maintained in the limit of diffusive regime for all the variables, even for the fluxes, thanks
to the GSA property of the scheme and because the following additional conditions are satisfied by the IMEX
scheme (3.14) (see [11]):

𝑏𝑇 𝐴−2𝐴𝑒 = 1, 𝑏𝑇 𝐴−2𝐴𝑐2 = 1, 𝑏𝑇 𝐴−2𝐴𝐴𝑐 = 1/2, 𝑏𝑇 𝐴−2𝐴𝐴𝑐 = 1/2. (4.1)

4.2. Spatially heterogeneous environments

Following [43], we analyze the behavior of the model concerning spatially heterogeneous environments, taking
into account a spatially variable contact rate

𝛽(𝑥) = 𝛽

(︂
1 + 0.05 sin

13𝜋𝑥

20

)︂
·

Initial conditions are imposed as follows

𝑆(𝑥, 0) = 1− 𝐼(𝑥, 0), 𝐼(𝑥, 0) = 0.01 𝑒−(𝑥−10)2 , 𝑅(𝑥, 0) = 0.0,

with fluxes 𝐽𝑆(𝑥, 0) = 𝐽𝐼(𝑥, 0) = 𝐽𝑅(𝑥, 0) = 0.0 and zero-flux boundary conditions. No social distancing or
control effects are considered in the incidence function, 𝑘 = 0. Simulations are performed in two different
scenarios. In the first one an overall value in the domain of the initial reproduction number 𝑅0 = 0.808 < 1 is
considered, choosing 𝛽 = 8.0 and 𝛾 = 10.0, corresponding to an infection which is not able to start spreading.
In the second scenario, the initial reproduction number is 𝑅0 = 1.111 > 1, given by the choice 𝛽 = 11.0 and
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Figure 7. Numerical results of Test 1a, in which there is a symmetric temporal and spatial
dynamics of infectious individuals 𝐼 along arcs 𝑎1 and 𝑎2 and stationary susceptible and recov-
ered people. Time evolution of 𝑆 (blue), 𝐼 (red) and 𝑅 (green) at node 𝑛1, node 𝑛2 (from which
the infectious disease starts spreading symmetrically along the two arcs) and at node 𝑛3. In
the same plots, the evolution of the coefficient 𝑅0 is also shown.

𝛾 = 10.0, which identifies an infection that can persist in a new host population. Moreover, for each scenario, two
different sets of relaxation times are considered, to concern both the hyperbolic and the parabolic limit of the
system of equations. In the hyperbolic configuration, the relaxation times of all the compartments of individuals
are 𝜏 = 1.0, with the square of the characteristic velocities 𝜆2 = 1.0; while in the parabolic configuration
𝜏 = 10−5 and 𝜆2 = 105. Simulations are run with the AP-explicit scheme, with 𝑁𝑥 = 150 cells in a domain
having length 𝐿 = 20, with final time 𝑡𝑒𝑛𝑑 = 10.

Numerical results of each one of the two tests performed for the scenario representing an infectious disease
characterized by 𝑅0 < 1 are shown in Figures 3 and 4. We can observe that when the reproduction number is
less than 1, the effect of the spatial variability of the contact rate vanishes and the amount of infected individuals
converges to zero very rapidly as time evolves. When comparing the trend of the solution obtained imposing
𝜏 = 1.0, 𝜆2 = 1.0 with the one obtained considering 𝜏 = 10−5, 𝜆2 = 105, different dynamics of the infectious
spread are noticed, which represents the tendency of the system towards more and more diffuse behavior as
relaxation times reach values close to zero and characteristic speeds close to infinity.

In Figures 5 and 6, numerical results for the scenario with 𝑅0 slightly > 1 are reported. Here, a temporary
persistence of the infectious can be noticed, with oscillations that reflect the sinusoidal form of the spatially
variable contact rate. In this case, differences of the dynamics of the epidemics in the two configurations of the
relaxation times are more accentuated. In particular, observing the evolution of susceptible individuals, it can
be seen that in the purely diffusive case the amount of susceptible tends to a much lower equilibrium value than
in the hyperbolic case, with almost all the individuals of the system infected by the disease.



HYPERBOLIC MODELS FOR THE SPREAD OF EPIDEMICS ON NETWORKS 399

a1 a2

n1 n2 n3

Figure 8. Numerical results of Test 1b, in which there is a symmetric temporal and spatial
dynamics of susceptible 𝑆, infectious 𝐼 and recovered 𝑅 individuals along arcs 𝑎1 and 𝑎2. Time
evolution of 𝑆 (blue), 𝐼 (red) and 𝑅 (green) at node 𝑛1, node 𝑛2 (from which the infectious
disease starts spreading symmetrically along the two arcs) and at node 𝑛3. In the same plots,
the evolution of the coefficient 𝑅0 is also shown.

4.3. Network cases

To assess the effects of the mobility of individuals on networks with respect to the spread of an infectious
disease, two tests with a total of five scenarios are performed concerning different simple networks.

4.3.1. A three-node network

In Test 1, we consider the spread of an epidemic, characterized by 𝛽 = 2.0 and 𝛾 = 2.0, in a network composed
by 3 nodes connected by 2 bidirectional arcs in series, as shown in Figure 7, having length 𝐿1 = 𝐿2 = 5 and
discretized with a grid size ∆𝑥 = 0.05. No social distancing or control effects are taken into account, fixing
𝑘 = 0. With this network we want to simulate the spread of an epidemic that starts from node 𝑛2 (which
represents a big city) and reaches nodes 𝑛1 (a city as big as the one represented by 𝑛2) and 𝑛3 (which identifies
a rather small city). For this reason, initial conditions are null for each variable in the two arcs, while at nodes
we fix

𝑆(𝑛1, 0) = 0.400, 𝐼(𝑛1, 0) = 0.0, 𝑅(𝑛1, 0) = 0.0,

𝑆(𝑛2, 0) = 0.396, 𝐼(𝑛2, 0) = 0.004, 𝑅(𝑛2, 0) = 0.0,

𝑆(𝑛3, 0) = 0.200, 𝐼(𝑛3, 0) = 0.0, 𝑅(𝑛3, 0) = 0.0,

with zero initial fluxes for all the compartments at each location. Transmission conditions at each arc-node
interface, satisfying conditions (2.16) and (2.17), are given in Table 3. It can be noticed that a symmetric
transmission of the infectious on arcs 𝑎1 and 𝑎2 from 𝑛2 is imposed.
Test 1a . The first scenario is run assuming that only the infectious individuals are moving along the network,
with 𝜆2

𝐼 = 10 and 𝜏𝐼 = 0.1, while susceptible and recovered subjects do not leave the origin node (city). This
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Figure 9. Numerical results of Test 2a, with time and spatial dynamics of susceptible 𝑆 and
infectious 𝐼 individuals along arcs 𝑎1 and 𝑎2 that are initially without population. Results
concerning arc 𝑎3 are omitted because very similar to those of 𝑎2. Time evolution of 𝑆 (blue),
𝐼 (red) and 𝑅 (green) dynamics at node 𝑛1 (small city), from which the infectious disease
starts spreading, node 𝑛2 (big city), node 𝑛3 and 𝑛4 (medium-size cities). In the same plots,
the evolution of the coefficient 𝑅0 is also shown.

Table 3. Transmission coefficients used in Test 1 (Fig. 7), given for each node-arc interface ℐ.

ℐ(𝑛1, 𝑎1) 𝛼𝑛1,𝑎1 = 1.00 𝛼𝑛1,𝑛1 = 1.00
𝛼𝑎1,𝑎1 = 0.00 𝛼𝑎1,𝑛1 = 0.00

ℐ(𝑎1, 𝑛2) 𝛼𝑎1,𝑛2 = 0.50 𝛼𝑎1,𝑎1 = 0.50
𝛼𝑛2,𝑛2 = 0.50 𝛼𝑛2,𝑎1 = 0.50

ℐ(𝑛2, 𝑎2) 𝛼𝑛2,𝑎2 = 0.50 𝛼𝑛2,𝑛2 = 0.50
𝛼𝑎2,𝑎2 = 0.50 𝛼𝑎2,𝑛2 = 0.50

ℐ(𝑎2, 𝑛3) 𝛼𝑎2,𝑛3 = 0.00 𝛼𝑎2,𝑎2 = 0.00
𝛼𝑛3,𝑛3 = 1.00 𝛼𝑛3,𝑎2 = 1.00
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Figure 10. Spatial dynamics, at two different time steps, of infectious individuals along arc
𝑎1 in Test 2a (see Fig. 9), with the spread of the disease starting from node 𝑛1. Results in
solid line are the reference solution (∆𝑥 = 0.00125); results in dashed line with circles are those
obtained with the second-order IMEX scheme here proposed (∆𝑥 = 0.01); results in dashed
line with triangles are those obtained with the corresponding first-order scheme (∆𝑥 = 0.01).

Table 4. Transmission coefficients used in Test 2a and 2b (Figs. 9 and 11), given for each
node-arc interface ℐ.

ℐ(𝑛1, 𝑎1) 𝛼𝑛1,𝑎1 = 1.00 𝛼𝑛1,𝑛1 = 0.50
𝛼𝑎1,𝑎1 = 0.00 𝛼𝑎1,𝑛1 = 0.50

ℐ(𝑎1, 𝑛2) 𝛼𝑎1,𝑛2 = 0.05 𝛼𝑎1,𝑎1 = 0.10
𝛼𝑛2,𝑛2 = 0.95 𝛼𝑛2,𝑎1 = 0.90

ℐ(𝑛2, 𝑎2, 𝑎3) 𝛼𝑛2,𝑎3 = 0.50 𝛼𝑛2,𝑎2 = 0.50 𝛼𝑛2,𝑛2 = 0.995
𝛼𝑎2,𝑎3 = 0.50 𝛼𝑎2,𝑎2 = 0.00 𝛼𝑎2,𝑛2 = 0.003
𝛼𝑎3,𝑎3 = 0.00 𝛼𝑎3,𝑎2 = 0.50 𝛼𝑎3,𝑛2 = 0.002

ℐ(𝑎2, 𝑛3) 𝛼𝑎2,𝑛3 = 0.00 𝛼𝑎2,𝑎2 = 0.00
𝛼𝑛3,𝑛3 = 1.00 𝛼𝑛3,𝑎2 = 1.00

ℐ(𝑎3, 𝑛4) 𝛼𝑎3,𝑛4 = 0.00 𝛼𝑎3,𝑎3 = 0.00
𝛼𝑛4,𝑛4 = 1.00 𝛼𝑛4,𝑎3 = 1.00

choice, albeit unrealistic, allows us to observe in a cleaner way the effects of transport and spread of the infection
related to the mobility of people. In Figure 7 we can notice a slight decay of susceptible individuals at node
𝑛2 (from which the epidemic outbreak starts developing), because of the initial percentage of infectious people
that is there at the beginning of the simulation and that, then, leaves the node very fast. In this way, a very
small percentage of susceptible population of the node is infected and the majority of it remains unharmed at
the equilibrium state. A different evolution of the epidemic is observed at nodes 𝑛1 and 𝑛3. Here it is clearly
highlighted how the model associates a higher incidence function to the node with a larger population. In fact,
node 𝑛1 has twice as many susceptible subjects as node 𝑛3, information that is reproduced by the model as
an epidemic that at 𝑛1 has an incidence double that of 𝑛3 (even though infected subjects travel along arcs 𝑎1

and 𝑎2 in a total symmetry, as shown in Fig. 7). Indeed, the entire population at node 𝑛1 is infected, while a
very little percentage of susceptible at node 𝑛3 remains uninfected, even if here individuals are the half of 𝑛1.
In addition, we can see that the epidemic peak itself is reached much earlier at 𝑛1.
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Figure 11. Numerical results of Test 2b, with time and spatial dynamics of susceptible 𝑆
and infectious 𝐼 individuals along arcs 𝑎1 and 𝑎2 that have an initial amount of population
(Gaussian distributed). Results concerning arc 𝑎3 are omitted because very similar to those of
𝑎2. Time evolution of 𝑆 (blue), 𝐼 (red) and 𝑅 (green) dynamics at node 𝑛1 (small city), from
which the infectious disease starts spreading, node 𝑛2 (big city), node 𝑛3 and 𝑛4 (medium-size
cities). In the same plots, the evolution of the coefficient 𝑅0 is also shown.

Test 1b. In the second scenario, we allow mobility also of susceptible and recovered subjects, to whom the
same velocity and relaxation time of infectious individuals is assigned (𝜆2 = 10, 𝜏 = 0.1). The additional
mobility of susceptible individuals appears evident when comparing the evolution at 𝑛2 in Figure 7 to the one
in Figure 8. In this second simulation, indeed, hardly anyone remains at node 𝑛2 and the whole population
moves symmetrically towards nodes 𝑛1 and 𝑛3. In these last nodes, the epidemic spreads in a similar way to
that seen in the previous scenario, with the difference that a percentage of the healthy population continues to
arrive even when the disease is in regression. Furthermore, it is worth to be mentioned that in this case study,
considering the network as a whole, more individuals are infected: almost 67% against the 60% of infected
population obtained in the previous simulation. This result is explained by the fact that the mobility added to
the susceptible in this case does not avoid contagion to those who had previously remained stationary at 𝑛2.
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4.3.2. A four-node network with social distancing

In Test 2, we consider the spread of an infectious disease in a more complex network, composed by 4 nodes
and 3 bidirectional arcs, as shown in Figure 9. Arcs have length 𝐿1 = 2 and 𝐿2 = 𝐿3 = 5 and the whole network
is discretized with a grid size ∆𝑥 = 0.05. In these tests, the epidemic outbreak starts from 𝑛1 (small city) and
propagates along the whole network, reaching first 𝑛2 (big city) and then 𝑛3 and 𝑛4 (medium-size cities).
Test 2a. In a first scenario, initial conditions are again null in all the arcs, while at nodes are imposed as follows:

𝑆(𝑛1, 0) = 0.1225, 𝐼(𝑛1, 0) = 0.0025, 𝑅(𝑛1, 0) = 0.0,

𝑆(𝑛2, 0) = 0.3750, 𝐼(𝑛2, 0) = 0.0, 𝑅(𝑛2, 0) = 0.0,

𝑆(𝑛3, 0) = 0.2500, 𝐼(𝑛3, 0) = 0.0, 𝑅(𝑛3, 0) = 0.0,

𝑆(𝑛4, 0) = 0.2500, 𝐼(𝑛4, 0) = 0.0, 𝑅(𝑛4, 0) = 0.0,

with zero initial fluxes for all the classes at each location. Transmission conditions at each interface are given
in Table 4 and it can be seen that these coefficients define a more complex dynamics with respect to the one
of the previous tests. We set the epidemic parameters 𝛽 = 1.5 and 𝛾 = 2.0 in the whole network. Furthermore,
to verify the effects of a control measure of social distancing on the population, we impose 𝑘 = 1 at 𝑛3, leaving
𝑘 = 0 in the rest of the network. The same transport parameters are given to all the three compartments,
fixing again 𝜆2 = 10 and 𝜏 = 0.1. In Figure 9 numerical results of the evolution of the infectious disease at
each node are presented. From the outbreak location, 𝑛1, the population starts traveling through arc 𝑎1, to
reach node 𝑛2. The former receives only later in time a return of part of the susceptible individuals arriving
from 𝑛2. The resulting mobility of susceptible and infectious people along arc 𝑎1 is shown in the two initial
plot of Figure 9. At node 𝑛2 it can be seen an epidemiological dynamics representative of a node of transit, in
which individuals remain partially untouched by the disease. Waves of motion along arc 𝑎2 are represented in
the first two plots in the second line of Figure 9. These waves are very similar to those observed in arc 𝑎3, as
a consequence of the transmission coefficients chosen (reason why graphical results regarding 𝑎3 are omitted).
There are few more people moving in the direction of 𝑛3 than there are traveling towards 𝑛4, with both the
nodes accommodating an initial susceptible population of equal size. Nevertheless, the spread of the infectious
disease is not comparable in these two cities, due to the control measure imposed at 𝑛3 (𝑘 = 1) and not at 𝑛4

(𝑘 = 0). In fact, it is here confirmed the impact of the enforcement of social distancing measures, which permit to
significantly lower the epidemic peak at 𝑛3 and prevent a larger part of the population from being infected. This
is also presented in terms of reproduction number 𝑅0, whose evolution is shown in the same plots. Moreover, in
Figure 10, it can be observed a comparison of the results of the infectious wave, spreading similarly to a shock
wavefront along arc 𝑎1, at two different initial time steps, obtained with a spacial discretization characterized
by ∆𝑥 = 0.01 when adopting the here proposed second-order AP IMEX Runge–Kutta scheme or when choosing
the corresponding first-order scheme. These numerical results are presented with respect to a reference solution
obtained with the second-order scheme and a very refined grid (∆𝑥 = 0.00125). The higher spatial resolution
of the results obtained with the second-order scheme is therefore confirmed, together with the relevance of the
choice of high-order methods, especially for the description of spatial dynamics as those presented in this work.
Test 2b. Next, we conduct an experiment in which the population abundances outside the nodes are not initially
null, which might represent a more realistic application, as the road connecting two cities would arguably be
dotted with smaller towns and villages. Different Gaussian distributions of susceptible people, characterized by
a variance 𝜎 = 0.1, are initially located along the arcs, while initial conditions here remain null for infectious
and recovered people and their corresponding fluxes. In particular, we consider a Gaussian distribution centered
in the middle of arc 𝑎1 globally accounting for 𝑆 = 0.05, which moves symmetrically towards 𝑛1 and 𝑛2; at
one-quarter of 𝑎2 and 𝑎3 we collocate a Gaussian distribution enclosing 𝑆 = 0.10, which moves towards 𝑛2, and
at three-quarter of the same two arcs we set a Gaussian distribution enclosing 𝑆 = 0.05, which moves towards
𝑛3 and 𝑛4, respectively. The rest of initial conditions and parameters are left unvaried in the network with
respect to the previous scenario.
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Table 5. Transmission coefficients used in Test 2c (Fig. 12), given for each node-arc interface ℐ.

ℐ(𝑛1, 𝑎1) 𝛼𝑛1,𝑎1 = 1.00 𝛼𝑛1,𝑛1 = 0.50
𝛼𝑎1,𝑎1 = 0.00 𝛼𝑎1,𝑛1 = 0.50

ℐ(𝑎1, 𝑛2) 𝛼𝑎1,𝑛2 = 0.05 𝛼𝑎1,𝑎1 = 0.10
𝛼𝑛2,𝑛2 = 0.95 𝛼𝑛2,𝑎1 = 0.90

ℐ(𝑛2, 𝑎2, 𝑎3) 𝛼𝑛2,𝑎3 = 0.50 𝛼𝑛2,𝑎2 = 0.10 𝛼𝑛2,𝑛2 = 0.698
𝛼𝑎2,𝑎3 = 2.50 𝛼𝑎2,𝑎2 = 0.00 𝛼𝑎2,𝑛2 = 1.50
𝛼𝑎3,𝑎3 = 0.00 𝛼𝑎3,𝑎2 = 0.10 𝛼𝑎3,𝑛2 = 0.002

ℐ(𝑎2, 𝑛3) 𝛼𝑎2,𝑛3 = 0.00 𝛼𝑎2,𝑎2 = 0.00
𝛼𝑛3,𝑛3 = 1.00 𝛼𝑛3,𝑎2 = 0.20

ℐ(𝑎3, 𝑎4, 𝑛4) 𝛼𝑎3,𝑛4 = 0.00 𝛼𝑎3,𝑎4 = 0.00 𝛼𝑎3,𝑎3 = 0.00
𝛼𝑎4,𝑛4 = 0.005 𝛼𝑎4,𝑎4 = 0.00 𝛼𝑎4,𝑎3 = 0.00
𝛼𝑛4,𝑛4 = 0.995 𝛼𝑛4,𝑎4 = 1.00 𝛼𝑛4,𝑎3 = 1.00

ℐ(𝑛3, 𝑎4) 𝛼𝑛3,𝑎4 = 1.00 𝛼𝑛3,𝑛3 = 1.00
𝛼𝑎4,𝑛3 = 0.00 𝛼𝑎4,𝑎4 = 0.00
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Figure 12. Numerical results of Test 2c at node 𝑛3 when considering the presence of arc 𝑎4

(case 1) and when leaving 𝑛3 and 𝑛4 disconnected (case 2). Time evolution of 𝑆 (blue), 𝐼 (red)
and 𝑅 (green) dynamics and of the coefficient 𝑅0.

The different results obtained in this second scenario, presented in Figure 11, can be compared to those
previously obtained in Test 2a (Fig. 9), especially noticing in this case the presence of the Gaussian distributions
of susceptible people along 𝑎1 and 𝑎2 in the first plots. It can also be observed that the presence of an additional
amount of susceptible moving along the arcs affects the evolution of the disease especially at node 𝑛2, which
accommodate the incoming of a major quantity of population, allowing the epidemic to spread more consistently.
Test 2c. In the last test case, we initially change the properties of arc 𝑎2, reducing the characteristic speed of
all the SIR compartments to 𝜆2 = 0.4 and increase the relaxation time to 𝜏 = 40, to simulate a slowdown
along this connection. Furthermore, the amount of people leaving 𝑛2 to reach 𝑛3 is augmented by 100 times (in
Test 2a and 2b there is 0.3% of population, while in Test 2c there is 30%). Then, to assess the impact of the
connectivity in transport networks, in this new scenario nodes 𝑛3 and 𝑛4 are connected by an additional arc
𝑎4 (see Fig. 12), having length 𝐿4 = 2, and an initial Gaussian distribution of susceptible, again characterized
by 𝜎 = 0.1, is inserted in the middle of 𝑎4 (presenting in total 𝑆 = 0.05) and is set to spread symmetrically
towards the two nodes. In this arc we fix 𝜆2 = 10 and 𝜏 = 0.1. Transmission conditions of Test 2c are given in
Table 5 for each interface. Numerical results concerning the evolution of the epidemic at node 𝑛3 are presented
in Figure 12 when considering the presence of arc 𝑎4 (case 1) and when leaving 𝑛3 and 𝑛4 disconnected (case 2).
It can be observed that the simple presence of the connectivity between 𝑛3 and 𝑛4 highly affects the course of
the infectious disease at the node of interest. Indeed, when 𝑎4 is present, the development of the epidemic at
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𝑛3 is consistently anticipated in time due to the arrival of part of the population from 𝑛4. Moreover, the later
inlet of population arriving from 𝑛2 causes a second peak of infection, even slightly higher than the first one. In
the second case, instead, the infectious wave has a unique peak that manifests itself after the arrival of the sole
population leaving 𝑛2 to reach 𝑛3. Clearly, it can be seen that also the evolution of the coefficient 𝑅0 is affected
by the presence of 𝑎4. Results in the rest of the network are not shown because similar to those obtained in
Test 2b and not relevant in order to identify the effects of a different connectivity pattern in the network.

5. Conclusions

In this work, a novel SIR-type kinetic transport model for the spread of infectious diseases on networks is
presented. The hyperbolic system describes at a macroscopic level the propagation of epidemics at finite speeds,
recovering the classical one-dimensional reaction-diffusion model as relaxation times and characteristic speeds of
each compartment of the population (susceptible, infectious and recovered individuals) tend to zero and infinity,
respectively. The extension of the model to the treatment of networks that identify at each node particular
limited locations (like a specific city or region), connected by paths (network arcs) along which individuals can
move to reach different destinations, is also presented. In this context, at each node the compartmental SIR
model with speed alignment describes the evolution of the epidemic in the areas of major interest, which are
affected by the mobility of the population in the network, computed in the arcs through the here proposed
SIR-type kinetic transport model. To ensure a correct coupling between nodes and arcs, proper transmission
conditions are defined at each arc-node interface, which guarantee the conservation of the global mass of the
system.

To solve the system of equations on each arc, a second-order IMEX finite volume method that is robust
enough to correctly capture the asymptotic behavior of hyperbolic systems under different kinds of scaling
is proposed. In particular, the numerical method satisfies the AP property in the stiff regime, hence in the
parabolic diffusive limit. The expected accuracy of the numerical scheme is confirmed for all the variables of the
problem by means of accuracy analysis, even when dealing with stiff regimes, characterized by relaxation times
close to zero. Furthermore, the behavior of the model when considering spatially heterogeneous environments is
investigated concerning different configurations of transport parameters (characteristic velocities and relaxation
times). Results confirm that the effects of a spatial variability of the contact rate vanish when the reproduction
number of the infectious disease, 𝑅0, is less than 1, while a temporary persistence of the infectious is noticed
when 𝑅0 > 1. Finally, in order to demonstrate the suitability of the proposed model to simulate the spread of
epidemic diseases on networks, five tests are carried out concerning different simple networks. The impact of
human mobility in these networks is assessed evaluating different mobility patterns, transmission coefficients
at interfaces and social distancing interventions. Numerical results underline that these characteristics highly
influence the course of an epidemic, therefore confirming that restrictions on the mobility of people and social
distancing measures are very effective in reducing the spread of an infectious disease. In addition, it has been
confirmed the paramount importance in transport networks of graph connectivity. Finally, the higher spatial
resolution of results obtained with the here proposed second-order IMEX scheme with respect to those obtained
with the corresponding first-order scheme is confirmed, together with the relevance of the choice of high-order
methods, especially for the description of spatial dynamics as those here presented.

It is worth to mention that, even if out of the scope of the present work, in the model here proposed, all
the parameters could potentially be set or estimated according to real data, namely: real amount of people and
measured initial infectious in cities (many of which daily updated and available in various GitHub repository);
mobility data tracked by Google systems and recently being released [1], which have been collected by geograph-
ical location in categories of retail and recreation, groceries and pharmacies, parks, transit stations, workplaces
and residential, following the work done in [41]; or recurring to official national assessment of mobility flows, as
used in the case of Italy in [21]. This aspect is currently under study and will be part of the future developments.
Moreover, since data of the spread of epidemics are generally highly heterogeneous and affected by a great deal
of uncertainty, future perspectives include the application of uncertainty quantification methods to assess the
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impact of stochastic inputs in the proposed SIR-type kinetic transport model. Finally, an extension of the model
for the inclusion of the age structure of the population is foreseen, being an essential characteristic to correctly
describe the impact of specific kinds of infectious diseases, like the COVID-19 pneumonia.
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