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SPACE-TIME REGISTRATION-BASED MODEL REDUCTION OF
PARAMETERIZED ONE-DIMENSIONAL HYPERBOLIC PDES

Tommaso Taddei1,2,* and Lei Zhang1,2

Abstract. We propose a model reduction procedure for rapid and reliable solution of parameterized
hyperbolic partial differential equations. Due to the presence of parameter-dependent shock waves
and contact discontinuities, these problems are extremely challenging for traditional model reduction
approaches based on linear approximation spaces. The main ingredients of the proposed approach
are (i) an adaptive space-time registration-based data compression procedure to align local features
in a fixed reference domain, (ii) a space-time Petrov–Galerkin (minimum residual) formulation for
the computation of the mapped solution, and (iii) a hyper-reduction procedure to speed up online
computations. We present numerical results for a Burgers model problem and a shallow water model
problem, to empirically demonstrate the potential of the method.
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1. Introduction

Several studies have demonstrated the inaccuracy of linear approximation spaces to deal with parameter-
dependent hyperbolic partial differential equations (PDEs) with parameter-dependent shocks: this challenge
hinders the application of parameterized model order reduction (pMOR) techniques to this class of problems.
To address the slow decay of the Kolmogorov 𝑁 -width of the solution manifold associated with the problem
of interest [34], several authors have proposed to resort to nonlinear approximations. The goal of this paper
is to develop a Lagrangian nonlinear compression method, and associated reduced-order model (ROM) for
one-dimensional (systems of) conservation laws: the key element of the approach is a space-time registration
procedure to improve the linear reducibility of the solution manifold. In computer vision and pattern recog-
nition, registration refers to the process of finding a transformation that aligns two datasets; in this paper,
registration refers to the process of finding a parametric spatio-temporal transformation that improves the
linear compressibility of the solution manifold.

We denote by 𝜇 the vector of model parameters in the parameter region 𝒫 ⊂ R𝑃 , we denote by Ω ⊂ R2

the spatio-temporal domain over which the PDE is defined, and we define the Hilbert space 𝒳 = [𝐿2(Ω)]𝐷,
where 𝐷 ≥ 1 denotes the number of state variables, and the Banach space Lip(Ω) of Lipschitz functions over Ω.
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Then, we introduce the solution 𝑈𝜇 to the PDE for a given 𝜇, 𝑈𝜇 : Ω → R𝐷, and the solution manifold
ℳ := {𝑈𝜇 : 𝜇 ∈ 𝒫} ⊂ 𝒳 . Linear compression methods rely on approximations of the form 𝑈𝜇 ≈ ̂︀𝑈𝜇 = 𝑍𝑁 ̂︀𝛼𝜇,
where 𝑍𝑁 : R𝑁 → 𝒳 is a linear parameter-independent operator and ̂︀𝛼 : 𝒫 → R𝑁 is a function of the
parameters. On the other hand, we might distinguish between Eulerian and Lagrangian nonlinear compression
methods. We do not provide here a comprehensive survey of nonlinear compression methods, but rather cite a
few representative approaches.

– Eulerian approaches [26, 39, 41, 50] consider approximations of the form ̂︀𝑈𝜇 := 𝑍𝑁,𝜇(̂︀𝛼𝜇), where 𝑍𝑁 : R𝑁 ×
𝒫 → 𝒳 is a suitably-chosen operator which might depend on the parameter 𝜇 and might also be nonlinear
in the first argument.

– Lagrangian approaches [24,33,46,47] rely on linear compression methods to approximate the mapped solutioñ︀𝑈𝜇 := 𝑈𝜇∘Φ𝜇, where Φ : Ω×𝒫 → Ω is a suitably-chosen bijection from Ω into itself: the mapping Φ should be
chosen to make the mapped solution manifold ̃︁ℳ = {̃︀𝑈𝜇 : 𝜇 ∈ 𝒫} more amenable for linear approximations.

Note that any Lagrangian method is equivalent to an Eulerian method with 𝑍𝑁,𝜇(𝛼) := ( ̃︀𝑍𝑁𝛼) ∘Φ−1
𝜇 for

some linear operator ̃︀𝑍𝑁 : R𝑁 → 𝒳 , while the converse is not true.
Given a low-dimensional representation of the solution field 𝑈𝜇 for all 𝜇 ∈ 𝒫, we might distinguish between

non-intrusive (data-fitted) and intrusive (projection-based) approaches for the prediction of the reduced coef-
ficients for out-of-sample parameter values: the former rely on multi-target regression algorithms; the latter
rely on Galerkin/Petrov–Galerkin projection to devise a ROM for online predictions. To guarantee fast online
evaluations of projection-based ROMs, hyper-reduction techniques need to be applied: these techniques are
designed to reduce assembling costs associated with residual evaluations. In the framework of linear compres-
sion methods, we refer to [11,17,20] for representative examples of non-intrusive techniques, and to the reduced
basis literature (e.g., [21,38]) for a thorough discussion about hyper-reduced projection schemes. Non-intrusive
techniques can be trivially extended to nonlinear compression methods; on the other hand, the extension of
projection-based schemes is more challenging: for Lagrangian approaches, following [33, 46], we might perform
projection and hyper-reduction in the mapped configuration; for Eulerian approaches, specialized techniques
need to be proposed to ensure rapid ROM evaluations (see [26,41]).

In this paper, we present a Lagrangian projection-based pMOR technique for conservation laws. Given 𝜇 ∈ 𝒫,
we shall consider approximations of the form:

𝑈𝜇 ≈ ̂︀𝑈𝜇 ∘Φ−1
𝜇 , with ̂︀𝑈𝜇 = 𝑍𝑁 ̂︀𝛼𝜇, Φ𝜇 = id +𝑊𝑀̂︀a𝜇. (1.1)

Here, id(x) ≡ x is the identity map, 𝑍𝑁 : R𝑁 → 𝒳 and 𝑊𝑀 : R𝑀 → [Lip(Ω)]2 are suitable linear operators,
and ̂︀𝛼 : 𝒫 → R𝑁 and ̂︀a : 𝒫 → R𝑀 are functions of the parameter 𝜇. The key features of the present work
are (i) a Lagrangian data compression technique for the construction of a low-dimensional representation of
the solution field of the form (1.1), (ii) a kernel-based regression algorithm for the online computation of the
mapping coefficients ̂︀a𝜇, and (iii) a space-time hyper-reduced Petrov–Galerkin (minimum residual) ROM for
the online computation of the solution coefficients ̂︀𝛼𝜇.

Given the space-time snapshots {𝑈𝑘 = 𝑈𝜇𝑘}𝑛train
𝑘=1 ⊂ℳ, our data compression procedure returns (i) the linear

operators 𝑍𝑁 : R𝑁 → 𝒳 and 𝑊𝑀 : R𝑀 → [Lip(Ω)]2 in (1.1), and (ii) the coefficients {𝛼𝑘}𝑛train
𝑘=1 ⊂ R𝑁 and

{a𝑘}𝑛train
𝑘=1 ⊂ R𝑀 such that 𝑈𝑘 ≈ ̂︀𝑈𝑘 ∘(Φ𝑘)−1 where ̂︀𝑈𝑘 = 𝑍𝑁𝛼𝑘 and Φ𝑘 = id+𝑊𝑀a𝑘. We develop an adaptive

registration algorithm – which is an extension of the approach in [46] – to construct the mappings {Φ𝑘}𝑘; on
the other hand, we resort to proper orthogonal decomposition (POD, [4, 49]) to generate the low-dimensional
linear approximation operators 𝑍𝑁 ,𝑊𝑀 . Since the procedure can be viewed as a generalization of POD, we
here refer to our approach as to RePOD (Registered POD): as rigorously showed below, our approach is general,
that is it does not depend on the underlying mathematical model.

The registration approach in [46] relies on (i) a nonlinear non-convex optimization statement that aims at
reducing the difference between a properly-chosen template 𝑈̄ = 𝑈𝜇̄ and the mapped field ̃︀𝑈𝜇 = 𝑈𝜇 ∘ Φ𝜇 for
𝜇 ∈ {𝜇𝑘}𝑛train

𝑘=1 , and on (ii) a generalization procedure based on kernel regression to extend the mapping to the
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whole parameter domain. In this work, we modify the optimization statement to penalize the distance from a
low-dimensional space – here referred to as template space – and we propose a greedy procedure to adaptively
build the template space. We remark that several authors have proposed template-fitting strategies to deal with
transport [30, 32, 42]: here, by enforcing the bijectivity of Φ from Ω in itself for all 𝜇 ∈ 𝒫, we might consider a
standard projection-based ROM in the mapped configuration.

Registration exploits the presence of local features (e.g., shock waves) that are topologically equivalent for
all 𝜇 ∈ 𝒫. These structures are present in a variety of physically-relevant parameter-dependent problems,
including the two model problems considered in this paper. In this respect, the use of a space-time formulation
is instrumental to capture the interaction between multiple shock waves: in Appendix E, we show that space-
only registration is not appropriate to deal with the interaction between two shock waves, for a Burgers model
problem. We observe that, starting with the seminal work [48], space-time formulations have been extensively
considered in the pMOR literature: we refer to [7, 18] for applications to hyperbolic PDEs. However, while in
[7, 18], space-time formulations are motivated by their superior stability and variational construction, which
facilitate the error analysis, here the space-time setting is motivated by approximation considerations. In this
respect, our work shares important features with the recent space-time adaptive discontinuous Galerkin (DG)
method proposed in [55,56].

Given a new value of the parameter 𝜇 ∈ 𝒫, we resort to kernel-based regression to estimate the mapping
coefficients ̂︀a𝜇, while we resort to a space-time minimum residual projection-based ROM to compute the solution
coefficients ̂︀𝛼𝜇 in (1.1). To reduce the costs of the minimum residual ROM, we first introduce a 𝐽-dimensional
empirical test space [45] 𝒴𝐽 and then we resort to an empirical quadrature procedure (EQP, [54]) to reduce the
online assembling and memory costs. In Appendix C, we present mathematical justifications for linear problems
of the procedure used to construct the test space 𝒴𝐽 ; we further present numerical results to illustrate the
superiority of minimum residual ROMs compared to Galerkin ROMs.

Several authors have considered minimum residual ROMs for structural and fluid mechanics applications,
[10, 28, 53]. We observe that in [10] the authors resort to Gappy-POD [8, 15] to provide hyper-reduction of
projection-based ROMs; on the other hand, similarly to Grimberg et al. [19], we here resort to an EQP (see
[16, 35]). EQPs recast the problem of hyper-reduction as a suitable sparse representation problem and then
rely on approximate techniques originally developed in the signal processing and optimization literature to
approximate the solution. Here, we adapt the procedure first presented in [54] for Galerkin ROMs to minimum
residual ROMs to derive the sparse representation problem of interest; then, as in [16], we resort to a nonnegative
linear squares method (cf. [25]) to find an approximate solution.

The paper is organized as follows. In Section 2, we introduce the space-time variational formulation in
the mapped configuration, and we introduce the two model problems considered for numerical assessment;
in Section 3, we present the data compression procedure based on space-time registration; in Section 4, we
introduce the hyper-reduced Petrov–Galerkin ROM; finally, in Section 5, we present several numerical results
to demonstrate the effectiveness of the proposed approach. Several appendices complete the paper.

Notation

By way of preliminaries, we introduce notation used throughout the paper. We denote by 𝑥 a generic element
of the spatial interval (0, 𝐿) with 𝐿 > 0, and by 𝑡 a time instant in (0, 𝑇 ) with 𝑇 > 0. In view of the space-time
formulation, we introduce the spatio-temporal domain Ω = (0, 𝐿)× (0, 𝑇 ) and the gradient ∇ := [𝜕𝑥, 𝜕𝑡]𝑇 . We
denote by x = (𝑥, 𝑡) a generic element of Ω, and by n the outward normal to 𝜕Ω.

Given the reference domain ̃︀Ω ⊂ R2, we introduce the parameterized mapping Φ : ̃︀Ω×𝒫 → Ω; we denote by
X a generic element of ̃︀Ω and we define the mapped gradient ̃︀∇ = [𝜕𝑋1 , 𝜕𝑋2 ]𝑇 . We further define the Jacobian
matrix G𝜇 := ̃︀∇Φ𝜇 and determinant 𝑔𝜇 := det(̃︀∇Φ𝜇), which is assumed to be strictly positive over ̃︀Ω. In this
work, we consider bijections from Ω into itself: for this reason, we replace ̃︀Ω with Ω.

We define the Hilbert space 𝒳 = [𝐿2(Ω)]𝐷 where 𝐷 is the number of state variables. We denote by (·, ·) the
𝐿2(Ω) inner product, (𝑤, 𝑣) =

∫︀
Ω
𝑤 · 𝑣 dx, and by ‖ · ‖ =

√︀
(·, ·) the corresponding induced norm. Given the
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linear space 𝒲 ⊂ 𝒳 , Π𝒲 : 𝒳 → 𝒲 denotes the projection operator onto 𝒲. We further denote by e1, . . . , e𝑁
the canonical basis in R𝑁 and by ‖ · ‖2 the Euclidean norm. Given the linear operator 𝑍𝑁 : R𝑁 → 𝒳 , we define
𝜁𝑛 = 𝑍𝑁e𝑛 for 𝑛 = 1, . . . , 𝑁 and we define the space 𝒵𝑁 := span{𝜁𝑛}𝑁𝑛=1; in the remainder, we shall assume
that {𝜁𝑛}𝑁𝑛=1 is an orthonormal basis of 𝒵𝑁 .

We further introduce the relative best-fit error 𝐸bf , which is used to assess the performance of data compres-
sion. Given the reduced space 𝒵𝑁 ⊂ 𝒳 and 𝜇 ∈ 𝒫, we define

𝐸bf(𝜇,𝒵𝑁 ) :=
1

‖𝑈𝜇‖
min
𝜁∈𝒵𝑁

‖𝑈𝜇 − 𝜁‖. (1.2a)

We further define the “registered” best-fit error as

𝐸bf(𝜇,𝒵𝑁 ,Φ) :=
1

‖𝑈𝜇‖
min
𝜁∈𝒵𝑁

‖𝑈𝜇 − 𝜁 ∘Φ−1
𝜇 ‖ =

1
‖𝑈𝜇‖

min
𝜁∈𝒵𝑁

√︃∫︁
Ω

(𝑈𝜇 ∘Φ𝜇 − 𝜁)2 𝑔𝜇 dX. (1.2b)

Note that the latter expression is convenient for finite element calculations – since it avoids the computation of
the inverse map Φ−1

𝜇 in all quadrature points – and is used in the numerical results.
We use the method of snapshots (cf. [43]) to compute POD eigenvalues and eigenvectors. Given the snapshot

set {𝑈𝑘}𝑛train
𝑘=1 ⊂ ℳ and the inner product (·, ·)pod, we define the Gramian matrix C ∈ R𝑛train,𝑛train , C𝑘,𝑘′ =

(𝑈𝑘, 𝑈𝑘
′
)pod, and we define the POD eigenpairs {(𝜆𝑛, 𝜁𝑛)}𝑛train

𝑛=1 as

C𝜁𝑛 = 𝜆𝑛 𝜁𝑛, 𝜁𝑛 :=
𝑛train∑︁
𝑘=1

(𝜁𝑛)𝑘 𝑈
𝑘, 𝑛 = 1, . . . , 𝑛train,

with 𝜆1 ≥ 𝜆2 ≥ . . . 𝜆𝑛train ≥ 0. In our implementation, we orthonormalize the modes, that is (𝜁𝑛, 𝜁𝑛)pod = 1 for
𝑛 = 1, . . . , 𝑛train. To stress dependence of the POD space on the choice of the inner product, we use notation
𝐿2-POD if (·, ·)pod = (·, ·)𝐿2(Ω), and ‖·‖2-POD if (·, ·)pod is the Euclidean inner product. Finally, we shall choose
the size 𝑁 of the POD space based on the criterion

𝑁 := min

⎧⎨⎩𝑁 ′ :
𝑁 ′∑︁
𝑛=1

𝜆𝑛 ≥ (1− 𝑡𝑜𝑙pod)
𝑛train∑︁
𝑖=1

𝜆𝑖

⎫⎬⎭ , (1.3)

where 𝑡𝑜𝑙pod > 0 is a given tolerance.

High-fidelity discretization

Our reduced-order formulation relies on a high-fidelity (hf) DG finite element (FE) discretization; we refer
to the textbook [22] for an introduction to DG methods for conservation laws. We denote by 𝒯hf = {D𝑘}𝑁e

𝑘=1 a
non-overlapping triangulation of Ω, we denote by {xhf

𝑖,𝑘 : 𝑖 = 1, . . . , 𝑛lp, 𝑘 = 1, . . . , 𝑁e} the nodes of the mesh,
where 𝑛lp is the number of degrees of freedom in each element, we denote by Ψ𝑘 : ̂︀D → D𝑘 the FE mapping
between the reference element ̂︀D and the 𝑘-th element of the mesh, and we denote by 𝜕𝒯hf = {f𝑖}𝑁f

𝑖=1 the set of
facets of the mesh. We denote by N+ the positive normal to a given facet in 𝜕𝒯hf : N+ coincides with the outward
normal on 𝜕Ω and is chosen arbitrarily for interior facets. We further define the negative normal N− = −N+.
Then, we define the DG FE space of order 𝑝,

𝒳hf =
{︀
𝑣 ∈ [𝐿2(Ω)]𝐷 : 𝑣 ∘Ψ𝑘 ∈ [P𝑝(̂︀D)]𝐷, 𝑘 = 1, . . . , 𝑁e

}︀
, (1.4)

where P𝑝 denotes the space of two-dimensional polynomials of total degree at most 𝑝. Given 𝑤 ∈ 𝒳hf and
X ∈ 𝜕𝒯hf , we define 𝑤±(X) = lim𝜖→0+ 𝑤(X− 𝜖N±).

We denote by {𝜙𝑑𝑖,𝑘 = 𝜙𝑖,𝑘e𝑑}𝑖,𝑘,𝑑 the Lagrangian basis of the space 𝒳hf , with 𝑖 = 1, . . . , 𝑛lp = 𝑝(𝑝+1)
2 ,

𝑘 = 1, . . . , 𝑁e, 𝑑 = 1, . . . , 𝐷, and we define 𝑁hf = dim(𝒳hf) = 𝑛lp𝑁e𝐷; to shorten notation, we might also use
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the linear indexing 𝜙𝑗 := 𝜙𝑑𝑖,𝑘 = 𝜙𝑖,𝑘e𝑑 where 𝑗 = 𝑗𝑖,𝑘,𝑑 = 𝑖 + (𝑘 − 1)𝑛lp + (𝑑 − 1)𝑛lp𝑁e. Given 𝑤 ∈ 𝒳hf , we
denote by w ∈ R𝑁hf the corresponding FE vector, 𝑤(·) =

∑︀
𝑗(w)𝑗𝜙𝑗(·). With some abuse of notation, given

the functional 𝐹 ∈ 𝒳 ′hf , we denote by F ∈ R𝑁hf the corresponding FE vector such that (F)𝑗 = 𝐹 (𝜙𝑗), for
𝑗 = 1, . . . , 𝑁hf .

In view of the definition of the ROM, we introduce the discrete 𝐿2 and 𝐻1 norms Xhf ,Yhf ∈ R𝑁hf ,𝑁hf such
that ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(Xhf)𝑗,𝑗′ =
𝑁e∑︁
𝑘=1

∫︁
D𝑘

𝜙𝑗′ · 𝜙𝑗 dX,

(Yhf)𝑗,𝑗′ =
𝑁e∑︁
𝑘=1

∫︁
D𝑘

𝜙𝑗′ · 𝜙𝑗 +∇𝜙𝑗′ · ∇𝜙𝑗 dX,−
∫︁
𝜕D𝑘

ℋd(𝜙𝑗′ , 𝜙𝑗 ;1,N) dX

(1.5)

where ℋd(·, ·;1,N) is a suitable diffusion flux, here associated with the diffusion matrix K = 1. In this work,
we consider the BR2 flux introduced in [3] (see also [2]). We refer to [1] for a detailed discussion concerning the
analysis of DG formulations for second-order elliptic problems. In the following, with some abuse of notation,
we denote by 𝒳hf the linear space (1.4) equipped with the discrete 𝐿2 norm ‖𝑣‖ :=

√︀
v𝑇Xhfv, and we denote

by 𝒴hf the linear space (1.4) equipped with the discrete 𝐻1 norm |||𝑣||| :=
√︀

v𝑇Yhfv: note that 𝒳hf and 𝒴hf

coincide as linear spaces but are different Hilbert spaces. We denote by R𝒴hf : 𝒴 ′hf → 𝒴hf the Riesz operator in
𝒴hf .

In view of registration, given the mesh 𝒯hf , we define the mapped mesh Φ(𝒯hf) associated with the mapping
Φ : Ω → Ω such that Φ(𝒯hf) shares with 𝒯hf the same connectivity matrix and the nodes are given by
{Φ(xhf

𝑖,𝑘) : 𝑖 = 1, . . . , 𝑛lp, 𝑘 = 1, . . . , 𝑁e}. Furthermore, we define the FE space of order 𝑝 such that

𝒳hf,Φ =
{︀
𝑣 ∈ [𝐿2(Ω)]𝐷 : 𝑣 ∘Ψ𝑘,Φ ∈ [P𝑝(̂︀D)]𝐷, 𝑘 = 1, . . . , 𝑁e

}︀
, (1.6)

where Ψ𝑘,Φ is the FE mapping between the reference element ̂︀D and the 𝑘-th element of Φ(𝒯hf). Given 𝑤 ∈ 𝒳hf ,
we can define the FE field 𝑤Φ in 𝒳hf,Φ such that 𝑤Φ(Φ(xhf

𝑖,𝑘)) = 𝑤(xhf
𝑖,𝑘): note that 𝑤Φ and 𝑤 share the same

FE vector and 𝑤Φ is an approximation of 𝑤 ∘Φ−1 – and 𝑤Φ ≡ 𝑤 ∘Φ−1 if Φ is piecewise linear.

2. Formulation

2.1. Space-time formulation of conservation laws

In this section, we omit dependence on the parameter 𝜇 for notational brevity. We consider a general system
of one-dimensional conservation laws:{︂

𝜕𝑡𝑈 + 𝜕𝑥𝑓(𝑈) = 𝑆(𝑈) in Ω
𝑈(·; 0) = 𝑈D,0(·) on Γin,0 := (0, 𝐿)× {0} (2.1)

where 𝑈 : Ω → R𝐷 is the vector of conserved variables, 𝑓 : R𝐷 → R𝐷 is the physical flux, and 𝑆 : R𝐷 → R𝐷 is
the source term. The problem is completed with suitable boundary conditions, which depend on the number of
incoming characteristics. We provide two examples of problems of the form (2.1) at the end of this section. We
remark that the solution 𝑈 may contain discontinuities and might not be unique: we here seek 𝑈 satisfying (2.1)
away from discontinuities and satisfying suitable Rankine-Hugoniot and entropy conditions at discontinuities,
[27].

We recast (2.1) as
∇ · 𝐹 (𝑈) = 𝑆(𝑈) in Ω (2.2)

where 𝐹 (𝑈) = [𝑓(𝑈), 𝑈 ], 𝐹 : R𝐷 → R𝐷,2. The problem is completed with suitable boundary conditions on
{0, 𝐿}× (0, 𝑇 ), which depend on the number of incoming characteristics. Note that at Γin,0 all 𝐷 characteristics
are incoming and at (0, 𝐿)×{𝑇} all 𝐷 characteristics are outward: this implies that (2.2) requires the prescription
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of the full initial datum at 𝑡 = 0 and does not require any condition at 𝑡 = 𝑇 , consistently with (2.1). Note
that, for a proper choice of 𝐹 , (2.2) encapsulates two-dimensional steady conservation laws and unsteady one-
dimensional conservation laws.

We recast (2.2) on a reference domain: this will lead to the variational formulation exploited in section 4
for model reduction. Given the mapping Φ : Ω → Ω, recalling standard change-of-variable formulas (cf.
Appendix A), we obtain that the mapped solution field ̃︀𝑈 = 𝑈 ∘Φ satisfies

̃︀∇ · 𝐹Φ(̃︀𝑈) = 𝑆Φ(̃︀𝑈) in Ω, (2.3a)

where
𝐹Φ(·) = 𝑔𝐹 (·)G−𝑇 , 𝑆Φ(·) = 𝑔𝑆(·). (2.3b)

We recall that G, 𝑔 are the Jacobian matrix and determinant defined in the introduction.

Remark 2.1. Arbitrary Lagrangian Eulerian (ALE, [14, 23]) methods involve the use of space-time mappings
of the form Φ(𝑋, 𝑡) = [Φ1(𝑋, 𝑡), 𝑡]: this class of mappings allows the use of time-marching schemes to solve (2.2).
Note, however, that the deformation that can be achieved using this class of mappings is relatively modest: in
particular, for any given time 𝑡 > 0, the mapped solution ̃︀𝑈 has the same number of discontinuities as 𝑈 ,
possibly at different locations. In the numerical results of Section 5 and Appendix E, we empirically show that
the possibility of “moving” shock waves in space and time is key to improve the linear reducibility of the mapped
manifold.

2.2. High-fidelity space-time formulation

We discretize (2.3) using a high-order nodal DG method. In presence of shocks and other discontinuities,
high-order schemes for hyperbolic PDEs require specific stabilization techniques to avoid instabilities. In this
work, we resort to the sub-cell shock capturing method based on artificial viscosity proposed in [37]. More in
detail, we consider the piecewise-constant artificial viscosity

𝜀(𝑈)
⃒⃒
D𝑘 = 𝜀0 + 𝜀pp (log10 𝑆𝑘) , 𝑆𝑘 =

‖𝑠(𝑈)−Π𝑝−1𝑠(𝑈)‖𝐿2(D𝑘)

‖𝑠(𝑈)‖𝐿2(D𝑘)

, (2.4a)

where 𝜀0 > 0 is a positive constant, 𝑠(𝑈) is a suitable scalar function of the state, Π𝑝−1 : P𝑝 → P𝑝−1 is the
projection onto the space of polynomials of total degree 𝑝− 1, and

𝜀pp(𝑠) =

⎧⎪⎨⎪⎩
0 𝑠 < 𝑠0 − 𝜅
𝜖0
2

(︂
1 + sin

(︂
𝜋(𝑠− 𝑠0)

2𝜅

)︂)︂
𝑠0 − 𝜅 ≤ 𝑠 < 𝑠0 + 𝜅

𝜖0 𝑠 ≥ 𝑠0 + 𝜅

. (2.4b)

In this work, we consider 𝑠(𝑈) = 𝑈 for Burgers equation and 𝑠(𝑈) = ℎ for the shallow water equations (here,
ℎ is the flow height, see Sect. 2.3.2); representative values of the constants in (2.4) considered in the numerical
simulations are 𝑠0 = −2.5, 𝜅 = 1.5, 𝜖0 = 10−2, 𝜀0 = 5× 10−4.

We have now the elements to introduce the DG discretization of (2.3): find ̃︀𝑈hf ∈ 𝒳hf such that

𝑅Φ

(︁̃︀𝑈hf , 𝑣
)︁

= 𝑅c
Φ

(︁̃︀𝑈hf , 𝑣
)︁

+𝑅d
(︁̃︀𝑈hf , 𝑣

)︁
= 0, ∀ 𝑣 ∈ 𝒳hf , (2.5)

where the variational discrete operator 𝑅Φ : 𝒳hf × 𝒳hf → R is the sum of the convection and diffusion contri-
butions. Here, 𝑅c

Φ is given by

𝑅c
Φ(𝑤, 𝑣) =

𝑁e∑︁
𝑘=1

𝑟c𝑘(𝑤, 𝑣) =
𝑁e∑︁
𝑘=1

∫︁
𝜕D𝑘

𝑣 · ℋΦ(𝑤+, 𝑤−,N)dX −
∫︁
D𝑘

̃︀∇𝑣 · 𝐹Φ(𝑤) dX −
∫︁
D𝑘

𝑣 · 𝑆Φ(𝑤)dX, (2.6a)
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where ℋΦ is the numerical convective flux. Following [56], we choose ℋΦ such that

ℋΦ(̃︀𝑈+
hf ,
̃︀𝑈−hf ,N) = ‖𝑔G−𝑇N‖2ℋ(̃︀𝑈+

hf ,
̃︀𝑈−hf ,n), with n =

G−𝑇N
‖G−𝑇N‖2

, (2.6b)

where ℋ is a standard numerical flux in the physical domain. Note that for piecewise-linear maps (2.6) is equiv-
alent to the “Eulerian” DG convective term associated with the numerical flux ℋ, and with the triangulation
𝒯 ⋆hf = {Φ(D𝑘)}𝑁e

𝑘=1. In the numerical examples of this paper, we resort to the local Lax-Friedrichs (Rusanov)
flux:

ℋ(𝑈+, 𝑈−,n) =
1
2
(︀
𝐹 (𝑈+) + 𝐹 (𝑈−)

)︀
− 𝜏

2
n+(𝑈+ − 𝑈−)𝑇 , 𝜏 := max{

⃒⃒
𝜕𝑈𝐹 (𝑈+)n

⃒⃒
,
⃒⃒
𝜕𝑈𝐹 (𝑈−)n

⃒⃒
}. (2.6c)

The diffusion form 𝑅d is defined as

𝑅d(𝑤, 𝑣) =
𝑁e∑︁
𝑘=1

𝑟d𝑘(𝑤, 𝑣) =
𝑁e∑︁
𝑘=1

∫︁
𝜕D𝑘

ℋd(𝑤, 𝑣; 𝜀(𝑈)1,N) dX −
∫︁
D𝑘

𝜀(𝑈) ̃︀∇𝑤 · ̃︀∇𝑣 dX, (2.7)

where ℋd is the BR2 diffusion flux associated with the diffusion matrix K = 𝜀(𝑈)1. Note that we consider an
artificial-diffusion form that is independent of the mapping Φ.

Remark 2.2. In this work, we resort to the space-time solver discussed here to generate the hf snapshots; the
space-time formulation of the conservation law (2.1) also provides the foundations for the projection-based ROM
proposed in Section 4. We envision, however, that space-time solvers might not be feasible for large-scale two-
dimensional and three-dimensional problems: in this case, we might employ a third-party time-marching solver
to generate the space-time snapshots and then use the space-time formulation exclusively for ROM calculations.
We refer to a future work for the integration between an external time-marching solver and the space-time ROM.
We further remark that other choices for the convection and diffusion fluxes and for the artificial viscosity are
available: we refer to the DG literature for thorough discussions and comparisons.

2.3. Model problems

2.3.1. A Burgers model problem

We consider the Burgers equation:⎧⎪⎨⎪⎩
𝜕𝑡𝑈𝜇 +

1
2
𝜕𝑥𝑈

2
𝜇 = 0 (𝑥, 𝑡) ∈ Ω = (0, 𝐿)× (0, 𝑇 )

𝑈𝜇(𝑥, 0) = 𝑈D,𝜇(𝑥) 𝑥 ∈ (0, 𝐿)
𝑈𝜇(0, 𝑡) = 𝑈D,𝜇(0) 𝑡 ∈ (0, 𝑇 )

(2.8a)

where 𝐿 = 1, 𝑇 = 0.8, and

𝑈D,𝜇(𝑥) = 𝜇1

(︂
2−𝐻𝜈(𝑥− 𝜇2)−𝐻𝜈

(︂
𝑥− 1

2

)︂)︂
+ 0.3 sin (𝜋𝑥) , 𝐻𝜈(𝑠) =

1
1 + 𝑒−𝜈𝑠

, 𝜈 = 260. (2.8b)

Here, we consider the parameter domain 𝒫 = [1, 1.3] × [0.25, 0.35]. We observe that a similar model problem
has been considered in Section 4.2 of [36].

Figure 1 shows the behavior of 𝑈 over Ω for two values of 𝜇. The solution is characterized by the transition
between the three “prototypical” behaviors depicted in Figure 2: for small values of 𝑡, the solution exhibits two
shock waves (cf. Fig. 2a); for intermediate values of 𝑡, the solution exhibits one shock wave (cf. Fig. 2b); for large
values of 𝑡, the solution is nearly constant over (0, 𝐿) (cf. Fig. 2c). Despite its simplicity, this problem is extremely
challenging for model reduction techniques: linear methods (i.e., methods based on linear approximation spaces)
require a large number of modes to correctly represent the solution; on the other hand, to our knowledge, the
transition from two shocks to one shock and from one shock to the smooth solution poses fundamental challenges
for several nonlinear proposals: see the discussion in [41].
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Figure 1. Solution to Burgers equation. (A) 𝜇 = [1, 0.25]. (B) 𝜇 = [1.35, 0.35].

Figure 2. Solution to Burgers equation for 𝜇 = [1, 0.25] and 𝜇 = [1.35, 0.35] at three different
time instants. (A) 𝑡 = 0.05. (B) 𝑡 = 0.3. (C) 𝑡 = 0.8.

2.3.2. A shallow-water model problem

We consider a transient shallow water (Saint Venant) flow over a bump in a frictionless channel. We here
denote by 𝑈 = [ℎ, 𝑞]𝑇 the vector of conserved variables, where 𝑞 = ℎ𝑢 is the discharge, ℎ is the flow height,
and 𝑢 is the flow 𝑥-velocity; then, we introduce the flux 𝑓(𝑈) := [𝑞, ℎ𝑢2 + 𝑔

2ℎ
2]𝑇 where 𝑔 = 9.81 is the gravity

acceleration; we further introduce the (parameter-independent) bathymetry 𝑏 such that

𝑏(𝑥) := −0.2 + 𝑒−0.125(𝑥−10)4 . (2.9a)

We consider the system of Saint-Venant equations:⎧⎨⎩𝜕𝑡𝑈𝜇 + 𝜕𝑥𝑓(𝑈𝜇) = 𝑆(𝑈𝜇) (𝑥, 𝑡) ∈ Ω = (0, 𝐿)× (0, 𝑇 );
𝑈𝜇(𝑥, 0) = 𝑈bf(𝑥) 𝑥 ∈ (0, 𝐿);
𝑞𝜇(0, 𝑡) = 𝑞in,𝜇(𝑡), ℎ𝜇(𝐿, 𝑡) = ℎ∞ 𝑡 ∈ (0, 𝑇 );

(2.9b)

where 𝐿 = 25, 𝑇 = 3, ℎ∞ = 2, the source term satisfies 𝑆(𝑈) = [0,−𝑔ℎ𝜕𝑥𝑏]𝑇 and the discharge 𝑞in,𝜇 satisfies

𝑞in,𝜇(𝑡) = 𝑞0

(︂
1 + 𝜇1 𝑡 𝑒

− 1
2𝜇2

2
(𝑡−0.05)2

)︂
, 𝑞0 = 4.4. (2.9c)

Note that the parameter 𝜇1 influences the peak of the incoming discharge, while 𝜇2 affects the time scale and
the integral

∫︀ 𝑇
0
𝑞in,𝜇(𝑡) d𝑡. Here, we consider 𝜇 ∈ 𝒫 = [2, 8] × [0.1, 0.2]. Finally, 𝑈bf corresponds to the limit
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Figure 3. Solution to shallow water equations; behavior of the free surface 𝑧 = ℎ + 𝑏.
(A) 𝜇 = [2, 0.1]. (B) 𝜇 = [8, 0.2].

Figure 4. Solution to shallow water equations; behavior of the free surface 𝑧 = ℎ + 𝑏 for
𝜇 = [2, 0.1] and 𝜇 = [8, 0.2] at three different time instants. (A) 𝑡 = 0.4. (B) 𝑡 = 1.5. (C) 𝑡 = 3.

solution for 𝑡→∞ of the PDE:⎧⎨⎩𝜕𝑡𝑈 + 𝜕𝑥𝑓(𝑈) = 𝑆(𝑈) (𝑥, 𝑡) ∈ Ω = (0, 𝐿)× (0,∞);
𝑈(𝑥, 0) = 0 𝑥 ∈ (0, 𝐿);
𝑞(0, 𝑡) = 𝑞0, ℎ(𝐿, 𝑡) = ℎ∞, 𝑡 ∈ (0,∞).

(2.9d)

In Figures 3 and 4, we show the behavior of the free surface 𝑧 = ℎ + 𝑏 for two values of the parameter 𝜇
in 𝒫. We observe that for 𝑡 ≈ 1.5 the incoming wave associated with the inflow boundary condition interacts
with the bump; for sufficiently large values of 𝜇1, we also observe a backward-propagating wave generated by
the interaction between the incoming wave and the bump.

3. Data compression (RePOD)

We denote by 𝒲hf = span{𝜙hf
𝑚}

𝑀hf
𝑚=1 a 𝑀hf -dimensional space contained in Lip(Ω; R2); following [46], given

the identity function id(X) = X for all X ∈ Ω, we seek mappings of the form

Φ𝜇(X) = id(X) + 𝜙𝜇(X), 𝜙𝜇 ∈ 𝒲hf , ∀ 𝜇 ∈ 𝒫. (3.1)

We refer to 𝜙 as to parameterized displacement, and we denote by 𝒞hf a subset of 𝒲hf such that Φ = id + 𝜙
is bijective from Ω in itself for all 𝜙 ∈ 𝒞hf .
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We devise a computational procedure that takes as input the snapshots {𝑈𝑘}𝑛train
𝑘=1 ⊂ℳ and returns (i) the

linear operators 𝑍𝑁 : R𝑁 → 𝒳 and 𝑊𝑀 : R𝑀 → [Lip(Ω)]2 in (1.1), and (ii) the coefficients {𝛼𝑘}𝑛train
𝑘=1 ⊂ R𝑁

and {a𝑘}𝑛train
𝑘=1 ⊂ R𝑀 such that 𝑈𝑘 ≈ ̂︀𝑈𝑘 ∘ (Φ𝑘)−1, with ̂︀𝑈𝑘 = 𝑍𝑁𝛼𝑘 and Φ𝑘 = id +𝑊𝑀a𝑘. Towards this end,

we proceed as follows.

(1) In Section 3.1, we present guidelines for the definition of the space 𝒲hf and we provide sufficient and
computationally-feasible conditions for the bijectivity of Φ. The discussion exploits results first presented
in [46] and is here reported for completeness.

(2) In Section 3.2.1, given a dictionary of functions – here referred to as template space – 𝒯𝑁 ⊂ 𝐿2(Ω) and the
field s𝑘, we present a general optimization-based procedure for the construction of a mapping Φ𝑘 such that
s̃𝑘 = s𝑘 ∘Φ𝑘 is well-approximated by elements in 𝒯𝑁 . Our approach is a generalization of the optimization-
based technique in [46]; it exploits the theoretical results of Section 3.1 to effectively enforce the bijectivity
of the mapping. The field s𝑘 is a suitable function of the 𝑘-th snapshot, s𝑘 = s(𝑈𝑘), that will be introduced
below.

(3) In Section 3.2.2, we present a greedy procedure for the adaptive construction of the template space 𝒯𝑁 .
Our greedy approach returns the mappings {Φ𝑘}𝑘 for all training points and the low-dimensional operator
𝑊𝑀 : R𝑀 →𝒲𝑀 ⊂ 𝒲hf such that Φ𝑘 = id +𝑊𝑀a𝑘, for some a1, . . . ,a𝑛train ∈ R𝑀 .

(4) In Section 3.3, we finally apply POD to the mapped snapshots {̃︀𝑈𝑘 = 𝑈𝑘 ∘ Φ𝑘}𝑘 to obtain the reduced
operator 𝑍𝑁 : R𝑁 → 𝒵𝑁 ⊂ 𝒳 and the solution coefficients 𝛼1, . . . ,𝛼𝑛train ∈ R𝑁 .

3.1. Affine mappings

Next Proposition provides the mathematical foundations for the registration algorithm discussed below.

Proposition 3.1 ([46], Prop. 2.3). Given Ω = (0, 𝐿)× (0, 𝑇 ), consider the mapping Φ = id + 𝜙, where{︂
𝜙 · e1 = 0 on {X : 𝑋1 = 0, or𝑋1 = 𝐿},
𝜙 · e2 = 0 on {X : 𝑋2 = 0, or𝑋2 = 𝑇}. (3.2)

Then, Φ is bijective from Ω into itself if

min
X∈Ω

𝑔(X) = det
(︁̃︀∇Φ(X)

)︁
> 0. (3.3)

It can be shown that mappings satisfying (3.2) and (3.3) map each edge of the rectangle in itself and each
corner in itself. We here enforce condition (3.2) for all elements of the search space 𝒲hf : more precisely, we
consider 𝒲hf = span{𝜙hf

𝑚}
𝑀hf
𝑚=1 with{︃

𝜙hf
𝑚=𝑖+(𝑖′−1)𝑀̄

(X) = ℓ𝑖
(︀
𝑋1
𝐿

)︀
ℓ𝑖′
(︀
𝑋2
𝑇

)︀
𝑋1
𝐿2 (𝐿−𝑋1) e1

𝜙hf
𝑚=𝑀̄2+𝑖+(𝑖′−1)𝑀̄

(X) = ℓ𝑖
(︀
𝑋1
𝐿

)︀
ℓ𝑖′
(︀
𝑋2
𝑇

)︀
𝑋2
𝑇 2 (𝑇 −𝑋2) e2

𝑖, 𝑖′ = 1, . . . , 𝑀̄ , (3.4)

where {ℓ𝑖}𝑀̄𝑖=1 are the first 𝑀̄ Legendre polynomials in (0, 1) and 𝑀hf = 2𝑀̄2. Clearly, other choices satisfying
(3.2) (e.g., Fourier expansions) might also be considered. On the other hand, condition (3.3) is difficult to impose
computationally and should be replaced by a computationally feasible surrogate.

We propose to replace (3.3) with the approximation∫︁
Ω

exp
(︂
𝜖− 𝑔(X)
𝐶exp

)︂
+ exp

(︂
𝑔(X)− 1/𝜖

𝐶exp

)︂
d𝑋 ≤ 𝛿, (3.5)

where 𝜖 ∈ (0, 1); we further define the subset 𝒞hf of 𝒲hf as

𝒞hf = {𝜙 ∈ 𝒲hf : Φ = id + 𝜙 satisfies (3.5)} . (3.6)
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Provided that 𝜙 is sufficiently smooth, condition (3.5) enforces the bijectivity of the mapping: more precisely,
given 𝜖 ∈ (0, 1) and 𝐶 > 0 there exist 𝛿, 𝐶exp > 0 such that if 𝜙 belongs to

𝒞hf ∩ ℬ𝐶,∞ =
{︁

𝜙 ∈ 𝒞hf : ‖̃︀∇𝑔‖𝐿∞(Ω) ≤ 𝐶
}︁
,

then Φ is a bijection from Ω in itself (see [46], Sect. 2.2).
The constant 𝜖 ∈ (0, 1) can be interpreted as the maximum allowed pointwise contraction induced by the

mapping Φ and by its inverse. On the other hand, we observe that the constant 𝛿 should satisfy

𝛿 ≥ |Ω|
(︂

exp
(︂
𝜖− 1
𝐶exp

)︂
+ exp

(︂
1− 1/𝜖
𝐶exp

)︂)︂
, (3.7)

so that 𝜙 = 0 is admissible. In all our numerical examples, we choose

𝜖 = 0.1, 𝐶exp = 0.025𝜖, 𝛿 = |Ω|. (3.8)

3.2. Registration

3.2.1. Optimization-based registration

We first present the registration procedure for a single field. Given the set 𝒞hf in (3.6), we introduce the
template space 𝒯𝑁 = span{𝜓𝑛}𝑁𝑛=1 ⊂ 𝐿2(Ω), the 𝑀 -dimensional space 𝒲𝑀 ⊂ 𝒲hf , and the target snapshot
𝑈𝑘 = 𝑈𝜇𝑘 . Then, we propose to build Φ𝑘 = id + 𝜙𝑘 as the solution to

min
𝜓∈𝒯𝑁 , 𝜙∈𝒲𝑀

f
(︀
𝜓, id + 𝜙, 𝜇𝑘

)︀
+ 𝜉

⃒⃒
𝜙
⃒⃒2
𝐻2(Ω)

, s.t. 𝜙 ∈ 𝒞hf . (3.9a)

The functional f : 𝐿2(Ω)× [Lip(Ω)]2 ×𝒫 → R+ – which is here referred to as proximity measure – is given by

f (𝜓,Φ, 𝜇) :=
∫︁

Ω

(s(𝑈𝜇) ∘Φ− 𝜓)2 dX; (3.9b)

Here, s : 𝒳 → 𝐿2(Ω) is a suitable registration sensor that will be introduced below. On the other hand, the 𝐻2

seminorm is given by |v|2𝐻2(Ω) :=
∑︀𝑑
𝑖,𝑗,𝑘=1

∫︀
Ω

(︁̂︀𝜕2
𝑖,𝑗𝑣𝑘

)︁2

d𝑋 for all v ∈ 𝐻2(Ω; R𝑑). The constraint 𝜙 ∈ 𝒞hf in
(3.9a), which was introduced in (3.5), weakly enforces that 𝑔 ∈ [𝜖, 1/𝜖] and thus that Φ is a bijection from Ω
into itself for all admissible solutions to (3.9a).

We observe that, compared to [46], we here optimize with respect to both displacement, 𝜙, and template 𝜓.
Rather than minimizing the distance from a template field 𝜓 in the mapped configuration, we here minimize
the best-fit error from a given linear space: in our experience, the statement in (3.9a) outperforms the one in
[46] for fields with several local extrema for which a one-dimensional template might not suffice. Note that the
optimal solution (𝜓𝑘,𝜙𝑘) to (3.9) satisfies 𝜓𝑘 = Π𝒯𝑁

(s(𝑈𝜇𝑘) ∘ Φ𝑘): for moderate values of 𝑁 , we empirically
find that the cost of solving (3.9) is comparable to the cost of solving the statement in [46].

Since |𝑣|𝐻2(Ω) = 0 for all linear polynomials, we find that the penalty term measures deviations from linear
maps; in particular, we find that mapping and displacement have the same 𝐻2 seminorm, that is

⃒⃒
id+𝜙

⃒⃒
𝐻2(Ω)

=⃒⃒
𝜙
⃒⃒
𝐻2(Ω)

. Due to the condition Φ(Ω) = Ω, we might further interpret the penalty as a measure of the deviations
from the identity map. The penalty in (3.9a) can be further interpreted as a Tikhonov regularization, and has
the effect to control the gradient of the Jacobian determinant 𝑔 – recalling the discussion in Section 3.1, the latter
is important to enforce bijectivity. The hyper-parameter 𝜉 balances accuracy – measured by f – and smoothness
of the mapping. If we write 𝜙 =

∑︀𝑀hf
𝑚=1 𝑎𝑚𝜙hf

𝑚 , we obtain that |Φ|𝐻2(Ω) = a𝑇 Areg a with Areg ∈ R𝑀hf ,𝑀hf

such that 𝐴reg
𝑚,𝑚′ = ((𝜙hf

𝑚′ ,𝜙
hf
𝑚))𝐻2(Ω) for 𝑚,𝑚′ = 1, . . . ,𝑀hf – ((·, ·))𝐻2(Ω) is the bilinear form associated with

| · |𝐻2(Ω). Since 𝜙hf
1 , . . . ,𝜙

hf
𝑀hf

are polynomials, computation of the entries of Areg is straightforward. Finally,
since the registration problem is non-convex in 𝜙, careful initialization of the iterative optimization algorithm
is important: we refer to Section 3.1.2 [46] for further details.
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Remark 3.2 (Choice of the registration sensor s.). As for shock capturing methods (e.g., [37]), the choice of
the sensor s is important to correctly capture relevant features associated with the solution field. In this work,
we consider s(𝑈) = 𝑈 for the Burgers equation and s(𝑈) = ℎ for the shallow water equations: a general strategy
for the choice of the registration sensor is beyond the scope of the present paper. For nearly discontinuous fields,
we empirically found that filtering might improve the robustness of the registration procedure. In this work, we
resort to a spatial moving average filter based on the Matlab routine smooth.

3.2.2. Parametric registration

In Algorithm 1, we propose a Greedy procedure to iteratively build a low-dimensional approximation space
𝒲𝑀 ⊂ 𝒲hf for the displacement field and the template space 𝒯𝑁 . Here, the routine

[𝜙⋆, 𝜓⋆, f⋆𝑁,𝑀 ] = registration (𝑈, 𝒯𝑁 ,𝒲𝑀 , 𝐶exp, 𝛿, 𝜖, 𝜉)

takes as input the target snapshot 𝑈 , the template space 𝒯𝑁 , the displacement space 𝒲𝑀 , the constants
𝐶exp, 𝛿, 𝜖 > 0 (cf. (3.5)), and the weighting parameter 𝜉 > 0 (cf. (3.9a)), and returns a local minimum (𝜙⋆, 𝜓⋆)
to (3.9a) and the corresponding value of the proximity measure f⋆𝑁,𝑀 := ‖𝜓⋆ ∘ (id + 𝜙⋆) − 𝑈‖2𝐿2(Ω). On the
other hand, the routine

[𝒲𝑀 , {a𝑘}𝑛train
𝑘=1 ] = POD

(︀
{𝜙⋆,𝑘}𝑛train

𝑘=1 , 𝑡𝑜𝑙pod, (·, ·)⋆
)︀

takes as input the optimal displacement fields obtained by repeatedly solving (3.9a) for different target snapshots,
the tolerance 𝑡𝑜𝑙pod > 0, and the inner product (·, ·)⋆, and returns the POD space associated with the first 𝑀
modes 𝒲𝑀 = span{𝜙𝑚}𝑀𝑚=1, where 𝑀 is chosen according to (1.3), and the vectors of coefficients {a𝑘}𝑘 such
that

(︀
a𝑘
)︀
𝑚

= (𝜙𝑚,𝜙
⋆,𝑘)⋆. As in [46], we consider the inner product

(𝜑′,𝜑)⋆ = a′ · a, for any 𝜑,𝜑′ s.t. 𝜑 =
𝑀hf∑︁
𝑚=1

(a)𝑚 𝜙hf
𝑚 , 𝜑′ =

𝑀hf∑︁
𝑚=1

(a′)𝑚 𝜙hf
𝑚 . (3.10)

If 𝒲hf = ∅, Algorithm 1 reduces to the well-known strong-Greedy algorithm (see, e.g., [5]) for the manifold
ℳs = {s(𝑈𝜇) : 𝜇 ∈ 𝒫}. In our experience, for moderate values of 𝑁max, the offline cost is dominated by the cost
of performing the first iteration: POD indeed effectively leads to an approximation space 𝒲𝑀 of size 𝑀 ≪𝑀hf

and ultimately simplifies the solution to the optimization problem for the subsequent iterations.

Algorithm 1. Registration algorithm.
Inputs: {(𝜇𝑘, 𝑈𝜇𝑘 )}𝑛train

𝑘=1 ⊂ 𝒫 ×ℳ snapshot set, 𝒯𝑁0 = span{𝜓𝑛}𝑁0
𝑛=1 template space, s : 𝒳 → 𝐿2(Ω) registration sensor;

Hyper-parameters: 𝑡𝑜𝑙pod (cf. (1.3)), 𝐶exp, 𝛿, 𝜖 (cf. (3.5)), 𝜉 (cf. (3.9a)), 𝑁max maximum number of iterations, tol
tolerance for termination condition, (·, ·)⋆ mapping inner product (cf. (3.10)).

Outputs: 𝒯𝑁 = span{𝜓𝑛}𝑁
𝑛=1 template space, 𝒲𝑀 = span{𝜙𝑚}𝑀

𝑚=1 displacement space, {a𝑘}𝑘 mapping coefficients.

1: Set 𝒯𝑁=𝑁0 = 𝒯𝑁0 , 𝒲𝑀 = 𝒲hf .
2: for 𝑁 = 𝑁0, . . . , 𝑁max − 1 do
3: [𝜙⋆,𝑘, 𝜓⋆,𝑘, f⋆,𝑘𝑁,𝑀 ] = registration

(︀
𝑈𝑘, 𝒯𝑁 ,𝒲𝑀 , 𝐶exp, 𝛿, 𝜖, 𝜉

)︀
for 𝑘 = 1, . . . , 𝑛train.

4: [𝒲𝑀 , {a𝑘}𝑘] = POD
(︀
{𝜙⋆,𝑘}𝑛train

𝑘=1 , 𝑡𝑜𝑙pod, (·, ·)⋆
)︀

5: if max𝑘 f⋆,𝑘𝑁,𝑀 < tol then, break
6: else
7: 𝒯𝑁+1 = 𝒯𝑁 ∪ span{s

(︀
𝑈𝜇𝑘⋆

)︀
∘Φ⋆,𝑘⋆

} with 𝑘⋆ = arg max𝑘 f⋆,𝑘𝑁,𝑀 .
8: end if
9: end for
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Remark 3.3 (Choice of the initial templace space 𝒯𝑁=𝑁0). Algorithm 1 requires the definition of the initial
template space 𝒯𝑁=𝑁0 : in this work, we use 𝒯𝑁0=1 = span{𝑈𝜇=𝜇̄} for the Burgers equation, and we consider
𝒯𝑁0=2 = span{ℎ𝜇=𝜇̄, ℎbf} for the shallow-water model problem, where 𝜇̄ denotes the centroid of 𝒫, and ℎbf =
(𝑈bf)1 denotes the initial height. For the Burgers equation, we empirically found that our Greedy procedure
weakly depends on the choice of the initial template 𝒯𝑁=1. On the other hand, for the shallow-water problem,
the use of a two-dimensional template is important for accuracy: we can significantly reduce the impact of
the choice of the initial template space by not performing POD (cf. Step 4 Algorithm 1) during the first few
iterations, at the price of (significantly) higher offline costs. Nevertheless, if compared to [46], our empirical
findings suggest that the Greedy procedure significantly reduces the sensitivity of the algorithm with respect
to the initial choice of the template compared to the the approach, which represented an issue of the original
proposal (cf. [46], Fig. 7).

3.3. POD compression

Given the mappings {Φ𝑘 = id+𝜙𝑘}𝑛train
𝑘=1 , we define the mapped snapshots ̃︀𝑈𝑘 := 𝑈𝑘∘Φ𝑘 for 𝑘 = 1, . . . , 𝑛train.

Then, we apply POD based on the 𝐿2 inner product to generate the space 𝒵𝑁 = span{𝜁𝑛}𝑁𝑛=1 and the coefficients
{𝛼𝑘}𝑛train

𝑘=1 such that (𝛼𝑘)𝑛 = (𝜁𝑛, ̃︀𝑈𝑘) for 𝑛 = 1, . . . , 𝑁 and 𝑘 = 1, . . . , 𝑛train. The dimension 𝑁 is chosen
according to (1.3). Note that application of POD requires the definition of all mapped snapshots on a parameter-
independent spatio-temporal mesh.

Algorithm 2 summarizes the computational procedure. We observe that, although our data compression
procedure is applied to a specific class of problems, hyperbolic conservation laws with parameter-dependent
discontinuities, our approach is general, that is, independent of the underlying mathematical model.

Algorithm 2. Data compression (RePOD).
Inputs: see Algorithm 1

Hyper-parameters: (·, ·) solution inner product, and parameters of Algorithm 1

Outputs: 𝒵𝑁 = span{𝜁𝑛}𝑁
𝑛=1 reduced space, 𝒲𝑀 = span{𝜙𝑚}𝑀

𝑚=1 displacement space, {a𝑘}𝑘 mapping coefficients,
{𝛼𝑘}𝑘 solution coefficients.

1: Apply Algorithm 1 to obtain 𝒲𝑀 and {a𝑘}𝑘
2: Define the mapped snapshots ̃︀𝑈𝑘 := 𝑈𝑘 ∘Φ𝑘 with Φ𝑘 = id +𝑊𝑀a𝑘, 𝑘 = 1, . . . , 𝑛train;

3: [𝒵𝑁 , {𝛼𝑘}𝑘] = POD
(︁
{̃︀𝑈𝑘}𝑘, 𝑡𝑜𝑙pod, (·, ·)

)︁
.

4. Projection-based reduced-order model

In Section 3, we discussed how to generate the operators 𝑍𝑁 ,𝑊𝑀 associated with (1.1) based on the snapshots
{𝑈𝑘 = 𝑈𝜇𝑘}𝑘, and how to compute (quasi-)optimal values of the solution/mapping coefficients for all training
points, {𝛼𝑘}𝑘, {a𝑘}𝑘. In this section, we address the problem of predicting solution and mapping coefficients
for a new value of the parameter 𝜇 ∈ 𝒫: as anticipated in the introduction, we resort to a kernel-regression
algorithm to predict the mapping coefficients, while we resort to minimum residual projection to predict the
coefficients associated with the estimate ̂︀𝑈 of the mapped solution. To clarify the presentation, we here focus on
the main features of the formulation and we defer to the appendix for a thorough discussion of several technical
aspects.

4.1. Non-intrusive construction of the mapping Φ

Algorithm 1 returns the space 𝒲𝑀 = span{𝜙𝑚}𝑀𝑚=1 and the mapping coefficients {a𝑘}𝑛train
𝑘=1 . As in [46], we

apply a multi-target regression procedure based on radial basis function (RBF, [51]) approximation to compute
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predictors of the mapping coefficients for all 𝜇 ∈ 𝒫:

̂︀Φ𝜇 = id +
𝑀∑︁
𝑚=1

(̂︀a𝜇)𝑚 𝜙𝑚, ̂︀a : 𝒫 → R𝑀 . (4.1)

Each entry of ̂︀a is built separately based on the datasets 𝒟𝑚 = {(𝜇𝑘, 𝑎𝑘𝑚)}𝑛train
𝑘=1 , 𝑚 = 1, . . . ,𝑀 , 𝑎𝑘𝑚 :=

(︀
a𝑘
)︀
𝑚

.
To assess the goodness of fit of the regression model, we compute an estimate of the out-of-sample R-squared
(e.g., [40], Chap. 14) using cross-validation. We recall that given training and test sets {(𝜇𝑘, 𝑎𝑘𝑚)}𝑛train

𝑘=1 and
{(𝜇𝑗 , 𝑎𝑗𝑚)}𝑛test

𝑗=1 , the R-squared is defined as

R2
𝑚 = 1−

∑︀𝑛test
𝑗=1

(︀
𝑎𝑗𝑚 −

(︀̂︀a𝜇𝑗

)︀
𝑚

)︀2
∑︀𝑛test
𝑗=1

(︁
𝑎𝑗𝑚 − 𝑎̄train

𝑚

)︁2 , 𝑎̄train
𝑚 =

1
𝑛train

𝑛train∑︁
𝑘=1

𝑎𝑘𝑚. (4.2)

To reduce the risk of over-fitting, we only keep coefficients for which R2
𝑚 ≥ R2

min = 0.75. We remark that the
mapping in (4.1) is not guaranteed to be bijective for all 𝜇 ∈ 𝒫, particularly for small-to-moderate values of
𝑛train: as discussed in [46], this represents a major issue of the proposed approach and is the motivation to
consider intrusive methods to simultaneously learn mapping and solution coefficients. The development of a
fully intrusive ROM is beyond the scope of the present paper and is the subject of ongoing research.

4.2. Projection-based ROM for the solution coefficients

4.2.1. Reduced-order statement: Galerkin projection; (approximate) minimum residual

We introduce the matrix representation Z𝑁 = [𝜁1, . . . , 𝜁𝑁 ] of the operator 𝑍𝑁 : R𝑁 → 𝒵𝑁 associated
with the DG FE basis {𝜙𝑗}𝑁hf

𝑗=1, such that Z𝑇𝑁XhfZ𝑁 = 1𝑁 ; we further introduce the dual residual operator
Rhf
𝑁 : R𝑁 × 𝒫 → R𝑁hf such that(︀

Rhf
𝑁 (𝛼, 𝜇)

)︀
𝑗

= 𝑅Φ𝜇
(𝑍𝑁𝛼, 𝜙𝑗), 𝑗 = 1, . . . , 𝑁hf , (4.3a)

and the Jacobian 𝒥 hf
𝑁 : R𝑁 × 𝒫 → R𝑁hf ,𝑁 such that

𝒥 hf
𝑁 (𝛼, 𝜇) := 𝒥 hf(𝑍𝑁𝛼, 𝜇)Z𝑁 , (4.3b)

where 𝒥 hf(𝑈, 𝜇) ∈ R𝑁hf ,𝑁hf is the high-fidelity Jacobian associated with a given field 𝑈 ∈ 𝒳hf and the parame-
ter 𝜇, (︀

𝒥 hf(𝑈, 𝜇)
)︀
𝑖,𝑗

:= 𝐷𝑅Φ𝜇 [𝑈 ](𝜙𝑗 , 𝜙𝑖) = lim
𝜖→0

𝑅Φ𝜇
(𝑈 + 𝜖𝜙𝑗 , 𝜙𝑖)−𝑅Φ𝜇

(𝑈,𝜙𝑖)
𝜖

, 𝑖, 𝑗 = 1, . . . , 𝑁hf , (4.3c)

and 𝐷𝑅Φ𝜇
[𝑈 ] : 𝒳hf ×𝒳hf → R is the Frchet derivative of 𝑅Φ𝜇

at 𝑈 . We present below several projection-based
statements: to clarify the approaches we report both the variational and the algebraic formulations.

We have now the elements to introduce the Galerkin ROM: find ̂︀𝑈𝜇 = 𝑍𝑁 ̂︀𝛼𝜇 ∈ 𝒵𝑁 such that

𝑅Φ𝜇
(̂︀𝑈𝜇, 𝜁) = 0 ∀ 𝜁 ∈ 𝒵𝑁 ⇔ Z𝑇𝑁 Rhf

𝑁 (̂︀𝛼𝜇, 𝜇) = 0. (4.4)

Similarly, we introduce the minimum residual ROM:

̂︀𝑈𝜇 ∈ arg min
𝑈∈𝒵𝑁

sup
𝜂∈𝒴hf

𝑅hf
Φ𝜇

(𝑈, 𝜂)

|||𝜂|||
⇔ ̂︀𝛼𝜇 ∈ arg min

𝛼∈R𝑁
‖Rhf

𝑁 (𝛼, 𝜇) ‖Y−1
hf
, (4.5)

where ‖w‖2
Y−1

hf
= w𝑇Y−1

hf w. In the numerical results, we demonstrate the superiority of the minimum residual

ROM (4.5) compared to the Galerkin ROM (4.4).
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In order to devise an online-efficient ROM, we first introduce the approximate minimum residual statement:

̂︀𝑈𝜇 = 𝑍𝑁 ̂︀𝛼𝜇 ∈ arg min
𝑈∈𝒵𝑁

sup
𝜂∈𝒴𝐽

𝑅Φ𝜇
(𝑈, 𝜂)
|||𝜂|||

, (4.6a)

where 𝒴𝐽 = span{𝜂𝑗}𝐽𝑗=1 ⊂ 𝒴hf is referred to as empirical test space. If (𝜂𝑗 , 𝜂𝑖)𝒴hf = 𝛿𝑖,𝑗 , it is possible to verify
that the solution coefficients ̂︀𝛼𝜇 satisfy

̂︀𝛼𝜇 ∈ arg min
𝛼∈R𝑁

‖Rhf
𝑁,𝐽 (𝛼, 𝜇) ‖2, with

(︀
Rhf
𝑁,𝐽 (𝛼, 𝜇)

)︀
𝑗

= 𝑅Φ𝜇
(𝑍𝑁𝛼, 𝜂𝑗), 𝑗 = 1, . . . , 𝐽. (4.6b)

Then, following [54], we replace the truth residual in (4.6) with the EQ residual

𝑅eq
Φ𝜇

(𝜁, 𝜂) =
∑︁
𝑘∈ℐeq

𝜌eq
𝑘

(︀
𝑟c,𝜇𝑘 (𝜁, 𝜂) + 𝑟d𝑘(𝜁, 𝜂)

)︀
(4.7a)

where ℐeq ⊂ {1, . . . , 𝑁e} is a subset of the mesh elements and 𝜌1, . . . , 𝜌𝑁e ≥ 0 are a set of non-negative weights.
In conclusion, we obtain the hyper-reduced approximate minimum residual ROM:

̂︀𝑈𝜇 ∈ arg min
𝑈∈𝒵𝑁

sup
𝜂∈𝒴𝐽

𝑅eq
Φ𝜇

(𝑈, 𝜂)

|||𝜂|||
⇔ ̂︀𝛼𝜇 ∈ arg min

𝛼∈R𝑁
‖Req

𝑁,𝐽 (𝛼, 𝜇) ‖2, 𝑗 = 1, . . . , 𝐽 (4.7b)

with Req
𝑁,𝐽 : R𝑁 × 𝒫 → R𝐽 ,

(︁
Req
𝑁,𝐽 (𝛼, 𝜇)

)︁
𝑗

= 𝑅eq
Φ𝜇

(𝑍𝑁𝛼, 𝜂𝑗). In the next two sections, we discuss how to

construct the test space 𝒴𝐽 and how to compute the empirical quadrature rule.

Remark 4.1 (Online efficiency). Computation of Req
𝑁,𝐽 and its Jacobian Jeq

𝑁,𝐽 can be performed efficiently,
provided that |ℐeq| ≪ 𝑁e; furthermore, since (4.7) is a nonlinear least-squares problem, we can resort to the
Gauss-Newton method to efficiently compute the solution. More in detail, computation of {𝑟c,𝜇𝑘 (𝑍𝑁𝛼, 𝜂𝑗) +
𝑟d,𝜇𝑘 (𝑍𝑁𝛼, 𝜂𝑗)}𝑗 for a given 𝑘 ∈ ℐeq requires the storage of 𝜁1, . . . , 𝜁𝑁 , 𝜂1, . . . , 𝜂𝐽 in the 𝑘-th element and
in its neighbors. Note that if 𝒵𝑁 ,𝒴𝐽 ⊂ 𝐶(Ω), computation of 𝑟c,𝜇𝑘 , 𝑟d,𝜇𝑘 only depends on the value of trial
and test functions in the 𝑘-th element (see Appendix B): continuous approximations of trial and test spaces
thus allow quite significant reductions in online memory and computational costs. In the numerical results,
we investigate the accuracy of continuous approximations for the two model problems. The continuous trial
space 𝒵𝑁 is obtained by applying POD to continuous approximations of the mapped snapshots {̃︀𝑈𝑘}𝑘: in our
implementation, the continuous approximation is computed by simply averaging over facets.

4.2.2. Construction of the empirical test space

It is possible to verify that the solution ̂︀𝑈𝜇 to (4.5) satisfies

𝑅Φ𝜇
(̂︀𝑈𝜇, 𝜂) = 0 ∀ 𝜂 ∈ 𝒴opt

𝑁,𝜇 = span
{︁
R𝒴hf

(︁
𝐷𝑅Φ𝜇

[̂︀𝑈𝜇](𝜁𝑛, ·)
)︁}︁𝑁

𝑛=1
. (4.8)

Note that the algebraic representation Yopt
𝑁,𝜇 of the space 𝒴opt

𝑁,𝜇 satisfies Yopt
𝑁,𝜇 = Y−1

hf 𝒥 hf(̂︀𝑈𝜇, 𝜇)Z𝑁 . For this
reason, we propose to choose the test space 𝒴𝐽 to approximate the manifold ℳtest,𝑁 =

⋃︀
𝜇∈𝒫 𝒴opt

𝑁,𝜇.
In Appendix C, we rigorously justify our choice by presenting a detailed analysis for the linear case; in

Algorithm 3, we summarize the computational procedure for the construction of the test space employed in our
code. We remark that problem-adapted test spaces have been first considered in [13] for linear problems, and
more recently in [12]: a thorough comparison with [12,13] is beyond the scope of the present paper.
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Algorithm 3. Construction of the empirical test space.
Inputs: {(𝜇𝑘, 𝑈𝜇𝑘 )}𝑛train

𝑘=1 ⊂ 𝒫 ×ℳ snapshot set, 𝒵𝑁 = span{𝜁𝑛}𝑁
𝑛=1 trial space;

Hyper-parameters: 𝑡𝑜𝑙pod (cf. (1.3)).

Outputs: 𝒴𝐽 = span{𝜂𝑗}𝐽
𝑗=1 test space.

1: for 𝑘 = 1, . . . , 𝑛train, 𝑛 = 1, . . . , 𝑁 do
2: Compute 𝜂𝑘,𝑛 = R𝒴hf

(︁
𝐷𝑅Φ

𝜇𝑘
[𝑈𝜇𝑘 ](𝜁𝑛, ·)

)︁
3: end for
4: 𝒴𝐽 = POD ({𝜂𝑘,𝑛}𝑘,𝑛, 𝑡𝑜𝑙pod, (·, ·)𝒴hf )

Remark 4.2 (Continuous approximation). As discussed in Remark 4.1, for computational reasons, it might be
convenient to consider a continuous test space 𝒴𝐽 . This can be achieved by performing POD over continuous
approximations of the test functions {𝜂𝑘,𝑛}𝑘,𝑛. As for the trial space, the continuous approximation is computed
by simply averaging over facets. fv

4.2.3. Construction of the empirical quadrature rule

We denote by 𝜌eq ∈ R𝑁e
+ a vector of positive weights associated with (4.7) and we denote by ℐeq the set of

indices 𝑘 ∈ {1, . . . , 𝑁e} such that 𝜌eq
𝑘 > 0. We seek 𝜌eq ∈ R𝑁e

+ such that

(1) the number of nonzero entries in 𝜌eq is as small as possible;
(2) the constant function is approximated correctly,

⃒⃒⃒ 𝑁e∑︁
𝑘=1

𝜌eq
𝑘 |D

𝑘| − |Ω|
⃒⃒⃒
≪ 1; (4.9)

(3) for all 𝜇 ∈ 𝒫train = {𝜇𝑘}𝑛train
𝑘=1 , the empirical residual satisfies⃦⃦⃦

Jhf
𝑁,𝐽

(︀
𝛼train
𝜇 , 𝜇

)︀𝑇 (︁
Req
𝑁,𝐽

(︀
𝛼train
𝜇 , 𝜇

)︀
− Rhf

𝑁,𝐽

(︀
𝛼train
𝜇 , 𝜇

)︀)︁ ⃦⃦⃦
2
≪ 1. (4.10)

Here, 𝛼train
𝜇 is chosen equal to the projection, that is 𝑍𝑁𝛼train

𝜇 = Π𝒵𝑁
(𝑈𝜇 ∘Φ𝜇).

The constant function constraint – which was considered in [54] – is empirically found to improve the accuracy
of the EQ procedure when the integral is close to zero due to the cancellation of the integrand in different parts
of the domain. The accuracy constraint in (4.10) is an adaptation of the manifold accuracy constraints in [54]
to minimum residual ROMs and is motivated by the error analysis in Appendix D. As shown in [54], the hyper-
reduced system inherits the stability of the DG discretization: (i) energy stability for linear hyperbolic systems,
(ii) symmetry and non-negativity for steady linear diffusion systems, and hence (iii) energy stability for linear
convection-diffusion systems.

It is easy to verify that (4.9) and (4.10) could be rewritten in matrix form as

⃒⃒⃒ 𝑁e∑︁
𝑘=1

𝜌eq
𝑘 |D

𝑘| − |Ω|
⃒⃒⃒

= |Gconst𝜌
eq − |Ω|

⃒⃒⃒
≪ 1,⃦⃦⃦

Jhf
𝑁,𝐽

(︀
𝛼train
𝜇 , 𝜇

)︀𝑇 (︁
Req
𝑁,𝐽

(︀
𝛼train
𝜇 , 𝜇

)︀
− Rhf

𝑁,𝐽

(︀
𝛼train
𝜇 , 𝜇

)︀)︁ ⃦⃦⃦
2

=
⃦⃦⃦
G𝜇𝜌

eq − b𝜇
⃦⃦⃦

2
≪ 1,

where Gconst = [|D1|, . . . , |D𝑁e |], and G𝜇 ∈ R𝑁,𝑁e ,b𝜇 ∈ R𝑁 are a suitable matrix and vector, whose explicit
expressions can be derived exploiting the same argument as in [16,45,54]. The problem of finding 𝜌eq can thus
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be reformulated as a sparse-representation (or best-subset selection) problem:

min
𝜌∈R𝑁e

‖𝜌‖0, s.t.
{︂
‖G𝜌− b‖⋆ ≤ 𝛿;
𝜌 ≥ 0; where G =

⎡⎢⎢⎣
Gconst

G𝜇1

...
G𝜇𝑛train

⎤⎥⎥⎦ b =

⎡⎢⎢⎣
|Ω|
b𝜇1

...
b𝜇𝑛train

⎤⎥⎥⎦ (4.11)

for suitable choices of the vector norm ‖ · ‖⋆, and the tolerance 𝛿 > 0. Here, ‖ · ‖0 is the ℓ0-norm, which counts
the number of nonzero entries. In this work, we resort to the nonnegative linear least-squares method considered
in [16] to obtain approximate solutions to (4.11): more in detail, we rely on the Matlab function lsqnonneg
which implements a variant of the Lawson and Hanson active set iterative algorithm [25]. Note that Yano in
[54] relies on ℓ1 relaxation to obtain approximate solutions to (4.11): a thorough comparison between the two
methods is beyond the scope of this work.

4.3. Summary of the offline/online computational procedure

We conclude this section by summarizing the offline/online computational decomposition. During the offline
stage, given the snapshots {𝑈𝑘 = 𝑈𝜇𝑘}𝑘, we proceed as follows:
(1) we apply RePOD to obtain the low-dimensional operators 𝑍𝑁 ,𝑊𝑀 and the training coefficients {𝛼𝑘}𝑘 ⊂ R𝑁

and {a𝑘}𝑘 ⊂ R𝑀 (cf. Sect. 3);
(2) we apply kernel regression to obtain the predictor ̂︀a : 𝒫 → R𝑀 for the mapping coefficients (cf. Sect. 4.1)

and the predictor ̂︀𝛼(0) : 𝒫 → R𝑁 for the solution coefficients;
(3) we perform hyper-reduction and we build the ROM for the solution coefficients (cf. Sect. 4.2).

The RBF estimate of the solution coefficients is used during the online stage as initial guess ̂︀𝛼(0)
𝜇 for the

Gauss-Newton method to solve (4.7). The output of the offline stage includes (i) the RBF data structure
needed to estimate the mapping and solution coefficients during the online stage; (ii) the data structures for
the evaluation of the dual residual in (4.7); (iii) the space-time mesh 𝒯hf , and (iv) the DG representation of the
reduced operator 𝑍𝑁 , Z𝑁 ∈ R𝐷·𝑁hf ,𝑁 , and of the displacement operator 𝑊𝑀 , W𝑀 ∈ R2·𝑁hf ,𝑀 , for visualization.

Algorithm 4 summarizes the online stage. The algorithm returns a FE vector ̂︀U𝜇 ∈ R𝐷·𝑁hf and the deformed
mesh Φ𝜇(𝒯hf): if we interpret ̂︀U𝜇 as an element of the FE space 𝒳hf , ̂︀𝑈𝜇, we obtain an estimate of the mapped
field ̃︀𝑈𝜇; on the other hand, if we interpret ̂︀U𝜇 as an element of the mapped FE space 𝒳hf,Φ𝜇

(cf. (1.6)), ̂︀𝑈⋆𝜇, we
obtain an estimate of 𝑈𝜇. Note that the ̂︀U𝜇 and the deformed mesh can be computed through a simple matrix
vector multiplication:̂︀U𝜇 = Z𝑁 ̂︀𝛼𝜇,

{︁
Φ
(︀
xhf
𝑖,𝑘

)︀
= xhf

𝑖,𝑘 + [(W𝑀̂︀a𝜇)𝑗𝑖,𝑘,1
, (W𝑀̂︀a𝜇)𝑗𝑖,𝑘,2

] : 𝑖 = 1, . . . , 𝑛lp, 𝑘 = 1, . . . , 𝑁e

}︁
, (4.12)

with 𝑗𝑖,𝑘,𝑑 = 𝑖+ (𝑘− 1)𝑛lp + (𝑑− 1)𝑁hf . The first two steps of the procedure are independent of the dimension
of the hf space; the third step is required for visualization and is in practice very fast.

Algorithm 4. Online evaluation of the ROM.
Inputs: 𝜇 ∈ 𝒫, parameter value, ROM structure (output of Offline stage), 𝒯hf space-time mesh.

Outputs: (̂︀𝛼𝜇, ̂︀a𝜇) prediction of solution and mapping coefficients; ̂︀U𝜇 DG estimate of the solution field, Φ𝜇(𝒯hf)
deformed mesh.

1: Apply Algorithm 1 to obtain 𝒲𝑀 and {a𝑘}𝑘.

2: Evaluate RBF predictors of solution and mapping coefficients, ̂︀𝛼(0)
𝜇 , ̂︀a𝜇.

3: Solve (4.7) using Gauss-Newton method with initial guess ̂︀𝛼(0)
𝜇 .

4: Compute ̂︀U𝜇 and Φ𝜇(𝒯hf) using (4.12).
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Figure 5. Burgers equation; space-time registration. (A) Behavior of normalized POD eigen-
values associated with the unregistered and registered space-time snapshots. (B) Behavior of
the out-of-sample maximum relative projection error (cf. (1.2)) with and without registration.

5. Numerical results

We illustrate here the numerical performance of the proposed approach for the two model problems introduced
at the end of Section 2. In Appendix E, we present further investigations of the data compression approach.
Numerical results are performed in Matlab 2019b on a commodity laptop.

5.1. Burgers equation

In Figure 5, we illustrate performance of space-time registration. Here, the mapping is generated based on
𝑛train = 200 snapshots through Algorithm 1 with 𝑁max = 3, 𝜉 = 10−4, 𝑀hf = 128, 𝑡𝑜𝑙pod = 10−4. The resulting
map consists of a four-term expansion (𝑀 = 4). In Figure 5a, we show the behavior of normalized POD
eigenvalues associated with the unregistered and registered space-time snapshots, while Figure 5b shows the
out-of-sample maximum relative projection error with and without registration 𝐸bf,∞ = max𝑗=1,...,𝑛test 𝐸

bf(𝜇𝑗),

where 𝜇1, . . . , 𝜇𝑛test
iid∼ Uniform(𝒫) (cf. (1.2)) with 𝑛test = 20. Note that for 𝑁 ≥ 4, projection error is less than

10−2 and is comparable with the discretization error. We conclude that the space-time registration procedure
dramatically improves the linear reducibility of the space-time solution manifold.

In Figure 6, we assess performance of the Galerkin ROM (4.4), the minimum residual ROM (4.5), and the
approximate minimum residual ROM (4.6) for three different choices of the size 𝐽 of the test space 𝒴𝐽 for each
value of 𝑁 ; in all cases, we do not perform hyper-reduction. In Figure 6a, we consider continuous trial and test
spaces (cf. Rems. 4.1 and 4.2), while in Figure 6b, we consider discontinuous trial and test spaces. On the 𝑦-axis,
we here report the average relative out-of-sample 𝐿2 error in the reference configuration:

𝐸hf
avg =

1
𝑛test

𝑛test∑︁
𝑗=1

‖̃︀𝑈𝜇𝑗 − ̂︀𝑈hf
𝜇𝑗‖

‖̃︀𝑈𝜇𝑗‖
, (5.1)

where the superscript hf emphasizes the fact that the ROM relies on the hf quadrature rule (hf ROM). We observe
that minimum residual projection is superior to Galerkin projection in terms of performance; we also observe
that the continuous approximation introduces an additional error that is negligible for 𝑁 ≤ 5. Furthermore, we
observe that approximate minimum residual approaches minimum residual for discontinuous test spaces: this is
expected for sufficiently large values of 𝑛train and 𝐽 . For continuous approximations, we observe that minimum
residual leads to slightly worse results than the approximate formulation: the difference is, however, modest for
all values of 𝑁 considered.



SPACE-TIME REGISTRATION-BASED MODEL REDUCTION 117

Figure 6. Burgers equation: performance of various ROMs (without hyper-reduction).
(A) Continuous approximation. (B) Discontinuous approximation. Projection error ,
Galerkin , minimum residual , approximate minimum residual (𝐽 = 𝑁 , 𝐽 = 2𝑁

, 𝐽 = 3𝑁 ).

In Figure 7, we illustrate performance of the hyper-reduction procedure; here, we consider empirical test
spaces of size 𝐽 = 2𝑁 . In Figure 7a, we show the number of sampled elements 𝑄 for several choices of 𝑁 for
two different tolerances (the total number of elements is equal to 𝑁e = 2616): we observe that the number
of sampled elements grows linearly with 𝑁 , and ranges from 1% to 4% of the total number for 𝑡𝑜𝑙 = 10−8,
and from 1% to 10% for 𝑡𝑜𝑙 = 2.5 × 10−11. Here, the tolerance 𝑡𝑜𝑙 is a lower bound on the size of a step: the
active-set iterative procedure terminates at the 𝑘-th iteration if ‖𝜌eq,𝑘+1 − 𝜌eq,𝑘‖2 ≤ 𝑡𝑜𝑙. In Figure 7b, in the
case of continuous approximations, we show the relative 𝐿2 error

𝐸avg =
1

𝑛test

𝑛test∑︁
𝑗=1

‖̃︀𝑈𝜇𝑗 − ̂︀𝑈𝜇𝑗‖
‖̃︀𝑈𝜇𝑗‖

, (5.2)

for the hyper-reduced ROM, and we compare it with the error 𝐸hf
avg (hf quad) obtained with 𝐽 = 2𝑁 (same

as magenta curve in Fig. 6a). Figure 7c shows the average online computational cost of Algorithm 4 with and
without hyper-reduction; in Figure 7d, we report the average speedup of the hyper-reduced ROM with respect
to the ROM with hf quadrature and the average speedup of the hyper-reduced ROM compared to an explicit
Runge–Kutta DG (RKDG) time-marching scheme with 𝑁hf = 450 spatial degrees of freedom3. Note that hyper-
reduction reduces online costs by a factor ten for all 𝑁 ; on the other hand, the speedup with respect to the
explicit RKDG solver ranges from 2.1× 103 for 𝑁 = 1 to 1.5× 102 for 𝑁 = 10.

Finally, in Figure 8, we show the mesh and the reduced meshes for two choices of trial and test spaces: we
observe that most sampled elements are located in the proximity of the shock. Thanks to the registration process,
the position of the shocks is nearly parameter-independent: this explains why the hyper-reduction procedure is
able to achieve accurate performance with a limited number of elements.

3The space-time solver used for snapshot generation relies on a RKDG time-marching scheme to generate an initial guess
and then to a Newton method with approximate line search to compute the space-time solution. Since we have not optimized
performance of the hf space-time solver, we report absolute timings and we provide a comparison with respect to a state-of-the-art
explicit solver with comparable accuracy.
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Figure 7. Burgers equation; hyper-reduction for continuous approximation. (A) Number of
sampled elements 𝑄 for several values of 𝑁 , 𝐽 = 2𝑁 and two tolerances. (B) Relative 𝐿2

error 𝐸avg with respect to 𝑁 for two tolerances. (C) Average computational cost of Algorithm
4 with and without hyper-reduction; (D) Average speedup with respect to the ROM with hf
quadrature (hf quad) and with respect to a RKDG explicit solver (RKDG).

Figure 8. Burgers equation; hyper-reduction. Sampled elements for 𝑡𝑜𝑙 = 10−8, for two values
of 𝑁 . (A). (B) 𝑁 = 2, 𝐽 = 4. (C) 𝑁 = 6, 𝐽 = 12.
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Figure 9. Shallow water equations; space-time registration. (A) Behavior of the POD eigen-
values associated with the unregistered and registered configurations. (B) Behavior of the out-
of-sample maximum relative projection error (cf. (1.2)) with and without registration.

Figure 10. Shallow water equations: performance of various ROMs (without hyper-reduction).
(a) Continuous approximation. (b) Discontinuous approximation. Projection error , Galerkin

, minimum residual , approximate minimum residual (𝐽 = 𝑁 , 𝐽 = 2𝑁 , 𝐽 = 3𝑁
).

5.2. Shallow water equations

In Figure 9, we illustrate performance of space-time registration. The mapping is generated based on 𝑛train =
100 snapshots through Algorithm 1 with 𝑁max = 5, 𝜉 = 10−4, 𝑀hf = 128, 𝑡𝑜𝑙pod = 10−4. We recall that
the algorithm is applied to the filtered height ℎf

𝜇 and that the initial template space is set equal to 𝒯𝑁0=2 =
span{ℎf

𝜇̄, ℎ
f
bf}. The resulting map consists of a five-term expansion (𝑀 = 5). Figure 9a shows the behavior of

the 𝐿2 POD eigenvalues associated with the snapshots {𝑈𝜇𝑘}𝑛train
𝑘=1 and with the mapped snapshots {̃︀𝑈𝜇𝑘}𝑛train

𝑘=1 ;
Figure 9b shows the behavior of the out-of-sample relative projection error based on 𝑛test = 20 snapshots
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Figure 11. Shallow water equations; hyper-reduction for continuous approximation. (A) Num-
ber of sampled elements 𝑄 for several values of 𝑁 , 𝐽 = 2𝑁 and two tolerances. (B) Relative 𝐿2

error 𝐸avg with respect to 𝑁 for two tolerances. (C) Average computational cost of Algorithm 4
with and without hyper-reduction; (D) Average speedup with respect to the ROM with hf
quadrature (hf quad) and with respect to a RKDG explicit solver (RKDG).

{𝑈𝜇𝑗}𝑛test
𝑗=1 with 𝜇1, . . . , 𝜇𝑛test

iid∼ Uniform(𝒫) (cf. (1.2)). We observe that the approach is extremely effective to
reduce the linear complexity of the solution manifold for moderate values of 𝑁 .

In Figure 10, we illustrate performance of projection-based ROMs without hyper-reduction. Similarly to the
Burgers equation (cf. Fig. 6), we empirically find that Galerkin projection might lead to instabilities; on the
other hand, our approximate minimum residual approach is effective, provided that the size of the test space
satisfies 𝐽 & 2𝑁 . Furthermore, the continuous approximation introduces an additional error that is negligible
for 𝑁 ≤ 7.

In Figure 11, we illustrate performance of the hyper-reduction procedure. Figure 11a shows the number of
sampled elements 𝑄 for several choices of 𝑁 , 𝐽 = 2𝑁 , and two different tolerances (the total number of elements
is equal to 𝑁e = 2364). Note that as for the Burgers model problem the number of sampled elements grows
linearly with 𝑁 . Figure 11b shows the behavior of the relative 𝐿2 error (5.2) for the hyper-reduced ROM, and we
compare it with the error of the ROM based on the truth quadrature. Note that for 𝑡𝑜𝑙 = 2.5×10−11 the hyper-
reduced ROM guarantees the same accuracy as the non-hyper-reduced ROM, for all values of 𝑁 considered.
Figure 11c shows the average online computational cost of Algorithm 4 with and without hyper-reduction;
in Figure 11d, we report the average speedup of the hyper-reduced ROM with respect to the ROM with hf
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quadrature and the average speedup of the the hyper-reduced ROM compared to a explicit Runge–Kutta DG
time-marching scheme with 𝑁hf = 900 spatial degrees of freedom. Note that hyper-reduction reduces online
costs by roughly a factor ten for all 𝑁 ; on the other hand, the speedup with respect to the explicit RKDG solver
ranges from 4.4× 102 for 𝑁 = 1 to 7.2× 101 for 𝑁 = 10.

6. Conclusions

In this work, we developed and numerically validated a model reduction procedure for hyperbolic PDEs in
presence of shocks. The approach relies on a general (i.e., independent of the underlying PDE model) data
compression procedure: given the snapshot set, we first perform space-time registration to “freeze” the position
of the shock; then, we resort to POD to approximate the registered (mapped) field. To estimate the registered
field, we resort to an hyper-reduced approximate minimum residual formulation: our statement is based on the
introduction of a low-dimensional empirical test space [45] and of an empirical quadrature rule [16,54] to reduce
online assembling costs.

Numerical results demonstrate the effectiveness of the space-time registration-based compression strategy to
construct a low-dimensional representation of the solution manifold for the two model problems considered.
Furthermore, by improving the linear compressibility of the solution manifold, registration has also the effect
of reducing the required size 𝐽 of the empirical test space, and also the number 𝑄 of sampled elements.

We aim to extend the approach in several directions. In this work, we resorted to a non-intrusive method for
the computation of the mapping coefficients, and to an intrusive (projection-based) method for the computation
of the registered solution: in the future, we aim to combine our data compression procedure with fully-intrusive
ROMs and non-intrusive ROMs. Fully-intrusive approaches based on projection (see [31]) might help us devise
robust ROMs based on moderate-dimensional snapshot sets. Furthermore, if complemented by reliable a poste-
riori error indicators, they might also lead to the development of adaptive sampling algorithms to dramatically
reduce offline training costs. On the other hand, non-intrusive techniques (see [11,17,20]) might be considerably
easier to implement and also to integrate with existing codes, and – at the price of larger training costs – might
contribute to reduce online costs.

We also wish to investigate the performance of the proposed model reduction technique to a broader class of
PDE models in computational mechanics, in one and more dimensions. In this respect, we wish to consider two-
dimensional steady and unsteady advection-dominated problems that arise in incompressible and compressible
fluid mechanics applications. Furthermore, we envision that our approach might be of interest for solid mechanics
applications such as contact problems.

Appendix A. Change-of-variable formulas

For completeness, we report here standard change-of-variable formulas used to derive the mapped formulation
of Section 2.1. Given ̃︀D ⊂ Ω and the bijection Φ : ̃︀D→ D, we have∫︁

D

𝑢dx =
∫︁
̃︀D

(𝑢 ∘Φ) 𝑔 dX;∫︁
D

b · ∇𝑢dx =
∫︁
̃︀D

b ∘Φ ·
(︁
G−𝑇 ̃︀∇𝑢 ∘Φ

)︁
𝑔 dX (A.1)∫︁

𝜕D

𝑢dx =
∫︁
𝜕̃︀D
𝑢 ∘Φ ‖𝑔 G−𝑇 N‖2 dX; (A.2)

for all 𝑢,b ∈ 𝐶1(Ω). Note that (A.1)3 is a straightforward consequence of Nanson’s formula (cf. [29], Chap. 1).
Fluxes 𝐹Φ, 𝑆Φ should satisfy∫︁

̃︀D

(︁̃︀∇ · 𝐹Φ(̃︀𝑈) − 𝑆Φ(̃︀𝑈)
)︁

dX =
∫︁
D

(∇ · 𝐹 (𝑈) − 𝑆(𝑈)) dx,
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for all 𝑈 ∈ 𝐶1(Ω; R𝑃 ). Exploiting (A.1), and the divergence theorem, we obtain that 𝐹Φ, 𝑆Φ satisfy 𝐹Φ(·) =
𝑔𝐹 (·)G−𝑇 and 𝑆Φ(·) = 𝑔𝑆(·), which is (2.3b).

Appendix B. Online residual calculations

We provide some details concerning the online calculation of the residual; we further explain why the CG
approximation reduces the memory cost of the ROM. As in the main body of the paper, we denote by ℐeq ⊂
{1, . . . , 𝑁e} the sampled elements over which we perform online integration, and we define 𝒳 cg

hf = 𝒳hf ∩ [𝐶(Ω)]𝐷.
We also denote by 𝒰hf the scalar DG FE space of order 𝑝 such that 𝒳hf = [𝒰hf ]𝐷. We define the average operator
{·}, the normal vector average {·}n, and the jump operator 𝒥 (·) such that

{𝑤} =
{︂

1
2 (𝑤+ + 𝑤−) on 𝜕𝒯hf ∖ 𝜕Ω,
𝑤 on 𝜕𝒯hf ∩ 𝜕Ω; {𝑤}n = {𝑤} · n+; 𝒥𝑤 =

{︂
𝑤+ − 𝑤− on 𝜕𝒯hf ∖ 𝜕Ω,
𝑤 on 𝜕𝒯hf ∩ 𝜕Ω. (B.1)

We further denote by Γ𝑖D ⊂ 𝜕Ω the Dirichlet boundary for the 𝑖-th component of the solution field, 𝑖 = 1, . . . , 𝐷;
and we introduce the Dirichlet operators

(𝒟(𝑤))𝑖 =
{︂

(𝑈D)𝑖 on 𝜕𝒯hf ∩ Γ𝑖D,
𝑤𝑖 on 𝜕𝒯hf ∖ Γ𝑖D.

𝒥 𝑖
D𝑣 =

{︂
𝑣+ − 𝑣− on 𝜕𝒯hf ∩ Γ𝑖D,
𝑣 − (𝑈D)𝑖 on 𝜕𝒯hf ∖ Γ𝑖D.

𝑖 = 1, . . . , 𝐷; (B.2)

where 𝑤 ∈ 𝒳hf and 𝑣 ∈ 𝒰hf . Finally, given the facet 𝜕D𝑘ℓ , ℓ = 1, 2, 3, 𝑘 = 1, . . . , 𝑁e, we introduce the lifting
operator rℓ,𝑘 :

[︀
𝐿2(𝜕D𝑘ℓ )

]︀𝑑 → [𝒰hf ]2∑︁
𝑘′

∫︁
D𝑘′

rℓ,𝑘(𝑤) · 𝑣 d𝑥 = −
∫︁
𝜕D𝑘

ℓ

𝑤 · {𝑣} d𝑥 ∀v ∈ [𝒰hf ]2. (B.3)

Recalling the expression of 𝑅c
Φ and 𝑅d, we find that 𝑅c,eq

Φ (𝑤, 𝑣) =
∑︀
𝑘∈ℐeq

𝜌eq
𝑘 𝑟

c
𝑘(𝑤, 𝑣) and 𝑅d,eq(𝑤, 𝑣) =∑︀

𝑘∈ℐeq
𝜌eq
𝑘 𝑟

d
𝑘(𝑤, 𝑣) with

𝑟c𝑘(𝑤, 𝑣) =
∫︁
𝜕D𝑘

𝑣 · ℋΦ(𝑤+, 𝑤−,N)dX −
∫︁
D𝑘

̃︀∇𝑣 · 𝐹Φ(𝑤) dX −
∫︁
D𝑘

𝑣 · 𝑆Φ(𝑤)dX

𝑟d𝑘(𝑤, 𝑣) =

(︃
𝐷∑︁
𝑖=1

3∑︁
ℓ=1

∫︁
𝜕D𝑘

ℓ

𝛿D𝑖

(︁
{𝜀̃︀∇𝑤𝑖}n · 𝒥 𝑣𝑖 + 𝜂{𝜀rℓ,𝑘(n+𝒥 𝑖

D(𝑤𝑖))}n · 𝒥 𝑣𝑖 + {𝜀̃︀∇𝑣𝑖}n · 𝒥 𝑖
D𝑤𝑖

)︁
dX

)︃
(B.4)

−
∫︁
D𝑘

𝜀 ̃︀∇𝑤 · ̃︀∇𝑣 dX,

for all 𝑤, 𝑣 ∈ 𝒳hf , where 𝜂 = 3, 𝛿D𝑖 = 1
2 on interior facets, 𝛿D𝑖 = 1 on Γ𝑖D and 𝛿D𝑖 = 0 on 𝜕Ω∖Γ𝑖D. Then, exploiting

the consistency of the numerical flux, and the fact that if 𝑤 is continuous, 𝑤+ = 𝑤− on interior facets, we obtain

𝑟c𝑘(𝑤, 𝑣) =
∫︁
𝜕D𝑘

‖𝑔G−𝑇N‖2 𝑣 · (𝐹 (𝒟(𝑤)) · n) dX −
∫︁
D𝑘

̃︀∇𝑣 · 𝐹Φ(𝑤) dX −
∫︁
D𝑘

𝑣 · 𝑆Φ(𝑤)dX, (B.5a)

and

𝑟d𝑘(𝑤, 𝑣) =

(︃
𝐷∑︁
𝑖=1

3∑︁
ℓ=1

∫︁
𝜕D𝑘

ℓ∩Γ𝑖
D

𝛿D𝑖

(︁(︁
𝜀̃︀∇𝑤𝑖 + 𝜂𝜀rℓ,𝑘(n𝒥 𝑖

D𝑤𝑖)
)︁
· n𝑣𝑖 + {𝜀̃︀∇𝑣𝑖}n · 𝒥 𝑖

D𝑤𝑖

)︁
dX

)︃
−
∫︁
D𝑘

𝜀 ̃︀∇𝑤 · ̃︀∇𝑣 dX.

(B.5b)

Note that the computation of 𝑟c𝑘(𝑤, 𝑣) and 𝑟d𝑘(𝑤, 𝑣) in (B.5) requires the knowledge of 𝑤, 𝑣 only in D𝑘 and can
be performed using element-wise residual evaluation routines implemented in many DG codes.
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Appendix C. Approximate minimum residual: analysis of the linear case

We study the performance of the approximate minimum residual (AMR) formulation for linear inf-sup stable
problems:

find 𝑢⋆ ∈ 𝒳 : 𝐴(𝑢⋆, 𝑣) = 𝐹 (𝑣) ∀ 𝑣 ∈ 𝒴, (C.1)

where (𝒳 , ‖ · ‖ =
√︀

(·, ·)) and (𝒴, |||·||| =
√︀

((·, ·))) are suitable Hilbert spaces, and 𝐴 and 𝐹 are a bilinear and a
linear form, 𝐴 ∈ L(𝒳 ,𝒴 ′), 𝐹 ∈ 𝒴 ′. We denote by 𝛾 and 𝛽 the continuity and inf-sup constants associated with
the form 𝐴:

𝛽 = inf
𝑤∈𝒳∖{0}

sup
𝑣∈𝒴∖{0}

𝐴(𝑤, 𝑣)
‖𝑤‖|||𝑣|||

, 𝛾 = sup
𝑤∈𝒳∖{0}

sup
𝑣∈𝒴∖{0}

𝐴(𝑤, 𝑣)
‖𝑤‖|||𝑣|||

·

Given the 𝑁 -dimensional space 𝒵𝑁 ⊂ 𝒳 and the 𝐽-dimensional space 𝒴𝐽 ⊂ 𝒴, 𝐽 ≥ 𝑁 , we define the AMR
statement:

𝑢̂ = arg min
𝑢∈𝒵𝑁

‖𝐴(𝑢, ·)− 𝐹‖𝒴′𝐽 := sup
𝑣∈𝒴𝐽∖{0}

𝐴(𝑢, 𝑣)− 𝐹 (𝑣)
|||𝑣|||

· (C.2)

Note that AMR reduces to Galerkin for 𝒴𝐽 = 𝒵𝑁 , while AMR reduces to minimum residual for 𝒴𝐽 = 𝒴.
In view of the analysis, we introduce the reduced inf-sup constant

𝛽𝑁,𝐽 = inf
𝑤∈𝒵𝑁∖{0}

sup
𝑣∈𝒴𝐽∖{0}

𝐴(𝑤, 𝑣)
‖𝑤‖|||𝑣|||

; (C.3)

furthermore, we introduce the supremizing operator 𝑆 : 𝒵𝑁 → 𝒴 such that 𝑆(𝜁) = R𝒴𝐴(𝜁, ·), that is

((𝑆(𝜁), 𝑣)) = 𝐴(𝜁, 𝑣) ∀ 𝑣 ∈ 𝒴,

and the constant

𝛿test𝑁,𝐽 = inf
𝑠∈𝒴opt

𝑁

sup
𝑣∈𝒴𝐽

((𝑠, 𝑣))
|||𝑠||||||𝑣|||

(C.4)

where 𝒴opt
𝑁 = {𝑆(𝜁) : 𝜁 ∈ 𝒵𝑁}. Note that 𝒴opt

𝑁 is the linear counterpart of the space in (4.8): the constant 𝛿test𝑛,𝑚

measures the proximity between the test space 𝒴𝐽 and the optimal test space 𝒴opt
𝑁 .

Next Proposition contains the key results of this section. In particular, we observe that the performance
depends on the behavior of 𝛿test𝑁,𝐽 and thus on the proximity between 𝒴𝐽 and 𝒴opt

𝑁 : this motivates the sampling
strategy in Algorithm 3.

Proposition C.1. If 𝛽, 𝛽𝑁,𝐽 > 0, the solution 𝑢̂ to (C.2) exists and is unique. Furthermore, the following hold:

‖𝑢̂‖ ≤ 1
𝛽𝑁,𝐽

‖𝐹‖𝒴′ ; (C.5a)

‖𝑢̂− 𝑢⋆‖ ≤ 𝛾

𝛿test𝑁,𝐽𝛽
inf
𝑢∈𝒵𝑁

‖𝑢− 𝑢⋆‖. (C.5b)

Proof. We first observe that any solution to (C.2) satisfies (the proof is straightforward):

find 𝑢̂ ∈ 𝒵𝑁 : 𝐴(𝑢̂, 𝑣) = 𝐹 (𝑣) ∀ 𝑣 ∈ 𝒴𝑁,𝐽 := span{𝜑𝐽𝑛}𝑁𝑛=1, (C.6)

where 𝜑𝐽𝑛 satisfies ((𝜑𝐽𝑛, 𝑣)) = 𝐴(𝜁𝑛, 𝑣) for all 𝑣 ∈ 𝒴𝐽 , 𝑛 = 1, . . . , 𝑁 . Then, we observe that 𝐴(𝜁, 𝜂) = 𝐴(𝜁,Π𝒴𝒴𝑁,𝐽
𝜂)

for all 𝜁 ∈ 𝒵𝑁 and 𝜂 ∈ 𝒴𝐽 , where Π𝒴𝒴𝑁,𝐽
: 𝒴 → 𝒴𝑁,𝐽 denotes the projection operator on 𝒴𝑁,𝐽 with respect to

the 𝒴 norm. As a result, we find that the inf-sup constant 𝛽⋆𝑁,𝐽 associated with (C.6) satisfies

𝛽⋆𝑁,𝐽 = inf
𝑤∈𝒵𝑁∖{0}

sup
𝑣∈𝒴𝑁,𝐽∖{0}

𝐴(𝑤, 𝑣)
‖𝑤‖|||𝑣|||

= inf
𝑤∈𝒵𝑁∖{0}

sup
𝑣∈𝒴𝐽∖{0}

𝐴(𝑤, 𝑣)
‖𝑤‖|||𝑣|||

= 𝛽𝑁,𝐽 .
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In conclusion, exploiting a standard argument for inf-sup stable problems, we find that the solution 𝑢̂ to (C.6)
– and thus the solution to (C.2) – is unique and ‖𝑢̂‖ ≤ 1

𝛽𝑁,𝐽
‖𝐹‖𝒴′ , which is (C.5a).

In order to prove (C.5b), we first exploit the argument in [52] to show that

‖𝑢̂− 𝑢⋆‖ ≤ 𝛾

𝛽𝑁,𝐽
inf
𝑢∈𝒵𝑁

‖𝑢− 𝑢⋆‖.

Towards this end, we define the operator S : 𝒳 → 𝒵𝑁 , S(𝑤) := arg min𝜁∈𝒵𝑁
‖𝐴(𝜁 − 𝑤, ·)‖𝒴′𝐽 . Note that

𝑢̂ = S(𝑢⋆). Clearly, S(𝜁) = 𝜁 for all 𝜁 ∈ 𝒵𝑁 : this implies that S is idempotent, that is S(S(𝑤)) = S(𝑤) for
all 𝑤 ∈ 𝒳 . Therefore, exploiting a standard result in Functional Analysis (see, e.g., [44]), we have ‖S‖L(𝒳 ,𝒳 ) =
‖1−S‖L(𝒳 ,𝒳 ). Furthermore, recalling (C.5a), we find

‖S(𝑤)‖ ≤ 1
𝛽𝑁,𝐽

‖𝐴(𝑤, ·)‖𝒴′ ≤
𝛾

𝛽𝑁,𝐽
‖𝑤‖ ⇒ ‖S‖L(𝒳 ,𝒳 ) ≤

𝛾

𝛽𝑁,𝐽
·

In conclusion, we obtain, for any 𝜁 ∈ 𝒵𝑁 ,

‖𝑢⋆ − 𝑢̂‖ = ‖(1−S)𝑢⋆‖ = ‖(1−S)(𝑢⋆ − 𝜁)‖ ≤ ‖1−S‖L(𝒳 ,𝒳 )‖𝑢⋆ − 𝜁‖ ≤ 𝛾

𝛽𝑁,𝐽
‖𝑢⋆ − 𝜁‖,

which is the desired result. Note that in the second identity we used the fact that (1−S)𝜁 = 0 for all 𝜁 ∈ 𝒵𝑁 .
It remains to prove that 𝛽𝑁,𝐽 ≥ 𝛿test𝑁,𝐽𝛽. Recalling the definition of the supremizing operator 𝑆 and the

projection theorem, we find⎧⎪⎪⎨⎪⎪⎩
sup
𝑣∈𝒴𝐽

𝐴(𝜁, 𝑣)
|||𝑣|||

= sup
𝑣∈𝒴𝐽

((𝑆(𝜁), 𝑣))
|||𝑣|||

=
⃒⃒⃒⃒ ⃒⃒

Π𝒴𝒴𝐽
𝑆(𝜁)

⃒⃒⃒⃒ ⃒⃒
∀ 𝜁 ∈ 𝒵𝑁 ;⃒⃒⃒⃒ ⃒⃒

Π𝒴𝒴𝐽
𝑠
⃒⃒⃒⃒ ⃒⃒
≥ 𝛿test𝑁,𝐽 |||𝑠||| ∀ 𝑠 ∈ 𝒴opt

𝑁 ;
|||𝑆(𝜁)||| ≥ 𝛽 ‖𝜁‖ ∀ 𝜁 ∈ 𝒵𝑁 .

Then, exploiting the previous estimates, we find

sup
𝑣∈𝒴𝐽

𝐴(𝜁, 𝑣)
|||𝑣|||

=
⃒⃒⃒⃒ ⃒⃒

Π𝒴𝒴𝐽
𝑆(𝜁)

⃒⃒⃒⃒ ⃒⃒
≥ 𝛿test𝑁,𝐽 |||𝑆(𝜁)||| ≥ 𝛽 𝛿test𝑁,𝐽‖𝜁‖, ∀ 𝜁 ∈ 𝒵𝑁 ,

which is the desired result. �

Appendix D. Derivation of the accuracy constraints (4.10)

We illustrate how to apply the Brezzi–Rappaz–Raviart (BRR, [6, 9]) theory to estimate the error between
the solution ̂︀𝑈hf to (4.6) and the solution ̂︀𝑈 to (4.7), 𝐸eq = ‖̂︀𝑈hf − ̂︀𝑈‖ = ‖̂︀𝛼hf − ̂︀𝛼‖2. We omit the dependence
on 𝜇 for notational brevity. First, we present the following lemma (see [54], Lem. 3.1).

Lemma 1. We introduce the 𝐶1 function 𝒩 : R𝑁 → R𝑁 , 𝛼 ∈ R𝑁 such that the Jacobian 𝐷𝒩 (𝛼) ∈ R𝑁,𝑁 is
non-singular, and constants 𝜖, 𝛾 and 𝐿(𝑟) such that

‖𝒩 (𝛼)‖2 ≤ 𝜖, ‖𝐷𝒩 (𝛼)−1‖2 ≤ 𝛾, sup
w:‖w−𝛼‖2≤𝑟

‖𝐷𝒩 (w)−𝐷𝒩 (𝛼)‖2 ≤ 𝐿(𝑟). (D.1)

Suppose that 2𝛾𝐿(2𝛾𝜖) ≤ 1. Then, for all 𝛽 ≥ 2𝛾𝜖 such that 𝛾𝐿(𝛽) < 1, there exists a unique solution 𝛼⋆ that
satisfies 𝒩 (𝛼⋆) = 0 in the ball of radius 𝛽 centered in 𝛼. Furthermore, we have

‖𝛼⋆ −𝛼‖2 ≤ 2𝛾‖𝒩 (𝛼⋆)‖2. (D.2)
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We apply Lemma 1 to analyze the quadrature error 𝐸eq. Towards this end, we define

𝒩 (𝛼) =
1
2
∇ ‖Rhf

𝑁,𝐽(𝛼)‖22 =
(︀
Jhf
𝑁,𝐽(𝛼)

)︀𝑇
Rhf
𝑁,𝐽(𝛼). (D.3)

Clearly, any 𝛼⋆ satisfying 𝒩 (𝛼⋆) = 0 is a stationary point of the objective function in (4.6): as a result, if ̂︀𝛼
satisfies the hypotheses of Lemma 1 with 𝒩 as in (D.3), there exists a unique solution ̂︀𝛼⋆ such that 𝒩 (𝛼⋆) = 0
in a neighborhood of ̂︀𝛼 and ‖̂︀𝛼− ̂︀𝛼⋆‖2 ≤ 2𝛾‖𝒩 (̂︀𝛼)‖2.

Since Jeq
𝑁,𝐽(̂︀𝛼)𝑇Req

𝑁,𝐽(̂︀𝛼) = 0, by straightforward manipulations, we find that

‖𝒩 (̂︀𝛼)‖2 ≤ ‖Jhf
𝑁,𝐽(̂︀𝛼)− Jeq

𝑁,𝐽(̂︀𝛼)‖2⏟  ⏞  
=:(I)

‖Req
𝑁,𝐽(̂︀𝛼)‖2 + ‖Jhf

𝑁,𝐽(̂︀𝛼)𝑇
(︁
Rhf
𝑁,𝐽(̂︀𝛼)−Req

𝑁,𝐽(̂︀𝛼)
)︁
‖2⏟  ⏞  

=:(II)

.

This estimate shows that the residual ‖𝒩 (̂︀𝛼)‖2 is controlled by the quadrature errors (I) and (II). Note that (II)
corresponds to the accuracy constraint (4.10); on the other hand, we choose to exclude the constraints associated
with the Jacobian. The reason is twofold: first, controlling (I) requires 𝑁𝐽𝑛train additional constraints and is
thus expensive for offline calculations; second, (I) is multiplied by the empirical residual ‖Req

𝑁,𝐽(̂︀𝛼)‖2, which is
expected to be small for 𝐽 = 𝒪(𝑁).

Appendix E. Further investigations on data compression

E.1. Burgers equation

We investigate the compressibility of the manifold ℳspace = {𝑈𝜇(𝑡) : 𝑡 ∈ (0, 𝑇 ), 𝜇 ∈ 𝒫} ⊂ 𝐿2(0, 𝐿),
which needs to be approximated in time-marching ROMs. Towards this end, we assess performance of POD
in the unregistered and in the registered case; for simplicity, we here restrict ourselves to the case 𝒫 = {𝜇̄},
𝜇̄ = [1, 0.25]. Figure E.1 shows the behavior of 𝑈𝜇(𝑡) and the projection Π𝒵𝑁

𝑈𝜇(𝑡) for two time instants. Here,
𝒵𝑁 is the 𝑁 = 20-dimensional POD space built based on 𝑛train = 200 temporal snapshots associated with the
equispaced sampling times {𝑡𝑘s }

𝑛train
𝑘=1 . As expected, linear methods are extremely inefficient to capture shock

waves: the projection error is indeed significant despite the relatively-large number of retained modes.

Figure E.1. Burgers equation; performance of spatial linear compression for 𝜇 = [1, 0.25]
(unregistered case, 𝑁 = 20). (A) 𝑡 = 0.05. (B) 𝑡 = 0.3.

In Figures E.2–E.4, we investigate performance of spatial registration. Here, the mapping is generated based
on 𝑛train = 200 snapshots through Algorithm 1 with 𝑁max = 5, 𝜉 = 10−2, 𝑀hf = 100, 𝑡𝑜𝑙pod = 10−4. We
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Figure E.2. Burgers equation; performance of spatial compression for 𝜇 = [1, 0.25] with spatial
registration (𝑁 = 20). (A) 𝑡 = 0.05. (B) 𝑡 = 0.3.

Figure E.3. Burgers equation; compression for 𝜇 = [1, 0.25] with spatial registration. (A)
Behavior of normalized POD eigenvalues associated with the unregistered and registered tem-
poral snapshots. (B) Behavior of the maximum in-sample projection error 𝐸bf,∞.

further consider 𝒯𝑁0=2 = span{𝑈𝜇(0), 𝑈𝜇(𝑇 )} as initial template space; the resulting map consists of a four-
term expansion (𝑀 = 4). In Figure E.2, we show the behavior of ̃︀𝑈𝜇(𝑡) and the projection Π𝒵𝑁

̃︀𝑈𝜇(𝑡), where 𝒵𝑁
is the 𝑁 = 20-dimensional POD space built based on the mapped snapshots. In Figure E.3a, we compare the
behavior of the normalized POD eigenvalues with and without registration; similarly, in Figure E.3b, we show
the in-sample projection error 𝐸bf,∞ = max𝑗=1,...,𝑛train 𝐸bf(𝑡𝑘s ), for registered and unregistered configurations
(cf. (1.2)). We observe that registration improves performance of POD for this model problem.

Figure E.4, which depicts the behavior of the physical and mapped solution for two time steps, shows that the
mapping has the effect of “squeezing” the transition from one shock to zero shock by artificially increasing the
wave speed. In the framework of projection-based ROMs, this poses serious issues for the numerical temporal
integration.

In Figure E.5, we show the unregistered and registered solution fields for two values of the parameter and for
three horizontal slices of Ω. In the unregistered case, these slices correspond to the solution for three time instants.
We observe that space-time registration is able to nearly “freeze” the position of the jump discontinuities with
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Figure E.4. Burgers equation; spatial compression for 𝜇 = [1, 0.25] with spatial registration.
Behavior of 𝑈𝜇 and ̃︀𝑈𝜇 for two time instants. (A) 𝑡 = 0.4. (B) 𝑡 = 0.45.

Figure E.5. Burgers equation; space-time registration. Behavior of the solution field for two
values of 𝜇 and three values of the second coordinate. (A)–(C) Behavior in physical domain for
𝑡 = 0.05, 0.3, 0.8. (D)–(F) Behavior in reference domain for 𝑋2 = 0.05, 0.3, 0.8.

respect to parameter. These results suggest that the self-similar structures of the present problem can only be
captured by considering the space-time behavior of the solution field.
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Figure E.6. Shallow water equations; space-time registration. Behavior of the free surface 𝑧
for two values of 𝜇 and three values of the second coordinate. (A)–(C) Behavior in physical
domain for 𝑡 = 0.4, 1.5, 3. (D)–(F) Behavior in reference domain for 𝑋2 = 0.4, 1.5, 3.

Figure E.7. Shallow water equations; space-time registration. Behavior of the free surface
𝑧𝜇 and of the optimal nonlinear reconstruction ̂︀𝑧opt

𝜇 = (̂︀𝑈opt
𝜇 )1 + 𝑏 (black line) (see (E.1) and

(2.9a)) for two values of 𝜇 and three time instants, with 𝑁 = 3. (A) 𝑡 = 0.4. (B) 𝑡 = 1.5.
(C) 𝑡 = 3.

E.2. Shallow water equations

We present further investigations of the space-time registration for the shallow water equations. Figure E.6
shows the unregistered and registered free surface 𝑧 for two values of the parameter and for three horizontal
slices of Ω. As for the previous model problem, the registration procedure is able to nearly fix the position of
the travelling wave with respect to parameter.
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In Figure E.7, we investigate the optimal reconstruction properties of the proposed approximation. Given
𝑈𝜇 ∈ℳ and the POD space 𝒵𝑁 = span{𝜁𝑛}𝑁𝑛=1 ⊂ 𝒳 obtained based on the mapped snapshots {̃︀𝑈𝜇𝑘}𝑛train

𝑘=1 , we
define ̂︀𝑈opt

𝜇 := Π𝒵𝑁,𝜇
𝑈𝜇, where 𝒵𝑁,𝜇 = span{𝜁𝑛 ∘Φ−1

𝜇 }𝑁𝑛=1. (E.1)

Figures E.7a–E.7c show the solution 𝑈𝜇 and the approximation ̂︀𝑈opt
𝜇 (black continuous line) for two values of

𝜇 and three time instants. We here report results for 𝑁 = 3. We observe that we are able to obtain accurate
reconstructions with an extremely low-dimensional representation.
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[14] J. Donea, A. Huerta, J.-P. Ponthot and A. Rodŕıguez-Ferran, Arbitrary Lagrangian–Eulerian methods. Encycl. Comput. Mech.
Second Edition (2017) 1–23.

[15] R. Everson and L. Sirovich, Karhunen–Loeve procedure for gappy data. JOSA A 12 (1995) 1657–1664.

[16] C. Farhat, T. Chapman and P. Avery, Structure-preserving, stability, and accuracy properties of the energy-conserving sampling
and weighting method for the hyper reduction of nonlinear finite element dynamic models. Int. J. Numer. Methods Eng. 102
(2015) 1077–1110.

[17] P. Gallinari, Y. Maday, M. Sangnier, O. Schwander and T. Taddei, Reduced basis’ acquisition by a learning process for rapid
on-line approximation of solution to PDE’s: laminar flow past a backstep. Arch. Comput. Methods Eng. 25 (2018) 131–141.

[18] S. Glas, A.T. Patera and K. Urban, A reduced basis method for the wave equation. Int. J. Comput. Fluid Dyn. 34 (2020)
139–146.

[19] S. Grimberg, C. Farhat and N. Youkilis, On the stability of projection-based model order reduction for convection-dominated
laminar and turbulent flows. J. Comput. Phys. 419 (2020) 109681.

[20] M. Guo and J.S. Hesthaven, Reduced order modeling for nonlinear structural analysis using gaussian process regression.
Comput. Methods Appl. Mech. Eng. 341 (2018) 807–826.

[21] J.S. Hesthaven, G. Rozza and B. Stamm, Certified Reduced Basis Methods for Parametrized Partial Differential Equations.
SpringerBriefs in Mathematics. Springer, New York (2016).

[22] J.S. Hesthaven and T. Warburton, Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications. Vol. 54 of
Texts in Applied Mathematics. Springer, New York (2007).



130 T. TADDEI AND L. ZHANG

[23] C.W. Hirt, A.A. Amsden and J. Cook, An arbitrary Lagrangian-Eulerian computing method for all flow speeds. J. Comput.
Phys. 14 (1974) 227–253.

[24] A. Iollo and D. Lombardi, Advection modes by optimal mass transfer. Phys. Rev. E 89 (2014) 022923.

[25] C.L. Lawson and R.J. Hanson, Solving Least Squares Problems. Siam 161 (1974).

[26] K. Lee and K.T. Carlberg, Model reduction of dynamical systems on nonlinear manifolds using deep convolutional autoencoders.
J. Comput. Phys. 404 (2020) 108973.

[27] R.J. LeVeque, Numerical Methods for Conservation Laws. Vol. 3 of Lectures in Mathematics. ETH Zürich. Springer, Basel
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[52] J. Xu and L. Zikatanov, Some observations on Babuška and Brezzi theories. Numer. Math. 94 (2003) 195–202.

[53] M. Yano, A space-time Petrov–Galerkin certified reduced basis method: application to the Boussinesq equations. SIAM J. Sci.
Comput. 36 (2014) A232–A266.

[54] M. Yano, Discontinuous Galerkin reduced basis empirical quadrature procedure for model reduction of parametrized nonlinear
conservation laws. Adv. Comput. Math. 45 (2019) 2287–2320.

[55] M.J. Zahr and P.-O. Persson, An optimization-based approach for high-order accurate discretization of conservation laws with
discontinuous solutions. J. Comput. Phys. 365 (2018) 105–134.

[56] M.J. Zahr, A. Shi and P.-O. Persson, Implicit shock tracking using an optimization-based high-order discontinuous galerkin
method. J. Comput. Phys. 410 (2020) 109385.

https://arxiv.org/abs/1511.02021
https://arxiv.org/abs/1912.13024
math.uni-konstanz.de/numerik/personen/volkwein/teaching/POD-Vorlesung.pdf

	Introduction
	Notation
	High-fidelity discretization

	Formulation
	Space-time formulation of conservation laws
	High-fidelity space-time formulation
	Model problems
	A Burgers model problem
	A shallow-water model problem


	Data compression (RePOD)
	Affine mappings
	Registration
	Optimization-based registration
	Parametric registration

	POD compression

	Projection-based reduced-order model
	Non-intrusive construction of the mapping bold0mu mumu 
	Projection-based ROM for the solution coefficients 
	Reduced-order statement: Galerkin projection; (approximate) minimum residual
	Construction of the empirical test space
	Construction of the empirical quadrature rule

	Summary of the offline/online computational procedure

	Numerical results
	Burgers equation
	Shallow water equations

	Conclusions
	Change-of-variable formulas
	Online residual calculations
	Approximate minimum residual: analysis of the linear case
	Derivation of the accuracy constraints (4.10)
	Further investigations on data compression
	Burgers equation
	Shallow water equations

	References

