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ON THE LOCKING-FREE THREE-FIELD VIRTUAL ELEMENT METHODS FOR
BIOT’S CONSOLIDATION MODEL IN POROELASTICITY

Xialan Tang1,2, Zhibin Liu1, Baiju Zhang3,* and Minfu Feng3

Abstract. We propose and analyze two locking-free three-field virtual element methods for Biot’s
consolidation model in poroelasticity. One is a high-order scheme, and the other is a low-order scheme.
For time discretization, we use the backward Euler scheme. The proposed methods are well-posed,
and optimal error estimates of all the unknowns are obtained for fully discrete solutions. The generic
constants in the estimates are uniformly bounded as the Lamé coefficient 𝜆 tends to infinity, and as
the constrained specific storage coefficient is arbitrarily small. Therefore the methods are free of both
Poisson locking and pressure oscillations. Numerical results illustrate the good performance of the
methods and confirm our theoretical predictions.
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1. Introduction

Biot’s consolidation model describes the interactions between mechanical deformations and fluid flow in a
porous media. It’s theoretical basis goes back to the work of Terzaghi [57], in which the author analyzed the
one-dimensional (1D) consolidation of a soil column under a constant load. Later, this theory was generalized
by Biot to the 3D transient consolidation [21,22]. This model has been widely used in various engineering fields
including geomechanics, petroleum engineering, and biomedical engineering.

Since analytical solutions of this model are rarely available due to the complex coupled nature of the equations,
the study of its numerical solutions has been of great interest. There is extensive literature on numerical methods
for Biot’s consolidation model. The most commonly used numerical methods are finite element methods based
on two-field formulation. A natural choice in this formulation is to make use of a continuous Galerkin method
for both the displacement and pressure. However, some studies have shown that such an approach may lead
to nonphysical pressure oscillations of numerical solutions, called poroelasticity locking, for certain ranges of
material parameters and small time step sizes [53,60,65].

To avoid the poroelasticity locking, various numerical methods for the problem with different formulation
were investigated. Murad, Thomée and Loula [45–47] studied the classical two-field formulation of Biot’s model
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in incompressible porous media using inf-sup stable finite elements for Stokes equations. However, as shown in
[54], an inf-sup stable pair of spaces does not necessarily provide oscillation-free solutions. They add a time-
dependent stabilization term to overcome pressure oscillation. We also refer the reader to other two-field based
numerical methods, such as discontinuous Galerkin methods (DG) [32], stabilized finite element methods [30],
Hybrid High-Order methods (HHO) [23], weak Galerkin methods (WG) [33,41] and Hybridizable discontinuous
Galerkin methods (HDG) [36].

Another commonly used formulation for Biot’s model is three-field formulation, in which displacement, fluid
flux, and pressure are main unknowns. Phillips and Wheeler [49–51] proposed and analyzed several methods
that couple continuous and discontinuous Galerkin (DG) methods for the displacement with a mixed finite
element method for the fluid flux and pressure. Later they heuristically analyzed the case of locking in [52] and
concluded that the poroelastic locking typically occurs due to the fact that at an early time the porous medium
behaves as an incompressible material, when the constrained specific storage coefficient is very close to 0, the
permeability of the porous medium is very low, and a small time step is used. Therefore they suggested using
a discrete subspace that contains nonconstant divergence-free vectors for displacement. This theory motivates
some nonconforming methods [42,61] for the displacement coupling with mixed finite element methods for other
unknowns. Recently, the author in [62] reexamined the cause of pressure oscillations in the three-field mixed
finite element method from an algebraic point of view. The author concluded that pressure oscillations occur
due to the incompatibility of the spaces for the displacement and pore pressure assuming the flux and pressure
spaces satisfy the inf-sup condition. This idea inspired us to apply inf-sup stable virtual element methods to
Biot’s Model to overcome Poisson locking and pressure oscillations. In addition to the above methods, there are
other three-field based numerical methods that can overcome pressure oscillations [19,40].

The virtual element method (VEM), firstly introduced in [9], is one of the high-order discretization schemes
which can be seen as an evolution of the Mimetic Finite Difference method (MFD) [11]. This method has
attracted considerable attention in the engineering and numerical mathematics community due to its several
appealing features. For example, the shape functions of VEM can no longer be polynomial functions so that
it is possible to define a family of conforming elements like 𝐻𝛼-conforming (𝛼 is a positive integer), 𝐻(div)-
conforming and 𝐻(curl)-conforming elements on polygonal and polyhedral meshes. Generally, these types of
shape functions cannot be written explicitly (that is why it is called “virtual element”), so the related bilinear
forms are usually uncomputable. To overcome this issue, VEM use approximated discrete bilinear forms. Such
bilinear forms can be computed exactly by the degrees of freedom related to virtual element subspaces and, at
the same time, can preserve the polynomial accuracy that one has on simplexes while working on polyhedra.
The VEM has been developed successfully in a wide range of problems such as the Poisson’s equation [9], the
Darcy problem in mixed form [26], the general second order elliptic problems in primal [13] and mixed form [14],
the advection-diffusion problems [18], the Stokes and Navier–Stokes problems [3,16,17,43], eigenvalue problems
[29,38,39,44]. For elasticity problems, we refer to [5,8,37,63,64]. For time-dependent problems in VEM context,
we refer to [4, 58, 59]. Recently, the authors in [34] designed and studied fully coupled numerical schemes using
virtual element method and finite volume method for Biot Equations Modelling, which is based on two-field
formulation. Another paper about VEM for Biot equations is [27]. The authors constructed and analysed a new
VEM for the Biot equations in three-field formulation which is based on displacements, pore pressure and total
pressure.

In the present contribution, we propose and analyze locking-free virtual element methods for Biot’s consol-
idation model in poroelasticity. Differently from [27, 34], our methods couple 𝐻1-conforming VEM introduced
in [2] for the displacement with a mixed VEM introduced in [14] for the fluid flux and pressure. For time dis-
cretization, we apply the backward Euler scheme. For virtual element method of order 𝑘 ≥ 2, we proved that the
generic constants in fully discrete error estimates are uniform with respect to Lamé constant 𝜆 and constrained
specific storage coefficient 𝑐0. Therefore our method not only can overcome Poisson locking, but also avoid the
poroelasticity locking. For 𝑘 = 1, we observed in numerical experiments that proposed method suffers Poisson
locking or pressure oscillation in triangular meshes while it seems stable in other meshes. That is to say, when
𝑘 = 1, the stability of the method depends on mesh. In this paper, we are more interested in the method that is
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stable not only in triangular meshes but also in other meshes. Therefore, we develop another low-order virtual
element method for the Biot’s consolidation model. Such an element is inspired by the works of Fortin [35], and
Bernardi and Raugel [20], and has been analyzed in our previous paper [56] for linear elasticity problem. The
main idea is to introduce extra degrees of freedom related to the normal component of v on each edge, so that
the related Fortin operator can be easily constructed, which is an important operator in deriving robust error
estimates. We also prove that the low order method is free of both Poisson locking and pressure oscillations.

The rest of paper is arranged as follows. In Section 2, we recall the Biot’s consolidation model and its varia-
tional formulation. In Section 3, we elaborate the proposed virtual element method including the construction
of approximation spaces and computable bilinear forms. In Section 4, we introduce the fully discrete scheme
and derive error analysis. Finally, Section 5 presents several numerical tests to confirm our theoretical analysis.

We end this section with recalling some useful notations to be used below. We will use standard notation
for Sobolev spaces and norms (see [1] for more details). In particular, for each positive integer 𝑚, let 𝐻𝑚(𝒪)
denote the standard Sobolev spaces over the domain 𝒪 ⊂ R2 with norm ‖ · ‖𝑚,𝒪 and seminorm | · |𝑚,𝒪. As
usual 𝐻𝑚

0 (𝒪) denotes the space of functions in 𝐻𝑚(𝒪) with vanishing trace. In addition, (·, ·)𝒪 will denote the
𝐿2(𝒪) inner product. Conventionally the subscript will be omitted when 𝒪 is computational domain Ω.

For a Banach space 𝒳 and 0 < 𝑇0 <∞, 𝐶0([0, 𝑇0];𝒳 ) denotes the set of functions 𝑓 : [0, 𝑇0] → 𝒳 that are con-
tinuous in 𝑡 ∈ [0, 𝑇0]. For an integer 𝑚 ≥ 1 we define 𝐶𝑚([0, 𝑇0];𝒳 ) = {𝑓 |𝜕𝑙𝑓/𝜕𝑡𝑙 ∈ 𝐶0([0, 𝑇0];𝒳 ), 0 ≤ 𝑙 ≤ 𝑚},
where 𝜕𝑙𝑓/𝜕𝑡𝑙 is the l-st time derivative. For a function 𝑓 : [0, 𝑇0] → 𝒳 , we define the space time norm

‖𝑓‖𝐿𝑝([0,𝑇0];𝒳 ) =

{︃
(
∫︀ 𝑏

𝑎
‖𝑓‖𝑝

𝒳𝑑𝑡)
1/𝑝, 1 ≤ 𝑝 <∞,

esssup𝑡∈[0,𝑇0]‖𝑓‖𝒳 , 𝑝 = ∞.

If the time interval is fixed as [0, 𝑇0], then we may write 𝐿𝑝𝒳 instead of 𝐿𝑝([0, 𝑇0];𝒳 ). Also we denote by
𝑊𝑚,𝑝([0, 𝑇0];𝒳 ) the space of functions 𝑓 : [0, 𝑇0] → 𝒳 for which ‖𝑓‖𝑊 𝑚,𝑝([0,𝑇0];𝒳 ) <∞, where

‖𝑓‖𝑊 𝑚,𝑝([0,𝑇0];𝒳 ) =

⎧⎨⎩
(︁∑︀𝑚

𝑙=0 ‖𝜕𝑙𝑓/𝜕𝑡𝑙‖𝑝
𝐿𝑝([0,𝑇0];𝒳 )

)︁1/𝑝

, 1 ≤ 𝑝 <∞,

max0≤𝑙≤𝑚 ‖𝜕𝑙𝑓/𝜕𝑡𝑙‖𝐿∞([0,𝑇0];𝒳 ), 𝑝 = ∞.

For simplicity, we will use 𝑓 , 𝑓, . . . , to denote 𝜕𝑓/𝜕𝑡, 𝜕2𝑓/𝜕𝑡2, . . . , respectively.
Throughout the paper, if not particularly indicated, 𝐶 with or without subscripts, bars, tildes, or hats, will

denote a generic positive constant independent of the mesh size ℎ and the Lamé coefficient 𝜆.

2. Biot’s consolidation model

Let Ω ⊂ R2 be a polygonal domain. Throughout this paper, we are interested in the quasi-static Biot’s
consolidation model in poroelasticity. The governing equations of the model are

−div (𝒞𝜀(u)) + 𝛼∇𝑝 = f , (2.1a)
𝑐0𝑝̇+ 𝛼divu̇− div(K∇𝑝) = 𝑔, (2.1b)

where 𝒞 is the elasticity stiffness tensor, 𝑐0 ≥ 0 is the constrained specific storage coefficient, K is the hydraulic
conductivity tensor, 𝛼 > 0 is the Biot–Willis constant which is close to 1, f is the body force and 𝑔 is the
source/sink density function of the fluid. The primary unknowns are the fluid pressure 𝑝 and the displacement
of the porous medium u.

For isotropic elastic porous media, 𝒞 has the form

𝒞𝜏 = 2𝜇𝜏 + 𝜆tr(𝜏 )I,
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for all symmetric tensor 𝜏 , where the constant 𝜇, 𝜆 > 0 are the Lamé constants, and I is the identity matrix.
The hydraulic conductivity tensor K is a symmetric and uniform positive definite tensor satisfying: there exist
positive constants 𝑘min and 𝑘max such that for any 𝑥 ∈ Ω

𝑘min𝜉
𝑇 𝜉 ≤ 𝜉𝑇 K(𝑥)𝜉 ≤ 𝑘max𝜉

𝑇 𝜉 ∀𝜉 ∈ R2.

In order to complete the equations, we need suitable boundary and initial conditions. To this end, we assume
that there are two independent partitions of 𝜕Ω,

𝜕Ω = Γ𝑝 ∪ Γ𝑓 , 𝜕Ω = Γ𝑑 ∪ Γ𝑡,

with |Γ𝑝|, |Γ𝑑| > 0. On the boundary 𝜕Ω, we prescribe the following boundary conditions:

𝑝 = 0 on Γ𝑝, w · n = 0 on Γ𝑓 ,

u = 0 on Γ𝑑, 𝜎 · n = 0 on Γ𝑡,

where n is the outward unit normal vector, w := −K∇𝑝 and 𝜎 := 𝒞𝜀(u) − 𝛼𝑝I. Here we only consider
homogeneous boundary conditions for simplicity, but our method can be extended to nonhomogenous case
without any difficulty. We also prescribe the following initial conditions:

𝑝(0) = 𝑝0 and u(0) = u0 in Ω

with 𝑝0 = 0 on Γ𝑝 and u0 = 0 on Γ𝑑. According to [62], we have the following regularity result.

Theorem 2.1. Let (u, 𝑝) be the solution of the Biot’ model (2.1). Then, for 𝑇 > 0,

sup
0≤𝑡≤𝑇

‖u(𝑡)‖2 + 𝜆 sup
0≤𝑡≤𝑇

‖divu(𝑡)‖1 ≤ 𝐶

⎛⎝‖𝑝0‖1 + sup
0≤𝑡≤𝑇

‖f(𝑡)‖0 + sup
0≤𝑡≤𝑇

‖𝑔(𝑡)‖0

+

(︃∫︁ 𝑇

0

‖f(𝑠)‖2−1 d𝑠

)︃ 1
2

+

(︃∫︁ 𝑇

0

‖𝑔(𝑠)‖20 d𝑠

)︃ 1
2
⎞⎠ , (2.2)

where 𝐶 = 𝐶(𝜔,Γ𝑑,K, 𝜇).

Remark 2.2. According to Remark 3.4. of [62], if the time derivatives of solution and data functions are smooth
enough, the above inequality also holds for u𝑡 and u𝑡𝑡.

2.1. Variational formulation

This section presents a three-field mixed variational formulation for the Biot’s model. To this end, introducing
a new unknown w = −K∇𝑝 (called volumetric fluid flux), we have

−div(𝒞𝜀(u)) + 𝛼∇𝑝 = f , (2.3)
K−1w +∇𝑝 = 0, (2.4)

𝑐0𝑝̇+ 𝛼divu̇ + divw = 𝑔. (2.5)

Let

𝑉 : = {v ∈ [𝐻1(Ω)]2 : v|Γ𝑑
= 0},

Σ : = {z ∈ 𝐻(div; Ω) : z · n|Γ𝑓
= 0},

𝑄 : = 𝐿2(Ω),
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and define bilinear forms
𝑎(u,v) := 2𝜇𝑎̃(u,v) + (𝜆divu,divv),
𝑎̃(u,v) := (𝜀(u), 𝜀(v)),
𝑚(w, z) := (K−1w, z).

(2.6)

Then, the mixed formulation of (2.3)–(2.5) is to find (u, 𝑝) ∈ 𝐶1([0, 𝑇0]; 𝑉 × 𝑄) and w ∈ 𝐶0([0, 𝑇0]; Σ) such
that

𝑎(u,v)− 𝛼(divv, 𝑝) = (f ,v), ∀v ∈ 𝑉 , (2.7)
𝑚(w, z)− (divz, 𝑝) = 0, ∀z ∈ Σ, (2.8)

𝑐0(𝑝̇, 𝑞) + 𝛼(divu̇, 𝑞) + (divw, 𝑞) = (𝑔, 𝑞), ∀𝑞 ∈ 𝑄. (2.9)

3. VEM approximation

The main purpose of this section is to introduce some virtual element subspaces and discrete bilinear forms
that are crucial in constructing a mixed virtual element method that can overcome Poisson locking when 𝜆→∞
or pressure oscillations when 𝑐0 = 0 and K ≈ 0. The key points to obtain such methods is to construct virtual
element subspaces satisfying inf-sup conditions. Its a priori error estimates will be discussed in the next section.
From now on, we only consider Γ𝑝 = Γ𝑑 = 𝜕Ω for simplicity. It is possible to expand our results to more general
situation, but related proof is quite involved.

3.1. Basic assumptions on mesh

Let {𝒯ℎ}ℎ be a sequence of decompositions of Ω into elements 𝐸, and let ℰℎ be the sets of edges 𝑒 of 𝒯ℎ.
For each element 𝐸 ∈ 𝒯ℎ, ℎ𝐸 denote its diameter. As usual, ℎ denote the maximum of the diameters of the
elements in 𝒯ℎ. We make the following mesh regularity assumptions which are standard in the context of VEM
[9,15,25,28,31].

Assumption 3.1. There exist constants 𝜌1, 𝜌2 > 0 such that

(1) every element 𝐸 is star-shaped with respect to a ball of radius ≥ 𝜌1ℎ𝐸,
(2) the distance between any two vertices of 𝐸 is ≥ 𝜌2ℎ𝐸.

Remark 3.2. An immediate consequence of the above assumptions is that each element 𝐸 admits a sub-
triangulation 𝒯 𝐸

ℎ whose union ̃︁𝒯ℎ := ∪𝐸∈𝒯ℎ
𝒯 𝐸

ℎ is a shape regular triangulation.

Remark 3.3. According to [25], the above assumptions also admit the following scaled trace inequality

ℎ−1
𝐸 ‖𝑣‖20,𝜕𝐸 ≤ 𝐶(ℎ−2

𝐸 ‖𝑣‖20,𝐸 + |𝑣|21,𝐸) ∀𝑣 ∈ 𝐻1(𝐸) (3.1)

with 𝐶 > 0 independent of 𝐸.

3.2. Virtual element subspaces

This subsection devotes to the introduction of two conforming virtual elements subspaces 𝑉 ℎ ⊂ 𝑉 and
Σℎ ⊂ Σ.

3.2.1. 𝐻1-conforming virtual element subspaces

We start with the 𝐻1-conforming virtual element subspaces discussed in [2]. For this purpose, we recall the
following spaces: for any 𝑘 ∈ N and 𝐸 ∈ 𝒯ℎ,

– P𝑘(𝐸) the set of polynomials of degree ≤ 𝑘 on 𝐸 (with extended notation P−1(𝐸) = {0}),
– B𝑘(𝜕𝐸) :=

{︀
𝑣 ∈ 𝐶0(𝜕𝐸) : 𝑣|𝑒 ∈ P𝑘(𝑒) for each edge 𝑒 of 𝜕𝐸

}︀
,

– ̃︀𝑉 𝐸
𝑘 := {𝑣ℎ ∈ 𝐻1(𝐸) ∩ 𝐶0(𝐸) : ∆𝑣ℎ ∈ P𝑘(𝐸), 𝑣ℎ|𝜕𝐸 ∈ B𝑘(𝜕𝐸)}.
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If𝒪 is a subset of R2, we denote by x𝒪, ℎ𝒪 and |𝒪| the centroid, the diameter and the measure of𝒪, respectively.
For 𝑟 ∈ N, we denote by ℳ𝑟(𝒪) the set of scaled monomials

ℳ𝑟(𝒪) :=
{︂
𝑚 : 𝑚 =

(︂
x− x𝒪
ℎ𝒪

)︂s

for s ∈ N2 with |s| ≤ 𝑟

}︂
,

where s = (𝑠1, 𝑠2), |s| = 𝑠1 + 𝑠2 and xs = 𝑥𝑠1
1 𝑥

𝑠2
2 . We also need the following set defined by

ℳ*
𝑟(𝒪) :=

{︂
𝑚 : 𝑚 =

(︂
x− x𝒪
ℎ𝒪

)︂s

for s ∈ N2 with |s| = 𝑟

}︂
.

Then for any 𝑘 ∈ N and 𝐸 ∈ 𝒯ℎ, we define the following useful polynomial projections:

– the 𝐿2-projection for scalar functions Π0,𝐸
𝑘 : ̃︀𝑉 𝐸

𝑘 → P𝑘(𝐸), given by∫︁
𝐸

𝑞𝑘

(︁
𝑣 −Π0,𝐸

𝑘 𝑣
)︁

d𝐸 = 0 ∀𝑣 ∈ 𝐿2(𝐸) and ∀𝑞𝑘 ∈ P𝑘(𝐸), (3.2)

– the 𝐻1 semi-norm projection for scalar functions Π∇,𝐸
𝑘 : ̃︀𝑉 𝐸

𝑘 → P𝑘(𝐸), defined by⎧⎪⎪⎪⎨⎪⎪⎪⎩
∫︀

𝐸
∇𝑞𝑘∇

(︁
𝑣 −Π∇,𝐸

𝑘 𝑣
)︁

d𝐸 = 0 ∀𝑣 ∈ 𝐻1(𝐸) and ∀𝑞𝑘 ∈ P𝑘(𝐸),∫︀
𝜕𝐸

(︁
𝑣 −Π∇,𝐸

𝑘 𝑣
)︁

d𝑠 = 0 if 𝑘 = 1,∫︀
𝐸

(︁
𝑣 −Π∇,𝐸

𝑘 𝑣
)︁

d𝐸 = 0 if 𝑘 ≥ 2.

For simplicity, we still use Π0,𝐸
𝑘 and Π∇,𝐸

𝑘 for their extension to vector and tensor functions. Set P𝑘(𝒯ℎ) = {𝑝 ∈
𝐿2(Ω) : 𝑝|𝐸 ∈ P𝑘(𝐸) ∀𝐸 ∈ 𝒯ℎ}. We denote the global version of Π0,𝐸

𝑘 by Π0
𝑘 : 𝐿2(Ω) → P𝑘(𝒯ℎ), which is given

by
(Π0

𝑘v)|𝐸 := Π0,𝐸
𝑘 (v|𝐸), ∀𝐸 ∈ 𝒯ℎ, ∀v ∈ 𝐿2(Ω).

The 𝐿2 projection defined in (3.2) satisfies the following approximation property. Details can be found in [24,25].

Theorem 3.4. Suppose that Assumption 3.1 is satisfied. Then, for any 𝑤 ∈ 𝐻𝑚(𝐸), with 1 ≤ 𝑚 ≤ 𝑘 + 1, it
holds

‖𝑤 −Π0,𝐸
𝑘 𝑤‖0,𝐸 + ℎ𝐸 |𝑤 −Π0,𝐸

𝑘 𝑤|1,𝐸 ≤ 𝐶ℎ𝑚
𝐸 |𝑤|𝑚,𝐸 . (3.3)

The positive constant 𝐶 depends only on the polynomial degree 𝑘 and the mesh regularity.

We now recall the local virtual element space of order 𝑘 (see [2] for more detail): ∀𝐸 ∈ 𝒯ℎ

𝑉 𝐸
𝑘 :=

{︁
𝑣ℎ ∈ ̃︀𝑉 𝐸

𝑘 : (𝑞ℎ, 𝑣ℎ)𝐸 =
(︁
𝑞ℎ,Π

∇,𝐸
𝑘 𝑣ℎ

)︁
𝐸

∀𝑞*ℎ ∈ℳ*
𝑘−1(𝐸) ∪ℳ*

𝑘(𝐸)
}︁
, (3.4)

Following [2], the degrees of freedom guaranteeing unisolvency for each 𝑣 ∈ 𝑉 𝐸
𝑘 are defined by

– ̃︀DV1: the values of 𝑣 at the vertices of the polygon 𝐸,
– ̃︀DV2: the moments of 𝑣 on edges up to degree 𝑘 − 2,

|𝑒|−1

∫︁
𝑒

𝑞𝑣 d𝑠 ∀𝑞 ∈ℳ𝑘−2(𝑒) ∀ edge 𝑒,

– ̃︀DV3: the moments of 𝑣 on element 𝐸 up to degree 𝑘 − 2,

|𝐸|−1

∫︁
𝐸

𝑞𝑣 d𝐸 ∀𝑞 ∈ℳ𝑘−2(𝐸).
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Remark 3.5. It is worth pointing out that Π0,𝐸
𝑘 and Π∇,𝐸

𝑘 are computable from the knowledge of the degrees
of freedom ̃︀DV1–̃︀DV3. This fact was proved in [2].

The global virtual element space 𝑉𝑘 can be defined by

𝑉𝑘 =
{︀
𝑣 ∈ 𝐻1(Ω) : 𝑣|𝐸 ∈ 𝑉 𝐸

𝑘

}︀
. (3.5)

Now we set
𝑉 ℎ := [𝑉𝑘]2 ∩ 𝑉 𝑘 ≥ 1. (3.6)

The proof of the following lemma is quite similar to the one given in the reference [8] and so is omitted. We
remark that the following operator is essentially the one of [8].

Lemma 3.6. If Assumption 3.1 holds and 𝑘 ≥ 2, then there exists a operator Π𝐹 : 𝑉 → 𝑉 ℎ satisfying

(div(v −Π𝐹 v), 𝑞ℎ) = 0 ∀v ∈ [𝐻1
0 (Ω)]2 ∀𝑞ℎ ∈ P𝑘−1(𝒯ℎ) ∩ 𝐿2

0(Ω), (3.7)
|Π𝐹 v|1 ≤ 𝐶|v|1. (3.8)

In addition, if v ∈ [𝐻𝑠(Ω)]2, 1 ≤ 𝑠 ≤ 𝑘 + 1, then we have

|v −Π𝐹 v|𝑚 ≤ 𝐶ℎ𝑠−𝑚
𝐸 ‖v‖𝑠, (3.9)

for 𝑚 = 0, 1 with a positive constant 𝐶 independent of ℎ and v.

Using Lemma 3.6, we can establish the following inf-sup condition.

Theorem 3.7. Under the same assumptions of Lemma 3.6, the following inf-sup condition holds

inf
𝑞ℎ∈P𝑘−1(𝒯ℎ)∩𝐿2

0(Ω),

𝑞ℎ ̸=0

sup
vℎ∈𝑉 ℎ,
vℎ ̸=0

(divvℎ, 𝑞ℎ)
|vℎ|1‖𝑞ℎ‖0

≥ 𝐶, (3.10)

with 𝐶 > 0 independent of ℎ.

3.2.2. 𝐻(div)-conforming virtual element subspaces

We now turn to the 𝐻(div)-conforming virtual element subspace given in [14]. For every 𝐸 ∈ 𝒯ℎ and integer
𝑘 ≥ 0, we introduce:

𝒢𝑘(𝐸) := ∇P𝑘+1(𝐸),

and
𝒢⊥𝑘 (𝐸) := the 𝐿2(𝐸) orthogonal of 𝒢𝑘(𝐸) in [P𝑘(𝐸)]2 .

Clearly, we have
[P𝑘(𝐸)]2 = 𝒢𝑘(𝐸)⊕ 𝒢⊥𝑘 (𝐸).

For integer 𝑘 ≥ 0, we define

Σ𝑘
ℎ(𝐸) := {z ∈ 𝐻(div;𝐸) ∩𝐻(curl;𝐸) : z · n ∈ P𝑘(𝑒) for each edge 𝑒 of 𝜕𝐸,

divz ∈ P𝑘(𝐸), and curlz ∈ P𝑘−1(𝐸)}.

Then we set
Σ𝑘

ℎ := {z ∈ 𝐻(div; Ω) such that z|𝐸 ∈ Σ𝑘
ℎ(𝐸) ∀𝐸 ∈ 𝒯ℎ}.



S916 X. TANG ET AL.

The degrees of freedom for Σ𝑘
ℎ are defined by

|𝑒|−1

∫︁
𝑒

z · n𝑞𝑘 d𝑠 for all edge 𝑒, for all 𝑞𝑘 ∈ P𝑘(𝑒), (3.11)

|𝐸|−1

∫︁
𝐸

z · g𝑘−1 d𝑥 for all element 𝐸, for all g𝑘−1 ∈ 𝒢𝑘−1(𝐸), (3.12)

|𝐸|−1

∫︁
𝐸

z · g⊥𝑘 d𝑥 for all element 𝐸, for all g⊥𝑘 ∈ 𝒢⊥𝑘 (𝐸). (3.13)

According to [14], the degrees of freedom (3.11)–(3.13) can guarantee the unisolvency for each 𝜏 ∈ Σ𝑘
ℎ.

We also need interpolation operator Π𝑖
𝑘 : [𝐻1(Ω)]2 → Σ𝑘

ℎ defined by∫︁
𝑒

(z−Π𝑖
𝑘z) · n𝑞𝑘 d𝑠 = 0 for all edge 𝑒, for all 𝑞𝑘 ∈ P𝑘(𝑒),∫︁

𝐸

(z−Π𝑖
𝑘z) · g𝑘−1 d𝑥 = 0 for all element 𝐸, for all g𝑘−1 ∈ 𝒢𝑘−1(𝐸),∫︁

𝐸

(z−Π𝑖
𝑘z) · g⊥𝑘 d𝑥 = 0 for all element 𝐸, for all g⊥𝑘 ∈ 𝒢⊥𝑘 (𝐸).

From [14] we have
divΠ𝑖

𝑘z = Π0
𝑘divz. (3.14)

Moreover, the following estimates hold, provided z is smooth enough:

‖z−Π𝑖
𝑘z‖0,𝐸 ≤ 𝐶ℎ𝑠|z|𝑠,𝐸 0 ≤ 𝑠 ≤ 𝑘 + 1, (3.15)

‖divz− divΠ𝑖
𝑘z‖0,𝐸 ≤ 𝐶ℎ𝑠|divz|𝑠,𝐸 0 ≤ 𝑠 ≤ 𝑘 + 1. (3.16)

Let
Σℎ := Σ𝑘−1

ℎ ∩Σ, 𝑄ℎ := P𝑘−1(𝒯ℎ), 𝑘 ≥ 1.

Using (3.14), we can get the following inf-sup condition.

Theorem 3.8. There exists a positive constant 𝐶 independent of ℎ such that

inf
𝑞ℎ∈𝑄ℎ,

𝑞ℎ ̸=0

sup
zℎ∈Σℎ,
zℎ ̸=0

(divzℎ, 𝑞ℎ)
‖zℎ‖div‖𝑞ℎ‖0

≥ 𝐶. (3.17)

3.3. Discrete bilinear forms and load term approximation

The next step in the construction of our method is to define a discrete version of the bilinear forms 𝑎(·, ·),
𝑎̃(·, ·) and 𝑚(·, ·) defined in (2.6). Obviously, we can split the following bilinear forms as:

𝑎(u,v) :=
∑︁

𝐸∈𝒯ℎ

𝑎𝐸(u,v) :=
∑︁

𝐸∈𝒯ℎ

2𝜇𝑎̃𝐸(u,v) + 𝜆(divu,divv)𝐸 ,

𝑚(w, z) :=
∑︁

𝐸∈𝒯ℎ

𝑚𝐸(w, z) :=
∑︁

𝐸∈𝒯ℎ

𝑚𝐸(w, z),

where

𝑎̃𝐸(u,v) := (𝜀(u), 𝜀(v))𝐸 ,

𝑚𝐸(w, z) := (K−1w, z)𝐸 .
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We start with the construction of 𝑎ℎ(·, ·), then 𝑚ℎ(·, ·) can be constructed similarly. It is easy to see that for
all u,v ∈

[︀
𝑉 𝐸

𝑘

]︀2, the quantity 𝑎𝐸(u,v) is not computable. Therefore, we need to define a computable discrete
local bilinear form 𝑎𝐸

ℎ (·, ·) which can approximate the continuous bilinear form 𝑎𝐸(·, ·). More precisely, 𝑎𝐸
ℎ (·, ·)

is defined by: for all u,v ∈
[︀
𝑉 𝐸

𝑘

]︀2
𝑎𝐸

ℎ (u,v) := 2𝜇𝑎̃𝐸
ℎ (u,v) + 𝜆

(︁
Π0,𝐸

𝑘−1divu,Π0,𝐸
𝑘−1divv

)︁
𝐸
, (3.18)

where
𝑎̃𝐸

ℎ (u,v) :=
(︁

Π0,𝐸
𝑘−1𝜀(u),Π0,𝐸

𝑘−1𝜀(v)
)︁

𝐸
+ 𝑆𝐸(u,v), (3.19)

and 𝑆𝐸(u,v) is a stabilizing bilinear form to be defined later. Clearly, for each v ∈
[︀
𝑉 𝐸

𝑘

]︀2, we can write it as
v = (𝑣1, 𝑣2). Then the stabilizing term 𝑆𝐸 can be defined by

𝑆𝐸(u,v) :=
2∑︁

𝑗=1

𝑛𝐸
𝑘∑︁

𝑖=1

𝜒𝑘
𝑖

(︁
𝑢𝑗 −Π∇,𝐸

𝑘 𝑢𝑗

)︁
𝜒𝑘

𝑖

(︁
𝑣𝑗 −Π∇,𝐸

𝑘 𝑣𝑗

)︁
, (3.20)

where 𝑛𝐸
𝑘 is the dimension of 𝑉 𝐸

𝑘 , and 𝜒𝑘
𝑖 (𝑖 ∈

{︀
1, 2, · · · , 𝑛𝐸

𝑘

}︀
) are the degrees of freedom given by ̃︀DV1–̃︀DV3.

We define the global approximated bilinear form 𝑎ℎ(·, ·) : 𝑉 ℎ×𝑉 ℎ → R by simply summing the local bilinear
forms:

𝑎ℎ(u,v) :=
∑︁

𝐸∈𝒯ℎ

𝑎𝐸
ℎ (u,v) ∀u,v ∈ 𝑉 ℎ. (3.21)

Following standard techniques in the literature [13] we can easily get the following lemma.

Lemma 3.9. For 𝑘 ≥ 1, the stabilizing term defined in (3.20) satisfies

– k-consistency: for all q ∈ [P𝑘(𝐸)]2 and v ∈
[︀
𝑉 𝐸

𝑘

]︀2
𝑆𝐸(q,v) = 0, (3.22)

– stability:
𝛽*‖(𝐼 −Π0,𝐸

𝑘−1)𝜀(v)‖20,𝐸 ≤ 𝑆𝐸(v,v) ≤ 𝛽*‖∇(v −Π∇,𝐸
𝑘 v)‖20,𝐸 ∀v ∈

[︀
𝑉 𝐸

𝑘

]︀2
(3.23)

with positive constants 𝛽* and 𝛽* independent of the element 𝐸.

Using the above lemma, we can easily get following lemma:

Lemma 3.10. The local discrete bilinear form 𝑎̃𝐸
ℎ (·, ·) defined by (3.19) satisfies

– k-consistency: for all q ∈ [P𝑘(𝐸)]2 and v ∈
[︀
𝑉 𝐸

𝑘

]︀2
𝑎̃𝐸

ℎ (q,v) = 𝑎̃𝐸(q,v), (3.24)

– stability:
𝛽*‖𝜀(v)‖20,𝐸 ≤ 𝑎̃𝐸

ℎ (v,v) ≤ 𝛽*‖∇v‖20,𝐸 ∀v ∈
[︀
𝑉 𝐸

𝑘

]︀2
(3.25)

with positive constants 𝛽* and 𝛽* independent of the element 𝐸.

By Lemmas 3.9 and 3.10, we have following theorem.

Theorem 3.11. The discrete bilinear form 𝑎ℎ(·, ·) : 𝑉 ℎ × 𝑉 ℎ → R defined by (3.21) satisfies
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– boundedness: for all u,v ∈ 𝑉 ℎ

𝑎ℎ(u,v) ≤ 𝐶𝜆|u|1|v|1, (3.26)

with 𝐶𝜆 > 0 dependent on 𝜆
– coercivity: for all v ∈ 𝑉 ℎ

𝑎ℎ(v,v) ≥ 𝐶|v|21 (3.27)

with 𝐶 > 0 independent of ℎ.

We now turn to the construction of 𝑚ℎ(·, ·). As 𝑎ℎ(·, ·), 𝑚ℎ(·, ·) is defined element by element:

𝑚ℎ(w, z) :=
∑︁

𝐸∈𝒯ℎ

𝑚𝐸
ℎ (w, z).

For each element 𝐸 ∈ 𝒯ℎ, we define a local bilinear form 𝑚𝐸
ℎ : Σ𝑘

ℎ(𝐸)× Σ𝑘
ℎ(𝐸) → 𝑅 as

𝑚𝐸
ℎ (wℎ, zℎ) :=

(︁
K−1Π0,𝐸

𝑘 wℎ,Π
0,𝐸
𝑘 zℎ

)︁
𝐸

+ 𝑆𝐸
𝑚

(︁
wℎ −Π0,𝐸

𝑘 wℎ, zℎ −Π0,𝐸
𝑘 zℎ

)︁
, (3.28)

where 𝑆𝐸
𝑚

(︁
wℎ −Π0,𝐸

𝑘 wℎ, zℎ −Π0,𝐸
𝑘 zℎ

)︁
is any symmetric and positive definite bilinear form such that

𝛼*‖zℎ −Π0,𝐸
𝑘 zℎ‖20,𝐸 ≤ 𝑆𝐸

ℎ

(︁
zℎ −Π0,𝐸

𝑘 zℎ, zℎ −Π0,𝐸
𝑘 zℎ

)︁
≤ 𝛼*‖zℎ −Π0,𝐸

𝑘 zℎ‖20,𝐸 , (3.29)

with 𝛼* and 𝛼* independent of ℎ and 𝐸. Such a bilinear form has been given in reference [14] and we just simply
describe it. For each 𝐸 ∈ 𝒯ℎ, let 𝑁𝐸 be the number of local degrees of freedom (3.11)–(3.13), and denote bỹ︀𝜒𝑖, for 𝑖 = 1, 2, . . . , 𝑁𝐸 , the operator that selects the i-th local degree of freedom (3.11)–(3.13). Then 𝑆𝐸

𝑚(·, ·) is
given by

𝑆𝐸
𝑚

(︁
wℎ −Π0,𝐸

𝑘 wℎ, zℎ −Π0,𝐸
𝑘 zℎ

)︁
:= |𝐸|

𝑁𝐸∑︁
𝑖=1

̃︀𝜒𝑖

(︁
wℎ −Π0,𝐸

𝑘 wℎ

)︁ ̃︀𝜒𝑖

(︁
zℎ −Π0,𝐸

𝑘 zℎ

)︁
∀wℎ, zℎ ∈ Σ𝑘

ℎ(𝐸).

It follows from (3.29) that

𝑚𝐸
ℎ (wℎ, zℎ) ≤ 𝐶‖wℎ‖0,𝐸‖zℎ‖0,𝐸 , ∀wℎ, zℎ ∈ Σ𝑘

ℎ(𝐸), (3.30)

𝐶‖wℎ‖20,𝐸 ≤ 𝑚𝐸
ℎ (wℎ,wℎ) ≤ 𝐶‖wℎ‖20,𝐸 ∀wℎ ∈ Σ𝑘

ℎ(𝐸). (3.31)

As a consequence, we have the following theorem for 𝑚ℎ(·, ·).

Theorem 3.12. The discrete bilinear form 𝑚ℎ(·, ·) : Σℎ ×Σℎ → R defined by (3.28) satisfies

– boundedness: for all w, z ∈ Σℎ

𝑚ℎ(w, z) ≤ 𝐶‖w‖div‖z‖div, (3.32)

with 𝐶𝜆 > 0 dependent on 𝜆
– coercivity: for all z ∈ 𝑍ℎ

𝑚ℎ(z, z) ≥ 𝐶‖z‖2div (3.33)

with 𝐶 > 0 independent of ℎ, where 𝑍ℎ := {z ∈ Σℎ : divz = 0}.

Finally we introduce how to approximate the load term (f ,v), which, in general, is not computable. We define
the approximated load term fℎ as

fℎ|𝐸 := Π0,𝐸
𝑘 f ∀𝐸 ∈ 𝒯ℎ,

and consider
(fℎ,vℎ) =

∑︁
𝐸∈𝒯ℎ

∫︁
𝐸

fℎ · vℎ :=
∑︁

𝐸∈𝒯ℎ

∫︁
𝐸

Π0,𝐸
𝑘 f · vℎ =

∑︁
𝐸∈𝒯ℎ

∫︁
𝐸

f ·Π0,𝐸
𝑘 vℎ. (3.34)

According to [2, 10], (3.34) can be exactly computed from ̃︀DV1–̃︀DV3.
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4. Fully discrete scheme

In this section, we shall deal with the a priori analysis of a fully discrete scheme of (2.3)–(2.5). Suppose that
𝑇0 = 𝑁∆𝑡, where 𝑁 is a positive integer. Set 𝑡𝑛 = 𝑛∆𝑡, 𝑛 = 0, 1, · · · , 𝑁 . For a continuous function 𝑔 defined on
[0, 𝑇0], we define 𝑔𝑛 = 𝑔(𝑡𝑛). Then, given initial data u0

ℎ ∈ 𝑉 ℎ, 𝑝
0
ℎ ∈ 𝑄ℎ, the fully discrete scheme of (2.3)–(2.5)

seeks (u𝑛
ℎ,w

𝑛
ℎ , 𝑝

𝑛
ℎ) ∈ 𝑉 ℎ ×Σℎ ×𝑄ℎ at time 𝑡𝑛, 1 ≤ 𝑛 ≤ 𝑁 , such that

𝑎ℎ(u𝑛
ℎ,vℎ)− 𝛼(divvℎ, 𝑝

𝑛
ℎ) = (f𝑛

ℎ ,vℎ), ∀vℎ ∈ 𝑉 ℎ, (4.1)
𝑚ℎ(w𝑛

ℎ , zℎ)− (divzℎ, 𝑝
𝑛
ℎ) = 0, ∀zℎ ∈ Σℎ, (4.2)

𝑐0

(︂
𝑝𝑛

ℎ−𝑝
𝑛−1
ℎ

∆𝑡
, 𝑞ℎ

)︂
+ 𝛼

(︂
div
(︂

u𝑛
ℎ−u𝑛−1

ℎ

∆𝑡

)︂
, 𝑞ℎ

)︂
+(divw𝑛

ℎ , 𝑞ℎ) = (𝑔𝑛, 𝑞ℎ), ∀𝑞ℎ ∈ 𝑄ℎ. (4.3)

It is easy to check that all the 𝐿2 product terms are computable. This system can be rewritten as:

𝑎ℎ(u𝑛
ℎ,vℎ)− 𝛼(divvℎ, 𝑝

𝑛
ℎ) = (f𝑛

ℎ ,vℎ), ∀vℎ ∈ 𝑉 ℎ,

∆𝑡𝑚ℎ(w𝑛
ℎ , zℎ)−∆𝑡(divzℎ, 𝑝

𝑛
ℎ) = 0, ∀zℎ ∈ Σℎ,

𝑐0(𝑝𝑛
ℎ, 𝑞ℎ) + 𝛼(divu𝑛

ℎ, 𝑞ℎ) + ∆𝑡(divw𝑛
ℎ , 𝑞ℎ) = ∆𝑡(𝑔𝑛, 𝑞ℎ) + 𝑐0(𝑝𝑛−1

ℎ , 𝑞ℎ) + 𝛼(divu𝑛−1
ℎ , 𝑞ℎ), ∀𝑞ℎ ∈ 𝑄ℎ.

Obviously, this is a square system of linear equations for the unknowns (u𝑛
ℎ,w

𝑛
ℎ , 𝑝

𝑛
ℎ). It suffices to prove its

uniqueness. Assume that u𝑛−1
ℎ ,w𝑛−1

ℎ , 𝑝𝑛−1
ℎ , f𝑛 and 𝑔𝑛 vanish. Setting vℎ = u𝑛

ℎ, zℎ = w𝑛
ℎ and 𝑞ℎ = 𝑝𝑛

ℎ and
adding them together leads to

𝑎ℎ(u𝑛
ℎ,u

𝑛
ℎ) + ∆𝑡𝑚ℎ(w𝑛

ℎ ,w
𝑛
ℎ) + 𝑐0(𝑝𝑛

ℎ, 𝑝
𝑛
ℎ) = 0.

From (3.27) and (3.31), we can get ‖u𝑛
ℎ‖1 = 0, ‖w𝑛

ℎ‖0 = 0 and ‖𝑝𝑛
ℎ‖0 = 0, for 𝑐0 > 0. If 𝑐0 = 0, we still have

‖u𝑛
ℎ‖1 = 0, ‖w𝑛

ℎ‖0 = 0, from which we infer

(divzℎ, 𝑝
𝑛
ℎ) = 0, ∀zℎ ∈ Σℎ.

Using Theorem 3.8, we have ‖𝑝𝑛
ℎ‖0 = 0. To conclude, we have established the following result.

Theorem 4.1. At each time step 𝑡𝑛, the fully discrete scheme (4.1)–(4.3) has a unique solution (u𝑛
ℎ,w

𝑛
ℎ , 𝑝

𝑛
ℎ) ∈

𝑉 ℎ ×Σℎ ×𝑄ℎ.

4.1. Elliptic projection

To define initial data u0
ℎ ∈ 𝑉 ℎ, 𝑝

0
ℎ ∈ 𝑄ℎ and derive the error analysis of the fully discrete scheme (4.1)–(4.3),

we need a elliptic projection Π𝑒 : 𝑉 ×Σ × 𝑄 → 𝑉 ℎ ×Σℎ × 𝑄ℎ defined below. Given (u,w, 𝑝) ∈ 𝑉 ×Σ × 𝑄,
let (u𝜋,w𝜋, 𝑝𝜋) = Π𝑒(u,w, 𝑝) be the solution of the following equations

𝑎ℎ(u𝜋,vℎ)− 𝛼(divvℎ, 𝑝𝜋) = 𝑎(u,vℎ)− 𝛼(divvℎ, 𝑝), ∀vℎ ∈ 𝑉 ℎ, (4.4)
𝑚ℎ(w𝜋, zℎ)− (divzℎ, 𝑝𝜋) = 𝑚(w, zℎ)− (divzℎ, 𝑝), ∀zℎ ∈ Σℎ, (4.5)

(divw𝜋, 𝑞ℎ) = (divw, 𝑞ℎ), ∀𝑞ℎ ∈ 𝑄ℎ. (4.6)

It is easy to see that Theorems 3.8, 3.11 and 3.12 imply the well-posedness of the elliptic projection. If u,w and
𝑝 are smooth enough, we also have the following estimates.

Theorem 4.2. Given (u,w, 𝑝) ∈ 𝑉 ×Σ×𝑄, let (u𝜋,w𝜋, 𝑝𝜋) ∈ 𝑉 ℎ ×Σℎ ×𝑄ℎ be the solution of (4.4)–(4.6).
If (u,w, 𝑝) ∈ [𝐻𝑘+1(Ω)]2 × [𝐻𝑘(Ω)]2 ×𝐻𝑘(Ω) and 𝑘 ≥ 2, then the following estimates hold:

‖w −w𝜋‖0 ≤ 𝐶ℎ𝑘‖w‖𝑘, (4.7)

‖𝑝− 𝑝𝜋‖0 ≤ 𝐶ℎ𝑘(‖w‖𝑘 + ‖𝑝‖𝑘), (4.8)

‖u− u𝜋‖1 ≤ 𝐶ℎ𝑘(‖u‖𝑘+1 + ‖𝜆divu‖𝑘 + ‖w‖𝑘 + ‖𝑝‖𝑘). (4.9)
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Proof. We start with splitting errors as follows:

u− u𝜋 = u−Π𝐹 u + Π𝐹 u− u𝜋,

w −w𝜋 = w −Π𝑖
𝑘w + Π𝑖

𝑘w −w𝜋,

𝑝− 𝑝𝜋 = 𝑝−Π0
𝑘𝑝+ Π0

𝑘𝑝− 𝑝𝜋.

Adding and subtracting proper term in (4.5), we have

𝑚ℎ(w𝜋 −Π𝑖
𝑘w, zℎ)− (divzℎ, 𝑝𝜋 −Π0

𝑘𝑝) = 𝑚(w −Π0
𝑘w, zℎ) +𝑚ℎ(Π0

𝑘w −Π𝑖
𝑘w, zℎ)− (divzℎ, 𝑝−Π0

𝑘𝑝), (4.10)

where we have used the fact that 𝑚(Π0
𝑘w, zℎ) = 𝑚ℎ(Π0

𝑘w, zℎ), ∀z ∈ Σℎ. Clearly, (4.6) and (3.14) means that

divw𝜋 = Π0
𝑘divw = divΠ𝑖

𝑘w,

from which we get
div(w𝜋 −Π𝑖

𝑘w) = 0.

Then setting zℎ = w𝜋 − Π𝑖
𝑘w in (4.10), using Theorem 3.12 and applying the Cauchy–Schwarz inequality, we

obtain

‖w𝜋 −Π𝑖
𝑘w‖20 ≤ 𝐶

(︀
‖w −Π0

𝑘w‖0‖w𝜋 −Π𝑖
𝑘w‖0 + ‖Π0

𝑘w −Π𝑖
𝑘w‖0‖w𝜋 −Π𝑖

𝑘w‖0
)︀
.

Using the triangle inequality, (3.15) and (3.3) leads to (4.7). Applying Theorem 3.8, we can get z̄ ∈ Σℎ such
that

divz̄ = −(𝑝𝜋 −Π0
𝑘𝑝),

‖z̄‖div ≤ 𝐶‖𝑝𝜋 −Π0
𝑘𝑝‖0.

Testing such z̄ in (4.10) and using the Cauchy–Schwarz inequality, we have

‖𝑝𝜋 −Π0
𝑘𝑝‖0 ≤ 𝐶(‖w −Π0

𝑘w‖0 + ‖Π0
𝑘w −Π𝑖

𝑘w‖0 + ‖Π𝑖
𝑘w −w𝜋‖0).

Applying the triangle inequality, we deduce (4.8).
We now turn to the last estimate (4.9). Adding and subtracting Π𝐹 u and Π0

𝑘u in (4.6), we have

𝑎̃ℎ(u𝜋 −Π𝐹 u,vℎ) + 𝜆
∑︁

𝐸∈𝒯ℎ

(Π0,𝐸
𝑘−1div(u−Π𝐹 u),Π0,𝐸

𝑘−1divvℎ)𝐸 = 𝑎̃(u𝜋 −Π0
𝑘u,vℎ)

+ 𝑎̃ℎ(Π0
𝑘u−Π𝐹 u,vℎ) + 𝛼(divvℎ, 𝑝− 𝑝𝜋) + 𝜆(divu,divvℎ)

− 𝜆
∑︁

𝐸∈𝒯ℎ

(Π0,𝐸
𝑘−1div(Π𝐹 u),Π0,𝐸

𝑘−1divvℎ)𝐸 .

We observe that (3.7) means Π0,𝐸
𝑘−1div(Π𝐹 u) = Π0,𝐸

𝑘−1div(u). Then setting vℎ = u𝜋 −Π𝐹 u, we obtain

𝑎̃ℎ(u𝜋 −Π𝐹 u,u𝜋 −Π𝐹 u) + 𝜆
∑︁

𝐸∈𝒯ℎ

(︁
Π0,𝐸

𝑘−1div (u−Π𝐹 u) ,Π0,𝐸
𝑘−1div(u𝜋 −Π𝐹 u)

)︁
𝐸

= 𝑎̃(u𝜋 −Π0
𝑘u,u𝜋

−Π𝐹 u) + 𝑎̃ℎ

(︀
Π0

𝑘u−Π𝐹 u,u𝜋 −Π𝐹 u
)︀

+ 𝛼(div(u𝜋 −Π𝐹 u), 𝑝− 𝑝𝜋)

+ 𝜆
∑︁

𝐸∈𝒯ℎ

(︁
divu−Π0,𝐸

𝑘−1div(u),div(u𝜋 −Π𝐹 u)
)︁

𝐸
.
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Using (3.25) and the Cauchy–Schwarz inequality, we get

‖𝜀(u𝜋 −Π𝐹 u)‖20 ≤ 𝐶

⎛⎝(︃∑︁
𝐸∈𝒯ℎ

‖∇(u𝜋 −Π0
𝑘u)‖20,𝐸

)︃1/2

‖∇(u𝜋 −Π𝐹 u)‖0

+

(︃∑︁
𝐸∈𝒯ℎ

‖∇(Π0
𝑘u−Π𝐹 u)‖20,𝐸

)︃1/2

‖∇(u𝜋 −Π𝐹 u)‖0 + ‖∇(u𝜋 −Π𝐹 u)‖0‖𝑝− 𝑝𝜋‖0

+

(︃
𝜆
∑︁

𝐸∈𝒯ℎ

‖divu−Π0,𝐸
𝑘−1div(u)‖20,𝐸

)︃1/2

‖∇(u𝜋 −Π𝐹 u)‖0

⎞⎠ .

Finally, using the Korn’s inequality and the triangle inequality, we can derive (4.9). �

With the above elliptic projection, we can define initial data as:

(u0
𝜋,w

0
𝜋, 𝑝

0
𝜋) = Π𝑒(u0,w0, 𝑝0). (4.11)

4.2. A priori error estimates for 𝑐0 = 0

In this section, we will derive a priori error estimates for the discrete problem (4.1)–(4.3) with 𝑐0 = 0.
According to Phillips and Wheeler [52], the poroelastic locking typically occurs when the constrained specific
storage term is null (𝑐0 = 0), the permeability of the porous medium is very low, and a small time step is used.
Therefore we are more interested in the error estimate in the case 𝑐0 = 0. For 𝑐0 > 0, we can apply the argument
in [61] to get desired a priori error estimates. To prove optimal error estimates, we need the following regularity
assumptions:

u ∈ 𝐿∞([0, 𝑇0];𝐻𝑘+1(Ω)), f , 𝜆divu,w, 𝑝 ∈ 𝐿∞([0, 𝑇0];𝐻𝑘(Ω)),

u𝑡 ∈ 𝐿2([0, 𝑇0];𝐻𝑘+1(Ω)), f𝑡, 𝜆divu𝑡,w𝑡, 𝑝𝑡 ∈ 𝐿2([0, 𝑇0];𝐻𝑘(Ω)),
u𝑡𝑡 ∈ 𝐿2([0, 𝑇0];𝐻1(Ω)), f𝑡𝑡 ∈ 𝐿2([0, 𝑇0];𝐿2(Ω)).

(4.12)

The main results are collected in the following theorem.

Theorem 4.3. Let (u,w, 𝑝) be the solution of (2.7)–(2.9) and (u𝑛
ℎ,w

𝑛
ℎ , 𝑝

𝑛
ℎ) the solution of fully discrete problem

(4.1)–(4.3). Assume that 𝑘 ≥ 2 and (4.12) hold. Then we have the following error estimates:

max
1≤𝑛≤𝑁

(‖u𝑛 − u𝑛
ℎ‖1)2 + ∆𝑡

𝑁∑︁
𝑛=0

(‖w𝑛 −w𝑛
ℎ‖20 + ‖𝑝𝑛 − 𝑝𝑛

ℎ‖20) ≤ 𝐶(ℎ2𝑘 + ∆𝑡2),

where 𝐶 is a positive constant independent of ℎ and 𝜆.

Proof. We start the proof with recalling the following Taylor expansion:

u𝑛 − u𝑛−1

∆𝑡
= u𝑛

𝑡 +
1

∆𝑡

∫︁ 𝑡𝑛

𝑡𝑛−1
(𝑠− 𝑡𝑛−1)u𝑡𝑡(𝑠) d𝑠. (4.13)

Then, at time 𝑡 = 𝑡𝑛, using the above equation in (2.7)–(2.9), we have

𝑎(u𝑛,vℎ)− 𝛼(𝑝𝑛,divvℎ) = (f𝑛,vℎ),
𝑚(w𝑛, zℎ)− (𝑝𝑛,divzℎ) = 0,

𝛼

(︂
div
(︂

u𝑛 − u𝑛−1

∆𝑡

)︂
, 𝑞ℎ

)︂
+ (divw𝑛, 𝑞ℎ) = (𝑔𝑛, 𝑞ℎ) +

𝛼

∆𝑡

(︃∫︁ 𝑡𝑛

𝑡𝑛−1
(𝑠− 𝑡𝑛−1)divu𝑡𝑡(𝑠) d𝑠, 𝑞ℎ

)︃
,
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for all vℎ ∈ 𝑉 ℎ, zℎ ∈ Σℎ, 𝑞ℎ ∈ 𝑄ℎ.
Applying elliptic projection (4.4)–(4.6), we obtain

𝑎ℎ(Π𝑒u𝑛,vℎ)− 𝛼(Π𝑒𝑝
𝑛,divvℎ) = (f𝑛,vℎ), (4.14)

𝑚ℎ(Π𝑒w𝑛, zℎ)− (Π𝑒𝑝
𝑛,divzℎ) = 0, (4.15)

𝛼

(︂
div
(︂

u𝑛 − u𝑛−1

∆𝑡

)︂
, 𝑞ℎ

)︂
+ (divΠ𝑒w𝑛, 𝑞ℎ) = (𝑔𝑛, 𝑞ℎ) +

𝛼

∆𝑡

(︃∫︁ 𝑡𝑛

𝑡𝑛−1
(𝑠− 𝑡𝑛−1)divu𝑡𝑡(𝑠) d𝑠, 𝑞ℎ

)︃
, (4.16)

for all vℎ ∈ 𝑉 ℎ, zℎ ∈ Σℎ, 𝑞ℎ ∈ 𝑄ℎ. Next we split errors as follows:

u𝑛 − u𝑛
ℎ = u𝑛 −Π𝑒u𝑛 + Π𝑒u𝑛 − u𝑛

ℎ := 𝜂𝑛
𝑢 + 𝜉𝑛

𝑢,

w𝑛 −w𝑛
ℎ = w𝑛 −Π𝑒w𝑛 + Π𝑒w𝑛 −w𝑛

ℎ := 𝜂𝑛
𝑤 + 𝜉𝑛

𝑤,

𝑝𝑛 − 𝑝𝑛
ℎ = 𝑝𝑛 −Π𝑒𝑝

𝑛 + Π𝑒𝑝
𝑛 − 𝑝𝑛

ℎ := 𝜂𝑛
𝑝 + 𝜉𝑛

𝑝 .

By taking the differences of (4.14)–(4.16) and (4.1)–(4.3), we have

𝑎ℎ(𝜉𝑛
𝑢,vℎ)− 𝛼(𝜉𝑛

𝑝 ,divvℎ) = (𝑅𝑛
𝑓 ,vℎ), vℎ ∈ 𝑉 ℎ, (4.17)

𝑚ℎ(𝜉𝑛
𝑤, zℎ)− (𝜉𝑛

𝑝 ,divzℎ) = 0, zℎ ∈ Σℎ, (4.18)

𝛼

(︂
div
(︂

𝜉𝑛
𝑢 − 𝜉𝑛−1

𝑢

∆𝑡

)︂
, 𝑞ℎ

)︂
+ (div𝜉𝑛

𝑤, 𝑞ℎ) = −𝛼
(︂

div
(︂

𝜂𝑛
𝑢 − 𝜂𝑛−1

𝑢

∆𝑡

)︂
, 𝑞ℎ

)︂
+

𝛼

∆𝑡
(𝑅𝑛

𝑢, 𝑞ℎ), 𝑞ℎ ∈ 𝑄ℎ, (4.19)

where 𝑅𝑛
𝑓 = 𝑓𝑛 − Π0

𝑘𝑓
𝑛, 𝑅𝑛

𝑢 =
∫︀ 𝑡𝑛

𝑡𝑛−1(𝑠 − 𝑡𝑛−1)divu𝑡𝑡(𝑠) d𝑠. Taking vℎ = 𝜉𝑛
𝑢−𝜉𝑛−1

𝑢

Δ𝑡 , zℎ = 𝜉𝑛
𝑤 and 𝑞ℎ = 𝜉𝑛

𝑝 in the
above equations leads to

𝑎ℎ(𝜉𝑛
𝑢, 𝜉

𝑛
𝑢 − 𝜉𝑛−1

𝑢 ) + ∆𝑡𝑚ℎ(𝜉𝑛
𝑤, 𝜉

𝑛
𝑤) = −𝛼(div(𝜂𝑛

𝑢 − 𝜂𝑛−1
𝑢 ), 𝜉𝑛

𝑝 ) + 𝛼(𝑅𝑛
𝑢, 𝜉

𝑛
𝑝 ) + (𝑅𝑛

𝑓 , 𝜉
𝑛
𝑢 − 𝜉𝑛−1

𝑢 ). (4.20)

Let ‖𝜉𝑛
𝑢‖2𝑎ℎ

:= 𝑎ℎ(𝜉𝑛
𝑢, 𝜉

𝑛
𝑢) and ‖𝜉𝑛

𝑤‖2𝑚ℎ
:= 𝑚ℎ(𝜉𝑛

𝑤, 𝜉
𝑛
𝑤). Observing that

𝑎ℎ(𝜉𝑛
𝑢, 𝜉

𝑛−1
𝑢 ) ≤ ‖𝜉𝑛

𝑢‖𝑎ℎ
‖𝜉𝑛−1

𝑢 ‖𝑎ℎ
≤
‖𝜉𝑛

𝑢‖2𝑎ℎ
+ ‖𝜉𝑛−1

𝑢 ‖2𝑎ℎ

2
,

we can rewrite (4.20) as

1
2

(‖𝜉𝑛
𝑢‖2𝑎ℎ

− ‖𝜉𝑛−1
𝑢 ‖2𝑎ℎ

) + ∆𝑡‖𝜉𝑛
𝑤‖2𝑚ℎ

≤ −𝛼(div(𝜂𝑛
𝑢 − 𝜂𝑛−1

𝑢 ), 𝜉𝑛
𝑝 ) + 𝛼(𝑅𝑛

𝑢, 𝜉
𝑛
𝑝 ) + (𝑅𝑛

𝑓 , 𝜉
𝑛
𝑢 − 𝜉𝑛−1

𝑢 ).

Summing it from 1 to 𝑀 (1 ≤𝑀 ≤ 𝑁) yields

1
2
‖𝜉𝑀

𝑢 ‖2𝑎ℎ
+

𝑀∑︁
𝑛=1

∆𝑡‖𝜉𝑛
𝑤‖2𝑚ℎ

≤ 𝐶(𝑅1 +𝑅2 +𝑅3), (4.21)

where

𝑅1 = −𝛼
𝑀∑︁

𝑛=1

(div(𝜂𝑛
𝑢 − 𝜂𝑛−1

𝑢 ), 𝜉𝑛
𝑝 ),

𝑅2 = 𝛼

𝑀∑︁
𝑛=1

(𝑅𝑛
𝑢, 𝜉

𝑛
𝑝 ),

𝑅3 =
𝑀∑︁

𝑛=1

(𝑅𝑛
𝑓 , 𝜉

𝑛
𝑢 − 𝜉𝑛−1

𝑢 ).
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Now our main task is to estimate 𝑅1, 𝑅2 and 𝑅3. To this end, we use (4.13) to rewrite 𝑅1 as

𝑅1 =
𝑀∑︁

𝑛=1

(︃(︀
∆𝑡div𝜂𝑛

𝑢𝑡
, 𝜉𝑛

𝑝

)︀
+

(︃∫︁ 𝑡𝑛

𝑡𝑛−1
(𝑠− 𝑡𝑛−1)div𝜂𝑢𝑡𝑡

(𝑠) d𝑠, 𝜉𝑛
𝑝

)︃)︃
. (4.22)

Using Young’s inequality yields

|𝑅1| ≤
𝑀∑︁

𝑛=1

(︃
1

2𝜖1
‖div𝜂𝑛

𝑢𝑡
‖20∆𝑡+ 𝜖1‖𝜉𝑛

𝑝 ‖20∆𝑡+
1

2𝜖1∆𝑡
‖
∫︁ 𝑡𝑛

𝑡𝑛−1
(𝑠− 𝑡𝑛−1)div𝜂𝑢𝑡𝑡

(𝑠)‖0

)︃

≤ 𝐶

(︃
𝑀∑︁

𝑛=1

‖𝜂𝑛
𝑢𝑡
‖21∆𝑡+ ∆𝑡2

𝑀∑︁
𝑛=1

∫︁ 𝑡𝑛

𝑡𝑛−1
‖𝜂𝑢𝑡𝑡

(𝑠)‖21 d𝑠+ 𝜖1

𝑀∑︁
𝑛=1

‖𝜉𝑛
𝑤‖20∆𝑡

)︃
, (4.23)

where we have used Theorem 3.8 and (4.18) to get

‖𝜉𝑛
𝑝 ‖0 ≤ 𝐶 sup

zℎ∈Σℎ,
zℎ ̸=0

(︀
divzℎ, 𝜉

𝑛
𝑝

)︀
‖zℎ‖div

= 𝐶 sup
zℎ∈Σℎ,
zℎ ̸=0

𝑚ℎ(𝜉𝑛
𝑤, zℎ)

‖zℎ‖div
≤ 𝐶‖𝜉𝑛

𝑤‖0. (4.24)

Using Young’s inequality again, we obtain

|𝑅2| ≤ 𝐶

𝑀∑︁
𝑛=1

1
∆𝑡
‖𝑅𝑛

𝑢‖20 + 𝜖1

𝑀∑︁
𝑛=1

‖𝜉𝑛
𝑤‖20∆𝑡.

Since

|𝑅𝑛
𝑢| ≤

(︃∫︁ 𝑡𝑛

𝑡𝑛−1
|𝑠− 𝑡𝑛−1|2 d𝑠

)︃1/2(︃∫︁ 𝑡𝑛

𝑡𝑛−1
|divu𝑡𝑡(𝑠)|2 d𝑠

)︃1/2

≤ ∆𝑡3/2

√
3

(︃∫︁ 𝑡𝑛

𝑡𝑛−1
|divu𝑡𝑡(𝑠)|2 d𝑠

)︃1/2

,

we have

|𝑅2| ≤ 𝐶∆𝑡2
𝑀∑︁

𝑛=1

∫︁ 𝑡𝑛

𝑡𝑛−1
‖u𝑡𝑡(𝑠)‖21 d𝑠+ 𝜖1

𝑀∑︁
𝑛=1

‖𝜉𝑛
𝑤‖20∆𝑡. (4.25)

Note that the following equation holds for any bounded sequences {𝑓 𝑖}𝑀
𝑖=0 and {𝑔𝑖}𝑀

𝑖=0

𝑀∑︁
𝑛=1

𝑓𝑛(𝑔𝑛 − 𝑔𝑛−1) = 𝑓𝑀𝑔𝑀 − 𝑓0𝑔0 −
𝑀∑︁

𝑛=1

(𝑓𝑛 − 𝑓𝑛−1)𝑔𝑛−1.

By using the above equation, 𝑅3 can be rewritten as

𝑅3 = (𝑅𝑀
𝑓 , 𝜉𝑀

𝑢 )−
𝑀∑︁

𝑛=1

(︁
𝑅𝑛

𝑓 −𝑅𝑛−1
𝑓 , 𝜉𝑛−1

𝑢

)︁
.

Applying (4.13) to 𝑅𝑛
𝑓 −𝑅𝑛−1

𝑓 , we can estimate 𝑅3 as follows

|𝑅3| ≤ 𝐶‖𝑅𝑀
𝑓 ‖20 +

𝜖1
2
‖𝜉𝑀

𝑢 ‖21 + 𝐶

𝑀∑︁
𝑛=1

‖𝑅𝑛
𝑓 ‖20∆𝑡+ 𝜖1

𝑀∑︁
𝑛=1

‖𝜉𝑛−1
𝑢 ‖21∆𝑡+ 𝐶∆𝑡2

𝑀∑︁
𝑛=1

∫︁ 𝑡𝑛

𝑡𝑛−1
‖𝑅𝑓𝑡𝑡

(𝑠)‖20 d𝑠. (4.26)
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Combing (4.21), (4.23), (4.25) and (4.26), choosing 𝜖1 properly, and using (3.31) and Theorem 3.11, we obtain

𝜇‖𝜉𝑀
𝑢 ‖21 +

𝑀∑︁
𝑛=0

‖𝜉𝑛
𝑤‖20∆𝑡 ≤ 𝐶

(︂
‖𝑅𝑀

𝑓 ‖20 +
𝑀∑︁

𝑛=1

‖𝑅𝑛
𝑓𝑡
‖20∆𝑡

+
𝑀∑︁

𝑛=1

∆𝑡2
∫︁ 𝑡𝑛

𝑡𝑛−1
‖𝑅𝑓𝑡𝑡(𝑠)‖20 d𝑠+

𝑀∑︁
𝑛=1

‖𝜂𝑢𝑡
‖21∆𝑡+ ∆𝑡2

𝑀∑︁
𝑛=1

∫︁ 𝑡𝑛

𝑡𝑛−1
‖𝜂𝑢𝑡𝑡

(𝑠)‖21 d𝑠

+ ∆𝑡2
𝑀∑︁

𝑛=1

∫︁ 𝑡𝑛

𝑡𝑛−1
‖u𝑡𝑡(𝑠)‖21 d𝑠

)︂
+

𝑁−1∑︁
𝑛=0

‖𝜉𝑛
𝑢‖21∆𝑡.

Using discrete Gronwall inequality yields

𝜇‖𝜉𝑀
𝑢 ‖21 +

𝑀∑︁
𝑛=0

‖𝜉𝑛
𝑤‖20∆𝑡 ≤ 𝐶 exp(𝑇0)

(︂
‖𝑅𝑁

𝑓 ‖20 +
𝑁∑︁

𝑛=1

‖𝑅𝑛
𝑓𝑡
‖20∆𝑡

+
𝑁∑︁

𝑛=1

‖𝜂𝑛
𝑢𝑡
‖21∆𝑡+ ∆𝑡2

∫︁ 𝑇0

0

‖f𝑡𝑡(𝑠)‖20 d𝑠+ ∆𝑡2
∫︁ 𝑇0

0

‖u𝑡𝑡(𝑠)‖21 d𝑠
)︂
.

It follows from (3.3) that
‖𝑅𝑁

𝑓 ‖0 ≤ 𝐶ℎ𝑘‖f‖𝐿∞([0,𝑇0];𝐻𝑘).

Let 𝑠 ∈ [𝑡𝑛−1, 𝑡𝑛], then we can estimate ‖𝑅𝑛
𝑓𝑡
‖0 as follows

‖𝑅𝑛
𝑓𝑡
‖0 ≤ ‖(𝐼 −Π0

𝑘)(f𝑛
𝑡 − f𝑡(𝑠))‖0 + ‖(𝐼 −Π0

𝑘)(f𝑡(𝑠))‖0 ≤ ‖f𝑛
𝑡 − f𝑡(𝑠)‖0 + ‖(𝐼 −Π0

𝑘)(f𝑡(𝑠))‖0. (4.27)

Noting

f𝑛
𝑡 − f𝑡(𝑠) =

∫︁ 𝑡𝑛

𝑠

f𝑡𝑡(𝑟)d𝑟,

we have

‖f𝑛
𝑡 − f𝑡(𝑠)‖20 ≤ ∆𝑡

∫︁ 𝑡𝑛

𝑡𝑛−1

‖f𝑡𝑡(𝑟)‖20d𝑟. (4.28)

From (3.3) we obtain
‖(𝐼 −Π0

𝑘)(f𝑡(𝑠))‖0 ≤ 𝐶ℎ𝑘‖f𝑡(𝑠)‖𝑘. (4.29)

Combing (4.27)–(4.29), we derive

𝑁∑︁
𝑛=1

‖𝑅𝑛
𝑓𝑡
‖20∆𝑡 ≤ 𝐶∆𝑡2

∫︁ 𝑇0

0

‖f𝑡𝑡(𝑟)‖20d𝑟 + 𝐶ℎ2𝑘

∫︁ 𝑇0

0

‖f𝑡(𝑠)‖2𝑘 d𝑠.

By the same token, we have

𝑁∑︁
𝑛=1

‖𝜂𝑢𝑡
‖21∆𝑡 ≤ 𝐶∆𝑡2

∫︁ 𝑇0

0

‖u𝑡𝑡(𝑠)‖21 d𝑠+ 𝐶ℎ2𝑘

(︂∫︁ 𝑇0

0

‖u𝑡(𝑠)‖2𝑘+1 d𝑠

+
∫︁ 𝑇0

0

‖𝜆divu𝑡(𝑠)‖2𝑘 d𝑠+
∫︁ 𝑇0

0

‖w𝑡(𝑠)‖2𝑘 d𝑠+
∫︁ 𝑇0

0

‖𝑝𝑡(𝑠)‖2𝑘 d𝑠
)︂
.
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As a consequence, we arrive at

𝜇‖𝜉𝑀
𝑢 ‖21 +

𝑀∑︁
𝑛=0

‖𝜉𝑛
𝑤‖20∆𝑡 ≤ 𝐶 exp(𝑇0)

(︃
∆𝑡2

(︃∫︁ 𝑇0

0

‖f𝑡𝑡(𝑠)‖20 d𝑠+
∫︁ 𝑇0

0

‖u𝑡𝑡(𝑠)‖21 d𝑠

)︃

+ ℎ2𝑘

(︃
ℎ2𝑘‖f‖𝐿∞([0,𝑇0];𝐻𝑘) +

∫︁ 𝑇0

0

‖f𝑡(𝑠)‖2𝑘 d𝑠+
∫︁ 𝑇0

0

‖u𝑡(𝑠)‖2𝑘+1 d𝑠

+
∫︁ 𝑇0

0

‖𝜆divu𝑡(𝑠)‖2𝑘 d𝑠+
∫︁ 𝑇0

0

‖w𝑡(𝑠)‖2𝑘 d𝑠+
∫︁ 𝑇0

0

‖𝑝𝑡(𝑠)‖2𝑘 d𝑠

)︃)︃
. (4.30)

Applying (4.24) yields

𝑁∑︁
𝑛=0

‖𝜉𝑛
𝑝 ‖20∆𝑡 ≤ 𝐶 exp(𝑇0)

(︃
∆𝑡2

(︃∫︁ 𝑇0

0

‖f𝑡𝑡(𝑠)‖20 d𝑠+
∫︁ 𝑇0

0

‖u𝑡𝑡(𝑠)‖21 d𝑠

)︃

+ ℎ2𝑘

(︃
ℎ2𝑘‖f‖𝐿∞(0,𝑇0,𝐻𝑘) +

∫︁ 𝑇0

0

‖f𝑡(𝑠)‖2𝑘 d𝑠+
∫︁ 𝑇0

0

‖u𝑡(𝑠)‖2𝑘+1 d𝑠

+
∫︁ 𝑇0

0

‖𝜆divu𝑡(𝑠)‖2𝑘 d𝑠+
∫︁ 𝑇0

0

‖w𝑡(𝑠)‖2𝑘 d𝑠+
∫︁ 𝑇0

0

‖𝑝𝑡(𝑠)‖2𝑘 d𝑠

)︃)︃
. (4.31)

It follows from (4.9) that

‖𝜂𝑁
𝑢 ‖0 ≤ 𝐶ℎ𝑘

(︀
‖u‖𝐿∞([0,𝑇0];𝐻𝑘+1) + ‖𝜆divu‖𝐿∞([0,𝑇0];𝐻𝑘) + ‖w‖𝐿∞([0,𝑇0];𝐻𝑘) + ‖𝑝‖𝐿∞([0,𝑇0];𝐻𝑘)

)︀
. (4.32)

By similar procedure as in (4.27)–(4.29), we can get

𝑁∑︁
𝑛=0

‖𝜂𝑛
𝑤‖20∆𝑡 ≤ 𝐶∆𝑡2

∫︁ 𝑇0

0

‖w𝑡(𝑠)‖20 d𝑠+ 𝐶ℎ2𝑘

∫︁ 𝑇0

0

‖w(𝑠)‖2𝑘 d𝑠, (4.33)

𝑁∑︁
𝑛=0

‖𝜂𝑛
𝑝 ‖20∆𝑡 ≤ 𝐶∆𝑡2

(︃∫︁ 𝑇0

0

‖𝑝𝑡(𝑠)‖20 d𝑠+
∫︁ 𝑇0

0

‖w𝑡(𝑠)‖20 d𝑠

)︃

+ 𝐶ℎ2𝑘

(︃∫︁ 𝑇0

0

‖𝑝(𝑠)‖2𝑘 d𝑠+
∫︁ 𝑇0

0

‖w(𝑠)‖2𝑘 d𝑠

)︃
. (4.34)

Finally, combing (4.30)–(4.34), and using the triangle inequality, we complete the proof. �

Remark 4.4. Conditions 𝑘 ≥ 2 and (4.12) are the key to establish robust error estimates when 𝜆 → ∞. If
𝑘 = 1, then Lemma 3.6 may no longer hold. As a consequence, we can only derive error bounds 𝐶𝜆(ℎ2 + ∆𝑡2),
where 𝐶𝜆 is dependent on 𝜆.

Remark 4.5. Even though, Lemma 3.6 for 𝑘 = 1 does not hold on arbitrary mesh, we observe in numerical
tests that for 𝑘 = 1, fully discrete scheme (4.1)–(4.3) seems to be locking-free on most types of meshes except
triangular meshes. This implies that Lemma 3.6 may hold on some meshes, which reminds us of the work of [7].
Reference [7] proved that the mimetic generalization of the 𝑃1 − 𝑃0 finite element is stable on a large range of
polygonal meshes. Such mimetic generalization has the same degrees of freedom as that of the VEM when 𝑘 = 1.
Therefore it is possible to translate the result to a VEM setting. However, we will not discuss this problem at
present. We are more interested in developing a low-order locking-free VEM for Biot’s model on general mesh.
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Remark 4.6. According to Theorem 2.1 and Remark 2.2, sup0≤𝑡≤𝑇0
‖𝜆divu(𝑡)‖1 and sup0≤𝑡≤𝑇0

‖𝜆divu𝑡(𝑡)‖1
can be bounded by f , 𝑔 and initial data. Therefore, for 𝑘 ≥ 2, with mild modification of the proof, at least, we
have

max
1≤𝑛≤𝑁

(‖u𝑛 − u𝑛
ℎ‖1)2 + ∆𝑡

𝑁∑︁
𝑛=0

(‖w𝑛 −w𝑛
ℎ‖20 + ‖𝑝𝑛 − 𝑝𝑛

ℎ‖20) ≤ 𝐶(ℎ2 + ∆𝑡2), (4.35)

where 𝐶 is a positive constant independent of ℎ and 𝜆.

The above discussion motivates us to establish a low-order locking-free VEM for Biot’s model. We will
introduce a possible scheme in the next section.

4.3. A low order scheme

From previous section, we observe that a key point to obtain robust estimates when 𝜆 → ∞ is to construct
a Fortin operator like Lemma 3.6. In this section, we concentrate on introducing a low order virtual element
subspace that allows such operator. Our new virtual element is inspired by the classical Bernardi–Raugel
elements introduced in [20]. The main idea is to introduce extra degrees of freedom related to the normal
component of v on each edge. Most of the materials in this section are stated without proof. Related proofs can
be founded in our recent work [56]. We just apply the results to Biot’s consolidation model in poroelasticity.

We start with introducing some notations and recall virtual element subspaces defined in (3.4). For 𝐸 ∈ 𝒯ℎ,
let 𝑁𝐸

𝑒 be the number of the edges of 𝐸. We denote by n𝑖 the unit outward normal vector to edge 𝑒𝑖, 1 ≤ 𝑖 ≤ 𝑁𝐸
𝑒 .

Next, for 1 ≤ 𝑖, 𝑗 ≤ 𝑁𝐸
𝑒 , let 𝜓𝑖 ∈ 𝑉 𝐸

2 satisfies

|𝑒𝑗 |−1

∫︁
𝑒𝑗

𝜓𝑖 = 𝛿𝑖𝑗 , ̃︀DV1(𝜓𝑖) = 0, ̃︀DV3(𝜓𝑖) = 0, (4.36)

where 𝛿𝑖𝑗 is Kronecker delta. Then set
𝜃𝑖 := n𝑖𝜓𝑖,

and let ̃︀𝑉 𝐸

2 := span{𝜃𝑖 1 ≤ 𝑖 ≤ 𝑁𝐸
𝑒 }.

We are now in a position to define the Bernardi–Raugel-like virtual element space: for 𝐸 ∈ 𝒯ℎ

𝑉 𝐸
BR :=

[︀
𝑉 𝐸

1

]︀2 ⊕ ̃︀𝑉 𝐸

2 .

Clearly, dim
(︁
𝑉 𝐸

BR

)︁
= 3𝑁𝐸

𝑒 . The degrees of freedom we take for 𝑉 𝐸
BR are: for each v ∈ 𝑉 𝐸

BR

– DV1: the values of two components of v at each vertex of 𝐸,
– DV2: the values of the lowest moment of the normal component of v on each edge of 𝐸,∫︁

𝑒𝑖

v · n𝑖 d𝑠 1 ≤ 𝑖 ≤ 𝑁𝐸
𝑒 .

The next lemma checks the unisolvence of these degrees of freedom [56].

Lemma 4.7. A vector-valued function v ∈ 𝑉 𝐸
BR is uniquely determined by DV1 and DV2.

Remark 4.8. We emphasize that the idea of adding DV2 was introduced in [3]. Here we use different lifting
inside in the definition of the space. Differently from [3], the proposed virtual element space are built upon [2],
so the proposed method allows the explicit computation of local 𝐿2 projection Π0,𝐸

𝑘 v from the knowledge of
the degrees of freedom of v.
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We now define the global virtual element spaces as

𝑉 BR : = {v ∈ [𝐻1(Ω)]2 : v|𝐸 ∈ 𝑉 𝐸
BR ∀𝐸 ∈ 𝒯ℎ},̃︀𝑉 2 : = {v ∈ [𝐻1(Ω)]2 : v|𝐸 ∈ ̃︀𝑉 𝐸

2 ∀𝐸 ∈ 𝒯ℎ}.

It is easy to see that
𝑉 BR = [𝑉1]2 ⊕ ̃︀𝑉 2.

We now set
𝑉 ℎ := 𝑉 BR ∩ 𝑉 , Σℎ := Σ0

ℎ ∩Σ, 𝑄ℎ := P0(𝒯ℎ). (4.37)

We established the following theorem in [56].

Theorem 4.9. There exists an interpolation operator 𝐼𝑢 : [𝐻1
0 (Ω)]2 → 𝑉 ℎ satisfying

(div(v − 𝐼𝑢v), 𝑞ℎ) = 0 ∀v ∈ [𝐻1
0 (Ω)]2 ∀𝑞ℎ ∈ P0(𝒯ℎ), (4.38)

and
|v − 𝐼𝑢v|𝑚 ≤ 𝐶ℎ𝑠−𝑚‖v‖𝑠 ∀v ∈ [𝐻𝑠(Ω)]2 (4.39)

for 𝑚 = 0 or 1 and 𝑠 = 1 or 2, with a positive constant 𝐶 independent of ℎ and v.

To introduce our low order scheme for (2.7)–(2.9), we need to construct discrete bilinear form 𝑎ℎ(·, ·). We
start with constructing local bilinear form 𝑎𝐸

ℎ (·, ·). Specifically, 𝑎𝐸
ℎ (·, ·) is defined by: for all u,v ∈ 𝑉 𝐸

BR

𝑎𝐸
ℎ (u,v) := 2𝜇𝑎̃𝐸

ℎ (u,v) + 𝜆
(︁

Π0,𝐸
0 divu,Π0,𝐸

0 divv
)︁

𝐸
, (4.40)

where
𝑎̃𝐸

ℎ (u,v) :=
(︁

Π0,𝐸
1 𝜀(u),Π0,𝐸

1 𝜀(v)
)︁

𝐸
+ 𝑆𝐸(u,v), (4.41)

and 𝑆𝐸(u,v) is a stabilizing bilinear form to be defined later. Apparently, for each v ∈ 𝑉 𝐸
BR, the following

decomposition holds
v = v1 + v2 v1 ∈

[︀
𝑉 𝐸

1

]︀2
v2 ∈ span{𝜃𝑖 1 ≤ 𝑖 ≤ 𝑁𝐸}.

Lemma 4.7 implies that the decomposition is unique. For such v𝑘 (𝑘 = 1, 2), we set v𝑘 = (𝑣𝑘
1 , 𝑣

𝑘
2 ). Then the

stabilizing term 𝑆𝐸 can be defined by

𝑆𝐸(u,v) :=
2∑︁

𝑘=1

2∑︁
𝑗=1

𝑛𝐸
𝑘∑︁

𝑖=1

𝜒𝑘
𝑖

(︁
𝑢𝑘

𝑗 −Π∇,𝐸
𝑘 𝑢𝑘

𝑗

)︁
𝜒𝑘

𝑖

(︁
𝑣𝑘

𝑗 −Π∇,𝐸
𝑘 𝑣𝑘

𝑗

)︁
, (4.42)

where 𝑛𝐸
𝑘 is the dimension of 𝑉 𝐸

𝑘 , and 𝜒𝑘
𝑖 (𝑖 ∈

{︀
1, 2, · · · , 𝑛𝐸

𝑘

}︀
) are the degrees of freedom given by ̃︀DV1–̃︀DV3.

Similar to higher order case, we established the following lemma in [56].

Lemma 4.10. The local discrete bilinear form 𝑎̃𝐸
ℎ (·, ·) defined by (4.41) satisfies

– consistency: for all q ∈ [P1(𝐸)]2 and v ∈ 𝑉 𝐸
BR

𝑎̃𝐸
ℎ (q,v) = 𝑎̃𝐸(q,v), (4.43)

– stability:
𝛽*‖𝜀(v)‖20,𝐸 ≤ 𝑎̃𝐸

ℎ (v,v) ≤ 𝛽*‖∇v‖20,𝐸 ∀v ∈ 𝑉 𝐸
BR (4.44)

with positive constants 𝛽* and 𝛽* independent of the element 𝐸.
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We define the global approximated bilinear form 𝑎ℎ(·, ·) : 𝑉 BR × 𝑉 BR → R by simply summing the local
bilinear forms:

𝑎ℎ(u,v) :=
∑︁

𝐸∈𝒯ℎ

𝑎𝐸
ℎ (u,v) ∀u,v ∈ 𝑉 BR. (4.45)

We proved in [56] that discrete bilinear form 𝑎ℎ(·, ·) satisfies the following properties.

Theorem 4.11. The discrete bilinear form 𝑎ℎ(·, ·) : 𝑉 BR × 𝑉 BR → R defined by (4.45) satisfies

– boundedness: for all u,v ∈ Vℎ

𝑎ℎ(u,v) ≤ 𝐶𝜆|u|1|v|1, (4.46)

with 𝐶𝜆 > 0 dependent on 𝜆
– coercivity: for all v ∈ Vℎ

𝑎ℎ(v,v) ≥ 𝐶|v|21 (4.47)

with 𝐶 > 0 independent of ℎ.

We are now in a position to state our low order fully discrete scheme. Given initial data u0
ℎ ∈ 𝑉 ℎ, 𝑝

0
ℎ ∈ 𝑄ℎ,

the fully discrete scheme of (2.3)–(2.5) seeks (u𝑛
ℎ,w

𝑛
ℎ , 𝑝

𝑛
ℎ) ∈ 𝑉 ℎ ×Σℎ ×𝑄ℎ at time 𝑡𝑛, 1 ≤ 𝑛 ≤ 𝑁 , such that

𝑎ℎ(u𝑛
ℎ,vℎ)− 𝛼(divvℎ, 𝑝

𝑛
ℎ) = (f𝑛

ℎ ,vℎ), ∀vℎ ∈ 𝑉 ℎ, (4.48)
𝑚ℎ(w𝑛

ℎ , zℎ)− (divzℎ, 𝑝
𝑛
ℎ) = 0, ∀zℎ ∈ Σℎ, (4.49)

𝑐0

(︂
𝑝𝑛

ℎ − 𝑝𝑛−1
ℎ

∆𝑡
, 𝑞ℎ

)︂
+ 𝛼

(︂
div
(︂

u𝑛
ℎ − u𝑛−1

ℎ

∆𝑡

)︂
, 𝑞ℎ

)︂
+ (divw𝑛

ℎ , 𝑞ℎ) = (𝑔𝑛, 𝑞ℎ), ∀𝑞ℎ ∈ 𝑄ℎ. (4.50)

Using the same argument as in the higher order case with the help of Theorem 4.11, we can prove that at each
time step 𝑡𝑛, the above system is well-posed.

Remark 4.12. Elliptic projection is defined similarly as (4.4)–(4.6). Thanks to Theorem 4.9, we can get similar
result as in (4.7)–(4.9). Then initial data u0

ℎ ∈ 𝑉 ℎ, 𝑝
0
ℎ ∈ 𝑄ℎ can be constructed as (4.11).

To derive optimal error estimates in low order case, we need the following regularity assumptions:

u ∈ 𝐿∞([0, 𝑇0];𝐻2(Ω)), f , 𝜆divu,w, 𝑝 ∈ 𝐿∞([0, 𝑇0];𝐻1(Ω)),
u𝑡 ∈ 𝐿2([0, 𝑇0];𝐻2(Ω)), f𝑡, 𝜆divu𝑡,w𝑡, 𝑝𝑡 ∈ 𝐿2([0, 𝑇0];𝐻1(Ω)),
u𝑡𝑡 ∈ 𝐿2([0, 𝑇0];𝐻1(Ω)), f𝑡𝑡 ∈ 𝐿2([0, 𝑇0];𝐿2(Ω)).

(4.51)

With the help of Theorem 4.9 and Lemma 4.10, we can prove the following theorem by using the same argument
as in the proof of Theorem 4.3.

Theorem 4.13. Let (u,w, 𝑝) be the solution of (2.7)–(2.9) and (u𝑛
ℎ,w

𝑛
ℎ , 𝑝

𝑛
ℎ) the solution of fully discrete prob-

lem (4.48)–(4.50). Assume that (4.51) holds. Then we have the following error estimates:

max
1≤𝑛≤𝑁

(‖u𝑛 − u𝑛
ℎ‖1)2 + ∆𝑡

𝑁∑︁
𝑛=0

(‖w𝑛 −w𝑛
ℎ‖20 + ‖𝑝𝑛 − 𝑝𝑛

ℎ‖20) ≤ 𝐶(ℎ2 + ∆𝑡2),

where 𝐶 is a positive constant independent of ℎ and 𝜆.
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5. Numerical tests

In this section, we provide three numerical tests to validate the theoretical results proposed in the previous
sections. The first test is used to show that our methods can overcome Poisson locking (when 𝜆→∞). The last
two tests are devoted to validate the effectiveness of our methods to eliminate pressure oscillation (when 𝑐0 = 0
and K ≈ 0). In all tests, the algorithms are implemented by using the MATLAB. The implementation aspects
of virtual element method can be found in [10,12,55]. We will solve the problems using the following methods:

Method 1: 𝑉 ℎ := [𝑉1]2 ∩ 𝑉 , Σℎ := Σ0
ℎ ∩Σ, 𝑄ℎ := P0(𝒯ℎ),

Method 2: 𝑉 ℎ := [𝑉2]2 ∩ 𝑉 , Σℎ := Σ1
ℎ ∩Σ, 𝑄ℎ := P1(𝒯ℎ),

Method 3: 𝑉 ℎ := 𝑉 BR ∩ 𝑉 , Σℎ := Σ0
ℎ ∩Σ, 𝑄ℎ := P0(𝒯ℎ).

5.1. Accuracy for a smooth solution with a large 𝜆

We start with considering a test with analytical solution [62]. This test is devoted to confirm the optimal
convergence rates predicted in Theorems 4.3 and 4.13. The body force f and source/sink term 𝑔 are chosen so
that the exact solution on the computational domain Ω = (0, 1)2 is

𝑢1 = 𝑒−𝑡 sin(2𝜋𝑦)(−1 + cos(2𝜋𝑥)) + 1/(𝜇+ 𝜆) sin(𝜋𝑥) sin(𝜋𝑦),
𝑢2 = 𝑒−𝑡 sin(2𝜋𝑥)(1− cos(2𝜋𝑦)) + 1/(𝜇+ 𝜆) sin(𝜋𝑥) sin(𝜋𝑦),
𝑝 = 𝑒−𝑡 sin(𝜋𝑥) sin(𝜋𝑦).

Dirichlet boundary conditions are imposed for u and 𝑝 according to the exact solution. Note that
divu = 𝜋𝑒−𝑡 sin(𝜋(𝑥 + 𝑦))/(𝜇 + 𝜆) → 0 as 𝜆 → ∞ for any time 𝑡. Therefore, the exact solution is suitable
to test whether the proposed methods can overcome Poisson locking. Following [62], we choose the following
material parameters:

𝑐0 = 0, 𝛼 = 1, K = 1, 𝜆 = 104, 𝜇 = 1.

In order to compute the VEM errors, we consider the computable error quantities:

𝐸𝑢 = max
1≤𝑛≤𝑁

⎛⎝(︃∑︁
𝐸∈𝒯ℎ

‖u𝑛 −Π0,𝐸
𝑘 u𝑛

ℎ‖20,𝐸 + ‖∇u𝑛 −Π0,𝐸
𝑘−1∇u𝑛

ℎ‖20,𝐸

)︃1/2
⎞⎠ ,

𝐸𝑤 =
𝑁∑︁

𝑛=0

‖w𝑛 −Π0
𝑘w

𝑛
ℎ‖20∆𝑡,

𝐸𝑝 =
𝑁∑︁

𝑛=0

‖𝑝𝑛 − 𝑝𝑛
ℎ‖20∆𝑡.

In this test, the square domain is partitioned using the following sequences of polygonal meshes:

– {𝒯 1
ℎ }ℎ: triangular meshes with ℎ = 1/8, 1/16, 1/32, 1/64,

– {𝒯 2
ℎ }ℎ: quadrilateral meshes with ℎ = 1/8, 1/16, 1/32, 1/64,

– {𝒯 3
ℎ }ℎ: non-convex cells with ℎ = 1/5, 1/10, 1/20, 1/40.

An example of the meshes is shown in Figure 1. For Methods 1 and 3, we take the backward Euler scheme with
∆𝑡 = 𝑇0/(ceil(1/ℎ)) for time discretization, where ceil(𝑋) rounds the elements of 𝑋 to the nearest integers
towards infinity. In order to make the spatial direction error not affected by the time direction error, we use
Backward Difference Formula of second order (BDF2) for Method 2. It can be proved that related errors are
scale as ∆𝑡2 + ℎ2, but the detailed proof will be omitted for simplicity.

Figures 2–4 display convergence results for the various mesh families and different methods. The results
of Methods 1 and 3 are in very good agreement with the convergence rates predicted in previous sections.
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Figure 1. Example of the adopted polygonal meshes: 𝒯 1
1/8, 𝒯

2
1/8, 𝒯

3
1/10.
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Figure 2. 𝐸𝑢 on different meshes. (a) Triangular; (b) quadrilateral; (c) non-convex.

As predicted in Theorems 4.3 and 4.13, the errors are robust to 𝜆. From Figure 2a, we can see that the Poisson
locking occurs in the triangular mesh if we use Method 1. However, this can be overcome if the Method 2
or Method 3 are used in the triangular meshes. An interesting thing is that Method 1 does not suffer the
Poisson locking in the quadrilateral and non-convex meshes. Moreover it reaches the optimal convergence rate.
It seems that for the method 1, the discrete inf-sup condition relies on mesh types. This requires further study.
Although errors 𝐸𝑢 of Methods 1 and 3 converge with optimal rate 1, Method 3 is more accurate than Method 1
according to Figures 2b and 2c. Figures 3 and 4 show that convergence curves of Methods 1 and 3 are almost
the same, which means that in this test case, Method 1 still yields the optimal rates for the pressure and flux
variables, even though its displacement variable is locking in triangular meshes. Overall, Figures 2–4 confirm
the theoretical results in Theorems 4.3 and 4.13.
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Figure 3. 𝐸𝑤 on different meshes. (a) Triangular; (b) quadrilateral; (c) non-convex.
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Figure 4. 𝐸𝑝 on different meshes. (a) Triangular; (b) quadrilateral; (c) non-convex.
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Figure 5. Numerical pressure for the cantilever bracket problem on 𝒯 1
1/32 at time 𝑡 = 0.001.

(a) Method 1; (b) Method 2; (c) Method 3.

5.2. Cantilever bracket problem

We now consider a cantilever bracket problem [48, 52]. The computational domain is again Ω = (0, 1)2. For
the elasticity problem, a no-displacement boundary condition is imposed in the left side edge. We also impose a
downward traction at top side and a traction-free boundary condition at the right and bottom sides. The initial
displacement and pressure are assumed to be zero. The material parameters are set as follows:

𝛼 = 0.93, 𝑐0 = 0, K = 10−7, 𝐸 = 105, 𝜈 = 0.4,

where 𝐸 and 𝜈 denote Young’s modulus and the Poisson ratio, respectively, and there hold

𝜇 =
𝐸

2(1 + 𝜈)
, 𝜆 =

𝐸𝜈

(1− 2𝜈)(1 + 𝜈)
·

Figures 5–7 present a comparison of the numerical pressure after one time step ∆𝑡 = 0.001 using three different
methods on three different types of meshes. It can be seen from Figure 5 that pressure obtained by Method 1
has spurious oscillations that are mostly concentrated to the points (0, 0) and (0, 1). By contrast, the pressure
computed by Methods 2 and 3 does not occur such oscillations, no matter what type of mesh is used. We observe
from Figures 6 and 7 that Method 1 does not produce pressure oscillations on quadrilateral and non-convex
meshes.
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Figure 6. Numerical pressure for the cantilever bracket problem on 𝒯 2
1/32 at time 𝑡 = 0.001.

(a) Method 1; (b) Method 2; (c) Method 3.

5.3. Barry and Mercer’s problem

We now consider another bench mark test called Barry and Mercer’s problem [6]. It models the behavior of a
rectangular uniform porous material with a pulsating point source under a specific set of boundary conditions.
More precisely, we let Ω = (0, 1)2 and consider the following boundary conditions on 𝜕Ω

u · 𝑡 = 0, 𝑛𝑇∇u𝑛 = 0, 𝑝 = 0,

where 𝑡 and 𝑛 denote the tangent vector and outward normal vector on 𝜕Ω, respectively. For this problem, we
choose the following material parameters:

𝛼 = 1, 𝑐0 = 0, 𝐸 = 105, 𝜈 = 0.1, K = 10−2.

The evolution of the displacement and pressure fields is driven by a periodic pointwise source defined by

𝑔 = 𝛿(𝑥− 𝑥0) sin(𝑡),

where 𝑥0 = (0.25, 0.25), 𝑡 = 𝛽𝑡 and 𝛽 := (𝜆+ 2𝜇)K.
Figure 8 displays the numerical pressure computed by Method 3 on quadrilateral mesh 𝒯 2

1/64 at normalized
times 𝑡 = 𝜋/2 and 𝑡 = 3𝜋/2. We also plot the deformed domain according to the results obtained by the
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Figure 7. Numerical pressure for the cantilever bracket problem on 𝒯 3
1/40 at time 𝑡 = 0.001.

(a) Method 1; (b) Method 2; (c) Method 3.
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Figure 8. Numerical pressure on the deformed domain at different times for quadrilateral
meshes with ℎ = 1/64 using Method 3. (a) 𝑡 = 𝜋/2; (b) 𝑡 = 3𝜋/2.
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Figure 9. Numerical pressure computed by Methods 1–3 along the diagonal (0, 0) − (1, 1) of
the domain for different time on different meshes. (a) 𝑡 = 𝜋/2, triangular mesh; (b) 𝑡 = 3𝜋/2,
triangular mesh; (c) 𝑡 = 𝜋/2, quadrilateral mesh; (d) 𝑡 = 3𝜋/2, quadrilateral mesh; (e) 𝑡 = 𝜋/2,
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Figure 10. Numerical pressure computed by Methods 1 and 3 along the diagonal (0, 0)−(1, 1)
of the domain for K = 10−6 and time step ∆𝑡 = 10−4 on different meshes. (a) Method 1
on triangular mesh; (b) Method 3 on triangular mesh; (c) Method 1 on quadrilateral mesh;
(d) Method 3 on quadrilateral mesh; (e) Method 1 on non-convex mesh; (f) Method 3 on
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displacements. We observe that at 𝑡 = 𝜋/2, the source is positive, and this fluid injection causes an inflation of
the poroelastic medium. On the other hand, we can see a contraction of the medium since the source term is
negative at 𝑡 = 3𝜋/2. We also plot the pressure profiles computed by Methods 1–3 on three different types of
meshes at normalized times 𝑡 = 𝜋/2 and 𝑡 = 3𝜋/2 with the analytical solution along the diagonal (0, 0)− (1, 1)
of the domain in Figure 9. The analytical solution of this problem is given by infinite series, which can be
found in [6, 48]. In all the cases, a time step ∆𝑡 = 2𝜋/𝛽 · 10−2 is used. From Figure 9, we can see that all the
numerical pressures can capture the behaviour of the exact solution except the one computed by Method 1 on
triangular mesh. Probably, this is because Theorem 3.7 does not hold for 𝑘 = 1, so according to [62] this may
cause pressure oscillation when 𝑐0 = 0 and K ≈ 0.

To further check the robustness of Method 3 with respect to pressure oscillations for small permeability
combined with small time step, we also show in Figure 10 the numerical pressure obtained by Methods 1 and 3
with K = 10−6 and ∆ = 10−4 on three different types of meshes. It is clear from Figure 10a that Method 1
on triangular mesh produced nonphysical oscillations in the pressure variable. By contrast, we do not observe
significant oscillation from Figure 10b, that is to say Method 3 does eliminate the pressure oscillation. From
Figures 10c–10f, we observe that Method 1 does not produce pressure oscillation on quadrilateral and non-
convex meshes, and the numerical pressure of Method 1 resembles the one of Method 3 on these meshes. We
infer that Theorem 3.7 may hold on quadrilateral and non-convex meshes, which needs further research.

6. Conclusion

In this paper, we propose and analyze virtual element methods for Biot’s consolidation model. One is a
high-order scheme, and the other is a low-order scheme. We show the a priori error estimates of fully discrete
problems. In particular, our error estimates hold when the specific storage coefficient vanishes, and the generic
constants in error estimates are uniformly bounded with respect to Lamé constant 𝜆. Therefore, our methods
not only can overcome Poisson locking but also does not suffer pressure oscillations. Numerical tests illustrate
the validity of our theoretical analysis.
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