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AN ASYMPTOTIC MODEL BASED ON MATCHING FAR AND NEAR FIELD
EXPANSIONS FOR THIN GRATINGS PROBLEMS

PETER B. MonNkK!, CINTHYA Ri1vas?3, RODOLFO RODRIGUEZ*? AND
MANUEL E. SoLANO?3*

Abstract. In this paper, we devise an asymptotic model for calculating electromagnetic diffraction and
absorption in planar multilayered structures with a shallow surface-relief grating. Far from the grating,
we assume that the solution can be written as a power series in terms of the grating thickness ¢, the
coefficients of this expansion being smooth up to the grating. However, the expansion approximates the
solution only sufficiently far from the grating (far field approximation). Near the grating, we assume
that there exists another expansion in powers of § (near field approximation). Moreover, there is an
overlapping zone where both expansion are valid. The proposed model is based on matching the two
expansions on this overlapping domain. Then, by truncating terms of order 62 or higher, we obtain
explicitly the equations satisfied by the lowest order terms in the power series. Under appropriate
assumptions, we prove second order convergence of the error with respect to . Finally, an alternative
form, more convenient for implementation, is derived and discretized with finite elements to perform
some numerical tests.
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1. INTRODUCTION

An important class of light harvesting devices are three-dimensional structures composed by a multilayered
material, usually a dielectric or a semiconductor, placed on top of a periodically corrugated metallic surface relief
grating; for example, photovoltaic solar cells [25] or planar optical concentrators [24,26]. The electromagnetic
field in these structures can be modeled by the frequency domain Maxwell’s equations and it is of interest to
optimize optical and geometrical parameters to maximize the light absorption [24,27]. In general, in this context,
it is not possible to obtain closed-form expressions of the solution to Maxwell’s equations. This is the reason why
numerical methods play an important role in order to approximate the electromagnetic field. Amongst those
that discretize the partial differential equations directly, probably the most popular are the finite-difference
time-domain (FDTD) method [29], the rigorous coupled-wave approach (RCWA) [4,12,14,15,20], the boundary
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integral equations method [1,11] and the finite element method (FEM) [21,27,28], the latter being preferred to
simulate complicated structures.

These devices can exhibit extremely thin layers or very shallow grating corrugations compared to the total
size of the structure. This feature affects the computational cost of mesh-based numerical solvers, since an
extremely fine grid is needed to resolve the geometry. As an alternative, it is possible to devise an asymptotic
model that approximates the electromagnetic field in the structure by replacing the thin layer by an interface
where suitable transmission conditions are imposed [7-9,19,22]. In this direction, an asymptotic model for
calculating electromagnetic diffraction and absorption in planar multilayered structures with a shallow surface-
relief grating has been devised in [23]. The numerical results reported in this reference show that when the
asymptotic expansion of the solution is truncated to second order terms, third-order convergence with respect
to the thickness 0 of the thin grating layer is obtained for transverse electric polarization (s-polarization), and
at least second-order convergence for the transverse magnetic polarization (p-polarization). However, there is
no rigorous mathematical framework supporting this approach. Actually, to the best of the authors’ knowledge,
there is no asymptotic model for this problem for which error estimates have been rigorously proved.

In this paper, we describe an alternative asymptotic model inspired by that in reference [8], for which we
succeed in deriving an error analysis. Far from the grating, we again assume that the solution can be written as a
power series in terms of §, the coefficients of this expansion being smooth up to the grating. This expansion is a
far field approximation, in the sense that it approximates the solution only sufficiently far from the grating. Near
the grating, we assume that there exists another expansion in powers of §, which is a near field approximation.
Moreover, there is an overlapping zone where both expansions hold. The asymptotic model is based on matching
these two expansions on the overlapping domain. We truncate the expansion of the solution to first order terms
and, under appropriate assumptions, prove convergence of the error with order §2.

The rest of the paper is organized as follows. In Section 2 we describe the boundary-value problem. In Section 3
we formulate the asymptotic model. In Section 4 we prove error estimates for the asymptotic expansion of the
solution. In Section 5 we introduce an alternative formulation more convenient for the implementation of a
finite element discretization. In Section 6 we report some numerical tests. Finally, we include in an appendix
the derivation of the approximate transmission conditions and other auxiliary results.

2. MODEL PROBLEM

First, let us fix some notation. The free-space wavenumber, wavelength and intrinsic impedance are respec-
tively denoted by ko := w,/Eoflo, Ao := 27/ko and 19 := +/po/€0, where pig > 0 and €9 > 0 are respectively
the magnetic permeability and the electric permittivity of free space and w > 0 is the angular frequency. For a
particular material, let €, := &/eg be the relative electric permittivity (with & being the absolute permittivity),
which in general is a complex-valued function.

Consider a simplified structure motivated by solar cell applications that occupies the region

D= {(x,y,z) eR?: |z| < oo, Jy| <00, =Ly <2< Ld}.
Within this region, the relative permittivity is a periodic function of x € (—o00,00) with period L, that also
varies with z € (—L,,, Lg) but not with y € (—oco, 00); namely, &,.(x, 2) = e,(x +mL, z) Vm € Z. The half spaces
z < —L,, and z > Ly are occupied by air, so that the relative permittivity therein is e,.(z, z) = 1.
The wave propagation in the solar cell is governed by the time-harmonic Maxwell equations:
{ Vx E =iwuH,

V x H = —iwepe,(z,2)E, (2.1a)

where FE and H denote the electric and magnetic fields, respectively.
The upper boundary of the solar-cell (z = Lg) is illuminated by an obliquely incident plane wave whose
electric field is given by

Einc(z,y, 2) = {asty + ap (Gt cos 0 + i, sin6) } exp {iko (xsinf — (z — Lg) cos )}, z> Lg, (2.1b)



AN ASYMPTOTIC MODEL FOR THIN GRATINGS S509

Incident light Reflected light

e — -y

Transmitted light

FIGURE 1. Domain €2 showing the geometric subdomains and notation.

where 1, 14, and @, are the Cartesian unit vectors, 0 is the angle of incidence with respect to the z axis, and
as and a, are data coefficients. This quantity, Fiyc, is the only source term of the problem. From (2.1a), the
corresponding incident magnetic field is given by

H;,. = LV X Einc; z > Lg. (21C)
wWwhto
Note that (Einc, Hinc) satisfies (2.1a) when e, = 1.

Since all the quantities do not depend on y, these equations can be written in any section for y fixed.
Moreover, because of the periodic character of the physical coefficients, the problem can be posed over one
period, 0 < = < L, by imposing appropriate quasi-periodic conditions that will be specified below (cf. (2.5)).
Therefore, we restrict the domain of our problem to the so called unit cell:

Q:={(z,2) eER*: 0<z <L, —Ly, <2< Lag}.

Moreover, we introduce the following notation (see Fig. 1):

't = {(z,2) € Q: 2= L},
I={(z,2) € Q: z=0},

I :={(z,2) € Q: z=—Ly},
Qf ={(z,2) € g<z<Ld},
Qs = {(z,2) € —§<z<§}
Qs = {(z,2) € —Lp, <z<-3}-

The region Q;r is occupied by an isotropic homogeneous dielectric material of real relative permittivity &'
The region €25 is occupied by a homogeneous metal of complex relative permittivity ;. In the middle region
Q5, which is occupied by the grating, we assume that the complex relative permittivity € varies only with x.
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Therefore, the relative permittivity of the entire unit cell is given by

ef,  (z,2) €,
er(z,2) = ¢ ed(x), (x,2) € Qs,
e, (x,2)eQy.

ro

All the permittivities are assumed not to vanish. Moreover we assume that 9 is infinitely differentiable in [0, L]
and the following inequalities, which are typically fulfilled in the applications:

efr >0,
Im(e;;) >0 or Re(e;)>0 when Im(e;) =0, (2.2)
Im(ed(x)) >0 Vxe[0,L] or Re(ed(x)) >0 Vzel0,L], when Im(e?)=0.

2.1. Scalar equations and boundary conditions
Problem (2.1) can be decoupled into two separate problems with corresponding coefficients as and a,, in the
source term (2.1b). The respective decoupled problems are called the s- and p-polarization states. Both reduce
to the following common form of the Helmholtz equation:
V- (B(z,2)Vu(z, 2)) + k3b(z, 2)u(z,2) =0, (x,2) € Q,
where, for the s-polarization state,

uw(x,z) = Ey(z,2), B(z,z)=1, bz, z)=c¢r(z,2), (2.3)

and for the p-polarization state,

u(z, z) = —noHy(z,2), B(z,z)= b(z,z) = 1. (2.4)

er(w,2)’

The data of each of these problems are the corresponding components of the incident plane waves (2.1b) and
(2.1c):
as exp (iko (xsin@ — (z — Lg) cosf)), for the s-polarization,

Uine(T,2) = {

apexp (iko (xsin@ — (z — Lg) cos9)), for the p-polarization.

The total field u satisfies the following relations:

B(x,z)%(m,z) = (T u) (z,2) on I'™,
B(z, 2) (gz(a:,z) - agi;c (a:,z)) = (T*u) (z,2) = (T tinc) (x,2) on I'T,

where T~ and T are the corresponding Dirichlet-to-Neumann operators (see [5]).
In addition, u(z, z) satisfies the quasi-periodicity conditions
u(L,z) = exp(iaL)u(0,z),
o z € (=L, La), (2.5)

55 (L22) = explial) 52(0, 2),

where « := kg sin 6.
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Altogether, we arrive at the following problem:

V - (B(z,2)Vu(z, 2)) + k2b(x, 2)u(z,2) =0 in Q,

u(L, z) = Ly 0, 2), 2 € (=L, La),

ou oL, OU

%(L,Z) =e€ L%(O,Z), zZ € (*Lm,Ld), (2.6)
B(x,z)%(m,z) = (T_u) (z,2) on I'™,

B(x, z) <§Z(x,z) - 8;::: (x,z)) = (T"u) (z,2) = (T tinc) (x,2) on T,

The next step is to write a variational formulation of this problem. To this end we define
HL(Q) = {ve H'(Q): v(L,z) =e*"v(0,2) Vz€ (—Lm,La)}-

Testing the first equation in (2.6) with v € H1(f) and integrating by parts lead to the following problem: Find
u € HL(Q) such that
a(u,v) = L(v) Vv e HL(Q), (2.7)

where
a(w,v) = / (BVw - VU — kgbwv) dzdz — / (THw)vde — / (T~w)vde, v,we HL(Q),
Q r+ - (2.8)

O

L(v) = / (Bg‘“ - T+uinc> vde, wve HL(Q).
r+ z

Assumption 2.1. We assume that problem (2.7) is well posed for all but at most a sequence of countable

frequencies w; with |w;| — 400 and we restrict our attention to w # w;. For each w # wj, there exists a

constant C > 0 such that

la(w, v)]|

Wil <C sup Yw € HE(Q).

veHL(Q) HU”Hl(Q)
v#£0

Moreover, we assume that C is independent of J.

Remark 2.2. The first part of this assumption has been proved in Theorem 3.3 of [10], in case that 9(z) is
piecewise constant and inequalities (2.2) hold true. The assumption that C is independent of ¢ can be proved,
for example, if the grating is non-trapping [6]. In addition, by following the arguments in Theorem 2.1 of [13],
it is possible to show that C is independent of § when § is small enough. On the other hand, this assumption
implicitly avoids the presence of resonances due to Rayleigh-Wood anomalies [18].

3. ASYMPTOTIC MODEL

In this section, we will introduce an alternative to deal with the thin grating layer 5. In fact, problem (2.6)
constitutes the full model, which will be approximated by an asymptotic model (valid in the limit 6 — 0), where
the effect of the grating layer 5 will be taken into account by means of appropriate approzimate transmission
conditions across T'.

With this aim, we consider an auxiliary problem based on another partition of the domain €2 into subdomains
QT and Q~, where (see Fig. 2)

Q= (0,L) x (0,Lg) and Q :=(0,L) x (—Ly,,0),
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FIGURE 2. Decomposition of the domain 2 with the thin interface removed.

with relative permittivity

( )_ Ej? (.’E,Z) €Q+7
A P (x,2) € Q.

T

For any function v : QT UQ~ — C, we denote v := v|q+ and v~ := v|g-. In general, we identify v with
the pair of functions (v, v7). Note that in this asymptotic model, B* and b* as defined in (2.3) and (2.4) are
constant.

Inspired by the procedure used in [8], we consider two different expansions of the solution u(z, z): one in the
far field zone (|z| > §/2) and the other in the near field zone (|z| ~ §/2). In what follows, we describe each of
them in detail.

3.1. Far field equations

In the far field, we make the following assumption.

Assumption 3.1. Outside the grating, we assume that u can be expanded in a standard series in powers of §:

Zé"u;ﬁ(m,z), z>6/2,

u(z,z) = ¢ "Z° (3.1)
Zé"u;(x,z), z2 < —=0/2,
n=0

where the far field terms ur defined in QF are quasi-periodic in x and infinitely smooth up to T'. Moreover, we
assume that each ur can be expanded in a power series with respect to the z-coordinate around zero, i.e.,

4 L 2R Okt
U2 = 2 3
k=0 "

(z,0), (x,2)€QF, n>0.
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To derive the equations satisfied by the far field terms u;-, we insert the asymptotic expansion (3.1) into (2.6)

and extend the first equation to the whole QF. Then, equating the terms with the same powers of § we obtain:

V- (BiVuf(a:,z)) + k2bFut (z,2) =0 in QF,
uE(L,2) = eFut(0, 2), 2z € (=L, Lq),
au% il au%
pe (Lyz)=¢e 5‘7(L’2)’ z € (=Lm, Lq),
- 3.2
B~ agz" (z,2) = (T uy,) (z,2) on I'", n>0, (3:2)
4 Ouy +,,+ +
B 3 (z,2) = (TTu)) (z,2) on I't, n>1,
z
+ .
B+88ﬂ(55’2) - B+%(m,z) = (T*uf) (z,2) — (T tinc) (x,2) on T,
z z

Note that to determine u:;5 entirely, we need to prescribe transmission conditions relating u;} and u;, on T.

3.2. Near field equations

In the near field (|z| < 2J) we resort to an asymptotic expansion based on the original partition of the domain
Q into the subdomains €, Qs and € (see Fig. 1). With this aim, we rescale the solution u of problem (2.7)
with respect to the thickness of the grating layer by changing the variable z to £ := % and make the following
assumption.

Assumption 3.2. Near the grating, we assume that there exists an expansion, which, after rescaling by §, can
be written as follows:

u(z,z) = gé”Un (x, g) . 2] < 20, (3.3)

where Uy, (x,€) are quasi-periodic functions in x and continuous in (0, L) x (—2,2) with B(x, &) agg‘ (x,€) also
continuous. Furthermore, we assume that U, are infinitely smooth out of the grating, that is, when % <l¢l <2.

The first assumption is needed to ensure that the series in the identification of the matching conditions are
convergent. On the other hand, it is natural to assume the quasi-periodicity condition, since we expect the
series to converge to a quasi-periodic function. The continuity assumptions for U,, and BO:U,, are required to
derive the transmission conditions (see Appendix A). Finally, the last assumption will be employed to deduce
the matching conditions and also to obtain the error estimates.

With any function U(z,£), we associate the function

Ulx,2):=U (x, %)

and recall the chain rule:

ot _1ou
92 8 0¢

Therefore, the expansion (3.3) can be rewritten as

u(z,z) = Z S"U (z, 2).
n=0
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To derive the equations satisfied by the near field terms U,,, we insert this asymptotic expansion into (2.6).
Then, from the first equation and the assumption that U,, are smooth, we have that

> 6" {V- (BVU)) + kbU.} = 0.

n=0
Now, using the chain rule and denoting £ := %, we obtain
V- (B(z, 2)VU; (. 2)) + kgb(z, 2)Up (. 2)
— S (B39 ED) 1 D (5o ")) s, B)

Hence, equating the terms with the same power of § and using the convention that Uf =0 for £ < 0, we
obtain the following equations for the near field terms U,, n > O:

0 U, (x, 0 OUp—so(x,

876 <B(I75§)a(g£)> = 7% <B(I’5£)a2;$£)> - k(z)b(xa(;g)Un—Q(xag)7 (:E,E) € (OvL) X (7272)7
Un(L,§) = €U, (0,¢), €€ (-2,2),

ou, i OUn

%(Lag) =e€ ox (075), € S (*2,2) .

(3.5)

3.3. Matching conditions

To determine the terms u,,, ;! and U, we need additional matching conditions that will be obtained from
the fact that the far and near field expansions have to coincide on certain overlapping zones Cgt. These zones
should be disjoint with the grating layer but they should approach the interface I' as  goes to zero. Because of
this, we define the following overlapping domain, where expansions (3.1) and (3.3) are both valid:

Cs:=CfuCy with Cf :=(0,L) x (6,26) and Cj :=(0,L) x (=26, —0).
From Assumption 3.1, outside the grating (and so in particular in Cs), we have that
X Ok gyt

u(z,z) = ZZ(;”E 5k (z,0). (3.6)

n=0 k=0

In turn, for the near field expansion, we have the following result regarding the behavior of the terms U, in
the overlapping areas.

Proposition 3.3. There exist infinitely smooth quasi-periodic functions pfk, such that

n+1

Un(2,§) = > _pi(@)€", x€(0,L),

k=0

<[¢l <2 (3.7)

DO =

Let us remark that the equation (3.7) is an abbreviated form of

n+1 1
D pip@Et, we(0.L), S <E<2,

U”(JJ, f) = ii(l) 1

Zp;,k(l")fk, xz € (0,L), —2§§§_§.
k=0

Similar notation will be used for other quantities in what follows.
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Proof. We proceed as in [8] in the simpler framework of our problem. For what follows, recall that the coefficients
B*(z,6¢) and b* (2, §¢) are constant in QF.
— For n = 0, the first equation in (3.5) reduces to

0 ian(:r €)
% (B o€ )O'

Then, there exist functions p&o(x) and pil(x) such that

IN

Uo(r,6) = Pio(a) + i (@, v € (0,1), 3 <l <2
<

Moreover, since we have assumed that U, is infinitely smooth for % |€] < 2, we derive that pffo(ac) and

pil(a:) are infinitely smooth, too.
— For n =1, the first equation in (3.5) also reduces to

8 i@Ul(a:,f) -
as(B o€ )_0'

Then, as above, there exist smooth functions pfo(x) and pfl(x) such that

<lé <2

N

Ui(z,§) = ( )+P11( )6, z€(0,L),

— For n = 2, the first equation in (3.5) reduces to

(509) {2 (05429) o

o2 + 92 +
- { (Bif%” + kobipo,om) - (Bi’;x” - k%bipama:)) 5} .

Then, once more, there exist smooth functions pé‘fo(x)7 pil(x), pzi’z(ac) and pig(x) such that

<l <.

N =

Us(,§) = p2i70($> +p2i,1(37)§ +P2i,2(w)§2 +p2i73(37)53a z € (0,L),

— An induction argument allows us to show that the proposition holds for all n > 0.
O

Now, we are in a position to settle matching conditions between both expansions, which is done in the following
proposition. We emphasize that the identifications made in its proof are only formal, since the (pointwise)
convergence of the series is not proved but assumed (¢f. Assumption 3.2).

Proposition 3.4. Forn >0 and 0 <k <n,
n . +
% 8kun7 1

k=0

Proof. By substituting (3.7) into the near field expansion (3.3), we obtain

9-3

n=0

n oo n+1

7)
+1
Zénpnk ( ) ZZ(SH kpnk ’ JJE(O,L),
k=0

n=0 k=0

IN

|z] < 24.

NN
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The identification on the overlapping zones of the far field (3.6) with this expression for the near field leads to

Z oo n+1 e’} o
ZZ n‘l? Zk Zzén kpnk Z Z 6" kprﬂz:k Z Z o pn+kk
n=0 k=0 n=0 k=0 k=0 n=k— k=0 n=-1,

n>0 n+k20

for all (z, z) € Cs. Then, exchanging the order of summation,

ZZ % Zk Z Z 6"z pn+k}c ) (x,Z) e Cs.

n=0 k=0 n=—1 k=0

Identifying the terms with the same power of §, we arrive at

0, if k=n+1,
+ = +
Pi(®) =9 10", _ (3.8)
ok (z,0), if 0<k<n,
for all n > 0, which substituted into (3.7) allows us to conclude the proof. O

3.4. Truncated asymptotic expansion

Outside the grating, we approximate u by
u(r, 2) = uF(x,2) + oui(z,2), |2 >
and inside the grating by
u(z, z) = Uy (m, %) + 00Uy (x, %) .zl < g
Given v* defined in QF we use the following notation for its jump and average on I' (i.e., at z = 0):

[v] := v (2,0) — v (z,0),

vt (2,0) + v (2,0)

(v) := 5

Also, we denote the coefficients on the grating layer BY := B|q, and b9 := b|g,. We recall that BY and b9 are
assumed not to depend on z.

In the appendix we perform an asymptotic analysis that allows us to find the following transmission conditions
relating u;} and u,, for n =0 and 1 and for all z € (0, L):

[uo] () =0,

55| @ -0

wl@) = (5 — (5)) (BY2) (@), (3.9)
{B%u} (2) = =2 ((B9(@) — (B)) 2522 (x)) — K (09(x) — (B)) (wo) ()
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Adding these transmission conditions to equations (3.2), we are led to the following problems to determine
ug and uq, respectively:

V- (Bi(x, 2)Vud (z, z)) + k20E (, 2)u (2,2) = 0 in QF
[uo] (z) =0 on I,
{Baauzo} () =0 on T,
1;3:5:[/7 2) = eiaLug:a(o;:z), z € (=L, La), (3.10)
T;(L_, z) = ew‘La—Jg(O,z)7 z € (=L, La),
B_aaL;(x,z) = (T uy) (z,2) on ',

ougd ou;
B+a—;(x, )— Bt 81an (z,2) = (T*ug) (z,2) — (THtine) (z,2) on T
V- (Bi(x,z)Vuli(x,z)) + k2b% (@, 2)uf (x,2) = 0 in QF,

(.t /L 9o\ on

i (g () (20 r,
55| @) = 5 (8960 - ) 25 0)) < B 090 - ) (wh0) on T -
ut (L, z) = it (0, 2), 2€(-Lm La),
ouf o ouf
W<ILZ)26 LW(O’Z)v ZG(—Lm,Ld),
Biaa%(x,z) = (Tiuli) (z,2) on T,

To complete the derivation, it is also shown in the appendix that Uy and U; into the grating are given by

Uo(z, &) = uo(x,0),

Ui(z,€) = (u1) (z) + ( ¢ 1 [ID <B‘9u°> @), ( TG, =

dug : (3.12)
By(z) 4 |B 0z

|~

4. ERROR ESTIMATES
In this section, we estimate the error between the exact solution w and its first-order far field approximation
us 1 (x,2) == ug (z,2) + oui (z, 2). (4.1)
For the forthcoming analysis, we will also use the second-order approximation
us o, 2) == uT (z, 2) + dui (z, 2) + 6%uz (z, 2) (4.2)
and the corresponding one for the near field:
Uso(x,2) = US (x,2) + 68U (x, 2) + 62US (x,2) . (4.3)

We proceed as in [8] and introduce a smooth cut-off function x € C*°(R) such that

Ll <,
x8) = {o, if €] > 2.
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Then, denoting as above x?(z) := x (%), we introduce the global approximate solution

Us(2,2) = (1 = X°(2)) us2(,2) + X0 (2)Us2(,2)  (x,2) € Q.

Let us remark that Usa(z,2) is actually defined only for |z| < 26. However, any smooth extension can be
used to define properly us. In fact, since in this definition Us o appears multiplied by x°, which vanishes for
|z] > 24, us does not depend on the particular extension (which we still denote Uy 2). Moreover, according to
Assumption 3.2, x°Us 2 € HL(Q).

In general, us 2 does not lie in HL(Q), but (1 — X6) us,2 does. In fact, in spite of the fact that us o may have
a jump on I', this does not affect the smoothness of (1 — x°) us2 since (1 — x°) vanishes for |2| < §. Moreover,
according to Assumption 3.1, (1 — X‘S) us,2 is infinitely differentiable in the whole of €.

Since in what follows we will have to deal with functions like us 2 that are smooth in Q% and Q= but not in
Q, from now on we will use the following notation: [,,. f*(z,2)dzdz = [, fT(2,2)dedz+ [, [T (z,2)dwdz
and [ro g% () dz = [, g7 (2)do+ [, g7 (z)dz.

Now, since from Assumption 2.1 we have the stability estimate

lau — us, v)]

lu— sl gr(q) < C sup ; (4.4)
vEHL(Q) ||UHH1(Q)
v#0
our next goal is to find a bound for the right-hand side.
Lemma 4.1. For allv € HL(Q),
a(u — ug,v) =5 (v) + €5(v), (4.5)
where
eg’(v) = / B (uso — Us2) VX° - Vidz dz — / BV (us2 — Usg) - Vx° tdrdz (4.6)
Cs Cs
and
£5(v) i= —a(Us2,X"v). (4.7)

Terms €5*(v) and €§(v) are called the matching error and the consistency error, respectively.
Proof. Taking into account the definition of us and (2.7), for all v € HL(£2) we have that
a(u—us,v) = L(v) —a((1- X‘s) Us2,v) —a (XSU(;,Q, v). (4.8)
For the second term on the right-hand side, the definition of a(-,-) and straightforward computations lead to
a ((1 — X&) u(;,g,v)
- /Qi (B9 (1= x°) uga) - VO — k36* (1= x°) ugo 0} da dz — /F (T* (1 - X*) us2)) vz

+

= / BFuspV (1-x°) - Vodedz — [ BFVuss -V (1-x°)vdadz
O+ O+

+ [ {B*Vus2 -V ((1-x°)0) — kgbTus2 (1 —x°) v} dedz — / (T*us2) (1 - x°)vda.  (4.9)
[QE= T+

Now, multiplying the first equation in (3.2) by (1 — X‘S), integrating by parts separately in 27 and Q~ and
using the boundary conditions from (3.2), we obtain

(B Vs V(1 x)7) — KbFuss (1 - ) 7} dede - / (T*us2) (1-x) s
Q r
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Let us emphasize that in spite of the fact that BiVu(;_rg is in general discontinuous on I', no jump across this
curve appears from the integration by parts because (1 — X‘S) vanishes for |z| < ¢ and thus on T
Then, substituting the above equation into (4.9) we have that

a ((1 - X‘S) u[;,g,v) = - Biu(s,gv (1 - X‘S) -Vodxdz — /Qi BiVu[s,g -V (1 - X‘S) vdxdz 4+ L(v).

Next, computations similar to those that lead to (4.9) yield

a (XSU(;,Q, v) =aq (U572, X‘sv) + / BiU572VX5 -Vodaxdz — BiVU(;,Q . Vx‘;ﬁdx dz.
o+ o+

Finally, substituting the last two equations into (4.8) we obtain

a(u —us,v) = / B* (us 2 — Us2) VX’ - Vodz dz — / BV (us2 — Usa) - VX°Tdzdz —a (U572,X6v) .
O+ Q

+
Since Vx° vanishes out of Cs, the above equation and definitions (4.6) and (4.7) allow us to end the proof. [

The following estimates are similar to those used in [8]. For the sake of completeness, we include the corre-
sponding proofs.

Lemma 4.2. Let Os := {(z,2) € Q: |z| < 28}. Then, for allv € H:(Q),

[Vl 2005 < C\/EHUHHl(Q) ;
1Vl z105) < CO V] 11 (q) -
Vol o, < C\/5||U||H1(Q) :

Proof. We use a density argument. For v smooth enough we write

v(x, z) = v(z,0) —|—/ @(w,t) dt V(z,z) € Os.
0 0z

/Z ov
0

Then,

2
—(x,t)| dt|dzd-=.

0z

/ |v(m,z)\2dxdz§2/ |v(x70)\2dxdz—|—2/
Os Os Os

For the first term we have

L
/O (2, 0)2 dz dz = 45/0 o, 0)2 dw = 46 Jol[2 ) < C6 10l e
5

and for the second one

z L 26
/ / v dzdz < 46 / /
Os 0 0 —26

- , t
0z (2,)
Thus, the first estimate of the lemma follows from the last three inequalities.
The second estimate follows from Cauchy—Schwarz inequality and the previous one. The last one follows from
Cauchy—Schwarz inequality. O

ov

2

2
dt) do < CO o]} -

For the matching error we have the following estimate.
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Lemma 4.3. For allv € HL(Q),
e5'(v) < C& o]l gr(q -

Proof. Let v € H}(Q). The far field terms u,, and the near field terms U’ have been assumed to lie in C*°(Cs)

(cf. Assumptions 3.1 and 3.2). Then, from the definition (4.6) of £§*(v) and Hélder inequality, since x° does not
depend on z and the support of its gradient is contained in Cy, we have that

0
les* ()| < 1Bl < 0 ||VX5HL°°(R) {H@Z

0
lus2 = Usll oo (o) + H (us,2 — Us,2) ||v||L1(C5)} :
L>(Cs)

L1(Cs) 9z
(4.10)
In what follows, we estimate each of the terms on the right-hand side above.
— For the cut-off function, since Vy° = %Vx, we have
1 C
§ _
VX Lo ) = 5 IVl ey < 5 (4.11)

— To estimate ||us2 — Us 2| Loo(Cy)? for the far field approximation us 2, we use Taylor’s formula with integral
remainder for each ut, n = 0,1,2. Then, from (4.2) we have

2 2—n ;A
2t Out Z 93yt 2z —t)2 "
us2(z, 2) = Z " {Z ERew (x,0) + 5.5 (z,t) <(2 _)n)! dt} : (4.12)

n=0 i=0 0
For the near field, from (3.7) and the matching conditions (3.8), in the overlapping zones we have

n 4 i+
2t O'u,,_,

§ —
Ul(x,2) = 2 5 e (z,0).
Hence, from (4.3),
2 n ; i+ 2 n C i+
n 2t 0'u,_, i 20U
n=0 i= ’ n=0 i=0 ’
2 2 + 2 2—i i, t 2 2—j i i,
2t 0'u oM T 2 0
S D) RERATEIANUNS 3) PUEAARAINS g gl A RN
=0 n=1 a9 =0 j=0 it 9 7=03=0 it 9
Then, subtracting (4.13) from (4.12), we obtain
2 z 93—n,,+ 2—n
n 1A Ths (z —1)
usa(w,2) = Usap(z,2) =Y 0 == (z,1) @ dt. (4.14)
n=0

Now, since the far field terms and their derivatives are bounded in Cj (¢f. Assumption 3.1), we estimate the
integral above as follows:

z a3—nui
n t
| @D T

dt‘ <08 Y(x,z) € Cs.

Then,
||u6,2 - Ué,QHLoo(C&) S 063 (415)
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— For || %(u&g — U572)HL°°(C(;)’ differentiating (4.14) with respect to z we have

Ous 2 OUs 2 B ! Y Vs (z —t)t—n
P (x,2) — P (x,z)—nzzjé = (z,t) a=n) dt.

Since the far field terms and their derivatives are bounded in Cy, we estimate the integral as follows:

o3—n i(x t)(z —t)t=" 9
< -n .
/0 55 a=n) dt‘ <Cé V(z,z) € Cs

Therefore,
< Co°. (4.16)
L=>(Cs)

Finally, using (4.11), (4.15), (4.16) and Lemma 4.2 to estimate all terms in (4.10), we conclude the
proof. O

O(us2 — Us2)
0z

For the consistency error (4.7), we have the following estimate.

Lemma 4.4. For allv € HL(),
[§(0)] < CO? [|v]| 11 -
Proof. Integrating by parts and using the quasi-periodic character of Us > and v and the fact that the support
of x? is contained in Oj, we have that
eS(v) = — / (BVUs, - V(X°0) — k3bUs 2X°0) dzdz = / (V- (BVUsz) + kgbUs2) x°vda dz.
Q Os

Now, recalling the definition (4.3) and using (3.4) with { = % and the first equation from (3.5), we obtain
2)VUsa(x,2)) + kab(x, 2)Us o, 2)

B,
- 5o (B9 52 0.0) + 5 2 (B9 SR w.0) + 2 (B9 G2 w9
0
o

(w502 0.)) + Bt 5>+6( (B0 5.9 + o000 (2.))

+6° (aaz (B(m,éé)a(;f(x,ﬁ)) + kgb(m,ag)Uz(x,§)>
_s5(2 B(x,z)a—Uf(x,z) + k2b(z, 2)UL (2, 2) | + 62 0 B(z, )@( 2) ) + k2b(x, 2)US (2, 2) ) .
(ax < o ox o

Then,
§(v) = 65t (v) + %5 (v), (4.17)

c,i 0 8U6 .
55’(v)::/06<8x( o )—l—k()bU‘S)deacdz 1=1,2.

From (2.3) (for the s-polarization) or (2.4) (for the p-polarization) combined with the additional assumption
that €9(z) is infinitely differentiable in [0, L[, we have that the x-derivative of B is bounded in €. So are the
z-derivatives of U? too (cf. Lem. A.1 in the appendix). Then,

where

€5 ()] < Clvllpoy < Collolmay, i=12

where we have used Lemma 4.2 for the last inequality. Hence, the lemma follows from (4.17). O
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Now, we are in a position to write the main approximation result of the paper.

Theorem 4.5. Let u be the solution of problem (2.7) and us1 its far field approximation (4.1). Then, given
v > 0, there exist a constant C' > 0 such that for all § < 3,

flu — u&l”Hl(ﬁw) < 052,
where ﬁv ={(z,2) € Q: |z| >~}.
Proof. From (4.4) and Lemmas 4.1, 4.3 and 4.4, we write

|a(u —us,v)| le5" (V) + [e5(v)]

u — ﬂ& 1 S C sup S C sup S C52
H(Q)
vemi@) [Vl vermt@)  lq)
v#0 v#0

Now, given v > 0, for all § < I, Us = usp in ﬁv- Then, from the definition (4.2) of us2 and using that
ut € HL(QF) (cf. Assumption 3.1), we have that

[us —usallq,) < 02 H“;Hm(m) + 0 H“2_HH1(97) ey

and, hence,

lu = usall @,y < lu—Usll gaa,) + s = usall g a,) < CO°

5. IMPLEMENTATION

In order to avoid solving separately problems (3.10) and (3.11), it is possible to approximate directly us; =
up + duy up to §2-terms. With this purpose, we use equations (3.9) to write

i (5t ~(5)) 05 (st~ (33) ()

and

%] = 550w 552 =5 { L (5900 - 1) 52 ) + B 0) - ()} )
w{ o (@) - B) 5. ) + B W) - ) ).

T

Since u§ and uljE satisfy (3.2), so does ug + 5u1i. To obtain a well posed problem we must complement these
equations with appropriate jump conditions on I'. With this end, we use the two above equations, neglecting
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the 62 terms. Therefore, we are led to the following alternative problem, whose solution we denote by agtlz

V- (BEVE (0,2)) + k3VEE (2,2) = 0 i QF
~ 1 1 aum
i) = (g~ () (2%24) @ o T
55| @) =05 (B0 - (3) 252 @) - 61 07(0) - ) (@2} (@) en T
u5 1(L,Z) _ elaLUg‘:l(O72) z € (—Lm,Ld) y (51)
03, 1o, 951
a—x’(L,z) =e aT(L,z) z € (=L, La) ,
_Oug, o _
5% (,2)=T uévl(:v,z) on I,
8ﬂ+1 Uinc A~
Bt 82 (x,2) — B+%(a:,z) = T+(u§:1(ac,z) — Uine (T, 2)) on I'T.

5.1. Variational formulation

To implement a FEM for this asymptotic model, we need a variational formulation of problem (5.1). With
this end in mind, consider the Hilbert space

Vi={veL’(Q): v € HY(Q ), vT € HL(Q") and (v) € Hy(T)}
endowed with the norm defined by
[0 = el o) + ol @y + 100y -
Multiplying the first equation in (5.1) by ¥ € V' and integrating by parts, we obtain

our oy
BEVaE, - Vot — BbEai, vt ) dad / B+ I8ds+g / B~ %t
/Q:(:( u61 v 0 ) vdz o0+ 8n S 00— 871

Because of the quasi-periodic character of v, the integrals on 9QF reduce to I' and T'*. For the former we have

v ds=0.

ou ous M m m
/FB+ Zilerdx—/FB* gi’lﬁfdx:/r {Bagi’lv} da?:/F [Bagi’l} (0) dx—i—/F<Bagjl>[v] dzx.

For the second term on the right-hand side above, using the second equation from (5.1) we have that

(3% 0 = 3 (5o - <;>) 5] (2), (52)
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provided BJ(I) #+ <%> Then, using the third equation from (5.1) and integrating by parts yield

J R
— [ 5 ((Bgu <B>>a<§j1>)<v>dx5k§ [ @) = ) @) 5} o

+ g/r <Bgl(x) - <113>>1 [t5,1] [v] da,

N I L1 S DR
=5 [ (Bo(@) = () TP e — ok [ (9(0) = ) (7s) () s

(k- () e

For the integrals on I't and '™, we proceed as we did to derive (2.7) and we arrive at similar terms. Therefore,
all together, we are led to the following weak form of problem (5.1): Find @s1 € V such that

a(us1,v) = L(v) Yv eV, (5.3)
where the sesquilinear form a(-,-) is defined for all w,v € V' by

9{w) 9 (v)
dr O

—ékg/r(bg(x)—(b))(w) @)dw%/F (Bgl(x)—<;>)_l ] [E]da;—/ri (THw*) o da

and the linear functional L is the same as in (2.8)
Let us remark that equation (5.2) only makes sense provided 3 (m) <%> In case that this term vanishes

identically, the second equation from (5.1) implies that [ts1] = 0 on I' and this condition should be imposed on
the trial and test functions. Therefore, in such a case, the space V must be replaced by

a(w,v) := / (BEVw® - Vot — kb wv®) dede + 6/ (BY(z) — (B)) dz
o r

Vi={ve H:(Q): vlr € HL(D)}.

In particular, this happens for the s-polarization, when BY(z) = BT = B~ = 1. In such a case, substituting B
and b in terms of the physical parameters, we are led to the following problem: Find us; € V' such that

Gs(Ts.1,0) = L(v) YveV, (5.4)

as(w,v) == /Qi (Vwi VTt — siwivi) dzdz — §k(2)/ (ed — (ey))wvde — / (Tiwi)fi dz, w,veV.

T T+

We finish this section by mentioning that, in general, it is not possible to ensure that the variational formu-
lations (5.3) and (5.4) are wellposed. In some situations, the properties of the electric permittivity leads to an
elliptic bilinear form, whereas in other cases, the bilinear form is indefinite and wellposedeness holds only up to
a sequence of countable frequencies.
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6. NUMERICAL EXAMPLES

In this section, we report the results of two numerical tests, to demonstrate numerically the convergence
properties of the asymptotic model. We have solved problem (5.3) using standard Lagrange FEM with third-
degree polynomials. For the Dirichlet-to-Neumann operators T+ and 77—, we have used a truncated Fourier
expansion approach similar to that in [23].

In the examples that follow, we focus on the convergence of the asymptotic model at a fixed wavelength
Ao = 450nm. For all examples, we have fixed L = 400nm, Ly; = 131.25nm, and L,, = 56.25nm. We have
chosen values of § between 12.5nm and 6.103125e—03 nm, namely, between 6.67% and 0.003255% of the total
height L,,, + Ly = 187.5nm.

We have fixed the angle of incidence to § = 0, since most solar cells are illuminated normally to maximize
photonic absorption. The physical parameters have been taken as in [23], where further details can be found:
el = 3.6876 and &, = —5.8828 + 0.6650 1.

The domain Q7 U~ has been discretlzed with a triangular mesh with N, triangles and mesh size h. For
each polarization state, ¢ = s or ¢ = p, let U] denote the approximate values of the solution to problem (2.7),
delivered by the FEM solution of the asymptotlc model (5.3) for the p- polarlzatlon or (5.4) for the s-polarization,
for a specific choice of h and 6. We have also used the approximate solution « u " to compute a physical quantity

of interest: the so called absorptance Ag (see for instance [23]).

6.1. Example 1: Planar backreflector

The first test allows us to validate the method and its implementation. We have chosen a planar backreflector
in which the material occupying Qs has a uniform relative permittivity €9(x) = —0.5488 + 0.1663 1. For this
problem, for each polarization state ¢ = s or ¢ = p, the exact solution u?(z, z) of (2.7) and the corresponding
exact absorptance A? can be analytically determined using a textbook approach [2].

For each polarization state, we have computed the relative errors

1/2
(/A |ud — ﬂ(;q’l da:dz)
o)

AT — AP
Cya = u and eqq = | |Aq|(S |7 q € {s,p}.

1/2
(/A |u?)? da dz)
a

We have chosen v large enough (v = 12.5nm), so that ﬁ'y and Qs do not intersect for any value of § in our
computations.

In order to evaluate the performance of the asymptotic model with respect to the parameter §, we display in
Tables 1 and 2 values of the relative errors e,s and es, respectively, for varying § and h.

In spite of the fact that u® and uP are expected to have a similar behavior, the asymptotic models to compute
them differ. However the errors e,s and es are essentially the same as e,» and e», respectively. This is the
reason why we only report the former in Tables 1 and 2.

Many of the errors reported in Tables 1 and 2 correspond to values of § and h for which the discretization and
the asymptotic modeling errors are of a similar size. Because of this, the convergence behavior can be clearly
seen only on the last rows and columns of these tables (where the errors arising from the asymptotic modeling
or the discretization, respectively, are negligible).

We report in Figure 3 (left) error curves for e, and ess versus 0 for a very fine mesh (h = 2.21nm). These
plots show that the errors decrease with order O(§2) as the theory predicts.

Finally, to validate our FEM solver, we display in Figure 3 (right), e,s versus h for an extremely thin grating
layer (6 = 6.103125e-03nm). Standard FEM theory [3] predicts that the rate of convergence of e,» must be of
order O(h*). In Figure 3 (right) we observe exactly this trend, except for the smallest value of h for which the
asymptotic modeling error dominates the FEM error.

~
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TABLE 1. Relative error e,s versus 0 (nm) and h(nm) for Example 1. The number N, of
triangular elements is shown in parentheses for each of the values of h in the table.

h (N.)
& (nm) 35.36 (224)  17.68 (896)  8.84 (3584) 4.42 (14336) 2.21 (57 344)
125 5.2675¢-02 5.2683e-02  5.5093¢-02  5.5093e-02  5.5093¢-02
6.25 1.3077e-02 1.3081e-02  1.3081e-02  1.3381e-02  1.3381¢-02
3.125 3.2539¢-03 3.2564e-03  3.2563¢-03  3.2563¢-03  3.2935e-03
1.5625 8.1168e-04 8.1214e-04  8.1207e-04  8.1206e-04  8.1205¢-04
7.812¢-01 2.0886¢-04 2.0258¢-04  2.0249e-04  2.0248e-04  2.0248e-04
3.906e-01 7.7185¢-05 5.0841e-05  5.0657¢-05  5.0650e-05  5.0649¢-05
1.953e-01 6.1086¢-05 1.3245¢-05  1.2667¢-05  1.2658¢-05  1.2658¢-05
9.765¢-02 6.0182¢-05 4.9215¢-06  3.1794e-06  3.1644e-06  3.1638¢-06

4.8825e-02 6.0172e-05 3.8188e-06 8.3173e-07 7.9152e-07 7.9086e-07
2.44125e-02 6.0176e-05 3.7321e-06 3.1203e-07 1.9875e-07 1.9769e-07
1.220625e-02  6.0174e-05 3.7244e-06 2.4233e-07 5.2073e-08 4.9411e-08
6.103125e-03  6.0172e-05 3.7232e-06 2.3649e-07 1.9636e-08 1.2366e-08

TABLE 2. Relative error e4s versus 6 (nm) and h(nm) for Example 1. The number N, of
triangular elements is shown in parentheses for each of the values of h in the table.

h (N.)
& (nm) 35.36 (224)  17.68 (896)  8.84 (3584) 4.42 (14336) 2.21 (57 344)
125 2.7768¢-02 2.7778¢-02  2.7781e-02  2.7780e-02  2.7780e-02
6.25 6.0088¢-03 6.0007¢-03  6.0006e-03  6.0008¢-03  6.0008¢-03
3.125 1.3919¢-03 1.3754¢-03  1.3745¢-03  1.3745¢-03  1.3745¢-03
1.5625 3.4925e-04 3.2862e-04  3.2737e-04  3.2731e-04  3.2731e-04
7.812¢-01 1.0393e-04 8.1280e-05  7.9835e-05  7.9749¢-05  7.9745e-05
3.906e-01 4.4983¢-05 2.1316e-05  1.9776e-05  1.9679¢-05  1.9674e-05
1.953e-01 3.0754¢-05 6.5822¢-06  4.9945¢-06  4.8920e-06  4.8858¢-06
9.765¢-02 2.7365¢-05 2.9409¢-06  1.3295¢-06  1.2243¢-06  1.2177¢-06
4.8825¢-02  2.6591¢-05 2.0410e-06  4.1765¢-07  3.1104e-07  3.0431e-07
2.44125e-02  2.6433e-05 1.8198¢-06  1.9053¢-07  8.3232e-08  7.6419¢-08
1.220625e-02  2.6411e-05 1.7662e-06  1.3400e-07  2.6361e-08  1.9506e-08
6.103125¢-03  2.6414e-05 1.7537¢-06  1.1998¢-07  1.2163e-08  5.2873¢-09

6.2. Example 2: Periodic backreflector with rectangular corrugations

For the second test, we have considered a backreflector with rectangular corrugations of height § and width
L; = 200 nm, as shown in Figure 4. In this case, the discontinuous coefficient ¢ is defined as follows (see Fig. 4):

L—L L+L
oy e O U,
" ey, x € (L5t Lty

Let us remark that this kind of corrugation, which is usual in practice, does not satisfy the smoothness
assumption on €4 used in the theoretical analysis for Theorem 4.5 to hold. Nevertheless, our numerical experi-
ments will show that the proposed strategy works for such a piecewise constant functions €9, too.

Since no analytical solution is know for a backreflector like this, we have used as a reference solution the
FEM solution of the full model (2.7) computed on a very fine mesh (h = 2.21nm). We denote this reference
solution by #(x,z) and by A the corresponding absorptance. Using this reference solution, we have computed
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=0 Cys

107 102 10° 107 10° 10’ 107
9 (nm) h (nm)
FIGURE 3. Example 1. Left: computed values of the relative errors e, (identified by blue o) and

eas (red o) versus § for h = 2.21 nm; solid black line indicate 62 dependence. Right: computed
values (blue o) of the relative error e,s versus h for § = 6.103125e-03 nm; solid red line indicate

h* dependence.

FIGURE 4. Example 2: Domain of a backreflector with a rectangular corrugation.

the relative errors

1/2
a? — a2 dedz !
</ﬁ ™ _ A7 AR

= and €44 = S
' | A1

1/2
(/A |19]? dxdz)
Q'Y

. qE€{sp},
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10°

107

107" 10° 10’ 102 107" 10° 10" 102
J (nm) J (nm)

FIGURE 5. Example 2. Computed values of the relative errors &, (identified by blue o) and
€aq (red ©) wversus & for h = 2.21nm. Solid black lines indicate 62 dependence. Left: ¢ = s.
Right: ¢ = p; the dash-dotted green line corresponds to a least squares fitting of é4».

for different values of §. Notice that since the exact solution depends on ¢, the reference solution had to be
computed for each value of this parameter. Let us remark that this FEM reference solution has been validated
in [26] by comparing it with an RCWA solution. In fact, it has been reported in that reference that the FEM
and RCWA solutions agree within 3% in absorptances and within 5% in L?(Q).

Figure 5 shows error curves for é,s and €44 versus ¢ for ¢ = s (left) and ¢ = p (right). These plots show that
the errors &,s, €45 and €,» decrease with order O(42). Instead, the order of convergence of €4, is not clear.
However, a least squares fitting of these errors decreases with order around O(§?), as can be seen in the same
figure.

According to [26], the solution @#?(x, z) of the full model contains strong singularities near metallic corners,
due to the type of partial differential equation involved. Hence, in principle, any numerical approximation of the
actual solution is not very accurate, unless the mesh is sufficiently refined in the proximity of these corners. In
practice, this implies dealing with extremely fine meshes and, hence, expensive solutions in terms of computer
cost. This is a classical problem in grating theory [16,17], specially for p polarization. This issue affects the
numerical solution of the full model [26] as well as those obtained by other approaches as, for instance, the
RCWA method [28] and could affect the asymptotic model as well. However, a clear advantage of the proposed
asymptotic approach is that this kind of overrefined meshes are no longer needed.

APPENDIX A.

The main goal of this section is to derive the transmission conditions (3.9), as well as expressions (3.12) for
the near field terms within the grating.

A.1. Equations for the first term of the asymptotic expansions

For n = 0, according to Proposition 3.4, outside the grating layer we have

Uo(z,€) = ug(2,0), z€(0,L), =<I[¢<2 (A1)

N
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Into the grating, since B(z,d&) = BY(z) does not depend on &, the first equation in (3.5) reads

9 OUo(x,¢€)

5 <Bg(x)a§) =0, z€(0,L), <

Then, there exist functions () and r¢(z) such that

ro(x)
Bi(z)

Uo(z,€) = qo(x) + § ze(0,L), [¢<

Since Uy is continuous on & = j:%, we have that

Us (37) =0o(2.4") = w@)+;

Uy (x,—%+) = Uy (x,—%f) = qo(z) — = = ug (2,0),

Uy

while, from the continuity of B e

%%x
o\
%(x_
o¢ \"’

B9(x) 3 o€
) = B_aa—(éo (Jc, —%_) = ro(z) = 0.

) =20 (247 =@ =0,
B9(a) '

1
2

Therefore, ro(x) vanishes and ug (z,0) = go(z) = ug (x,0). Hence, (A.1) and (A.2) imply that

|Uo(,€) = ug (,0) = ug (2,0), =€ (0,L), |¢]<2] (A.3)

In particular, Uy does not depend on . Moreover, this implies that ug is continuous across I, so that

[uo] () = ug (2,0) —ug (2,0) =0, € (0,L),

and
MM@:%mm;%mm:%@%xe@m. (A.4)

Note that since Uy does not depend on &, here and in what follows we make the abuse of language of writing
Uo(z) instead of Uy(z, ).

A.2. Equations for the second term of the asymptotic expansions

For n = 1, according to Proposition 3.4, outside the grating layer we have

+

U(e,) = uf (2,0) + €20 (2,0), 2 e (0,1)

<l <2,
z

N

while, into the grating, the first equation in (3.5) reads

0 g 8U1($,§> . 1
a—g (B (ﬁ)ag) =0, z¢€ (OvL)v |§| < 5

Then, there exist functions ¢; (x) and r;(x) such that

r1(z)
BI(z)

Ui(,8) = (@) + Thike, weO,0), lf<3 (A5)
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Proceeding as in the previous step, from the continuity of U; and B 88[? on ¢ = j:% we obtain
1 dut 1 ri(x)
+ 0 1
il — + = A.
Uy (1‘,0) 2 9z (I’,O) ‘h(x) 9 Bg<$)’ ( 6)
dug Oug
Bt—0 = =B . A.
29 (2,0) = r1(e) = B~ 52 (2,0) (A7)
From the latter, we derive
8’[1,0
B— =0
[ 0z ] (z) ’
and 5
U
<B820> (z) = ri (). (A.8)

For the jump of u; across I', by subtracting both expressions in (A.6) we obtain

U, ug m\r ri(x
) 0) = =5 520 = 5 G 0) ¢ G = ~5pena) — )+

where we have used (A.7) for the last equality. Then, (A.8) leads to

[ur](2) = (B;(x) - <;>> <B%f)> (z), x€(0,L).

Finally, to obtain from (A.5) an expression for U; into the grating, we need expressions of ¢; and 7. For the
latter, we already have (A.8). For the former, we average both equations in (A.6) and obtain

1 8u3‘ 1 0ug 1 1

0(w) = () (@) + 5 5(2,0) = 3 52 .0) = () () + Jprra(a) = (@),

where we have used (A.7) for the last equality. Then, substituting this into (A.5) and using (A.8) to eliminate
r1(z) leads to

Gi(e.§) =) @)+ (o + 1 |5] ) (B52 )@ ec0n) l<y (A9

A.3. Equations for the third term of the asymptotic expansions

For n = 2, according to Proposition 3.4, outside the grating layer we have

ouy €2 9*ug
B, @O+ 5

Into the grating, since B(x, &) = BI(x), b(x, &) = b9(x) and Up(z) do not depend on &, the first equation in
(3.5) reads

5 (@22 - (2 (3@ %5)) + Bt ) . we 0.0l < g

and, hence, there exist functions ¢z (z) and ry(z) such that

<l¢l <2 (A.10)

N | =

Us(z,€) = ui(z,0) + & (z,0), x € (0,L),

a0 §) =)+ i (o (50 25 ) 4 Byati)) €, e 0., lel< 3 (A1)
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Since Us is continuous on & = :t , by equating (A.10) and (A.11) at those values of £, we obtain
)

1 ous 1 9%uF _ ro(z 1 9 ( 1oy OUo(2) 219
5.0+ 350 0,0+ 1 51 0.0) = (o) £ 2 - L (8 (B (22! )+kob <x>Uo<x>)-

Then, averaging and subtracting both equations above, we obtain

o1 1 19uf ~ 1duy 1 9ug 1 9Puy
) = 30 (2,0) + 5u5 (2,0) + 1 5 (2,0) — T 51 (2,0) + 7= 20 (2,0) + 12 S (2,0)
1 0 oUp () 2
- (=2 (B g
+ SB9(2) (890 (B (2) o ) + kgb? (2)Ug(x) (A.12)
and
1 ouf 10uy 1 0%ug 1 0%ugy

— +
ra(z) = BY(x) (Uz (2,0) = uy (z,0) + 587(1’ 0) + 5@(%0) t o2 (,0) — 3 9.2 (1’70)) - (A13)
Note that both functions, ¢2(z) and r2(z), are infinitely smooth in [0, L].
On the other hand, since B%—U; is also continuous on ¢ = +3, differentiating (A.10) and (A.11) with respect

to £ and evaluating at those values of £ lead to

+ Qui T
Bi%(ag,m ﬂ:BiaazQO (2,0) = :F% (;x <Bg(x)alg’:£>> + kgb? (x) Uy (x )) + 7ra(7).

For the jump of B % across I', we subtract the equations above and obtain

y 2t 2us
55 @ = (5 (0757 st ) -5 G w0 - ), e 0.
(A.14)

2, +
However, this equation involves the undetermined quantities 66:20 (2,0). To eliminate them, we resort again to
the first equation in (3.5), now for |£]| > % Since in such a case, B(z,5¢) = BT and b(z, 6¢) = b*, the equation

reads
9 (L 0Us(z,€) 9 ( 5+ 9Uo() 21+ 1
5 (37500 ) = (5 (=757 vt ). reon, ki<

Hence, as above, there exist functions g5 (z) and 5 (z) such that

+
_ .t ry (%) 1 9 + OUo() L7 2 1
Us(,§) = g3 (z) + BE S 25% \ o2 B o + kgb Uo(z) ) €%, € (0, L), §§|§|§2~
Since (A.10) holds true in the same domain, identifying both expressions we derive that
5u1i

ri(z 10%uE 1 0 Uy(x
@0 =@, Geo =" a5 w0 =g (o (55 ) s ).

Then, using the last equation and (A.4) in (A.14), we obtain

{ %1;1} (@)=~ aam <<Bg< ) - <B>)aéio>(w)> — k2 (b(x) — (b)) (uo) (x), =€ (0,L).

The equations derived above that appear within boxes have been claimed to hold without a proof in Section 3.
In fact, they correspond either to the transmission conditions (3.9) or to equations (3.12) for the near field in
the grating. To end this paper, we use some of the equations derived above to prove the following result, which
has been used in the proof of Lemma 4.4.
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Lemma A.1. Ug, U? and U are infinitely differentiable with respect to x in Os and their x-derivatives are
uniformly bounded independently of d.

Proof. Out of the grating, there is nothing to prove. In fact, according to Assumption 3.2, U, (z, £) are infinitely
smooth for 1 < |¢| < 2 and, then, UJ(x, 2) are infinitely smooth for § < |z| < 2.

Into the grating (|z] < g), we must recall the assumed smoothness of £9(z) and ul (¢f. Assumption 3.1 for
the latter). Then, the property for U] holds immediately because of (A.3). For U7, it follows from (A.9). Finally,
for UJ it is derived from (A.11) to (A.13) and the already proved smoothness of Up(x). O
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