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AN ASYMPTOTIC MODEL BASED ON MATCHING FAR AND NEAR FIELD
EXPANSIONS FOR THIN GRATINGS PROBLEMS

Peter B. Monk1, Cinthya Rivas2,3, Rodolfo Rodŕıguez2,3 and
Manuel E. Solano2,3,*

Abstract. In this paper, we devise an asymptotic model for calculating electromagnetic diffraction and
absorption in planar multilayered structures with a shallow surface-relief grating. Far from the grating,
we assume that the solution can be written as a power series in terms of the grating thickness 𝛿, the
coefficients of this expansion being smooth up to the grating. However, the expansion approximates the
solution only sufficiently far from the grating (far field approximation). Near the grating, we assume
that there exists another expansion in powers of 𝛿 (near field approximation). Moreover, there is an
overlapping zone where both expansion are valid. The proposed model is based on matching the two
expansions on this overlapping domain. Then, by truncating terms of order 𝛿2 or higher, we obtain
explicitly the equations satisfied by the lowest order terms in the power series. Under appropriate
assumptions, we prove second order convergence of the error with respect to 𝛿. Finally, an alternative
form, more convenient for implementation, is derived and discretized with finite elements to perform
some numerical tests.
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1. Introduction

An important class of light harvesting devices are three-dimensional structures composed by a multilayered
material, usually a dielectric or a semiconductor, placed on top of a periodically corrugated metallic surface relief
grating; for example, photovoltaic solar cells [25] or planar optical concentrators [24, 26]. The electromagnetic
field in these structures can be modeled by the frequency domain Maxwell’s equations and it is of interest to
optimize optical and geometrical parameters to maximize the light absorption [24,27]. In general, in this context,
it is not possible to obtain closed-form expressions of the solution to Maxwell’s equations. This is the reason why
numerical methods play an important role in order to approximate the electromagnetic field. Amongst those
that discretize the partial differential equations directly, probably the most popular are the finite-difference
time-domain (FDTD) method [29], the rigorous coupled-wave approach (RCWA) [4,12,14,15,20], the boundary
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integral equations method [1,11] and the finite element method (FEM) [21,27,28], the latter being preferred to
simulate complicated structures.

These devices can exhibit extremely thin layers or very shallow grating corrugations compared to the total
size of the structure. This feature affects the computational cost of mesh-based numerical solvers, since an
extremely fine grid is needed to resolve the geometry. As an alternative, it is possible to devise an asymptotic
model that approximates the electromagnetic field in the structure by replacing the thin layer by an interface
where suitable transmission conditions are imposed [7–9, 19, 22]. In this direction, an asymptotic model for
calculating electromagnetic diffraction and absorption in planar multilayered structures with a shallow surface-
relief grating has been devised in [23]. The numerical results reported in this reference show that when the
asymptotic expansion of the solution is truncated to second order terms, third-order convergence with respect
to the thickness 𝛿 of the thin grating layer is obtained for transverse electric polarization (𝑠-polarization), and
at least second-order convergence for the transverse magnetic polarization (𝑝-polarization). However, there is
no rigorous mathematical framework supporting this approach. Actually, to the best of the authors’ knowledge,
there is no asymptotic model for this problem for which error estimates have been rigorously proved.

In this paper, we describe an alternative asymptotic model inspired by that in reference [8], for which we
succeed in deriving an error analysis. Far from the grating, we again assume that the solution can be written as a
power series in terms of 𝛿, the coefficients of this expansion being smooth up to the grating. This expansion is a
far field approximation, in the sense that it approximates the solution only sufficiently far from the grating. Near
the grating, we assume that there exists another expansion in powers of 𝛿, which is a near field approximation.
Moreover, there is an overlapping zone where both expansions hold. The asymptotic model is based on matching
these two expansions on the overlapping domain. We truncate the expansion of the solution to first order terms
and, under appropriate assumptions, prove convergence of the error with order 𝛿2.

The rest of the paper is organized as follows. In Section 2 we describe the boundary-value problem. In Section 3
we formulate the asymptotic model. In Section 4 we prove error estimates for the asymptotic expansion of the
solution. In Section 5 we introduce an alternative formulation more convenient for the implementation of a
finite element discretization. In Section 6 we report some numerical tests. Finally, we include in an appendix
the derivation of the approximate transmission conditions and other auxiliary results.

2. Model problem

First, let us fix some notation. The free-space wavenumber, wavelength and intrinsic impedance are respec-
tively denoted by 𝑘0 := 𝜔

√
𝜀0𝜇0, 𝜆0 := 2𝜋/𝑘0 and 𝜂0 :=

√︀
𝜇0/𝜀0, where 𝜇0 > 0 and 𝜀0 > 0 are respectively

the magnetic permeability and the electric permittivity of free space and 𝜔 > 0 is the angular frequency. For a
particular material, let 𝜀𝑟 := 𝜀/𝜀0 be the relative electric permittivity (with 𝜀 being the absolute permittivity),
which in general is a complex-valued function.

Consider a simplified structure motivated by solar cell applications that occupies the region

Φ :=
{︀

(𝑥, 𝑦, 𝑧) ∈ R3 : |𝑥| < ∞, |𝑦| < ∞, −𝐿𝑚 < 𝑧 < 𝐿𝑑

}︀
.

Within this region, the relative permittivity is a periodic function of 𝑥 ∈ (−∞,∞) with period 𝐿, that also
varies with 𝑧 ∈ (−𝐿𝑚, 𝐿𝑑) but not with 𝑦 ∈ (−∞,∞); namely, 𝜀𝑟(𝑥, 𝑧) = 𝜀𝑟(𝑥+𝑚𝐿, 𝑧)∀𝑚 ∈ Z. The half spaces
𝑧 < −𝐿𝑚 and 𝑧 > 𝐿𝑑 are occupied by air, so that the relative permittivity therein is 𝜀𝑟(𝑥, 𝑧) ≡ 1.

The wave propagation in the solar cell is governed by the time-harmonic Maxwell equations:{︂∇×𝐸 = 𝑖𝜔𝜇0𝐻,

∇×𝐻 = −𝑖𝜔𝜀0𝜀𝑟(𝑥, 𝑧)𝐸,
(2.1a)

where 𝐸 and 𝐻 denote the electric and magnetic fields, respectively.
The upper boundary of the solar-cell (𝑧 = 𝐿𝑑) is illuminated by an obliquely incident plane wave whose

electric field is given by

𝐸inc(𝑥, 𝑦, 𝑧) = {𝑎𝑠𝑢̂𝑦 + 𝑎𝑝 (𝑢̂𝑥 cos 𝜃 + 𝑢̂𝑧 sin 𝜃)} exp {𝑖𝑘0 (𝑥 sin 𝜃 − (𝑧 − 𝐿𝑑) cos 𝜃)} , 𝑧 ≥ 𝐿𝑑, (2.1b)
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Figure 1. Domain Ω showing the geometric subdomains and notation.

where 𝑢̂𝑥, 𝑢̂𝑦 and 𝑢̂𝑧 are the Cartesian unit vectors, 𝜃 is the angle of incidence with respect to the 𝑧 axis, and
𝑎𝑠 and 𝑎𝑝 are data coefficients. This quantity, 𝐸inc, is the only source term of the problem. From (2.1a), the
corresponding incident magnetic field is given by

𝐻 inc =
1

𝑖𝜔𝜇0
∇×𝐸inc, 𝑧 ≥ 𝐿𝑑. (2.1c)

Note that (𝐸inc, 𝐻 inc) satisfies (2.1a) when 𝜀𝑟 = 1.
Since all the quantities do not depend on 𝑦, these equations can be written in any section for 𝑦 fixed.

Moreover, because of the periodic character of the physical coefficients, the problem can be posed over one
period, 0 < 𝑥 < 𝐿, by imposing appropriate quasi-periodic conditions that will be specified below (cf. (2.5)).
Therefore, we restrict the domain of our problem to the so called unit cell :

Ω :=
{︀

(𝑥, 𝑧) ∈ R2 : 0 < 𝑥 < 𝐿, −𝐿𝑚 < 𝑧 < 𝐿𝑑

}︀
.

Moreover, we introduce the following notation (see Fig. 1):

Γ+ := {(𝑥, 𝑧) ∈ Ω : 𝑧 = 𝐿𝑑} ,

Γ := {(𝑥, 𝑧) ∈ Ω : 𝑧 = 0} ,

Γ− := {(𝑥, 𝑧) ∈ Ω : 𝑧 = −𝐿𝑚} ,

Ω+
𝛿 :=

{︀
(𝑥, 𝑧) ∈ Ω : 𝛿

2 < 𝑧 < 𝐿𝑑

}︀
,

Ω𝛿 :=
{︀

(𝑥, 𝑧) ∈ Ω : − 𝛿
2 < 𝑧 < 𝛿

2

}︀
,

Ω−𝛿 :=
{︀

(𝑥, 𝑧) ∈ Ω : −𝐿𝑚 < 𝑧 < − 𝛿
2

}︀
·

The region Ω+
𝛿 is occupied by an isotropic homogeneous dielectric material of real relative permittivity 𝜀+

𝑟 .
The region Ω−𝛿 is occupied by a homogeneous metal of complex relative permittivity 𝜀−𝑟 . In the middle region
Ω𝛿, which is occupied by the grating, we assume that the complex relative permittivity 𝜀𝑔

𝑟 varies only with 𝑥.
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Therefore, the relative permittivity of the entire unit cell is given by

𝜀𝑟(𝑥, 𝑧) :=

⎧⎪⎨⎪⎩
𝜀+

𝑟 , (𝑥, 𝑧) ∈ Ω+
𝛿 ,

𝜀𝑔
𝑟(𝑥), (𝑥, 𝑧) ∈ Ω𝛿,

𝜀−𝑟 , (𝑥, 𝑧) ∈ Ω−𝛿 .

All the permittivities are assumed not to vanish. Moreover we assume that 𝜀𝑔
𝑟 is infinitely differentiable in [0, 𝐿]

and the following inequalities, which are typically fulfilled in the applications:⎧⎨⎩
𝜀+

𝑟 > 0,

Im(𝜀−𝑟 ) > 0 or Re(𝜀−𝑟 ) > 0 when Im(𝜀−𝑟 ) = 0,

Im(𝜀𝑔
𝑟(𝑥)) > 0 ∀𝑥 ∈ [0, 𝐿] or Re(𝜀𝑔

𝑟(𝑥)) > 0 ∀𝑥 ∈ [0, 𝐿], when Im(𝜀𝑔
𝑟) ≡ 0.

(2.2)

2.1. Scalar equations and boundary conditions

Problem (2.1) can be decoupled into two separate problems with corresponding coefficients 𝑎𝑠 and 𝑎𝑝 in the
source term (2.1b). The respective decoupled problems are called the 𝑠- and 𝑝-polarization states. Both reduce
to the following common form of the Helmholtz equation:

∇ · (𝐵(𝑥, 𝑧)∇𝑢(𝑥, 𝑧)) + 𝑘2
0𝑏(𝑥, 𝑧)𝑢(𝑥, 𝑧) = 0, (𝑥, 𝑧) ∈ Ω,

where, for the 𝑠-polarization state,

𝑢(𝑥, 𝑧) = 𝐸𝑦(𝑥, 𝑧), 𝐵(𝑥, 𝑧) = 1, 𝑏(𝑥, 𝑧) = 𝜀𝑟(𝑥, 𝑧), (2.3)

and for the 𝑝-polarization state,

𝑢(𝑥, 𝑧) = −𝜂0𝐻𝑦(𝑥, 𝑧), 𝐵(𝑥, 𝑧) =
1

𝜀𝑟(𝑥, 𝑧)
, 𝑏(𝑥, 𝑧) = 1. (2.4)

The data of each of these problems are the corresponding components of the incident plane waves (2.1b) and
(2.1c):

𝑢inc(𝑥, 𝑧) =
{︂

𝑎𝑠 exp (𝑖𝑘0 (𝑥 sin 𝜃 − (𝑧 − 𝐿𝑑) cos 𝜃)) , for the 𝑠-polarization,

𝑎𝑝 exp (𝑖𝑘0 (𝑥 sin 𝜃 − (𝑧 − 𝐿𝑑) cos 𝜃)) , for the 𝑝-polarization.

The total field 𝑢 satisfies the following relations:⎧⎪⎪⎨⎪⎪⎩
𝐵(𝑥, 𝑧)

𝜕𝑢

𝜕𝑧
(𝑥, 𝑧) =

(︀
𝑇−𝑢

)︀
(𝑥, 𝑧) on Γ−,

𝐵(𝑥, 𝑧)
(︂

𝜕𝑢

𝜕𝑧
(𝑥, 𝑧)− 𝜕𝑢inc

𝜕𝑧
(𝑥, 𝑧)

)︂
=
(︀
𝑇+𝑢

)︀
(𝑥, 𝑧)−

(︀
𝑇+𝑢inc

)︀
(𝑥, 𝑧) on Γ+,

where 𝑇− and 𝑇+ are the corresponding Dirichlet-to-Neumann operators (see [5]).
In addition, 𝑢(𝑥, 𝑧) satisfies the quasi-periodicity conditions

𝑢(𝐿, 𝑧) = exp(𝑖𝛼𝐿)𝑢(0, 𝑧),

𝜕𝑢

𝜕𝑥
(𝐿, 𝑧) = exp(𝑖𝛼𝐿)𝜕𝑢

𝜕𝑥 (0, 𝑧),

⎫⎬⎭ 𝑧 ∈ (−𝐿𝑚, 𝐿𝑑), (2.5)

where 𝛼 := 𝑘0 sin 𝜃.
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Altogether, we arrive at the following problem:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇ · (𝐵(𝑥, 𝑧)∇𝑢(𝑥, 𝑧)) + 𝑘2
0𝑏(𝑥, 𝑧)𝑢(𝑥, 𝑧) = 0 in Ω,

𝑢(𝐿, 𝑧) = 𝑒𝑖𝛼𝐿𝑢(0, 𝑧), 𝑧 ∈ (−𝐿𝑚, 𝐿𝑑),

𝜕𝑢

𝜕𝑥
(𝐿, 𝑧) = 𝑒𝑖𝛼𝐿 𝜕𝑢

𝜕𝑥
(0, 𝑧), 𝑧 ∈ (−𝐿𝑚, 𝐿𝑑),

𝐵(𝑥, 𝑧)
𝜕𝑢

𝜕𝑧
(𝑥, 𝑧) =

(︀
𝑇−𝑢

)︀
(𝑥, 𝑧) on Γ−,

𝐵(𝑥, 𝑧)
(︂

𝜕𝑢

𝜕𝑧
(𝑥, 𝑧)− 𝜕𝑢inc

𝜕𝑧
(𝑥, 𝑧)

)︂
=
(︀
𝑇+𝑢

)︀
(𝑥, 𝑧)−

(︀
𝑇+𝑢inc

)︀
(𝑥, 𝑧) on Γ+.

(2.6)

The next step is to write a variational formulation of this problem. To this end we define

𝐻1
𝛼(Ω) :=

{︀
𝑣 ∈ 𝐻1(Ω) : 𝑣(𝐿, 𝑧) = 𝑒𝑖𝛼𝐿𝑣(0, 𝑧) ∀𝑧 ∈ (−𝐿𝑚, 𝐿𝑑)

}︀
.

Testing the first equation in (2.6) with 𝑣 ∈ 𝐻1
𝛼(Ω) and integrating by parts lead to the following problem: Find

𝑢 ∈ 𝐻1
𝛼(Ω) such that

𝑎(𝑢, 𝑣) = 𝐿(𝑣) ∀𝑣 ∈ 𝐻1
𝛼(Ω), (2.7)

where⎧⎪⎪⎨⎪⎪⎩
𝑎(𝑤, 𝑣) :=

∫︁
Ω

(︀
𝐵∇𝑤 · ∇𝑣 − 𝑘2

0𝑏𝑤𝑣
)︀

d𝑥 d𝑧 −
∫︁

Γ+

(︀
𝑇+𝑤

)︀
𝑣 d𝑥−

∫︁
Γ−

(︀
𝑇−𝑤

)︀
𝑣 d𝑥, 𝑣, 𝑤 ∈ 𝐻1

𝛼(Ω),

𝐿(𝑣) :=
∫︁

Γ+

(︂
𝐵

𝜕𝑢inc

𝜕𝑧
− 𝑇+𝑢inc

)︂
𝑣 d𝑥, 𝑣 ∈ 𝐻1

𝛼(Ω).
(2.8)

Assumption 2.1. We assume that problem (2.7) is well posed for all but at most a sequence of countable
frequencies 𝜔𝑗 with |𝜔𝑗 | → +∞ and we restrict our attention to 𝜔 ̸= 𝜔𝑗. For each 𝜔 ̸= 𝜔𝑗, there exists a
constant 𝐶 > 0 such that

‖𝑤‖𝐻1(Ω) ≤ 𝐶 sup
𝑣∈𝐻1

𝛼(Ω)
𝑣 ̸=0

|𝑎(𝑤, 𝑣)|
‖𝑣‖𝐻1(Ω)

∀𝑤 ∈ 𝐻1
𝛼(Ω).

Moreover, we assume that 𝐶 is independent of 𝛿.

Remark 2.2. The first part of this assumption has been proved in Theorem 3.3 of [10], in case that 𝜀𝑔
𝑟(𝑥) is

piecewise constant and inequalities (2.2) hold true. The assumption that 𝐶 is independent of 𝛿 can be proved,
for example, if the grating is non-trapping [6]. In addition, by following the arguments in Theorem 2.1 of [13],
it is possible to show that 𝐶 is independent of 𝛿 when 𝛿 is small enough. On the other hand, this assumption
implicitly avoids the presence of resonances due to Rayleigh–Wood anomalies [18].

3. Asymptotic model

In this section, we will introduce an alternative to deal with the thin grating layer Ω𝛿. In fact, problem (2.6)
constitutes the full model, which will be approximated by an asymptotic model (valid in the limit 𝛿 → 0), where
the effect of the grating layer Ω𝛿 will be taken into account by means of appropriate approximate transmission
conditions across Γ.

With this aim, we consider an auxiliary problem based on another partition of the domain Ω into subdomains
Ω+ and Ω−, where (see Fig. 2)

Ω+ := (0, 𝐿)× (0, 𝐿𝑑) and Ω− := (0, 𝐿)× (−𝐿𝑚, 0),
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Figure 2. Decomposition of the domain Ω with the thin interface removed.

with relative permittivity

𝜀𝑟(𝑥, 𝑧) :=
{︂

𝜀+
𝑟 , (𝑥, 𝑧) ∈ Ω+,

𝜀−𝑟 , (𝑥, 𝑧) ∈ Ω−.

For any function 𝑣 : Ω+ ∪ Ω− −→ C, we denote 𝑣+ := 𝑣|Ω+ and 𝑣− := 𝑣|Ω− . In general, we identify 𝑣 with
the pair of functions (𝑣+, 𝑣−). Note that in this asymptotic model, 𝐵± and 𝑏± as defined in (2.3) and (2.4) are
constant.

Inspired by the procedure used in [8], we consider two different expansions of the solution 𝑢(𝑥, 𝑧): one in the
far field zone (|𝑧| ≫ 𝛿/2) and the other in the near field zone (|𝑧| ∼ 𝛿/2). In what follows, we describe each of
them in detail.

3.1. Far field equations

In the far field, we make the following assumption.

Assumption 3.1. Outside the grating, we assume that 𝑢 can be expanded in a standard series in powers of 𝛿:

𝑢(𝑥, 𝑧) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∞∑︁

𝑛=0

𝛿𝑛𝑢+
𝑛 (𝑥, 𝑧), 𝑧 ≥ 𝛿/2,

∞∑︁
𝑛=0

𝛿𝑛𝑢−𝑛 (𝑥, 𝑧), 𝑧 ≤ −𝛿/2,

(3.1)

where the far field terms 𝑢±𝑛 defined in Ω± are quasi-periodic in 𝑥 and infinitely smooth up to Γ. Moreover, we
assume that each 𝑢±𝑛 can be expanded in a power series with respect to the 𝑧-coordinate around zero, i.e.,

𝑢±𝑛 (𝑥, 𝑧) =
∞∑︁

𝑘=0

𝑧𝑘

𝑘!
𝜕𝑘𝑢±𝑛
𝜕𝑧𝑘

(𝑥, 0), (𝑥, 𝑧) ∈ Ω±, 𝑛 ≥ 0.
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To derive the equations satisfied by the far field terms 𝑢±𝑛 , we insert the asymptotic expansion (3.1) into (2.6)
and extend the first equation to the whole Ω±. Then, equating the terms with the same powers of 𝛿 we obtain:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇ ·
(︀
𝐵±∇𝑢±𝑛 (𝑥, 𝑧)

)︀
+ 𝑘2

0𝑏
±𝑢±𝑛 (𝑥, 𝑧) = 0 in Ω±,

𝑢±𝑛 (𝐿, 𝑧) = 𝑒𝑖𝛼𝐿𝑢±𝑛 (0, 𝑧), 𝑧 ∈ (−𝐿𝑚, 𝐿𝑑) ,

𝜕𝑢±𝑛
𝜕𝑥

(𝐿, 𝑧) = 𝑒𝑖𝛼𝐿 𝜕𝑢±𝑛
𝜕𝑥

(𝐿, 𝑧), 𝑧 ∈ (−𝐿𝑚, 𝐿𝑑) ,

𝐵− 𝜕𝑢−𝑛
𝜕𝑧

(𝑥, 𝑧) =
(︀
𝑇−𝑢−𝑛

)︀
(𝑥, 𝑧) on Γ−, 𝑛 ≥ 0,

𝐵+ 𝜕𝑢+
𝑛

𝜕𝑧
(𝑥, 𝑧) =

(︀
𝑇+𝑢+

𝑛

)︀
(𝑥, 𝑧) on Γ+, 𝑛 ≥ 1,

𝐵+ 𝜕𝑢+
0

𝜕𝑧
(𝑥, 𝑧)−𝐵+ 𝜕𝑢inc

𝜕𝑧
(𝑥, 𝑧) =

(︀
𝑇+𝑢+

0

)︀
(𝑥, 𝑧)−

(︀
𝑇+𝑢inc

)︀
(𝑥, 𝑧) on Γ+.

(3.2)

Note that to determine 𝑢±𝑛 entirely, we need to prescribe transmission conditions relating 𝑢+
𝑛 and 𝑢−𝑛 on Γ.

3.2. Near field equations

In the near field (|𝑧| < 2𝛿) we resort to an asymptotic expansion based on the original partition of the domain
Ω into the subdomains Ω+

𝛿 , Ω𝛿 and Ω−𝛿 (see Fig. 1). With this aim, we rescale the solution 𝑢 of problem (2.7)
with respect to the thickness of the grating layer by changing the variable 𝑧 to 𝜉 := 𝑧

𝛿 and make the following
assumption.

Assumption 3.2. Near the grating, we assume that there exists an expansion, which, after rescaling by 𝛿, can
be written as follows:

𝑢(𝑥, 𝑧) =
∞∑︁

𝑛=0

𝛿𝑛𝑈𝑛

(︁
𝑥,

𝑧

𝛿

)︁
, |𝑧| ≤ 2𝛿, (3.3)

where 𝑈𝑛(𝑥, 𝜉) are quasi-periodic functions in 𝑥 and continuous in (0, 𝐿)× (−2, 2) with 𝐵(𝑥, 𝛿𝜉)𝜕𝑈𝑛

𝜕𝜉 (𝑥, 𝜉) also
continuous. Furthermore, we assume that 𝑈𝑛 are infinitely smooth out of the grating, that is, when 1

2 ≤ |𝜉| ≤ 2.

The first assumption is needed to ensure that the series in the identification of the matching conditions are
convergent. On the other hand, it is natural to assume the quasi-periodicity condition, since we expect the
series to converge to a quasi-periodic function. The continuity assumptions for 𝑈𝑛 and 𝐵𝜕𝜉𝑈𝑛 are required to
derive the transmission conditions (see Appendix A). Finally, the last assumption will be employed to deduce
the matching conditions and also to obtain the error estimates.

With any function 𝑈(𝑥, 𝜉), we associate the function

𝑈𝛿(𝑥, 𝑧) := 𝑈
(︁
𝑥,

𝑧

𝛿

)︁
and recall the chain rule:

𝜕𝑈𝛿

𝜕𝑧
=

1
𝛿

𝜕𝑈

𝜕𝜉
·

Therefore, the expansion (3.3) can be rewritten as

𝑢(𝑥, 𝑧) =
∞∑︁

𝑛=0

𝛿𝑛𝑈 𝛿
𝑛(𝑥, 𝑧).
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To derive the equations satisfied by the near field terms 𝑈𝑛, we insert this asymptotic expansion into (2.6).
Then, from the first equation and the assumption that 𝑈𝑛 are smooth, we have that

∞∑︁
𝑛=0

𝛿𝑛
{︀
∇ ·
(︀
𝐵∇𝑈𝛿

𝑛

)︀
+ 𝑘2

0𝑏𝑈
𝛿
𝑛

}︀
= 0.

Now, using the chain rule and denoting 𝜉 := 𝑧
𝛿 , we obtain

∇ ·
(︀
𝐵(𝑥, 𝑧)∇𝑈 𝛿

𝑛(𝑥, 𝑧)
)︀

+ 𝑘2
0𝑏(𝑥, 𝑧)𝑈 𝛿

𝑛(𝑥, 𝑧)

=
1
𝛿2

𝜕

𝜕𝜉

(︂
𝐵(𝑥, 𝛿𝜉)

𝜕𝑈𝑛(𝑥, 𝜉)
𝜕𝜉

)︂
+

𝜕

𝜕𝑥

(︂
𝐵(𝑥, 𝛿𝜉)

𝜕𝑈𝑛(𝑥, 𝜉)
𝜕𝑥

)︂
+ 𝑘2

0𝑏(𝑥, 𝛿𝜉)𝑈𝑛(𝑥, 𝜉). (3.4)

Hence, equating the terms with the same power of 𝛿 and using the convention that 𝑈𝛿
ℓ = 0 for ℓ < 0, we

obtain the following equations for the near field terms 𝑈𝑛, 𝑛 ≥ 0:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝜕

𝜕𝜉

(︂
𝐵(𝑥, 𝛿𝜉)

𝜕𝑈𝑛(𝑥, 𝜉)
𝜕𝜉

)︂
= − 𝜕

𝜕𝑥

(︂
𝐵(𝑥, 𝛿𝜉)

𝜕𝑈𝑛−2(𝑥, 𝜉)
𝜕𝑥

)︂
− 𝑘2

0𝑏(𝑥, 𝛿𝜉)𝑈𝑛−2(𝑥, 𝜉), (𝑥, 𝜉) ∈ (0, 𝐿)× (−2, 2) ,

𝑈𝑛(𝐿, 𝜉) = 𝑒𝑖𝛼𝐿𝑈𝑛(0, 𝜉), 𝜉 ∈ (−2, 2) ,

𝜕𝑈𝑛

𝜕𝑥
(𝐿, 𝜉) = 𝑒𝑖𝛼𝐿 𝜕𝑈𝑛

𝜕𝑥
(0, 𝜉), 𝜉 ∈ (−2, 2) .

(3.5)

3.3. Matching conditions

To determine the terms 𝑢−𝑛 , 𝑢+
𝑛 and 𝑈𝑛, we need additional matching conditions that will be obtained from

the fact that the far and near field expansions have to coincide on certain overlapping zones 𝐶±𝛿 . These zones
should be disjoint with the grating layer but they should approach the interface Γ as 𝛿 goes to zero. Because of
this, we define the following overlapping domain, where expansions (3.1) and (3.3) are both valid:

𝐶𝛿 := 𝐶+
𝛿 ∪ 𝐶−𝛿 with 𝐶+

𝛿 := (0, 𝐿)× (𝛿, 2𝛿) and 𝐶−𝛿 := (0, 𝐿)× (−2𝛿,−𝛿).

From Assumption 3.1, outside the grating (and so in particular in 𝐶𝛿), we have that

𝑢(𝑥, 𝑧) =
∞∑︁

𝑛=0

∞∑︁
𝑘=0

𝛿𝑛 𝑧𝑘

𝑘!
𝜕𝑘𝑢±𝑛
𝜕𝑧𝑘

(𝑥, 0). (3.6)

In turn, for the near field expansion, we have the following result regarding the behavior of the terms 𝑈𝑛 in
the overlapping areas.

Proposition 3.3. There exist infinitely smooth quasi-periodic functions 𝑝±𝑛,𝑘 such that

𝑈𝑛(𝑥, 𝜉) =
𝑛+1∑︁
𝑘=0

𝑝±𝑛,𝑘(𝑥)𝜉𝑘, 𝑥 ∈ (0, 𝐿),
1
2
≤ |𝜉| ≤ 2. (3.7)

Let us remark that the equation (3.7) is an abbreviated form of

𝑈𝑛(𝑥, 𝜉) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝑛+1∑︁
𝑘=0

𝑝+
𝑛,𝑘(𝑥)𝜉𝑘, 𝑥 ∈ (0, 𝐿),

1
2
≤ 𝜉 ≤ 2,

𝑛+1∑︁
𝑘=0

𝑝−𝑛,𝑘(𝑥)𝜉𝑘, 𝑥 ∈ (0, 𝐿), −2 ≤ 𝜉 ≤ −1
2
·

Similar notation will be used for other quantities in what follows.
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Proof. We proceed as in [8] in the simpler framework of our problem. For what follows, recall that the coefficients
𝐵±(𝑥, 𝛿𝜉) and 𝑏±(𝑥, 𝛿𝜉) are constant in Ω±.

– For 𝑛 = 0, the first equation in (3.5) reduces to

𝜕

𝜕𝜉

(︂
𝐵± 𝜕𝑈0(𝑥, 𝜉)

𝜕𝜉

)︂
= 0.

Then, there exist functions 𝑝±0,0(𝑥) and 𝑝±0,1(𝑥) such that

𝑈0(𝑥, 𝜉) = 𝑝±0,0(𝑥) + 𝑝±0,1(𝑥)𝜉, 𝑥 ∈ (0, 𝐿),
1
2
≤ |𝜉| ≤ 2.

Moreover, since we have assumed that 𝑈𝑛 is infinitely smooth for 1
2 ≤ |𝜉| ≤ 2, we derive that 𝑝±0,0(𝑥) and

𝑝±0,1(𝑥) are infinitely smooth, too.
– For 𝑛 = 1, the first equation in (3.5) also reduces to

𝜕

𝜕𝜉

(︂
𝐵± 𝜕𝑈1(𝑥, 𝜉)

𝜕𝜉

)︂
= 0.

Then, as above, there exist smooth functions 𝑝±1,0(𝑥) and 𝑝±1,1(𝑥) such that

𝑈1(𝑥, 𝜉) = 𝑝±1,0(𝑥) + 𝑝±1,1(𝑥)𝜉, 𝑥 ∈ (0, 𝐿),
1
2
≤ |𝜉| ≤ 2.

– For 𝑛 = 2, the first equation in (3.5) reduces to

𝜕

𝜕𝜉

(︂
𝐵± 𝜕𝑈2(𝑥, 𝜉)

𝜕𝜉

)︂
= −

{︂
𝜕

𝜕𝑥

(︂
𝐵± 𝜕𝑈0(𝑥, 𝜉)

𝜕𝑥

)︂
+ 𝑘2

0𝑏
±𝑈0(𝑥, 𝜉)

}︂
= −

{︃(︃
𝐵± 𝜕2𝑝±0,0(𝑥)

𝜕𝑥2
+ 𝑘2

0𝑏
±𝑝±0,0(𝑥)

)︃
+

(︃
𝐵± 𝜕2𝑝±0,1(𝑥)

𝜕𝑥2
+ 𝑘2

0𝑏
±𝑝±0,1(𝑥)

)︃
𝜉

}︃
.

Then, once more, there exist smooth functions 𝑝±2,0(𝑥), 𝑝±2,1(𝑥), 𝑝±2,2(𝑥) and 𝑝±2,3(𝑥) such that

𝑈2(𝑥, 𝜉) = 𝑝±2,0(𝑥) + 𝑝±2,1(𝑥)𝜉 + 𝑝±2,2(𝑥)𝜉2 + 𝑝±2,3(𝑥)𝜉3, 𝑥 ∈ (0, 𝐿),
1
2
≤ |𝜉| ≤ 2.

– An induction argument allows us to show that the proposition holds for all 𝑛 ≥ 0.

�

Now, we are in a position to settle matching conditions between both expansions, which is done in the following
proposition. We emphasize that the identifications made in its proof are only formal, since the (pointwise)
convergence of the series is not proved but assumed (cf. Assumption 3.2).

Proposition 3.4. For 𝑛 ≥ 0 and 0 ≤ 𝑘 ≤ 𝑛,

𝑈𝑛(𝑥, 𝜉) =
𝑛∑︁

𝑘=0

𝜉𝑘

𝑘!
𝜕𝑘𝑢±𝑛−𝑘

𝜕𝑧𝑘
(𝑥, 0), 𝑥 ∈ (0, 𝐿),

1
2
≤ |𝜉| ≤ 2.

Proof. By substituting (3.7) into the near field expansion (3.3), we obtain

𝑢(𝑥, 𝑧) =
∞∑︁

𝑛=0

𝑛+1∑︁
𝑘=0

𝛿𝑛𝑝±𝑛,𝑘(𝑥)
(︁𝑧

𝛿

)︁𝑘

=
∞∑︁

𝑛=0

𝑛+1∑︁
𝑘=0

𝛿𝑛−𝑘𝑝±𝑛,𝑘(𝑥)𝑧𝑘, 𝑥 ∈ (0, 𝐿),
𝛿

2
≤ |𝑧| ≤ 2𝛿.
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The identification on the overlapping zones of the far field (3.6) with this expression for the near field leads to

∞∑︁
𝑛=0

∞∑︁
𝑘=0

𝛿𝑛 𝑧𝑘

𝑘!
𝜕𝑘𝑢±𝑛
𝜕𝑧𝑘

(𝑥, 0) =
∞∑︁

𝑛=0

𝑛+1∑︁
𝑘=0

𝛿𝑛−𝑘𝑝±𝑛,𝑘(𝑥)𝑧𝑘 =
∞∑︁

𝑘=0

∞∑︁
𝑛=𝑘−1,

𝑛≥0

𝛿𝑛−𝑘𝑝±𝑛,𝑘(𝑥)𝑧𝑘 =
∞∑︁

𝑘=0

∞∑︁
𝑛=−1,
𝑛+𝑘≥0

𝛿𝑛𝑝±𝑛+𝑘,𝑘(𝑥)𝑧𝑘

for all (𝑥, 𝑧) ∈ 𝐶𝛿. Then, exchanging the order of summation,

∞∑︁
𝑛=0

∞∑︁
𝑘=0

𝛿𝑛 𝑧𝑘

𝑘!
𝜕𝑘𝑢±𝑛
𝜕𝑧𝑘

(𝑥, 0) =
∞∑︁

𝑛=−1

∞∑︁
𝑘=0

𝑛+𝑘≥0

𝛿𝑛𝑧𝑘𝑝±𝑛+𝑘,𝑘(𝑥), (𝑥, 𝑧) ∈ 𝐶𝛿.

Identifying the terms with the same power of 𝛿, we arrive at

𝑝±𝑛,𝑘(𝑥) =

⎧⎨⎩
0, if 𝑘 = 𝑛 + 1,

1
𝑘!

𝜕𝑘𝑢±𝑛−𝑘

𝜕𝑧𝑘
(𝑥, 0), if 0 ≤ 𝑘 ≤ 𝑛,

(3.8)

for all 𝑛 ≥ 0, which substituted into (3.7) allows us to conclude the proof. �

3.4. Truncated asymptotic expansion

Outside the grating, we approximate 𝑢 by

𝑢(𝑥, 𝑧) ≈ 𝑢±0 (𝑥, 𝑧) + 𝛿𝑢±1 (𝑥, 𝑧), |𝑧| ≥ 𝛿

2
,

and inside the grating by

𝑢(𝑥, 𝑧) ≈ 𝑈0

(︁
𝑥,

𝑧

𝛿

)︁
+ 𝛿𝑈1

(︁
𝑥,

𝑧

𝛿

)︁
, |𝑧| < 𝛿

2
·

Given 𝑣± defined in Ω± we use the following notation for its jump and average on Γ (i.e., at 𝑧 = 0):

[𝑣] := 𝑣+(𝑥, 0)− 𝑣−(𝑥, 0),

⟨𝑣⟩ :=
𝑣+(𝑥, 0) + 𝑣−(𝑥, 0)

2
·

Also, we denote the coefficients on the grating layer 𝐵𝑔 := 𝐵|Ω𝛿
and 𝑏𝑔 := 𝑏|Ω𝛿

. We recall that 𝐵𝑔 and 𝑏𝑔 are
assumed not to depend on 𝑧.

In the appendix we perform an asymptotic analysis that allows us to find the following transmission conditions
relating 𝑢+

𝑛 and 𝑢−𝑛 for 𝑛 = 0 and 1 and for all 𝑥 ∈ (0, 𝐿):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

[𝑢0] (𝑥) = 0,[︂
𝐵

𝜕𝑢0

𝜕𝑧

]︂
(𝑥) = 0,

[𝑢1] (𝑥) =
(︁

1
𝐵𝑔(𝑥) −

⟨︀
1
𝐵

⟩︀)︁ ⟨︀
𝐵 𝜕𝑢0

𝜕𝑧

⟩︀
(𝑥),[︂

𝐵
𝜕𝑢1

𝜕𝑧

]︂
(𝑥) = − 𝜕

𝜕𝑥

(︁
(𝐵𝑔(𝑥)− ⟨𝐵⟩) 𝜕⟨𝑢0⟩

𝜕𝑥 (𝑥)
)︁
− 𝑘2

0 (𝑏𝑔(𝑥)− ⟨𝑏⟩) ⟨𝑢0⟩ (𝑥).

(3.9)
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Adding these transmission conditions to equations (3.2), we are led to the following problems to determine
𝑢0 and 𝑢1, respectively:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇ ·
(︀
𝐵±(𝑥, 𝑧)∇𝑢±0 (𝑥, 𝑧)

)︀
+ 𝑘2

0𝑏
±(𝑥, 𝑧)𝑢±0 (𝑥, 𝑧) = 0 in Ω±,

[𝑢0] (𝑥) = 0 on Γ,[︂
𝐵

𝜕𝑢0

𝜕𝑧

]︂
(𝑥) = 0 on Γ,

𝑢±0 (𝐿, 𝑧) = 𝑒𝑖𝛼𝐿𝑢±0 (0, 𝑧), 𝑧 ∈ (−𝐿𝑚, 𝐿𝑑) ,

𝜕𝑢±0
𝜕𝑥

(𝐿, 𝑧) = 𝑒𝑖𝛼𝐿 𝜕𝑢±0
𝜕𝑥

(0, 𝑧), 𝑧 ∈ (−𝐿𝑚, 𝐿𝑑) ,

𝐵− 𝜕𝑢−0
𝜕𝑧

(𝑥, 𝑧) =
(︀
𝑇−𝑢−0

)︀
(𝑥, 𝑧) on Γ−,

𝐵+ 𝜕𝑢+
0

𝜕𝑧
(𝑥, 𝑧)−𝐵+ 𝜕𝑢inc

𝜕𝑧
(𝑥, 𝑧) =

(︀
𝑇+𝑢+

0

)︀
(𝑥, 𝑧)−

(︀
𝑇+𝑢inc

)︀
(𝑥, 𝑧) on Γ+;

(3.10)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇ ·
(︀
𝐵±(𝑥, 𝑧)∇𝑢±1 (𝑥, 𝑧)

)︀
+ 𝑘2

0𝑏
±(𝑥, 𝑧)𝑢±1 (𝑥, 𝑧) = 0 in Ω±,

[𝑢1] (𝑥) =
(︂

1
𝐵𝑔(𝑥)

−
⟨

1
𝐵

⟩)︂⟨
𝐵

𝜕𝑢0

𝜕𝑧

⟩
(𝑥) on Γ,[︂

𝐵
𝜕𝑢1

𝜕𝑧

]︂
(𝑥) = − 𝜕

𝜕𝑥

(︂
(𝐵𝑔(𝑥)− ⟨𝐵⟩) 𝜕 ⟨𝑢0⟩

𝜕𝑥
(𝑥)
)︂
− 𝑘2

0 (𝑏𝑔(𝑥)− ⟨𝑏⟩) ⟨𝑢0⟩ (𝑥) on Γ,

𝑢±1 (𝐿, 𝑧) = 𝑒𝑖𝛼𝐿𝑢±1 (0, 𝑧), 𝑧 ∈ (−𝐿𝑚, 𝐿𝑑) ,

𝜕𝑢±1
𝜕𝑥

(𝐿, 𝑧) = 𝑒𝑖𝛼𝐿 𝜕𝑢±1
𝜕𝑥

(0, 𝑧), 𝑧 ∈ (−𝐿𝑚, 𝐿𝑑) ,

𝐵± 𝜕𝑢±1
𝜕𝑧

(𝑥, 𝑧) =
(︀
𝑇±𝑢±1

)︀
(𝑥, 𝑧) on Γ±.

(3.11)

To complete the derivation, it is also shown in the appendix that 𝑈0 and 𝑈1 into the grating are given by

𝑈0(𝑥, 𝜉) = 𝑢0(𝑥, 0),

𝑈1(𝑥, 𝜉) = ⟨𝑢1⟩ (𝑥) +
(︂

𝜉

𝐵𝑔(𝑥)
+

1
4

[︂
1
𝐵

]︂)︂⟨
𝐵

𝜕𝑢0

𝜕𝑧

⟩
(𝑥),

⎫⎬⎭ 𝑥 ∈ (0, 𝐿), |𝜉| ≤ 1
2
· (3.12)

4. Error estimates

In this section, we estimate the error between the exact solution 𝑢 and its first-order far field approximation

𝑢𝛿,1(𝑥, 𝑧) := 𝑢±0 (𝑥, 𝑧) + 𝛿𝑢±1 (𝑥, 𝑧). (4.1)

For the forthcoming analysis, we will also use the second-order approximation

𝑢𝛿,2(𝑥, 𝑧) := 𝑢±0 (𝑥, 𝑧) + 𝛿𝑢±1 (𝑥, 𝑧) + 𝛿2𝑢±2 (𝑥, 𝑧) (4.2)

and the corresponding one for the near field:

𝑈𝛿,2(𝑥, 𝑧) := 𝑈 𝛿
0 (𝑥, 𝑧) + 𝛿𝑈𝛿

1 (𝑥, 𝑧) + 𝛿2𝑈𝛿
2 (𝑥, 𝑧) . (4.3)

We proceed as in [8] and introduce a smooth cut-off function 𝜒 ∈ C∞(R) such that

𝜒(𝜉) =
{︂

1, if |𝜉| ≤ 1,

0, if |𝜉| ≥ 2.
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Then, denoting as above 𝜒𝛿(𝑧) := 𝜒
(︀

𝑧
𝛿

)︀
, we introduce the global approximate solution

̃︀𝑢𝛿(𝑥, 𝑧) :=
(︀
1− 𝜒𝛿(𝑧)

)︀
𝑢𝛿,2(𝑥, 𝑧) + 𝜒𝛿(𝑧)𝑈𝛿,2(𝑥, 𝑧) (𝑥, 𝑧) ∈ Ω.

Let us remark that 𝑈𝛿,2(𝑥, 𝑧) is actually defined only for |𝑧| ≤ 2𝛿. However, any smooth extension can be
used to define properly ̃︀𝑢𝛿. In fact, since in this definition 𝑈𝛿,2 appears multiplied by 𝜒𝛿, which vanishes for
|𝑧| ≥ 2𝛿, ̃︀𝑢𝛿 does not depend on the particular extension (which we still denote 𝑈𝛿,2). Moreover, according to
Assumption 3.2, 𝜒𝛿𝑈𝛿,2 ∈ 𝐻1

𝛼(Ω).
In general, 𝑢𝛿,2 does not lie in 𝐻1

𝛼(Ω), but
(︀
1− 𝜒𝛿

)︀
𝑢𝛿,2 does. In fact, in spite of the fact that 𝑢𝛿,2 may have

a jump on Γ, this does not affect the smoothness of
(︀
1− 𝜒𝛿

)︀
𝑢𝛿,2 since

(︀
1− 𝜒𝛿

)︀
vanishes for |𝑧| ≤ 𝛿. Moreover,

according to Assumption 3.1,
(︀
1− 𝜒𝛿

)︀
𝑢𝛿,2 is infinitely differentiable in the whole of Ω.

Since in what follows we will have to deal with functions like 𝑢𝛿,2 that are smooth in Ω+ and Ω− but not in
Ω, from now on we will use the following notation:

∫︀
Ω±

𝑓±(𝑥, 𝑧) d𝑥 d𝑧 =
∫︀
Ω+ 𝑓+(𝑥, 𝑧) d𝑥 d𝑧 +

∫︀
Ω−

𝑓+(𝑥, 𝑧) d𝑥 d𝑧
and

∫︀
Γ±

𝑔±(𝑥) d𝑥 =
∫︀
Γ+ 𝑔+(𝑥) d𝑥 +

∫︀
Γ−

𝑔+(𝑥) d𝑥.
Now, since from Assumption 2.1 we have the stability estimate

‖𝑢− ̃︀𝑢𝛿‖𝐻1(Ω) ≤ 𝐶 sup
𝑣∈𝐻1

𝛼(Ω)
𝑣 ̸=0

|𝑎(𝑢− ̃︀𝑢𝛿, 𝑣)|
‖𝑣‖𝐻1(Ω)

, (4.4)

our next goal is to find a bound for the right-hand side.

Lemma 4.1. For all 𝑣 ∈ 𝐻1
𝛼(Ω),

𝑎(𝑢− ̃︀𝑢𝛿, 𝑣) = 𝜀𝑚
𝛿 (𝑣) + 𝜀𝑐

𝛿(𝑣), (4.5)

where
𝜀𝑚

𝛿 (𝑣) :=
∫︁

𝐶𝛿

𝐵 (𝑢𝛿,2 − 𝑈𝛿,2)∇𝜒𝛿 · ∇𝑣 d𝑥 d𝑧 −
∫︁

𝐶𝛿

𝐵∇(𝑢𝛿,2 − 𝑈𝛿,2) · ∇𝜒𝛿 𝑣 d𝑥 d𝑧 (4.6)

and
𝜀𝑐

𝛿(𝑣) := −𝑎(𝑈𝛿,2, 𝜒
𝛿𝑣). (4.7)

Terms 𝜀𝑚
𝛿 (𝑣) and 𝜀𝑐

𝛿(𝑣) are called the matching error and the consistency error, respectively.

Proof. Taking into account the definition of ̃︀𝑢𝛿 and (2.7), for all 𝑣 ∈ 𝐻1
𝛼(Ω) we have that

𝑎(𝑢− ̃︀𝑢𝛿, 𝑣) = 𝐿(𝑣)− 𝑎
(︀(︀

1− 𝜒𝛿
)︀
𝑢𝛿,2, 𝑣

)︀
− 𝑎

(︀
𝜒𝛿𝑈𝛿,2, 𝑣

)︀
. (4.8)

For the second term on the right-hand side, the definition of 𝑎(·, ·) and straightforward computations lead to

𝑎
(︀(︀

1− 𝜒𝛿
)︀
𝑢𝛿,2, 𝑣

)︀
=
∫︁

Ω±

{︀
𝐵±∇

(︀(︀
1− 𝜒𝛿

)︀
𝑢𝛿,2

)︀
· ∇𝑣 − 𝑘2

0𝑏
± (︀1− 𝜒𝛿

)︀
𝑢𝛿,2 𝑣

}︀
d𝑥 d𝑧 −

∫︁
Γ±

(︀
𝑇±
(︀(︀

1− 𝜒𝛿
)︀
𝑢𝛿,2

)︀)︀
𝑣 d𝑥

=
∫︁

Ω±
𝐵±𝑢𝛿,2∇

(︀
1− 𝜒𝛿

)︀
· ∇𝑣 d𝑥 d𝑧 −

∫︁
Ω±

𝐵±∇𝑢𝛿,2 · ∇
(︀
1− 𝜒𝛿

)︀
𝑣 d𝑥 d𝑧

+
∫︁

Ω±

{︀
𝐵±∇𝑢𝛿,2 · ∇

(︀(︀
1− 𝜒𝛿

)︀
𝑣
)︀
− 𝑘2

0𝑏
±𝑢𝛿,2

(︀
1− 𝜒𝛿

)︀
𝑣
}︀

d𝑥 d𝑧 −
∫︁

Γ±

(︀
𝑇±𝑢𝛿,2

)︀ (︀
1− 𝜒𝛿

)︀
𝑣 d𝑥. (4.9)

Now, multiplying the first equation in (3.2) by
(︀
1− 𝜒𝛿

)︀
, integrating by parts separately in Ω+ and Ω− and

using the boundary conditions from (3.2), we obtain∫︁
Ω±

{︀
𝐵±∇𝑢𝛿,2 · ∇

(︀(︀
1− 𝜒𝛿

)︀
𝑣
)︀
− 𝑘2

0𝑏
±𝑢𝛿,2

(︀
1− 𝜒𝛿

)︀
𝑣
}︀

d𝑥 d𝑧 −
∫︁

Γ±

(︀
𝑇±𝑢𝛿,2

)︀ (︀
1− 𝜒𝛿

)︀
𝑣 d𝑥

=
∫︁

Γ+

(︂
𝐵+ 𝜕𝑢inc

𝜕𝑧
− 𝑇+𝑢inc

)︂(︀
1− 𝜒𝛿

)︀
𝑣 d𝑥 = 𝐿(𝑣).
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Let us emphasize that in spite of the fact that 𝐵±∇𝑢𝛿,2 is in general discontinuous on Γ, no jump across this
curve appears from the integration by parts because

(︀
1− 𝜒𝛿

)︀
vanishes for |𝑧| ≤ 𝛿 and thus on Γ.

Then, substituting the above equation into (4.9) we have that

𝑎
(︀(︀

1− 𝜒𝛿
)︀
𝑢𝛿,2, 𝑣

)︀
=
∫︁

Ω±
𝐵±𝑢𝛿,2∇

(︀
1− 𝜒𝛿

)︀
· ∇𝑣 d𝑥 d𝑧 −

∫︁
Ω±

𝐵±∇𝑢𝛿,2 · ∇
(︀
1− 𝜒𝛿

)︀
𝑣 d𝑥 d𝑧 + 𝐿(𝑣).

Next, computations similar to those that lead to (4.9) yield

𝑎
(︀
𝜒𝛿𝑈𝛿,2, 𝑣

)︀
= 𝑎

(︀
𝑈𝛿,2, 𝜒

𝛿𝑣
)︀

+
∫︁

Ω±
𝐵±𝑈𝛿,2∇𝜒𝛿 · ∇𝑣 d𝑥 d𝑧 −

∫︁
Ω±

𝐵±∇𝑈𝛿,2 · ∇𝜒𝛿𝑣 d𝑥 d𝑧.

Finally, substituting the last two equations into (4.8) we obtain

𝑎(𝑢− ̃︀𝑢𝛿, 𝑣) =
∫︁

Ω±
𝐵± (𝑢𝛿,2 − 𝑈𝛿,2)∇𝜒𝛿 · ∇𝑣 d𝑥 d𝑧 −

∫︁
Ω±

𝐵±∇ (𝑢𝛿,2 − 𝑈𝛿,2) · ∇𝜒𝛿𝑣 d𝑥 d𝑧 − 𝑎
(︀
𝑈𝛿,2, 𝜒

𝛿𝑣
)︀
.

Since ∇𝜒𝛿 vanishes out of 𝐶𝛿, the above equation and definitions (4.6) and (4.7) allow us to end the proof. �

The following estimates are similar to those used in [8]. For the sake of completeness, we include the corre-
sponding proofs.

Lemma 4.2. Let 𝑂𝛿 := {(𝑥, 𝑧) ∈ Ω : |𝑧| ≤ 2𝛿}. Then, for all 𝑣 ∈ 𝐻1
𝛼(Ω),

‖𝑣‖𝐿2(𝑂𝛿) ≤ 𝐶
√

𝛿 ‖𝑣‖𝐻1(Ω) ,

‖𝑣‖𝐿1(𝑂𝛿) ≤ 𝐶𝛿 ‖𝑣‖𝐻1(Ω) ,

‖∇𝑣‖𝐿1(𝑂𝛿) ≤ 𝐶
√

𝛿 ‖𝑣‖𝐻1(Ω) .

Proof. We use a density argument. For 𝑣 smooth enough we write

𝑣(𝑥, 𝑧) = 𝑣(𝑥, 0) +
∫︁ 𝑧

0

𝜕𝑣

𝜕𝑧
(𝑥, 𝑡) d𝑡 ∀(𝑥, 𝑧) ∈ 𝑂𝛿.

Then, ∫︁
𝑂𝛿

|𝑣(𝑥, 𝑧)|2 d𝑥 d𝑧 ≤ 2
∫︁

𝑂𝛿

|𝑣(𝑥, 0)|2 d𝑥 d𝑧 + 2
∫︁

𝑂𝛿

⃒⃒⃒⃒
⃒
∫︁ 𝑧

0

⃒⃒⃒⃒
𝜕𝑣

𝜕𝑧
(𝑥, 𝑡)

⃒⃒⃒⃒2
d𝑡

⃒⃒⃒⃒
⃒d𝑥 d𝑧.

For the first term we have∫︁
𝑂𝛿

|𝑣(𝑥, 0)|2 d𝑥 d𝑧 = 4𝛿

∫︁ 𝐿

0

|𝑣(𝑥, 0)|2 d𝑥 = 4𝛿 ‖𝑣‖2𝐿2(Γ) ≤ 𝐶𝛿 ‖𝑣‖2𝐻1(Ω)

and for the second one∫︁
𝑂𝛿

⃒⃒⃒⃒
⃒
∫︁ 𝑧

0

⃒⃒⃒⃒
𝜕𝑣

𝜕𝑧
(𝑥, 𝑡)

⃒⃒⃒⃒2
d𝑡

⃒⃒⃒⃒
⃒d𝑥 d𝑧 ≤ 4𝛿

∫︁ 𝐿

0

(︃∫︁ 2𝛿

−2𝛿

⃒⃒⃒⃒
𝜕𝑣

𝜕𝑧
(𝑥, 𝑡)

⃒⃒⃒⃒2
d𝑡

)︃
d𝑥 ≤ 𝐶𝛿 ‖𝑣‖2𝐻1(Ω) .

Thus, the first estimate of the lemma follows from the last three inequalities.
The second estimate follows from Cauchy–Schwarz inequality and the previous one. The last one follows from

Cauchy–Schwarz inequality. �

For the matching error we have the following estimate.
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Lemma 4.3. For all 𝑣 ∈ 𝐻1
𝛼(Ω),

𝜀𝑚
𝛿 (𝑣) ≤ 𝐶𝛿2 ‖𝑣‖𝐻1(Ω) .

Proof. Let 𝑣 ∈ 𝐻1
𝛼(Ω). The far field terms 𝑢𝑛 and the near field terms 𝑈𝛿

𝑛 have been assumed to lie in 𝒞∞(𝐶𝛿)
(cf. Assumptions 3.1 and 3.2). Then, from the definition (4.6) of 𝜀𝑚

𝛿 (𝑣) and Hölder inequality, since 𝜒𝛿 does not
depend on 𝑥 and the support of its gradient is contained in 𝐶𝛿, we have that

|𝜀𝑚
𝛿 (𝑣)| ≤ ‖𝐵‖𝐿∞(Ω)

⃦⃦
∇𝜒𝛿

⃦⃦
𝐿∞(R)

{︃⃦⃦⃦⃦
𝜕𝑣

𝜕𝑧

⃦⃦⃦⃦
𝐿1(𝐶𝛿)

‖𝑢𝛿,2 − 𝑈𝛿,2‖𝐿∞(𝐶𝛿) +
⃦⃦⃦⃦

𝜕

𝜕𝑧
(𝑢𝛿,2 − 𝑈𝛿,2)

⃦⃦⃦⃦
𝐿∞(𝐶𝛿)

‖𝑣‖𝐿1(𝐶𝛿)

}︃
.

(4.10)
In what follows, we estimate each of the terms on the right-hand side above.

– For the cut-off function, since ∇𝜒𝛿 = 1
𝛿∇𝜒, we have

⃦⃦
∇𝜒𝛿

⃦⃦
𝐿∞(R)

=
1
𝛿
‖∇𝜒‖𝐿∞(R) ≤

𝐶

𝛿
· (4.11)

– To estimate ‖𝑢𝛿,2 − 𝑈𝛿,2‖𝐿∞(𝐶𝛿), for the far field approximation 𝑢𝛿,2, we use Taylor’s formula with integral
remainder for each 𝑢±𝑛 , 𝑛 = 0, 1, 2. Then, from (4.2) we have

𝑢𝛿,2(𝑥, 𝑧) =
2∑︁

𝑛=0

𝛿𝑛

{︃
2−𝑛∑︁
𝑖=0

𝑧𝑖

𝑖!
𝜕𝑖𝑢±𝑛
𝜕𝑧𝑖

(𝑥, 0) +
∫︁ 𝑧

0

𝜕3−𝑛𝑢±𝑛
𝜕𝑧3−𝑛

(𝑥, 𝑡)
(𝑧 − 𝑡)2−𝑛

(2− 𝑛)!
d𝑡

}︃
. (4.12)

For the near field, from (3.7) and the matching conditions (3.8), in the overlapping zones we have

𝑈𝛿
𝑛(𝑥, 𝑧) =

𝑛∑︁
𝑖=0

𝑧𝑖

𝛿𝑖𝑖!
𝜕𝑖𝑢±𝑛−𝑖

𝜕𝑧𝑖
(𝑥, 0).

Hence, from (4.3),

𝑈𝛿,2(𝑥, 𝑧) =
2∑︁

𝑛=0

𝛿𝑛

(︃
𝑛∑︁

𝑖=0

𝑧𝑖

𝛿𝑖𝑖!
𝜕𝑖𝑢±𝑛−𝑖

𝜕𝑧𝑖
(𝑥, 0)

)︃
=

2∑︁
𝑛=0

𝑛∑︁
𝑖=0

𝛿𝑛−𝑖 𝑧
𝑖

𝑖!
𝜕𝑖𝑢±𝑛−𝑖

𝜕𝑧𝑖
(𝑥, 0) (4.13)

=
2∑︁

𝑖=0

2∑︁
𝑛=𝑖

𝛿𝑛−𝑖 𝑧
𝑖

𝑖!
𝜕𝑖𝑢±𝑛−𝑖

𝜕𝑧𝑖
(𝑥, 0) =

2∑︁
𝑖=0

2−𝑖∑︁
𝑗=0

𝛿𝑗 𝑧𝑖

𝑖!
𝜕𝑖𝑢±𝑗
𝜕𝑧𝑖

(𝑥, 0) =
2∑︁

𝑗=0

2−𝑗∑︁
𝑖=0

𝛿𝑗 𝑧𝑖

𝑖!
𝜕𝑖𝑢±𝑗
𝜕𝑧𝑖

(𝑥, 0).

Then, subtracting (4.13) from (4.12), we obtain

𝑢𝛿,2(𝑥, 𝑧)− 𝑈𝛿,2(𝑥, 𝑧) =
2∑︁

𝑛=0

𝛿𝑛

∫︁ 𝑧

0

𝜕3−𝑛𝑢±𝑛
𝜕𝑧3−𝑛

(𝑥, 𝑡)
(𝑧 − 𝑡)2−𝑛

(2− 𝑛)!
d𝑡. (4.14)

Now, since the far field terms and their derivatives are bounded in 𝐶𝛿 (cf. Assumption 3.1), we estimate the
integral above as follows: ⃒⃒⃒⃒∫︁ 𝑧

0

𝜕3−𝑛𝑢±𝑛
𝜕𝑧3−𝑛

(𝑥, 𝑡)
(𝑧 − 𝑡)2−𝑛

(2− 𝑛)!
d𝑡

⃒⃒⃒⃒
≤ 𝐶𝛿3−𝑛 ∀(𝑥, 𝑧) ∈ 𝐶𝛿.

Then,
‖𝑢𝛿,2 − 𝑈𝛿,2‖𝐿∞(𝐶𝛿) ≤ 𝐶𝛿3. (4.15)
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– For
⃦⃦

𝜕
𝜕𝑧 (𝑢𝛿,2 − 𝑈𝛿,2)

⃦⃦
𝐿∞(𝐶𝛿)

, differentiating (4.14) with respect to 𝑧 we have

𝜕𝑢𝛿,2

𝜕𝑧
(𝑥, 𝑧)− 𝜕𝑈𝛿,2

𝜕𝑧
(𝑥, 𝑧) =

1∑︁
𝑛=0

𝛿𝑛

∫︁ 𝑧

0

𝜕3−𝑛𝑢±𝑛
𝜕𝑧3−𝑛

(𝑥, 𝑡)
(𝑧 − 𝑡)1−𝑛

(1− 𝑛)!
d𝑡.

Since the far field terms and their derivatives are bounded in 𝐶𝛿, we estimate the integral as follows:⃒⃒⃒⃒∫︁ 𝑧

0

𝜕3−𝑛𝑢±𝑛 (𝑥, 𝑡)
𝜕𝑧3−𝑛

(𝑧 − 𝑡)1−𝑛

(1− 𝑛)!
d𝑡

⃒⃒⃒⃒
≤ 𝐶𝛿2−𝑛 ∀(𝑥, 𝑧) ∈ 𝐶𝛿.

Therefore, ⃦⃦⃦⃦
𝜕(𝑢𝛿,2 − 𝑈𝛿,2)

𝜕𝑧

⃦⃦⃦⃦
𝐿∞(𝐶𝛿)

≤ 𝐶𝛿2. (4.16)

Finally, using (4.11), (4.15), (4.16) and Lemma 4.2 to estimate all terms in (4.10), we conclude the
proof. �

For the consistency error (4.7), we have the following estimate.

Lemma 4.4. For all 𝑣 ∈ 𝐻1
𝛼(Ω),

|𝜀𝑐
𝛿(𝑣)| ≤ 𝐶𝛿2 ‖𝑣‖𝐻1(Ω) .

Proof. Integrating by parts and using the quasi-periodic character of 𝑈𝛿,2 and 𝑣 and the fact that the support
of 𝜒𝛿 is contained in 𝑂𝛿, we have that

𝜀𝑐
𝛿(𝑣) = −

∫︁
Ω

(︀
𝐵∇𝑈𝛿,2 · ∇(𝜒𝛿𝑣)− 𝑘2

0𝑏𝑈𝛿,2𝜒
𝛿𝑣
)︀

d𝑥 d𝑧 =
∫︁

𝑂𝛿

(︀
∇ · (𝐵∇𝑈𝛿,2) + 𝑘2

0𝑏𝑈𝛿,2

)︀
𝜒𝛿𝑣 d𝑥 d𝑧.

Now, recalling the definition (4.3) and using (3.4) with 𝜉 = 𝑧
𝛿 and the first equation from (3.5), we obtain

∇ · (𝐵(𝑥, 𝑧)∇𝑈𝛿,2(𝑥, 𝑧)) + 𝑘2
0𝑏(𝑥, 𝑧)𝑈𝛿,2(𝑥, 𝑧)

=
1
𝛿2

𝜕

𝜕𝜉

(︂
𝐵(𝑥, 𝛿𝜉)

𝜕𝑈0

𝜕𝜉
(𝑥, 𝜉)

)︂
+

1
𝛿

𝜕

𝜕𝜉

(︂
𝐵(𝑥, 𝛿𝜉)

𝜕𝑈1

𝜕𝜉
(𝑥, 𝜉)

)︂
+

𝜕

𝜕𝜉

(︂
𝐵(𝑥, 𝛿𝜉)

𝜕𝑈2

𝜕𝜉
(𝑥, 𝜉)

)︂
+

𝜕

𝜕𝑥

(︂
𝐵(𝑥, 𝛿𝜉)

𝜕𝑈0

𝜕𝑥
(𝑥, 𝜉)

)︂
+ 𝑘2

0𝑏(𝑥, 𝛿𝜉)𝑈0(𝑥, 𝜉) + 𝛿

(︂
𝜕

𝜕𝑥

(︂
𝐵(𝑥, 𝛿𝜉)

𝜕𝑈1

𝜕𝑥
(𝑥, 𝜉)

)︂
+ 𝑘2

0𝑏(𝑥, 𝛿𝜉)𝑈1(𝑥, 𝜉)
)︂

+ 𝛿2

(︂
𝜕

𝜕𝑥

(︂
𝐵(𝑥, 𝛿𝜉)

𝜕𝑈2

𝜕𝑥
(𝑥, 𝜉)

)︂
+ 𝑘2

0𝑏(𝑥, 𝛿𝜉)𝑈2(𝑥, 𝜉)
)︂

= 𝛿

(︂
𝜕

𝜕𝑥

(︂
𝐵(𝑥, 𝑧)

𝜕𝑈𝛿
1

𝜕𝑥
(𝑥, 𝑧)

)︂
+ 𝑘2

0𝑏(𝑥, 𝑧)𝑈𝛿
1 (𝑥, 𝑧)

)︂
+ 𝛿2

(︂
𝜕

𝜕𝑥

(︂
𝐵(𝑥, 𝑧)

𝜕𝑈𝛿
2

𝜕𝑥
(𝑥, 𝑧)

)︂
+ 𝑘2

0𝑏(𝑥, 𝑧)𝑈𝛿
2 (𝑥, 𝑧)

)︂
.

Then,
𝜀𝑐

𝛿(𝑣) = 𝛿𝜀𝑐,1
𝛿 (𝑣) + 𝛿2𝜀𝑐,2

𝛿 (𝑣), (4.17)

where

𝜀𝑐,𝑖
𝛿 (𝑣) :=

∫︁
𝑂𝛿

(︂
𝜕

𝜕𝑥

(︂
𝐵

𝜕𝑈𝛿
𝑖

𝜕𝑥

)︂
+ 𝑘2

0𝑏𝑈
𝛿
𝑖

)︂
𝜒𝛿𝑣 d𝑥 d𝑧, 𝑖 = 1, 2.

From (2.3) (for the 𝑠-polarization) or (2.4) (for the 𝑝-polarization) combined with the additional assumption
that 𝜀𝑔

𝑟(𝑥) is infinitely differentiable in [0, 𝐿[, we have that the 𝑥-derivative of 𝐵 is bounded in Ω. So are the
𝑥-derivatives of 𝑈𝛿

𝑖 too (cf. Lem. A.1 in the appendix). Then,

|𝜀𝑐,𝑖
𝛿 (𝑣)| ≤ 𝐶 ‖𝑣‖𝐿1(𝑂𝛿) ≤ 𝐶𝛿 ‖𝑣‖𝐻1(Ω) , 𝑖 = 1, 2,

where we have used Lemma 4.2 for the last inequality. Hence, the lemma follows from (4.17). �



S522 P.B. MONK ET AL.

Now, we are in a position to write the main approximation result of the paper.

Theorem 4.5. Let 𝑢 be the solution of problem (2.7) and 𝑢𝛿,1 its far field approximation (4.1). Then, given
𝛾 > 0, there exist a constant 𝐶 > 0 such that for all 𝛿 < 𝛾

2 ,

‖𝑢− 𝑢𝛿,1‖𝐻1(̂︀Ω𝛾) ≤ 𝐶𝛿2,

where ̂︀Ω𝛾 := {(𝑥, 𝑧) ∈ Ω : |𝑧| > 𝛾}.

Proof. From (4.4) and Lemmas 4.1, 4.3 and 4.4, we write

‖𝑢− ̃︀𝑢𝛿‖𝐻1(Ω) ≤ 𝐶 sup
𝑣∈𝐻1

𝛼(Ω)
𝑣 ̸=0

|𝑎(𝑢− ̃︀𝑢𝛿, 𝑣)|
‖𝑣‖𝐻1(Ω)

≤ 𝐶 sup
𝑣∈𝐻1

𝛼(Ω)
𝑣 ̸=0

|𝜀𝑚
𝛿 (𝑣)|+ |𝜀𝑐

𝛿(𝑣)|
‖𝑣‖𝐻1(Ω)

≤ 𝐶𝛿2.

Now, given 𝛾 > 0, for all 𝛿 < 𝛾
2 , ̃︀𝑢𝛿 = 𝑢𝛿,2 in ̂︀Ω𝛾 . Then, from the definition (4.2) of 𝑢𝛿,2 and using that

𝑢±𝑛 ∈ 𝐻1
𝛼(Ω±𝛿 ) (cf. Assumption 3.1), we have that

‖̃︀𝑢𝛿 − 𝑢𝛿,1‖𝐻1(̂︀Ω𝛾) ≤ 𝛿2
⃦⃦
𝑢+

2

⃦⃦
𝐻1(Ω+)

+ 𝛿2
⃦⃦
𝑢−2
⃦⃦

𝐻1(Ω−)
≤ 𝐶𝛿2

and, hence,

‖𝑢− 𝑢𝛿,1‖𝐻1(̂︀Ω𝛾) ≤ ‖𝑢− ̃︀𝑢𝛿‖𝐻1(̂︀Ω𝛾) + ‖̃︀𝑢𝛿 − 𝑢𝛿,1‖𝐻1(̂︀Ω𝛾) ≤ 𝐶𝛿2.

�

5. Implementation

In order to avoid solving separately problems (3.10) and (3.11), it is possible to approximate directly 𝑢𝛿,1 =
𝑢0 + 𝛿𝑢1 up to 𝛿2-terms. With this purpose, we use equations (3.9) to write

[𝑢𝛿,1] = [𝑢0] + 𝛿 [𝑢1] = 𝛿

(︂
1

𝐵𝑔(𝑥)
−
⟨

1
𝐵

⟩)︂⟨
𝐵

𝜕𝑢𝛿,1

𝜕𝑧

⟩
− 𝛿2

(︂
1

𝐵𝑔(𝑥)
−
⟨

1
𝐵

⟩)︂⟨
𝐵

𝜕𝑢1

𝜕𝑧

⟩
and [︂

𝐵
𝜕𝑢𝛿,1

𝜕𝑧

]︂
=
[︂
𝐵

𝜕𝑢0

𝜕𝑧

]︂
+ 𝛿

[︂
𝐵

𝜕𝑢1

𝜕𝑧

]︂
=− 𝛿

{︂
𝜕

𝜕𝑥

(︂
(𝐵𝑔(𝑥)− ⟨𝐵⟩) 𝜕

𝜕𝑥

)︂
+ 𝑘2

0 (𝑏𝑔(𝑥)− ⟨𝑏⟩)
}︂
⟨𝑢𝛿,1⟩

+ 𝛿2

{︂
𝜕

𝜕𝑥

(︂
((𝐵𝑔(𝑥)− ⟨𝐵⟩) 𝜕

𝜕𝑥

)︂
+ 𝑘2

0 (𝑏𝑔(𝑥)− ⟨𝑏⟩)
}︂
⟨𝑢1⟩ .

Since 𝑢±0 and 𝑢±1 satisfy (3.2), so does 𝑢±0 + 𝛿𝑢±1 . To obtain a well posed problem we must complement these
equations with appropriate jump conditions on Γ. With this end, we use the two above equations, neglecting
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the 𝛿2 terms. Therefore, we are led to the following alternative problem, whose solution we denote by ̂︀𝑢±𝛿,1:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇ ·
(︁
𝐵±∇̂︀𝑢±𝛿,1(𝑥, 𝑧)

)︁
+ 𝑘2

0𝑏
±̂︀𝑢±𝛿,1(𝑥, 𝑧) = 0 in Ω±,

[̂︀𝑢𝛿,1] (𝑥) = 𝛿

(︂
1

𝐵𝑔(𝑥)
−
⟨

1
𝐵

⟩)︂⟨
𝐵

𝜕̂︀𝑢𝛿,1

𝜕𝑧

⟩
(𝑥) on Γ,[︂

𝐵
𝜕𝑢1

𝜕𝑧

]︂
(𝑥) = −𝛿

𝜕

𝜕𝑥

(︂
(𝐵𝑔(𝑥)− ⟨𝐵⟩) 𝜕 ⟨̂︀𝑢𝛿,1⟩

𝜕𝑥
(𝑥)
)︂
− 𝛿𝑘2

0 (𝑏𝑔(𝑥)− ⟨𝑏⟩) ⟨̂︀𝑢𝛿,1⟩ (𝑥) on Γ,

̂︀𝑢±𝛿,1(𝐿, 𝑧) = 𝑒𝑖𝛼𝐿̂︀𝑢±𝛿,1(0, 𝑧) 𝑧 ∈ (−𝐿𝑚, 𝐿𝑑) ,

𝜕̂︀𝑢±𝛿,1
𝜕𝑥

(𝐿, 𝑧) = 𝑒𝑖𝛼𝐿
𝜕̂︀𝑢±𝛿,1
𝜕𝑥

(𝐿, 𝑧) 𝑧 ∈ (−𝐿𝑚, 𝐿𝑑) ,

𝐵− 𝜕̂︀𝑢−𝛿,1
𝜕𝑧

(𝑥, 𝑧) = 𝑇−̂︀𝑢−𝛿,1(𝑥, 𝑧) on Γ−,

𝐵+
𝜕̂︀𝑢+

𝛿,1

𝜕𝑧
(𝑥, 𝑧)−𝐵+ 𝜕𝑢inc

𝜕𝑧
(𝑥, 𝑧) = 𝑇+(̂︀𝑢+

𝛿,1(𝑥, 𝑧)− 𝑢inc(𝑥, 𝑧)) on Γ+.

(5.1)

5.1. Variational formulation

To implement a FEM for this asymptotic model, we need a variational formulation of problem (5.1). With
this end in mind, consider the Hilbert space

𝑉 :=
{︀
𝑣 ∈ 𝐿2(Ω) : 𝑣− ∈ 𝐻1

𝛼(Ω−), 𝑣+ ∈ 𝐻1
𝛼(Ω+) and ⟨𝑣⟩ ∈ 𝐻1

𝛼(Γ)
}︀

endowed with the norm defined by

‖𝑣‖2𝑉 := ‖𝑣‖2𝐻1(Ω−) + ‖𝑣‖2𝐻1(Ω+) + ‖⟨𝑣⟩‖2𝐻1(Γ) .

Multiplying the first equation in (5.1) by 𝑣 ∈ 𝑉 and integrating by parts, we obtain

∫︁
Ω±

(︁
𝐵±∇̂︀𝑢±𝛿,1 · ∇𝑣± − 𝑘2

0𝑏
±̂︀𝑢±𝛿,1𝑣±)︁ d𝑥 d𝑧 +

∫︁
𝜕Ω+

𝐵+
𝜕̂︀𝑢+

𝛿,1

𝜕𝑛
𝑣 + d𝑠 +

∫︁
𝜕Ω−

𝐵− 𝜕̂︀𝑢−𝛿,1
𝜕𝑛

𝑣− d𝑠 = 0.

Because of the quasi-periodic character of 𝑣, the integrals on 𝜕Ω± reduce to Γ and Γ±. For the former we have

∫︁
Γ

𝐵+
𝜕̂︀𝑢+

𝛿,1

𝜕𝑧
𝑣 +d𝑥−

∫︁
Γ

𝐵− 𝜕̂︀𝑢−𝛿,1
𝜕𝑧

𝑣−d𝑥 =
∫︁

Γ

[︂
𝐵

𝜕̂︀𝑢𝛿,1

𝜕𝑧
𝑣

]︂
d𝑥 =

∫︁
Γ

[︂
𝐵

𝜕̂︀𝑢𝛿,1

𝜕𝑧

]︂
⟨𝑣⟩d𝑥 +

∫︁
Γ

⟨
𝐵

𝜕̂︀𝑢𝛿,1

𝜕𝑧

⟩
[𝑣] d𝑥.

For the second term on the right-hand side above, using the second equation from (5.1) we have that

⟨
𝐵

𝜕̂︀𝑢𝛿,1

𝜕𝑧

⟩
(𝑥) =

1
𝛿

(︂
1

𝐵𝑔(𝑥)
−
⟨

1
𝐵

⟩)︂−1

[̂︀𝑢𝛿,1] (𝑥), (5.2)
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provided 1
𝐵𝑔(𝑥) ̸=

⟨︀
1
𝐵

⟩︀
. Then, using the third equation from (5.1) and integrating by parts yield

∫︁
Γ

𝐵+
𝜕̂︀𝑢+

𝛿,1

𝜕𝑧
𝑣 +d𝑥−

∫︁
Γ

𝐵− 𝜕̂︀𝑢−𝛿,1
𝜕𝑧

𝑣−d𝑥

= −𝛿

∫︁
Γ

𝜕

𝜕𝑥

(︂
(𝐵𝑔(𝑥)− ⟨𝐵⟩) 𝜕 ⟨̂︀𝑢𝛿,1⟩

𝜕𝑥

)︂
⟨𝑣⟩d𝑥− 𝛿𝑘2

0

∫︁
Γ

(𝑏𝑔(𝑥)− ⟨𝑏⟩) ⟨̂︀𝑢𝛿,1⟩ ⟨𝑣⟩d𝑥

+
1
𝛿

∫︁
Γ

(︂
1

𝐵𝑔(𝑥)
−
⟨

1
𝐵

⟩)︂−1

[̂︀𝑢𝛿,1] [𝑣] d𝑥,

= 𝛿

∫︁
Γ

(𝐵𝑔(𝑥)− ⟨𝐵⟩) 𝜕 ⟨̂︀𝑢𝛿,1⟩
𝜕𝑥

𝜕 ⟨𝑣⟩
𝜕𝑥

d𝑥− 𝛿𝑘2
0

∫︁
Γ

(𝑏𝑔(𝑥)− ⟨𝑏⟩) ⟨̂︀𝑢𝛿,1⟩ ⟨𝑣⟩d𝑥

+
1
𝛿

∫︁
Γ

(︂
1

𝐵𝑔(𝑥)
−
⟨

1
𝐵

⟩)︂−1

[̂︀𝑢𝛿,1] [𝑣] d𝑥.

For the integrals on Γ+ and Γ−, we proceed as we did to derive (2.7) and we arrive at similar terms. Therefore,
all together, we are led to the following weak form of problem (5.1): Find ̂︀𝑢𝛿,1 ∈ 𝑉 such that

̂︀𝑎(̂︀𝑢𝛿,1, 𝑣) = 𝐿(𝑣) ∀𝑣 ∈ 𝑉, (5.3)

where the sesquilinear form ̂︀𝑎(·, ·) is defined for all 𝑤, 𝑣 ∈ 𝑉 by

̂︀𝑎(𝑤, 𝑣) :=
∫︁

Ω±

(︀
𝐵±∇𝑤± · ∇𝑣± − 𝑘2

0𝑏
±𝑤±𝑣±

)︀
d𝑥 d𝑧 + 𝛿

∫︁
Γ

(𝐵𝑔(𝑥)− ⟨𝐵⟩) 𝜕 ⟨𝑤⟩
𝜕𝑥

𝜕 ⟨𝑣⟩
𝜕𝑥

d𝑥

− 𝛿𝑘2
0

∫︁
Γ

(𝑏𝑔(𝑥)− ⟨𝑏⟩) ⟨𝑤⟩ ⟨𝑣⟩d𝑥 +
1
𝛿

∫︁
Γ

(︂
1

𝐵𝑔(𝑥)
−
⟨

1
𝐵

⟩)︂−1

[𝑤] [𝑣] d𝑥−
∫︁

Γ±

(︀
𝑇±𝑤±

)︀
𝑣±d𝑥

and the linear functional 𝐿 is the same as in (2.8)
Let us remark that equation (5.2) only makes sense provided 1

𝐵𝑔(𝑥) ̸=
⟨︀

1
𝐵

⟩︀
. In case that this term vanishes

identically, the second equation from (5.1) implies that [̂︀𝑢𝛿,1] ≡ 0 on Γ and this condition should be imposed on
the trial and test functions. Therefore, in such a case, the space 𝑉 must be replaced by

̃︀𝑉 :=
{︀
𝑣 ∈ 𝐻1

𝛼(Ω) : 𝑣|Γ ∈ 𝐻1
𝛼(Γ)

}︀
.

In particular, this happens for the 𝑠-polarization, when 𝐵𝑔(𝑥) = 𝐵+ = 𝐵− = 1. In such a case, substituting 𝐵

and 𝑏 in terms of the physical parameters, we are led to the following problem: Find ̂︀𝑢𝛿,1 ∈ ̃︀𝑉 such that

̂︀𝑎𝑠(̂︀𝑢𝛿,1, 𝑣) = 𝐿(𝑣) ∀𝑣 ∈ ̃︀𝑉 , (5.4)

where

̂︀𝑎𝑠(𝑤, 𝑣) :=
∫︁

Ω±

(︀
∇𝑤± · ∇𝑣± − 𝑘2

0𝜀
±
𝑟 𝑤±𝑣±

)︀
d𝑥 d𝑧 − 𝛿𝑘2

0

∫︁
Γ

(𝜀𝑔
𝑟 − ⟨𝜀𝑟⟩) 𝑤𝑣 d𝑥−

∫︁
Γ±

(︀
𝑇±𝑤±

)︀
𝑣± d𝑥, 𝑤, 𝑣 ∈ ̃︀𝑉 .

We finish this section by mentioning that, in general, it is not possible to ensure that the variational formu-
lations (5.3) and (5.4) are wellposed. In some situations, the properties of the electric permittivity leads to an
elliptic bilinear form, whereas in other cases, the bilinear form is indefinite and wellposedeness holds only up to
a sequence of countable frequencies.
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6. Numerical examples

In this section, we report the results of two numerical tests, to demonstrate numerically the convergence
properties of the asymptotic model. We have solved problem (5.3) using standard Lagrange FEM with third-
degree polynomials. For the Dirichlet-to-Neumann operators 𝑇+ and 𝑇−, we have used a truncated Fourier
expansion approach similar to that in [23].

In the examples that follow, we focus on the convergence of the asymptotic model at a fixed wavelength
𝜆0 = 450 nm. For all examples, we have fixed 𝐿 = 400 nm, 𝐿𝑑 = 131.25 nm, and 𝐿𝑚 = 56.25 nm. We have
chosen values of 𝛿 between 12.5 nm and 6.103125e−03 nm, namely, between 6.67% and 0.003255% of the total
height 𝐿𝑚 + 𝐿𝑑 = 187.5 nm.

We have fixed the angle of incidence to 𝜃 = 0, since most solar cells are illuminated normally to maximize
photonic absorption. The physical parameters have been taken as in [23], where further details can be found:
𝜀+

𝑟 = 3.6876 and 𝜀−𝑟 = −5.8828 + 0.6650 i.
The domain Ω+ ∪ Ω− has been discretized with a triangular mesh with 𝑁𝑒 triangles and mesh size ℎ. For

each polarization state, 𝑞 = 𝑠 or 𝑞 = 𝑝, let ̂︀𝑢 𝑞,ℎ
𝛿,1 denote the approximate values of the solution to problem (2.7),

delivered by the FEM solution of the asymptotic model (5.3) for the 𝑝-polarization or (5.4) for the 𝑠-polarization,
for a specific choice of ℎ and 𝛿. We have also used the approximate solution ̂︀𝑢 𝑞,ℎ

𝛿,1 to compute a physical quantity
of interest: the so called absorptance 𝐴𝑞,ℎ

𝛿 (see for instance [23]).

6.1. Example 1: Planar backreflector

The first test allows us to validate the method and its implementation. We have chosen a planar backreflector
in which the material occupying Ω𝛿 has a uniform relative permittivity 𝜀𝑔

𝑟(𝑥) ≡ −0.5488 + 0.1663 i. For this
problem, for each polarization state 𝑞 = 𝑠 or 𝑞 = 𝑝, the exact solution 𝑢𝑞(𝑥, 𝑧) of (2.7) and the corresponding
exact absorptance 𝐴𝑞 can be analytically determined using a textbook approach [2].

For each polarization state, we have computed the relative errors

𝑒𝑢𝑞 =

(︃∫︁
̂︀Ω𝛾

|𝑢𝑞 − ̂︀𝑢 𝑞,ℎ
𝛿,1 |

2 d𝑥 d𝑧

)︃1/2

(︃∫︁
̂︀Ω𝛾

|𝑢𝑞|2 d𝑥 d𝑧

)︃1/2
and 𝑒𝐴𝑞 =

|𝐴𝑞 −𝐴𝑞,ℎ
𝛿 |

|𝐴𝑞|
, 𝑞 ∈ {𝑠, 𝑝} .

We have chosen 𝛾 large enough (𝛾 = 12.5 nm), so that ̂︀Ω𝛾 and Ω𝛿 do not intersect for any value of 𝛿 in our
computations.

In order to evaluate the performance of the asymptotic model with respect to the parameter 𝛿, we display in
Tables 1 and 2 values of the relative errors 𝑒𝑢𝑠 and 𝑒𝐴𝑠 , respectively, for varying 𝛿 and ℎ.

In spite of the fact that 𝑢𝑠 and 𝑢𝑝 are expected to have a similar behavior, the asymptotic models to compute
them differ. However the errors 𝑒𝑢𝑠 and 𝑒𝐴𝑠 are essentially the same as 𝑒𝑢𝑝 and 𝑒𝐴𝑝 , respectively. This is the
reason why we only report the former in Tables 1 and 2.

Many of the errors reported in Tables 1 and 2 correspond to values of 𝛿 and ℎ for which the discretization and
the asymptotic modeling errors are of a similar size. Because of this, the convergence behavior can be clearly
seen only on the last rows and columns of these tables (where the errors arising from the asymptotic modeling
or the discretization, respectively, are negligible).

We report in Figure 3 (left) error curves for 𝑒𝑢𝑠 and 𝑒𝐴𝑠 versus 𝛿 for a very fine mesh (ℎ = 2.21 nm). These
plots show that the errors decrease with order 𝑂(𝛿2) as the theory predicts.

Finally, to validate our FEM solver, we display in Figure 3 (right), 𝑒𝑢𝑠 versus ℎ for an extremely thin grating
layer (𝛿 = 6.103125e-03 nm). Standard FEM theory [3] predicts that the rate of convergence of 𝑒𝑢𝑝 must be of
order 𝑂(ℎ4). In Figure 3 (right) we observe exactly this trend, except for the smallest value of ℎ for which the
asymptotic modeling error dominates the FEM error.
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Table 1. Relative error 𝑒𝑢𝑠 versus 𝛿 (nm) and ℎ (nm) for Example 1. The number 𝑁𝑒 of
triangular elements is shown in parentheses for each of the values of ℎ in the table.

ℎ (𝑁𝑒)
𝛿 (nm) 35.36 (224) 17.68 (896) 8.84 (3584) 4.42 (14 336) 2.21 (57 344)

12.5 5.2675e-02 5.2683e-02 5.5093e-02 5.5093e-02 5.5093e-02
6.25 1.3077e-02 1.3081e-02 1.3081e-02 1.3381e-02 1.3381e-02
3.125 3.2539e-03 3.2564e-03 3.2563e-03 3.2563e-03 3.2935e-03
1.5625 8.1168e-04 8.1214e-04 8.1207e-04 8.1206e-04 8.1205e-04
7.812e-01 2.0886e-04 2.0258e-04 2.0249e-04 2.0248e-04 2.0248e-04
3.906e-01 7.7185e-05 5.0841e-05 5.0657e-05 5.0650e-05 5.0649e-05
1.953e-01 6.1086e-05 1.3245e-05 1.2667e-05 1.2658e-05 1.2658e-05
9.765e-02 6.0182e-05 4.9215e-06 3.1794e-06 3.1644e-06 3.1638e-06
4.8825e-02 6.0172e-05 3.8188e-06 8.3173e-07 7.9152e-07 7.9086e-07
2.44125e-02 6.0176e-05 3.7321e-06 3.1203e-07 1.9875e-07 1.9769e-07
1.220625e-02 6.0174e-05 3.7244e-06 2.4233e-07 5.2073e-08 4.9411e-08
6.103125e-03 6.0172e-05 3.7232e-06 2.3649e-07 1.9636e-08 1.2366e-08

Table 2. Relative error 𝑒𝐴𝑠 versus 𝛿 (nm) and ℎ (nm) for Example 1. The number 𝑁𝑒 of
triangular elements is shown in parentheses for each of the values of ℎ in the table.

ℎ (𝑁𝑒)
𝛿 (nm) 35.36 (224) 17.68 (896) 8.84 (3584) 4.42 (14 336) 2.21 (57 344)

12.5 2.7768e-02 2.7778e-02 2.7781e-02 2.7780e-02 2.7780e-02
6.25 6.0088e-03 6.0007e-03 6.0006e-03 6.0008e-03 6.0008e-03
3.125 1.3919e-03 1.3754e-03 1.3745e-03 1.3745e-03 1.3745e-03
1.5625 3.4925e-04 3.2862e-04 3.2737e-04 3.2731e-04 3.2731e-04
7.812e-01 1.0393e-04 8.1280e-05 7.9835e-05 7.9749e-05 7.9745e-05
3.906e-01 4.4983e-05 2.1316e-05 1.9776e-05 1.9679e-05 1.9674e-05
1.953e-01 3.0754e-05 6.5822e-06 4.9945e-06 4.8920e-06 4.8858e-06
9.765e-02 2.7365e-05 2.9409e-06 1.3295e-06 1.2243e-06 1.2177e-06
4.8825e-02 2.6591e-05 2.0410e-06 4.1765e-07 3.1104e-07 3.0431e-07
2.44125e-02 2.6433e-05 1.8198e-06 1.9053e-07 8.3232e-08 7.6419e-08
1.220625e-02 2.6411e-05 1.7662e-06 1.3400e-07 2.6361e-08 1.9506e-08
6.103125e-03 2.6414e-05 1.7537e-06 1.1998e-07 1.2163e-08 5.2873e-09

6.2. Example 2: Periodic backreflector with rectangular corrugations

For the second test, we have considered a backreflector with rectangular corrugations of height 𝛿 and width
𝐿1 = 200 nm, as shown in Figure 4. In this case, the discontinuous coefficient 𝜀𝑔

𝑟 is defined as follows (see Fig. 4):

𝜀𝑔
𝑟(𝑥) =

{︃
𝜀+

𝑟 , 𝑥 ∈
(︀
0, 𝐿−𝐿1

2

)︀
∪ (𝐿+𝐿1

2 , 𝐿),

𝜀−𝑟 , 𝑥 ∈
(︀

𝐿−𝐿1
2 , 𝐿+𝐿1

2

)︀
.

Let us remark that this kind of corrugation, which is usual in practice, does not satisfy the smoothness
assumption on 𝜀𝑔

𝑟 used in the theoretical analysis for Theorem 4.5 to hold. Nevertheless, our numerical experi-
ments will show that the proposed strategy works for such a piecewise constant functions 𝜀𝑔

𝑟 , too.
Since no analytical solution is know for a backreflector like this, we have used as a reference solution the

FEM solution of the full model (2.7) computed on a very fine mesh (ℎ = 2.21 nm). We denote this reference
solution by 𝑢̆(𝑥, 𝑧) and by 𝐴 the corresponding absorptance. Using this reference solution, we have computed
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Figure 3. Example 1. Left: computed values of the relative errors 𝑒𝑢𝑠 (identified by blue ∘) and
𝑒𝐴𝑠 (red ◇) versus 𝛿 for ℎ = 2.21 nm; solid black line indicate 𝛿2 dependence. Right: computed
values (blue ∘) of the relative error 𝑒𝑢𝑠 versus ℎ for 𝛿 = 6.103125e-03 nm; solid red line indicate
ℎ4 dependence.

Figure 4. Example 2: Domain of a backreflector with a rectangular corrugation.

the relative errors

𝑒𝑢𝑞 =

(︃∫︁
̂︀Ω𝛾

|𝑢̆𝑞 − ̂︀𝑢 𝑞,ℎ
𝛿,1 |

2 d𝑥 d𝑧

)︃1/2

(︃∫︁
̂︀Ω𝛾

|𝑢̆𝑞|2 d𝑥 d𝑧

)︃1/2
and 𝑒𝐴𝑞 =

|𝐴𝑞 −𝐴𝑞,ℎ
𝛿 |

|𝐴𝑞|
, 𝑞 ∈ {𝑠, 𝑝} ,
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Figure 5. Example 2. Computed values of the relative errors 𝑒𝑢𝑞 (identified by blue ∘) and
𝑒𝐴𝑞 (red ◇) versus 𝛿 for ℎ = 2.21 nm. Solid black lines indicate 𝛿2 dependence. Left: 𝑞 = 𝑠.
Right: 𝑞 = 𝑝; the dash-dotted green line corresponds to a least squares fitting of 𝑒𝐴𝑝 .

for different values of 𝛿. Notice that since the exact solution depends on 𝛿, the reference solution had to be
computed for each value of this parameter. Let us remark that this FEM reference solution has been validated
in [26] by comparing it with an RCWA solution. In fact, it has been reported in that reference that the FEM
and RCWA solutions agree within 3% in absorptances and within 5% in 𝐿2(Ω).

Figure 5 shows error curves for 𝑒𝑢𝑞 and 𝑒𝐴𝑞 versus 𝛿 for 𝑞 = 𝑠 (left) and 𝑞 = 𝑝 (right). These plots show that
the errors 𝑒𝑢𝑠 , 𝑒𝐴𝑠 and 𝑒𝑢𝑝 decrease with order 𝑂(𝛿2). Instead, the order of convergence of 𝑒𝐴𝑝 is not clear.
However, a least squares fitting of these errors decreases with order around 𝑂(𝛿2), as can be seen in the same
figure.

According to [26], the solution 𝑢̆𝑞(𝑥, 𝑧) of the full model contains strong singularities near metallic corners,
due to the type of partial differential equation involved. Hence, in principle, any numerical approximation of the
actual solution is not very accurate, unless the mesh is sufficiently refined in the proximity of these corners. In
practice, this implies dealing with extremely fine meshes and, hence, expensive solutions in terms of computer
cost. This is a classical problem in grating theory [16, 17], specially for 𝑝 polarization. This issue affects the
numerical solution of the full model [26] as well as those obtained by other approaches as, for instance, the
RCWA method [28] and could affect the asymptotic model as well. However, a clear advantage of the proposed
asymptotic approach is that this kind of overrefined meshes are no longer needed.

Appendix A.

The main goal of this section is to derive the transmission conditions (3.9), as well as expressions (3.12) for
the near field terms within the grating.

A.1. Equations for the first term of the asymptotic expansions

For 𝑛 = 0, according to Proposition 3.4, outside the grating layer we have

𝑈0(𝑥, 𝜉) = 𝑢±0 (𝑥, 0), 𝑥 ∈ (0, 𝐿),
1
2
≤ |𝜉| ≤ 2. (A.1)
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Into the grating, since 𝐵(𝑥, 𝛿𝜉) = 𝐵𝑔(𝑥) does not depend on 𝜉, the first equation in (3.5) reads

𝜕

𝜕𝜉

(︂
𝐵𝑔(𝑥)

𝜕𝑈0(𝑥, 𝜉)
𝜕𝜉

)︂
= 0, 𝑥 ∈ (0, 𝐿), |𝜉| ≤ 1

2
·

Then, there exist functions 𝑞0(𝑥) and 𝑟0(𝑥) such that

𝑈0(𝑥, 𝜉) = 𝑞0(𝑥) +
𝑟0(𝑥)
𝐵𝑔(𝑥)

𝜉, 𝑥 ∈ (0, 𝐿), |𝜉| ≤ 1
2
· (A.2)

Since 𝑈0 is continuous on 𝜉 = ± 1
2 , we have that

𝑈0

(︁
𝑥, 1

2

−
)︁

= 𝑈0

(︁
𝑥, 1

2

+
)︁

=⇒ 𝑞0(𝑥) +
1
2

𝑟0(𝑥)
𝐵𝑔(𝑥)

= 𝑢+
0 (𝑥, 0),

𝑈0

(︁
𝑥,− 1

2

+
)︁

= 𝑈0

(︁
𝑥,− 1

2

−
)︁

=⇒ 𝑞0(𝑥)− 1
2

𝑟0(𝑥)
𝐵𝑔(𝑥)

= 𝑢−0 (𝑥, 0),

while, from the continuity of 𝐵 𝜕𝑈0
𝜕𝜉 ,

𝐵𝑔(𝑥)
𝜕𝑈0

𝜕𝜉

(︁
𝑥, 1

2

−
)︁

= 𝐵+ 𝜕𝑈0

𝜕𝜉

(︁
𝑥, 1

2

+
)︁

=⇒ 𝑟0(𝑥) = 0,

𝐵𝑔(𝑥)
𝜕𝑈0

𝜕𝜉

(︁
𝑥,− 1

2

+
)︁

= 𝐵− 𝜕𝑈0

𝜕𝜉

(︁
𝑥,− 1

2

−
)︁

=⇒ 𝑟0(𝑥) = 0.

Therefore, 𝑟0(𝑥) vanishes and 𝑢+
0 (𝑥, 0) = 𝑞0(𝑥) = 𝑢−0 (𝑥, 0). Hence, (A.1) and (A.2) imply that

𝑈0(𝑥, 𝜉) = 𝑢+
0 (𝑥, 0) = 𝑢−0 (𝑥, 0), 𝑥 ∈ (0, 𝐿), |𝜉| ≤ 2. (A.3)

In particular, 𝑈0 does not depend on 𝜉. Moreover, this implies that 𝑢0 is continuous across Γ, so that

[𝑢0] (𝑥) = 𝑢+
0 (𝑥, 0)− 𝑢−0 (𝑥, 0) = 0, 𝑥 ∈ (0, 𝐿),

and

⟨𝑢0⟩ (𝑥) =
𝑢+

0 (𝑥, 0) + 𝑢−0 (𝑥, 0)
2

= 𝑈0(𝑥), 𝑥 ∈ (0, 𝐿). (A.4)

Note that since 𝑈0 does not depend on 𝜉, here and in what follows we make the abuse of language of writing
𝑈0(𝑥) instead of 𝑈0(𝑥, 𝜉).

A.2. Equations for the second term of the asymptotic expansions

For 𝑛 = 1, according to Proposition 3.4, outside the grating layer we have

𝑈1(𝑥, 𝜉) = 𝑢±1 (𝑥, 0) + 𝜉
𝜕𝑢±0
𝜕𝑧

(𝑥, 0), 𝑥 ∈ (0, 𝐿),
1
2
≤ |𝜉| ≤ 2,

while, into the grating, the first equation in (3.5) reads

𝜕

𝜕𝜉

(︂
𝐵𝑔(𝑥)

𝜕𝑈1(𝑥, 𝜉)
𝜕𝜉

)︂
= 0, 𝑥 ∈ (0, 𝐿), |𝜉| ≤ 1

2
·

Then, there exist functions 𝑞1(𝑥) and 𝑟1(𝑥) such that

𝑈1(𝑥, 𝜉) = 𝑞1(𝑥) +
𝑟1(𝑥)
𝐵𝑔(𝑥)

𝜉, 𝑥 ∈ (0, 𝐿), |𝜉| ≤ 1
2
· (A.5)
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Proceeding as in the previous step, from the continuity of 𝑈1 and 𝐵 𝜕𝑈1
𝜕𝜉 on 𝜉 = ± 1

2 we obtain

𝑢±1 (𝑥, 0)± 1
2

𝜕𝑢±0
𝜕𝑧

(𝑥, 0) = 𝑞1(𝑥)± 1
2

𝑟1(𝑥)
𝐵𝑔(𝑥)

, (A.6)

𝐵+ 𝜕𝑢+
0

𝜕𝑧
(𝑥, 0) = 𝑟1(𝑥) = 𝐵− 𝜕𝑢−0

𝜕𝑧
(𝑥, 0). (A.7)

From the latter, we derive [︂
𝐵

𝜕𝑢0

𝜕𝑧

]︂
(𝑥) = 0,

and ⟨
𝐵

𝜕𝑢0

𝜕𝑧

⟩
(𝑥) = 𝑟1(𝑥). (A.8)

For the jump of 𝑢1 across Γ, by subtracting both expressions in (A.6) we obtain

[𝑢1] (𝑥) = −1
2

𝜕𝑢−0
𝜕𝑧

(𝑥, 0)− 1
2

𝜕𝑢+
0

𝜕𝑧
(𝑥, 0) +

𝑟1(𝑥)
𝐵𝑔(𝑥)

= − 1
2𝐵− 𝑟1(𝑥)− 1

2𝐵+
𝑟1(𝑥) +

𝑟1(𝑥)
𝐵𝑔(𝑥)

,

where we have used (A.7) for the last equality. Then, (A.8) leads to

[𝑢1](𝑥) =
(︂

1
𝐵𝑔(𝑥)

−
⟨

1
𝐵

⟩)︂⟨
𝐵

𝜕𝑢0

𝜕𝑧

⟩
(𝑥), 𝑥 ∈ (0, 𝐿).

Finally, to obtain from (A.5) an expression for 𝑈1 into the grating, we need expressions of 𝑞1 and 𝑟1. For the
latter, we already have (A.8). For the former, we average both equations in (A.6) and obtain

𝑞1(𝑥) = ⟨𝑢1⟩ (𝑥) +
1
4

𝜕𝑢+
0

𝜕𝑧
(𝑥, 0)− 1

4
𝜕𝑢−0
𝜕𝑧

(𝑥, 0) = ⟨𝑢1⟩ (𝑥) +
1

4𝐵+
𝑟1(𝑥)− 1

4𝐵− 𝑟1(𝑥),

where we have used (A.7) for the last equality. Then, substituting this into (A.5) and using (A.8) to eliminate
𝑟1(𝑥) leads to

𝑈1(𝑥, 𝜉) = ⟨𝑢1⟩ (𝑥) +
(︂

𝜉

𝐵𝑔(𝑥)
+

1
4

[︂
1
𝐵

]︂)︂⟨
𝐵

𝜕𝑢0

𝜕𝑧

⟩
(𝑥), 𝑥 ∈ (0, 𝐿), |𝜉| ≤ 1

2
· (A.9)

A.3. Equations for the third term of the asymptotic expansions

For 𝑛 = 2, according to Proposition 3.4, outside the grating layer we have

𝑈2(𝑥, 𝜉) = 𝑢±2 (𝑥, 0) + 𝜉
𝜕𝑢±1
𝜕𝑧

(𝑥, 0) +
𝜉2

2
𝜕2𝑢±0
𝜕𝑧2

(𝑥, 0), 𝑥 ∈ (0, 𝐿),
1
2
≤ |𝜉| ≤ 2. (A.10)

Into the grating, since 𝐵(𝑥, 𝛿𝜉) = 𝐵𝑔(𝑥), 𝑏(𝑥, 𝛿𝜉) = 𝑏𝑔(𝑥) and 𝑈0(𝑥) do not depend on 𝜉, the first equation in
(3.5) reads

𝜕

𝜕𝜉

(︂
𝐵𝑔(𝑥)

𝜕𝑈2(𝑥, 𝜉)
𝜕𝜉

)︂
= −

(︂
𝜕

𝜕𝑥

(︂
𝐵𝑔(𝑥)

𝜕𝑈0(𝑥)
𝜕𝑥

)︂
+ 𝑘2

0𝑏
𝑔(𝑥)𝑈0(𝑥)

)︂
, 𝑥 ∈ (0, 𝐿), |𝜉| ≤ 1

2

and, hence, there exist functions 𝑞2(𝑥) and 𝑟2(𝑥) such that

𝑈2(𝑥, 𝜉) = 𝑞2(𝑥)+
𝑟2(𝑥)
𝐵𝑔(𝑥)

𝜉− 1
2𝐵𝑔(𝑥)

(︂
𝜕

𝜕𝑥

(︂
𝐵𝑔(𝑥)

𝜕𝑈0(𝑥)
𝜕𝑥

)︂
+ 𝑘2

0𝑏
𝑔(𝑥)𝑈0(𝑥)

)︂
𝜉2, 𝑥 ∈ (0, 𝐿), |𝜉| ≤ 1

2
· (A.11)
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Since 𝑈2 is continuous on 𝜉 = ± 1
2 , by equating (A.10) and (A.11) at those values of 𝜉, we obtain

𝑢±2 (𝑥, 0)± 1
2

𝜕𝑢±1
𝜕𝑧

(𝑥, 0) +
1
8

𝜕2𝑢±0
𝜕𝑧2

(𝑥, 0) = 𝑞2(𝑥)± 𝑟2(𝑥)
2𝐵𝑔(𝑥)

− 1
8𝐵𝑔(𝑥)

(︂
𝜕

𝜕𝑥

(︂
𝐵𝑔(𝑥)

𝜕𝑈0(𝑥)
𝜕𝑥

)︂
+ 𝑘2

0𝑏
𝑔(𝑥)𝑈0(𝑥)

)︂
.

Then, averaging and subtracting both equations above, we obtain

𝑞2(𝑥) =
1
2
𝑢+

2 (𝑥, 0) +
1
2
𝑢−2 (𝑥, 0) +

1
4

𝜕𝑢+
1

𝜕𝑧
(𝑥, 0)− 1

4
𝜕𝑢−1
𝜕𝑧

(𝑥, 0) +
1
16

𝜕2𝑢+
0

𝜕𝑧2
(𝑥, 0) +

1
16

𝜕2𝑢−0
𝜕𝑧2

(𝑥, 0)

+
1

8𝐵𝑔(𝑥)

(︂
𝜕

𝜕𝑥

(︂
𝐵𝑔(𝑥)

𝜕𝑈0(𝑥)
𝜕𝑥

)︂
+ 𝑘2

0𝑏
𝑔(𝑥)𝑈0(𝑥)

)︂
(A.12)

and

𝑟2(𝑥) = 𝐵𝑔(𝑥)
(︂

𝑢+
2 (𝑥, 0)− 𝑢−2 (𝑥, 0) +

1
2

𝜕𝑢+
1

𝜕𝑧
(𝑥, 0) +

1
2

𝜕𝑢−1
𝜕𝑧

(𝑥, 0) +
1
8

𝜕2𝑢+
0

𝜕𝑧2
(𝑥, 0)− 1

8
𝜕2𝑢−0
𝜕𝑧2

(𝑥, 0)
)︂

. (A.13)

Note that both functions, 𝑞2(𝑥) and 𝑟2(𝑥), are infinitely smooth in [0, 𝐿].
On the other hand, since 𝐵 𝜕𝑈2

𝜕𝜉 is also continuous on 𝜉 = ± 1
2 , differentiating (A.10) and (A.11) with respect

to 𝜉 and evaluating at those values of 𝜉 lead to

𝐵± 𝜕𝑢±1
𝜕𝑧

(𝑥, 0)±𝐵± 𝜕2𝑢±0
𝜕𝑧2

(𝑥, 0) = ∓1
2

(︂
𝜕

𝜕𝑥

(︂
𝐵𝑔(𝑥)

𝜕𝑈0(𝑥)
𝜕𝑥

)︂
+ 𝑘2

0𝑏
𝑔(𝑥)𝑈0(𝑥)

)︂
+ 𝑟2(𝑥).

For the jump of 𝐵 𝜕𝑢1
𝜕𝑧 across Γ, we subtract the equations above and obtain[︂

𝐵
𝜕𝑢1

𝜕𝑧

]︂
(𝑥) = −

(︂
𝜕

𝜕𝑥

(︂
𝐵𝑔(𝑥)

𝜕𝑈0(𝑥)
𝜕𝑥

)︂
+ 𝑘2

0𝑏
𝑔(𝑥)𝑈0(𝑥)

)︂
−𝐵+ 𝜕2𝑢+

0

𝜕𝑧2
(𝑥, 0)−𝐵− 𝜕2𝑢−0

𝜕𝑧2
(𝑥, 0), 𝑥 ∈ (0, 𝐿).

(A.14)

However, this equation involves the undetermined quantities 𝜕2𝑢±0
𝜕𝑧2 (𝑥, 0). To eliminate them, we resort again to

the first equation in (3.5), now for |𝜉| ≥ 1
2 . Since in such a case, 𝐵(𝑥, 𝛿𝜉) = 𝐵± and 𝑏(𝑥, 𝛿𝜉) = 𝑏±, the equation

reads
𝜕

𝜕𝜉

(︂
𝐵± 𝜕𝑈2(𝑥, 𝜉)

𝜕𝜉

)︂
= −

(︂
𝜕

𝜕𝑥

(︂
𝐵± 𝜕𝑈0(𝑥)

𝜕𝑥

)︂
+ 𝑘2

0𝑏
±𝑈0(𝑥)

)︂
, 𝑥 ∈ (0, 𝐿),

1
2
≤ |𝜉| ≤ 2.

Hence, as above, there exist functions 𝑞±2 (𝑥) and 𝑟±2 (𝑥) such that

𝑈2(𝑥, 𝜉) = 𝑞±2 (𝑥) +
𝑟±2 (𝑥)
𝐵± 𝜉 − 1

2𝐵±

(︂
𝜕

𝜕𝑥

(︂
𝐵± 𝜕𝑈0(𝑥)

𝜕𝑥

)︂
+ 𝑘2

0𝑏
±𝑈0(𝑥)

)︂
𝜉2, 𝑥 ∈ (0, 𝐿),

1
2
≤ |𝜉| ≤ 2.

Since (A.10) holds true in the same domain, identifying both expressions we derive that

𝑢±2 (𝑥, 0) = 𝑞±2 (𝑥),
𝜕𝑢±1
𝜕𝑧

(𝑥, 0) =
𝑟±2 (𝑥)
𝐵± and

1
2

𝜕2𝑢±0
𝜕𝑧2

(𝑥, 0) = − 1
2𝐵±

(︂
𝜕

𝜕𝑥

(︂
𝐵± 𝜕𝑈0(𝑥)

𝜕𝑥

)︂
+ 𝑘2

0𝑏
±𝑈0(𝑥)

)︂
.

Then, using the last equation and (A.4) in (A.14), we obtain[︂
𝐵

𝜕𝑢1

𝜕𝑧

]︂
(𝑥) = − 𝜕

𝜕𝑥

(︂
(𝐵𝑔(𝑥)− ⟨𝐵⟩) 𝜕 ⟨𝑢0⟩

𝜕𝑥
(𝑥)
)︂
− 𝑘2

0 (𝑏𝑔(𝑥)− ⟨𝑏⟩) ⟨𝑢0⟩ (𝑥), 𝑥 ∈ (0, 𝐿).

The equations derived above that appear within boxes have been claimed to hold without a proof in Section 3.
In fact, they correspond either to the transmission conditions (3.9) or to equations (3.12) for the near field in
the grating. To end this paper, we use some of the equations derived above to prove the following result, which
has been used in the proof of Lemma 4.4.



S532 P.B. MONK ET AL.

Lemma A.1. 𝑈𝛿
0 , 𝑈 𝛿

1 and 𝑈 𝛿
2 are infinitely differentiable with respect to 𝑥 in 𝑂𝛿 and their 𝑥-derivatives are

uniformly bounded independently of 𝛿.

Proof. Out of the grating, there is nothing to prove. In fact, according to Assumption 3.2, 𝑈𝑛(𝑥, 𝜉) are infinitely
smooth for 1

2 ≤ |𝜉| ≤ 2 and, then, 𝑈 𝛿
𝑛(𝑥, 𝑧) are infinitely smooth for 𝛿

2 ≤ |𝑧| ≤ 2𝛿.
Into the grating (|𝑧| ≤ 𝛿

2 ), we must recall the assumed smoothness of 𝜀𝑔
𝑟(𝑥) and 𝑢±𝑛 (cf. Assumption 3.1 for

the latter). Then, the property for 𝑈𝛿
0 holds immediately because of (A.3). For 𝑈𝛿

1 , it follows from (A.9). Finally,
for 𝑈 𝛿

2 it is derived from (A.11) to (A.13) and the already proved smoothness of 𝑈0(𝑥). �
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[22] Ö. Özdemir, H. Haddar and A. Yaka, Reconstruction of the electromagnetic field in layered media using the concept of
approximate transmission conditions. IEEE Trans. Antennas Propag. 59 (2011) 2964–2972.

[23] C. Rivas, M. E. Solano, R. Rodriguez, P. B. Monk and A. Lakhtakia, Asymptotic model for finite-element calculations of
diffraction by shallow metallic surface-relief gratings. J. Opt. Soc. Am. A, 34 (2017) 68–79.

[24] M.E. Solano, M. Faryad, A.S. Hall, T.E. Mallouk, P.B. Monk and A. Lakhtakia, Optimization of the absorption efficiency of
an amorphous-silicon thin-film tandem solar cell backed by a metallic surface-relief grating, Appl. Opt. 52 (2013) 966–979.

[25] M.E. Solano, M. Faryad, P.B. Monk, T.E. Mallouk and A. Lakhtakia, Periodically multilayered planar optical concentrator
for photovoltaic solar cells. Appl. Phys. Lett. 103 (2013) 191115.



AN ASYMPTOTIC MODEL FOR THIN GRATINGS S533

[26] M.E. Solano, M. Faryad, A. Lakhtakia and P.B. Monk, Comparison of rigorous coupled-wave approach and finite element
method for photovoltaic devices with periodically corrugated metallic back reflector. J. Opt. Soc. Am. A 31 (2014) 2275–2284.

[27] M.E. Solano, G. D. Barber, A. Lakhtakia, M. Faryad, P.B. Monk and T.E. Mallouk, Buffer layer between a planar optical
concentrator and a solar cell, AIP Adv. 5 (2015) 097150.

[28] M.V. Shuba, M. Faryad, M.E. Solano, P.B. Monk and A. Lakhtakia, Adequacy of the rigorous coupled-wave approach for thin-
film silicon solar cells with periodically corrugated metallic backreflectors: spectral analysis. J. Opt. Soc. Am. A 32 (2015)
1222–1230.

[29] A. Taflove and S.C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd edition. Artech
House (2005).


	Introduction
	Model problem
	Scalar equations and boundary conditions

	Asymptotic model
	Far field equations
	Near field equations
	Matching conditions
	Truncated asymptotic expansion

	Error estimates
	Implementation
	Variational formulation

	Numerical examples
	Example 1: Planar backreflector
	Example 2: Periodic backreflector with rectangular corrugations

	
	Equations for the first term of the asymptotic expansions
	Equations for the second term of the asymptotic expansions
	Equations for the third term of the asymptotic expansions

	References

