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ERROR ANALYSIS OF A CONFORMING AND LOCKING-FREE FOUR-FIELD
FORMULATION FOR THE STATIONARY BIOT’S MODEL

RICARDO OYARZUA!, SANDER RHEBERGEN?, MANUEL SOLANO? AND PAULO ZUNIGA3*

Abstract. We present an a priori and a posteriori error analysis of a conforming finite element method
for a four-field formulation of the steady-state Biot’s consolidation model. For the a priori error analysis
we provide suitable hypotheses on the corresponding finite dimensional subspaces ensuring that the
associated Galerkin scheme is well-posed. We show that a suitable choice of subspaces is given by the
Raviart—Thomas elements of order k£ > 0 for the fluid flux, discontinuous polynomials of degree k for
the fluid pressure, and any stable pair of Stokes elements for the solid displacements and total pressure.
Next, we develop a reliable and efficient residual-based a posteriori error estimator. Both the reliability
and efficiency estimates are shown to be independent of the modulus of dilatation. Numerical examples
in 2D and 3D verify our analysis and illustrate the performance of the proposed a posteriori error
indicator.
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1. INTRODUCTION

Linear poroelasticity refers to fluid-structure interaction of an elastic solid infiltrated by an interconnected
network of fluid-saturated pores. The modeling equations can be traced back to the pioneering theory of soil
consolidation by Terzaghi [54] and Biot [13,14], in which Darcy’s law for the motion of a fluid is coupled to
Hooke’s theory of linear elasticity for the solid deformation. Advances in the understanding of the mechanical
and physical aspects of Biot’s consolidation model are of key importance in many applications. For instance,
it has been used to predict the mechanics of groundwater withdrawals [40], earthquake fault zones [62], CO4
sequestration [60] and biological systems (brain [11,44], bones [31], arteries [39], intestines [66], etc.).

There is an extensive literature on theoretical results for this problem. A well-accepted mathematical analysis
of existence, uniqueness, and regularity of the solution for the displacement-pressure formulation of Biot’s model
was carried out by Showalter [52,53]. Moreover, many different numerical schemes have been proposed for this
formulation with varying success, e.g. [12,24,32,45,47,51,61-65] and references therein. The main difficulties
encountered when developing numerical methods for this model are volumetric locking and spurious, nonphysical
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pressure oscillations. While volumetric locking is similar to the locking phenomenon in linear elasticity (see, e.g.
[9]), spurious pressure oscillations occurs when the displacement of the porous skeleton is driven to a divergence-
free state, the permeability of the porous solid is low and the so-called “constrained specific storage constant”
is close to zero (see, e.g. [48]).

Recently, Oyarzia et al. [46] (see also [42]) proposed and analyzed a three-field formulation for the stationary
Biot’s model using classical finite element methods that is locking-free and free of spurious pressure oscillations.
More precisely, in addition to the displacement and the pore pressure of the fluid, they introduced a “total
pressure”, showing existence, uniqueness, and stability of the discrete solution with constants independent
of the modulus of dilatation, even in the incompressible limit. To achieve a numerical scheme that is also
mass conserving, they later extended this formulation to a four-field formulation by introducing also the “fluid
flux” as an unknown [41]. They propose to approximate the solid displacement in this model by a finite volume
method (FVM) while remaining unknowns are approximated by a mixed finite element method (MFE). However,
developing higher-order accurate discretizations using the approach of [41] is not straightforward since FVMs
become more technical in this case (see, e.g. [25]). It is then preferable to use conforming finite element methods,
which are well-documented and often easy to extend to three dimensions.

In this paper, we consider a conforming finite element discretization of the four-field formulation of stationary
Biot’s consolidation model [41]. Assuming standard hypotheses on the discrete spaces, we first show well-
posedness and optimal a priori error estimates of the Galerkin scheme. In particular, we show that any pair of
stable Stokes element, such as the Hood—Taylor elements, for solid displacements and total pressure, combined
with Raviart—Thomas elements of degree k > 0 for the fluid flux, and discontinuous polynomials of degree k for
the pore pressure, are suitable finite element subspaces for this problem. We furthermore show that the scheme
is locking-free.

The main contribution of this paper, however, is a reliable and efficient residual-based a posteriori error
estimator for the four-field formulation of Biot’s consolidation model. Due to the presence of dual norms in
our analysis, the use of conforming methods to discretize Biot’s consolidation model are better suited than the
FVM presented in [41] for which the dual norms do not hold. In this direction, an a posteriori error analysis
for a conforming finite element method (with Backward Euler time stepping) of the displacement-pressure
formulation for poroelasticity was presented by Ern and Meunier [29]. They proved reliability and efficiency
estimates related to energy norms through direct arguments (dual problems, local properties of Clément-type
interpolation operators, and localization techniques), and showed an overall convergence of O(h). To show higher
order accuracy, an elliptic reconstruction approach was applied but without efficiency of the estimator. Later, a
reliable a posteriori error estimator based on stress and flux reconstructions was proposed by Riedlbeck et al.
[50], while a reliable space-time a posteriori error estimator for a four-field system in terms of the total stress
tensor, displacement, fluid flux, and fluid pressure, was derived by Ahmed et al. [1]. We further refer to [2] and
[10] for more on splitting schemes for higher order elements for the time-dependent Biot problem. One of the
main differences between our work and [1], besides using a different formulation of the Biot problem, is that
[1] presents a reliable estimator for the time-dependent Biot problem while we prove both the reliability and
the efficiency of the estimator for the stationary Biot model. In spite of the numerous contributions mentioned
above, to the best of our knowledge, no efficiency estimates for poroelasticity have been proven for higher order
accurate approximations.

In this paper, we will prove efficiency estimates for higher order accurate approximations of the four-field
formulation of Biot’s consolidation model by using a localization technique by bubble functions and inverse
inequalities. Such an approach was previously used, for example, in the a posteriori analysis of the Stokes—
Darcy problem in [36], and of the elasticity problem in [22,59]. By inf-sup conditions on the involved finite ele-
ment spaces, Helmholtz decompositions, and standard local approximation properties of Clément and Raviart—
Thomas interpolation operators, we furthermore prove a reliability estimate and propose an adaptive algorithm
for our problem.

The rest of this paper is structured as follows. The governing equations, corresponding weak formulation and
well-posedness of the problem are discussed in Section 2. In Section 3, we introduce the Galerkin scheme and



ERROR ANALYSIS OF A CONFORMING AND LOCKING-FREE FOUR-FIELD FORMULATION S477

derive the stability result and corresponding Céa’s estimate. We derive a reliable and efficient residual-based
a posteriori error estimator in Section 4 and present numerical results in Section 5. Conclusions are drawn in
Section 6.

2. A FOUR-FIELD FORMULATION OF BIOT’S EQUATIONS

2.1. Notation

Let Q CRY d € {2,3}, denote a bounded and simply connected domain with Lipschitz boundary ' = T, UT,,
such that |I'y| > 0 and I',,NT', = (). In what follows we use standard notation for Sobolev spaces and norms, and
denote spaces of vector-valued functions in boldface. For example, if 7 € R, we denote H"(Q) := [H"(Q)]¢ and
H"(T') := [H"(I")]¢, with the convention that H°(Q) = L?(Q2) and H%(T") = L%(T"). For vector-valued functions
we also require the Hilbert space

H(div; Q) := {7 e L*(Q) : divT € L*(Q)},

equipped with the norm

. 1/2
I llawio = {1l - 3.0 + ldiv () [2.0 3

Furthermore, we denote by Hy)/*(I',) the dual space of Hy\*(T',) = {dalr, : ¢ € HE ()}, with
Hf (@) = {v e H(Q): v|r, =0}. (2.1)

The space H(l)(/)2(Fp) is endowed with the norm

Hq|‘1/270071"p = inf{HU”LQ cve H%U(Q) and vlr, = q}.

Finally, by 0 we will refer to the generic null vector (including the null functional and operator), and we will
denote by C, with or without subscripts, bar, tildes, or hats, generic constants independent of the discretization
parameters.

2.2. Governing equations

For all t > 0, given a body force f(t) : @ — R? and a volumetric fluid source £(t) : Q@ — R, the classical
Biot’s consolidation problem, describing the interaction between fluid motion and linear mechanical response of
a porous medium occupying (2, consists in finding the displacement of the porous skeleton u(t) : Q — R?, and
the total pore pressure of the fluid p(t) : @ — R, satisfying

1
O (cop + a(divu)) — ;div [£(Vp—pg) =¢ in Q, (2.2)
T = A\(divu)I + 2ue(u) — apl in Q, (2.3)
—divT = f in Q, (2.4)

and suitable boundary and initial conditions. Above T is the total Cauchy solid stress, e(u) := 1 (Vu + (Vu)T)
is the total strain rate tensor, I is the identity tensor in R?*? and div stands for the divergence operator div
acting along the rows of a given tensor. Furthermore, g is the gravity acceleration (constant and aligned with the
vertical direction), ac > 0 is the so-called Biot—Willis parameter (which is close to 1), ¢g > 0 is the constrained
specific storage coefficient, 77, p > 0 are the viscosity and density of the pore fluid, A\, p are the Lamé parameters
of the solid (dilation and shear moduli of the solid), and & is the permeability of the porous solid, here assumed
to be uniformly bounded: 0 < 1 < k() < ko for all € Q.
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Using Backward Euler time stepping to discretize (2.2)—(2.4) in time, we obtain

1
(cop™™! + a(divu™tt)) — 5div [K(Vp" T — pg)] = "' + (cop™ + a(divu™)) inQ, (2.5)

T = Ndiva™ ™I 4 2pe(u™) —ap" ™I in Q,
—divT"t = it inQ, (2.7
where we absorbed the discrete time step into the constants ¢y and «. Re-defining ¢*+! « ¢+l 4 (cop" +

a(divu™)) and dropping the superscript, we obtain the system of equations that needs to be solved at each
time step:

(cop + a(divu)) — %div [£(Vp—pg) =4 in €, (2.8)
T = A(divu)I + 2pe(u) — apl in Q, (2.9)
—divT = f in Q, (2.10)

In this paper we will analyze this “stationary” case of Biot’s consolidation problem. In particular, following [41]
by introducing the total fluid-structure pressure (or total volumetric stress) ¢ = ap — Adivu and the fluid flux

o= —%(Vp — pg) as new unknowns, we study a conforming discretization of the following system
—div 2ue(u) — ¢I) = f in Q, (2.11a)
¢ =ap—Adivu in (2.11b)
o= —%(Vp - pg) in Q, (2.11¢)
2
(co—i—();\)p— %(é—i—divozﬁ in €, (2.11d)

complemented with suitable boundary conditions

p=pr, (2ue(u)—o¢I)n=mr on Iy, (2.12a)
u=0, o-n=0 on I, (2.12b)

where mr € Haol/Q(Fp) and pr € Hééz(l"p).

2.3. Weak formulation

The weak formulation of the coupled problem (2.11) is given by Section 2 of [41]: Find (u, ¢, o,p) € Hx Q x
Z x Q such that

as(u,v) + bs(v,¢) = F(v) Vv eH, (2.13a)
bs(w, 1) — cs(d,9) + bsp(¢,p) =0 Vo e Q, (2.13b)
af(o,T)+bs(r,p) = G(7) V1eZ, (2.13¢)
bsy(¢,q) +bs(0,q) — cs(p.q) = H(q) VgeQ, (2.13d)

where, by the boundary conditions (2.12b), the functional spaces are defined as

H:=H] (Q), Q:=L*9Q), and Z:={reH(div;Q): 7-n=0 on [},
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and the corresponding forms are defined as

as(u,v) := 2#/

Q

2
bs (1, q) ;:%/ﬂwq, af(o,T) ::/ng'w-, by(T,q) ::—/quivT, ci(p,q) == (Co-l-O;\)/qu,
F(v) ::/Qf~v+<mrav>rp’ G(7) 5:/909'7'— (r-mprjr,, H(q):= _/ng'

cw):e(w), bu(o,0)i= = [vidive, o) [ v,

(2.14)
The subscripts “s” or “f” are introduced to emphasize that a bilinear form is only related to structure or fluid
variables, respectively.
Let us discuss the stability properties of the forms involved in (2.13). Firstly, it is easy to check that

|as(u, v)| < 2uC2||ull1,0lv]10, lag(a,7)] < nry o laiv,oll 7 llaiv.o,
[bs (v, 9)] < Vl|v[|1.e]l]lo.c, b7 (7, )] < [Illaiv 2lldlloe, (2.15)
[bs5 (¥, @) < AW llo,2llgllo., les(6, )] < A7 Hllo.allbllo0;
ler (@) < (co+ A7) [Ipllo.allgllo,o;
for all w,v € H, p,q,¢,v € Q, and o, T € Z. Above, C}, 2 is one of the positive constants satisfying
Crallvlig <lle@)|fq < Cralvlliq VveH. (2.16)

Also, the functionals F', G, and H can be bounded as follows:

IF(v)] < (Ifllo,2 + lmrll—1/200,r,) [Vl Vo eH,

|G(T)] < (PHgHO,Q + ||pF||1/2,00,Fp) | Tllaiv,e VT €Z,
[H(q)] < [[¢lo,ellgllo.e Vqe€Q.

On the other hand, the positivity of the bilinear forms a, and a; are immediate from the lower bound for
and the inequality (2.16). More precisely, we have

as(v,v) > QFLCk,le”iQ VveH, and ay(r,7)> W“§1||T||<21iv,sz VT e Ky, (2.17)

where
Kiy={1€Z: by(1,9)=0VqeQt={r€Z: divr=0 in Q}. (2.18)

Finally, the following inf-sup conditions are well-known to hold (see, e.g. [37]):

bs(v, Y br(T,q

%) 5 5 len VeeQ and sup LD S g0l0 veeq,
v,€H ||’U||1,Q TEZ ||T||div,Q
vp#0 Th#0

where [, 5y > 0 depend on [Q].

Let us now briefly comment on the well-posedness of the problem (2.13). To this end, we follow the approach
of Section 2 from [41]. We start by recalling the following continuous dependence result for (2.13) with arbitrary
functionals. This will also be useful later on when deriving our a priori and a posteriori error bounds (cf.
Sects. 3 and 4, respectively). To alleviate the notation, in the sequel we use the norm

(v, %, 7, )l := llvllLe + [¥llo.e + [I7llaiv.c + llglloe (2.19)

foralve H, v €Q, T€Z,peqQ.
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Lemma 2.1. Given F} e H', G1 € Q', F, € Z/ and Gy € Q', let (u,¢,0,p) € H x Q x Z x Q be such that

as(u,v) + bs(v,¢) = Fy(v) Vv eH, (2.20a)
bs(w, ) — es(d,9) + bsp (¥, p) = G1(¥) Yy € Q, (2.20b)
ag(o,7)+bp(7,p) = Fa(7) Ve Z, (2.20¢)
bsp(¢,q) + bs(o,qa) — cp(pa) = G2(q) Vgeq, (2.20d)

where the bilinear forms as, bs, cs, ay, by, cs and bsy are given by (2.14). There exists a constant C' > 0,
independent of X\, such that

ll(w, ¢, 0, Pl < C (1 Frlle + [[Gallar + 1 F2llz + [|G2llqr) - (2.21)

Now, let M: Hx QxZ x Q — H x Q x Z x Q be the mapping induced by the left-hand side of (2.20).
Then, if (u, ¢, o, p) satisfies (2.20), it follows that M(u, ¢,o,p) = (Ru(F1), Rq(G1), Rz(F2), Rq(G2)), where
Ru:H — H Rq:Q — Qand Rz : Z’ — Z are the corresponding Riesz operators. Moreover, from (2.21)
we have

lI(w, &, &, p)ll < Cl[M(u, ¢, o, )l (2.22)

which implies that M has closed range and its kernel is the null vector, or equivalently, M* is surjective (see,
e.g. [18], Thm. 2.20). Since M is self-adjoint, it becomes clear that the unique solvability of (2.13) follows from
the estimate (2.21) by setting F} = F, G; =0, F5 = G and G = H, that is, the following result holds.

Theorem 2.2. There exists a unique (u,d,0,p) € H x Q x Z x Q satisfying (2.13). Moreover, there exists
Cstab > 0, independent of X\, such that

(e, &, 0, P)Ill < Costan (

It was shown in [38] that Cstap, depends on 1/¢g. As mentioned in [38], Theorem 2.2 can be shown to hold also
for the case ¢y = 0 by following the proof of Theorem 4.3.1 from [15]. However, this alternative proof results in
a Cstap that depends on A. Although numerical simulations by [38] suggest that Cgiap is independent of both A
and ¢y, we are not aware of a proof for the four-field model that shows this. For this reason we have assumed
co > 0 in our manuscript.

We close this section by observing that the solution of (2.13) solves the original problem (2.11) in the sense
of the following lemma.

[€llo, + lmrll—1/2,00,r, + lPrll1/2,001,) -

Lemma 2.3. Let (u,¢,0,p) € H x Q X Z x Q be the unique solution of (2.13). It satisfies in a distributional
sense, —div (2ue(u) — ¢I) = f in Q, %(ap —¢) —divu =0 in Q, 1o +Vp—pg =0 in Q, (co + O‘;)p —

Yo +dive — £ =0 in Q. Additionally, w, ¢, o and p satisfy the boundary conditions described in (2.12a) and
(2.12b).

Proof. The result follows by applying integration by parts in (2.13) and using suitable test functions. We omit
the mathematical details. O

3. THE GALERKIN METHOD

In this section we introduce the Galerkin approximation of the problem (2.13), analyze its well-posedness and
establish the associated Céa’s estimate. For this, we consider arbitrary finite dimensional subspaces, denoted
by

Hh - H7 Qh,Wh - Q, and Zh - Z. (31)

Hereafter, the index h > 0, refers to the meshsize of a shape-regular triangulation 7;, of Q made of triangles T
(when d = 2) or tetrahedra (when d = 3) of diameter hr, i.e. h := max{hy : T € Ts}.
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In this way, the Galerkin scheme associated to (2.13) reads: Find (uy,, ¢p, o, pr) € Hyp x Qp X Zp, x W), such
that

as(wp,vp) + bs(vn, on) = F(vp) Yo, € Hy, (3.2a)
bs(wn, ¥n) — cs(dn, ¥n) + bsy(¥n, pn) =0 Vb € Qn, (3.2b)
af(on, Th) +bs(Th,pr) = G(T4) Y1y € Zp, (3.2¢)
bsg(bn,qn) +bs(on,qn) — cf(pn, qn) = H(qn) Vaqn € Wh, (3.2d)

where the bilinear forms and the functionals are as in (2.14).

Next, we proceed as in [41] and make use of the discrete analogue of Lemma 2.1 to prove the well-posedness
of the Galerkin scheme (3.2). Before doing so, in order to ensure the stability properties of the bilinear forms
that are not inherited from the continuous case, we derive general hypotheses on the subspaces in (3.1).

Let us first look at the discrete kernel of the bilinear form by, which is given by

Kin:={1th €Zp: bs(Th,qn) =0 Vg, € Wp}.

A more explicit definition of this space can be obtained if we assume that
(HO) div Zh - Wh.

In fact, this implies that Ky = {7, € Zj, : divr, =0 in Q}. Moreover, since K7, C K; (cf. (2.18)), the
ellipticity of bilinear form a; on Ky j, is deduced from (2.17), and with the same constant.
Let us also assume that the following discrete inf-sup conditions hold:

(H1) There exists Bf > 0, independent of h, such that

be(Th,aqn)

>3
il = Prlanl

sup
ThE€Zp
Th#0

0,0 Vagn € Wy

(H2) There exists BS > 0, independent of h, such that
bs(vn, ¥n)

oneH, [Vnll10
v 70

> ﬁushHo,Q Y € Qp.

In Section 3.1, we specify suitable choices of finite element subspaces satisfying the above hypotheses. We
remark in advance that (Hjp,Qp) can be taken as a pair of stable finite element subspaces for the Stokes
problem, whereas Z; and W, are given by, but are not limited to, the Raviart-Thomas element and the space
of discontinuous polynomials, respectively.

The following result is the discrete analogue of Lemma 2.1 and can be proven by a similar technique.

Lemma 3.1. Given ﬁl eH), él € Q. ﬁg €Z), and ég e Wy, let (up, dn,0n,pn) € Hy X Qp X Zy, x Wy, be
such that

as(wn, vn) + bs(vn, o1) = Fi(vy) Vv, € Hp, (3.3a)
bs (wn, ) — Cs(dn,¥n) + bs (Y, o) = G1(vn) Vibn € Qn, (3.3b)
ap(on, Th) + b (Th,pr) = Fa(Th) V7 € Zy, (3-3¢)
b (Sns @n) + by (Tn, an) — cr(pn, an) = Galgn) Van € Wy, (3.3d)

where the bilinear forms are defined as in (2.14), and suppose that hypotheses (HO)—-(H2) hold. There exists a
constant C' > 0, independent of A and h, such that

(e 6ns sl < € (I Bilsg, +11Grllqy, + 1 sllz, + 1Gllws, ) - (3.4)
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We are now in a position of stating the well-posedness of the Galerkin scheme (3.2) and the associated Céa’s
estimate.

Theorem 3.2. Suppose that (HO)—(H2) hold. Then, there exists a unique (Up, Op, op, pn) € Hp X Qp xZp x Wy,
satisfying (3.2). Moreover, there exists a constant Cgap, tndependent of A and h, such that

| (whs by iy o)l < Costans (|| F]

In addition, there exists Ceen > 0, also independent of X and h, such that

0.2+ llgllo.c + [llo.e + llmrll—1/2,00,r, + llPrll1/2,00,r,) - (3.5)

(v —wp, & — dn, 0 —on,p—pn)ll

o 6

Uhiglfih lw—vallio+ whlrelgh ¢ —Ynlloo + Tgfél;h lo = Thllaiv,e + qhigvh lp— QhO,Q> .
Proof. We first observe that (3.5) is a particular case of estimate (3.4). Consequently, the unique solvability
of problem (3.2) can be readily deduced. In fact, since in finite dimensional linear problems existence and
uniqueness of the solution are equivalent, it suffices to note, thanks to (3.5), that the solution of the Galerkin
scheme (3.2) with homogeneous data will be the trivial one.

It remains to prove (3.6), for which we proceed as in the proof of Theorem 5.1 from [41]. Firstly, testing
equations (2.13a)—(2.13d) with (v,v, 7, q) = (Vn, ¥n, Th, qn) € Hp X Qp X Zp, x W), and subtracting the resulting
system from (3.2), we get the Galerkin orthogonality equations

as(u — wup,vp) + bs(vp, ¢ — dp) =0 Yo, € Hy, (3.7a)
bs(u — up, ¥n) — cs(d — dn,¥n) + bsg(Yn,p — pn) =0 Vn € Qn, (3.7b)
ap(c —op,Th) +bp(Th,p—pr) =0 VT, € Zy, (3.7¢)
bsf (¢ — dnyqn) +bs(0 —on,qn) —cy(p — P qn) =0 Vqn € Wh. (3.7d)

Next, given v, € Hy, Un € Qn, T € Zp, and G, € Wy, we let Fy € Hj, G, € Qs F, e Z; and Gy € W/, be the
functionals defined as follows:

Fi(vp) = —as(w —Bp,vp) — bs(vn, & — ), Gr(vn) := —bs(w — Op, Pn) + o — ny n) — by (Un, 0 — i),
ﬁ2(7'h) = —as(0 —Tp,Th) — bp(Th, D — Qn), éQ(Qh) = —bss(0p — &h,Q) —br(e —=Th,q) +cr(p— Qnqn)-

Then, adding and subtracting convenient terms to the individual errors in system (3.7), and using Lemma 3.1,
it follows that

(0 = wnsbn = 6070 = o = ) || < € (1Bl + 1Gullqy, + 1 Ballzg + 1Callwy ) - (38)
Using the boundedness of the above bilinear forms (¢f. (2.15)), we have

1F |y, < 26C2llw =Bl + Vellé — dnlloe;

~ =R 1 ~ e} ~
||G1||th < \/E||u = Upll10+ X||¢ — Yoo + XHP — qnllo,Q,

1Bz < %”" — Zullaivie + [Ip — @nllo.0,

2

-~ « -~ ~ « —~
[Galiw, < 10 = Gullos + o = Pl + (c0-+ 5 ) 1o = Bl

Therefore, we obtain using the triangle inequality and estimate (3.8),

Hl(u _uh7¢)_¢h70 _o-hvp_ph)IH S (1 +é> H‘(U—aha¢_{?\hvﬂ'—?h,p_ ah)‘Ha
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where
«o

~ 1
C:= Cmax{2u0k72 +V4d, X(1-|-o¢) + V4, Ki +1, \
1

(a+1)+co+1}.

Above, C' can be bounded by a constant independent of A because A=1(1 + ) and aA~1(1 + a) are bounded.
In particular, they are negligible when volumetric locking occurs (i.e. as A — o). The proof ends by observing
that vy, ¥y, T) and @, are arbitrary. O

3.1. Specific finite element subspaces

The aim of this section is to take advantage of the flexibility of conforming methods to provide concrete
finite element subspaces satisfying the crucial hypotheses (HO0)—(H2). To that end, given an integer | > 0 and
a subset S of RY, we let P;(S) (resp. P;(S)) denote the space of polynomials of degree at most [ on S (resp. of
degree equal to [ on S). We also set P;(S) := [P;(S)]%.

Let k > 0 be an integer. The generalized Hood-Taylor element (see, e.g. [17], Sect. 8.8.2) consists of the pair
(Hy, Qn) specified by

H), = {v, € [C(V)]?: vilr €Ppia(T) VT €T, v, =0 on Ty} (3.9)

and
Qn 1= {vn €C(Q) : Ynlr € Prya(T) VT € T} (3.10)

This pair satisfies the inf-sup condition in hypothesis (H2). We refer the reader to [15] for the proof (see also
[17,19]). In addition, the following approximation properties are well-known to hold:

(AP}!) There exists C > 0, independent of h, such that for each s € (0,k + 1] and each w € H*t2(Q), there

holds
inf — < Ch M |u|s10.0.
Lt fu = walho < O fullia
(APi) There exists C' > 0, independent of h, such that for each s € (0,k + 1] and each ¢ € H*T1(Q), there
holds

inf — ol an .
st |6 — Unllon < |6]ls+1,0

Furthermore, the local Raviart-Thomas space of order k, for each T' € 7},, is defined as
RT(T) := Py(T) & Py (T)e,

where x is a generic vector in R?. To approximate the fluid flux o we consider the global Raviart-Thomas space
of order k which is given by

Zy ={mp € H{div;Q) : Tp|l7 e RT\(T) VT €Tp, 7, =0 on T,}. (3.11)
We consider discontinuous polynomials of order k for the fluid pressure:
W, o= {an € L*() : qu|lr € Pu(T) VT € Tp,}. (3.12)

It is well-known that the pair (Z;, W},) satisfies the hypotheses (HO) and (H1) (see, e.g. [20,33]). This fact
completes the requirements of Theorem 3.2, and therefore the well-posedness of (3.2) holds for the above
subspaces.

Let us now recall the approximation properties of Zj; and Wy,.

(AP7) There exists C > 0, independent of h, such that for each m € (0, %k + 1] and each o € H™(Q) N Z, with
dive € H™(Q), there holds

inf o —74llaiv.e < CR" (| |lm0 + [[dive|m.q).
ThEZp
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(AP?) There exists C' > 0, independent of h, such that for each m € (0, k+ 1] and each p € H™(Q), there holds

inf — < Ch"™|Ip|lm.-
thélWh ||p Qh| 0,0 = ”pHmﬂ

From the above discussion, the following theorem provides the theoretical rate of convergence of the Galerkin
scheme (3.2) under suitable regularity assumptions on the exact solution.

Theorem 3.3. Given s,m € (0,k + 1], assume that u € H*"2(Q), ¢ € H*T1(Q), o € H™(Q) N Z such that
dive € H™(Q), and p € H™(Q). There exists Crate > 0, independent of A and h, such that

l(w —un, ¢ — dn,0 — on,p—pu)l < Cratehmin{s+17m} (||u||s+2’9 + H¢||s+1,9 + ”UHm,Q + ||diV0'||m’Q + Hp”m,ﬂ) .

Proof. The result is a straightforward application of Céa’s estimate (3.6), and the approximation properties
(AP}), (AP}), (APf) and (AP}). 0

Remark 3.4. To approximate the solution of problem (2.13), one may consider other finite element sub-
spaces available in the literature. For example, for each T' € 7, consider the Brezzi-Douglas—Marini space

BDM(T) := Py (T) of order k > 1 (see, e.g. [20]), and the enriched space P1,(T) := [P1(T) @ span{br}]?,

where by is the bubble function defined as by := Hf;l A; and {A;}, 1 <14 < d+1, are the barycentric coordinates

of T'. The following finite element spaces,
H), = {v, € [C()]": vplr €P1(T) VT €Tp, v, =0 on Ty},
Qn = {vn €C(Q) : Yp|r €PL(T) VT € Ty},
Zyp :={mp € H(div; Q) : 7h|r e BDMy(T) VT €T}, 7,-n=0 on T,},
Wi, = {qn €L*(Q) : qu|lr € Pr_1(T) VT € Ty},

(3.13)

result also in a well-posed Galerkin scheme (3.2) with optimal error bounds. In particular, we recall that
(Hp, Qp), which is usually referred to as the MINI-element [8], satisfies the hypothesis (H2). For its proof in
two dimensions, we refer to [8] (see also [20]). The stability of this element in three dimensions follows, as in
the two-dimensional case, by using a suitable Fortin operator (see, e.g. [16]).

The theory developed in this section holds for combinations of the pairs (Hy, Q) and (Zp, Wj,) resulting
from the finite element subspaces (3.9)—(3.13).

4. A RESIDUAL-BASED a posteriori ERROR ESTIMATOR

We now develop a reliable and efficient residual-based a posteriori error estimator for the Galerkin scheme
(3.2). In doing so, we may use any choice of finite dimensional subspaces satisfying the hypotheses of Section
3. For simplicity, however, we consider the finite dimensional subspaces (3.9)—(3.12), and restrict ourselves to
the problem in two dimensions. In Section 4.3, we will comment on the main consideration for extending the
estimator to three dimensions. We begin by introducing further notation and definitions.

For each T € T, we let £(T') be the set of all edges of T, and denote by &), the set of all edges of Tj, that
is, & = Ep(Q) U ER(Tw) U EL(Tp), where E,(Q) :={e € T, : e C Q}, E(Tw) :={e € T : e C T} and
En(Ty) :={e €T : e CT,}. In what follows, h. stands for the diameter of a given edge e € &),. For every edge
e € &, we fix a unit normal vector n. := (ny,n2)7 to the edge e, and let s, := (—ng,n1)T be the fixed unit
tangential vector along e. However, when no confusion arises we will simply write n and s instead of n. and s.,
respectively. Given an edge e € £,(2), 7 € L?(Q2) and £ € [L(2)]**?, such that 7 € [C(T)]? and & € [C(T)]**?
for all T' € T, we let [T - s] and [€n] be the corresponding jumps across e, i.e. [7-s] = {(7|7)le — (T|1/)]e} - s
and [én] := {(&|1)|e — (€]7)|c }m, respectively, where T and T” are two triangles of 7}, sharing a common edge
e. Finally, given scalar and vector-valued fields ¥ and 7 := (7;)1<;<2, respectively, we set

oT: or o
rotT:= — — =% and curly = 8%%/) '
Or1  Oxo T 9z1
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Now, let (wp, dn,0on,pn) € Hp X Qp X Zp, x Wy, be the unique solution of problem (3.2) and introduce the
global a posteriori error estimator

1/2
O := { Z (©2r+6% s+ 9§f,T)} ’ (4.1)

TeT),

where O 7, O 1 and O, 1 are the local error indicators defined for each T' € 7}, as follows:

02 r = hzllf +div ue(un) = Dlsr + D helllne(un) — onI)n]I3

c€E(TINER(Q)
2
+ S hellmr — [(2pe(un) - gnI)n]|3 ., (4.2)
c€E(T)ER(TH)
2 2 2
O = 1 [V = pg + o]+ frot (Lo = pg)| ne || (G =) o]
Fo= W ||[Ven—pg + onl| R ot (Lon—pg)l|  + > ¢ on=rg)-sf||

c€E(T)NEL(Q)

| } (4.3)
0,e

( O'h—/)g>'8+ddiS
2

+ > {h Ipr = pall§ e + Pe

e€E(T)NEL(Tp)

2 2
+ H (co n a) P — %dm tdivey, —f (4.4)

0,7 A

1
O = ||x(on —apn) + divuy,
A 0,T

The residual character of each term defining (©s7 + ©f 1 + O.f 1) is a consequence of the strong problem
(2.11) and the regularity of the weak solution at the continuous level. It is important to remark that the third
term of O 1 requires mr € L2(e) for all e € £,(I',), which will be assumed from now on. Similarly, as we will
see in Lemma 4.5 (see, in particular, Eq. (4.24)), we need to assume that pr € H!(T',). The latter implies that
the fourth and fifth terms of © 1 are well-defined.

In what follows we prove the main properties of ©, namely its reliability and efficiency.

4.1. Reliability of the a posteriori error estimator

In this section we focus on the proof of the following result.

Theorem 4.1. There exists a constant Cye > 0, independent of A and h, such that
|||(’u’7’u’ha¢7(rbhaa-*o-hap*ph)m S Crel®7 (45)
where |||-|| was defined in (2.19).

The proof of Theorem 4.1 will be separated into several steps. We start by providing a preliminary upper
bound for the total error, as done in [36]. The idea is to bound the global error by dual norms of the residuals
associated with problem (3.2). The following result holds the key to this.

Lemma 4.2. Let (u,¢,0,p) € HxQXZxQ and (up, o, 0r, pr) € Hp X Qp x Zp, x Wy, be the unique solutions
of problems (2.13) and (3.2), respectively. There exists a constant C > 0, independent of A and h, such that

lI(w —un, ¢ = ¢, 0 = onp = pu)ll < C ([ Fller + [G1llor + [ F2llz + 192]lQ)

where F1(+) on H, G1(+) on Q, Fa(-) on Z and Ga(+) on Q denote the linear functionals defined, respectively,
by

Fi(v) := F(v) — as(un, v) — bs(v, on), (4.6)
G1(1) = —bs(un, ) + cs(dn, V) — bey (¥, pn), (4.7)
Fo(r) == G(7) —ag(on, T) = bs(T,pn), (4.8)
Ga(q) == H(q) = bsf(¢n,q) — by(on, q) + cp(pn, q) (4.9)
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Proof. Adding and subtracting (uy, ¢pn, o, pr) to the continuous solution in system (2.13), the conclusion
follows directly from the estimate (2.21) by taking Fy = F1, G1 = G1, Fa = F3 and Gy = Gs. O

Having proved Lemma 4.2, and noting that G;,Gs € Q' satisfy

042

A

a .
and  ||Gallq < H(Co+ )ph— X(bh—&-dlvah—é

1 .
161l < | 0n — apn) + v

. (4.10)

0,Q 0,2

it is clear that in order to show (4.5), we need to obtain suitable upper bounds for ||F;|m and ||Fz|z. From
the Galerkin scheme (3.2) we note that F(vy) = 0 for all v, € Hy,, and Fo(7p,) = 0 for all 7, € Zj,. We can
therefore write

1Fi e o= sup 122 = wn)l (4.11)
veH  ||v]1,0
v
and
1Pl o= sup ZAT=Tn)l (4.12)

rez |ITllaiv,0
Th7£0
with v, € Hy, and 75 € Zj, suitably chosen functions that will be defined later.

4.1.1. Upper bound for || F1||w

To satisfy homogeneous Dirichlet boundary conditions, we introduce the Clément-type interpolant
I, : HE, (Q) = Xpr,,

where

Xnr, ={veECQ): v|]r €Py(T) VT €Ty, v=0 on TI,}CH (Q),

with H%u (Q) defined as in (2.1). It can be shown that this operator satisfies the same approximation properties
as the standard Clément interpolant [27], i.e.

lv —Znr, (V)]0 < ClhT|’U|1,A(T) VT €Ty, and |v—Tnr, )]0, < Cghé/Z‘UhA(e) Vee&,, (4.13)

where A(T) and A(e) are the union of all the elements intersecting with 7' and e, respectively. Furthermore, we
denote by I}, i, the vector operator defined componentwise by Zy r,, .

Next, proceeding analogously to Section 6 of [59], we state the main result of this section.

Lemma 4.3. Assuming that mr € L?(e) for all £,(T,), there exists a constant C' > 0, independent of A and
h, such that

1/2
[Fill < C{ > @i,T} :

TeT,

where O ¢ is defined in (4.2).
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Proof. Integrating by parts (4.6) on each T' € 7}, yields for all w € H,

/f w+/ mr - w—2u/ /thdlvw

Z/fw'i‘ Z /mr’w—Z/Qusuh —¢pI): VvV

TET, ee€n(Tp) TET,
= /mp w + Z {/ f+div(2ue(up) — ¢pl)) - w — (2ue(up) — pnI)n - w}
e€&n(Ty) TET, or
= Z / JF+div (2ue(un — ¢pl)) -w + Z /mrf (2pe(un) — ¢nd)n) - w
TeT, eegh(rp)
Z /[[ 2ue(up) — opI)n] - w
e€&(Q)

Given v € H, set vy, in (4.11) to vy, := Ty, (v) and let w := v — vy. Then, applying the Cauchy-Schwarz
inequality to each term above, and by the approximation properties of Z, r, (cf. (4.13)), we obtain

1/2

2
A(e)

1/2
|F1(w)| < C{ Z @g,T} Z [0l acr) + Z 10113 A + Z

TeT, TeT;, e€&n(Q2) e€&n(Typ)

The result follows by using the definition of F;, and noting, by the shape-regularity of the mesh, that the
number of triangles in A(7T") and A(e) are bounded. O

4.1.2. Upper bound for || Fs]|z/

In this section, a stable Helmholtz decomposition of Z and suitable interpolation operators will be of
paramount importance to define 7, appearing in definition (4.12). This term is necessary to provide an upper
bound for ||F3|z/. The approach we follow has been widely used in a posteriori error estimators for mixed
methods, see for instance [4,22,35].

We start by introducing the L?(Q)-orthogonal projection onto Wy, (cf. (3.12)), PF : L2(2) — W,, which, for
each ¢ € H™(Q2), with 0 < m < k + 1, satisfies the approximation property

g — PE(@)|sr < Ch™*|glmr YT €Ty, Vs e{0,...,m}. (4.14)

In addition, letting ZF7T : {'rh € H(div; Q) : 7|y € RT,(T) VT € Tp}, we recall the classical Raviart—
Thomas interpolation operator Hh H'(Q) — ZfT, which, given 7 € H(Q), is characterized by the identities

/HZ(T)-CZ/T~C V¢ ePr(T), VT €7T;, when k> 1, (4.15)
T T
/(HZ(T) R OES /(T “n)Yp Vi € Pi(e), Ve € &, when k > 0. (4.16)
Consequently, it is not difficult to check (see, e.g. [33], Lem. 3.7) that
div (I} (7)) = Pi(divr) VT e HY(Q). (4.17)
Moreover, the following local approximation properties hold [20, 26, 33]:

— For each 7 € H™(Q), with 0 <m < k+1,
|7 — T (P)]jo.r < ChP|T|mr YT € T (4.18)
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— For each 7 € H'(Q2) such that divr € H™(Q), with 0 <m < k + 1,
|div (7 = T (7)) [lor < CAF|AiV Tl VT € Ty (4.19)
— For each 7 € H(Q), there holds,
I(r = T(7)) - mflo,e < Ch/?|7 |17, (4.20)
where T, denotes an element of 7, having e as an edge.

We now introduce a stable Helmholtz decomposition of Z. This will require I';, to lie on the boundary of a
convex domain containing 2. We refer to Lemma 3.9 of [4] for the proof of this result in the tensorial case.

Lemma 4.4. Assume that there exists a convex domain E such that Q@ C E and Ty, C OZ. Then, foreachT €Z
there exist ¢ € H'(Q) and ¢ € Hf, (Q), such that

T=(+curly in €, and

(4.21)
where C' is a positive constant independent of T, { and p.

We now introduce the discrete version of (4.21) and follow similar steps as in Lemma 3.8 of [36] (see also [35],
Sect. 4.1). Given T € Z and its Helmholtz decomposition (4.21), we let ¢}, := I} (¢) and ¢y, := Tp, r,, (), where
Zhr, is the Clément-type interpolant given in Section 4.1.1. We then set the discrete Helmholtz decomposition
as Ty, 1= (p, +curlyy, € Zj,.

From the above discussion and by definition of F5 (c¢f. (4.8)), we can write

Folr —14) = Fa(¢ — €p) + Falcurl (¢ — pp)). (4.22)

We will bound each term on the right-hand side of (4.22) separately.

Proceeding as in the proof of Lemma 4.4 from [35], applying the Cauchy—Schwarz inequality, using the
identities (4.15)—(4.17), the approximation properties (4.18) and (4.20), and the fact that the number of tri-
angles in A(T) and A(e) are bounded (due to shape-regularity of the mesh), we obtain, after some algebraic
manipulations,

1/2

Bl -l €8 X W[V -pg+ Tan| 4 3 hloe-mliep Il (4.23)

TeT), ec&n(Ty)

The upper bound for | F» (curl
the identity curl (p — @) -1
Lem. 3.5, Eq. (3.34)), we obtaln

dp dp
(curl (¢ — 1) - m, pr)r, = < TP s0h> == ) / (0 — on)—— (4.24)
Ty e€&R(Tp)

©n))| follows by similar arguments as in Lemma 4.3 of [35]. Indeed, using
(<p ©n), assuming % € L3(T',), and integrating by parts on I, (see [28],

D—‘Q_/—\

We can then write Fa(curl (¢ — ¢4)), using (4.24) and applying Theorem 2.11 of [37] to integrate by parts
elementwise, as

Fo(curl (p — ¢p)) = —/Q (ﬂah — pg) -curl (¢ — ¢p) — (curl (¢ — vn) - n, pr)r,

:—Z/rot ah—pg)sa ©n) Z/ ah—pg ]](so—soh)

TeT), ecéy,

+ > /{ Lon—pg 8+ddsr}(<ﬁ—<ph)~

ee&y (T
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Next, applying the Cauchy—Schwarz inequality, using (4.13), and the shape-regularity of the mesh, it follows

that
[(Ron—s9) <],

|f2<cur1<so—soh>>|sc{2h% or (Zon—pg)|, + 3 e

TeTy T eGS;, Q)
, 1/2 (4.25)
dpr
PO (hon—ra) s+ 00| ¢ leho

e€&p(

Finally, combining (4.23) and (4.25), and using the stability of the Helmholtz decomposition (4.21), we obtain
the desired bound as summarized in the next lemma.

Lemma 4.5. Suppose that the hypotheses of Lemma 4.4 hold. Assume further that pr € Hl(Fp). Then, there
exists C > 0, independent of X and h, such that

1/2
|Follzr < O{ > @?,T} :

TeT),
with Oy 1 defined in (4.3).

We end this section by noting that the reliability estimate (4.5) is a direct consequence of Lemmas 4.3 and 4.5,
and the estimates given by (4.10)

4.2. Efficiency of the a posteriori error estimator
The main result of this section reads as follows.
Theorem 4.6. There exists a constant Ceg > 0, independent of X and h, such that
Cot® < ||[(w — up, & — ¢pn,0 — o, p — pr)|| + h.o.t., (4.26)
where h.o.t. is a generic expression denoting one or several terms of higher order.

To obtain (4.26), we will find upper bounds for each estimator term in (4.2)—(4.4), separately. We can
immediately deduce the estimates for the zero-order terms appearing in the definition of ©,¢ 1 (cf. (4.4)), as
done in the following lemma.

Lemma 4.7. For all T € Ty, there hold

1 . 1 «
HA(% —app) + divuy, < V2l —upllir + X||¢ — énllo,r + XHP = pnllo,s

0,T

H( >ph— —o¢n +divey, — ¢

a 2
< |l = onllaiv,r + XH¢ = énllo,r + (Co + ) llp — pullo,7-
0,7

Note that volumetric locking is not a concern in the above two inequalities, because at least one term on the
right-hand side does not vanish when A — oco.

To bound the remaining terms, we introduce further notation and preliminary results. Given T' € 75 and
e € E(T), we let &1 and P, be the usual element-bubble and edge-bubble functions [57], respectively. In
particular, &7 satisfies &7 € P3(T), sup®r C T, &7 = 0 on T and 0 < &7 < 1 in 7. Similarly, one has
O |r € Po(T),sup®, Cw. :=U{T"€Tp: ec&(T")}, . =00n 9T\ {e} and 0 < &, < 1 in w.. We then have
the following useful result.
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Lemma 4.8. Given an integer k > 0, there exists an extension operator L : C(e) — C(T') such that L(q)le =g
for all ¢ € Py(e). Moreover, there exist positive constants y;, ¢ € {1,2,3,4}, which only depend on k and on the
shape-reqularity parameter of the mesh, such that for each T € Ty, and each e € E(T),

|®r9llir < 1082 <Ml Wl V¢ € Py(T), (4.27)
1@eL(@)F.e < Nallfe <721 %allf Vq € Prle), (4.28)
and
vshe*lalloe < 122°L@lor < 7ahi’lalloe Vq € Pile). (4.29)
Proof. See Lemma 4.1 of [57] or Lemma 3.3 of [58] for details. O

The following inverse estimate will also be used.

Lemma 4.9. Let k,m,l € NU{0} such that I < m. There exists a constant C > 0, depending only on k,m,l
and the shape-regularity constant of the mesh, such that for each T € T}, there holds

g1 < Cin s ™ gl Vg € Pr(T). (4.30)
Proof. See Theorem 3.2.6 of [26]. O

Furthermore, we will need the following trace inequality (see, e.g. [7]):

lollo.e < Car (B2 2l0lo.r. + B2ohr.) Vo€ HY(T.). (4.31)

€

Above, T, is the mesh element introduced in (4.20). Moreover, the constant Ci, > 0 depends only on the
minimum angle of T,.

In what follows, considering o, the approximate fluid flux in problem (3.2), we often write £ := 1o, and
assume, for simplicity, that for r,m > k + 2, the permeability satisfies: x|z € H'TY(T) for all T € T;, and
ke € H™HL(e) for all e € &,. Furthermore, the vector counterpart of the projection operator PF (cf. (4.14))
will be denoted in boldface.

The following three lemmas provide upper bounds for the estimator terms in (4.3). We present here proofs
inspired by the proofs of Lemmas 6.10-6.12 in [23]. Similar ideas can be found in [21].

Lemma 4.10. There exists a constant ¢y > 0, independent of A and h, such that for oll T € Ty,
hr Hrot (go'h — pg) Ho . <e¢i (||lo —onlldaiv,r +hot.). (4.32)

Proof. Adding and subtracting P} (€), and using the triangle inequality, there holds

([rot (& = pg)llo,r < Cl& = PL(&)]1.r + [[rot (PL(&) — pg)llo 1 - (4.33)

Applying now (4.27) to the second term on the right-hand side of (4.33), and noting, by Lemma 2.3, that
pg = Vp+ &+ (o —oy) in Q, we obtain

Irot (Pi(€) ~ po)l} . < |03 rot (P1€) =), = [ @1 (ot (Pi€) ~ po)?
= [ @rrot (P1€) o) rot (P1(©) — ¢~ Lo —n))
= [ eurl (@rrot (P5(€) = 0)) - (Pi(©) €~ Lo —n)) .



ERROR ANALYSIS OF A CONFORMING AND LOCKING-FREE FOUR-FIELD FORMULATION S491

It then follows fromlIt then follows from (4.27) and (4.30) that

Irot (P5(€) = pg) o0 < Cimr1hz’ (ne ~Pi©lor + || 2o — )| T) : (4.34)

Substituting (4.34) into (4.33), using the lower bound for x, and applying the approximation property of P} in
(4.14), yields

hr |rot (&€ = pg) .+ < C (o = onllav.r + By €l i) -
Since r > k + 2, the result follows. O

Lemma 4.11. There exists a constant co > 0, independent of A and h, such that for oll T € Ty,

b ||Ver = pg + Lou| < ea(hrllo = anllawr + I = pallor +hoot.) (4:35)
Proof. First, adding and subtracting P} (£€), it follows that
IVer = pg + &llo.r < IVPR = pg +PLEor + 1€ = Pr(&) oz (4.36)

To bound the first term on the right-hand side of (4.36), we apply estimate (4.27), integrate by parts, and use
the identity pg = Vp + &€ + (0 — o) in €, to obtain

2
1950 = pg + PLE)I31 < |1 (Ton — pg + PLO)|

)

=71/T<I)T (Vph—pg+’PZ(€))-V(ph—p)—%/Tfl’T (Vo — pg +Pp(8))
< (Lo —on) +&-Pi(e)

— — [ =) div (81 (Vi = pa + PHE) ~ 1 [ 1 (Vo — pa = PF(©)
% (Lo —an)+6-P(&)-

Using the Cauchy—Schwarz inequality and the estimates (4.27) and (4.30), it follows that

|O,T) )

where C' > 0 is independent of A and h. Combined with (4.36) we obtain estimate (4.35). O

r - n r
19 — pg +Ph(€)llg.z < C (th Ipn = plloz + | 2o —an)]|  +lE=Pi©)

Lemma 4.12. There exists a constant c3 > 0, independent of A and h, such that for all e € E,(Q),

n2 [[(Ron=ra) s, <er 3 (o= oullawr +hot). (4.37)

TCwe

Furthermore, assuming that pr is a piecewise polynomial, there exist constants cy,cs > 0, also independent of A
and h, such that for all e € &,(Tp),

d
(ZUh—PQ)S‘Fﬂ

h1/2
¢ ds

< ¢4 (|Jlo — onllaiv,r +h.o.t.), (4.38)
0,e

IO,T + (1 + hT)HO' — O'thiv,T + h.O.t) . (4.39)

he/?llpr = prllo.e < s (lp — pn
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Proof. Let us first prove (4.37). In order to simplify notation, given e € &,()), we decompose [(£ — pg) - 8] into
Xe = [(§ =P} (&) - 8] and ¢ == [(P}(€) — pg) - s].
Applying now the estimate (4.31) and using similar arguments as in the previous two lemmas,
1€ = pg) - s]llo,c < lIxello,e + lICello.e
<> Cu (h1E = PR ©) o + hY21E = PR (Ohr) +llcello.e

TCwe
<h72 37 Cu (1€ = PR o + helé = PR E)hr) + I lloe (4.40)
TCwe
<Ch V2N M E g + 1Cello.es

TCwe

where we recall that we := U{T" € 7j, : e € E(T")}. To estimate |[(c[[, ., We use the second inequality in (4.28),
integrate by parts, and use the identity pg = Vp + £ 4 L(o — o},) in Q. This yields

1GI2, < K2R, = / (BeL(C)) Ce

€

=2, { | @eccoror €)= o)~ | <'Pz"<£>—pg)-curl(@ec@e))}

TCwe
_ ro mg) — _ miey_ e Mg _ o) — - eurl (B,L(¢ |
‘%l{ [ @ecicomor Pr€)=pa) = [ (Pr©)— ¢~ Lo~ 1)~ Vi) - curl (9.(¢ ))}

where clearly [,.Vp-curl (®.£((.)) = 0 for all T C w,. Using the Cauchy-Schwarz inequality and the inverse
estimate (4.30), it follows that

lcellbe <€ h;l{hT Ivot (P32(€) = p9)llo.r + 1€ = PR ©lo.r + || 2o —on)]| }u@ec(ce)uo,T.

TCwe
(4.41)

Furthermore, by (4.29) and by construction of ®., we obtain ||®.L((.)|lo,r < ||<I>é/2£(§“e) lor < 74hé/2||§e||0’e.
This, together with estimates (4.14), (4.32) and (4.41), and the fact that h. < hp for all T C w,, gives

Cello.e < Ch2 > (o = onllaiv.r + b5 Elmirr) - (4.42)
TCwe

The result (4.37) follows by combining (4.40) and (4.42).
To prove (4.38), we proceed as in the proof of (4.37). Given e € &,(T'), we let g := P} (§) — pg — d(f—sr. Since
pr is assumed to be a piecewise polynomial, we use similar arguments as in (4.40) to obtain

lloc| (2),e < 72||(I)1T/2Qe||g,e =72 / (PcL(0c)) 0c

= [ oo (Pr© -6~ Lo —an) - |

T(‘.

('P}L"(E) — ¢ - Z(O' —op) — Vp) ~curl (®.L(0)),

where T, denotes the only element of 7, having e as an edge. Therefore, (4.38) follows by mimicking the steps
in the proof of (4.37).
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Finally, proceeding exactly as in the proof of Lemma 4.14 from [35], we find

Ipr = pallo < Cur (h™llp — pn

0,7 +h(13/2|P*ph|1,T)
= Gio (12 = oz + 272 g — Lo~ Lo — )~ T )
K K 1,7

< Cy <hel/2pph||0,T + hi/Q vah - pg + QU’hH + hi/Q HQ(U - O’h)H > .
K 0,T K 1,7

The result (4.39) then follows immediately from (4.35) and the fact that h, < hyp. O

We remark that (4.38) holds also when pr is sufficiently smooth. In this case, we can approximate this data
by a Taylor polynomial approximation and obtain (4.38) with further higher order terms appearing on the
right-hand side.

Next, we provide the upper bounds for the estimator terms in (4.2). Our general strategy consists of mimicking
the proofs of the results in Section 6 of [59] under further assumptions on the data. We have the following lemma.

Lemma 4.13. Suppose that f and mrp are piecewise polynomials. There exist constants cg,cy > 0, independent
of A and h, such that for all T € T, and e € E,(T)),

hr || f +div (2ue(un) — ¢nI)llor < 6 (lu —unllir + ¢ — dullor) (4.43)
he?|mr — (2ue(un) — ¢gpD)nllo.e < c7 (Jlu—wnlir + 16 = ¢nllor) - (4.44)
Furthermore, there exists a constant cg > 0, also independent of X and h, such that for all e € &,(R2),
he\12ne(un) — n)n]lloe < es Y (luw—wnllir + |6 — dnllor)- (4.45)
TCwe

Proof. We prove (4.43) and (4.45) using similar arguments as in the proof of Lemma 4.12. We define xp :=
f +div (2ue(up) — ¢pI) and x, := [(2ue(up) — ¢pI)n]. Then, applying (4.27) to || xrllo,r, using that f =
—div (2ue(u) — ¢I) in Q (¢f. Lem. 2.3), integrating by parts, and finally using the inverse estimate (4.30), we
obtain
HXT||(2),T < ’YlH‘blT/zXTHg,T =N /T Xt
= ’71/ Prxy - (f +div (2ue(un) — onl)) = 71/ Prxp - div (2ue(un —u) — (on — ¢)I)
T T

_— /T V(@rxr) : (2pe(un —u) — (dn — H)I) < Chy [ Srxr

lo,7 [12ue(un —u) — (¢ — O) g 1 -

By (4.27), [|®rxrllo,r < lIxzllo.r, thus hrlxrlor < C (|lu = wsllvz + |6 — énllo,r) providing (4.43).
Next, denoting by £ the vector operator defined componentwise by the extension £ : C(e) — C(T') introduced
in Lemma 4.8, using inequality (4.28), and integrating by parts, we find

el < 02X = [ @L00) X = [ @eL00) - (x. + [(2ue(w) ~ oDn])

€ €

= % { [ voocte) s Custun — 0~ @n - D+ [ (@cL0c) x|

TCwe

< 3 hgt (126e(un —u) = (6 — D)o + hrllxrllor) 12L(x) o

TCwe

<O 37 hpt (lu — unllir + 16 — éullor) [®eLOx,)llo.r-
TCwe

(4.46)
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Similar to the steps in the proof of (4.37) we note that || P.L(x.)llo.r < 'y4hé/2||xe|\. Combined with (4.46) this
implies
he?Ixelloe <C Y (lu—unlir + 6 = éullor)
TCwe

since h, < hy for all T' C w,. The result (4.45) follows.
Finally, proceeding as in the proof of (4.38), it is not difficult to see that the proof of (4.45) is similar to that
of (4.44). O

Note again that, in the above lemma, if the data is sufficiently smooth instead of piecewise polynomial, then
higher order terms arising from suitable polynomial approximations will appear on the corresponding right-hand
sides. We conclude this section with the proof of Theorem 4.6.

Proof of Theorem 4.6. The result follows directly from Lemmas 4.7, 4.10, 4.11, 4.12 and 4.13. O

4.3. Extension of the estimator to three dimensions

We briefly discuss the a posteriori error estimator in three dimensions.

Given a sufficiently smooth vector field 7, we let curl 7 := V x 7. Furthermore, we take a tetrahedralization
T, of Q and consider the same notation as in the introduction of Section 4 (replacing the word “edge” by “face”).
Given a face e € &,(Q), 7 € L%(Q) and ¢ € [L2(Q2)]3*3, such that T € [C(T)]® and & € [C(T)]**3 for all T € Ty,
we let [T x n] and [€n] be the corresponding jumps across e, namely, [T x n] := {(7|r)|c — (T|17)]e} X n and
[€n] := {(&|1)]|e — (&|77)|c}m, respectively, where T and T” are the elements of 73, sharing a face e.

The local error indicator © ¢ now reads

2 .12 n 2 2 n 2
O% r:=h7 ||Vpr —pg + —op + bt ||curl (=op — pg + he
’ K 0,7 K 0,7
c€E(T)NER(Q)

2
)
0,e

while the error indicators ©, r and O,y 1 are defined as for the two-dimensional case in (4.2) and (4.4), respec-
tively. We then set the global indicator as in (4.1).

All the results for the reliability estimate in Section 4.1 hold also in the three-dimensional case, except the
upper bound for ||Fz|z in Section 4.1.2. To bound this term, we require the following three results.

We require the 3D analogue of (4.24). This is an immediate consequence of the identity

2

(2w ) <o

,€e

+ Y {herr — pullg.e + he
c€€(T)NER(T,)

(ﬁo'h —pg) X n+ Vpr x n}
K

(curlp - m, X)r, = —(Vx x n,@)r Veo,x € H'(Q).

Its proof, like in the 2D case, follows from Lemma 3.5 of [28].
We require also the following integration by parts formula:

/curlT-x—/T-curlxz<-r><n,x>aT
T T

for all 7 € H(curl; Q) := {7 € L*(Q) : cwrlT € L*(Q)} and x € H'(Q). Above, (,-)sr stands for the duality
pairing between H~/2(9T) and H'/2(9T).

Finally, the stable Helmholtz decomposition in Lemma 4.4 is also valid in this case (see [34], Thm. 3.2), where
curlp in (4.21) is replaced by curle (¢ € Hf, (Q)). A proof for the upper bound for || F||z:, the proof of the
reliability of ©, as well as the efficiency estimate, proceed now as in the two-dimensional case.
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5. NUMERICAL EXAMPLES

We present several tests illustrating the performance of the Galerkin scheme (3.2), verifying the reliability
and efficiency of the a posteriori error estimator ©, and confirming the locking-free estimates. All simulations
were implemented using the FEniCS library [3]. As a direct solver we used the Multifrontal Massively Parallel
Solver MUMPS [5]. In all our examples, we use the finite element spaces (3.9)—(3.12).

In what follows, we denote by N the total number of degrees of freedom. The global error and the effectivity
index associated to the global estimator © are denoted, respectively, by

e(u, d,0,p) i= {e(w)® +e(9)’ + ()’ +e(p)*}? and et£(0) = e(u,¢,0,p)/O,
where
e(u) == |lu —upl,o, €@ =|lo—dnlloa, el(o):=l|o—0onldav.a e :=Ip—puloa-

Moreover, using the fact that cN~1/4 < h < CN~? the experimental rate of convergence of any of the above

quantities will be computed as
rate := —d [log(e/e’)/log(N/N")],

where N and N’ denote the total degrees of freedom associated to two consecutive triangulations with errors e
and ¢’

The examples to be considered in this section are described next. Example 1 is used to explore the perfor-
mance of the two-dimensional Galerkin scheme (3.2) and the a posteriori error estimator © under a quasi-uniform
refinement, especially in the presence of volumetric locking. Furthermore, the two and three-dimensional sim-
ulations in Examples 2-4 demonstrate the behavior of the adaptive algorithm associated to ©, which reads as
follows:

1) Start with a coarse mesh 7;, of €.

2) Solve the discrete problem (3.2) on the current mesh.

3) Compute Op for each T' € Tp,.

4) Check the stopping criterion and decide whether to finish or go to the next step.
5) Use Plaza and Carey’s algorithm [49] to refine each T € 7T}, satisfying:

(
(
(
(
(

O7 > Cper max{Op : T € Tj} for some Cper €]0,1].
(6) Define the resulting mesh as the current mesh 77, and go to step 2.

Note that the above procedure is the usual adaptive refinement strategy from [58], except that the classical
blue-green refinement has been replaced by step 5.

5.1. Example 1: Accuracy assessment

This first example is aimed at evaluating the accuracy of the method, as well as the properties
of the a posteriori error estimator through the effectivity index eff(®), under a quasi-uniform refine-
ment strategy. To that end, we consider the domain  :=]0,3/2[x]0,1[ and split its boundary into
I, = {(xl,mg)T €ER?: 21 =0 or a4 = 1} and I'y := {(xl,xg)T €ER?: 21 =3/2 or @y = 0}. We choose
the data f, ¢, pr and mr such that the solution of problem (2.11) is given by u := (u1,u2)?, where

M

up (21, x9) := 0.1 (sin(wwl)cos(wazg) + g) and us(z1,22) := 0.1 (— cos(mxy) sin(mzs) + %)7 and p(z1,z2) :=

msin(mzy) sin(mzz), and ¢ and o defined as in (2.11b) and (2.11c), respectively, with g := (0,1)7.

In Table 1, we present the convergence history obtained for this example under the following non-dimensional
model parameters: 1 = o = p = 1, cg = 1073, k(x1,x2) := 1 + sin?(wz;) cos?(nas), E = 100, g = (0,0, —1)T
and three cases for the Poisson ratio, v = 0.35, v = 0.4 and v = 0.4999. From Table 1 we conclude that there are
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FIGURE 1. Example 1: Log—log plots of N wvs. e(u, ¢, o, p) (left) and eff (©) (right) for a quasi-
uniform refinement strategy and different values of the ratio n/k.

almost no differences between the corresponding errors when varying v. This confirms that the estimates given
by Lemma 3.1 are independent of \ := Ev/[(1 — 2v)(1 + v)], i.e. our conforming scheme (3.2) is locking-free.
Moreover, for each value of v, the effectivity index eff(©) remains bounded, thus verifying the reliability and
efficiency of the a posteriori error estimator ©.

It is worth mentioning that it is desirable to have eff(©) — 1 as h — 0. For the four-field poroelasticity
equations, we claim that eff(0) is affected by the values of n/x in (2.11¢c). To show this, we use the same model
parameters as before, fix v = 0.4, and consider the cases of n/k = 10*, n/x = 10° and n/x = 10~*. The decay of
the corresponding total errors with respect to the total number of degrees of freedom, as well as the effectivity
indexes, using a quasi-uniform refinement strategy are depicted in Figure 1. From these results, we conclude
that the method is not robust with respect to the ratio n/k. Moreover, in two cases the effectivity index is far
from 1 and for all cases the effectivity index differs from each other, but is still bounded. This behavior is not
surprising since our a posteriori and a priori error estimates may depend on 7n/k. Despite this, we proceed as
in [6] to modify e(u, ¢, o, p) in such a way that ef£(©) is closer to 1. For this, we first introduce the estimator
terms ©; (i =1,...,10) given by ©F := 3", @f, where

2

~

a? a . ~ .
07 .= H <co + )\> Ph — quh +divey, — /£ , 02 := h2||f + div (2ue(up) — ¢hI)||(2)7T,

0,7
~ n 2 ~ 1 2
02 := h2 ||rot (—o-h — pg) H , 07 = ||~ (¢n — apy) + divuy, ,
K 0,T A 0,T
6% .= > he <ﬁ¢7h - pg) sy dr 2 , 6= > helpr = pallge
K ds ||, ©
c€E(T)NER(T) e c€E(T)NER(T)
~ ~ 2
6= > hefmr—@ue(w) = onDnfi., OF= > he|[(Zon—pg)-s]| .
e€E(T)NER(T) eCE(T)NER (D) ©
A2 2 2 2 n 2
6= > hlleuew) —enDnlld. Ok i=hh| Ve —pg+ Lou| .

e€E(T)NEL ()

The history of convergence of these estimator terms for the three values of 7/x are shown in Figure 2. Although
©1 > O, for all i = 2,...,10 when x/n = 10~%, the results for x/n = 10° and x/n = 10* allow us to conjecture
that the global estimator © focuses on refining where the divergence of 2ue(u — up) — (¢ — ¢p)I (associated
to ©3) is large. Inspired by [6], this situation leads us to consider, under further regularity of the solution, the
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FIGURE 2. Example 1: Log-log plots of N ws. ©; (i = 1,...,10) for a quasi-uniform refinement
strategy and different values of the ratio n/x.
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FIGURE 3. Example 1: Log-log plots of N vs. €(u, ¢, o, p) (left) and e/zf\f(@) (right) for a quasi-
uniform refinement strategy and different values of the ratio n/k.

modified total error and effectivity index given by

1/2
&(u, ¢,0,p) = {e(ua ¢,0,p)° + Y hy|div (2ue(u —un) — (¢ — ¢n)I)] (2),T}
TeTy

off(0) :=(u,¢,0,p)/0,

and

respectively. The left panel of Figure 3 illustrates the updated history of convergence, whereas the associated
effectivity indexes are shown on the right panel. It can be concluded that, in general, ef£(0) is much closer to
1 than eff(0©).

5.2. Example 2: Domain with corner singularity

In this example we set the model parameters (in non-dimensional form) as follows: ¢g = n = 0.01, E = 100,

a = 1 and v = 0.35. Furthermore, we neglect gravity effects and consider the inverted L-shaped domain
Q:=]-1,1[x]—1,1[\[0, 1] x [-1, 0], with boundary parts ', :=]—1,1[x{1} and I, := I'\T',. The manufactured
solution in polar coordinates is given by u := (u1,u2)”, where ui(r,0) := r?/3sin(20/3) and uy(r,0) :=

72/3 cos (20/3), and p(r,0) := 1, ¢(r,0) := a and & (r,0) := 0, with corresponding data. Note that T',, does not
satisfy the geometrical assumption made in Lemma 4.4, which means that further regularity of the solution on
a bigger convex domain needed by the Helmholtz decomposition (cf. (4.21)) cannot be guarantied theoretically
(see [34] for more details). We omit this fact for the sake of convenience. Furthermore, we note that a negative
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F1GURE 4. Example 2: Log-log plot of e(u, ¢, o, p) vs. N for both refinement strategies (Cper =
0.2).

(1)
T ™

Z X

F1GURE 5. Example 2: Initial mesh and two adapted meshes obtained with the adaptive algo-
rithm and Cper = 0.2

power of the radius r appears when taking partial derivatives of the components of the displacements; this
implies a singularity at the origin. It is well-known that in this case a convergence of O(h2/ 3-9) (with some
0 > 0) is expected from Theorem 3.3.

In Figure 4, we report the history of convergence of the total error for quasi-uniform and adaptive refinement
strategies. It is clear that the errors using the adaptive refinement are considerably smaller than when using
quasi-uniform refinement. Moreover, the adaptive procedure reduces the magnitude of e(u, ¢, o, p) with optimal
convergence of O(h?). Some adapted meshes obtained with Cper = 0.2 are depicted in Figure 5, where it is
evident that the a posteriori error estimator © detects the singularity.

5.3. Example 3: Three-dimensional L-shaped domain

We next consider a three-dimensional L-shaped domain as shown in the left panel of Figure 6. For this example
we consider the following non-dimensional model parameters: ¢g = 0.01, n = a =p =1, F = 10, kK = 0.05
and v = 0.4999. Furthermore, the manufactured exact solution is defined as follows: w := (u1, uz,u3)”, where

uy (21, 2, x3) := 0.1 (4(x§ — 625 + 1523) + %), uz(x1, T2, x3) := 0.1 (2(x2 —10)x3 + wé) and uz(x1, 2, x3) 1=

0.1 (mg + é), p(z1, w9, 23) := z175 — 3023 + 2% + [(1.05709;1%;2(_1%5’5)7%3)2], and ¢ and o are defined as in (2.11Db)

and (2.11c), respectively, with g := (0,0, —1)T. We notice that the partial derivatives of p exhibit singularities
along the line {(ml,mg,xg)T ER?: 1 =2x3= 1.05} so that high gradients of p are likely to occur near the
re-entrant edge of the domain.

The right panel of Figure 6 illustrates the decay of the total error with respect to IV for quasi-uniform and
adaptive refinement strategies. A suboptimal rate of convergence is observed using quasi-uniform refinement. In
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FIGURE 6. Example 3: Domain configuration (left) and log—log plot of e(u, ¢, o,p) vs. N for
both refinement strategies (right). The adaptive algorithm was carried out with Cpe, = 0.5.

FiGURE 7. Example 3: Initial mesh and three adapted meshes obtained with the adaptive
algorithm and Cper = 0.5.

FIGURE 8. Left, posterior and right, lateral views of the initial mesh (with 99605 elements)
used in Example 4. The inner ventricular boundary is shown in red.

contrast, the adaptive algorithm restores the optimal rate of convergence (i.e. O(h?)) and reduces the magnitude
of e(u, ¢, o, p) by marking the mesh elements near the re-entrant edge, as shown in Figure 7.

5.4. Example 4: Simple-poroelastic brain model

In our final example we present a 3D computation illustrating the cerebrospinal fluid-tissue interaction in the

human brain. For this, we use the Colin 27 mesh [30] as our initial mesh, see Figure 8. We neglect effects due
to gravity.
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F1GURE 9. Example 4: Approximate displacement magnitude for different values of v and
x obtained at the 5th refinement step (Cper = 0.3) with: (a) N = 4969116 and 270243
elements, (b) N = 5290281 and 288805 elements, (c) N = 3290456 and 175830 elements,
(d) N = 3216013 and 171634 elements, (¢) N = 3865851 and 209 323 elements; and (f)
N = 3369212 and 180800 elements.
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F1GURE 10. Example 4: Approximate fluid pressure for different values of v and k obtained
at the 5th refinement step (Cper = 0.3) with: (a) N = 4969116 and 270243 elements, (b)
N = 5290281 and 288 805 elements, (¢) N = 3290456 and 175 830 elements, (d) N = 3216013
and 171634 elements, () N = 3865851 and 209323 elements; and (f) N = 3369212 and
180800 elements.
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FIGURE 11. Example 4: Initial mesh (left) and the 5th adapted mesh obtained with v = 0.4999
and k = 1.57x 1073 [mm?] (right). These meshes have 99 605 and 288 805 elements, respectively.

The material properties in our simulations are: £ = 1500 [Pa], a = 0.25, ¢y = 3 x 10~* and 1 = 100 [Pa - s].
These are inspired by the numerical example of Section 6 from [43]. We also consider three cases for the
permeability, £ = 3.75 [mm?], x = 1.57 x 107! [mm?] and x = 1.57 x 1073 [mm?], and set I',, and I', as the
skull (outer boundary) and the ventricles (inner boundary) of the brain, respectively. Note that I',, does not
satisfy the geometrical assumption made in the three-dimensional Helmholtz decomposition (see Lem. 4.4 for
details in the two-dimensional case). We simply omit this fact and continue by imposing the following boundary
conditions:

p="799.92 [Pa] and (2ue(u)—¢I)n=-199.98n on T,

u=0 and o-n=0 on I,

In Figure 9, we observe that there is little displacement when the brain behaves like an elastic material
(v = 0.4999). Lowering the Poisson ratio to ¥ = 0.34, the material is able to relax resulting in more displacement.
In the first column we furthermore observe that increasing the permeability results in more displacement. This is
due to a higher filtration rate of the fluid. As expected, in the elastic limit there is little effect on the displacement
when increasing the permeability. In Figure 10, we observe compressibility effects due to high filtration when
permeability is large, both for high (v = 0.4999) and low (v = 0.34) Poisson ratios. Finally, the 5th adapted
mesh for the case v = 0.4999 and x = 1.57 x 10~3 [mm?] is depicted in Figure 11, from which it is concluded that
the adaptive algorithm refines near the ventricles. It is here where the pressures and displacement are highest.

6. CONCLUDING REMARKS

We have introduced a conforming approximation of a four-field formulation for the stationary Biot’s consoli-
dation model. We have proven a priori and a posteriori error bounds which are independent of the modulus of
dilation. These estimates have been verified by numerical experiments in 2D and 3D. In particular, an adaptive
algorithm associated to the proposed a posteriori error estimator has been shown to be a powerful tool to
improve the accuracy of the approximation under complex situations, such as high gradients or singularities of
the solution. Moreover, it can be used to reduce the computational cost given by the mesh refinement process.
These results are very promising, especially in the context of our fourth example in Section 5, because its gen-
eralization to the multiple-network model [43] can be used, for example, to study hydrocephalus [55], cerebral
oedema [56], and risk factors associated with early stages of Alzheimer’s disease [38].

On the other hand, further research is needed to obtain robust methods with respect to the ratio between
the viscosity of the pore fluid and the permeability of the porous solid. This is ongoing work.
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