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ERROR ANALYSIS OF A CONFORMING AND LOCKING-FREE FOUR-FIELD
FORMULATION FOR THE STATIONARY BIOT’S MODEL

Ricardo Oyarzúa1, Sander Rhebergen2, Manuel Solano3 and Paulo Zúñiga3,*

Abstract. We present an a priori and a posteriori error analysis of a conforming finite element method
for a four-field formulation of the steady-state Biot’s consolidation model. For the a priori error analysis
we provide suitable hypotheses on the corresponding finite dimensional subspaces ensuring that the
associated Galerkin scheme is well-posed. We show that a suitable choice of subspaces is given by the
Raviart–Thomas elements of order 𝑘 ≥ 0 for the fluid flux, discontinuous polynomials of degree 𝑘 for
the fluid pressure, and any stable pair of Stokes elements for the solid displacements and total pressure.
Next, we develop a reliable and efficient residual-based a posteriori error estimator. Both the reliability
and efficiency estimates are shown to be independent of the modulus of dilatation. Numerical examples
in 2D and 3D verify our analysis and illustrate the performance of the proposed a posteriori error
indicator.
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1. Introduction

Linear poroelasticity refers to fluid-structure interaction of an elastic solid infiltrated by an interconnected
network of fluid-saturated pores. The modeling equations can be traced back to the pioneering theory of soil
consolidation by Terzaghi [54] and Biot [13, 14], in which Darcy’s law for the motion of a fluid is coupled to
Hooke’s theory of linear elasticity for the solid deformation. Advances in the understanding of the mechanical
and physical aspects of Biot’s consolidation model are of key importance in many applications. For instance,
it has been used to predict the mechanics of groundwater withdrawals [40], earthquake fault zones [62], CO2

sequestration [60] and biological systems (brain [11,44], bones [31], arteries [39], intestines [66], etc.).
There is an extensive literature on theoretical results for this problem. A well-accepted mathematical analysis

of existence, uniqueness, and regularity of the solution for the displacement-pressure formulation of Biot’s model
was carried out by Showalter [52,53]. Moreover, many different numerical schemes have been proposed for this
formulation with varying success, e.g. [12, 24, 32, 45, 47, 51, 61–65] and references therein. The main difficulties
encountered when developing numerical methods for this model are volumetric locking and spurious, nonphysical
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pressure oscillations. While volumetric locking is similar to the locking phenomenon in linear elasticity (see, e.g.
[9]), spurious pressure oscillations occurs when the displacement of the porous skeleton is driven to a divergence-
free state, the permeability of the porous solid is low and the so-called “constrained specific storage constant”
is close to zero (see, e.g. [48]).

Recently, Oyarzúa et al. [46] (see also [42]) proposed and analyzed a three-field formulation for the stationary
Biot’s model using classical finite element methods that is locking-free and free of spurious pressure oscillations.
More precisely, in addition to the displacement and the pore pressure of the fluid, they introduced a “total
pressure”, showing existence, uniqueness, and stability of the discrete solution with constants independent
of the modulus of dilatation, even in the incompressible limit. To achieve a numerical scheme that is also
mass conserving, they later extended this formulation to a four-field formulation by introducing also the “fluid
flux” as an unknown [41]. They propose to approximate the solid displacement in this model by a finite volume
method (FVM) while remaining unknowns are approximated by a mixed finite element method (MFE). However,
developing higher-order accurate discretizations using the approach of [41] is not straightforward since FVMs
become more technical in this case (see, e.g. [25]). It is then preferable to use conforming finite element methods,
which are well-documented and often easy to extend to three dimensions.

In this paper, we consider a conforming finite element discretization of the four-field formulation of stationary
Biot’s consolidation model [41]. Assuming standard hypotheses on the discrete spaces, we first show well-
posedness and optimal a priori error estimates of the Galerkin scheme. In particular, we show that any pair of
stable Stokes element, such as the Hood–Taylor elements, for solid displacements and total pressure, combined
with Raviart–Thomas elements of degree 𝑘 ≥ 0 for the fluid flux, and discontinuous polynomials of degree 𝑘 for
the pore pressure, are suitable finite element subspaces for this problem. We furthermore show that the scheme
is locking-free.

The main contribution of this paper, however, is a reliable and efficient residual-based a posteriori error
estimator for the four-field formulation of Biot’s consolidation model. Due to the presence of dual norms in
our analysis, the use of conforming methods to discretize Biot’s consolidation model are better suited than the
FVM presented in [41] for which the dual norms do not hold. In this direction, an a posteriori error analysis
for a conforming finite element method (with Backward Euler time stepping) of the displacement-pressure
formulation for poroelasticity was presented by Ern and Meunier [29]. They proved reliability and efficiency
estimates related to energy norms through direct arguments (dual problems, local properties of Clément-type
interpolation operators, and localization techniques), and showed an overall convergence of 𝒪(ℎ). To show higher
order accuracy, an elliptic reconstruction approach was applied but without efficiency of the estimator. Later, a
reliable a posteriori error estimator based on stress and flux reconstructions was proposed by Riedlbeck et al.
[50], while a reliable space-time a posteriori error estimator for a four-field system in terms of the total stress
tensor, displacement, fluid flux, and fluid pressure, was derived by Ahmed et al. [1]. We further refer to [2] and
[10] for more on splitting schemes for higher order elements for the time-dependent Biot problem. One of the
main differences between our work and [1], besides using a different formulation of the Biot problem, is that
[1] presents a reliable estimator for the time-dependent Biot problem while we prove both the reliability and
the efficiency of the estimator for the stationary Biot model. In spite of the numerous contributions mentioned
above, to the best of our knowledge, no efficiency estimates for poroelasticity have been proven for higher order
accurate approximations.

In this paper, we will prove efficiency estimates for higher order accurate approximations of the four-field
formulation of Biot’s consolidation model by using a localization technique by bubble functions and inverse
inequalities. Such an approach was previously used, for example, in the a posteriori analysis of the Stokes–
Darcy problem in [36], and of the elasticity problem in [22,59]. By inf-sup conditions on the involved finite ele-
ment spaces, Helmholtz decompositions, and standard local approximation properties of Clément and Raviart–
Thomas interpolation operators, we furthermore prove a reliability estimate and propose an adaptive algorithm
for our problem.

The rest of this paper is structured as follows. The governing equations, corresponding weak formulation and
well-posedness of the problem are discussed in Section 2. In Section 3, we introduce the Galerkin scheme and
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derive the stability result and corresponding Céa’s estimate. We derive a reliable and efficient residual-based
a posteriori error estimator in Section 4 and present numerical results in Section 5. Conclusions are drawn in
Section 6.

2. A four-field formulation of Biot’s equations

2.1. Notation

Let Ω ⊆ R𝑑, 𝑑 ∈ {2, 3}, denote a bounded and simply connected domain with Lipschitz boundary Γ = Γ𝑢∪Γ𝑝
such that |Γ𝑢| > 0 and Γ𝑢∩Γ𝑝 = ∅. In what follows we use standard notation for Sobolev spaces and norms, and
denote spaces of vector-valued functions in boldface. For example, if 𝑟 ∈ R, we denote H𝑟(Ω) := [H𝑟(Ω)]𝑑 and
H𝑟(Γ) := [H𝑟(Γ)]𝑑, with the convention that H0(Ω) = L2(Ω) and H0(Γ) = L2(Γ). For vector-valued functions
we also require the Hilbert space

H(div; Ω) :=
{︀
𝜏 ∈ L2(Ω) : div 𝜏 ∈ L2(Ω)

}︀
,

equipped with the norm

‖ · ‖div,Ω :=
{︀
‖ · ‖20,Ω + ‖div (·)‖20,Ω

}︀1/2
.

Furthermore, we denote by H−1/2
00 (Γ𝑝) the dual space of H1/2

00 (Γ𝑝) :=
{︀
𝑞|Γ𝑝

: 𝑞 ∈ H1
Γ𝑢

(Ω)
}︀

, with

H1
Γ𝑢

(Ω) :=
{︀
𝑣 ∈ H1(Ω) : 𝑣|Γ𝑢

= 0
}︀
. (2.1)

The space H1/2
00 (Γ𝑝) is endowed with the norm

‖𝑞‖1/2,00,Γ𝑝
:= inf

{︀
‖𝑣‖1,Ω : 𝑣 ∈ H1

Γ𝑢
(Ω) and 𝑣|Γ𝑝

= 𝑞
}︀
.

Finally, by 0 we will refer to the generic null vector (including the null functional and operator), and we will
denote by 𝐶, with or without subscripts, bar, tildes, or hats, generic constants independent of the discretization
parameters.

2.2. Governing equations

For all 𝑡 > 0, given a body force 𝑓(𝑡) : Ω → R𝑑 and a volumetric fluid source ℓ(𝑡) : Ω → R, the classical
Biot’s consolidation problem, describing the interaction between fluid motion and linear mechanical response of
a porous medium occupying Ω, consists in finding the displacement of the porous skeleton 𝑢(𝑡) : Ω→ R𝑑, and
the total pore pressure of the fluid 𝑝(𝑡) : Ω→ R, satisfying

𝜕𝑡
(︀
𝑐0𝑝+ 𝛼(div 𝑢))− 1

𝜂
div [𝜅(∇𝑝− 𝜌𝑔)] = ℓ in Ω, (2.2)

𝑇 = 𝜆(div 𝑢)𝐼 + 2𝜇𝜀(𝑢)− 𝛼𝑝𝐼 in Ω, (2.3)
−div 𝑇 = 𝑓 in Ω, (2.4)

and suitable boundary and initial conditions. Above 𝑇 is the total Cauchy solid stress, 𝜀(𝑢) := 1
2

(︀
∇𝑢 + (∇𝑢)𝑇

)︀
is the total strain rate tensor, 𝐼 is the identity tensor in R𝑑×𝑑, and div stands for the divergence operator div
acting along the rows of a given tensor. Furthermore, 𝑔 is the gravity acceleration (constant and aligned with the
vertical direction), 𝛼 > 0 is the so-called Biot–Willis parameter (which is close to 1), 𝑐0 > 0 is the constrained
specific storage coefficient, 𝜂, 𝜌 > 0 are the viscosity and density of the pore fluid, 𝜆, 𝜇 are the Lamé parameters
of the solid (dilation and shear moduli of the solid), and 𝜅 is the permeability of the porous solid, here assumed
to be uniformly bounded: 0 < 𝜅1 ≤ 𝜅(𝑥) ≤ 𝜅2 for all 𝑥 ∈ Ω.
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Using Backward Euler time stepping to discretize (2.2)–(2.4) in time, we obtain

(︀
𝑐0𝑝

𝑛+1 + 𝛼(div 𝑢𝑛+1))− 1
𝜂

div [𝜅(∇𝑝𝑛+1 − 𝜌𝑔)] = ℓ𝑛+1 +
(︀
𝑐0𝑝

𝑛 + 𝛼(div 𝑢𝑛)) in Ω, (2.5)

𝑇 𝑛+1 = 𝜆(div 𝑢𝑛+1)𝐼 + 2𝜇𝜀(𝑢𝑛+1)− 𝛼𝑝𝑛+1𝐼 in Ω, (2.6)

−div 𝑇 𝑛+1 = 𝑓𝑛+1 in Ω, (2.7)

where we absorbed the discrete time step into the constants 𝑐0 and 𝛼. Re-defining ℓ𝑛+1 ← ℓ𝑛+1 +
(︀
𝑐0𝑝

𝑛 +
𝛼(div 𝑢𝑛)) and dropping the superscript, we obtain the system of equations that needs to be solved at each
time step:

(︀
𝑐0𝑝+ 𝛼(div 𝑢))− 1

𝜂
div [𝜅(∇𝑝− 𝜌𝑔)] = ℓ in Ω, (2.8)

𝑇 = 𝜆(div 𝑢)𝐼 + 2𝜇𝜀(𝑢)− 𝛼𝑝𝐼 in Ω, (2.9)
−div 𝑇 = 𝑓 in Ω, (2.10)

In this paper we will analyze this “stationary” case of Biot’s consolidation problem. In particular, following [41]
by introducing the total fluid-structure pressure (or total volumetric stress) 𝜑 = 𝛼𝑝− 𝜆 div 𝑢 and the fluid flux
𝜎 = −𝜅𝜂 (∇𝑝− 𝜌𝑔) as new unknowns, we study a conforming discretization of the following system

−div (2𝜇𝜀(𝑢)− 𝜑𝐼) = 𝑓 in Ω, (2.11a)
𝜑 = 𝛼𝑝− 𝜆 div 𝑢 in Ω, (2.11b)

𝜎 = −𝜅
𝜂

(∇𝑝− 𝜌𝑔) in Ω, (2.11c)(︂
𝑐0 +

𝛼2

𝜆

)︂
𝑝− 𝛼

𝜆
𝜑+ div 𝜎 = ℓ in Ω, (2.11d)

complemented with suitable boundary conditions

𝑝 = 𝑝Γ, (2𝜇𝜀(𝑢)− 𝜑𝐼)𝑛 = 𝑚Γ on Γ𝑝, (2.12a)
𝑢 = 0, 𝜎 · 𝑛 = 0 on Γ𝑢, (2.12b)

where 𝑚Γ ∈ H−1/2
00 (Γ𝑝) and 𝑝Γ ∈ H1/2

00 (Γ𝑝).

2.3. Weak formulation

The weak formulation of the coupled problem (2.11) is given by Section 2 of [41]: Find (𝑢, 𝜑,𝜎, 𝑝) ∈ H×Q×
Z×Q such that

𝑎𝑠(𝑢,𝑣) + 𝑏𝑠(𝑣, 𝜑) = 𝐹 (𝑣) ∀𝑣 ∈ H, (2.13a)
𝑏𝑠(𝑢, 𝜓)− 𝑐𝑠(𝜑, 𝜓) + 𝑏𝑠𝑓 (𝜓, 𝑝) = 0 ∀𝜓 ∈ Q, (2.13b)

𝑎𝑓 (𝜎, 𝜏 ) + 𝑏𝑓 (𝜏 , 𝑝) = 𝐺(𝜏 ) ∀ 𝜏 ∈ Z, (2.13c)
𝑏𝑠𝑓 (𝜑, 𝑞) + 𝑏𝑓 (𝜎, 𝑞)− 𝑐𝑓 (𝑝, 𝑞) = 𝐻(𝑞) ∀ 𝑞 ∈ Q, (2.13d)

where, by the boundary conditions (2.12b), the functional spaces are defined as

H := H1
Γ𝑢

(Ω), Q := L2(Ω), and Z := {𝜏 ∈ H(div; Ω) : 𝜏 · 𝑛 = 0 on Γ𝑢} ,
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and the corresponding forms are defined as

𝑎𝑠(𝑢,𝑣) := 2𝜇
∫︁

Ω

𝜀(𝑢) : 𝜀(𝑣), 𝑏𝑠(𝑣, 𝜓) := −
∫︁

Ω

𝜓 div 𝑣, 𝑐𝑠(𝜑, 𝜓) :=
1
𝜆

∫︁
Ω

𝜑𝜓,

𝑏𝑠𝑓 (𝜓, 𝑞) :=
𝛼

𝜆

∫︁
Ω

𝜓𝑞, 𝑎𝑓 (𝜎, 𝜏 ) :=
∫︁

Ω

𝜂

𝜅
𝜎 · 𝜏 , 𝑏𝑓 (𝜏 , 𝑞) := −

∫︁
Ω

𝑞 div 𝜏 , 𝑐𝑓 (𝑝, 𝑞) :=
(︂
𝑐0 +

𝛼2

𝜆

)︂∫︁
Ω

𝑝𝑞,

𝐹 (𝑣) :=
∫︁

Ω

𝑓 · 𝑣 + ⟨𝑚Γ,𝑣⟩Γ𝑝 , 𝐺(𝜏 ) :=
∫︁

Ω

𝜌𝑔 · 𝜏 − ⟨𝜏 · 𝑛, 𝑝Γ⟩Γ𝑝 , 𝐻(𝑞) := −
∫︁

Ω

ℓ𝑞.

(2.14)
The subscripts “𝑠” or “𝑓” are introduced to emphasize that a bilinear form is only related to structure or fluid
variables, respectively.

Let us discuss the stability properties of the forms involved in (2.13). Firstly, it is easy to check that

|𝑎𝑠(𝑢,𝑣)| ≤ 2𝜇𝐶𝑘,2‖𝑢‖1,Ω‖𝑣‖1,Ω, |𝑎𝑓 (𝜎, 𝜏 )| ≤ 𝜂𝜅−1
1 ‖𝜎‖div,Ω‖𝜏‖div,Ω,

|𝑏𝑠(𝑣, 𝜓)| ≤
√
𝑑‖𝑣‖1,Ω‖𝜓‖0,Ω, |𝑏𝑓 (𝜏 , 𝑞)| ≤ ‖𝜏‖div,Ω‖𝑞‖0,Ω,

|𝑏𝑠𝑓 (𝜓, 𝑞)| ≤ 𝛼𝜆−1‖𝜓‖0,Ω‖𝑞‖0,Ω, |𝑐𝑠(𝜑, 𝜓)| ≤ 𝜆−1‖𝜑‖0,Ω‖𝜓‖0,Ω,
|𝑐𝑓 (𝑝, 𝑞)| ≤

(︀
𝑐0 + 𝛼2𝜆−1

)︀
‖𝑝‖0,Ω‖𝑞‖0,Ω,

(2.15)

for all 𝑢,𝑣 ∈ H, 𝑝, 𝑞, 𝜑, 𝜓 ∈ Q, and 𝜎, 𝜏 ∈ Z. Above, 𝐶𝑘,2 is one of the positive constants satisfying

𝐶𝑘,1‖𝑣‖21,Ω ≤ ‖𝜀(𝑣)‖20,Ω ≤ 𝐶𝑘,2‖𝑣‖21,Ω ∀𝑣 ∈ H. (2.16)

Also, the functionals 𝐹 , 𝐺, and 𝐻 can be bounded as follows:

|𝐹 (𝑣)| ≤
(︀
‖𝑓‖0,Ω + ‖𝑚Γ‖−1/2,00,Γ𝑝

)︀
‖𝑣‖1,Ω ∀𝑣 ∈ H,

|𝐺(𝜏 )| ≤
(︀
𝜌‖𝑔‖0,Ω + ‖𝑝Γ‖1/2,00,Γ𝑝

)︀
‖𝜏‖div,Ω ∀ 𝜏 ∈ Z,

|𝐻(𝑞)| ≤ ‖ℓ‖0,Ω‖𝑞‖0,Ω ∀ 𝑞 ∈ Q.

On the other hand, the positivity of the bilinear forms 𝑎𝑠 and 𝑎𝑓 are immediate from the lower bound for 𝜅
and the inequality (2.16). More precisely, we have

𝑎𝑠(𝑣,𝑣) ≥ 2𝜇𝐶𝑘,1‖𝑣‖21,Ω ∀𝑣 ∈ H, and 𝑎𝑓 (𝜏 , 𝜏 ) ≥ 𝜂𝜅−1
2 ‖𝜏‖2div,Ω ∀ 𝜏 ∈ K𝑓 , (2.17)

where
K𝑓 := {𝜏 ∈ Z : 𝑏𝑓 (𝜏 , 𝑞) = 0 ∀ 𝑞 ∈ Q} = {𝜏 ∈ Z : div 𝜏 = 0 in Ω} . (2.18)

Finally, the following inf-sup conditions are well-known to hold (see, e.g. [37]):

sup
𝑣ℎ∈H
𝑣ℎ ̸=0

𝑏𝑠(𝑣, 𝜓)
‖𝑣‖1,Ω

≥ 𝛽𝑠‖𝜓‖0,Ω ∀𝜓 ∈ Q, and sup
𝜏∈Z
𝜏ℎ ̸=0

𝑏𝑓 (𝜏 , 𝑞)
‖𝜏‖div,Ω

≥ 𝛽𝑓‖𝑞‖0,Ω ∀ 𝑞 ∈ Q,

where 𝛽𝑠, 𝛽𝑓 > 0 depend on |Ω|.
Let us now briefly comment on the well-posedness of the problem (2.13). To this end, we follow the approach

of Section 2 from [41]. We start by recalling the following continuous dependence result for (2.13) with arbitrary
functionals. This will also be useful later on when deriving our a priori and a posteriori error bounds (cf.
Sects. 3 and 4, respectively). To alleviate the notation, in the sequel we use the norm

|||(𝑣, 𝜓, 𝜏 , 𝑞)||| := ‖𝑣‖1,Ω + ‖𝜓‖0,Ω + ‖𝜏‖div,Ω + ‖𝑞‖0,Ω (2.19)

for all 𝑣 ∈ H, 𝜓 ∈ Q, 𝜏 ∈ Z, 𝑝 ∈ Q.
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Lemma 2.1. Given 𝐹1 ∈ H′, 𝐺1 ∈ Q′, 𝐹2 ∈ Z′ and 𝐺2 ∈ Q′, let (𝑢, 𝜑,𝜎, 𝑝) ∈ H×Q× Z×Q be such that

𝑎𝑠(𝑢,𝑣) + 𝑏𝑠(𝑣, 𝜑) = 𝐹1(𝑣) ∀𝑣 ∈ H, (2.20a)
𝑏𝑠(𝑢, 𝜓)− 𝑐𝑠(𝜑, 𝜓) + 𝑏𝑠𝑓 (𝜓, 𝑝) = 𝐺1(𝜓) ∀𝜓 ∈ Q, (2.20b)

𝑎𝑓 (𝜎, 𝜏 ) + 𝑏𝑓 (𝜏 , 𝑝) = 𝐹2(𝜏 ) ∀ 𝜏 ∈ Z, (2.20c)
𝑏𝑠𝑓 (𝜑, 𝑞) + 𝑏𝑓 (𝜎, 𝑞)− 𝑐𝑓 (𝑝, 𝑞) = 𝐺2(𝑞) ∀ 𝑞 ∈ Q, (2.20d)

where the bilinear forms 𝑎𝑠, 𝑏𝑠, 𝑐𝑠, 𝑎𝑓 , 𝑏𝑓 , 𝑐𝑠 and 𝑏𝑠𝑓 are given by (2.14). There exists a constant 𝐶 > 0,
independent of 𝜆, such that

|||(𝑢, 𝜑,𝜎, 𝑝)||| ≤ 𝐶 (‖𝐹1‖H′ + ‖𝐺1‖Q′ + ‖𝐹2‖Z′ + ‖𝐺2‖Q′) . (2.21)

Now, let ℳ : H × Q × Z × Q → H × Q × Z × Q be the mapping induced by the left-hand side of (2.20).
Then, if (𝑢, 𝜑,𝜎, 𝑝) satisfies (2.20), it follows that ℳ(𝑢, 𝜑,𝜎, 𝑝) = (ℛH(𝐹1),ℛQ(𝐺1),ℛZ(𝐹2),ℛQ(𝐺2)), where
ℛH : H′ → H, ℛQ : Q′ → Q and ℛZ : Z′ → Z are the corresponding Riesz operators. Moreover, from (2.21)
we have

|||(𝑢, 𝜑,𝜎, 𝑝)||| ≤ 𝐶|||ℳ(𝑢, 𝜑,𝜎, 𝑝)|||, (2.22)

which implies that ℳ has closed range and its kernel is the null vector, or equivalently, ℳ* is surjective (see,
e.g. [18], Thm. 2.20). Sinceℳ is self-adjoint, it becomes clear that the unique solvability of (2.13) follows from
the estimate (2.21) by setting 𝐹1 = 𝐹 , 𝐺1 = 0, 𝐹2 = 𝐺 and 𝐺2 = 𝐻, that is, the following result holds.

Theorem 2.2. There exists a unique (𝑢, 𝜑,𝜎, 𝑝) ∈ H × Q × Z × Q satisfying (2.13). Moreover, there exists
𝐶stab > 0, independent of 𝜆, such that

|||(𝑢, 𝜑,𝜎, 𝑝)||| ≤ 𝐶stab

(︀
‖𝑓‖0,Ω + ‖𝑔‖0,Ω + ‖ℓ‖0,Ω + ‖𝑚Γ‖−1/2,00,Γ𝑝

+ ‖𝑝Γ‖1/2,00,Γ𝑝

)︀
.

It was shown in [38] that 𝐶stab depends on 1/𝑐0. As mentioned in [38], Theorem 2.2 can be shown to hold also
for the case 𝑐0 = 0 by following the proof of Theorem 4.3.1 from [15]. However, this alternative proof results in
a 𝐶stab that depends on 𝜆. Although numerical simulations by [38] suggest that 𝐶stab is independent of both 𝜆
and 𝑐0, we are not aware of a proof for the four-field model that shows this. For this reason we have assumed
𝑐0 > 0 in our manuscript.

We close this section by observing that the solution of (2.13) solves the original problem (2.11) in the sense
of the following lemma.

Lemma 2.3. Let (𝑢, 𝜑,𝜎, 𝑝) ∈ H×Q× Z×Q be the unique solution of (2.13). It satisfies in a distributional
sense, −div (2𝜇𝜀(𝑢) − 𝜑𝐼) = 𝑓 in Ω, 1

𝜆 (𝛼𝑝 − 𝜑) − div 𝑢 = 0 in Ω, 𝜂
𝜅𝜎 + ∇𝑝 − 𝜌𝑔 = 0 in Ω,

(︁
𝑐0 + 𝛼2

𝜆

)︁
𝑝 −

𝛼
𝜆𝜑+ div 𝜎 − ℓ = 0 in Ω. Additionally, 𝑢, 𝜑, 𝜎 and 𝑝 satisfy the boundary conditions described in (2.12a) and
(2.12b).

Proof. The result follows by applying integration by parts in (2.13) and using suitable test functions. We omit
the mathematical details. �

3. The Galerkin method

In this section we introduce the Galerkin approximation of the problem (2.13), analyze its well-posedness and
establish the associated Céa’s estimate. For this, we consider arbitrary finite dimensional subspaces, denoted
by

Hℎ ⊆ H, Qℎ,Wℎ ⊆ Q, and Zℎ ⊆ Z. (3.1)

Hereafter, the index ℎ > 0, refers to the meshsize of a shape-regular triangulation 𝒯ℎ of Ω made of triangles 𝑇
(when 𝑑 = 2) or tetrahedra (when 𝑑 = 3) of diameter ℎ𝑇 , i.e. ℎ := max{ℎ𝑇 : 𝑇 ∈ 𝒯ℎ}.
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In this way, the Galerkin scheme associated to (2.13) reads: Find (𝑢ℎ, 𝜑ℎ,𝜎ℎ, 𝑝ℎ) ∈ Hℎ×Qℎ×Zℎ×Wℎ such
that

𝑎𝑠(𝑢ℎ,𝑣ℎ) + 𝑏𝑠(𝑣ℎ, 𝜑ℎ) = 𝐹 (𝑣ℎ) ∀𝑣ℎ ∈ Hℎ, (3.2a)
𝑏𝑠(𝑢ℎ, 𝜓ℎ)− 𝑐𝑠(𝜑ℎ, 𝜓ℎ) + 𝑏𝑠𝑓 (𝜓ℎ, 𝑝ℎ) = 0 ∀𝜓ℎ ∈ Qℎ, (3.2b)

𝑎𝑓 (𝜎ℎ, 𝜏ℎ) + 𝑏𝑓 (𝜏ℎ, 𝑝ℎ) = 𝐺(𝜏ℎ) ∀ 𝜏ℎ ∈ Zℎ, (3.2c)
𝑏𝑠𝑓 (𝜑ℎ, 𝑞ℎ) + 𝑏𝑓 (𝜎ℎ, 𝑞ℎ)− 𝑐𝑓 (𝑝ℎ, 𝑞ℎ) = 𝐻(𝑞ℎ) ∀ 𝑞ℎ ∈Wℎ, (3.2d)

where the bilinear forms and the functionals are as in (2.14).
Next, we proceed as in [41] and make use of the discrete analogue of Lemma 2.1 to prove the well-posedness

of the Galerkin scheme (3.2). Before doing so, in order to ensure the stability properties of the bilinear forms
that are not inherited from the continuous case, we derive general hypotheses on the subspaces in (3.1).

Let us first look at the discrete kernel of the bilinear form 𝑏𝑓 , which is given by

K𝑓,ℎ := {𝜏ℎ ∈ Zℎ : 𝑏𝑓 (𝜏ℎ, 𝑞ℎ) = 0 ∀ 𝑞ℎ ∈Wℎ} .

A more explicit definition of this space can be obtained if we assume that

(H0) div Zℎ ⊆Wℎ.

In fact, this implies that K𝑓,ℎ = {𝜏ℎ ∈ Zℎ : div 𝜏ℎ = 0 in Ω}. Moreover, since K𝑓,ℎ ⊆ K𝑓 (cf. (2.18)), the
ellipticity of bilinear form 𝑎𝑓 on K𝑓,ℎ is deduced from (2.17), and with the same constant.

Let us also assume that the following discrete inf-sup conditions hold:

(H1) There exists ̂︀𝛽𝑓 > 0, independent of ℎ, such that

sup
𝜏ℎ∈Zℎ
𝜏ℎ ̸=0

𝑏𝑓 (𝜏ℎ, 𝑞ℎ)
‖𝜏ℎ‖div,Ω

≥ ̂︀𝛽𝑓‖𝑞ℎ‖0,Ω ∀ 𝑞ℎ ∈Wℎ.

(H2) There exists ̂︀𝛽𝑠 > 0, independent of ℎ, such that

sup
𝑣ℎ∈Hℎ
𝑣ℎ ̸=0

𝑏𝑠(𝑣ℎ, 𝜓ℎ)
‖𝑣ℎ‖1,Ω

≥ ̂︀𝛽𝑠‖𝜓ℎ‖0,Ω ∀𝜓ℎ ∈ Qℎ.

In Section 3.1, we specify suitable choices of finite element subspaces satisfying the above hypotheses. We
remark in advance that (Hℎ,Qℎ) can be taken as a pair of stable finite element subspaces for the Stokes
problem, whereas Zℎ and Wℎ are given by, but are not limited to, the Raviart–Thomas element and the space
of discontinuous polynomials, respectively.

The following result is the discrete analogue of Lemma 2.1 and can be proven by a similar technique.

Lemma 3.1. Given ̂︀𝐹1 ∈ H′
ℎ, ̂︀𝐺1 ∈ Q′ℎ, ̂︀𝐹2 ∈ Z′ℎ and ̂︀𝐺2 ∈W′

ℎ, let (𝑢ℎ, 𝜑ℎ,𝜎ℎ, 𝑝ℎ) ∈ Hℎ ×Qℎ × Zℎ ×Wℎ be
such that

𝑎𝑠(𝑢ℎ,𝑣ℎ) + 𝑏𝑠(𝑣ℎ, 𝜑ℎ) = ̂︀𝐹1(𝑣ℎ) ∀𝑣ℎ ∈ Hℎ, (3.3a)

𝑏𝑠(𝑢ℎ, 𝜓ℎ)− 𝑐𝑠(𝜑ℎ, 𝜓ℎ) + 𝑏𝑠𝑓 (𝜓ℎ, 𝑝ℎ) = ̂︀𝐺1(𝜓ℎ) ∀𝜓ℎ ∈ Qℎ, (3.3b)

𝑎𝑓 (𝜎ℎ, 𝜏ℎ) + 𝑏𝑓 (𝜏ℎ, 𝑝ℎ) = ̂︀𝐹2(𝜏ℎ) ∀ 𝜏ℎ ∈ Zℎ, (3.3c)

𝑏𝑠𝑓 (𝜑ℎ, 𝑞ℎ) + 𝑏𝑓 (𝜎ℎ, 𝑞ℎ)− 𝑐𝑓 (𝑝ℎ, 𝑞ℎ) = ̂︀𝐺2(𝑞ℎ) ∀ 𝑞ℎ ∈Wℎ, (3.3d)

where the bilinear forms are defined as in (2.14), and suppose that hypotheses (H0)–(H2) hold. There exists a
constant 𝐶 > 0, independent of 𝜆 and ℎ, such that

|||(𝑢ℎ, 𝜑ℎ,𝜎ℎ, 𝑝ℎ)||| ≤ 𝐶
(︁
‖ ̂︀𝐹1‖H′

ℎ
+ ‖ ̂︀𝐺1‖Q′

ℎ
+ ‖ ̂︀𝐹2‖Z′

ℎ
+ ‖ ̂︀𝐺2‖W′

ℎ

)︁
. (3.4)
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We are now in a position of stating the well-posedness of the Galerkin scheme (3.2) and the associated Céa’s
estimate.

Theorem 3.2. Suppose that (H0)–(H2) hold. Then, there exists a unique (𝑢ℎ, 𝜑ℎ,𝜎ℎ, 𝑝ℎ) ∈ Hℎ×Qℎ×Zℎ×Wℎ

satisfying (3.2). Moreover, there exists a constant ̂︀𝐶stab, independent of 𝜆 and ℎ, such that

|||(𝑢ℎ, 𝜑ℎ,𝜎ℎ, 𝑝ℎ)||| ≤ ̂︀𝐶stab

(︀
‖𝑓‖0,Ω + ‖𝑔‖0,Ω + ‖ℓ‖0,Ω + ‖𝑚Γ‖−1/2,00,Γ𝑝

+ ‖𝑝Γ‖1/2,00,Γ𝑝

)︀
. (3.5)

In addition, there exists 𝐶cea > 0, also independent of 𝜆 and ℎ, such that

|||(𝑢− 𝑢ℎ, 𝜑− 𝜑ℎ,𝜎 − 𝜎ℎ, 𝑝− 𝑝ℎ)|||

≤ 𝐶cea

(︂
inf

𝑣ℎ∈Hℎ

‖𝑢− 𝑣ℎ‖1,Ω + inf
𝜓ℎ∈Qℎ

‖𝜑− 𝜓ℎ‖0,Ω + inf
𝜏ℎ∈Zℎ

‖𝜎 − 𝜏ℎ‖div,Ω + inf
𝑞ℎ∈Wℎ

‖𝑝− 𝑞ℎ‖0,Ω
)︂
.

(3.6)

Proof. We first observe that (3.5) is a particular case of estimate (3.4). Consequently, the unique solvability
of problem (3.2) can be readily deduced. In fact, since in finite dimensional linear problems existence and
uniqueness of the solution are equivalent, it suffices to note, thanks to (3.5), that the solution of the Galerkin
scheme (3.2) with homogeneous data will be the trivial one.

It remains to prove (3.6), for which we proceed as in the proof of Theorem 5.1 from [41]. Firstly, testing
equations (2.13a)–(2.13d) with (𝑣, 𝜓, 𝜏 , 𝑞) = (𝑣ℎ, 𝜓ℎ, 𝜏ℎ, 𝑞ℎ) ∈ Hℎ×Qℎ×Zℎ×Wℎ and subtracting the resulting
system from (3.2), we get the Galerkin orthogonality equations

𝑎𝑠(𝑢− 𝑢ℎ,𝑣ℎ) + 𝑏𝑠(𝑣ℎ, 𝜑− 𝜑ℎ) = 0 ∀𝑣ℎ ∈ Hℎ, (3.7a)
𝑏𝑠(𝑢− 𝑢ℎ, 𝜓ℎ)− 𝑐𝑠(𝜑− 𝜑ℎ, 𝜓ℎ) + 𝑏𝑠𝑓 (𝜓ℎ, 𝑝− 𝑝ℎ) = 0 ∀𝜓ℎ ∈ Qℎ, (3.7b)

𝑎𝑓 (𝜎 − 𝜎ℎ, 𝜏ℎ) + 𝑏𝑓 (𝜏ℎ, 𝑝− 𝑝ℎ) = 0 ∀ 𝜏ℎ ∈ Zℎ, (3.7c)
𝑏𝑠𝑓 (𝜑− 𝜑ℎ, 𝑞ℎ) + 𝑏𝑓 (𝜎 − 𝜎ℎ, 𝑞ℎ)− 𝑐𝑓 (𝑝− 𝑝ℎ, 𝑞ℎ) = 0 ∀ 𝑞ℎ ∈Wℎ. (3.7d)

Next, given ̂︀𝑣ℎ ∈ Hℎ, ̂︀𝜓ℎ ∈ Qℎ, ̂︀𝜏ℎ ∈ Zℎ and ̂︀𝑞ℎ ∈Wℎ, we let ̂︀𝐹1 ∈ H′
ℎ, ̂︀𝐺1 ∈ Q′ℎ, ̂︀𝐹2 ∈ Z′ℎ and ̂︀𝐺2 ∈W′

ℎ be the
functionals defined as follows:̂︀𝐹1(𝑣ℎ) := −𝑎𝑠(𝑢− ̂︀𝑣ℎ,𝑣ℎ)− 𝑏𝑠(𝑣ℎ, 𝜑− ̂︀𝜓ℎ), ̂︀𝐺1(𝜓ℎ) := −𝑏𝑠(𝑢− ̂︀𝑣ℎ, 𝜓ℎ) + 𝑐𝑠(𝜑− ̂︀𝜓ℎ, 𝜓ℎ)− 𝑏𝑠𝑓 (𝜓ℎ, 𝑝− ̂︀𝑞ℎ),̂︀𝐹2(𝜏ℎ) := −𝑎𝑓 (𝜎 − ̂︀𝜏ℎ, 𝜏ℎ)− 𝑏𝑓 (𝜏ℎ, 𝑝− ̂︀𝑞ℎ), ̂︀𝐺2(𝑞ℎ) := −𝑏𝑠𝑓 (𝜑− ̂︀𝜓ℎ, 𝑞)− 𝑏𝑓 (𝜎 − ̂︀𝜏ℎ, 𝑞) + 𝑐𝑓 (𝑝− ̂︀𝑞ℎ, 𝑞ℎ).

Then, adding and subtracting convenient terms to the individual errors in system (3.7), and using Lemma 3.1,
it follows that⃒⃒⃒⃒⃒⃒ ⃒⃒⃒(︁̂︀𝑣ℎ − 𝑢ℎ, ̂︀𝜓ℎ − 𝜑ℎ, ̂︀𝜏ℎ − 𝜎ℎ, ̂︀𝑞ℎ − 𝑝ℎ)︁⃒⃒⃒⃒⃒⃒ ⃒⃒⃒ ≤ 𝐶 (︁‖ ̂︀𝐹1‖H′

ℎ
+ ‖ ̂︀𝐺1‖Q′

ℎ
+ ‖ ̂︀𝐹2‖Z′

ℎ
+ ‖ ̂︀𝐺2‖W′

ℎ

)︁
. (3.8)

Using the boundedness of the above bilinear forms (cf. (2.15)), we have

‖ ̂︀𝐹1‖H′
ℎ
≤ 2𝜇𝐶𝑘,2‖𝑢− ̂︀𝑣ℎ‖1,Ω +

√
𝑑‖𝜑− ̂︀𝜓ℎ‖0,Ω,

‖ ̂︀𝐺1‖Q′
ℎ
≤
√
𝑑‖𝑢− ̂︀𝑣ℎ‖1,Ω +

1
𝜆
‖𝜑− ̂︀𝜓ℎ‖0,Ω +

𝛼

𝜆
‖𝑝− ̂︀𝑞ℎ‖0,Ω,

‖ ̂︀𝐹2‖Z′
ℎ
≤ 𝜂

𝜅1
‖𝜎 − ̂︀𝜏ℎ‖div,Ω + ‖𝑝− ̂︀𝑞ℎ‖0,Ω,

‖ ̂︀𝐺2‖W′
ℎ
≤ 𝛼

𝜆
‖𝜑− ̂︀𝜓ℎ‖0,Ω + ‖𝜎 − ̂︀𝜏ℎ‖div,Ω +

(︂
𝑐0 +

𝛼2

𝜆

)︂
‖𝑝− ̂︀𝑞ℎ‖0,Ω.

Therefore, we obtain using the triangle inequality and estimate (3.8),

|||(𝑢− 𝑢ℎ, 𝜑− 𝜑ℎ,𝜎 − 𝜎ℎ, 𝑝− 𝑝ℎ)||| ≤
(︁

1 + ̃︀𝐶)︁ ⃒⃒⃒⃒⃒⃒ ⃒⃒⃒(𝑢− ̂︀𝑣ℎ, 𝜑− ̂︀𝜓ℎ,𝜎 − ̂︀𝜏ℎ, 𝑝− ̂︀𝑞ℎ)
⃒⃒⃒⃒⃒⃒ ⃒⃒⃒
,



ERROR ANALYSIS OF A CONFORMING AND LOCKING-FREE FOUR-FIELD FORMULATION S483

where ̃︀𝐶 := 𝐶 max
{︂

2𝜇𝐶𝑘,2 +
√
𝑑,

1
𝜆

(1 + 𝛼) +
√
𝑑,

𝜂

𝜅1
+ 1,

𝛼

𝜆
(𝛼+ 1) + 𝑐0 + 1

}︂
.

Above, ̃︀𝐶 can be bounded by a constant independent of 𝜆 because 𝜆−1(1 + 𝛼) and 𝛼𝜆−1(1 + 𝛼) are bounded.
In particular, they are negligible when volumetric locking occurs (i.e. as 𝜆→∞). The proof ends by observing
that ̂︀𝑣ℎ, ̂︀𝜓ℎ, ̂︀𝜏ℎ and ̂︀𝑞ℎ are arbitrary. �

3.1. Specific finite element subspaces

The aim of this section is to take advantage of the flexibility of conforming methods to provide concrete
finite element subspaces satisfying the crucial hypotheses (H0)–(H2). To that end, given an integer 𝑙 ≥ 0 and
a subset 𝑆 of R𝑑, we let P𝑙(𝑆) (resp. ̃︀P𝑙(𝑆)) denote the space of polynomials of degree at most 𝑙 on 𝑆 (resp. of
degree equal to 𝑙 on 𝑆). We also set P𝑙(𝑆) := [P𝑙(𝑆)]𝑑.

Let 𝑘 ≥ 0 be an integer. The generalized Hood–Taylor element (see, e.g. [17], Sect. 8.8.2) consists of the pair
(Hℎ,Qℎ) specified by

Hℎ :=
{︀
𝑣ℎ ∈ [𝒞(Ω)]𝑑 : 𝑣ℎ|𝑇 ∈ P𝑘+2(𝑇 ) ∀𝑇 ∈ 𝒯ℎ, 𝑣ℎ = 0 on Γ𝑢

}︀
(3.9)

and
Qℎ :=

{︀
𝜓ℎ ∈ 𝒞(Ω) : 𝜓ℎ|𝑇 ∈ P𝑘+1(𝑇 ) ∀𝑇 ∈ 𝒯ℎ

}︀
. (3.10)

This pair satisfies the inf-sup condition in hypothesis (H2). We refer the reader to [15] for the proof (see also
[17,19]). In addition, the following approximation properties are well-known to hold:

(AP𝑢
ℎ ) There exists 𝐶 > 0, independent of ℎ, such that for each 𝑠 ∈ (0, 𝑘 + 1] and each 𝑢 ∈ H𝑠+2(Ω), there

holds
inf

𝑣ℎ∈Hℎ

‖𝑢− 𝑣ℎ‖1,Ω ≤ 𝐶ℎ𝑠+1‖𝑢‖𝑠+2,Ω.

(AP𝜑
ℎ) There exists 𝐶 > 0, independent of ℎ, such that for each 𝑠 ∈ (0, 𝑘 + 1] and each 𝜑 ∈ H𝑠+1(Ω), there

holds
inf

𝜓ℎ∈Qℎ

‖𝜑− 𝜓ℎ‖0,Ω ≤ 𝐶ℎ𝑠+1‖𝜑‖𝑠+1,Ω.

Furthermore, the local Raviart–Thomas space of order 𝑘, for each 𝑇 ∈ 𝒯ℎ, is defined as

RT𝑘(𝑇 ) := P𝑘(𝑇 )⊕ ̃︀P𝑘(𝑇 )𝑥,

where 𝑥 is a generic vector in R𝑑. To approximate the fluid flux 𝜎 we consider the global Raviart–Thomas space
of order 𝑘 which is given by

Zℎ := {𝜏ℎ ∈ H(div; Ω) : 𝜏ℎ|𝑇 ∈ RT𝑘(𝑇 ) ∀𝑇 ∈ 𝒯ℎ, 𝜏ℎ · 𝑛 = 0 on Γ𝑢} . (3.11)

We consider discontinuous polynomials of order 𝑘 for the fluid pressure:

Wℎ :=
{︀
𝑞ℎ ∈ L2(Ω) : 𝑞ℎ|𝑇 ∈ P𝑘(𝑇 ) ∀𝑇 ∈ 𝒯ℎ

}︀
. (3.12)

It is well-known that the pair (Zℎ,Wℎ) satisfies the hypotheses (H0) and (H1) (see, e.g. [20, 33]). This fact
completes the requirements of Theorem 3.2, and therefore the well-posedness of (3.2) holds for the above
subspaces.

Let us now recall the approximation properties of Zℎ and Wℎ.

(AP𝜎
ℎ ) There exists 𝐶 > 0, independent of ℎ, such that for each 𝑚 ∈ (0, 𝑘 + 1] and each 𝜎 ∈ H𝑚(Ω) ∩ Z, with

div 𝜎 ∈ H𝑚(Ω), there holds

inf
𝜏ℎ∈Zℎ

‖𝜎 − 𝜏ℎ‖div,Ω ≤ 𝐶ℎ𝑚(‖𝜎‖𝑚,Ω + ‖div 𝜎‖𝑚,Ω).
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(AP𝑝
ℎ) There exists 𝐶 > 0, independent of ℎ, such that for each 𝑚 ∈ (0, 𝑘+ 1] and each 𝑝 ∈ H𝑚(Ω), there holds

inf
𝑞ℎ∈Wℎ

‖𝑝− 𝑞ℎ‖0,Ω ≤ 𝐶ℎ𝑚‖𝑝‖𝑚,Ω.

From the above discussion, the following theorem provides the theoretical rate of convergence of the Galerkin
scheme (3.2) under suitable regularity assumptions on the exact solution.

Theorem 3.3. Given 𝑠,𝑚 ∈ (0, 𝑘 + 1], assume that 𝑢 ∈ H𝑠+2(Ω), 𝜑 ∈ H𝑠+1(Ω), 𝜎 ∈ H𝑚(Ω) ∩ Z such that
div 𝜎 ∈ H𝑚(Ω), and 𝑝 ∈ H𝑚(Ω). There exists 𝐶rate > 0, independent of 𝜆 and ℎ, such that

|||(𝑢− 𝑢ℎ, 𝜑− 𝜑ℎ,𝜎 − 𝜎ℎ, 𝑝− 𝑝ℎ)||| ≤ 𝐶rateℎ
min{𝑠+1,𝑚} (‖𝑢‖𝑠+2,Ω + ‖𝜑‖𝑠+1,Ω + ‖𝜎‖𝑚,Ω + ‖div 𝜎‖𝑚,Ω + ‖𝑝‖𝑚,Ω) .

Proof. The result is a straightforward application of Céa’s estimate (3.6), and the approximation properties
(AP𝑢

ℎ ), (AP𝜑
ℎ), (AP𝜎

ℎ ) and (AP𝑝
ℎ). �

Remark 3.4. To approximate the solution of problem (2.13), one may consider other finite element sub-
spaces available in the literature. For example, for each 𝑇 ∈ 𝒯ℎ, consider the Brezzi–Douglas–Marini space
BDM𝑘(𝑇 ) := P𝑘(𝑇 ) of order 𝑘 ≥ 1 (see, e.g. [20]), and the enriched space P1,𝑏(𝑇 ) := [P1(𝑇 ) ⊕ span{𝑏𝑇 }]𝑑,
where 𝑏𝑇 is the bubble function defined as 𝑏𝑇 :=

∏︀𝑑+1
𝑖=1 𝜆𝑖 and {𝜆𝑖}, 1 ≤ 𝑖 ≤ 𝑑+1, are the barycentric coordinates

of 𝑇 . The following finite element spaces,

Hℎ :=
{︀
𝑣ℎ ∈ [𝒞(Ω)]𝑑 : 𝑣ℎ|𝑇 ∈ P1,𝑏(𝑇 ) ∀𝑇 ∈ 𝒯ℎ, 𝑣ℎ = 0 on Γ𝑢

}︀
,

Qℎ :=
{︀
𝜓ℎ ∈ 𝒞(Ω) : 𝜓ℎ|𝑇 ∈ P1(𝑇 ) ∀𝑇 ∈ 𝒯ℎ

}︀
,

Zℎ := {𝜏ℎ ∈ H(div; Ω) : 𝜏ℎ|𝑇 ∈ BDM𝑘(𝑇 ) ∀𝑇 ∈ 𝒯ℎ, 𝜏ℎ · 𝑛 = 0 on Γ𝑢} ,
Wℎ :=

{︀
𝑞ℎ ∈ L2(Ω) : 𝑞ℎ|𝑇 ∈ P𝑘−1(𝑇 ) ∀𝑇 ∈ 𝒯ℎ

}︀
,

(3.13)

result also in a well–posed Galerkin scheme (3.2) with optimal error bounds. In particular, we recall that
(Hℎ,Qℎ), which is usually referred to as the MINI-element [8], satisfies the hypothesis (H2). For its proof in
two dimensions, we refer to [8] (see also [20]). The stability of this element in three dimensions follows, as in
the two-dimensional case, by using a suitable Fortin operator (see, e.g. [16]).

The theory developed in this section holds for combinations of the pairs (Hℎ,Qℎ) and (Zℎ,Wℎ) resulting
from the finite element subspaces (3.9)–(3.13).

4. A residual-based a posteriori error estimator

We now develop a reliable and efficient residual-based a posteriori error estimator for the Galerkin scheme
(3.2). In doing so, we may use any choice of finite dimensional subspaces satisfying the hypotheses of Section
3. For simplicity, however, we consider the finite dimensional subspaces (3.9)–(3.12), and restrict ourselves to
the problem in two dimensions. In Section 4.3, we will comment on the main consideration for extending the
estimator to three dimensions. We begin by introducing further notation and definitions.

For each 𝑇 ∈ 𝒯ℎ, we let ℰ(𝑇 ) be the set of all edges of 𝑇 , and denote by ℰℎ the set of all edges of 𝒯ℎ, that
is, ℰℎ = ℰℎ(Ω) ∪ ℰℎ(Γ𝑢) ∪ ℰℎ(Γ𝑝), where ℰℎ(Ω) := {𝑒 ∈ 𝒯ℎ : 𝑒 ⊆ Ω}, ℰℎ(Γ𝑢) := {𝑒 ∈ 𝒯ℎ : 𝑒 ⊆ Γ𝑢} and
ℰℎ(Γ𝑝) := {𝑒 ∈ 𝒯ℎ : 𝑒 ⊆ Γ𝑝}. In what follows, ℎ𝑒 stands for the diameter of a given edge 𝑒 ∈ ℰℎ. For every edge
𝑒 ∈ ℰℎ we fix a unit normal vector 𝑛𝑒 := (𝑛1, 𝑛2)𝑇 to the edge 𝑒, and let 𝑠𝑒 := (−𝑛2, 𝑛1)𝑇 be the fixed unit
tangential vector along 𝑒. However, when no confusion arises we will simply write 𝑛 and 𝑠 instead of 𝑛𝑒 and 𝑠𝑒,
respectively. Given an edge 𝑒 ∈ ℰℎ(Ω), 𝜏 ∈ L2(Ω) and 𝜉 ∈ [L(Ω)]2×2, such that 𝜏 ∈ [𝒞(𝑇 )]2 and 𝜉 ∈ [𝒞(𝑇 )]2×2

for all 𝑇 ∈ 𝒯ℎ, we let J𝜏 · 𝑠K and J𝜉𝑛K be the corresponding jumps across 𝑒, i.e. J𝜏 · 𝑠K := {(𝜏 |𝑇 )|𝑒− (𝜏 |𝑇 ′)|𝑒} · 𝑠
and J𝜉𝑛K := {(𝜉|𝑇 )|𝑒 − (𝜉|𝑇 ′)|𝑒}𝑛, respectively, where 𝑇 and 𝑇 ′ are two triangles of 𝒯ℎ sharing a common edge
𝑒. Finally, given scalar and vector-valued fields 𝜓 and 𝜏 := (𝜏𝑖)1≤𝑖≤2, respectively, we set

rot 𝜏 :=
𝜕𝜏2
𝜕𝑥1
− 𝜕𝜏1
𝜕𝑥2

and curl𝜓 :=

(︃
𝜕𝜓
𝜕𝑥2

− 𝜕𝜓
𝜕𝑥1

)︃
·
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Now, let (𝑢ℎ, 𝜑ℎ,𝜎ℎ, 𝑝ℎ) ∈ Hℎ × Qℎ × Zℎ ×Wℎ be the unique solution of problem (3.2) and introduce the
global a posteriori error estimator

Θ :=

{︃∑︁
𝑇∈𝒯ℎ

(︀
Θ2
𝑠,𝑇 + Θ2

𝑓,𝑇 + Θ2
𝑠𝑓,𝑇

)︀}︃1/2

, (4.1)

where Θ𝑠,𝑇 , Θ𝑓,𝑇 and Θ𝑠𝑓,𝑇 are the local error indicators defined for each 𝑇 ∈ 𝒯ℎ as follows:

Θ2
𝑠,𝑇 := ℎ2

𝑇 ‖𝑓 + div (2𝜇𝜀(𝑢ℎ)− 𝜑ℎ𝐼)‖20,𝑇 +
∑︁

𝑒∈ℰ(𝑇 )∩ℰℎ(Ω)

ℎ𝑒‖J(2𝜇𝜀(𝑢ℎ)− 𝜑ℎ𝐼)𝑛K‖20,𝑒

+
∑︁

𝑒∈ℰ(𝑇 )∩ℰℎ(Γ𝑝)

ℎ𝑒‖𝑚Γ − J(2𝜇𝜀(𝑢ℎ)− 𝜑ℎ𝐼)𝑛K‖20,𝑒, (4.2)

Θ2
𝑓,𝑇 := ℎ2

𝑇

⃦⃦⃦
∇𝑝ℎ − 𝜌𝑔 +

𝜂

𝜅
𝜎ℎ

⃦⃦⃦2

0,𝑇
+ ℎ2

𝑇

⃦⃦⃦
rot

(︁𝜂
𝜅

𝜎ℎ − 𝜌𝑔
)︁⃦⃦⃦2

0,𝑇
+

∑︁
𝑒∈ℰ(𝑇 )∩ℰℎ(Ω)

ℎ𝑒

⃦⃦⃦r(︁𝜂
𝜅

𝜎ℎ − 𝜌𝑔
)︁
· 𝑠

z⃦⃦⃦2

0,𝑒

+
∑︁

𝑒∈ℰ(𝑇 )∩ℰℎ(Γ𝑝)

{︃
ℎ𝑒‖𝑝Γ − 𝑝ℎ‖20,𝑒 + ℎ𝑒

⃦⃦⃦⃦(︁𝜂
𝜅

𝜎ℎ − 𝜌𝑔
)︁
· 𝑠 +

d𝑝Γ

d𝑠

⃦⃦⃦⃦2

0,𝑒

}︃
(4.3)

Θ2
𝑠𝑓,𝑇 :=

⃦⃦⃦⃦
1
𝜆

(𝜑ℎ − 𝛼𝑝ℎ) + div 𝑢ℎ

⃦⃦⃦⃦2

0,𝑇

+
⃦⃦⃦⃦(︂
𝑐0 +

𝛼2

𝜆

)︂
𝑝ℎ −

𝛼

𝜆
𝜑ℎ + div 𝜎ℎ − ℓ

⃦⃦⃦⃦2

0,𝑇

. (4.4)

The residual character of each term defining (Θ𝑠,𝑇 + Θ𝑓,𝑇 + Θ𝑠𝑓,𝑇 ) is a consequence of the strong problem
(2.11) and the regularity of the weak solution at the continuous level. It is important to remark that the third
term of Θ𝑠,𝑇 requires 𝑚Γ ∈ L2(𝑒) for all 𝑒 ∈ ℰℎ(Γ𝑝), which will be assumed from now on. Similarly, as we will
see in Lemma 4.5 (see, in particular, Eq. (4.24)), we need to assume that 𝑝Γ ∈ H1(Γ𝑝). The latter implies that
the fourth and fifth terms of Θ𝑓,𝑇 are well-defined.

In what follows we prove the main properties of Θ, namely its reliability and efficiency.

4.1. Reliability of the a posteriori error estimator

In this section we focus on the proof of the following result.

Theorem 4.1. There exists a constant 𝐶rel > 0, independent of 𝜆 and ℎ, such that

|||(𝑢− 𝑢ℎ, 𝜑− 𝜑ℎ,𝜎 − 𝜎ℎ, 𝑝− 𝑝ℎ)||| ≤ 𝐶relΘ, (4.5)

where |||·||| was defined in (2.19).

The proof of Theorem 4.1 will be separated into several steps. We start by providing a preliminary upper
bound for the total error, as done in [36]. The idea is to bound the global error by dual norms of the residuals
associated with problem (3.2). The following result holds the key to this.

Lemma 4.2. Let (𝑢, 𝜑,𝜎, 𝑝) ∈ H×Q×Z×Q and (𝑢ℎ, 𝜑ℎ,𝜎ℎ, 𝑝ℎ) ∈ Hℎ×Qℎ×Zℎ×Wℎ be the unique solutions
of problems (2.13) and (3.2), respectively. There exists a constant 𝐶 > 0, independent of 𝜆 and ℎ, such that

|||(𝑢− 𝑢ℎ, 𝜑− 𝜑ℎ,𝜎 − 𝜎ℎ, 𝑝− 𝑝ℎ)||| ≤ 𝐶 (‖ℱ1‖H′ + ‖𝒢1‖Q′ + ‖ℱ2‖Z′ + ‖𝒢2‖Q′) ,

where ℱ1(·) on H, 𝒢1(·) on Q, ℱ2(·) on Z and 𝒢2(·) on Q denote the linear functionals defined, respectively,
by

ℱ1(𝑣) := 𝐹 (𝑣)− 𝑎𝑠(𝑢ℎ,𝑣)− 𝑏𝑠(𝑣, 𝜑ℎ), (4.6)
𝒢1(𝜓) := −𝑏𝑠(𝑢ℎ, 𝜓) + 𝑐𝑠(𝜑ℎ, 𝜓)− 𝑏𝑠𝑓 (𝜓, 𝑝ℎ), (4.7)
ℱ2(𝜏 ) := 𝐺(𝜏 )− 𝑎𝑓 (𝜎ℎ, 𝜏 )− 𝑏𝑓 (𝜏 , 𝑝ℎ), (4.8)
𝒢2(𝑞) := 𝐻(𝑞)− 𝑏𝑠𝑓 (𝜑ℎ, 𝑞)− 𝑏𝑓 (𝜎ℎ, 𝑞) + 𝑐𝑓 (𝑝ℎ, 𝑞). (4.9)
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Proof. Adding and subtracting (𝑢ℎ, 𝜑ℎ,𝜎ℎ, 𝑝ℎ) to the continuous solution in system (2.13), the conclusion
follows directly from the estimate (2.21) by taking 𝐹1 = ℱ1, 𝐺1 = 𝒢1, 𝐹2 = ℱ2 and 𝐺2 = 𝒢2. �

Having proved Lemma 4.2, and noting that 𝒢1,𝒢2 ∈ Q′ satisfy

‖𝒢1‖Q′ ≤
⃦⃦⃦⃦

1
𝜆

(𝜑ℎ − 𝛼𝑝ℎ) + div 𝑢ℎ

⃦⃦⃦⃦
0,Ω

and ‖𝒢2‖Q′ ≤
⃦⃦⃦⃦(︂
𝑐0 +

𝛼2

𝜆

)︂
𝑝ℎ −

𝛼

𝜆
𝜑ℎ + div 𝜎ℎ − ℓ

⃦⃦⃦⃦
0,Ω

, (4.10)

it is clear that in order to show (4.5), we need to obtain suitable upper bounds for ‖ℱ1‖H′ and ‖ℱ2‖Z′ . From
the Galerkin scheme (3.2) we note that ℱ1(𝑣ℎ) = 0 for all 𝑣ℎ ∈ Hℎ, and ℱ2(𝜏ℎ) = 0 for all 𝜏ℎ ∈ Zℎ. We can
therefore write

‖ℱ1‖H′ := sup
𝑣∈H
𝑣ℎ ̸=0

|ℱ1(𝑣 − 𝑣ℎ)|
‖𝑣‖1,Ω

(4.11)

and

‖ℱ2‖Z′ := sup
𝜏∈Z
𝜏ℎ ̸=0

|ℱ2(𝜏 − 𝜏ℎ)|
‖𝜏‖div,Ω

, (4.12)

with 𝑣ℎ ∈ Hℎ and 𝜏ℎ ∈ Zℎ suitably chosen functions that will be defined later.

4.1.1. Upper bound for ‖ℱ1‖H′

To satisfy homogeneous Dirichlet boundary conditions, we introduce the Clément-type interpolant

ℐℎ,Γ𝑢
: H1

Γ𝑢
(Ω)→ Xℎ,Γ𝑢

,

where

Xℎ,Γ𝑢
:=
{︀
𝑣 ∈ 𝒞(Ω) : 𝑣|𝑇 ∈ P1(𝑇 ) ∀𝑇 ∈ 𝒯ℎ, 𝑣 = 0 on Γ𝑢

}︀
⊆ H1

Γ𝑢
(Ω),

with H1
Γ𝑢

(Ω) defined as in (2.1). It can be shown that this operator satisfies the same approximation properties
as the standard Clément interpolant [27], i.e.

‖𝑣 − ℐℎ,Γ𝑢
(𝑣)‖0,𝑇 ≤ 𝐶1ℎ𝑇 |𝑣|1,Δ(𝑇 ) ∀𝑇 ∈ 𝒯ℎ, and ‖𝑣 − ℐℎ,Γ𝑢

(𝑣)‖0,𝑒 ≤ 𝐶2ℎ
1/2
𝑒 |𝑣|1,Δ(𝑒) ∀ 𝑒 ∈ ℰℎ, (4.13)

where ∆(𝑇 ) and ∆(𝑒) are the union of all the elements intersecting with 𝑇 and 𝑒, respectively. Furthermore, we
denote by ℐℎ,Γ𝑢

the vector operator defined componentwise by ℐℎ,Γ𝑢
.

Next, proceeding analogously to Section 6 of [59], we state the main result of this section.

Lemma 4.3. Assuming that 𝑚Γ ∈ L2(𝑒) for all ℰℎ(Γ𝑝), there exists a constant 𝐶 > 0, independent of 𝜆 and
ℎ, such that

‖ℱ1‖H′ ≤ 𝐶

{︃∑︁
𝑇∈𝒯ℎ

Θ2
𝑠,𝑇

}︃1/2

,

where Θ𝑠,𝑓 is defined in (4.2).
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Proof. Integrating by parts (4.6) on each 𝑇 ∈ 𝒯ℎ yields for all 𝑤 ∈ H,

ℱ1(𝑤) =
∫︁

Ω

𝑓 ·𝑤 +
∫︁

Γ𝑝

𝑚Γ ·𝑤 − 2𝜇
∫︁

Ω

𝜀(𝑢ℎ) : 𝜀(𝑤) +
∫︁

Ω

𝜑ℎ div 𝑤

=
∑︁
𝑇∈𝒯ℎ

∫︁
𝑇

𝑓 ·𝑤 +
∑︁

𝑒∈ℰℎ(Γ𝑝)

∫︁
𝑒

𝑚Γ ·𝑤 −
∑︁
𝑇∈𝒯ℎ

∫︁
𝑇

(2𝜇𝜀(𝑢ℎ)− 𝜑ℎ𝐼) : ∇𝑤

=
∑︁

𝑒∈ℰℎ(Γ𝑝)

∫︁
𝑒

𝑚Γ ·𝑤 +
∑︁
𝑇∈𝒯ℎ

{︂∫︁
𝑇

(𝑓 + div (2𝜇𝜀(𝑢ℎ)− 𝜑ℎ𝐼)) ·𝑤 −
∫︁
𝜕𝑇

(2𝜇𝜀(𝑢ℎ)− 𝜑ℎ𝐼)𝑛 ·𝑤
}︂

=
∑︁
𝑇∈𝒯ℎ

∫︁
𝑇

(𝑓 + div (2𝜇𝜀(𝑢ℎ − 𝜑ℎ𝐼)) ·𝑤 +
∑︁

𝑒∈ℰℎ(Γ𝑝)

∫︁
𝑒

(𝑚Γ − (2𝜇𝜀(𝑢ℎ)− 𝜑ℎ𝐼)𝑛) ·𝑤

−
∑︁

𝑒∈ℰℎ(Ω)

∫︁
𝑒

J(2𝜇𝜀(𝑢ℎ)− 𝜑ℎ𝐼)𝑛K ·𝑤.

Given 𝑣 ∈ H, set 𝑣ℎ in (4.11) to 𝑣ℎ := ℐℎ,Γ𝑢(𝑣) and let 𝑤 := 𝑣 − 𝑣ℎ. Then, applying the Cauchy–Schwarz
inequality to each term above, and by the approximation properties of ℐℎ,Γ𝑢

(cf. (4.13)), we obtain

|ℱ1(𝑤)| ≤ 𝐶

{︃∑︁
𝑇∈𝒯ℎ

Θ2
𝑠,𝑇

}︃1/2
⎧⎨⎩∑︁
𝑇∈𝒯ℎ

‖𝑣‖21,Δ(𝑇 ) +
∑︁

𝑒∈ℰℎ(Ω)

‖𝑣‖21,Δ(𝑒) +
∑︁

𝑒∈ℰℎ(Γ𝑝)

‖𝑣‖21,Δ(𝑒)

⎫⎬⎭
1/2

.

The result follows by using the definition of ℱ1, and noting, by the shape-regularity of the mesh, that the
number of triangles in ∆(𝑇 ) and ∆(𝑒) are bounded. �

4.1.2. Upper bound for ‖ℱ2‖Z′

In this section, a stable Helmholtz decomposition of Z and suitable interpolation operators will be of
paramount importance to define 𝜏ℎ appearing in definition (4.12). This term is necessary to provide an upper
bound for ‖ℱ2‖Z′ . The approach we follow has been widely used in a posteriori error estimators for mixed
methods, see for instance [4, 22,35].

We start by introducing the L2(Ω)-orthogonal projection onto Wℎ (cf. (3.12)), 𝒫𝑘ℎ : L2(Ω)→Wℎ, which, for
each 𝑞 ∈ H𝑚(Ω), with 0 ≤ 𝑚 ≤ 𝑘 + 1, satisfies the approximation property

|𝑞 − 𝒫𝑘ℎ(𝑞)|𝑠,𝑇 ≤ 𝐶ℎ𝑚−𝑠|𝑞|𝑚,𝑇 ∀𝑇 ∈ 𝒯ℎ, ∀ 𝑠 ∈ {0, . . . ,𝑚}. (4.14)

In addition, letting Z𝑅𝑇ℎ := {𝜏ℎ ∈ H(div; Ω) : 𝜏ℎ|𝑇 ∈ RT𝑘(𝑇 ) ∀𝑇 ∈ 𝒯ℎ}, we recall the classical Raviart–
Thomas interpolation operator Π𝑘

ℎ : H1(Ω)→ Z𝑅𝑇ℎ , which, given 𝜏 ∈ H1(Ω), is characterized by the identities∫︁
𝑇

Π𝑘
ℎ(𝜏 ) · 𝜁 =

∫︁
𝑇

𝜏 · 𝜁 ∀ 𝜁 ∈ P𝑘−1(𝑇 ), ∀𝑇 ∈ 𝒯ℎ, when 𝑘 ≥ 1, (4.15)∫︁
𝑒

(Π𝑘
ℎ(𝜏 ) · 𝑛)𝜓 =

∫︁
𝑒

(𝜏 · 𝑛)𝜓 ∀𝜓 ∈ P𝑘(𝑒), ∀ 𝑒 ∈ ℰℎ, when 𝑘 ≥ 0. (4.16)

Consequently, it is not difficult to check (see, e.g. [33], Lem. 3.7) that

div (Π𝑘
ℎ(𝜏 )) = 𝒫𝑘ℎ(div 𝜏 ) ∀ 𝜏 ∈ H1(Ω). (4.17)

Moreover, the following local approximation properties hold [20,26,33]:

– For each 𝜏 ∈ H𝑚(Ω), with 0 ≤ 𝑚 ≤ 𝑘 + 1,

‖𝜏 −Π𝑘
ℎ(𝜏 )‖0,𝑇 ≤ 𝐶ℎ𝑚𝑇 |𝜏 |𝑚,𝑇 ∀𝑇 ∈ 𝒯ℎ. (4.18)
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– For each 𝜏 ∈ H1(Ω) such that div 𝜏 ∈ H𝑚(Ω), with 0 ≤ 𝑚 ≤ 𝑘 + 1,

‖div (𝜏 −Π𝑘
ℎ(𝜏 ))‖0,𝑇 ≤ 𝐶ℎ𝑚𝑇 |div 𝜏 |𝑚,𝑇 ∀𝑇 ∈ 𝒯ℎ. (4.19)

– For each 𝜏 ∈ H1(Ω), there holds,

‖(𝜏 −Π𝑘
ℎ(𝜏 )) · 𝑛‖0,𝑒 ≤ 𝐶ℎ1/2

𝑒 |𝜏 |1,𝑇𝑒
, (4.20)

where 𝑇𝑒 denotes an element of 𝒯ℎ having 𝑒 as an edge.

We now introduce a stable Helmholtz decomposition of Z. This will require Γ𝑢 to lie on the boundary of a
convex domain containing Ω. We refer to Lemma 3.9 of [4] for the proof of this result in the tensorial case.

Lemma 4.4. Assume that there exists a convex domain Ξ such that Ω ⊆ Ξ and Γ𝑢 ⊆ 𝜕Ξ. Then, for each 𝜏 ∈ Z
there exist 𝜁 ∈ H1(Ω) and 𝜙 ∈ H1

Γ𝑢
(Ω), such that

𝜏 = 𝜁 + curl𝜙 in Ω, and ‖𝜁‖1,Ω + ‖𝜙‖1,Ω ≤ 𝐶‖𝜏‖div,Ω, (4.21)

where 𝐶 is a positive constant independent of 𝜏 , 𝜁 and 𝜙.

We now introduce the discrete version of (4.21) and follow similar steps as in Lemma 3.8 of [36] (see also [35],
Sect. 4.1). Given 𝜏 ∈ Z and its Helmholtz decomposition (4.21), we let 𝜁ℎ := Π𝑘

ℎ(𝜁) and 𝜙ℎ := ℐℎ,Γ𝑢
(𝜙), where

ℐℎ,Γ𝑢 is the Clément-type interpolant given in Section 4.1.1. We then set the discrete Helmholtz decomposition
as 𝜏ℎ := 𝜁ℎ + curl𝜙ℎ ∈ Zℎ.

From the above discussion and by definition of ℱ2 (cf. (4.8)), we can write

ℱ2(𝜏 − 𝜏ℎ) = ℱ2(𝜁 − 𝜁ℎ) + ℱ2(curl (𝜙− 𝜙ℎ)). (4.22)

We will bound each term on the right-hand side of (4.22) separately.
Proceeding as in the proof of Lemma 4.4 from [35], applying the Cauchy–Schwarz inequality, using the

identities (4.15)–(4.17), the approximation properties (4.18) and (4.20), and the fact that the number of tri-
angles in ∆(𝑇 ) and ∆(𝑒) are bounded (due to shape-regularity of the mesh), we obtain, after some algebraic
manipulations,

|ℱ2(𝜁 − 𝜁ℎ)| ≤ 𝐶

⎧⎨⎩∑︁
𝑇∈𝒯ℎ

ℎ2
𝑇

⃦⃦⃦
∇𝑝ℎ − 𝜌𝑔 +

𝜂

𝜅
𝜎ℎ

⃦⃦⃦2

0,𝑇
+

∑︁
𝑒∈ℰℎ(Γ𝑝)

ℎ𝑒‖𝑝Γ − 𝑝ℎ‖20,𝑒

⎫⎬⎭
1/2

‖𝜁‖1,Ω. (4.23)

The upper bound for |ℱ2(curl (𝜙−𝜙ℎ))| follows by similar arguments as in Lemma 4.3 of [35]. Indeed, using
the identity curl (𝜙 − 𝜙ℎ) · 𝑛 = d

d𝑠 (𝜙 − 𝜙ℎ), assuming d𝑝Γ
d𝑠 ∈ L2(Γ𝑝), and integrating by parts on Γ𝑝 (see [28],

Lem. 3.5, Eq. (3.34)), we obtain

⟨curl (𝜙− 𝜙ℎ) · 𝑛, 𝑝Γ⟩Γ𝑝
= −

⟨
d𝑝Γ

d𝑠
, 𝜙− 𝜙ℎ

⟩
Γ𝑝

= −
∑︁

𝑒∈ℰℎ(Γ𝑝)

∫︁
𝑒

(𝜙− 𝜙ℎ)
d𝑝Γ

d𝑠
· (4.24)

We can then write ℱ2(curl (𝜙 − 𝜙ℎ)), using (4.24) and applying Theorem 2.11 of [37] to integrate by parts
elementwise, as

ℱ2(curl (𝜙− 𝜙ℎ)) = −
∫︁

Ω

(︁𝜂
𝜅

𝜎ℎ − 𝜌𝑔
)︁
· curl (𝜙− 𝜙ℎ)− ⟨curl (𝜙− 𝜙ℎ) · 𝑛, 𝑝Γ⟩Γ𝑝

= −
∑︁
𝑇∈𝒯ℎ

∫︁
𝑇

rot
(︁𝜂
𝜅

𝜎ℎ − 𝜌𝑔
)︁

(𝜙− 𝜙ℎ) +
∑︁

𝑒∈ℰℎ(Ω)

∫︁
𝑒

r(︁𝜂
𝜅

𝜎ℎ − 𝜌𝑔
)︁
· 𝑠

z
(𝜙− 𝜙ℎ)

+
∑︁

𝑒∈ℰℎ(Γ𝑝)

∫︁
𝑒

{︂(︁𝜂
𝜅

𝜎ℎ − 𝜌𝑔
)︁
· 𝑠 +

d𝑝Γ

d𝑠

}︂
(𝜙− 𝜙ℎ).
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Next, applying the Cauchy–Schwarz inequality, using (4.13), and the shape-regularity of the mesh, it follows
that

|ℱ2(curl (𝜙− 𝜙ℎ))| ≤ 𝐶

{︃∑︁
𝑇∈𝒯ℎ

ℎ2
𝑇

⃦⃦⃦
rot

(︁𝜂
𝜅

𝜎ℎ − 𝜌𝑔
)︁⃦⃦⃦2

0,𝑇
+

∑︁
𝑒∈ℰℎ(Ω)

ℎ𝑒

⃦⃦⃦r(︁𝜂
𝜅

𝜎ℎ − 𝜌𝑔
)︁
· 𝑠

z⃦⃦⃦2

0,𝑒

+
∑︁

𝑒∈ℰℎ(Γ𝑝)

ℎ𝑒

⃦⃦⃦⃦(︁𝜂
𝜅

𝜎ℎ − 𝜌𝑔
)︁
· 𝑠 +

d𝑝Γ

d𝑠

⃦⃦⃦⃦2

0,𝑒

⎫⎬⎭
1/2

‖𝜙‖1,Ω.

(4.25)

Finally, combining (4.23) and (4.25), and using the stability of the Helmholtz decomposition (4.21), we obtain
the desired bound as summarized in the next lemma.

Lemma 4.5. Suppose that the hypotheses of Lemma 4.4 hold. Assume further that 𝑝Γ ∈ H1(Γ𝑝). Then, there
exists 𝐶 > 0, independent of 𝜆 and ℎ, such that

‖ℱ2‖Z′ ≤ 𝐶

{︃∑︁
𝑇∈𝒯ℎ

Θ2
𝑓,𝑇

}︃1/2

,

with Θ𝑓,𝑇 defined in (4.3).

We end this section by noting that the reliability estimate (4.5) is a direct consequence of Lemmas 4.3 and 4.5,
and the estimates given by (4.10)

4.2. Efficiency of the a posteriori error estimator

The main result of this section reads as follows.

Theorem 4.6. There exists a constant 𝐶eff > 0, independent of 𝜆 and ℎ, such that

𝐶effΘ ≤ |||(𝑢− 𝑢ℎ, 𝜑− 𝜑ℎ,𝜎 − 𝜎ℎ, 𝑝− 𝑝ℎ)|||+ h.o.t., (4.26)

where h.o.t. is a generic expression denoting one or several terms of higher order.

To obtain (4.26), we will find upper bounds for each estimator term in (4.2)–(4.4), separately. We can
immediately deduce the estimates for the zero-order terms appearing in the definition of Θ𝑠𝑓,𝑇 (cf. (4.4)), as
done in the following lemma.

Lemma 4.7. For all 𝑇 ∈ 𝒯ℎ, there hold⃦⃦⃦⃦
1
𝜆

(𝜑ℎ − 𝛼𝑝ℎ) + div 𝑢ℎ

⃦⃦⃦⃦
0,𝑇

≤
√

2‖𝑢− 𝑢ℎ‖1,𝑇 +
1
𝜆
‖𝜑− 𝜑ℎ‖0,𝑇 +

𝛼

𝜆
‖𝑝− 𝑝ℎ‖0,𝑇 ,

and ⃦⃦⃦⃦(︂
𝑐0 +

𝛼2

𝜆

)︂
𝑝ℎ −

𝛼

𝜆
𝜑ℎ + div 𝜎ℎ − ℓ

⃦⃦⃦⃦
0,𝑇

≤ ‖𝜎 − 𝜎ℎ‖div,𝑇 +
𝛼

𝜆
‖𝜑− 𝜑ℎ‖0,𝑇 +

(︂
𝑐0 +

𝛼2

𝜆

)︂
‖𝑝− 𝑝ℎ‖0,𝑇 .

Note that volumetric locking is not a concern in the above two inequalities, because at least one term on the
right-hand side does not vanish when 𝜆→∞.

To bound the remaining terms, we introduce further notation and preliminary results. Given 𝑇 ∈ 𝒯ℎ and
𝑒 ∈ ℰ(𝑇 ), we let Φ𝑇 and Φ𝑒 be the usual element-bubble and edge-bubble functions [57], respectively. In
particular, Φ𝑇 satisfies Φ𝑇 ∈ P3(𝑇 ), sup Φ𝑇 ⊆ 𝑇 , Φ𝑇 = 0 on 𝜕𝑇 and 0 ≤ Φ𝑇 ≤ 1 in 𝑇 . Similarly, one has
Φ𝑒|𝑇 ∈ P2(𝑇 ), sup Φ𝑒 ⊆ 𝜔𝑒 := ∪{𝑇 ′ ∈ 𝒯ℎ : 𝑒 ∈ ℰ(𝑇 ′)}, Φ𝑒 = 0 on 𝜕𝑇 ∖{𝑒} and 0 ≤ Φ𝑒 ≤ 1 in 𝜔𝑒. We then have
the following useful result.
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Lemma 4.8. Given an integer 𝑘 ≥ 0, there exists an extension operator ℒ : 𝒞(𝑒)→ 𝒞(𝑇 ) such that ℒ(𝑞)|𝑒 = 𝑞
for all 𝑞 ∈ P𝑘(𝑒). Moreover, there exist positive constants 𝛾𝑖, 𝑖 ∈ {1, 2, 3, 4}, which only depend on 𝑘 and on the
shape-regularity parameter of the mesh, such that for each 𝑇 ∈ 𝒯ℎ and each 𝑒 ∈ ℰ(𝑇 ),

‖Φ𝑇𝜓‖20,𝑇 ≤ ‖𝜓‖20,𝑇 ≤ 𝛾1‖Φ1/2
𝑇 𝜓‖20,𝑇 ∀𝜓 ∈ P𝑘(𝑇 ), (4.27)

‖Φ𝑒ℒ(𝑞)‖20,𝑒 ≤ ‖𝑞‖20,𝑒 ≤ 𝛾2‖Φ1/2
𝑒 𝑞‖20,𝑒 ∀ 𝑞 ∈ P𝑘(𝑒), (4.28)

and
𝛾3ℎ

1/2
𝑒 ‖𝑞‖0,𝑒 ≤ ‖Φ1/2

𝑒 ℒ(𝑞)‖0,𝑇 ≤ 𝛾4ℎ
1/2
𝑒 ‖𝑞‖0,𝑒 ∀ 𝑞 ∈ P𝑘(𝑒). (4.29)

Proof. See Lemma 4.1 of [57] or Lemma 3.3 of [58] for details. �

The following inverse estimate will also be used.

Lemma 4.9. Let 𝑘,𝑚, 𝑙 ∈ N ∪ {0} such that 𝑙 ≤ 𝑚. There exists a constant 𝐶 > 0, depending only on 𝑘,𝑚, 𝑙
and the shape-regularity constant of the mesh, such that for each 𝑇 ∈ 𝒯ℎ there holds

|𝑞|𝑚,𝑇 ≤ 𝐶invℎ
𝑙−𝑚
𝑇 |𝑞|𝑙,𝑇 ∀ 𝑞 ∈ P𝑘(𝑇 ). (4.30)

Proof. See Theorem 3.2.6 of [26]. �

Furthermore, we will need the following trace inequality (see, e.g. [7]):

‖𝑣‖0,𝑒 ≤ 𝐶tr

(︁
ℎ−1/2
𝑒 ‖𝑣‖0,𝑇𝑒

+ ℎ1/2
𝑒 |𝑣|1,𝑇𝑒

)︁
∀ 𝑣 ∈ H1(𝑇𝑒). (4.31)

Above, 𝑇𝑒 is the mesh element introduced in (4.20). Moreover, the constant 𝐶tr > 0 depends only on the
minimum angle of 𝑇𝑒.

In what follows, considering 𝜎ℎ the approximate fluid flux in problem (3.2), we often write 𝜉 := 𝜂
𝜅𝜎ℎ and

assume, for simplicity, that for 𝑟,𝑚 ≥ 𝑘 + 2, the permeability satisfies: 𝜅−1|𝑇 ∈ H𝑟+1(𝑇 ) for all 𝑇 ∈ 𝒯ℎ, and
𝜅−1|𝑒 ∈ H𝑚+1(𝑒) for all 𝑒 ∈ ℰℎ. Furthermore, the vector counterpart of the projection operator 𝒫𝑘ℎ (cf. (4.14))
will be denoted in boldface.

The following three lemmas provide upper bounds for the estimator terms in (4.3). We present here proofs
inspired by the proofs of Lemmas 6.10–6.12 in [23]. Similar ideas can be found in [21].

Lemma 4.10. There exists a constant 𝑐1 > 0, independent of 𝜆 and ℎ, such that for all 𝑇 ∈ 𝒯ℎ,

ℎ𝑇

⃦⃦⃦
rot

(︁𝜂
𝜅

𝜎ℎ − 𝜌𝑔
)︁⃦⃦⃦

0,𝑇
≤ 𝑐1 (‖𝜎 − 𝜎ℎ‖div,𝑇 + h.o.t.) . (4.32)

Proof. Adding and subtracting 𝒫𝒫𝒫𝑟ℎ(𝜉), and using the triangle inequality, there holds

‖rot (𝜉 − 𝜌𝑔)‖0,𝑇 ≤ 𝐶|𝜉 −𝒫𝒫𝒫
𝑟
ℎ(𝜉)|1,𝑇 + ‖rot (𝒫𝒫𝒫𝑟ℎ(𝜉)− 𝜌𝑔)‖0,𝑇 . (4.33)

Applying now (4.27) to the second term on the right-hand side of (4.33), and noting, by Lemma 2.3, that
𝜌𝑔 = ∇𝑝+ 𝜉 + 𝜂

𝜅 (𝜎 − 𝜎ℎ) in Ω, we obtain

‖rot (𝒫𝒫𝒫𝑟ℎ(𝜉)− 𝜌𝑔)‖20,𝑇 ≤ 𝛾1

⃦⃦⃦
Φ1/2
𝑇 rot (𝒫𝒫𝒫𝑟ℎ(𝜉)− 𝜌𝑔)

⃦⃦⃦2

0,𝑇
= 𝛾1

∫︁
𝑇

Φ𝑇 (rot (𝒫𝒫𝒫𝑟ℎ(𝜉)− 𝜌𝑔))2

= 𝛾1

∫︁
𝑇

Φ𝑇 rot (𝒫𝒫𝒫𝑟ℎ(𝜉)− 𝜌𝑔) rot
(︁
𝒫𝒫𝒫𝑟ℎ(𝜉)− 𝜉 − 𝜂

𝜅
(𝜎 − 𝜎ℎ)

)︁
= 𝛾1

∫︁
𝑇

curl (Φ𝑇 rot (𝒫𝒫𝒫𝑟ℎ(𝜉)− 𝜌𝑔)) ·
(︁
𝒫𝒫𝒫𝑟ℎ(𝜉)− 𝜉 − 𝜂

𝜅
(𝜎 − 𝜎ℎ)

)︁
.
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It then follows fromIt then follows from (4.27) and (4.30) that

‖rot (𝒫𝒫𝒫𝑟ℎ(𝜉)− 𝜌𝑔)‖0,Ω ≤ 𝐶inv𝛾1ℎ
−1
𝑇

(︂
‖𝜉 −𝒫𝒫𝒫𝑟ℎ(𝜉)‖0,𝑇 +

⃦⃦⃦𝜂
𝜅

(𝜎 − 𝜎ℎ)
⃦⃦⃦

0,𝑇

)︂
. (4.34)

Substituting (4.34) into (4.33), using the lower bound for 𝜅, and applying the approximation property of 𝒫𝒫𝒫𝑟ℎ in
(4.14), yields

ℎ𝑇 ‖rot (𝜉 − 𝜌𝑔)‖0,𝑇 ≤ ̃︀𝐶 (︀‖𝜎 − 𝜎ℎ‖div,𝑇 + ℎ𝑟+1
𝑇 |𝜉|𝑟+1,𝑇

)︀
.

Since 𝑟 ≥ 𝑘 + 2, the result follows. �

Lemma 4.11. There exists a constant 𝑐2 > 0, independent of 𝜆 and ℎ, such that for all 𝑇 ∈ 𝒯ℎ,

ℎ𝑇

⃦⃦⃦
∇𝑝ℎ − 𝜌𝑔 +

𝜂

𝜅
𝜎ℎ

⃦⃦⃦
0,𝑇
≤ 𝑐2 (ℎ𝑇 ‖𝜎 − 𝜎ℎ‖div,𝑇 + ‖𝑝− 𝑝ℎ‖0,𝑇 + h.o.t.) . (4.35)

Proof. First, adding and subtracting 𝒫𝒫𝒫𝑟ℎ(𝜉), it follows that

‖∇𝑝ℎ − 𝜌𝑔 + 𝜉‖0,𝑇 ≤ ‖∇𝑝ℎ − 𝜌𝑔 +𝒫𝒫𝒫𝑟ℎ(𝜉)‖0,𝑇 + ‖𝜉 −𝒫𝒫𝒫𝑟ℎ(𝜉)‖0,𝑇 . (4.36)

To bound the first term on the right-hand side of (4.36), we apply estimate (4.27), integrate by parts, and use
the identity 𝜌𝑔 = ∇𝑝+ 𝜉 + 𝜂

𝜅 (𝜎 − 𝜎ℎ) in Ω, to obtain

‖∇𝑝ℎ − 𝜌𝑔 +𝒫𝒫𝒫𝑟ℎ(𝜉)‖20,𝑇 ≤ 𝛾1

⃦⃦⃦
Φ1/2
𝑇 (∇𝑝ℎ − 𝜌𝑔 +𝒫𝒫𝒫𝑟ℎ(𝜉))

⃦⃦⃦2

0,𝑇

= 𝛾1

∫︁
𝑇

Φ𝑇 (∇𝑝ℎ − 𝜌𝑔 +𝒫𝒫𝒫𝑟ℎ(𝜉)) · ∇(𝑝ℎ − 𝑝)− 𝛾1

∫︁
𝑇

Φ𝑇 (∇𝑝ℎ − 𝜌𝑔 +𝒫𝒫𝒫𝑟ℎ(𝜉))

×
(︁𝜂
𝜅

(𝜎 − 𝜎ℎ) + 𝜉 −𝒫𝒫𝒫𝑟ℎ(𝜉)
)︁

= − 𝛾1

∫︁
𝑇

(𝑝ℎ − 𝑝) div (Φ𝑇 (∇𝑝ℎ − 𝜌𝑔 +𝒫𝒫𝒫𝑟ℎ(𝜉)))− 𝛾1

∫︁
𝑇

Φ𝑇 (∇𝑝ℎ − 𝜌𝑔 −𝒫𝒫𝒫𝑟ℎ(𝜉))

×
(︁𝜂
𝜅

(𝜎 − 𝜎ℎ) + 𝜉 −𝒫𝒫𝒫𝑟ℎ(𝜉)
)︁
.

Using the Cauchy–Schwarz inequality and the estimates (4.27) and (4.30), it follows that

‖∇𝑝ℎ − 𝜌𝑔 +𝒫𝒫𝒫𝑟ℎ(𝜉)‖0,𝑇 ≤ 𝐶
(︂
ℎ−1
𝑇 ‖𝑝ℎ − 𝑝‖0,𝑇 +

⃦⃦⃦𝜂
𝜅

(𝜎 − 𝜎ℎ)
⃦⃦⃦

0,𝑇
+ ‖𝜉 −𝒫𝒫𝒫𝑟ℎ(𝜉)‖0,𝑇

)︂
,

where 𝐶 > 0 is independent of 𝜆 and ℎ. Combined with (4.36) we obtain estimate (4.35). �

Lemma 4.12. There exists a constant 𝑐3 > 0, independent of 𝜆 and ℎ, such that for all 𝑒 ∈ ℰℎ(Ω),

ℎ1/2
𝑒

⃦⃦⃦r(︁𝜂
𝜅

𝜎ℎ − 𝜌𝑔
)︁
· 𝑠

z⃦⃦⃦
0,𝑒
≤ 𝑐3

∑︁
𝑇⊆𝜔𝑒

(‖𝜎 − 𝜎ℎ‖div,𝑇 + h.o.t.) . (4.37)

Furthermore, assuming that 𝑝Γ is a piecewise polynomial, there exist constants 𝑐4, 𝑐5 > 0, also independent of 𝜆
and ℎ, such that for all 𝑒 ∈ ℰℎ(Γ𝑝),

ℎ1/2
𝑒

⃦⃦⃦⃦(︁𝜂
𝜅

𝜎ℎ − 𝜌𝑔
)︁
· 𝑠 +

d𝑝Γ

d𝑠

⃦⃦⃦⃦
0,𝑒

≤ 𝑐4 (‖𝜎 − 𝜎ℎ‖div,𝑇 + h.o.t.) , (4.38)

ℎ1/2
𝑒 ‖𝑝Γ − 𝑝ℎ‖0,𝑒 ≤ 𝑐5 (‖𝑝− 𝑝ℎ‖0,𝑇 + (1 + ℎ𝑇 )‖𝜎 − 𝜎ℎ‖div,𝑇 + h.o.t) . (4.39)
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Proof. Let us first prove (4.37). In order to simplify notation, given 𝑒 ∈ ℰℎ(Ω), we decompose J(𝜉 − 𝜌𝑔) · 𝑠K into
𝜒𝑒 := J(𝜉 −𝒫𝒫𝒫𝑚ℎ (𝜉)) · 𝑠K and 𝜁𝑒 := J(𝒫𝒫𝒫𝑚ℎ (𝜉)− 𝜌𝑔) · 𝑠K.

Applying now the estimate (4.31) and using similar arguments as in the previous two lemmas,

‖J(𝜉 − 𝜌𝑔) · 𝑠K‖0,𝑒 ≤ ‖𝜒𝑒‖0,𝑒 + ‖𝜁𝑒‖0,𝑒

≤
∑︁
𝑇⊆𝜔𝑒

𝐶tr

(︁
ℎ−1/2
𝑒 ‖𝜉 −𝒫𝒫𝒫𝑚ℎ (𝜉)‖0,𝑇 + ℎ1/2

𝑒 |𝜉 −𝒫𝒫𝒫𝑚ℎ (𝜉)|1,𝑇
)︁

+ ‖𝜁𝑒‖0,𝑒

≤ ℎ−1/2
𝑒

∑︁
𝑇⊆𝜔𝑒

𝐶tr (‖𝜉 −𝒫𝒫𝒫𝑚ℎ (𝜉)‖0,𝑇 + ℎ𝑒|𝜉 −𝒫𝒫𝒫𝑚ℎ (𝜉)|1,𝑇 ) + ‖𝜁𝑒‖0,𝑒

≤ 𝐶ℎ−1/2
𝑒

∑︁
𝑇⊆𝜔𝑒

ℎ𝑚+1
𝑇 |𝜉|𝑚+1,𝑇 + ‖𝜁𝑒‖0,𝑒,

(4.40)

where we recall that 𝜔𝑒 := ∪{𝑇 ′ ∈ 𝒯ℎ : 𝑒 ∈ ℰ(𝑇 ′)}. To estimate ‖𝜁𝑒‖0,𝑒, we use the second inequality in (4.28),
integrate by parts, and use the identity 𝜌𝑔 = ∇𝑝+ 𝜉 + 𝜂

𝜅 (𝜎 − 𝜎ℎ) in Ω. This yields

‖𝜁𝑒‖20,𝑒 ≤ 𝛾2‖Φ1/2
𝑇 𝜁𝑒‖20,𝑒 = 𝛾2

∫︁
𝑒

(Φ𝑒ℒ(𝜁𝑒)) 𝜁𝑒

=
∑︁
𝑇⊆𝜔𝑒

{︂∫︁
𝑇

Φ𝑒ℒ(𝜁𝑒) rot (𝒫𝒫𝒫𝑚ℎ (𝜉)− 𝜌𝑔)−
∫︁
𝑇

(𝒫𝒫𝒫𝑚ℎ (𝜉)− 𝜌𝑔) · curl (Φ𝑒ℒ(𝜁𝑒))
}︂

=
∑︁
𝑇⊆𝜔𝑒

{︂∫︁
𝑇

Φ𝑒ℒ(𝜁𝑒) rot (𝒫𝒫𝒫𝑚ℎ (𝜉)− 𝜌𝑔)−
∫︁
𝑇

(︁
𝒫𝒫𝒫𝑚ℎ (𝜉)− 𝜉 − 𝜂

𝜅
(𝜎 − 𝜎ℎ)−∇𝑝

)︁
· curl (Φ𝑒ℒ(𝜁𝑒))

}︂
,

where clearly
∫︀
𝑇
∇𝑝 · curl (Φ𝑒ℒ(𝜁𝑒)) = 0 for all 𝑇 ⊆ 𝜔𝑒. Using the Cauchy–Schwarz inequality and the inverse

estimate (4.30), it follows that

‖𝜁𝑒‖20,𝑒 ≤ ̃︀𝐶 ∑︁
𝑇⊆𝜔𝑒

ℎ−1
𝑇

{︃
ℎ𝑇 ‖rot (𝒫𝒫𝒫𝑚ℎ (𝜉)− 𝜌𝑔)‖0,𝑇 + ‖𝜉 −𝒫𝒫𝒫𝑚ℎ (𝜉)‖0,𝑇 +

⃦⃦⃦𝜂
𝜅

(𝜎 − 𝜎ℎ)
⃦⃦⃦

0,𝑇

}︃
‖Φ𝑒ℒ(𝜁𝑒)‖0,𝑇 .

(4.41)
Furthermore, by (4.29) and by construction of Φ𝑒, we obtain ‖Φ𝑒ℒ(𝜁𝑒)‖0,𝑇 ≤ ‖Φ1/2

𝑒 ℒ(𝜁𝑒)‖0,𝑇 ≤ 𝛾4ℎ
1/2
𝑒 ‖𝜁𝑒‖0,𝑒.

This, together with estimates (4.14), (4.32) and (4.41), and the fact that ℎ𝑒 ≤ ℎ𝑇 for all 𝑇 ⊂ 𝜔𝑒, gives

‖𝜁𝑒‖0,𝑒 ≤ ̂︀𝐶ℎ−1/2
𝑒

∑︁
𝑇⊆𝜔𝑒

(︀
‖𝜎 − 𝜎ℎ‖div,𝑇 + ℎ𝑚+1

𝑇 |𝜉|𝑚+1,𝑇

)︀
. (4.42)

The result (4.37) follows by combining (4.40) and (4.42).
To prove (4.38), we proceed as in the proof of (4.37). Given 𝑒 ∈ ℰℎ(Γ𝑝), we let 𝜚𝑒 := 𝒫𝒫𝒫𝑚ℎ (𝜉)−𝜌𝑔− d𝑝Γ

d𝑠 . Since
𝑝Γ is assumed to be a piecewise polynomial, we use similar arguments as in (4.40) to obtain

‖𝜚𝑒‖20,𝑒 ≤ 𝛾2‖Φ1/2
𝑇 𝜚𝑒‖20,𝑒 = 𝛾2

∫︁
𝑒

(Φ𝑒ℒ(𝜚𝑒)) 𝜚𝑒

=
∫︁
𝑇 𝑒

Φ𝑒ℒ(𝜚𝑒) rot
(︁
𝒫𝒫𝒫𝑚ℎ (𝜉)− 𝜉 − 𝜂

𝜅
(𝜎 − 𝜎ℎ)

)︁
−
∫︁
𝑇𝑒

(︁
𝒫𝒫𝒫𝑚ℎ (𝜉)− 𝜉 − 𝜂

𝜅
(𝜎 − 𝜎ℎ)−∇𝑝

)︁
· curl (Φ𝑒ℒ(𝜚𝑒)),

where 𝑇𝑒 denotes the only element of 𝒯ℎ having 𝑒 as an edge. Therefore, (4.38) follows by mimicking the steps
in the proof of (4.37).
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Finally, proceeding exactly as in the proof of Lemma 4.14 from [35], we find

‖𝑝Γ − 𝑝ℎ‖0,𝑒 ≤ 𝐶tr

(︁
ℎ−1/2
𝑒 ‖𝑝− 𝑝ℎ‖0,𝑇 + ℎ1/2

𝑒 |𝑝− 𝑝ℎ|1,𝑇
)︁

= 𝐶tr

(︂
ℎ−1/2
𝑒 ‖𝑝− 𝑝ℎ‖0,𝑇 + ℎ1/2

𝑒

⃦⃦⃦
𝜌𝑔 − 𝜂

𝜅
𝜎ℎ −

𝜂

𝜅
(𝜎 − 𝜎ℎ)−∇𝑝ℎ

⃦⃦⃦
1,𝑇

)︂
≤ 𝐶tr

(︂
ℎ−1/2
𝑒 ‖𝑝− 𝑝ℎ‖0,𝑇 + ℎ1/2

𝑒

⃦⃦⃦
∇𝑝ℎ − 𝜌𝑔 +

𝜂

𝜅
𝜎ℎ

⃦⃦⃦
0,𝑇

+ ℎ1/2
𝑒

⃦⃦⃦𝜂
𝜅

(𝜎 − 𝜎ℎ)
⃦⃦⃦

1,𝑇

)︂
.

The result (4.39) then follows immediately from (4.35) and the fact that ℎ𝑒 ≤ ℎ𝑇 . �

We remark that (4.38) holds also when 𝑝Γ is sufficiently smooth. In this case, we can approximate this data
by a Taylor polynomial approximation and obtain (4.38) with further higher order terms appearing on the
right-hand side.

Next, we provide the upper bounds for the estimator terms in (4.2). Our general strategy consists of mimicking
the proofs of the results in Section 6 of [59] under further assumptions on the data. We have the following lemma.

Lemma 4.13. Suppose that 𝑓 and 𝑚Γ are piecewise polynomials. There exist constants 𝑐6, 𝑐7 > 0, independent
of 𝜆 and ℎ, such that for all 𝑇 ∈ 𝒯ℎ and 𝑒 ∈ ℰℎ(Γ𝑝),

ℎ𝑇 ‖𝑓 + div (2𝜇𝜀(𝑢ℎ)− 𝜑ℎ𝐼)‖0,𝑇 ≤ 𝑐6 (‖𝑢− 𝑢ℎ‖1,𝑇 + ‖𝜑− 𝜑ℎ‖0,𝑇 ) , (4.43)

ℎ1/2
𝑒 ‖𝑚Γ − (2𝜇𝜀(𝑢ℎ)− 𝜑ℎ𝐼)𝑛‖0,𝑒 ≤ 𝑐7 (‖𝑢− 𝑢ℎ‖1,𝑇 + ‖𝜑− 𝜑ℎ‖0,𝑇 ) . (4.44)

Furthermore, there exists a constant 𝑐8 > 0, also independent of 𝜆 and ℎ, such that for all 𝑒 ∈ ℰℎ(Ω),

ℎ1/2
𝑒 ‖J(2𝜇𝜀(𝑢ℎ)− 𝜑ℎ𝐼)𝑛K‖0,𝑒 ≤ 𝑐8

∑︁
𝑇⊆𝜔𝑒

(‖𝑢− 𝑢ℎ‖1,𝑇 + ‖𝜑− 𝜑ℎ‖0,𝑇 ) . (4.45)

Proof. We prove (4.43) and (4.45) using similar arguments as in the proof of Lemma 4.12. We define 𝜒𝑇 :=
𝑓 + div (2𝜇𝜀(𝑢ℎ) − 𝜑ℎ𝐼) and 𝜒𝑒 := J(2𝜇𝜀(𝑢ℎ) − 𝜑ℎ𝐼)𝑛K. Then, applying (4.27) to ‖𝜒𝑇 ‖0,𝑇 , using that 𝑓 =
−div (2𝜇𝜀(𝑢)− 𝜑𝐼) in Ω (cf. Lem. 2.3), integrating by parts, and finally using the inverse estimate (4.30), we
obtain

‖𝜒𝑇 ‖20,𝑇 ≤ 𝛾1‖Φ1/2
𝑇 𝜒𝑇 ‖20,𝑇 = 𝛾1

∫︁
𝑇

Φ𝑇𝜒2
𝑇

= 𝛾1

∫︁
𝑇

Φ𝑇𝜒𝑇 · (𝑓 + div (2𝜇𝜀(𝑢ℎ)− 𝜑ℎ𝐼)) = 𝛾1

∫︁
𝑇

Φ𝑇𝜒𝑇 · div (2𝜇𝜀(𝑢ℎ − 𝑢)− (𝜑ℎ − 𝜑)𝐼)

= −𝛾1

∫︁
𝑇

∇(Φ𝑇𝜒𝑇 ) : (2𝜇𝜀(𝑢ℎ − 𝑢)− (𝜑ℎ − 𝜑)𝐼) ≤ 𝐶ℎ−1
𝑇 ‖Φ𝑇𝜒𝑇 ‖0,𝑇 ‖2𝜇𝜀(𝑢ℎ − 𝑢)− (𝜑ℎ − 𝜑)𝐼‖0,𝑇 .

By (4.27), ‖Φ𝑇𝜒𝑇 ‖0,𝑇 ≤ ‖𝜒𝑇 ‖0,𝑇 , thus ℎ𝑇 ‖𝜒𝑇 ‖0,𝑇 ≤ ̃︀𝐶 (‖𝑢− 𝑢ℎ‖1,𝑇 + ‖𝜑− 𝜑ℎ‖0,𝑇 ) providing (4.43).
Next, denoting by ℒ the vector operator defined componentwise by the extension ℒ : 𝒞(𝑒)→ 𝒞(𝑇 ) introduced

in Lemma 4.8, using inequality (4.28), and integrating by parts, we find

‖𝜒𝑒‖20,𝑒 ≤ 𝛾2‖Φ1/2
𝑒 𝜒𝑒‖20,𝑒 =

∫︁
𝑒

Φ𝑒ℒ(𝜒𝑒) · 𝜒𝑒 =
∫︁
𝑒

Φ𝑒ℒ(𝜒𝑒) · (𝜒𝑒 + J(2𝜇𝜀(𝑢)− 𝜑𝐼)𝑛K)

=
∑︁
𝑇⊆𝜔𝑒

{︂∫︁
𝑇

∇(Φ𝑒ℒ(𝜒𝑒)) : (2𝜇𝜀(𝑢ℎ − 𝑢)− (𝜑ℎ − 𝜑)𝐼) +
∫︁
𝑇

(Φ𝑒ℒ(𝜒𝑒)) · 𝜒𝑇
}︂

≤
∑︁
𝑇⊆𝜔𝑒

ℎ−1
𝑇 (‖2𝜇𝜀(𝑢ℎ − 𝑢)− (𝜑ℎ − 𝜑)𝐼‖0,𝑇 + ℎ𝑇 ‖𝜒𝑇 ‖0,𝑇 ) ‖Φ𝑒ℒ(𝜒𝑒)‖0,𝑇

≤ ̂︀𝐶ℎ1/2
𝑒

∑︁
𝑇⊆𝜔𝑒

ℎ−1
𝑇 (‖𝑢− 𝑢ℎ‖1,𝑇 + ‖𝜑− 𝜑ℎ‖0,𝑇 ) ‖Φ𝑒ℒ(𝜒𝑒)‖0,𝑇 .

(4.46)
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Similar to the steps in the proof of (4.37) we note that ‖Φ𝑒ℒ(𝜒𝑒)‖0,𝑇 ≤ 𝛾4ℎ
1/2
𝑒 ‖𝜒𝑒‖. Combined with (4.46) this

implies
ℎ1/2
𝑒 ‖𝜒𝑒‖0,𝑒 ≤ 𝐶

∑︁
𝑇⊆𝜔𝑒

(‖𝑢− 𝑢ℎ‖1,𝑇 + ‖𝜑− 𝜑ℎ‖0,𝑇 ) ,

since ℎ𝑒 ≤ ℎ𝑇 for all 𝑇 ⊆ 𝜔𝑒. The result (4.45) follows.
Finally, proceeding as in the proof of (4.38), it is not difficult to see that the proof of (4.45) is similar to that

of (4.44). �

Note again that, in the above lemma, if the data is sufficiently smooth instead of piecewise polynomial, then
higher order terms arising from suitable polynomial approximations will appear on the corresponding right-hand
sides. We conclude this section with the proof of Theorem 4.6.

Proof of Theorem 4.6. The result follows directly from Lemmas 4.7, 4.10, 4.11, 4.12 and 4.13. �

4.3. Extension of the estimator to three dimensions

We briefly discuss the a posteriori error estimator in three dimensions.
Given a sufficiently smooth vector field 𝜏 , we let curl 𝜏 := ∇× 𝜏 . Furthermore, we take a tetrahedralization

𝒯ℎ of Ω and consider the same notation as in the introduction of Section 4 (replacing the word “edge” by “face”).
Given a face 𝑒 ∈ ℰℎ(Ω), 𝜏 ∈ L2(Ω) and 𝜉 ∈ [L2(Ω)]3×3, such that 𝜏 ∈ [𝒞(𝑇 )]3 and 𝜉 ∈ [𝒞(𝑇 )]3×3 for all 𝑇 ∈ 𝒯ℎ,
we let J𝜏 ×𝑛K and J𝜉𝑛K be the corresponding jumps across 𝑒, namely, J𝜏 ×𝑛K := {(𝜏 |𝑇 )|𝑒 − (𝜏 |𝑇 ′)|𝑒} ×𝑛 and
J𝜉𝑛K := {(𝜉|𝑇 )|𝑒 − (𝜉|𝑇 ′)|𝑒}𝑛, respectively, where 𝑇 and 𝑇 ′ are the elements of 𝒯ℎ sharing a face 𝑒.

The local error indicator Θ𝑓,𝑇 now reads

Θ2
𝑓,𝑇 := ℎ2

𝑇

⃦⃦⃦
∇𝑝ℎ − 𝜌𝑔 +

𝜂

𝜅
𝜎ℎ

⃦⃦⃦2

0,𝑇
+ ℎ2

𝑇

⃦⃦⃦
curl

(︁𝜂
𝜅

𝜎ℎ − 𝜌𝑔
)︁⃦⃦⃦2

0,𝑇
+

∑︁
𝑒∈ℰ(𝑇 )∩ℰℎ(Ω)

ℎ𝑒

⃦⃦⃦r(︁𝜂
𝜅

𝜎ℎ − 𝜌𝑔
)︁
× 𝑛

z⃦⃦⃦2

0,𝑒

+
∑︁

𝑒∈ℰ(𝑇 )∩ℰℎ(Γ𝑝)

{︂
ℎ𝑒‖𝑝Γ − 𝑝ℎ‖20,𝑒 + ℎ𝑒

⃦⃦⃦(︁𝜂
𝜅

𝜎ℎ − 𝜌𝑔
)︁
× 𝑛 +∇𝑝Γ × 𝑛

⃦⃦⃦2

0,𝑒

}︂
,

while the error indicators Θ𝑠,𝑇 and Θ𝑠𝑓,𝑇 are defined as for the two-dimensional case in (4.2) and (4.4), respec-
tively. We then set the global indicator as in (4.1).

All the results for the reliability estimate in Section 4.1 hold also in the three-dimensional case, except the
upper bound for ‖ℱ2‖Z′ in Section 4.1.2. To bound this term, we require the following three results.

We require the 3D analogue of (4.24). This is an immediate consequence of the identity

⟨curl 𝜙 · 𝑛,𝜒⟩Γ𝑝 = −⟨∇𝜒× 𝑛,𝜙⟩Γ ∀𝜙,𝜒 ∈ H1(Ω).

Its proof, like in the 2D case, follows from Lemma 3.5 of [28].
We require also the following integration by parts formula:∫︁

𝑇

curl 𝜏 · 𝜒−
∫︁
𝑇

𝜏 · curl 𝜒 = ⟨𝜏 × 𝑛,𝜒⟩𝜕𝑇

for all 𝜏 ∈ H(curl ; Ω) :=
{︀
𝜏 ∈ L2(Ω) : curl 𝜏 ∈ L2(Ω)

}︀
and 𝜒 ∈ H1(Ω). Above, ⟨·, ·⟩𝜕𝑇 stands for the duality

pairing between H−1/2(𝜕𝑇 ) and H1/2(𝜕𝑇 ).
Finally, the stable Helmholtz decomposition in Lemma 4.4 is also valid in this case (see [34], Thm. 3.2), where

curl𝜙 in (4.21) is replaced by curl 𝜙 (𝜙 ∈ H1
Γ𝑢

(Ω)). A proof for the upper bound for ‖ℱ2‖Z′ , the proof of the
reliability of Θ, as well as the efficiency estimate, proceed now as in the two-dimensional case.
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5. Numerical examples

We present several tests illustrating the performance of the Galerkin scheme (3.2), verifying the reliability
and efficiency of the a posteriori error estimator Θ, and confirming the locking-free estimates. All simulations
were implemented using the FEniCS library [3]. As a direct solver we used the Multifrontal Massively Parallel
Solver MUMPS [5]. In all our examples, we use the finite element spaces (3.9)–(3.12).

In what follows, we denote by 𝑁 the total number of degrees of freedom. The global error and the effectivity
index associated to the global estimator Θ are denoted, respectively, by

e(𝑢, 𝜑,𝜎, 𝑝) :=
{︀

e(𝑢)2 + e(𝜑)2 + e(𝜎)2 + e(𝑝)2
}︀1/2

and eff(Θ) := e(𝑢, 𝜑,𝜎, 𝑝)/Θ,

where

e(𝑢) := ‖𝑢− 𝑢ℎ‖1,Ω, e(𝜑) := ‖𝜑− 𝜑ℎ‖0,Ω, e(𝜎) := ‖𝜎 − 𝜎ℎ‖div,Ω, e(𝑝) := ‖𝑝− 𝑝ℎ‖0,Ω.

Moreover, using the fact that 𝑐𝑁−1/𝑑 ≤ ℎ ≤ 𝐶𝑁−1/𝑑, the experimental rate of convergence of any of the above
quantities will be computed as

rate := −𝑑 [log(e/e′)/ log(𝑁/𝑁 ′)] ,

where 𝑁 and 𝑁 ′ denote the total degrees of freedom associated to two consecutive triangulations with errors e
and e′.

The examples to be considered in this section are described next. Example 1 is used to explore the perfor-
mance of the two-dimensional Galerkin scheme (3.2) and the a posteriori error estimator Θ under a quasi-uniform
refinement, especially in the presence of volumetric locking. Furthermore, the two and three-dimensional sim-
ulations in Examples 2–4 demonstrate the behavior of the adaptive algorithm associated to Θ, which reads as
follows:

(1) Start with a coarse mesh 𝒯ℎ of Ω.
(2) Solve the discrete problem (3.2) on the current mesh.
(3) Compute Θ𝑇 for each 𝑇 ∈ 𝒯ℎ.
(4) Check the stopping criterion and decide whether to finish or go to the next step.
(5) Use Plaza and Carey’s algorithm [49] to refine each 𝑇 ′ ∈ 𝒯ℎ satisfying:

Θ𝑇 ′ ≥ 𝐶per max{Θ𝑇 : 𝑇 ∈ 𝒯ℎ} for some 𝐶per ∈]0, 1[.

(6) Define the resulting mesh as the current mesh 𝒯ℎ, and go to step 2.

Note that the above procedure is the usual adaptive refinement strategy from [58], except that the classical
blue-green refinement has been replaced by step 5.

5.1. Example 1: Accuracy assessment

This first example is aimed at evaluating the accuracy of the method, as well as the properties
of the a posteriori error estimator through the effectivity index eff(Θ), under a quasi-uniform refine-
ment strategy. To that end, we consider the domain Ω :=]0, 3/2[×]0, 1[ and split its boundary into
Γ𝑢 :=

{︀
(𝑥1, 𝑥2)𝑇 ∈ R2 : 𝑥1 = 0 or 𝑥2 = 1

}︀
and Γ𝑝 :=

{︀
(𝑥1, 𝑥2)𝑇 ∈ R2 : 𝑥1 = 3/2 or 𝑥2 = 0

}︀
. We choose

the data 𝑓 , ℓ, 𝑝Γ and 𝑚Γ such that the solution of problem (2.11) is given by 𝑢 := (𝑢1, 𝑢2)𝑇 , where
𝑢1(𝑥1, 𝑥2) := 0.1

(︁
sin(𝜋𝑥1) cos(𝜋𝑥2) + 𝑥2

1
2𝜆

)︁
and 𝑢2(𝑥1, 𝑥2) := 0.1

(︁
− cos(𝜋𝑥1) sin(𝜋𝑥2) + 𝑥2

2
2𝜆

)︁
, and 𝑝(𝑥1, 𝑥2) :=

𝜋 sin(𝜋𝑥1) sin(𝜋𝑥2), and 𝜑 and 𝜎 defined as in (2.11b) and (2.11c), respectively, with 𝑔 := (0, 1)𝑇 .
In Table 1, we present the convergence history obtained for this example under the following non-dimensional

model parameters: 𝜂 = 𝛼 = 𝜌 = 1, 𝑐0 = 10−3, 𝜅(𝑥1, 𝑥2) := 1 + sin2(𝜋𝑥1) cos2(𝜋𝑥2), 𝐸 = 100, 𝑔 = (0, 0,−1)𝑇

and three cases for the Poisson ratio, 𝜈 = 0.35, 𝜈 = 0.4 and 𝜈 = 0.4999. From Table 1 we conclude that there are
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Figure 1. Example 1: Log–log plots of 𝑁 vs. e(𝑢, 𝜑,𝜎, 𝑝) (left) and eff(Θ) (right) for a quasi-
uniform refinement strategy and different values of the ratio 𝜂/𝜅.

almost no differences between the corresponding errors when varying 𝜈. This confirms that the estimates given
by Lemma 3.1 are independent of 𝜆 := 𝐸𝜈/[(1 − 2𝜈)(1 + 𝜈)], i.e. our conforming scheme (3.2) is locking-free.
Moreover, for each value of 𝜈, the effectivity index eff(Θ) remains bounded, thus verifying the reliability and
efficiency of the a posteriori error estimator Θ.

It is worth mentioning that it is desirable to have eff(Θ) → 1 as ℎ → 0. For the four-field poroelasticity
equations, we claim that eff(Θ) is affected by the values of 𝜂/𝜅 in (2.11c). To show this, we use the same model
parameters as before, fix 𝜈 = 0.4, and consider the cases of 𝜂/𝜅 = 104, 𝜂/𝜅 = 100 and 𝜂/𝜅 = 10−4. The decay of
the corresponding total errors with respect to the total number of degrees of freedom, as well as the effectivity
indexes, using a quasi-uniform refinement strategy are depicted in Figure 1. From these results, we conclude
that the method is not robust with respect to the ratio 𝜂/𝜅. Moreover, in two cases the effectivity index is far
from 1 and for all cases the effectivity index differs from each other, but is still bounded. This behavior is not
surprising since our a posteriori and a priori error estimates may depend on 𝜂/𝜅. Despite this, we proceed as
in [6] to modify e(𝑢, 𝜑,𝜎, 𝑝) in such a way that eff(Θ) is closer to 1. For this, we first introduce the estimator
terms Θ𝑖 (𝑖 = 1, . . . , 10) given by Θ2

𝑖 :=
∑︀
𝑇∈𝒯ℎ

̂︀Θ2
𝑖 , where

̂︀Θ2
1 :=

⃦⃦⃦⃦(︂
𝑐0 +

𝛼2

𝜆

)︂
𝑝ℎ −

𝛼

𝜆
𝜑ℎ + div 𝜎ℎ − ℓ

⃦⃦⃦⃦2

0,𝑇

, ̂︀Θ2
2 := ℎ2

𝑇 ‖𝑓 + div (2𝜇𝜀(𝑢ℎ)− 𝜑ℎ𝐼)‖20,𝑇 ,

̂︀Θ2
3 := ℎ2

𝑇

⃦⃦⃦
rot

(︁𝜂
𝜅

𝜎ℎ − 𝜌𝑔
)︁⃦⃦⃦2

0,𝑇
, ̂︀Θ2

4 :=
⃦⃦⃦⃦

1
𝜆

(𝜑ℎ − 𝛼𝑝ℎ) + div 𝑢ℎ

⃦⃦⃦⃦2

0,𝑇

,

̂︀Θ2
5 :=

∑︁
𝑒∈ℰ(𝑇 )∩ℰℎ(Γ𝑝)

ℎ𝑒

⃦⃦⃦⃦(︁𝜂
𝜅

𝜎ℎ − 𝜌𝑔
)︁
· 𝑠 +

d𝑝Γ

d𝑠

⃦⃦⃦⃦2

0,𝑒

, ̂︀Θ2
6 :=

∑︁
𝑒∈ℰ(𝑇 )∩ℰℎ(Γ𝑝)

ℎ𝑒‖𝑝Γ − 𝑝ℎ‖20,𝑒,

̂︀Θ2
7 :=

∑︁
𝑒∈ℰ(𝑇 )∩ℰℎ(Γ𝑝)

ℎ𝑒‖𝑚Γ − (2𝜇𝜀(𝑢ℎ)− 𝜑ℎ𝐼)𝑛‖20,𝑒, ̂︀Θ2
8 :=

∑︁
𝑒∈ℰ(𝑇 )∩ℰℎ(Ω)

ℎ𝑒

⃦⃦⃦r(︁𝜂
𝜅

𝜎ℎ,−𝜌𝑔
)︁
· 𝑠

z⃦⃦⃦2

0,𝑒
,

̂︀Θ2
9 :=

∑︁
𝑒∈ℰ(𝑇 )∩ℰℎ(Ω)

ℎ𝑒‖J(2𝜇𝜀(𝑢ℎ)− 𝜑ℎ𝐼)𝑛K‖20,𝑒, ̂︀Θ2
10 := ℎ2

𝑇

⃦⃦⃦
∇𝑝ℎ − 𝜌𝑔 +

𝜂

𝜅
𝜎ℎ

⃦⃦⃦2

0,𝑇
.

The history of convergence of these estimator terms for the three values of 𝜂/𝜅 are shown in Figure 2. Although
Θ1 > Θ𝑖 for all 𝑖 = 2, . . . , 10 when 𝜅/𝜂 = 10−4, the results for 𝜅/𝜂 = 100 and 𝜅/𝜂 = 104 allow us to conjecture
that the global estimator Θ focuses on refining where the divergence of 2𝜇𝜀(𝑢 − 𝑢ℎ) − (𝜑 − 𝜑ℎ)𝐼 (associated
to Θ2) is large. Inspired by [6], this situation leads us to consider, under further regularity of the solution, the
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Figure 2. Example 1: Log–log plots of 𝑁 vs. Θ𝑖 (𝑖 = 1, . . . , 10) for a quasi-uniform refinement
strategy and different values of the ratio 𝜂/𝜅.

Figure 3. Example 1: Log–log plots of 𝑁 vs. ̂︀e(𝑢, 𝜑,𝜎, 𝑝) (left) and ̂︁eff(Θ) (right) for a quasi-
uniform refinement strategy and different values of the ratio 𝜂/𝜅.

modified total error and effectivity index given by

̂︀e(𝑢, 𝜑,𝜎, 𝑝) :=

{︃
e(𝑢, 𝜑,𝜎, 𝑝)2 +

∑︁
𝑇∈𝒯ℎ

ℎ2
𝑇 ‖div (2𝜇𝜀(𝑢− 𝑢ℎ)− (𝜑− 𝜑ℎ)𝐼)‖20,𝑇

}︃1/2

and ̂︂eff(Θ) := ̂︀e(𝑢, 𝜑,𝜎, 𝑝)/Θ,

respectively. The left panel of Figure 3 illustrates the updated history of convergence, whereas the associated
effectivity indexes are shown on the right panel. It can be concluded that, in general, ̂︂eff(Θ) is much closer to
1 than eff(Θ).

5.2. Example 2: Domain with corner singularity

In this example we set the model parameters (in non-dimensional form) as follows: 𝑐0 = 𝜂 = 0.01, 𝐸 = 100,
𝛼 = 1 and 𝜈 = 0.35. Furthermore, we neglect gravity effects and consider the inverted L-shaped domain
Ω :=]−1, 1[×]−1, 1[∖[0, 1]× [−1, 0], with boundary parts Γ𝑝 :=]−1, 1[×{1} and Γ𝑢 := Γ∖Γ𝑝. The manufactured
solution in polar coordinates is given by 𝑢 := (𝑢1, 𝑢2)𝑇 , where 𝑢1(𝑟, 𝜃) := 𝑟2/3 sin (2𝜃/3) and 𝑢2(𝑟, 𝜃) :=
𝑟2/3 cos (2𝜃/3), and 𝑝(𝑟, 𝜃) := 1, 𝜑(𝑟, 𝜃) := 𝛼 and 𝜎(𝑟, 𝜃) := 0, with corresponding data. Note that Γ𝑢 does not
satisfy the geometrical assumption made in Lemma 4.4, which means that further regularity of the solution on
a bigger convex domain needed by the Helmholtz decomposition (cf. (4.21)) cannot be guarantied theoretically
(see [34] for more details). We omit this fact for the sake of convenience. Furthermore, we note that a negative
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Figure 4. Example 2: Log-log plot of e(𝑢, 𝜑,𝜎, 𝑝) vs. 𝑁 for both refinement strategies (𝐶per =
0.2).

Figure 5. Example 2: Initial mesh and two adapted meshes obtained with the adaptive algo-
rithm and 𝐶per = 0.2.

power of the radius 𝑟 appears when taking partial derivatives of the components of the displacements; this
implies a singularity at the origin. It is well-known that in this case a convergence of 𝒪(ℎ2/3−𝛿) (with some
𝛿 > 0) is expected from Theorem 3.3.

In Figure 4, we report the history of convergence of the total error for quasi-uniform and adaptive refinement
strategies. It is clear that the errors using the adaptive refinement are considerably smaller than when using
quasi-uniform refinement. Moreover, the adaptive procedure reduces the magnitude of e(𝑢, 𝜑,𝜎, 𝑝) with optimal
convergence of 𝒪(ℎ2). Some adapted meshes obtained with 𝐶per = 0.2 are depicted in Figure 5, where it is
evident that the a posteriori error estimator Θ detects the singularity.

5.3. Example 3: Three-dimensional L-shaped domain

We next consider a three-dimensional L-shaped domain as shown in the left panel of Figure 6. For this example
we consider the following non-dimensional model parameters: 𝑐0 = 0.01, 𝜂 = 𝛼 = 𝜌 = 1, 𝐸 = 10, 𝜅 = 0.05
and 𝜈 = 0.4999. Furthermore, the manufactured exact solution is defined as follows: 𝑢 := (𝑢1, 𝑢2, 𝑢3)𝑇 , where
𝑢1(𝑥1, 𝑥2, 𝑥3) := 0.1

(︁
4(𝑥3

2 − 6𝑥5
3 + 15𝑥2

3) + 𝑥2
1
𝜆

)︁
, 𝑢2(𝑥1, 𝑥2, 𝑥3) := 0.1

(︁
2(𝑥2 − 10)𝑥3 + 𝑥2

2
𝜆

)︁
and 𝑢3(𝑥1, 𝑥2, 𝑥3) :=

0.1
(︁
𝑥2

3 + 𝑥2
3
𝜆

)︁
, 𝑝(𝑥1, 𝑥2, 𝑥3) := 𝑥1𝑥

4
3 − 30𝑥3

2 + 𝑥2
3 + 0.1(1.2−𝑥3)

[(1.05−𝑥1)2+(1.05−𝑥3)2]
, and 𝜑 and 𝜎 are defined as in (2.11b)

and (2.11c), respectively, with 𝑔 := (0, 0,−1)𝑇 . We notice that the partial derivatives of 𝑝 exhibit singularities
along the line

{︀
(𝑥1, 𝑥2, 𝑥3)𝑇 ∈ R3 : 𝑥1 = 𝑥3 = 1.05

}︀
so that high gradients of 𝑝 are likely to occur near the

re-entrant edge of the domain.
The right panel of Figure 6 illustrates the decay of the total error with respect to 𝑁 for quasi-uniform and

adaptive refinement strategies. A suboptimal rate of convergence is observed using quasi-uniform refinement. In
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Figure 6. Example 3: Domain configuration (left) and log–log plot of e(𝑢, 𝜑,𝜎, 𝑝) vs. 𝑁 for
both refinement strategies (right). The adaptive algorithm was carried out with 𝐶per = 0.5.

Figure 7. Example 3: Initial mesh and three adapted meshes obtained with the adaptive
algorithm and 𝐶per = 0.5.

Figure 8. Left, posterior and right, lateral views of the initial mesh (with 99 605 elements)
used in Example 4. The inner ventricular boundary is shown in red.

contrast, the adaptive algorithm restores the optimal rate of convergence (i.e. 𝒪(ℎ2)) and reduces the magnitude
of e(𝑢, 𝜑,𝜎, 𝑝) by marking the mesh elements near the re-entrant edge, as shown in Figure 7.

5.4. Example 4: Simple-poroelastic brain model

In our final example we present a 3D computation illustrating the cerebrospinal fluid-tissue interaction in the
human brain. For this, we use the Colin 27 mesh [30] as our initial mesh, see Figure 8. We neglect effects due
to gravity.
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Figure 9. Example 4: Approximate displacement magnitude for different values of 𝜈 and
𝜅 obtained at the 5th refinement step (𝐶per = 0.3) with: (a) 𝑁 = 4 969 116 and 270 243
elements, (b) 𝑁 = 5 290 281 and 288 805 elements, (c) 𝑁 = 3 290 456 and 175 830 elements,
(d) 𝑁 = 3 216 013 and 171 634 elements, (e) 𝑁 = 3 865 851 and 209 323 elements; and (f)
𝑁 = 3 369 212 and 180 800 elements.
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Figure 10. Example 4: Approximate fluid pressure for different values of 𝜈 and 𝜅 obtained
at the 5th refinement step (𝐶per = 0.3) with: (a) 𝑁 = 4 969 116 and 270 243 elements, (b)
𝑁 = 5 290 281 and 288 805 elements, (c) 𝑁 = 3 290 456 and 175 830 elements, (d) 𝑁 = 3 216 013
and 171 634 elements, (e) 𝑁 = 3 865 851 and 209 323 elements; and (f) 𝑁 = 3 369 212 and
180 800 elements.
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Figure 11. Example 4: Initial mesh (left) and the 5th adapted mesh obtained with 𝜈 = 0.4999
and 𝜅 = 1.57×10−3 [mm2] (right). These meshes have 99 605 and 288 805 elements, respectively.

The material properties in our simulations are: 𝐸 = 1500 [Pa], 𝛼 = 0.25, 𝑐0 = 3 × 10−4 and 𝜂 = 100 [Pa · s].
These are inspired by the numerical example of Section 6 from [43]. We also consider three cases for the
permeability, 𝜅 = 3.75 [mm2], 𝜅 = 1.57 × 10−1 [mm2] and 𝜅 = 1.57 × 10−3 [mm2], and set Γ𝑢 and Γ𝑝 as the
skull (outer boundary) and the ventricles (inner boundary) of the brain, respectively. Note that Γ𝑢 does not
satisfy the geometrical assumption made in the three-dimensional Helmholtz decomposition (see Lem. 4.4 for
details in the two-dimensional case). We simply omit this fact and continue by imposing the following boundary
conditions:

𝑝 = 799.92 [Pa] and (2𝜇𝜀(𝑢)− 𝜑𝐼)𝑛 = −199.98𝑛 on Γ𝑝,
𝑢 = 0 and 𝜎 · 𝑛 = 0 on Γ𝑢.

In Figure 9, we observe that there is little displacement when the brain behaves like an elastic material
(𝜈 = 0.4999). Lowering the Poisson ratio to 𝜈 = 0.34, the material is able to relax resulting in more displacement.
In the first column we furthermore observe that increasing the permeability results in more displacement. This is
due to a higher filtration rate of the fluid. As expected, in the elastic limit there is little effect on the displacement
when increasing the permeability. In Figure 10, we observe compressibility effects due to high filtration when
permeability is large, both for high (𝜈 = 0.4999) and low (𝜈 = 0.34) Poisson ratios. Finally, the 5th adapted
mesh for the case 𝜈 = 0.4999 and 𝜅 = 1.57×10−3 [mm2] is depicted in Figure 11, from which it is concluded that
the adaptive algorithm refines near the ventricles. It is here where the pressures and displacement are highest.

6. Concluding remarks

We have introduced a conforming approximation of a four-field formulation for the stationary Biot’s consoli-
dation model. We have proven a priori and a posteriori error bounds which are independent of the modulus of
dilation. These estimates have been verified by numerical experiments in 2D and 3D. In particular, an adaptive
algorithm associated to the proposed a posteriori error estimator has been shown to be a powerful tool to
improve the accuracy of the approximation under complex situations, such as high gradients or singularities of
the solution. Moreover, it can be used to reduce the computational cost given by the mesh refinement process.
These results are very promising, especially in the context of our fourth example in Section 5, because its gen-
eralization to the multiple-network model [43] can be used, for example, to study hydrocephalus [55], cerebral
oedema [56], and risk factors associated with early stages of Alzheimer’s disease [38].

On the other hand, further research is needed to obtain robust methods with respect to the ratio between
the viscosity of the pore fluid and the permeability of the porous solid. This is ongoing work.
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[23] S. Caucao, D. Mora and R. Oyarzúa, A priori and a posteriori error analysis of a pseudostress-based mixed formulation of the
Stokes problem with varying density. IMA J. Numer. Anal. 36 (2016) 947–983.

[24] Y. Chen, Y. Luo and M. Feng, Analysis of a discontinuous Galerkin method for the Biot’s consolidation problem. Appl. Math.
Comput. 219 (2013) 9043–9056.

[25] Z. Chen, Y. Xu and J. Zhang, A second-order hybrid finite volume method for solving the Stokes equation. Appl. Numer.
Math. 119 (2017) 213–224.

[26] P.G. Ciarlet, The Finite Element Method for Elliptic Problems. In: Vol. 4 of Studies in Mathematics and its Applications.
North-Holland Publishing Co., Amsterdam-New York-Oxford (1978).

[27] P. Clément, Approximation by finite element functions using local regularization. Rev. Française Automat. Informat. Recherche
Opérationnelle Sér. 9 (1975) 77–84.

[28] C. Domı́nguez, G.N. Gatica and S. Meddahi, A posteriori error analysis of a fully-mixed finite element method for a two-
dimensional fluid-solid interaction problem. J. Comput. Math. 33 (2015) 606–641.

[29] A. Ern and S. Meunier, A posteriori error analysis of Euler–Galerkin approximations to coupled elliptic-parabolic problems.
ESAIM: M2AN 43 (2009) 353–375.

[30] Q. Fang, Mesh-based monte carlo method using fast ray-tracing in plücker coordinates. Biomed. Opt. Express 1 (2010) 165–175.
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