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GEOMETRICALLY INTRINSIC MODELING OF SHALLOW WATER FLOWS

Elena Bachini and Mario Putti*

Abstract. Shallow water models of geophysical flows must be adapted to geometric characteristics
in the presence of a general bottom topography with non-negligible slopes and curvatures, such as a
mountain landscape. In this paper we derive an intrinsic shallow water model from the Navier–Stokes
equations defined on a local reference frame anchored on the bottom surface. The equations resulting
are characterized by non-autonomous flux functions and source terms embodying only the geometric
information. We show that the proposed model is rotational invariant, admits a conserved energy, is
well-balanced, and it is formally a second order approximation of the Navier–Stokes equations with
respect to a geometry-based order parameter. We then derive a numerical discretization by means of
a first order upwind Godunov finite volume scheme intrinsically defined on the bottom surface. We
study convergence properties of the resulting scheme both theoretically and numerically. Simulations
on several synthetic test cases are used to validate the theoretical results as well as more experimental
properties of the solver. The results show the importance of taking into full consideration the bottom
geometry even for relatively mild and slowly varying curvatures.

Mathematics Subject Classification. 76M12, 65M08, 35L65, 58J45.

Received July 8, 2019. Accepted April 25, 2020.

1. Introduction

In many practical applications, such as large-scale ocean modeling [23], river morphodynamics and debris
flow [25, 26, 38], avalanche simulation [21], and atmospheric circulation [24], the Shallow Water (SW) approx-
imation is used as an effective tool to derive appropriate reduced models for quantitative simulations of such
phenomena. Generally, the typically accepted hypothesis is that the flow develops preferentially along one direc-
tion, e.g., horizontal, or, equivalently, that one component of the fluid velocity is negligible with respect to the
other two. This is the so-called SW assumption. In most cases, the negligible component of the flow velocity is
the one perpendicular to the bottom surface. Then dimensionality reduction proceeds via depth integration of
the Navier–Stokes (NS) equations to arrive at a two-dimensional system with specific flow rate and water depth
as unknowns (see e.g., [14]).

The presence of a curved bottom topography plays an important role, increasing the geometric complex-
ity of the fluid streamlines. It is then difficult to accurately identify the negligible velocity component under
the SW hypothesis, as the average flow field drastically departs from a rectilinear behavior. To address this
problem, [33, 34] developed a formulation of the SW model in local curvilinear coordinates based on depth

Keywords and phrases. Shallow water, variable topography, intrinsic finite volumes, well balance.

Department of Mathematics “Tullio Levi-Civita”, University of Padua, Padua, Italy.
*Corresponding author: putti@math.unipd.it, mario.putti@unipd.it

Article published by EDP Sciences c○ EDP Sciences, SMAI 2020

https://doi.org/10.1051/m2an/2020031
https://www.esaim-m2an.org
mailto:putti@math.unipd.it
mailto:mario.putti@unipd.it
https://www.edpsciences.org


2126 E. BACHINI AND M. PUTTI

integration along the normal to the topography. Their approach is valid only for small and essentially one-
dimensional bottom curvatures and in practice assumes that the fluid surface is parallel to the bottom. This
strategy was extended by [10, 11] to consider two-dimensional settings and less restrictive bottom geometries.
Starting from the NS equations, the flow velocity component perpendicular to the bottom is considered neg-
ligible and a hydrostatic pressure distribution is assumed along local normals. The resulting SW equations
are derived by depth integration along the normal direction, under the further hypotheses of a linear velocity
distribution (equivalent to assuming constant depth-averaged velocity) and of a fluid depth sufficiently small
to guarantee the invertibility of the coordinate transformation. In addition, [10] proved that the resulting SW
system (i) admits a conservative energy equation, (ii) preserves the steady-state of a lake-at-rest, and (iii) is an
approximation of order 𝜖2, where 𝜖 is the aspect ratio between the depth of the fluid layer and the characteristic
length along which the phenomenon develops (the SW hypothesis states that 𝜖 ≪ 1). Applications of this model
are described in [9,19,27,31]. A more intrinsic approach was recently proposed by [18], who suggest to perform
depth integration following the so-called “cross-flow” path, along which the tangential component of the fluid
velocity is zero. Unfortunately the definition of the “cross-flow” paths is implicit, as it requires the knowledge
of the unknown NS velocity field. For this reason, in [18] the authors approximate the “cross-flow” path with
the direction normal to the bottom starting from a NS system defined on a curvilinear coordinate reference
frame defined on the bottom geometry. The system of SW Equations (SWE) resulting from depth integration
turns out to be closely related to the model of [10], and shares similar approximations and limitations in terms
of geometry of the bed topography.

In this paper, we propose a new geometrically intrinsic formulation of the SWE on general topography and
study its mathematical structure and numerical solution. Our developments take inspiration from the works
of [10] and of [18], both of whom include the effects of the bottom geometry on the SW system. In the former,
the derived model includes the bottom geometry using a three-dimensional reference system. As a consequence,
the SW equations contain non-conservative terms that need to be properly handled. In the latter approach,
depth integration proceeds using a local reference system defined on the bottom surface. Again, non-conservative
terms arise in the covariant form of the equations. Similarly, in our work we describe the SW model on a local
reference frame. However, differently from previous work, by careful use of contravariant and covariant vectors
we are able to arrive at a system that is completely intrinsic to the bottom geometry, with a source term
that contains only bottom slope and curvature information. The resulting set of equations is characterized
by spatially varying flux functions and bottom-related sources. We study the mathematical structure of the
proposed approximation, proving order of accuracy with respect to a “geometric” aspect ratio parameter 𝜖𝒢
that includes information on local curvatures and slope of the bottom surface. We then study the hyperbolic
structure of the proposed system using bottom-intrinsic differential operators and show that it is invariant under
rotational transformations, satisfies the lake-at-rest condition, and admits a conserved energy in absence of bed
resistance.

The intrinsic nature of the developed SWE allows the formulation of an Intrinsic Finite Volume (IFV)
discretization, with some complications due to the presence of non-autonomous fluxes and space-varying source
terms. The work in [32] was among the first to study the numerical solution of a hyperbolic system on a
general manifold by means of a FV scheme defined on a quadrilateral grid. However, the discretization of
geometric quantities based on the surface fundamental forms by quadrilateral meshes turns out to be non-
consistent [28]. For this reason, in this work we use triangular grids to derive a first order Godunov type FV
method. Surface interpolation of the geometric quantities and the existence of an intrinsic divergence theorem
provide the necessary tools to produce a bottom-intrinsic discretization. We prove that approximated quantities
converge over subsequent refinements of the surface mesh with second order with respect to the mesh parameter
ℎ, and consequently that the discrete divergence theorem is exact up to second order. Using the rotation
invariance of the SW equations, we define a geometrically adapted one-dimensional Riemann problem on the
curvilinear triangle edges. The HLL Riemann solver [22] is directly applied in solving the Riemann problem
after carefully assigning the left and right states at the triangle edges in the corresponding local reference
systems. The same considerations are implemented in the HLLC variant used to address problems with more



INTRINSIC SHALLOW WATER MODELING 2127

general wave patterns. Particular attention is required in order to maintain the well-balance property in the
discrete setting. We follow the approach proposed by [5, 8] who introduce a general strategy based on a local
hydrostatic reconstruction that ensures well-balance and preserves the non-negativity of the water height. We
extend the same idea to our intrinsic setting, obtaining a quadrature rule for the curvilinear source integrals
that is consistent with the order of the scheme and is exact in a steady-state configuration.

A number of test cases performed over slowly varying bottom topography are used to show the effectiveness of
the numerical approach and to verify the importance of considering the geometric features of the bed topography
in the equations. The bottom surfaces are defined by explicit formulas, thus allowing the exact calculation of
the metric tensor. The approximation of these quantities starting from real digital elevation maps requires the
use of computational geometry tools (see e.g., [29, 30]), which is beyond the scope of this study.

The paper is organized as follows. We first describe in Section 2 the general setting and derive the SWE by
depth integration along local normals, and study the mathematical properties of the developed system. Then, in
Section 3 we develop our intrinsic FV scheme and describe our implementation of the Riemann solver. Next, we
show in Section 4 the numerical results, looking at the accuracy of our approximation of the surface geometry
by triangulations and of the overall FV approach in non-flat test cases. Conclusions and future perspectives
close our work.

2. Shallow water equations in curvilinear coordinates

Consider the classical incompressible Navier–Stokes equations on an open domain Ω ⊂ R3 as:

∇ ·𝑢⃗ = 0, (2.1a)
𝜕𝑢⃗

𝜕𝑡
+∇ ·(𝑢⃗⊗ 𝑢⃗) = −1

𝜌
∇ 𝑝 +

1
𝜌
∇ ·T + 𝑔⃗, (2.1b)

where 𝑢⃗ : Ω × [0, 𝑇 ] → R3 is the fluid velocity, 𝜌 its density, assumed constant, 𝑝 : Ω × [0, 𝑇 ] → R is the fluid
pressure, T : Ω → R3×3 the deviatoric stress tensor, and 𝑔⃗ the gravity acceleration. Note that we have used
the product rule of differentiation and the incompressibility condition (2.1a) to write the convective term in
conservative form. We assume that the domain boundary 𝜕Ω is smooth and formed by the union of the bottom
surface (𝒮ℬ), the free surface (𝒮ℱ ), and the lateral surface. Smoothness is detailed by the hypothesis that all
these surfaces are regular and can be identified by the graph of some function. Thus, the bottom surface will
be given by the graph of the function ℬ : 𝑈 → R, 𝑈 ⊂ R2 open, i.e., in a global (Cartesian) coordinate system
𝑥1, 𝑥2, 𝑥3 (GCS) with 𝑥3 assumed aligned with the action of gravity but in the opposite direction:

𝒮ℬ :=
{︀

(𝑥1, 𝑥2, 𝑥3) ∈ R3 such that 𝑥3 = ℬ (𝑥1, 𝑥2)
}︀

.

Equivalently, 𝒮ℬ can be defined as 𝐹
−1

ℬ (0), where 𝐹ℬ (𝑥1, 𝑥2, 𝑥3) := 𝑥3−ℬ (𝑥1, 𝑥2). Similarly, the fluid free surface
ℱ̂ : 𝑈 × [0, 𝑇 ] → R can be expressed as:

𝒮ℱ̂ :=
{︁

(𝑥1, 𝑥2, 𝑥3, 𝑡) ∈ R3 × R such that 𝑥3 = ℱ̂ (𝑥1, 𝑥2, 𝑡)
}︁

= 𝐹
−1

ℱ̂ (0),

where now 𝐹ℱ̂ (𝑥1, 𝑥2, 𝑥3, 𝑡) := 𝑥3−ℱ̂ (𝑥1, 𝑥2, 𝑡) contains also the time dependency. The lateral boundary is fixed
and independent of time and does not enter our discussion. Next, we want to move our geometric description
to a new coordinate system 𝑠1, 𝑠2, 𝑠3 that locally follows the bottom surface.

2.1. Local curvilinear coordinate system

Following [18] we define a local curvilinear reference system (LCS) positioned on the surface representing the
topography of the bottom. All the developments, including depth integration, will be carried out with respect
to this local reference system. We would like to describe the motion of a fluid particle using a coordinate system
that satisfies the following two main conditions:
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Figure 1. Example of bottom surface and LCS coordinates systems.

(i) the first two coordinates run along the bottom surface 𝒮ℬ, their tangent vectors belonging at each point
P ∈ 𝒮ℬ to the tangent plane 𝑇p𝒮ℬ;

(ii) the third coordinate crosses the surface orthogonally so a vector tangent to 𝒮ℬ is everywhere orthogonal to
N, the surface normal vector (Fig. 1).

Regarding the ensuing reference frame, the previous requests amount to asking that there exist three vector
fields t1, t2, t3 in R3 such that

t1 (P) , t2 (P) ∈ 𝑇p𝒮ℬ ∀P ∈ 𝒮ℬ,

are vector fields in the tangent plane of 𝒮ℬ at point P, and t3 (P) is orthogonal to the other two frame vectors
and such that the right-hand rule is satisfied. Moreover, we ask that t1, t2, t3 commute in all R3 and, to ensure
numerical stability, be pairwise orthogonal. Because of the regularity of the bottom surface 𝒮ℬ, given a point
P ∈ 𝒮ℬ, there exists a neighborhood 𝒩P of P where we can define a bijective transformation Φ

P
from the global

coordinates 𝑥1, 𝑥2, 𝑥3 to the local coordinates 𝑠1, 𝑠2, 𝑠3. In particular, such a map is a diffeomorphism. Then,
given P ∈ R3, we can use the following transformations to express any quantity in both reference systems:

Φ
P

: R3 → R3 Ψ
P

:= Φ−1
P

: R3 → R3

x
P
↦→ sP sP ↦→ x

P
,

GCS → LCS LCS → GCS

where x
P

=
(︀
𝑥1

p, 𝑥
2
p, 𝑥

3
p

)︀
and sP =

(︀
𝑠1
p, 𝑠

2
p, 𝑠

3
p

)︀
are the coordinates of P with respect to the GCS and the LCS,

respectively.
The practical definition of the LCS proceeds as follows. First, we calculate the two tangent vectors t̂1 (P)

and t̂2 (P) as the differential of Φ
P

applied to the canonical basis e1, e2, e3, of the GCS, or, equivalently, as the
derivatives of the coordinate transformation with respect to the LCS variables:

t̂𝑖 (P) = dΦ
P

(e𝑖) =
(︂

𝜕𝑥1

𝜕𝑠𝑖
,
𝜕𝑥2

𝜕𝑠𝑖
,
𝜕𝑥3

𝜕𝑠𝑖

)︂
, 𝑖 = 1, 2,

where dΦ
P

is the Jacobian matrix of the coordinate transformation. For a regular surface, these two tangent
vectors are guaranteed to exist and be linearly independent, their direction depending on the curvature of the
bottom surface at P [1]. Then, vector t̂2 is orthogonalized with respect to t̂1 via Gram–Schmidt, yielding the
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desired orthogonal frame t1, t2 on 𝑇p𝒮ℬ. The frame-completing vector t3 is chosen to be orthogonal to the
previous two and unitary, i.e., ‖t3 (P)‖ = 1. Note that normalization of the other two basis vectors cannot be
done, as this would amount to assume a zero curvature of 𝒮ℬ at P, loosing all the geometric information we
would like to preserve in our LCS. The associated metric tensor, as a consequence of the orthogonality property,
becomes the diagonal matrix given by:

𝒢 :=

⎛⎝ ‖t1 (P)‖2 0 0
0 ‖t2 (P)‖2 0
0 0 ‖t3 (P)‖2

⎞⎠ =

⎛⎝ℎ2
(1) 0 0
0 ℎ2

(2) 0
0 0 1

⎞⎠ . (2.2)

As a particular case, we use a global parametrization based on the height function (the so-called Monge
parametrization). Denoting with ℬ𝑠𝑖 = 𝜕ℬ/𝜕𝑠𝑖 the expression of the LCS frame vectors at P ∈ 𝒮ℬ is:

t1 (P) = [1; 0;ℬ𝑠1 ] , (2.3a)

t2 (P) =

[︃
− ℬ𝑠1ℬ𝑠2

1 + (ℬ𝑠1)2
; 1;

ℬ𝑠2

1 + (ℬ𝑠1)2

]︃
, (2.3b)

t3 (P) = N (P) =
t1 (P) ∧ t2 (P)
‖t1 (P)‖ ‖t2 (P)‖

=
[−ℬ𝑠1 ;−ℬ𝑠2 ; 1]
‖t1 (P)‖ ‖t2 (P)‖

· (2.3c)

It is important to underline that this particular definition of the tangent vectors has been made for our conve-
nience, but any local coordinate system that satisfies (i) and (ii) can be used. What follows is independent on
the parametrization of the surface and the definition of the LCS.

Remark 2.1. To simplify the exposition, we do not fully employ the classical tensor calculus notation and do
not use Einstein summation convention. However we need to distinguish physical, covariant, and contravariant
versions of vectors and tensors, to ensure coordinate invariance. Consider a basis of R3 formed by of unit vectors
e𝑖, 𝑖 = 1, 2, 3. For every 𝑢⃗ ∈ R3 there is a unique set of coefficients, 𝑢(𝑖), such that

𝑢⃗ =
∑︁

𝑖

𝑢(𝑖)e𝑖.

The values 𝑢(𝑖) are called the physical components of 𝑢⃗ relative to the standard basis set, and we denote them
by subscripts surrounded with parentheses. In the LCS 𝑠1, 𝑠2, 𝑠3, equipped with the associated metric 𝒢 and the
reference basis vectors t𝑖, the physical vector components need to be scaled with

√
𝒢, or

√
𝑔𝑖𝑖 = ℎ(𝑖). Hence, a

vector field 𝑢⃗ can be written as 𝑢⃗ =
∑︀

𝑖 𝑢𝑖t𝑖, where the components 𝑢𝑖 are called “contravariant” components
and are related to the physical components by the relation:

𝑢(𝑖) = ℎ(𝑖)𝑢
𝑖.

Following standard notation, contravariant components are identified by means of superscripts. Note that the
LCS basis t𝑖 is formed by “covariant” vectors, and we use subscripts for their identification.

Next, we need to adapt to the LCS the expressions of the differential operators that appear in the Navier–
Stokes equations, i.e., the gradient of a scalar function, the divergence of a vector field, and the divergence of
a tensor field, as stated in the following lemma, which we report without proof.

Lemma 2.2. Let (𝑠1, 𝑠2, 𝑠3) be the coordinate set of the LCS and 𝒢 =
{︁

𝑔𝑖𝑖 = ℎ2
(𝑖)

}︁
the associated metric tensor,

as defined in equation (2.2). Let 𝑓 : Ω → R be a scalar function, 𝑢⃗ : Ω → R3 a contravariant vector field given
by 𝑢⃗ = 𝑢1t1 + 𝑢2t2 + 𝑢3t3, and T : Ω → R3×3 a rank-2 contravariant tensor given by T =

{︀
𝜏 𝑖𝑗
}︀
. Then, the

differential operators in the LCS are given by the following expressions.
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– The gradient of 𝑓 is:

∇𝒢 𝑓 = 𝒢−1∇ 𝑓 =

(︃
1

ℎ2
(1)

𝜕𝑓

𝜕𝑠1
,

1
ℎ2

(2)

𝜕𝑓

𝜕𝑠2
,

𝜕𝑓

𝜕𝑠3

)︃
· (2.4)

– The divergence of 𝑢⃗ is:

∇𝒢 ·𝑢⃗ =
1√︀

det(𝒢)
∇ ·
(︁√︀

det(𝒢)𝑢⃗
)︁

=
1

ℎ(1)ℎ(2)

(︃
𝜕
(︀
ℎ(1)ℎ(2)𝑢

1
)︀

𝜕𝑠1
+

𝜕
(︀
ℎ(1)ℎ(2)𝑢

2
)︀

𝜕𝑠2
+

𝜕
(︀
ℎ(1)ℎ(2)𝑢

3
)︀

𝜕𝑠3

)︃
· (2.5)

– The 𝑗th component of the divergence T is:

(∇𝒢 ·T)𝑗 = ∇𝒢𝑖𝜏
𝑖𝑗 =

1√︀
det(𝒢)

𝜕

𝜕𝑠𝑖

(︁√︀
det(𝒢)𝜏 𝑖𝑗

)︁
+ Γ𝑗

𝑖𝑘𝜏 𝑖𝑘

= ∇𝒢 ·𝜏 (·𝑗) +
1

ℎ(𝑗)

(︂
2𝜏1𝑗 𝜕ℎ(𝑗)

𝜕𝑠1
− 𝜏11 ℎ(1)

ℎ(𝑗)

𝜕ℎ(1)

𝜕𝑠𝑗

)︂
+

1
ℎ(𝑗)

(︂
2𝜏2𝑗 𝜕ℎ(𝑗)

𝜕𝑠2
− 𝜏22 ℎ(2)

ℎ(𝑗)

𝜕ℎ(2)

𝜕𝑠𝑗

)︂
, (2.6)

where ∇𝒢 ·𝜏 (·𝑗) identifies the divergence of the 𝑗th column of T, and Γ𝑘
𝑖𝑗 denote the Christoffel symbols.

Remark 2.3. In the following, we will reduce our system to a two-dimensional tangent-following local system
describing only points of the bottom surface by means of the coordinates 𝑠1, 𝑠2. In this case, the metric tensor
reduces to the sub-tensor containing only the information related to those two directions. For simplicity, we will
use the same symbols, equations, and operators in compact form independently of the spatial dimension, and
the context will provide the appropriate definition.

2.2. Derivation of the SW model

The derivation of the SWE starts from the formulation of Navier–Stokes equations in the local coordinate
system. Using Lemma 2.2, the Navier–Stokes equations given in equation (2.1) can be written in the LCS as:

∇𝒢 ·𝑢⃗ = 0, (2.7a)
𝜕𝑢⃗

𝜕𝑡
+∇𝒢 ·(𝑢⃗⊗ 𝑢⃗) = −1

𝜌
∇𝒢 𝑝 +

1
𝜌
∇𝒢 ·T + 𝑔⃗. (2.7b)

Next, we perform depth integration along 𝑠3, the direction locally normal to the terrain surface running between
the bottom and the free surfaces. We start this task by looking at the boundary conditions on these surfaces.

2.2.1. Boundary conditions

Using the LCS, the bottom and free surfaces are given by:

𝒮ℬ :=
{︀

(𝑠1, 𝑠2, 𝑠3) ∈ R3 such that 𝑠3 = ℬ (𝑠1, 𝑠2) ≡ 0
}︀

,

𝒮ℱ :=
{︀

(𝑠1, 𝑠2, 𝑠3, 𝑡) ∈ R3 × [0, 𝑇 ] such that 𝑠3 = ℱ (𝑠1, 𝑠2, 𝑡) ≡ 𝜂 (𝑠1, 𝑠2, 𝑡)
}︀

,

where 𝜂 (𝑠1, 𝑠2, 𝑡) = ℱ (𝑠1, 𝑠2, 𝑡)− ℬ (𝑠1, 𝑠2) denotes the fluid depth. We assume that the bottom is not eroding
and thus maintains a fixed geometry, while the fluid surface is a function of time. The kinematic conditions
postulate that the free surface moves with the fluid and that the bottom is impermeable. Thus we can write:

d𝐹ℳ
d𝑡

=
𝜕𝐹ℳ
𝜕𝑡

+ 𝑢⃗ · ∇𝒢 𝐹ℳ

⃒⃒⃒
ℳ

= 0,

where ℳ = ℬ or ℱ . Since 𝐹ℬ = 𝑠3 − ℬ (𝑠1, 𝑠2) and 𝐹ℱ = 𝑠3 −ℱ (𝑠1, 𝑠2, 𝑡), we obtain immediately:

d𝐹ℬ
d𝑡

= 𝑢⃗
⃒⃒⃒
ℬ
· ∇𝒢 𝐹ℬ = 𝑢⃗ · ∇𝒢 𝐹ℬ

⃒⃒⃒
𝑠3=0

= 0, (2.8a)

d𝐹ℱ
d𝑡

= −𝜕𝜂

𝜕𝑡
+ 𝑢⃗ · ∇𝒢 𝐹𝜂

⃒⃒⃒
𝑠3=𝜂

= −𝜕𝜂

𝜕𝑡
−
(︂

𝑢1 𝜕𝜂

𝜕𝑠1
+ 𝑢2 𝜕𝜂

𝜕𝑠2
− 𝑢3

)︂ ⃒⃒⃒
𝑠3=𝜂

= 0. (2.8b)
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Note that here we make use of the fact that the bottom surface is assumed to be independent of time, i.e.,
𝜕ℬ/𝜕𝑡 = 0. Moreover, assuming that the external actions on the fluid surface are negligible, the dynamic
condition at the fluid-air interface translates into a zero-stress boundary equation:

Tℱ ·Nℱ = 0, Nℱ =
∇ℱ
||∇ℱ||

(2.9)

where Nℱ is the unit normal vector on the free surface ℱ . The bed boundary condition imposes the value of
the shear stress:

Tℬ ·Nℬ = 𝜏1
𝑏 t1 + 𝜏2

𝑏 t2 + 𝑝ℬt3, (2.10)

where 𝑝ℬ indicates the bottom pressure. The values for 𝜏 𝑖
𝑏 are expressed by means of classical steady-state

empirical friction laws (e.g., Chezy, Manning, or Gauckler–Strickler equations).

2.2.2. Depth integration of the Navier–Stokes equations

Starting from the Navier–Stokes equations written in the local curvilinear coordinate system as given in
equation (2.7), we perform depth integration along the normal direction 𝑠3 from 𝑠3 = ℬ (𝑠1, 𝑠2) ≡ 0 to 𝑠3 =
ℱ (𝑠1, 𝑠2, 𝑡) ≡ 𝜂 (𝑠1, 𝑠2, 𝑡). In the interest of space, we will omit the measure symbol d𝑠3 in the integrals whenever
no confusion arises.

The continuity equation (2.7a). Applying Leibniz rule and recalling the kinematic boundary conditions
given by equation (2.8), we obtain:

∫︁ 𝜂

0

∇𝒢 ·𝑢⃗ =
∫︁ 𝜂

0

1
ℎ(1)ℎ(2)

(︃
𝜕
(︀
ℎ(1)ℎ(2)𝑢

1
)︀

𝜕𝑠1
+

𝜕
(︀
ℎ(1)ℎ(2)𝑢

2
)︀

𝜕𝑠2
+

𝜕
(︀
ℎ(1)ℎ(2)𝑢

3
)︀

𝜕𝑠3

)︃

=
1

ℎ(1)ℎ(2)

𝜕

𝜕𝑠1

∫︁ 𝜂

0

ℎ(1)ℎ(2)𝑢
1 +

1
ℎ(1)ℎ(2)

𝜕

𝜕𝑠2

∫︁ 𝜂

0

ℎ(1)ℎ(2)𝑢
2

+ 𝑢3
⃒⃒⃒
𝑠3=𝜂

− 𝑢1 𝜕ℱ
𝜕𝑠1

⃒⃒⃒
𝑠3=𝜂

− 𝑢2 𝜕ℱ
𝜕𝑠2

⃒⃒⃒
𝑠3=𝜂

− 𝑢3
⃒⃒⃒
𝑠3=0

+ 𝑢1 𝜕ℬ
𝜕𝑠1

⃒⃒⃒
𝑠3=0

+ 𝑢2 𝜕ℬ
𝜕𝑠2

⃒⃒⃒
𝑠3=0

=
𝜕𝜂

𝜕𝑡
+∇𝒢 ·

∫︁ 𝜂

0

𝑢⃗,

where 𝑢⃗ := [𝑢1, 𝑢2]𝑇 and the curvilinear divergence operator ∇𝒢 · is adapted to the two-dimensional setting (see
Rem. 2.3). Recall that application of Leibniz rule requires enough regularity of both bottom and free surfaces
as well as the velocity vector 𝑢⃗.

The momentum equation (2.7b). Integration along the 𝑠3-direction yields:∫︁ 𝜂

0

𝜕𝑢⃗

𝜕𝑡
+
∫︁ 𝜂

0

∇𝒢 ·(𝑢⃗⊗ 𝑢⃗) = −1
𝜌

∫︁ 𝜂

0

∇𝒢 𝑝− 𝑔

∫︁ 𝜂

0

∇𝒢 𝑥3 +
1
𝜌

∫︁ 𝜂

0

∇𝒢 ·T.

Employing Leibniz rule and the kinematic BC, the left-hand-side can be written as:

𝜕

𝜕𝑡

∫︁ 𝜂

0

𝑢⃗− 𝑢⃗
𝜕𝜂

𝜕𝑡
+∇𝒢 ·

∫︁ 𝜂

0

𝑢⃗⊗ 𝑢⃗− (𝑢⃗⊗ 𝑢⃗)∇𝒢 ℱ
⃒⃒⃒
𝑠3=𝜂

+ (𝑢⃗⊗ 𝑢⃗)∇𝒢 ℬ
⃒⃒⃒
𝑠3=0

=
𝜕

𝜕𝑡

∫︁ 𝜂

0

𝑢⃗ +∇𝒢 ·
∫︁ 𝜂

0

𝑢⃗⊗ 𝑢⃗− 𝑢⃗

(︂
𝜕𝜂

𝜕𝑡
+ 𝑢⃗ · ∇𝒢 ℱ

⃒⃒⃒
𝑠3=𝜂

)︂
=

𝜕

𝜕𝑡

∫︁ 𝜂

0

𝑢⃗ +∇𝒢 ·
∫︁ 𝜂

0

𝑢⃗⊗ 𝑢⃗.
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Similar computations for the right-hand-side produce:

− 1
𝜌

∫︁ 𝜂

0

∇𝒢 𝑝− 𝑔

∫︁ 𝜂

0

∇𝒢 𝑥3 +
1
𝜌
∇𝒢 ·

∫︁ 𝜂

0

T− T
𝜌
∇𝒢 ℱ

⃒⃒⃒
𝑠3=𝜂

+
T
𝜌
∇𝒢 ℬ

⃒⃒⃒
𝑠3=0

= −1
𝜌

∫︁ 𝜂

0

∇𝒢 𝑝− 𝑔

∫︁ 𝜂

0

∇𝒢 𝑥3 +
1
𝜌
∇𝒢 ·

∫︁ 𝜂

0

T +
1
𝜌

Tℬ ·Nℬ,

where we made use here of the dynamic boundary conditions given in equations (2.9) and (2.10).

The normally integrated Navier–Stokes equations. Putting all the above calculations together we obtain
the final system of normally integrated Navier–Stokes equations:

𝜕𝜂

𝜕𝑡
+∇𝒢 ·

∫︁ 𝜂

0

𝑢⃗ = 0, (2.11a)

𝜕

𝜕𝑡

∫︁ 𝜂

0

𝑢⃗ +∇𝒢 ·
∫︁ 𝜂

0

𝑢⃗⊗ 𝑢⃗ = −1
𝜌

∫︁ 𝜂

0

∇𝒢 𝑝− 𝑔

∫︁ 𝜂

0

∇𝒢 𝑥3 +
1
𝜌
∇𝒢 ·

∫︁ 𝜂

0

T +
1
𝜌

Tℬ ·Nℬ. (2.11b)

Here equation (2.11a) is a scalar equation while equation (2.11b) is a three-component system. In the following
section, we derive the reduced two-component equations governing momentum balance by doing a formal order
expansion and invoking the SW hypothesis.

2.2.3. Length scales and physical quantities

The classical SW hypothesis states that the characteristic depth of the fluid is smaller than the characteristic
wavelength. In the present context, this statement is equivalent to our assumption of small normal velocity. To
see this, assume a setting with a relatively thin and wide fluid moving on the terrain surface. Denote with 𝐿0

the length scale in a direction tangential to the bottom and with 𝐻0 the length scale of the fluid depth measured
along the normal. The shallow water scaling assumes that 𝐻0/𝐿0 = 𝜖 ≪ 1. We would like to connect this idea
with the order of approximation of the model in our curvilinear setting.

Denote by 𝑉0 the scale of the contravariant tangential velocity components 𝑢1 and 𝑢2, and by 𝑊0 the scale
of the contravariant normal component 𝑢3. From the hypothesis of regularity of the bottom surface, the metric
coefficients can be considered of order 𝒪(1), and represent just the length scale of the coordinate transformation
between the GCS and the LCS. However, we do not have any a priori information on the order of magnitude
of the derivatives of these metric coefficients. Formal application of the chain rule of differentiation to the
continuity equation (2.7a) yields:

∇𝒢 ·𝑢⃗ =
1

ℎ(1)ℎ(2)

(︂
𝜕

𝜕𝑠1

(︀
ℎ(1)ℎ(2)𝑢

1
)︀

+
𝜕

𝜕𝑠2

(︀
ℎ(1)ℎ(2)𝑢

2
)︀

+
𝜕

𝜕𝑠3

(︀
ℎ(1)ℎ(2)𝑢

3
)︀)︂

=
𝜕𝑢1

𝜕𝑠1⏟ ⏞ 
𝒪
(︁

𝑉0
𝐿0

)︁

+
𝜕𝑢2

𝜕𝑠2⏟ ⏞ 
𝒪
(︁

𝑉0
𝐿0

)︁

+
𝜕𝑢3

𝜕𝑠3⏟ ⏞ 
𝒪
(︁

𝑊0
𝐻0

)︁

+
𝑢1

ℎ(1)⏟ ⏞ 
𝒪(𝑉0)

𝜕ℎ(1)

𝜕𝑠1
+

𝑢1

ℎ(2)⏟ ⏞ 
𝒪(𝑉0)

𝜕ℎ(2)

𝜕𝑠1
+

𝑢2

ℎ(1)⏟ ⏞ 
𝒪(𝑉0)

𝜕ℎ(1)

𝜕𝑠2
+

𝑢2

ℎ(2)⏟ ⏞ 
𝒪(𝑉0)

𝜕ℎ(2)

𝜕𝑠2
= 0.

Multiplying by 𝐻0, we have that:

𝐻0

𝐿0
𝑉0 + 𝑊0 + 𝐻0𝑉0 max

{︂
𝜕ℎ(1)

𝜕𝑠1
,
𝜕ℎ(2)

𝜕𝑠1
,
𝜕ℎ(1)

𝜕𝑠2
,
𝜕ℎ(2)

𝜕𝑠2

}︂
∼ 0,

from which we can estimate the scaling of the 𝑠3-velocity as:

𝑊0 ∼ max
{︂

𝜖, 𝐻0

𝜕ℎ(1)

𝜕𝑠1
, 𝐻0

𝜕ℎ(2)

𝜕𝑠1
, 𝐻0

𝜕ℎ(1)

𝜕𝑠2
, 𝐻0

𝜕ℎ(2)

𝜕𝑠2

}︂
𝑉0 = 𝜖𝒢𝑉0. (2.12)
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This defines a “geometric” aspect ratio 𝜖𝒢 given by:

𝜖𝒢 := max
{︂

𝜖, 𝐻0

𝜕ℎ(1)

𝜕𝑠1
, 𝐻0

𝜕ℎ(2)

𝜕𝑠1
, 𝐻0

𝜕ℎ(1)

𝜕𝑠2
, 𝐻0

𝜕ℎ(2)

𝜕𝑠2

}︂
, (2.13)

that connects local curvatures information to the global length scale parameter 𝜖. Hence, the SW approximation
can be restated by the assumption 𝜖𝒢 ≪ 1, which effectively adds a restriction on the shape of the bottom surface
that ensures that the derivatives of the metric coefficients are of the order of 1/𝐿0. Note that this assumption is
satisfied if the principal curvatures of the bottom surface are bounded by const/𝐿0. This limitation is inherent
to our model setup and is shared also by the models in [10,18].

2.2.4. Formal order of approximation and the SW hypothesis

Starting from the integrated Navier–Stokes equations in the curvilinear coordinate system shown in equa-
tion (2.11), we proceed by applying the SW hypothesis. Thus we postulate that the fluid motion is much faster
in the tangential directions than in the normal direction, i.e., 𝑢3 = 𝜖𝒢𝑢

𝑖, 𝑖 = 1, 2, 𝜖𝒢 ≪ 1, and we expand the
components of the velocity vector in powers of the parameter 𝜖𝒢:

𝑢𝑖 = 𝑢𝑖
(0) + 𝜖𝒢𝑢

𝑖
(1) + 𝜖2𝒢𝑢

𝑖
(2) +𝒪

(︀
𝜖3𝒢
)︀

𝑖 = 1, 2, (2.14a)

𝑢3 = 𝜖𝒢𝑢
3
(1) + 𝜖2𝒢𝑢

3
(2) +𝒪

(︀
𝜖3𝒢
)︀
. (2.14b)

We also expand the general stress tensor components using the same parameter 𝜖𝒢 to obtain:

𝜏 𝑖𝑗 = 𝜏 𝑖𝑗
(0) + 𝜖𝒢𝜏

𝑖𝑗
(1) + 𝜖2𝒢𝜏

𝑖𝑗
(2) +𝒪

(︀
𝜖3𝒢
)︀

𝑖, 𝑗 = 1, 2, 3. (2.15)

Again, we assume that the terms 𝜏 𝑖3 = 𝜏3𝑖, 𝑖 = 1, 2, 3, which contain 𝑢3, can be expanded as:

𝜏3𝑖 = 𝜖𝒢𝜏
3𝑖
(1) + 𝜖2𝒢𝜏

3𝑖
(2) +𝒪

(︀
𝜖3𝒢
)︀

for 𝑖 = 1, 2, and 𝜏33 = 𝜖2𝒢𝜏
33
(2) +𝒪

(︀
𝜖3𝒢
)︀
.

We split the velocity vector and stress tensor as the sum of the corresponding average values 𝑈⃗ and T and
fluctuations 𝑢̃ and 𝜏 around the mean. Thus we write:

𝑢⃗ = 𝑈⃗ + 𝑢̃, where 𝑈⃗ (𝑠1, 𝑠2, 𝑡) =
1
𝜂

∫︁ 𝜂

0

𝑢⃗ (s, 𝑡) d𝑠3,

∫︁ 𝜂

0

𝑢̃ (s, 𝑡) d𝑠3 = 0, (2.16)

T = T + 𝜏 , where T (𝑠1, 𝑠2, 𝑡) =
1
𝜂

∫︁ 𝜂

0

T (s, 𝑡) d𝑠3,

∫︁ 𝜂

0

𝜏 (s, 𝑡) d𝑠3 = 0. (2.17)

Expansions in powers of 𝜖𝒢 are readily written for all these quantities. Using equations (2.16) and (2.17), depth
integration of 𝑢⃗ and T yields:∫︁ 𝜂

0

𝑢⃗ =
∫︁ 𝜂

0

(︁
𝑈⃗ + 𝑢̃

)︁
= 𝜂𝑈⃗ ,

∫︁ 𝜂

0

T =
∫︁ 𝜂

0

(T + 𝜏) = 𝜂T.

The depth-averaged tensor continues to display velocity fluctuations and can be expressed as:∫︁ 𝜂

0

𝑢⃗⊗ 𝑢⃗ =
∫︁ 𝜂

0

(︁
𝑈⃗ + 𝑢̃

)︁
⊗
(︁
𝑈⃗ + 𝑢̃

)︁
= 𝜂𝑈⃗ ⊗ 𝑈⃗ +

∫︁ 𝜂

0

𝑢̃⊗ 𝑢̃,

where the fluctuation tensor 𝑢̃⊗ 𝑢̃ associated with 𝑢⃗ has the same form of T, and is considered incorporated in
it.
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The intrinsic shallow water equations. Using the formal expansions in powers of 𝜖𝒢 in the normally inte-
grated NS system equation (2.11) we obtain our reduced formulation, which we name Intrinsic Shallow Water
Equations (ISWE), as given in the next theorem. We use the following notation. The couple (𝑠1, 𝑠2) indicates the
curvilinear coordinate system associated with the LCS defined in equation (2.3) with the ensuing metric tensor
𝒢𝑠𝑤 given by the principal 2-minor of equation (2.2). The vector 𝑞⃗ =

[︀
𝜂𝑈1, 𝜂𝑈2

]︀𝑇 denotes the depth-averaged
velocity vector, while the tensor

T𝑠𝑤 = 𝜂

[︂
T11 T12

T21 T22

]︂
is the principal 2-minors of T. Vector fℬ =

[︀
𝜏1
𝑏 , 𝜏2

𝑏

]︀𝑇 is the vector field accounting for bed friction. The we can
state the following theorem.

Theorem 2.4. The intrinsic shallow water equations, written with respect to the LCS (Eqs. (2.2) and (2.3)),
are given by:

𝜕𝜂

𝜕𝑡
+∇𝒢 ·𝑞⃗ = 0, (2.18a)

𝜕𝑞⃗

𝜕𝑡
+∇𝒢 ·

(︂
1
𝜂

(𝑞⃗ ⊗ 𝑞⃗) +
(︂

𝑔𝜂2

2
𝜕𝑥3

𝜕𝑠3

)︂
𝒢−1

𝑠𝑤

)︂
+

𝑔𝜂2

2
∇𝒢

(︂
𝜕𝑥3

𝜕𝑠3

)︂
+ 𝑔𝜂∇𝒢 (𝑥3)− 1

𝜌
(∇𝒢 ·T𝑠𝑤 + fℬ) = 0. (2.18b)

They provide an approximation of order 𝒪
(︀
𝜖2𝒢
)︀

of the Navier–Stokes equations, under the assumption of thin
fluid layer, 𝜂 = 𝒪(𝜖𝒢).

Proof. We start by re-writing equation (2.11b) component-wise. Using the operators defined in Lemma 2.2 and
recalling that the terms 𝜕ℎ(1)/𝜕𝑠3, 𝜕ℎ(2)/𝜕𝑠3 vanish, the third equation, describing momentum conservation
along 𝑠3, takes on the form:

𝜕

𝜕𝑡

∫︁ 𝜂

0

𝑢3 +
1

ℎ(1)ℎ(2)

(︂
𝜕

𝜕𝑠1

∫︁ 𝜂

0

ℎ(1)ℎ(2)𝑢
1𝑢3 +

𝜕

𝜕𝑠2

∫︁ 𝜂

0

ℎ(1)ℎ(2)𝑢
2𝑢3 +

𝜕

𝜕𝑠3

∫︁ 𝜂

0

ℎ(1)ℎ(2)

(︀
𝑢3
)︀2)︂

= −1
𝜌

∫︁ 𝜂

0

𝜕𝑝

𝜕𝑠3
− 𝑔

∫︁ 𝜂

0

𝜕𝑥3

𝜕𝑠3
+

1
𝜌ℎ(1)ℎ(2)

(︂
𝜕

𝜕𝑠1

∫︁ 𝜂

0

ℎ(1)ℎ(2)𝜏
31 +

𝜕

𝜕𝑠2

∫︁ 𝜂

0

ℎ(1)ℎ(2)𝜏
32

+
𝜕

𝜕𝑠3

∫︁ 𝜂

0

ℎ(1)ℎ(2)𝜏
33

)︂
+

𝑝ℬ
𝜌

,

where 𝑝ℬ is the bed pressure as given in equation (2.10). Introducing the expanded velocity, equation (2.14),
and tensor components, equation (2.15), we obtain

1
𝜌

∫︁ 𝜂

0

𝜕𝑝

𝜕𝑠3
+ 𝑔

∫︁ 𝜂

0

𝜕𝑥3

𝜕𝑠3

+ 𝜖𝒢

[︂
𝜕

𝜕𝑡

(︁
𝜂𝑈3

(1)

)︁
+

1
ℎ(1)ℎ(2)

(︂
𝜕

𝜕𝑠1

(︁
𝜂𝑈1

(0)𝑈
3
(1)ℎ(1)ℎ(2)

)︁
+

𝜕

𝜕𝑠2

(︁
𝜂𝑈2

(0)𝑈
3
(1)ℎ(1)ℎ(2)

)︁)︂
− 1

𝜌ℎ(1)ℎ(2)

(︂
𝜕

𝜕𝑠1

∫︁ 𝜂

0

𝜏31
(1)ℎ(1)ℎ(2) +

𝜕

𝜕𝑠2

∫︁ 𝜂

0

𝜏32
(1)ℎ(1)ℎ(2)

)︂
+

𝑝ℬ,(1)

𝜌

]︂
+𝒪

(︀
𝜖2𝒢
)︀

= 0, (2.19)

where the term 𝑝ℬ,(1) , the 𝑠3-component of the shear stress Tℬ ·Nℬ, is a first order approximation (as evidenced
by the (1) subscript) and thus is assumed to be proportional to 𝜖𝒢. Looking at the zero-order terms, i.e., the
terms proportional to 𝜖0𝒢, we can write:

1
𝜌

∫︁ 𝜂

0

𝜕𝑝

𝜕𝑠3
+ 𝑔

∫︁ 𝜂

0

𝜕𝑥3

𝜕𝑠3
= 𝒪(𝜖𝒢)
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that corresponds to the hydrostatic pressure condition along the normal direction to the bottom surface. Since
we neglect the effects of surface tension and wind on the free surface, we can set 𝑝

⃒⃒⃒
𝑠3=𝜂

= 𝑝atm = 0, to obtain:

𝑝
⃒⃒⃒
0

= 𝜌𝑔𝜂
𝜕𝑥3

𝜕𝑠3
+𝒪(𝜖𝒢) . (2.20)

Recall that the term 𝜕𝑥3

𝜕𝑠3 does not depend on 𝑠3, since we are assuming the direction 𝑠3 to be rectilinear.
This condition states, up to terms of order 𝜖𝒢, that the fluid pressure varies linearly along the 𝑠3 direction.

Substitution of this algebraic expression for the pressure ensures the actual reduction of the system of PDEs
from four to three equations, as in the classical SWE derivation.

We turn now our attention to the other two components of equation (2.11b). Focusing only on the 𝑠1-equation,
the other being analogous, we can write:

𝜕

𝜕𝑡

∫︁ 𝜂

0

𝑢1 +
1

ℎ(1)ℎ(2)

[︂
𝜕

𝜕𝑠1

∫︁ 𝜂

0

ℎ(1)ℎ(2)

(︀
𝑢1
)︀2

+
𝜕

𝜕𝑠2

∫︁ 𝜂

0

ℎ(1)ℎ(2)𝑢
1𝑢2 +

𝜕

𝜕𝑠3

∫︁ 𝜂

0

ℎ(1)ℎ(2)𝑢
3𝑢1

]︂
+
∫︁ 𝜂

0

(︀
𝑢1
)︀2

ℎ(1)

𝜕ℎ(1)

𝜕𝑠1
+ 2

∫︁ 𝜂

0

𝑢1𝑢2

ℎ(1)

𝜕ℎ(1)

𝜕𝑠2
−
∫︁ 𝜂

0

(︀
𝑢2
)︀2 ℎ(2)

ℎ2
(1)

𝜕ℎ(2)

𝜕𝑠1

= −1
𝜌

∫︁ 𝜂

0

1
ℎ2

(1)

𝜕𝑝

𝜕𝑠1
− 𝑔

∫︁ 𝜂

0

1
ℎ2

(1)

𝜕𝑥3

𝜕𝑠1
+

1
𝜌ℎ(1)ℎ(2)

[︂
𝜕

𝜕𝑠1

∫︁ 𝜂

0

ℎ(1)ℎ(2)𝜏
11 +

𝜕

𝜕𝑠2

∫︁ 𝜂

0

ℎ(1)ℎ(2)𝜏
12

+
𝜕

𝜕𝑠3

∫︁ 𝜂

0

ℎ(1)ℎ(2)𝜏
13

]︂
+

1
𝜌

(︃∫︁ 𝜂

0

𝜏11

ℎ(1)

𝜕ℎ(1)

𝜕𝑠1
+ 2

∫︁ 𝜂

0

𝜏21

ℎ(1)

𝜕ℎ(1)

𝜕𝑠2
−
∫︁ 𝜂

0

𝜏22 ℎ(2)

ℎ2
(1)

𝜕ℎ(2)

𝜕𝑠1

)︃
+

𝜏1
𝑏

𝜌
·

Again, we enforce an approximation of order 𝜖𝒢 and recalling the expansions in equations (2.14) and (2.15), we
obtain:

– for the left-hand-side

𝜕𝜂𝑈1
(0)

𝜕𝑡
+

1
ℎ(1)ℎ(2)

𝜕

𝜕𝑠1

(︂
𝜂
(︁
𝑈1

(0)

)︁2

ℎ(1)ℎ(2)

)︂
+

1
ℎ(1)ℎ(2)

𝜕

𝜕𝑠2

(︁
𝜂𝑈1

(0)𝑈
2
(0)ℎ(1)ℎ(2)

)︁
+ 𝜂

(︁
𝑈1

(0)

)︁2 1
ℎ(1)

𝜕ℎ(1)

𝜕𝑠1
+ 2𝜂𝑈1

(0)𝑈
2
(0)

1
ℎ(1)

𝜕ℎ(1)

𝜕𝑠2
− 𝜂

(︁
𝑈2

(0)

)︁2 ℎ(2)

ℎ2
(1)

𝜕ℎ(2)

𝜕𝑠1
+𝒪(𝜖𝒢) ;

– for the right-hand-side

− 𝜂

𝜌ℎ2
(1)

𝜕𝑝

𝜕𝑠1
− 𝜂𝑔

ℎ2
(1)

𝜕𝑥3

𝜕𝑠1
+

1
𝜌ℎ(1)ℎ(2)

[︂
𝜕

𝜕𝑠1

∫︁ 𝜂

0

𝜏11
(0)ℎ(1)ℎ(2) +

𝜕

𝜕𝑠2

∫︁ 𝜂

0

𝜏12
(0)ℎ(1)ℎ(2)

]︂
+

1
𝜌ℎ(1)

𝜕ℎ(1)

𝜕𝑠1

∫︁ 𝜂

0

𝜏11
(0) +

2
𝜌ℎ(1)

𝜕ℎ(1)

𝜕𝑠2

∫︁ 𝜂

0

𝜏12
(0) −

ℎ(2)

𝜌ℎ2
(1)

𝜕ℎ(2)

𝜕𝑠1

∫︁ 𝜂

0

𝜏22
(0) +

𝜏1
𝑏 (0)

𝜌
+𝒪(𝜖𝒢) .

Inserting the expression for the pressure given in equation (2.20) yields:

− 𝜂

ℎ2
(1)

𝜕

𝜕𝑠1

(︂
𝜂𝑔

𝜕𝑥3

𝜕𝑠3

)︂
− 𝜂𝑔

ℎ2
(1)

𝜕𝑥3

𝜕𝑠1
+

1
𝜌

(︀
∇𝒢 ·T𝑠𝑤,(0)

)︀1 +
𝜏1
𝑏 (0)

𝜌
+𝒪(𝜖𝒢) .

The final divergence form of the model is obtained by applying the chain rule on the first term of the previous
equation. This implies the assumption that the depth function 𝜂 and 𝜕𝑥3

𝜕𝑠3 are differentiable functions. We
obtain:

𝜂

ℎ2
(1)

𝜕

𝜕𝑠1

(︂
𝜂𝑔

𝜕𝑥3

𝜕𝑠3

)︂
=

𝑔

ℎ2
(1)

𝜕

𝜕𝑠1

(︂
𝜂2

2
𝜕𝑥3

𝜕𝑠3

)︂
+

𝑔𝜂2

2ℎ2
(1)

𝜕

𝜕𝑠1

(︂
𝜕𝑥3

𝜕𝑠3

)︂
·
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Recalling the definition of 𝑞⃗, the momentum equation can be re-written in compact form intrinsic to the bottom
surface as:

𝜕𝑞⃗

𝜕𝑡
+∇𝒢 ·

(︂
1
𝜂

(𝑞⃗ ⊗ 𝑞⃗) +
(︂

𝑔𝜂2

2
𝜕𝑥3

𝜕𝑠3

)︂
𝒢−1

𝑠𝑤

)︂
+

𝑔𝜂2

2
∇𝒢

(︂
𝜕𝑥3

𝜕𝑠3

)︂
+ 𝑔𝜂∇𝒢 (𝑥3)− 1

𝜌
∇𝒢 ·T𝑠𝑤 −

fℬ
𝜌

+𝒪(𝜂 𝜖𝒢) = 0.

Note that in the last equation we have explicitly included in the higher order terms the proportionality to
𝜂, which is implicitly considered also in the previous equations. Hence, if we add the further assumption of
𝜂 = 𝒪(𝜖𝒢) the final form of the momentum equation is an approximation of order 𝒪

(︀
𝜖2𝒢
)︀
. Finally, note that the

continuity equation (2.11a) is exact because of the intrinsic nature of the starting equation, and does not alter
the order of approximation. �

2.3. Properties of the model

As already mentioned in the introduction, the ISWE model is similar to the model proposed by [10]. The
most important improvement of our new formulation equation (2.18) is that only geometric terms appear in the
source term and that the full divergence form is maintained for the conserved quantities. In addition to securing
a more compact form of the equations, our formulation allows the development of a fully intrinsic discretization
as will be seen in Section 3. Here we prove some fundamental mathematical properties, namely that the proposed
model is invariant under rotation, it admits an energy equation, and is well-balanced (preserves the steady state
of lake-at-rest).

Proposition 2.5. The ISWE system defined in equation (2.18) is invariant under rotation, it admits a con-
served energy in the absence of stresses, and is well-balanced.

Proof. The first statement is proved by showing that all involved operators are rotation invariant. Consider first
the gradient operator ∇𝒢. For any function 𝑓 : Ω → R, where Ω ⊂ R2, and for any rotation operator 𝑅 ∈ R2×2,
the following relation holds:

∇𝒢 𝑓(𝑥) = 𝑅𝑇 ∇
𝑅

𝒢 𝑓 (𝑥̃)
⃒⃒⃒
𝑥̃=𝑅𝑥

,

where 𝑓(𝑥) = 𝑓(𝑅𝑥), and ∇
𝑅

𝒢 is the gradient operator in the rotated coordinates. This follows immediately from
the application of the chain rule formula. Concerning the divergence operator, we consider first its application
to a vector-valued function 𝑢 : Ω → R2. We have:

∇𝒢 ·𝑢̃ = ∇
𝑅

𝒢 ·𝑢
⃒⃒⃒
𝑥̃=𝑅𝑥

,

where 𝑢̃ = 𝑅𝑇 𝑢 is the rotated vector, and ∇
𝑅

𝒢 · is the divergence in the rotated coordinate system. With the
same notation, the following holds for the divergence of a tensor product 𝑢⊗ 𝑢:

∇
𝑅

𝒢 · (𝑢̃⊗ 𝑢̃) = 𝑢̃ · ∇
𝑅

𝒢 𝑢̃ + 𝑢̃∇
𝑅

𝒢 ·𝑢̃ =
(︀
𝑅𝑇 𝑢 ·𝑅𝑇 ∇𝒢

)︀
𝑅𝑇 𝑢 + 𝑅𝑇 𝑢∇𝒢 ·𝑢

= 𝑅𝑇 (𝑢 · ∇𝒢 𝑢 + 𝑢∇𝒢 ·𝑢) = 𝑅𝑇 ∇𝒢 · (𝑢⊗ 𝑢) .

The rotational invariance of equation (2.18) follows by noting that the above relation can be directly extended
also to a diagonal tensor.

The energy expression for the system in equation (2.18) can be derived by setting T𝑠𝑤 = 0 and fℬ = 0 (zero
stress) in equation (2.18b). Scalar multiplication by the conservative velocity 𝑈⃗ and application of the chain
rule yields the energy equation for the system:

𝜕

𝜕𝑡

⎛⎜⎝𝜂

⃒⃒⃒
𝑈⃗
⃒⃒⃒2
𝒢

2
+

1
2
𝑔𝜂2 𝜕𝑥3

𝜕𝑠3
+ 𝑔𝑥3

ℬ𝜂

⎞⎟⎠+∇𝒢 ·

⎡⎢⎣
⎛⎜⎝𝜂

⃒⃒⃒
𝑈⃗
⃒⃒⃒2
𝒢

2
+

1
2
𝑔𝜂2 𝜕𝑥3

𝜕𝑠3
+ 𝑔𝑥3

ℬ𝜂 +
1
2
𝑔𝜂2 𝜕𝑥3

𝜕𝑠3

⎞⎟⎠ 𝑈⃗

⎤⎥⎦ = 0,
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where 𝑥3
ℬ is the elevation of the bottom with respect to the the GCS, and

ℰ = 𝜂

⃒⃒⃒
𝑈⃗
⃒⃒⃒2
𝒢

2
+

1
2
𝑔𝜂2 𝜕𝑥3

𝜕𝑠3
+ 𝑔𝑥3

ℬ𝜂, 𝑝 =
1
2
𝑔𝜂2 𝜕𝑥3

𝜕𝑠3

are the kinetic energy and the pressure term, respectively.
Next, we show that the system is well-balanced, in the sense that it preserves the steady-state of a lake-at-

rest. Let the functions 𝜂 = 𝜂 (𝑠1, 𝑠2) and 𝑞⃗ = 𝑞⃗ (𝑠1, 𝑠2) be time independent. Then, the model results in a zero
velocity field and thus the steady-state for a horizontal free fluid surface (lake-at-rest) is preserved. Explicitly,
from the mass conservation equation we get 𝑈⃗ = 0, and from the momentum equation we obtain the following
relation for the depth of the fluid:

𝜂
𝜕𝑥3

𝜕𝑠3
+ 𝑥3

ℬ = const. (2.21)

�

Remark 2.6. It is possible to generalize this result in the presence of stresses, obtaining a relation of the
following form:

𝜕

𝜕𝑡

⎛⎜⎝𝜂

⃒⃒⃒
𝑈⃗
⃒⃒⃒2

2
+

1
2
𝑔𝜂2 𝜕𝑥3

𝜕𝑠3
+ 𝑔𝑥3𝜂

⎞⎟⎠+∇𝒢 ·

⎡⎢⎣
⎛⎜⎝𝜂

⃒⃒⃒
𝑈⃗
⃒⃒⃒2

2
+

1
2
𝑔𝜂2 𝜕𝑥3

𝜕𝑠3
+ 𝑔𝑥3𝜂 +

1
2
𝑔𝜂2 𝜕𝑥3

𝜕𝑠3

⎞⎟⎠ 𝑈⃗

⎤⎥⎦
=

1
𝜌

[︁
∇𝒢 ·

(︁
T𝑠𝑤𝑈⃗

)︁
−∇𝒢 𝑈⃗ : T𝑠𝑤 + 𝑈⃗ · fℬ

]︁
.

From this equation, using an energetically consistent model of the stress terms, an expression for the dissipation
of the total energy can be obtained [12].

2.3.1. Comparison with other literature models

We conclude this section by listing the most important similarities and differences of our approach with
respect to the models developed in [10, 18], which form our starting point. All three models share similar
approximations characteristics, namely 𝒪

(︀
𝜖2
)︀

for small depths, contain the effects of bottom surface curvatures
directly in the equations, and assume a linear velocity distribution along the normal. Moreover, they employ a
local coordinate system anchored on the bottom surface.

The most important difference introduced in our methodology is that we make use exclusively of geometrically
intrinsic quantities. This allows us to obtain a balance law formulation with a source term that, unlike the other
two approaches, does not contain the velocity vector. For this reason, we are able to derive in the following
sections a fully intrinsic numerical discretization exploiting the divergence theorem directly defined on the
surface, thus maintaining all the original symmetries of the continuous model. In addition, discrete well-balance
is readily enforced using standard techniques, such as the one suggested by [5].

3. Intrinsic finite volume scheme

We assume that our final system (2.18) is defined on a compact subset of the bottom surface, Γ ⊂ 𝒮ℬ, and
that a well-defined curvilinear boundary, denoted by 𝜕Γ = 𝜕Γ, exists. System (2.18) can be written in divergence
form as the balance law:

𝜕U
𝜕𝑡

+ div𝒢 𝐹 (s,U) + S (s,U) = 0. (3.1)
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Here the conservative variable is given by U =
[︀
𝜂, 𝜂𝑈1, 𝜂𝑈2

]︀𝑇 =
[︀
𝜂, 𝑞1, 𝑞2

]︀𝑇 , where 𝜂 : Γ × [0, 𝑇 ] → R, and
q =

[︀
𝑞1, 𝑞2

]︀
, q : Γ× [0, 𝑇 ] → R2. The flux function 𝐹 takes the form

𝐹 (s,U) =

⎡⎢⎢⎢⎢⎢⎢⎣

𝑞1 𝑞2(︀
𝑞1
)︀2

𝜂
+

𝑔𝜂2

2ℎ2
(1)

𝜕𝑥3

𝜕𝑠3

𝑞1𝑞2

𝜂

𝑞1𝑞2

𝜂

(︀
𝑞2
)︀2

𝜂
+

𝑔𝜂2

2ℎ2
(2)

𝜕𝑥3

𝜕𝑠3

⎤⎥⎥⎥⎥⎥⎥⎦ =

[︃
𝐹 𝜂

𝐹q

]︃
· (3.2)

Note that the flux 𝐹 is a function of s because of the appearance of the components ℎ(𝑖) of the metric tensor 𝒢𝑠𝑤

and the presence of the bottom slope 𝜕𝑥3/𝜕𝑠3. The symbol div𝒢 denotes the divergence operator applied to the
flux function as divergence of a vector for the first row and divergence of a 2×2 tensor for the last two rows. We
can define it as div𝒢 = [∇𝜂

𝒢 ·,∇
q
𝒢 ·]

𝑇 . The source function S comprises the metric tensor coefficients, the bottom
slope and its derivatives, the two-dimensional averaged stress tensor T𝑠𝑤, the bottom friction parameter 𝜏𝑏, and
the conserved variable 𝜂. We summarize this dependency by explicitly writing it out in S (s, 𝜂). We have then:

S (s, 𝜂) =

⎡⎢⎢⎢⎢⎢⎣
0

𝑔𝜂2

2ℎ2
(1)

𝜕

𝜕𝑠1

(︂
𝜕𝑥3

𝜕𝑠3

)︂
+

𝑔𝜂

ℎ2
(1)

𝜕𝑥3

𝜕𝑠1
− 1

𝜌
[∇𝒢 ·T𝑠𝑤](1,·) − 𝜏1

𝑏

𝜌

𝑔𝜂2

2ℎ2
(2)

𝜕

𝜕𝑠2

(︂
𝜕𝑥3

𝜕𝑠3

)︂
+

𝑔𝜂

ℎ2
(2)

𝜕𝑥3

𝜕𝑠2
− 1

𝜌
[∇𝒢 ·T𝑠𝑤](2,·) − 𝜏2

𝑏

𝜌

⎤⎥⎥⎥⎥⎥⎦ =
[︂
𝑆𝜂

Sq

]︂
· (3.3)

The regularity assumption on the bottom surface implies the uniform continuity of the flux and source functions
with respect to s.

Our aim is to develop a first order upwind Godunov-type Finite Volume scheme defined intrinsically on the
LCS coordinate system. The aim is to derive intrinsic definitions of the geometric differential operators. The
derivation of the scheme starts from the definition of the computational mesh. We assume that there exists a
surface triangulation 𝒯 (Γ) formed by the union of non-intersecting geodesic triangles with vertices on Γ (edges
are geodesics). Obviously, we have that 𝒯 (Γ) = ∪𝑁𝑇

𝑖=1𝑇𝑖 = Γ and 𝜎𝑖𝑗 = 𝑇𝑖 ∩ 𝑇𝑗 is an internal geodesic edge.
We will also use the approximate triangulation 𝒯ℎ (Γ) defined by the piecewise linear surface identified by the
union of 2-simplices in R3 (flat three-dimensional triangles) with vertices coinciding with the vertices of 𝒯 (Γ).
We assume that this triangulation is closely inscribed in 𝒯 (Γ) in the sense of [28] (the tangent spaces of 𝒯 (Γ)
and of 𝒯ℎ (Γ) are close in some sense). Given a point 𝑚 ∈ 𝑇ℎ, we indicate with pr(𝑚) the point in 𝑇 ⊂ 𝒯 (Γ)
of which 𝑚 is the orthogonal projection along the surface normal direction N (pr(𝑚)). We say that 𝒯ℎ (Γ) is
closely inscribed in 𝒯 (Γ) if every 𝑇ℎ ∈ 𝒯ℎ (Γ) lies within a neighborhood 𝒩pr(𝑚) of 𝒯 (Γ) such that pr(𝑚) is
well-defined and one-to-one for all 𝑚 ∈ 𝑇ℎ. Quantities belonging to the approximated triangulation 𝒯ℎ (Γ) will
be identified with the subscript ℎ. Thus the symbol 𝜎ℎ,𝑖𝑗 will identify the common edge between triangles 𝑇ℎ,𝑖

and 𝑇ℎ,𝑗 . We will denote by 𝒜𝑇 (𝒜𝑖) the area of cell 𝑇 (𝑇𝑖) in 𝒯 (Γ), and by 𝒜𝑇ℎ
(𝒜ℎ,𝑖) the corresponding area

in 𝒯ℎ (Γ). Analogously, we will denote with ℓ𝜎 (ℓ𝑖𝑗) the length of the geodesic edge 𝜎 (𝜎𝑖𝑗) in 𝒯 (Γ), and ℓ𝜎ℎ

(ℓℎ,𝑖𝑗) the corresponding length in 𝒯ℎ (Γ).
We start our work on 𝒯 (Γ), where the divergence and integration by parts theorems are naturally defined.

Following a standard development workflow for FV methods, we test equation (3.1) with a piecewise constant
(in space and time) function and apply the divergence theorem to obtain the following set of equations valid for
all triangles 𝑇𝑖 ∈ 𝒯 (Γ) and for 𝑡 ∈

[︀
𝑡𝑘, 𝑡𝑘+1

]︀
:

U𝑘+1
𝑖 = U𝑘

𝑖 −
1
𝒜𝑖

𝑁𝜎(𝑖)∑︁
𝑗=1

ℓ𝑖𝑗

∫︁ 𝑡𝑘+1

𝑡𝑘

F𝑖𝑗 (U) d𝑡−
∫︁ 𝑡𝑘+1

𝑡𝑘

S𝑖 (𝜂) d𝑡,
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where we use the cell-averaged and edge-averaged quantities defined intrinsically in 𝒯 (Γ) as:

U𝑖 =
1
𝒜𝑖

∫︁
𝑇𝑖

U ds, F𝑖𝑗 =
1
ℓ𝑖𝑗

∫︁
𝜎𝑖𝑗

⟨︀
𝐹 , 𝜈𝑖𝑗

⟩︀
𝒢

d𝜎, S𝑖 =
1
𝒜𝑖

∫︁
𝑇𝑖

S ds, (3.4)

and 𝜈𝑖𝑗 is the local vector of the tangent plane normal to the edge 𝜎𝑖𝑗 and pointing outward of the cell 𝑇𝑖. Note
that the quantities F𝑖𝑗 ,S𝑖 are depending only on the unknown U but not on the space variable s, since they
are integrated in space. Moreover, it is important to underline that no numerical approximations are done up
to this point. Now we need to devise numerically computable approximations of the above quantities. Thus, the
following steps need to be appropriately defined: (i) time stepping; (ii) normal fluxes on edges; (iii) quadrature
rules; (iv) Riemann problem. We would like to stress here that the approach developed below does not add
important computational complexities beyond what is done in standard two-dimensional FV codes.

Step (i) uses a first order explicit Euler time stepping scheme. To maintain a well-balanced scheme we use an
adaptation of the approach of [5,8] and include the source terms in the flux. Then, the following FV equations
are defined for each 𝑇𝑖:

U𝑘+1
ℎ,𝑖 = U𝑘

ℎ,𝑖 −
∆𝑡

𝒜ℎ,𝑖

𝑁𝜎(𝑖)∑︁
𝑗=1

ℓℎ,𝑖𝑗

[︀
Fℎ,𝑖𝑗

(︀
U𝑘

ℎ,𝑖,U
𝑘
ℎ,𝑗

)︀
+ Sℎ,𝑖𝑗

(︀
U𝑘

ℎ,𝑖,U
𝑘
ℎ,𝑗

)︀]︀
, (3.5)

where Fℎ,𝑖𝑗 is the numerical approximation of the edge-averaged normal flux F𝑖𝑗 at 𝜎𝑖𝑗 , and Sℎ,𝑖𝑗 is calculated
so that

∑︀𝑁𝜎(𝑖)
𝑗=1 ℓℎ,𝑖𝑗Sℎ,𝑖𝑗 is a consistent quadrature rule for the last integral in equation (3.4) and maintains the

discrete version of equation (2.21).
Step (ii) is defined as follows. Given a tangent plane 𝑇M𝜎Γ on the edge, with associated metric tensor 𝒢𝑠𝑤,

and denoting by 𝜈 =
[︀
𝜈1, 𝜈2

]︀𝑇 and 𝜏 =
[︀
𝜏1, 𝜏2

]︀𝑇 the normal and tangent vectors to the geodesic edge, the
normal flux function can be written as:

F𝜈 (s,U) =
⟨︀
𝐹 , 𝜈

⟩︀
𝒢

=

⎡⎢⎢⎢⎢⎢⎢⎣

𝑞1ℎ2
(1)𝜈

1 + 𝑞2ℎ2
(2)𝜈

2(︀
𝑞1
)︀2

𝜂
ℎ2

(1)𝜈
1 +

1
2
𝑔𝜂2 𝜕𝑥3

𝜕𝑠3
𝜈1 +

𝑞1𝑞2

𝜂
ℎ2

(2)𝜈
2

𝑞1𝑞2

𝜂
ℎ2

(1)𝜈
1 +

(︀
𝑞2
)︀2

𝜂
ℎ2

(2)𝜈
2 +

1
2
𝑔𝜂2 𝜕𝑥3

𝜕𝑠3
𝜈2

⎤⎥⎥⎥⎥⎥⎥⎦ · (3.6)

Using an edge-based LCS aligned with the normal and tangent vectors, we can write:

𝑞𝑁 = ⟨𝑞⃗, 𝜈⟩𝒢 = 𝑞1ℎ2
(1)𝜈

1 + 𝑞2ℎ2
(2)𝜈

2

𝑞𝑇 = ⟨𝑞⃗, 𝜏⟩𝒢 = 𝑞1ℎ2
(1)𝜏

1 + 𝑞2ℎ2
(2)𝜏

2 = −𝑞1ℎ2
(1)𝜈

2 + 𝑞2ℎ2
(2)𝜈

1,

where we have used the relation 𝜏 =
[︀
𝜏1, 𝜏2

]︀𝑇 =
[︀
−𝜈2, 𝜈1

]︀𝑇 . Finally, the normal flux function in the edge LCS
takes on the expression:

F𝜈 (s,U) =

⎡⎢⎢⎢⎢⎢⎣
𝑞𝑁

𝑞1𝑞𝑁

𝜂
+

1
2
𝑔𝜂2 𝜕𝑥3

𝜕𝑠3
𝜈1

𝑞2𝑞𝑁

𝜂
+

1
2
𝑔𝜂2 𝜕𝑥3

𝜕𝑠3
𝜈2

⎤⎥⎥⎥⎥⎥⎦ ·

The final two steps, (iii) and (iv), require the approximation of the relevant surface quantities and will be
described in the next Sections 3.1 and 3.2.
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Figure 2. Curvilinear cell 𝑇 and corresponding approximate gravity center M𝑇 . The curvi-
linear edge 𝜎 of cell 𝑇 is the minimal geodesic curve connecting the two vertices. The midpoint
of 𝜎 is denoted by M𝜎.

3.1. Intrinsic quadrature rules and sampling points

The aim is to define numerical quadrature rules consistent with the first order Godunov method we plan to
use and with minimal sampling points. This will allow to solve a minimal number of Riemann problems per
triangle edge. Linear consistency with a single sampling point is achieved by the midpoint formula, which can
be written as: ∫︁

𝜎

𝑓 (s) d𝜎 ≈ ℓ𝜎𝑓 (M𝜎) , (3.7)∫︁
𝑇

𝑓 (s) ds ≈ 𝒜𝑇 𝑓 (M𝑇 ) , (3.8)

where ℓ𝜎 is the length of the geodesic edge and 𝒜𝑇 the area of the surface triangle, and 𝑓 (M𝜎) and 𝑓 (M𝑇 )
denote the evaluation of the surface function at the edge and cell midpoints, respectively.

To address step (iii) we need to establish the approximations of the necessary geometric quantities. An
important feature we want to maintain in our numerical approach is the exclusive use of geometrically intrinsic
quantities. Up to this point, our FV scheme is defined intrinsically on the LCS attached on the bottom surface.
To continue our development within this setting, we assume that all the relevant intrinsic information, namely
the tangent plane, is known (in exact or approximate form) at the vertices of the triangulation. Then the task
is to develop intrinsic approximations of the geometric quantities starting from these data.
Approximation on edges. With reference to Figure 2, we directly approximate the LCS (or equivalently the
tangent plane) at the edge midpoint M𝜎 using nodal information, without actually resorting to an explicit
expression for M𝜎. We start by approximating the tangent plane 𝑇M𝜎Γ from the linear interpolation of the
tangent vectors t𝑖 (𝐴) and t𝑖 (𝐵), 𝑖 = 1, 2, with re-orthogonalization. The frame completing normal vector is
naturally obtained using the normalized outer product of t̃𝑖. The three LCS vectors are thus given by:

t̃1 (M𝜎) =
1
2
t1 (𝐴) +

1
2
t1 (𝐵) ,

t′2 (M𝜎) =
1
2
t2 (𝐴) +

1
2
t2 (𝐵) , t̃2 (M𝜎) = t′2 −

⟨︀
t′2, t̃1

⟩︀⟨︀
t̃1, t̃1

⟩︀ t̃1,

t̃3 (M𝜎) =
t̃1 ∧ t̃2⃦⃦
t̃1

⃦⃦ ⃦⃦
t̃2

⃦⃦ ·
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The tangent plane at M𝜎 is then identified by 𝑇M𝜎
Γ = ⟨t̃1, t̃2⟩, and the associated metric tensor is:

𝒢M𝜎
=

[︃⃦⃦
t̃1

⃦⃦2
0

0
⃦⃦
t̃2

⃦⃦2

]︃
·

Note that this approximation is fully intrinsic and does not require information on the geodesic edge between
𝐴 and 𝐵.

The intrinsic definition of the Riemann problem requires the approximation of the normal and tangent
directions to the geodesic edge at the midpoint. This is achieved as follows. The tangent plane is identified by
its normal, given by:

ÑM𝜎
= t̃3 (M𝜎) .

The tangent vector is approximated by a second order accurate linear interpolation of the vectors tangent to the
geodesic edge at the two vertices. Let 𝜎 (𝜆) be a parametrization of the geodesic curve connecting the two nodes
𝐴 and 𝐵 and forming edge 𝜎, with 𝜆 ∈ [0, 1] (see Fig. 2). In our case, we approximate this parametrization
using the following expression:

𝜎 (𝜆) =

⎧⎪⎨⎪⎩
𝑠1 (𝜆) = (𝑠1

𝐵 − 𝑠1
𝐴) 𝜆 + 𝑠1

𝐴

𝑠2 (𝜆) = (𝑠2
𝐵 − 𝑠2

𝐴) 𝜆 + 𝑠2
𝐴

𝑠3 (𝜆) = ℬ (𝑠1 (𝜆) , 𝑠2 (𝜆)) ,

(3.9)

where the third component of this parametric curve is the vertical projection of the chord onto the surface and
not the real geodesic curve connecting 𝐴 and 𝐵. Then, we compute the derivatives at the extremal points of
this curve, obtaining the vectors tangent to the relevant edge at the triangle nodes, which in our case are:

𝜏𝐴 = 𝜎̇(0), 𝜏𝐵 = 𝜎̇(1).

The tangent vector at M𝜎 of the geodesic edge is then given by linear interpolation of 𝜏𝐴 and 𝜏𝐵 , orthogonalized
with respect to the ÑM𝜎

to project it on 𝑇M𝜎
Γ:

𝜏 ′
M𝜎

=
1
2

(𝜏𝐴 + 𝜏𝐵) , 𝜏M𝜎 = 𝜏 ′M𝜎
−

⟨
𝜏 ′M𝜎

, ÑM𝜎

⟩
⟨
ÑM𝜎 , ÑM𝜎

⟩ÑM𝜎 .

Hence, the outer product of 𝜏M𝜎 and ÑM𝜎 gives the approximation of the intrinsic normal to the geodesic edge,
namely:

𝜈M𝜎 = 𝜏M𝜎 ∧ ÑM𝜎 . (3.10)

To complete the definition we need to express 𝜈M𝜎
and 𝜏M𝜎

using the LCS bases. This provides the approximate
vectors that define a proper rotation and projection in the direction orthogonal to the edge at the midpoint.

Approximation on cells. Analogous approximations need to be done in order to define the geometric infor-
mation on the cells, namely the tangent plane at the gravity center of the cell M𝑇 . As before, we start from
nodal data and construct the following vectors:

t̃1 (M𝑇 ) =
1
3
t1 (𝐴) +

1
3
t1 (𝐵) +

1
3
t1 (𝐶) ,

t′2 (M𝑇 ) =
1
3
t2 (𝐴) +

1
3
t2 (𝐵) +

1
3
t2 (𝐶) , t̃2 (M𝑇 ) = t′2 −

⟨︀
t′2, t̃1

⟩︀⟨︀
t̃1, t̃1

⟩︀ t̃1,

t̃3 (M𝑇 ) =
t̃1 ∧ t̃2⃦⃦
t̃1

⃦⃦ ⃦⃦
t̃2

⃦⃦ ,

with the associated metric tensor

𝒢M𝑇
=

[︃⃦⃦
t̃1

⃦⃦2
0

0
⃦⃦
t̃2

⃦⃦2

]︃
·
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3.1.1. Approximation error estimates

In this paragraph we derive approximation error estimates for the quantities defined in the previous paragraph.
In particular, we need to control the accuracy of the quadrature rule and, as a consequence, of the divergence
theorem so that consistency of the IFV is ensured. In addition, the given estimates will relate these errors with
the geometrical properties of the bottom surface. To this aim, we follow [28] and define the following quantities.
Given 𝑇 ∈ 𝒯 (Γ) and 𝑇ℎ ∈ 𝒯ℎ (Γ) let (𝑚, pr(𝑚)) ∈ 𝑇ℎ × 𝑇 be the pair of points related by the orthogonal
projection pr(𝑚) with respect to 𝜉 = N (pr(𝑚)). Denote by ‖𝐿𝜉 (pr(𝑚))‖ the norm of the Weingarten tensor,
i.e., the maximum of the absolute values of the principal curvatures of Γ along 𝜉 in pr(𝑚). Then, we can define
the relative curvature function 𝜔Γ(𝑚) of point 𝑚 with respect to Γ as the product of the Euclidean distance⃒⃒⃒−−−−−→
pr(𝑚)𝑚

⃒⃒⃒
between pr(𝑚) and 𝑚 times ‖𝐿𝜉 (pr(𝑚))‖, i.e., 𝜔Γ(𝑚) =

⃒⃒⃒−−−−−→
pr(𝑚)𝑚

⃒⃒⃒
‖𝐿𝜉‖. The relative curvature

𝜔Γ (𝑈) of 𝑈 ⊂ 𝒯ℎ (Γ) with respect to Γ is defined as 𝜔Γ (𝑈) = sup𝑚∈𝑈 𝜔Γ(𝑚). In addition, we can define the
deviation angle of 𝑇ℎ ∈ 𝒯ℎ with respect to 𝑇 ∈ 𝒯 as the maximum over all the points 𝑚 ∈ 𝑇ℎ of the angle
𝛼max ∈ [0, 𝜋/2] between the tangent space at pr(𝑚) and 𝑇ℎ. Finally, we have the following proposition, which
we state without proof (see [28]):

Proposition 3.1. The following relations hold:

(1) the curvilinear length ℓ𝜎 of edge 𝜎 is related to the Euclidean length ℓ𝜎ℎ
via the inequalities:

ℓ𝜎ℎ
≤ ℓ𝜎 ≤

1
1− 𝜔Γ (𝜎ℎ)

ℓ𝜎ℎ
,

where 𝜔Γ (𝜎ℎ) is the relative curvature with respect to Γ;
(2) the difference between the unit vector v−−→

𝐴𝐵
aligned to the chord 𝜎ℎ and the unit tangent vector 𝜏𝐴 to the

geodesic edge at 𝐴 satisfies: ⃒⃒⃒
v−−→

𝐴𝐵
− 𝜏𝐴

⃒⃒⃒
≤ 1

2
𝑘Γℓ𝜎,

where 𝑘Γ is the supremum over Γ of the norm of the second fundamental form;
(3) the surface area of the cell 𝑇 is related to the planar area of 𝑇ℎ by the relation:

|𝒜𝑇 −𝒜𝑇ℎ
| ≤ 𝐶Γ

(︀
𝛼2

max + 𝜔Γ (𝑇ℎ)
)︀
,

where 𝐶Γ is a constant depending on Γ.

Remark 3.2. For any 𝑈 ⊆ 𝑇ℎ we have that for all 𝑚 ∈ 𝑈 the length of the orthogonal projection
−−−−−→
pr(𝑚)𝑚 is

bounded by the square of the length of the longest triangle edge, i.e.,
⃒⃒⃒−−−−−→
pr(𝑚)𝑚

⃒⃒⃒
≤ 𝐶ℓ2𝜎ℎ

[17]. From the definition

of the relative curvature we find immediately 𝜔Γ (𝑈) = sup𝑚∈𝑈

⃒⃒⃒−−−−−→
pr(𝑚)𝑚

⃒⃒⃒
‖𝐿𝜉‖ ≤ 𝐶ℓ2𝜎ℎ

, where here 𝐶 is a generic
constant.

Remark 3.3. Analogously, the deviation angle 𝛼max of 𝑇ℎ with respect to 𝑇 is bounded by the radius of the
triangle circumcircle, leading to the bound 𝛼max ≤ 𝐶ℓ𝜎ℎ

[28].

For a regular surface, the piecewise linear interpolant 𝐼ℎ𝑓 of a smooth function is characterized by quadratic
error [17]:

‖𝑓 − 𝐼ℎ𝑓‖𝐿2(𝑇 ) ≤ 𝐶ℓ2𝜎ℎ

⃦⃦
𝐷2𝑓

⃦⃦
𝐿2(𝑇 )

.

In Section 4.1 we will show the experimental convergence results confirming this fact in our setting. Since
we assume that the flux and source functions are Lipschitz regular, their evaluation at the sampling points
maintains the order of accuracy. Thus, to complete our analysis, we are left with the study of the approximation
errors introduced in the quadrature rules by the definition of the tangent/normal reference frame in 𝑇M𝜎

Γ. In
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particular, we analyze here the quadrature rule for an integral over the edge 𝜎 of a general Lipschitz regular
vector function 𝐹 . Here we denote with 𝐹 𝜈 (M𝜎) the evaluation of the function 𝐹 on the approximate 𝑇M𝜎

Γ
at the edge midpoint M𝜎 projected along the approximate normal direction 𝜈M𝜎. Then, we have the following
result:

Proposition 3.4. Given a Lipschitz regular vector function 𝐹 defined on the geodesic edge 𝜎 we have:∫︁
𝜎

⟨𝐹, 𝜈⟩𝒢 d𝜎 = ℓ𝜎ℎ
𝐹 𝜈 (M𝜎) +𝒪

(︀
ℓ2𝜎ℎ

)︀
.

Proof. Direct application of the mid-point rule yields [20]:∫︁
𝜎

⟨𝐹, 𝜈⟩𝒢 d𝜎 = ℓ𝜎 ⟨𝐹, 𝜈⟩𝒢 (M𝜎) +𝒪
(︀
ℓ3𝜎
)︀
.

Next we address explicitly the different approximations made in the definition of 𝑇M𝜎
Γ. We first note that, by

Proposition 3.1 (2), we have:

|𝜏 − 𝜏M𝜎 | ≤
⃒⃒⃒
𝜏 − v−−→

𝐴𝐵

⃒⃒⃒
+
⃒⃒⃒
v−−→

𝐴𝐵
− 𝜏M𝜎

⃒⃒⃒
≤ 𝐶ℓ𝜎,

where 𝐶 is a constant depending on the surface curvature. By construction, the approximate normal 𝜈M𝜎

shares the same first order error estimate. Recalling Remark 3.2, essentially Proposition 3.1 (1) states that
|ℓ𝜎 − ℓ𝜎ℎ

| ≤ 𝐶ℓ3𝜎ℎ
. Linear interpolation of the nodal quantities ensures that the approximate metric and tangent

plane in M𝜎 are second order accurate, i.e.:

𝒢 (M𝜎) = 𝒢M𝜎
+𝒪

(︀
ℓ2𝜎
)︀

and 𝐹 (M𝜎) = 𝐹 (M𝜎) +𝒪
(︀
ℓ2𝜎
)︀
.

Thus, expanding the scalar product ⟨·, ·⟩𝒢 and combining all the terms, we can write:

ℓ𝜎 ⟨𝐹, 𝜈⟩𝒢 (M𝜎) +𝒪
(︀
ℓ3𝜎
)︀

= ℓ𝜎

(︁
𝐹 (M𝜎) +𝒪

(︀
ℓ2𝜎
)︀)︁(︁

𝒢M𝜎
+𝒪

(︀
ℓ2𝜎
)︀)︁

(𝜈M𝜎
+𝒪(ℓ𝜎)) +𝒪

(︀
ℓ3𝜎
)︀

= ℓ𝜎

(︁
𝐹 (M𝜎)𝒢M𝜎

𝜈M𝜎
+𝒪(ℓ𝜎)

)︁
+𝒪

(︀
ℓ3𝜎
)︀

= ℓ𝜎ℎ
𝐹 𝜈 (M𝜎) +𝒪

(︀
ℓ2𝜎ℎ

)︀
,

which yields the desired result. �

Because of its importance in our IFV scheme, we report here the following corollary whose proof is an
immediate consequence of the previous proposition.

Corollary 3.5. Given a Lipschitz regular vector function 𝐹 defined on the geodesic triangle 𝑇 we have:

∫︁
𝑇

∇𝒢 ·𝐹 ds =
𝑁𝜎∑︁
𝑗=1

ℓℎ,𝑗𝐹
𝜈
(︀
M𝜎𝑗

)︀
+𝒪

(︀
ℓ2𝜎ℎ

)︀
.

We end this section by noting that all these estimates can be directly related to the global mesh parameter ℎ.
This is classically defined as the maximum of the lengths of the triangulation edges, i.e., ℎ = max𝜎ℎ∈𝒯ℎ(Γ) ℓ𝜎ℎ

.
Noting that, by Remarks 3.2 and 3.3 and Proposition 3.1 (3), the area of 𝑇ℎ converges quadratically to the area
of 𝑇 , we can conclude that all our geometric approximations involved in the calculation of the right-hand-side
of equation (3.5) are consistent with the global accuracy of our IFV discretization.
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3.2. The Riemann problem

As customary in upwind-Godunov methods, the numerical fluxes Fℎ,𝑖𝑗 in equation (3.5) are defined by
evaluating the flux function F𝜈

𝑖𝑗 from solutions of Riemann Problems (RPs) at quadrature points of the cell
edges. Since our equations are invariant under linear transformations and, specifically, rotations, each RP can
be formulated as a one-dimensional problem in the tangent plane 𝑇M𝜎

Γ, passing through the quadrature point
M𝜎 in the direction of the local edge normal 𝜈M𝜎

.
Note that our flux function is non-autonomous as it depends on the space variable defined on the local

coordinate system. In this case difficulties in the well-posedness of the RP may arise (see e.g., [2–4]). Thus,
we write the Riemann problem as follows. Let V =

[︀
𝜂, 𝑞𝑁 , 𝑞𝑇

]︀𝑇 =
[︀
𝜂, 𝜂𝑣1, 𝜂𝑣2

]︀𝑇 be the vector of conservative
variables, where, 𝑞𝑁 and 𝑞𝑇 indicate the components of the flux (discharge) vector defined along the directions
𝜈M𝜎

and 𝜏M𝜎
, respectively. Denote with 𝑥 the space variable along 𝜈M𝜎

. Then, the RP is formally given by:

V𝑡 + F𝜈 (𝑥,V)𝑥 = 0,

F𝜈 : (𝑥,V) ∈ Γ× 𝑇M𝜎
Γ ↦→

{︃
F𝐿 (V) if 𝑥 < 0
F𝑅 (V) if 𝑥 > 0

, (3.11)

V (𝑥, 0) =

{︃
V𝐿 if 𝑥 < 0
V𝑅 if 𝑥 > 0

,

where F𝜈 is the normal flux function as defined in equation (3.6). To simplify the problem, we advocate the
assumption of continuity of the flux function with respect to the first argument. This allows us to approximate
the RP by assuming F𝐿 (V) = F𝑅 (V), thus recovering the standard form of the shallow-water RP. This
approximation deserves further investigation, which is however outside the scope of this paper and we leave it
to future studies.

Consistently with the first order accuracy, we use cell values to define the left and right initial states V𝐿 and
V𝑅. However, the physical quantities of depth and velocity need to be written in the correct reference system
attached on the edge midpoint. For each cell, 𝜂 represents the cell average of the water column (measured in
the normal direction) at the cell midpoint M𝑇 . Since we consider a surface triangulation, the midpoint of the
cell can have a different elevation with respect to the GCS than the midpoint of the edge. Thus, the depth value
needs to be properly moved to the point M𝜎, where the RP is defined. For edge 𝜎, we calculate the left and
right edge elevations 𝜂(𝐿) and 𝜂(𝑅) from the cell elevations 𝜂𝐿 and 𝜂𝑅 of cells 𝑇𝐿 and 𝑇𝑅 as follows:

𝜂(𝑘) = max

⎧⎪⎨⎪⎩0,
𝜂𝑘

𝜕𝑥3

𝜕𝑠3

⃒⃒⃒
𝑘

+ 𝑥3
ℬ,𝑘 − 𝑥3

ℬ,𝜎

𝜕𝑥3

𝜕𝑠3

⃒⃒⃒
𝜎

⎫⎪⎬⎪⎭ 𝑘 = 𝐿, 𝑅,

where 𝜕𝑥3

𝜕𝑠3

⃒⃒⃒
𝑘

and 𝑥3
ℬ,𝑘 are defined at the gravity center of the 𝑘th cell. The zero bound is introduced to ensure

non-negativity of water depth. We need to define the edge-quantities 𝜕𝑥3

𝜕𝑠3

⃒⃒⃒
𝜎

and 𝑥3
ℬ,𝜎. Because of the regularity

of the bottom surface, we can set 𝜕𝑥3

𝜕𝑠3

⃒⃒⃒
𝜎

= 𝜕𝑥3

𝜕𝑠3 (M𝜎). Definition of the edge bottom elevation 𝑥3
ℬ,𝜎 must take into

consideration the fact that the edge might be in a dry region (i.e., the edge midpoint is at a higher elevation
with respect to the cell water elevation). Following [5, 8], we then set

𝑥3
ℬ,𝜎 = max

{︀
𝑥3
ℬ,𝐿, 𝑥3

ℬ,𝑅, 𝑥3
ℬ (M𝜎)

}︀
,

where 𝑥3
ℬ (M𝜎) is the approximated value at the edge center M𝜎. This ensures that dry regions with 𝜂 = 0 are

captured so that wetting-and-drying processes are handled seamlessly.
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Concerning the velocity, the vector q must be “parallel” transported from the cell gravity center to the edge
midpoint, so that all quantities in the RP belong to 𝑇M𝜎

Γ. This is achieved by a first order linearization of the
ODE system defining parallel transport. Again, for edge 𝜎 we can write [18,32]:

𝑞1
(𝑘)

(︁
s
M𝜎

)︁
= 𝑞1(s𝑘)−

(︁
𝑠1

M𝑇
− 𝑠1

𝑘

)︁(︁
Γ1,(𝑘)

11 𝑞1(s𝑘) + Γ1,(𝑘)
21 𝑞2(s𝑘)

)︁
(3.12a)

𝑘 = 𝐿, 𝑅.

𝑞2
(𝑘)

(︁
s
M𝜎

)︁
= 𝑞2(s𝑘)−

(︁
𝑠2

M𝑇
− 𝑠2

𝑘

)︁(︁
Γ2,(𝑘)

11 𝑞1(s𝑘) + Γ2,(𝑘)
21 𝑞2(s𝑘)

)︁
(3.12b)

Note that this first order linearization maintains the accuracy of the overall scheme. However, its most important
role is to perform the change of coordinate systems from the cell-attached to the edge-attached tangent planes.

3.2.1. The Riemann solver

We use the classical HLL and its variant HLLC schemes [22, 37], which easily adapt to our equations. The
HLL scheme estimates the smallest and largest wave speeds 𝑆𝐿, 𝑆𝑅 in the solution of the Riemann problem
starting from the left and right data U𝐿,U𝑅 defined in the neighboring cells to the edge and the corresponding
fluxes F𝐿 = F𝜈 (V𝐿) and F𝑅 = F𝜈 (V𝑅). It is easy to calculate the extremal eigenvalues of the Jacobian as:

𝑆𝐿 = min

{︃
0, min

{︃
v𝐿 −

√︂
𝑔𝜂𝐿

𝜕𝑥3

𝜕𝑠3

⃒⃒⃒
𝐿
, v𝑅 −

√︂
𝑔𝜂𝑅

𝜕𝑥3

𝜕𝑠3

⃒⃒⃒
𝑅

}︃}︃
,

𝑆𝑅 = max

{︃
0, max

{︃
v𝐿 +

√︂
𝑔𝜂𝐿

𝜕𝑥3

𝜕𝑠3

⃒⃒⃒
𝐿
, v𝑅 +

√︂
𝑔𝜂𝑅

𝜕𝑥3

𝜕𝑠3

⃒⃒⃒
𝑅

}︃}︃
.

Considering the normal direction defined in equation (3.11), the HLL flux on the edge is then computed as:

F𝜈
𝐻𝐿𝐿 =

⎧⎪⎪⎨⎪⎪⎩
F𝐿 if 𝑆𝐿 ≥ 0
𝑆𝑅F𝐿 − 𝑆𝐿F𝑅 + 𝑆𝑅𝑆𝐿 (U𝑅 −U𝐿)

𝑆𝑅 − 𝑆𝐿
if 𝑆𝐿 ≤ 0 ≤ 𝑆𝑅

F𝑅 if 𝑆𝑅 ≤ 0.

(3.13)

Note that, this approach ignores intermediate waves, such as shear waves and contact discontinuities. Consid-
eration of these waves is achieved in the HLLC approach described in [37], whose extension to our setting is
straightforward.

3.2.2. The CFL condition

The knowledge of the eigenstructure of the Jacobian of the system is necessary also to enforce the stability
condition, since we are applying an explicit time discretization method. The time step ∆𝑡 follows from a standard
CFL condition, where:

CFL =
∆𝑡 𝑆max

ℎ𝑇
,

with 𝑆max =
⃦⃦⃦
𝑈⃗
⃦⃦⃦
𝒢

+
√︁

𝑔𝜂 𝜕𝑥3

𝜕𝑠3 . We typically impose that CFL be smaller than 1/2 to ensure stability, and the

actual time step is chosen as the minimum value over all the cells 𝑇 ∈ 𝒯 (Γ).

3.3. Well-balance

We look here at the well-balance property for the “lake-at-rest” condition. In this case, we have a steady-state
condition with zero velocity and thus a time-independent horizontal free surface. Our intrinsic SW equation
then becomes: ⎧⎨⎩ 𝑞⃗ = 0

∇𝒢 ·
(︂

1
2𝑔𝜂2 𝜕𝑥3

𝜕𝑠3
𝒢−1

𝑠𝑤

)︂
= − 1

2𝑔𝜂2∇𝒢
𝜕𝑥3

𝜕𝑠3
− 𝑔𝜂∇𝒢 𝑥3

ℬ,
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which is equivalent to equation (2.21). We would like to note that more accurate well-balance properties would
be needed in case of higher order methods, but in this paper we content ourselves with simple well-balance
property in the form of the “lake-at-rest”. We will consider as future studies the more complex situation of a
fully well balanced scheme as done in [6, 7]. The divergence theorem can be used to express the cell-integral of
the source term as a sum of integrals on the edges. In fact, from the steady momentum conservation equation
we can write the following equalities:∫︁

𝑇𝑖

(︂
1
2
𝑔𝜂2∇𝒢

𝜕𝑥3

𝜕𝑠3
+ 𝑔𝜂∇𝒢 𝑥3

ℬ

)︂
ds = −

∫︁
𝑇𝑖

∇𝒢 ·
(︂

1
2
𝑔𝜂2 𝜕𝑥3

𝜕𝑠3
𝒢−1

𝑠𝑤

)︂
ds

= −
3∑︁

𝑗=1

∫︁
𝜎𝑖𝑗

⟨
1
2
𝑔𝜂2 𝜕𝑥3

𝜕𝑠3
𝒢−1

𝑠𝑤 , 𝜈𝑖𝑗

⟩
𝒢

d𝜎 ≈ −
3∑︁

𝑗=1

ℓℎ,𝑖𝑗

⟨
1
2
𝑔
(︀
𝜂*𝑖𝑗
)︀2 𝜕𝑥3

𝜕𝑠3

⃒⃒⃒*
𝑖𝑗
𝒢−1

𝑠𝑤 , 𝜈𝑖𝑗

⟩
𝒢

, (3.14)

where the starred quantities are evaluated at appropriate sampling points so that discrete well-balance is main-
tained. Then, using the full expression of S (s, 𝜂), the integral over 𝑇𝑖 can be written as:

∫︁
𝑇𝑖

S ds ≈

⎡⎣ 0

−
∑︀3

𝑗=1 ℓℎ,𝑖𝑗

⟨
1
2𝑔
(︀
𝜂*𝑖𝑗
)︀2 𝜕𝑥3

𝜕𝑠3

⃒⃒⃒*
𝑖𝑗
𝒢−1

𝑠𝑤 , 𝜈𝑖𝑗

⟩
𝒢

⎤⎦
=

3∑︁
𝑗=1

ℓℎ,𝑖𝑗

⎡⎣ 0

−
⟨

1
2𝑔
(︀
𝜂*𝑖𝑗
)︀2 𝜕𝑥3

𝜕𝑠3

⃒⃒⃒*
𝑖𝑗
𝒢−1

𝑠𝑤 , 𝜈𝑖𝑗

⟩
𝒢

⎤⎦ =
3∑︁

𝑗=1

ℓℎ,𝑖𝑗

[︂
0

S𝑖𝑗

]︂
.

The idea is to apply the latter relation as a quadrature rule for the source integral in the scheme also in the non
steady-state case. This quadrature rule is, by definition, exact when the velocity is zero and we need to prove
that its approximation error is of order 𝒪(ℎ) when the velocity is non-zero. Moreover, it has to be consistent
with the flux term F𝑖𝑗 computed via Riemann solvers.

We first define the sampling values 𝜂*𝑖𝑗 and 𝜕𝑥3

𝜕𝑠3

⃒⃒⃒*
𝑖𝑗

used in S𝑖𝑗 that ensure well-balance and consistency, with

the first condition satisfied exactly. In the case of a steady horizontal water table, discrete well-balance implies
that, with respect to the GCS, the total water elevation at the cell-center must equal the total water elevation
at the edge center:

𝜂𝑖
𝜕𝑥3

𝜕𝑠3

⃒⃒⃒
𝑖
+ 𝑥3

ℬ,𝑖 = 𝜂𝑖𝑗
𝜕𝑥3

𝜕𝑠3

⃒⃒⃒
𝑖𝑗

+ 𝑥3
ℬ,𝑖𝑗, (3.15)

which yields immediately:

𝜂𝑖𝑗 =
𝜂𝑖

𝜕𝑥3

𝜕𝑠3

⃒⃒⃒
𝑖
+ 𝑥3

ℬ,𝑖 − 𝑥3
ℬ,𝑖𝑗

𝜕𝑥3

𝜕𝑠3

⃒⃒⃒
𝑖𝑗

, (3.16)

where we define the values at the edge as described in Section 3.2. Then, we ensure non-negativity of water
depth by defining 𝜂*𝑖𝑗 = max {0, 𝜂𝑖𝑗}. We then have the following proposition.

Proposition 3.6. The intrinsic finite volume scheme (3.5) (i) preserves the non-negativity of 𝜂𝑖; (ii) is well-
balanced, i.e., preserves the steady-state of a lake-at-rest (Eq. (3.15)); (iii) is consistent with the continuous
ISWE model (Eq. (2.18)).

Proof. Statement (i) follows directly from the definition of 𝜂*𝑖𝑗 , which ensures 0 ≤ 𝜂*𝑖𝑗 ≤ 𝜂𝑖 and 0 ≤ 𝜂*𝑗𝑖 ≤ 𝜂𝑗 .
Property (ii) of steady-state for lake-at-rest is maintained by the consistency of the flux F𝑖𝑗 , valid by con-

struction, and the definition of the source terms at the interface.
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To prove Property (iii) we need to establish the consistency of the scheme for the general case of a nonzero
velocity, i.e., 𝑞⃗ ̸= 0. To this aim it is sufficient to prove that the left and right fluxes for edge 𝜎𝑖𝑗 , ℱ𝐿 = F𝑖𝑗 +S𝑖𝑗

and ℱ𝑅 = F𝑗𝑖 + S𝑗𝑖, respectively, satisfy the following condition [8]:

ℱ𝐿 + ℱ𝑅 = f (𝜂) ℎ + o(ℎ) , (3.17)

where f (𝜂) indicates a general vector function of the depth only, and o(·) is used as in the standard little-o
notation. Obviously, our numerical flux F𝑖𝑗 is consistent:

F𝑖𝑗 =
⟨︀
𝐹 (U*) , 𝜈𝑖𝑗

⟩︀
𝒢

=
⟨︀
𝐹 (U*) ,−𝜈𝑗𝑖

⟩︀
𝒢

= −F𝑗𝑖.

It remains to show the consistency for the edge source terms, that are nonzero only for the two momentum
conservation equations. Recall that, due to the assumption of regularity of the bottom surface 𝒮ℬ, Taylor
expansions for functions living on Γ are well defined (see [16]). Moreover, for a general surface vector v written
in physical coordinates and a scalar function 𝑓 we can write ⟨∇𝒢 𝑓,v⟩𝒢 = ⟨∇ 𝑓,v⟩. Hence we have:

𝑥3
ℬ,𝑖𝑗 = 𝑥3

ℬ,𝑖 +∇𝑥3
ℬ,𝑖 · (s𝑖𝑗 − s𝑖) + o(ℎ) ,

𝜕𝑥3

𝜕𝑠3

⃒⃒⃒
𝑖𝑗

=
𝜕𝑥3

𝜕𝑠3

⃒⃒⃒
𝑖
+∇

(︂
𝜕𝑥3

𝜕𝑠3

⃒⃒⃒
𝑖

)︂
· (s𝑖𝑗 − s𝑖) + o(ℎ) ,

𝜂𝑖𝑗 = 𝜂𝑖 +∇ 𝜂𝑖 · (s𝑖𝑗 − s𝑖) + o(ℎ) ,

where s𝑖𝑗, s𝑖 are the LCS coordinates of M𝜎𝑖𝑗 and M𝑇𝑖 , respectively, and we have used the fact that |s𝑖𝑗 − s𝑖| =
𝒪(ℎ). Analogously, from equation (3.16), we can write:

𝜂*𝑖𝑗
𝜕𝑥3

𝜕𝑠3

⃒⃒⃒*
𝑖𝑗

= 𝜂𝑖
𝜕𝑥3

𝜕𝑠3

⃒⃒⃒
𝑖
+ 𝑥3

ℬ,𝑖 − 𝑥3
ℬ,𝑖𝑗 = 𝜂𝑖

𝜕𝑥3

𝜕𝑠3

⃒⃒⃒
𝑖
+∇𝑥3

ℬ,𝑖 · (s𝑖𝑗 − s𝑖) + o(ℎ) .

From Corollary 3.5, applying the divergence theorem to the constant vectors [1, 0] and [0, 1] we obtain:

0 =
∫︁

𝜕𝑇𝑖

𝜈 d𝜎 =
3∑︁

𝑗=1

ℓℎ,𝑖𝑗𝜈𝑖𝑗 +𝒪
(︀
ℎ2
)︀
.

Thus, we add to the edge-evaluated source a term that, when summed over all the cell edges, gives a 𝒪
(︀
ℎ2
)︀

contribution:

S𝑞
𝑖𝑗 =

⟨
1
2
𝑔
(︀
𝜂*𝑖𝑗
)︀2 𝜕𝑥3

𝜕𝑠3

⃒⃒⃒*
𝑖𝑗
𝒢−1

𝑠𝑤 , 𝜈𝑖𝑗

⟩
𝒢

−
⟨

1
2
𝑔𝜂2

𝑖

𝜕𝑥3

𝜕𝑠3

⃒⃒⃒
𝑖
𝒢−1

𝑠𝑤 , 𝜈𝑖𝑗

⟩
𝒢

+𝒪
(︀
ℎ2
)︀
.

Then we can write:

S𝑞
𝑖𝑗 + S𝑞

𝑗𝑖 =
⟨

1
2
𝑔

[︂(︀
𝜂*𝑖𝑗
)︀2 𝜕𝑥3

𝜕𝑠3

⃒⃒⃒*
𝑖𝑗
− 𝜂2

𝑖

𝜕𝑥3

𝜕𝑠3

⃒⃒⃒
𝑖

]︂
𝒢−1

𝑠𝑤 , 𝜈𝑖𝑗

⟩
𝒢

+
⟨

1
2
𝑔

[︂(︀
𝜂*𝑗𝑖

)︀2 𝜕𝑥3

𝜕𝑠3

⃒⃒⃒*
𝑗𝑖
− 𝜂2

𝑗

𝜕𝑥3

𝜕𝑠3

⃒⃒⃒
𝑗

]︂
𝒢−1

𝑠𝑤 , 𝜈𝑗𝑖

⟩
𝒢

+𝒪
(︀
ℎ2
)︀

=
⟨

1
2
𝑔

[︂(︀
𝜂*𝑖𝑗
)︀2 𝜕𝑥3

𝜕𝑠3

⃒⃒⃒*
𝑖𝑗
− 𝜂2

𝑖

𝜕𝑥3

𝜕𝑠3

⃒⃒⃒
𝑖
−
(︀
𝜂*𝑗𝑖

)︀2 𝜕𝑥3

𝜕𝑠3

⃒⃒⃒*
𝑗𝑖

+ 𝜂2
𝑗

𝜕𝑥3

𝜕𝑠3

⃒⃒⃒
𝑗

]︂
𝒢−1

𝑠𝑤 , 𝜈𝑖𝑗

⟩
𝒢

+𝒪
(︀
ℎ2
)︀
. (3.18)
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Substituting the Taylor expansions written above, the term within the square brackets becomes:[︂
𝜂*𝑖𝑗

(︂
𝜂𝑖

𝜕𝑥3

𝜕𝑠3

⃒⃒⃒
𝑖
+∇𝑥3

ℬ,𝑖 · (s𝑖𝑗 − s𝑖)
)︂
− 𝜂2

𝑖

𝜕𝑥3

𝜕𝑠3

⃒⃒⃒
𝑖

]︂
−
[︂
𝜂*𝑗𝑖

(︂
𝜂𝑗

𝜕𝑥3

𝜕𝑠3

⃒⃒⃒
𝑗

+∇𝑥3
ℬ,𝑗 · (s𝑗𝑖 − s𝑗)

)︂
− 𝜂2

𝑗

𝜕𝑥3

𝜕𝑠3

⃒⃒⃒
𝑗

]︂
+𝒪

(︀
ℎ2
)︀

= (𝜂𝑖 +∇ 𝜂𝑖 · (s𝑖𝑗 − s𝑖))
(︂

𝜂𝑖
𝜕𝑥3

𝜕𝑠3

⃒⃒⃒
𝑖
+∇𝑥3

ℬ,𝑖 · (s𝑖𝑗 − s𝑖)
)︂
− 𝜂2

𝑖

𝜕𝑥3

𝜕𝑠3

⃒⃒⃒
𝑖

− (𝜂𝑗 +∇ 𝜂𝑗 · (s𝑗𝑖 − s𝑗))
(︂

𝜂𝑗
𝜕𝑥3

𝜕𝑠3

⃒⃒⃒
𝑗

+∇𝑥3
ℬ,𝑗 · (s𝑗𝑖 − s𝑗)

)︂
+ 𝜂2

𝑗

𝜕𝑥3

𝜕𝑠3

⃒⃒⃒
𝑗

+𝒪
(︀
ℎ2
)︀

=
(︂

𝜂𝑖∇𝑥3
ℬ,𝑖 + 𝜂𝑖

𝜕𝑥3

𝜕𝑠3

⃒⃒⃒
𝑖
∇ 𝜂𝑖

)︂
· (s𝑖𝑗 − s𝑖)−

(︂
𝜂𝑗 ∇𝑥3

ℬ,𝑗 + 𝜂𝑗
𝜕𝑥3

𝜕𝑠3

⃒⃒⃒
𝑗
∇ 𝜂𝑗

)︂
· (s𝑗𝑖 − s𝑗)

+∇ 𝜂𝑖 · (s𝑖𝑗 − s𝑖)∇𝑥3
ℬ,𝑖 · (s𝑖𝑗 − s𝑖)−∇ 𝜂𝑗 · (s𝑗𝑖 − s𝑗)∇𝑥3

ℬ,𝑗 · (s𝑗𝑖 − s𝑗) +𝒪
(︀
ℎ2
)︀
,

which, once inserted in equation (3.18), proves equation (3.17). �

3.4. Boundary conditions

The implementation of boundary conditions in our FV is obtained by specifying the appropriate edge value
to the Riemann solver. In practice, on a boundary edge 𝜎 we define an outer Uout

𝜎 and an inner Uin
𝜎 state that

form, depending on the direction of the local edge normal 𝜈M𝜎, the left and right states for the edge Riemann
solver. The boundary value Uout

𝜎 is assumed to be given directly with respect of the reference system in the
tangent plane 𝑇M𝜎Γ, while internal values Uin

𝜎 are defined on edge 𝜎 by parallel transport (3.12). In practice,
following [36], we implemented two types of boundary conditions: transmissive boundaries and solid reflective
boundaries. Transmissive boundaries are given by:

𝜂out = 𝜂in, qout = qin,

while, solid reflective boundaries are imposed by setting:

𝜂out = 𝜂in, qout = −qin,

where 𝜂in,qin are the state values in the internal cell. Other more complex types of boundary conditions, such
those presented in [35], require adaptation to our setting and are not considered here.

4. Numerical results

Our numerical tests are designed to experimentally verify the applicability of the developed scheme to the
simulation of the SWE on surfaces. Specifically, we want to test selected properties of the obtained numerical
solution showing the robustness of the proposed approach. To this aim, we first show convergence of the dis-
cretization of the geometric quantities on smooth surfaces, then look at experimental convergence on full scale
realistic tests.

The design of the test cases needs to be aware of the assumption underlying our continuous formulation and
the discretization approach. All the test cases simulate a gravity-driven fluid in a dam-break setting, without
any stress tensor. The initial conditions are defined to initiate a dam-break phenomenon, with water depth
in any case small enough to exclude the issue of the intersection of the local normals so that the coordinate
transformation is always a diffeomorphism. Different initial conditions on water depth are considered depending
on the shape of the bottom surface, while we always consider zero initial velocities. No-flow boundary conditions
are imposed everywhere except at the outlet boundary, where a free outflow is enforced. The value of the time
step ∆𝑡 is calculated so that CFL ≈ 0.1. We choose a triangulation of the domain that is aligned with three
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Figure 3. Spatial distribution of the metric coefficients ℎ(1) for the hyperboloid-central-bump
(left) and of ℎ(𝑖), 𝑖 = 1, 2, for the Fully 3D surface (center and right).

straight cross-sections uniformly distributed across the main flow directions that are used to evaluate streamflows
(i.e., discharge vs. time).

Since no analytical solution is available for the case of variable bottom geometry if not for simple cases (i.e.,
planar free surface [15]), we investigate numerical stability and convergence by looking at errors calculated as
differences with a fine-grid solution, assumed as reference solution. We look at 𝐿1- and 𝐿2-error norms and
calculate the experimental order of convergence.

For all the bottom surfaces 𝒮ℬ, we use a global parametrization 𝑥3 = ℬ (𝑥1, 𝑥2), with ℬ a sufficiently smooth
height function, whereby we start from a regular triangulation of a rectangular subset 𝑈 ⊂ R2 and move the
nodes vertically on Γ. In all cases, we assume that all relevant quantities of the bottom surface are known or can
be approximated at the nodes of the triangulation, and use interpolation to define needed quantities at other
points, as described in the previous section. All the dimensional quantities are expressed in SI units.

We first consider a simple one-dimensional domain with simple one-dimensional curvature. Let 𝑈 be the
subset [0, 10] × [0, 1] ⊂ R2 in a global reference frame, we use a height function that parameterizes a parabola
and as given by:

ℬ (𝑥1, 𝑥2) =
1
25

(𝑥1 − 10)2 .

This case aims at verifying the effect of the curvatures in a simple one-dimensional flow, with metric coefficients
that are different from one and vary along 𝑥1.

Then, we consider a centrally symmetric surface starting from a subset 𝑈 = [−3, 3] × [−3, 3] ⊂ R2 and a
height function given by:

ℬ (𝑥1, 𝑥2) = −4
5

√︁
(𝑥1)2 + (𝑥2)2 + 1. (4.1)

This test case is a complete three-dimensional benchmark. Figure 3 (left), shows the geometry of the bot-
tom surface, named for simplicity hyperboloid-central-bump (HCB), and the spatial distribution of the metric
coefficient in the 𝑠1-direction, the 𝑠2-distribution being analogous and thus not shown.

Finally, we examine a more realistic fully three-dimensional bottom topography taken from [18] defined on
the subset 𝑈 = [−10, 10]× [−4, 4] ⊂ R2 with height function expressed as:

ℬ (𝑥1, 𝑥2) = − 1
500

(𝑥1)3 − 1
100

𝑥1 (𝑥2)2 .

In this case the bottom topography presents different curvature values in the two directions (Fig. 3, center and
right) and varying characteristics that influence the flow dynamics.

4.1. Convergence of the surface quantities

In this section we verify the accuracy of the proposed approximation to the needed surface quantities. Thus,
we look at the 𝐿∞- and 𝐿2-norms of the difference between the approximated values and exact values at the
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Table 1. 𝐿∞ and 𝐿2 norms of the experimental errors on cells and order of convergence of the
approximations to the bottom geometric quantities for the HCB surface.

𝑥3
ℬ

𝜕𝑥3

𝜕𝑠3

ℎℓ 𝜀𝐿∞ eocℓ 𝜀𝐿2 eocℓ 𝜀𝐿∞ eocℓ 𝜀𝐿2 eocℓ

0.668 4.38E−02 9.10E−02 1.20E−02 2.43E−02
0.334 1.17E−02 1.906 2.29E−02 1.989 3.72E−03 1.691 6.22E−03 1.961
0.167 3.05E−03 1.932 5.73E−03 1.996 9.71E−04 1.936 1.57E−03 1.989
0.0834 7.81E−04 1.965 1.43E−03 1.999 2.45E−04 1.987 3.92E−04 1.997
0.0417 1.97E−04 1.984 3.58E−04 2.000 6.10E−05 2.003 9.80E−05 1.999
0.0208 4.96E−05 1.993 8.96E−05 2.000 1.53E−05 2.000 2.45E−05 2.000

𝜕𝑥3

𝜕𝑠1
𝜕

𝜕𝑠1

(︁
𝜕𝑥3

𝜕𝑠3

)︁

0.668 2.68E−02 4.00E−02 6.07E−02 4.29E−02
0.334 7.35E−03 1.862 1.02E−02 1.965 1.82E−02 1.735 1.08E−03 1.981
0.167 1.93E−03 1.930 2.57E−03 1.989 5.11E−03 1.833 2.78E−03 1.964
0.0834 4.88E−04 1.983 6.44E−04 1.997 1.29E−03 1.983 6.99E−04 1.989
0.0417 1.23E−04 1.986 1.61E−04 1.999 3.27E−04 1.984 1.75E−04 1.997
0.0208 3.09E−05 1.994 4.03E−05 2.000 8.18E−05 1.997 4.38E−05 1.999

Figure 4. Parabola case: evolution of the gravity wave, shown both as color codes and depth
elevation, the latter with a vertical magnification factor of 2.0.

gravity centers of cells and edges, respectively. Given the errors 𝜀 (ℎℓ) and 𝜀 (ℎℓ+1) at grid levels ℓ and ℓ + 1,
respectively, we calculate the experimental order of convergence eocℓ. In particular, we look at the approximation
errors to some of the geometric information that enter the SW system as approximated in the FV approach,
namely bottom elevation 𝑥3

ℬ, tangent vectors 𝜕𝑥3

𝜕𝑠3 and 𝜕𝑥3

𝜕𝑠1 , and their derivative 𝜕
𝜕𝑠1

(︁
𝜕𝑥3

𝜕𝑠3

)︁
. We look at these

statistics for the HCB surface shown in Figure 3. The numerical results are shown in Table 1 and invariably
show second order of convergence both on cell centers and edge midpoints, in agreement with the theoretical
results described in the previous section.

4.2. Test case 1: parabola case

The parabola test case considers a simple one-dimensional flow where the effects of curvature in the model can
be verified. We run our simulations on a grid with average mesh parameter ℎ = 0.26 m, giving a total of 588 FV
cells. We simulate the breaking of a dam located at 𝑥1 = 2.0 m, with initially zero velocity everywhere and water
depth of 0.5 m upstream and 0.2 m downstream the dam. We use the HLL Riemann solver, but no differences
are noted with respect to the HLLC RS. Figure 4 shows the calculated distribution of the water depth 𝜂 at times
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Figure 5. Parabola case. Streamflows (m3/s) at the three sections.

Table 2. Parabola case: experimental convergence rates of 𝐿1 and 𝐿2 cell-based error norms.

𝜂
⃦⃦
⃦𝜂𝑈⃗
⃦⃦
⃦

2

ℎℓ 𝐸𝐿1 eocℓ 𝐸𝐿2 eocℓ 𝐸𝐿1 eocℓ 𝐸𝐿2 eocℓ

0.494 4.14E−01 2.04E−01 1.71E−00 9.49E−01
0.248 2.58E−01 0.69 1.42E−01 0.52 1.02E−00 0.76 6.50E−01 0.55
0.124 1.47E−01 0.81 9.29E−02 0.62 5.92E−01 0.78 4.36E−01 0.57
0.062 7.58E−02 0.96 5.50E−02 0.76 3.11E−01 0.93 2.68E−01 0.70
0.032 3.02E−02 1.32 2.51E−02 1.13 1.27E−01 1.30 1.26E−01 1.09

𝑡 = 0.00 s, 0.50 s, 1.00 s and 1.50 s. The progress of the dam-break wave towards the outlet is characterized by
a variable speed of propagation. The downwind shock initially smoothed by the numerical viscosity introduced
by the 1st order solver is sharpened downstream by curvature effects, as the decreasing slope is decelerating
the wave front. Also the upstream wave seems to sharpen, as evidenced by a shorter wave length at the end of
the simulation. The results display some oscillations, in particular at the tail of the downstream wave, which
remain always bounded and do not seem to interfere with the trailing wave. We attribute these oscillations to
our treatment of the non-autonomous flux function, since they are not present in planar cases with a spatially
constant metric. Figure 5 represents the time behavior of the simulated discharge at three channel cross sections
located at 𝑥1 = 2.5 m, 5.0 m and 7.5 m. Mass balance calculated a posteriori is exactly satisfied up to quadrature
error.

We carried out a convergence test by using a mesh sequence starting from a coarse level characterized by
ℎ0 = 0.49 m and 154 FV surface cells and composed by five mesh levels built by uniform refinement. Table 2
reports the 𝐿1 and 𝐿2-norms of the errors for the water depth and the velocity magnitude at time 𝑡 = 0.20 s.
We assume the numerical solution calculated on the finest grid (ℓ = 5, average mesh parameter ℎ5 ≈ 0.016 m)
is the reference exact solution. First order convergence rates are attained by the 𝐿1, 𝐿2 error norms for both
water depth and velocity.
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Figure 6. Parabola case: same as Figure 4 with active bottom friction.

We also performed a simulation where bottom friction is included by means of standard Manning’s equation:

fℬ
𝜌

=
𝑔𝑛2𝑈⃗

⃒⃒⃒
𝑈⃗
⃒⃒⃒
𝒢

𝜂1/3
,

where the Manning coefficient 𝑛 is equal to 0.09 s/m1/3. This friction term is incorporated into the FV code by
means of a time-splitting approach. The results shown in Figure 6 clearly display a slower wave propagating
downwards.

4.3. Test case 2: hyperboloid-central-bump

The following test case that presents an “almost” centrally symmetric domain is designed to verify the ability
of the FV scheme to maintain symmetry on an unstructured grid. The square subset 𝑈 = [−3, 3]×[−3, 3] ⊂ R2 is
discretized by a Delaunay triangulation with average mesh parameter ℎ = 0.34 m, generating a total of 1238 FV
surface cells. The nodal values are then raised using equation (4.1). The initial conditions outline a central area
of radius 0.5 m with upstream water depth of 2.0 m and downstream water depth of 1.0 m, leading to an initially
symmetric gravity wave. Outflow conditions are imposed on all boundaries. We use again the HLL solver.

Figure 7 shows the numerically evaluated evolution of the initial wave in terms of water depth 𝜂 at times
𝑡 = 0.0 s, 0.20 s, 0.40 s and 0.60 s. The initial wave moves downward with radial velocity vectors towards the
outlet. The dynamics of the flow is such that the downstream portion of the initial dam-break wave accelerates
faster than the upstream region because of the larger bottom slope. Some oscillations are created by the Riemann
solver at the tail of the downstream wave, but these remain bounded and do not interfere with the trailing
wave. As for the parabola case, we attribute these oscillations to our treatment of the non-autonomous fluxes.
Nonetheless, the numerical results shows a rather symmetric wave pattern, demonstrating the robustness of the
chosen numerical approach. This is further evidenced in Figure 8 (left), where the velocity vectors at 𝑡 = 0.20 s
are shown. The radial pattern of the direction of the fluid motion is maintained everywhere in the domain and at
different times, showing again that the FV scheme well captures the essence of the gravity flow. The streamflows
at the three different sections, located at a radial distance from the center of 1.0 m, 1.75 m and 2.5 m are shown
in Figure 8 (right).

For the convergence test we start from a coarse grid with average mesh parameter ℎ0 = 0.56 m and 424 FV
surface cells. The mesh sequence is obtained by uniform refinements with a total of 6 mesh levels. The reference
solution is obtained at level ℓ = 5 (average mesh parameter ℎ = 0.018 m). Table 3 presents 𝐿1 and 𝐿2 error
norms and related experimental orders of convergence for the solutions at time 𝑡 = 0.08 s. Consistently with the
previous test cases, the expected first order convergence is achieved in both norms.

4.4. Test case 3: fully 3D surface

The final test case considers a bottom surface with variable curvature. The discretization of 𝑈 is obtained
again with a Delaunay triangulation with average mesh parameter ℎ = 0.62 m, in this case generating a total of
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Figure 7. HCB: water depth at initial time (𝑡 = 0.0 s), and at 𝑡 = 0.20 s, 0.40 s, 0.60 s.

Figure 8. HCB: velocity vectors (m/s) at 𝑡 = 0.20 s and streamflows (m3/s) at the three
preselected sections.
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Table 3. Experimental errors on cells and order of convergence for the HCB case in the 𝐿1, 𝐿2

norm.

𝜂
⃦⃦
⃦𝜂𝑈⃗
⃦⃦
⃦

2

ℎℓ 𝐸𝐿1 eocℓ 𝐸𝐿2 eocℓ 𝐸𝐿1 eocℓ 𝐸𝐿2 eocℓ

0.560 1.16E+00 3.05E−01 5.42E+00 1.32E+00
0.281 7.20E−01 0.69 2.02E−01 0.60 2.98E+00 0.87 7.56E−01 0.81
0.140 4.03E−01 0.84 1.27E−01 0.67 1.49E+00 0.99 4.44E−01 0.77
0.070 2.13E−01 0.92 7.32E−02 0.79 8.61E−01 0.80 3.16E−01 0.49
0.035 9.54E−02 1.16 3.66E−02 1.00 3.22E−01 1.42 1.32E−01 1.26

Figure 9. Fully 3D surface: water depth evolution of initial wave, shown both as color codes
and depth elevation at initial time (𝑡 = 0.0 s) and at 𝑡 = 0.80 s, 1.60 s, 2.40 s.

1656 FV surface cells. The initial conditions consider a uniform water depth of 2.0 m upstream of 𝑥1 = −8.5 m,
and 1.0 m downstream. We would like to note that the choice of initial conditions of a 2.0 m deep reservoir avoids
the singularities of the coordinate transformation by ensuring that the water depth is sufficiently shallow, so
that the local normals to the bottom surface do not intersect within the fluid layer. No flow conditions are
imposed in all boundaries, with an outlet located at 𝑥1 = 10 m. The approximate HLL Riemann solver is used.

Figure 9 describes the numerically evaluated water depth 𝜂 at times 𝑡 = 0.0 s, 0.80 s, 1.60 s and 2.40 s. The
evolution of the profile is similar to what reported in [18]. Water accumulates within the central portion of the
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Figure 10. Fully 3D surface. Streamflows (m3/s) at the three control sections.

Table 4. Experimental errors on cells and order of convergence for the fully 3D surface case
in the 𝐿1, 𝐿2 norm.

𝜂
⃦⃦
⃦𝜂𝑈⃗
⃦⃦
⃦

2

ℎℓ 𝐸𝐿1 eocℓ 𝐸𝐿2 eocℓ 𝐸𝐿1 eocℓ 𝐸𝐿2 eocℓ

1.113 6.95E+00 8.58E−01 3.14E+01 4.19E+00
0.564 4.15E+00 0.76 5.48E−01 0.66 1.74E+01 0.86 2.54E+00 0.74
0.284 2.36E+00 0.82 3.47E−01 0.66 9.30E+00 0.92 1.53E+00 0.73
0.142 1.22E+00 0.96 2.03E−01 0.78 4.55E+00 1.04 8.77E−01 0.81
0.071 4.97E−01 1.29 9.32E−01 1.13 1.76E+00 1.37 3.99E−01 1.14

first bowl and then disperses towards the lateral boundaries in the concave region, until it finds the impermeable
lateral walls. At the end water exits from the downstream edge, where the outlet is located. Figure 10 shows
streamflows at the three different sections located at 𝑥1 = −5.0 m, 0.0 m and 5.0 m. Again, the results compare
well with those obtained by [18].

The mesh sequence used to test convergence of the FV scheme starts with coarse grid with average mesh
parameter ℎ0 = 1.11 m, for a total of a 480 FV surface cells, uniformly refined 5 times to yield 6 meshes. The
finest, used for the reference solution, is characterized by ℎ5 = 0.036 m and 491 520 FV surface triangles. The
initial conditions defined on the coarsest mesh ℓ = 0 are projected on each mesh level using the local normals
taking care that the initial water volume and the location of the dam are consistently the same across the entire
mesh sequence.

Table 4 reports the 𝐿1 and 𝐿2-error norms of the depth and of the velocity magnitude at 𝑡 = 0.20 s together
with the experimental order of convergence. The same behavior as for the previous test is observed, with optimal
rates being reached by the water depth and the velocity field.
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5. Conclusions

We have presented a novel formulation of the intrinsic shallow water equations with variable topography. The
SW equations are obtained by integrating the Navier–Stokes equations along local normals defined on a local
reference system anchored on the bottom surface. The resulting reduced model is written in a form intrinsic
to the bottom geometry. The formulation is a second order approximation of the NS equation, is rotational
invariant, maintains the lake-at-rest solution, and admits a conserved energy in case of no stresses.

The main advantage of the proposed intrinsic balance system of hyperbolic equations is that source terms
contain only information related to bottom slope and curvatures, and not to the velocity field. The geomet-
rically intrinsic description of the equations, and thus the existence of an intrinsic diverge theorem, allows a
direct derivation of a Godunov finite volume discretization defined on a bottom triangulation. The geometric
information of the bed surface is assumed to be available only at the triangulation nodes. Careful interpolation
together with a discretized version of parallel transport is used to define approximate tangent planes on the
triangle edges and barycenters. As typical of the Godunov approach, flux evaluation proceeds by approximately
solving a Riemann problem on the edges. Appropriately modified midpoint quadrature rules are used to evaluate
integrals over curvilinear edges and triangles.

The scheme is tested on several realistic examples showing that optimal order of convergence is obtained
for smooth solutions. Mass conservation properties are verified by looking at streamflows across several control
sections. The results show that the approach is accurate and robust and can be effectively used to solve hyperbolic
systems on general bottom topographies.

Acknowledgements. This work was supported in part by the UniPD-SID-2016 project Approximation and discretization
of PDEs on Manifolds for Environmental Modeling and the EU-H2020 ERA-PLANET Project GEOEssential “Essential
Variables workflows for resource efficiency and environmental management” (ERA-PLANET no. 689443). All the three-
dimensional figures were prepared using the VisIt High Performance visualization package [13].
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