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ON A CLASS OF SPLINES FREE OF GIBBS PHENOMENON

Sergio Amat1, Juan Ruiz1,*, Chi-Wang Shu2 and Juan Carlos Trillo1

Abstract. When interpolating data with certain regularity, spline functions are useful. They are
defined as piecewise polynomials that satisfy certain regularity conditions at the joints. In the literature
about splines it is possible to find several references that study the apparition of Gibbs phenomenon
close to jump discontinuities in the results obtained by spline interpolation. This work is devoted to the
construction and analysis of a new nonlinear technique that allows to improve the accuracy of splines
near jump discontinuities eliminating the Gibbs phenomenon. The adaption is easily attained through
a nonlinear modification of the right hand side of the system of equations of the spline, that contains
divided differences. The modification is based on the use of a new limiter specifically designed to attain
adaption close to jumps in the function. The new limiter can be seen as a nonlinear weighted mean
that has better adaption properties than the linear weighted mean. We will prove that the nonlinear
modification introduced in the spline keeps the maximum theoretical accuracy in all the domain except
at the intervals that contain a jump discontinuity, where Gibbs oscillations are eliminated. Diffusion
is introduced, but this is fine if the discontinuity appears due to a discretization of a high gradient
with not enough accuracy. The new technique is introduced for cubic splines, but the theory presented
allows to generalize the results very easily to splines of any order. The experiments presented satisfy
the theoretical aspects analyzed in the paper.
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1. Introduction

A spline can be defined as any function constructed from one or more polynomial pieces that are joined
together satisfying given differentiability requirements. These functions are widely used in the industry for
computational aided geometric design where splines are used to represent geometric entities. Some applications
of splines can be found in [1,13,18,20,21,23,31] and the references therein. When working with splines without
multiple knots, it happens that in the presence of discontinuities in the function or its derivatives, numerical
artifacts always come into scene. Also, in industrial applications where the modelization is done through the use
of discretization grids, numerical discontinuities appear close to high gradients when the grid is not fine enough.
In these cases it is usually needed an ad hoc local refinement of the grid in order to avoid numerical artifacts.
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Splines have also been widely used for function approximation, where the same kind of problems appear when
dealing with discontinuous functions.

In the literature about interpolation and approximation, the classical approach consists in using linear meth-
ods, see for example Chapter 1 of [21] or [31] and the references therein. Automatic adaption to data with low
regularity is offered by nonlinear approximation and wavelet methods, see [22]. Other approaches, following
Harten’s path of constructing nonlinear reconstruction operators, Amat et al. [6,8,9,11,12] introduce a nonlin-
ear processing of data that attains adaption to discontinuities, although none of this papers deals directly with
the theoretical elimination of Gibbs effects. In [26, 27], the author proposes nonlinear multiresolution methods
for data compression and interpolation. In [28, 29], the authors apply nonlinear shock capturing schemes to
solve PDEs that arise from conservation laws. In [2, 4, 8, 15–17], the authors adapt these methods to function
approximation and image processing using multiresolution schemes. It seems that, when working with splines,
the more accepted approach is to directly construct a piecewise polynomial function of the chosen order using
the available data, not taking into account the possible discontinuities that can be contained in these data. This
strategy directly leads to the apparition of Gibbs effect [24, 30, 39] in the reconstructed function. The solution
that we propose to solve some of these problems is to introduce a nonlinear treatment of the right hand side of
the system of equations that determines the spline. The modification is designed to attain adaption automat-
ically when discontinuities in the function occur. Other approaches to eliminate Gibbs phenomenon, although
without automatic adaption to discontinuities, have been addressed before in previous articles [32,37].

The problem that arises from using linear techniques is related to the accuracy of the approximation near the
discontinuities: the order of approximation is lost due to Gibbs effect and diffusion. Any stencil that touches the
discontinuity will be affected and the approximation will be inaccurate. Because of this fact, the increasing of
the length of the stencil will not improve the approximation accuracy and will result in larger regions affected
around discontinuities. A solution for this problem is to choose stencils that do not cross discontinuities. This is
the key idea beneath ENO (Essentially Non Oscillatory) interpolation, first introduced by Harten et al. [28,29]
in the context of conservation laws. Using ENO strategy, the regions affected by discontinuities are reduced to
an interval that contains the discontinuity. This is possible because ENO strategy selects among several, the
stencil that is not affected by the discontinuity. The interested reader can refer to [4,5,16,19,28,29,33–36] and
the references therein in order to obtain more information about ENO. Unfortuntatelly, this strategy is not
designed to work with splines. In [14], the authors try to adapt splines detecting the position of discontinuities
and breaking the spline in several pieces. In this article we will use a different strategy: to introduce a nonlinear
modification in the spline such that adaption is attained automatically without using any explicit detection
of discontinuities. The motivation of this strategy is that it is imposible to know the exact position of jump
discontinuities from the sampling of a function, as the exact position of this kind of discontinuities is lost during
the process of discretization. Thus, it is convenient to design strategies to attain adaption to discontinuities even
when the exact position of the discontinuity can not be known. As mentioned before, in [14] the authors propose
a strategy to adapt splines to the presence of corner singularities in the point values using a detection technique.
The mentioned strategy can not be used for jump discontinuities in the point values, as it is not possible to
localize the position of the discontinuity. It can not be used neither with numerical discontinuities, i.e. when
the sampling rate is not high enough to capture high gradients. In these cases the resultant discontinuity is
considered numeric, as it is produced by the discretization process, and the reconstruction should recover the
diffusion that was originally present in the continuous function, but avoiding Gibbs oscillations. If the function
is contaminated with noise, the technique presented in [14] losses its effectiveness. This is due to the fact that
noise reduces the original regularity of the data, if that data has been obtained from the sampling of a function
with certain regularity. The technique in [14] is precisely based on the regularity of the data, as it uses differences
or divided differences to detect the presence of discontinuities. If noise is present, the new technique presented
in this article can be an option to attain adaption to discontinuities.

Summarizing, in this article it is our aim to design a new class of nonlinear splines adapted to the presence
of discontinuities in the function, such that Gibbs effect is eliminated in the reconstructed function close to
this kind of discontinuities. We will see that the problem is not trivial and that, in order to solve it, many
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considerations must be taken into account. The objective is to attain adaption close to jump discontinuities
while maintaining the order of accuracy reached by cubic splines at smooth zones. The core of the new method
will be based on the design of a nonlinear weighted mean with suitable adaption properties close to jump
discontinuities. As far as we know, it is the first time that this kind of mean appears in the literature. It is based
on a generalization for non uniform grids of the already existing limiters introduced in [33] and called p-power
means. The new method is robust even in the presence of noise and the results obtained numerically confirm
the theoretical aspects analyzed in the paper.

The present work is organized as follows: Section 2 describes the discretization that we will use, explains how
classical splines are obtained and how to adapt them to the presence of discontinuities. Section 3 introduces
and analyzes the properties of a new nonlinear weighted mean that is used to construct a new class of splines
adapted to the presence of jump discontinuities. Section 4 studies the approximation properties of the new class
of splines close to discontinuities. Section 5 presents some numerical experiments where it is shown how the new
nonlinear splines perform close to jump discontinuities with uniform and non uniform grid spacing. Section 6
presents some conclusions. Finally, Appendix A analyzes the accuracy of cubic splines close to discontinuities
and Appendix B gives a bound for the overshoot of cubic splines close to the jump of a step function.

2. Classical cubic splines

In the literature, many references can be found about splines, for example [21] treats the field from a practical
point of view and presents an extensive bibliography for the interested reader. In this work, we will try to build
a sequence of polynomials of degree three in order to obtain a piecewise polynomial function that is 𝐶2: a cubic
spline. Functions with 𝐶2 regularity are the most used in CAD (computational aided design) and industrial
design, as they present suitable properties for aerodynamics and hydrodynamics.

In this section we will introduce the classical cubic splines in order to obtain a self contained paper. From this
construction we put some emphasis in the parts that allow to obtain a nonlinear spline adapted to discontinuities.

First of all, let us describe the discretization of the data that we will use along the article. Let’s consider the
set of piecewise continuous functions in the interval [𝑎, 𝑏], the space of finite sequences 𝑉 of length 𝑁 = 𝑚 + 1
and let 𝑋 be a uniform or non-uniform partition of the interval [𝑎, 𝑏] in 𝑚 subintervals,

𝑋 = {𝑥𝑖}𝑚
𝑖=0, 𝑥0 = 𝑎, ℎ𝑖 = 𝑥𝑖 − 𝑥𝑖−1.

Let’s consider now the point-values discretization, that we define as,

𝑦𝑖 = 𝑦 (𝑥𝑖) , 𝑖 = 0, . . . ,𝑚.

In order to construct the spline 𝑔(𝑥) in the interval [𝑎, 𝑏], we will start from 𝑚 + 1 pairs of values (𝑥𝑖, 𝑦𝑖), 𝑖 =
0, . . . ,𝑚 and the expression of the polynomial 𝑔𝑖(𝑥) at a particular interval [𝑥𝑖, 𝑥𝑖+1], such that 𝑔(𝑥) = 𝑔𝑖(𝑥), 𝑥 ∈
[𝑥𝑖, 𝑥𝑖+1] ,

𝑔𝑖(𝑥) = 𝑎𝑖 (𝑥− 𝑥𝑖)
3 + 𝑏𝑖 (𝑥− 𝑥𝑖)

2 + 𝑐𝑖 (𝑥− 𝑥𝑖) + 𝑑𝑖. (2.1)

According to spline theory the polynomial 𝑔𝑖(𝑥) satisfying

𝑔𝑖−1 (𝑥𝑖) = 𝑦𝑖,

𝑔′𝑖−1 (𝑥𝑖) = 𝑔′𝑖 (𝑥𝑖) ,

𝑔𝑖 (𝑥𝑖) = 𝑦𝑖,

𝑔′′𝑖−1 (𝑥𝑖) = 𝑔′′𝑖 (𝑥𝑖) . (2.2)

and

𝑔0 (𝑥0) = 𝑦0,

𝑔𝑚−1 (𝑥𝑚) = 𝑦𝑚,
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gives a cubic spline that is at least 𝐶2. Solving the previous equations, we obtain that,

𝑑𝑖 = 𝑦𝑖,

𝑐𝑖 = 𝐷𝑖,

𝑎𝑖 =
ℎ𝑖+1𝐷𝑖+1 + 𝐷𝑖ℎ𝑖+1 + 2𝑦𝑖 − 2𝑦𝑖+1

ℎ3
𝑖+1

,

𝑏𝑖 = −ℎ𝑖+1𝐷𝑖+1 + 2𝐷𝑖ℎ𝑖+1 + 3𝑦𝑖 − 3𝑦𝑖+1

ℎ2
𝑖+1

,

(2.3)

where 𝐷𝑖 stand for the first derivatives at every interior knot.
In fact it is possible to express the polynomial spline in (2.1) in terms of the Hermite basis {𝑏1, 𝑏2, 𝑏3, 𝑏4}

such that

𝑏1 (𝑥𝑖) = 1, 𝑏1 (𝑥𝑖+1) = 0, 𝑏′1 (𝑥𝑖) = 0, 𝑏′1 (𝑥𝑖+1) = 0,

𝑏2 (𝑥𝑖) = 0, 𝑏2 (𝑥𝑖+1) = 1, 𝑏′2 (𝑥𝑖) = 0, 𝑏′2 (𝑥𝑖+1) = 0,

𝑏3 (𝑥𝑖) = 0, 𝑏3 (𝑥𝑖+1) = 0, 𝑏′3 (𝑥𝑖) = 1, 𝑏′3 (𝑥𝑖+1) = 0,

𝑏4 (𝑥𝑖) = 0, 𝑏4 (𝑥𝑖+1) = 0, 𝑏′4 (𝑥𝑖) = 0, 𝑏′4 (𝑥𝑖+1) = 1.

For the uniform case we get,

𝑔𝑖(𝑥) = (ℎ𝐷𝑖+1 + 𝐷𝑖ℎ + 2𝑦𝑖 − 2𝑦𝑖+1) 𝑠3 − (ℎ𝐷𝑖+1 + 2𝐷𝑖ℎ + 3𝑦𝑖 − 3𝑦𝑖+1) 𝑠2 + 𝐷𝑖ℎ𝑠 + 𝑦𝑖,

=
(︀
1− 𝑠2(3− 2𝑠)

)︀
𝑦𝑖 + 𝑠2(3− 2𝑠)𝑦𝑖+1 +

(︀
𝑠3 − 2𝑠2 + 𝑠

)︀
ℎ𝐷𝑖 +

(︀
𝑠3 − 𝑠2

)︀
ℎ𝐷𝑖+1

= 𝑏1(𝑠)𝑦𝑖 + 𝑏2(𝑠)𝑦𝑖+1 + 𝑏3(𝑠)ℎ𝐷𝑖 + 𝑏4(𝑠)ℎ𝐷𝑖+1,

(2.4)

for 𝑠 = 𝑥−𝑥𝑖

ℎ ∈ [0, 1] .
Now, in order to compute the 𝐷𝑖 values, we have 𝑚 − 1 conditions due to the continuity requirement in

the second derivative. Since we have to determine 𝑚 + 1 unknowns, two more conditions must be chosen for
the boundary conditions. Several options are available in the literature. Some examples are: the natural cubic
spline if we suppose that the second derivatives are equal to zero at the boundaries, the not-a-knot condition,
that imposes the condition that the first and the last interior nodes at 𝑥1 and 𝑥𝑛−1 are not knots anymore,
the complete cubic spline if we impose slope conditions at the boundaries. . . In this work we have chosen the
natural cubic spline, as we are not interested in the accuracy of the spline at the boundaries, but at points close
to the discontinuity. Any other boundary condition might have been chosen. However, it is important to have in
mind that the boundary conditions may affect the precision of the splines in the 𝑙∞ norm. The only boundary
condition that assure maximum accuracy in infinity norm are those that imply using real data, i.e. for example
true derivatives or second derivatives at the boundaries. Other conditions may imply order reduction close to
the boundaries and, necessarily, order reduction in the infinity norm.

Let’s obtain a system of equations for the 𝐷𝑖. Replacing the expression of the spline (2.1) in (2.2), we obtain,

𝐷𝑖−1

ℎ𝑖
+ 2

(︂
1
ℎ𝑖

+
1

ℎ𝑖+1

)︂
𝐷𝑖 +

𝐷𝑖+1

ℎ𝑖+1
= 3

(︂
𝑦𝑖+1 − 𝑦𝑖

ℎ2
𝑖+1

+
𝑦𝑖 − 𝑦𝑖−1

ℎ2
𝑖

)︂
·

Choosing now the natural boundary conditions, the second derivative at the beginning and the end of the spline
must be zero. From (2.1) and assuming that 𝑔′′0 (0) = 0, this condition transforms into,

2𝐷0 + 𝐷1 = 3
(︂

𝑦1 − 𝑦0

ℎ1

)︂
· (2.5)

The expression for the right boundary can be obtained from 𝑔′′𝑚−1(1) = 0, that leads to the equation,

𝐷𝑚−1 + 2𝐷𝑚 = 3
(︂

𝑦𝑚 − 𝑦𝑚−1

ℎ𝑚

)︂
· (2.6)
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Thus, we will obtain the system,⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 1 0 0 · · · 0 0
1
ℎ1

2
(︁

1
ℎ1

+ 1
ℎ2

)︁
1
ℎ2

0 · · · 0 0

0 1
ℎ2

2
(︁

1
ℎ2

+ 1
ℎ3

)︁
1
ℎ3

· · · 0 0
· · · · · · · · · · · · · · · · · · · · ·
0 0 0 0 · · · 2

(︁
1

ℎ𝑚−1
+ 1

ℎ𝑚

)︁
1

ℎ𝑚

0 0 0 0 · · · 1 2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝐷0

𝐷1

𝐷2

· · ·
𝐷𝑚−1

𝐷𝑚

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 3 ·

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝛿1

𝛿2
ℎ2

+ 𝛿1
ℎ1

𝛿3
ℎ3

+ 𝛿2
ℎ2

· · ·
𝛿𝑚

ℎ𝑚
+ 𝛿𝑚−1

ℎ𝑚−1

𝛿𝑚

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(2.7)

being 𝛿𝑖 = 𝑦𝑖−𝑦𝑖−1
ℎ𝑖

· The previous expression can be also written as,⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 1 0 0 · · · 0 0
1
ℎ1

2
(︁

1
ℎ1

+ 1
ℎ2

)︁
1
ℎ2

0 · · · 0 0

0 1
ℎ2

2
(︁

1
ℎ2

+ 1
ℎ3

)︁
1
ℎ3

· · · 0 0
· · · · · · · · · · · · · · · · · · · · ·

0 0 0 0 · · · 2
(︁

1
ℎ𝑚−1

+ 1
ℎ𝑚

)︁
1

ℎ𝑚

0 0 0 0 · · · 1 2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝐷0

𝐷1

𝐷2

· · ·
𝐷𝑚−1

𝐷𝑚

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 3 ·

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝛿1(︁
1
ℎ1

+ 1
ℎ2

)︁ 𝛿2
ℎ2

+
𝛿1
ℎ1

1
ℎ1

+ 1
ℎ2(︁

1
ℎ2

+ 1
ℎ3

)︁ 𝛿2
ℎ2

+
𝛿3
ℎ3

1
ℎ2

+ 1
ℎ3

· · ·(︁
1

ℎ𝑚−1
+ 1

ℎ𝑚

)︁ 𝛿𝑚−1
ℎ𝑚−1

+ 𝛿𝑚
ℎ𝑚

1
ℎ𝑚−1

+ 1
ℎ𝑚

𝛿𝑚

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(2.8)

where the right hand side of the system 𝐴D = f can be interpreted as a vector of weighted means of divided
differences, except at the boundaries. Indeed, these weighted means can be expressed as,

𝛼𝛿𝑖 + 𝛽𝛿𝑖−1

𝛼 + 𝛽
,

where

𝛼 =
1
ℎ𝑖

1
ℎ𝑖−1

+ 1
ℎ𝑖

, (2.9)

𝛽 =
1

ℎ𝑖−1

1
ℎ𝑖−1

+ 1
ℎ𝑖

· (2.10)
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Now, we can try to replace the expression of the weighted mean in the right hand side of (2.8) by a nonlinear
weighted mean, in order to attain adaption to jump discontinuities. Notice that the chosen nonlinear weighted
means should penalize large values of 𝛿’s associated to the presence of discontinuities. We will tackle this task
in the next section.

The matrix 𝐴 of the system 𝐴D = f in (2.8) satisfies the following result proved in [39] and that will be used
in the following sections,

Theorem 2.1. For 1 ≤ 𝑝 ≤ ∞,

||𝐴−1||𝑝 ≤ max
1≤𝑖≤𝑛−1

(︂
1
ℎ𝑖

+
1

ℎ𝑖+1

)︂−1

.

3. Construction of cubic splines adapted to discontinuities: a nonlinear
weighted mean

Now we can design a new limiter that serves our purposes,

HW𝑝(𝑥, 𝑦) =

⎧⎪⎪⎨⎪⎪⎩
𝑠𝑖𝑔𝑛(𝑥)+𝑠𝑖𝑔𝑛(𝑦)

2
𝛼𝑥+𝛽𝑦
𝛼+𝛽

(︁
1−

⃒⃒⃒
𝛽 𝑥−𝑦

𝛼𝑥+𝛽𝑦

⃒⃒⃒𝑝)︁
, |𝑦| ≥ |𝑥|, |𝑦| > 0,

𝑠𝑖𝑔𝑛(𝑥)+𝑠𝑖𝑔𝑛(𝑦)
2

𝛼𝑥+𝛽𝑦
𝛼+𝛽

(︁
1−

⃒⃒⃒
𝛼 𝑥−𝑦

𝛼𝑥+𝛽𝑦

⃒⃒⃒𝑝)︁
, |𝑥| > |𝑦|,

0, 𝑥 = 𝑦 = 0,

(3.1)

where

𝑠𝑖𝑔𝑛(𝑥) =

⎧⎨⎩1, 𝑥 > 0,
−1, 𝑥 < 0,
0, 𝑥 = 0.

The 𝑠𝑖𝑔𝑛 function is introduced with the aim of obtaining a bounded value in the case that 𝑥𝑦 < 0. As far as
we know, it is the first time that this new limiter appears in the literature. These means are a generalization of
the means introduced in [33] and reduce to them in the case of a uniform grid spacing.

The new limiter satisfies the properties presented in the following proposition. The proof is trivial and is not
included for brevity,

Proposition 3.1. For all (𝑥, 𝑦) ∈ R2, the HW𝑝(𝑥, 𝑦) mean satisfies

(1) HW𝑝(𝑥, 𝑦) = HW𝑝(𝑦, 𝑥).
(2) HW𝑝(𝑥, 𝑦) = 0, if 𝑥𝑦 ≤ 0.
(3) HW𝑝(−𝑥,−𝑦) = −HW𝑝(𝑥, 𝑦).

Now we can state the following proposition,

Proposition 3.2. The new limiter HW𝑝 verifies the following property. If 𝑥𝑦 > 0, 𝑥 = 𝑂(1), 𝑦 = 𝑂(1),
|𝑥− 𝑦| = 𝑂(ℎ), ⃒⃒⃒⃒

𝛼𝑥 + 𝛽𝑦

𝛼 + 𝛽
−HW𝑝(𝑥, 𝑦)

⃒⃒⃒⃒
= 𝑂 (ℎ𝑝) . (3.2)

Proof. Let’s suppose without loss of generality that |𝑦| ≥ |𝑥|. Then, using the definition of HW𝑝(𝑥, 𝑦) given
in (3.1), we have that

⃒⃒
⃒⃒𝛼𝑥 + 𝛽𝑦

𝛼 + 𝛽
−HW𝑝(𝑥, 𝑦)

⃒⃒
⃒⃒ =

⃒⃒
⃒⃒𝛼𝑥 + 𝛽𝑦

𝛼 + 𝛽
− 𝛼𝑥 + 𝛽𝑦

𝛼 + 𝛽

(︂
1−

⃒⃒
⃒⃒𝛽 𝑥− 𝑦

𝛼𝑥 + 𝛽𝑦

⃒⃒
⃒⃒
𝑝)︂⃒⃒
⃒⃒

=
𝛼𝑥 + 𝛽𝑦

𝛼 + 𝛽

(︂
1− 1 +

⃒⃒
⃒⃒𝛽 𝑥− 𝑦

𝛼𝑥 + 𝛽𝑦

⃒⃒
⃒⃒
𝑝)︂

=
𝛼𝑥 + 𝛽𝑦

𝛼 + 𝛽

(︂⃒⃒
⃒⃒𝛽 𝑥− 𝑦

𝛼𝑥 + 𝛽𝑦

⃒⃒
⃒⃒
𝑝)︂

=
𝛼𝑥 + 𝛽𝑦

𝛼 + 𝛽

(︃⃒⃒
⃒⃒
⃒

𝛽

𝛼 + 𝛽

𝑥− 𝑦
𝛼𝑥+𝛽𝑦

𝛼+𝛽

⃒⃒
⃒⃒
⃒

𝑝)︃

= 𝑂 (ℎ𝑝) . (3.3)

�
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Since we have introduced the new limiter in the right hand side of (2.7), then 𝑥 and 𝑦 in (3.1) are neighboring
first order divided central differences. If they are computed in a smooth region, we have that 𝑥 = 𝑂(1),
𝑦 = 𝑂(1) and that

⃒⃒⃒
𝛼

𝛼+𝛽

⃒⃒⃒
= 𝑂 (1) and

⃒⃒⃒
𝛽

𝛼+𝛽

⃒⃒⃒
= 𝑂 (1). Then,

⃒⃒⃒
𝛼

𝛼+𝛽 𝑥
⃒⃒⃒

= 𝑂 (1),
⃒⃒⃒

𝛽
𝛼+𝛽 𝑦

⃒⃒⃒
= 𝑂 (1),

⃒⃒⃒
𝛼𝑥+𝛽𝑦
𝛼+𝛽

⃒⃒⃒
= 𝑂(1)

and |𝑥− 𝑦| = 𝑂(ℎ), being ℎ = max (ℎ𝑖, ℎ𝑖+1).

Proposition 3.3. The new mean verifies the property,

|HW𝑝(𝑥, 𝑦)| ≤ 𝑝 min(|𝑥|, |𝑦|).

Proof. If 𝑥𝑦 < 0, HW𝑝(𝑥, 𝑦) = 0 ≤ 𝑝 min(|𝑥|, |𝑦|) and the property is satisfied. If 𝑥𝑦 > 0, let’s suppose again
without loss of generality that |𝑦| ≥ |𝑥|. If we denote by 𝑟 = 𝛽 𝑦−𝑥

𝛼𝑥+𝛽𝑦 , we can express the absolute value of the
new mean as,

|HW𝑝(𝑥, 𝑦)| =
⃒⃒⃒⃒
𝛼𝑥 + 𝛽𝑦

𝛼 + 𝛽

⃒⃒⃒⃒ ⃒⃒⃒⃒
1− 𝑟𝑝

1− 𝑟

⃒⃒⃒⃒
|1− 𝑟| =

⃒⃒⃒⃒
𝛼𝑥 + 𝛽𝑦

𝛼 + 𝛽

⃒⃒⃒⃒ ⃒⃒
1 + 𝑟 + 𝑟2 + · · ·+ 𝑟𝑝−1

⃒⃒
|1− 𝑟|

=
⃒⃒⃒⃒
𝛼𝑥 + 𝛽𝑦

𝛼 + 𝛽
− 𝛽

𝛼 + 𝛽
(𝑦 − 𝑥)

⃒⃒⃒⃒ ⃒⃒
1 + 𝑟 + 𝑟2 + · · ·+ 𝑟𝑝−1

⃒⃒
= |𝑥|

⃒⃒
1 + 𝑟 + 𝑟2 + · · ·+ 𝑟𝑝−1

⃒⃒
≤ 𝑝|𝑥|, (3.4)

since |𝑟| < 1. �

Proposition 3.4. If 𝑥𝑦 > 0, lim
𝑝→∞

𝑟𝑝 = 0, and

lim
𝑝→∞

HW𝑝(𝑥, 𝑦) =
𝛼𝑥 + 𝛽𝑦

𝛼 + 𝛽
·

Proof. Let us suppose that |𝑦| ≥ |𝑥|. The proof for the other case is carried out in the same way. If 𝑝 → ∞,
as 𝑟 = 𝛽

𝛼+𝛽
𝑦−𝑥

𝛼𝑥+𝛽𝑦
𝛼+𝛽

, then 𝑟𝑝 → 0 and, following the same procedure used in the previous proposition to express

HW𝑝 in terms of 𝑟, we get the proof,

lim
𝑝→∞

HW𝑝(𝑥, 𝑦) = lim
𝑝→∞

(︂
𝛼𝑥 + 𝛽𝑦

𝛼 + 𝛽

)︂
(1− 𝑟𝑝) =

𝛼𝑥 + 𝛽𝑦

𝛼 + 𝛽
· (3.5)

�

With these properties in mind, we can modify the right hand side of the system of equations in (2.7) in order
to include the new limiter with the aim of attaining adaption close to discontinuities in the function. Following
Proposition 3.2 we choose, 𝑝 = 3 in order to maintain 𝑂

(︀
ℎ3
)︀

accuracy (maximum accuracy depending on the
boundary conditions) for the 𝐷𝑖 and 𝑂

(︀
ℎ4
)︀

accuracy for the cubic spline at smooth zones. The resulting system
of equations is,

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 1 0 0 · · · 0 0

1
ℎ1

2
(︁

1
ℎ1

+ 1
ℎ2

)︁
1

ℎ2
0 · · · 0 0

0 1
ℎ2

2
(︁

1
ℎ2

+ 1
ℎ3

)︁
1

ℎ3
· · · 0 0

· · · · · · · · · · · · · · · · · · · · ·

0 0 0 0 · · · 2
(︁

1
ℎ𝑚−1

+ 1
ℎ𝑚

)︁
1

ℎ𝑚

0 0 0 0 · · · 1 2

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝐷0

𝐷1

𝐷2

· · ·

𝐷𝑚−1

𝐷𝑚

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.6)
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= 3 ·

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝛿1
(︁

1
ℎ1

+ 1
ℎ2

)︁
HW3(𝛿1, 𝛿2)

(︁
1

ℎ2
+ 1

ℎ3

)︁
HW3(𝛿2, 𝛿3)

· · ·
(︁

1
ℎ𝑚−1

+ 1
ℎ𝑚

)︁
HW3(𝛿𝑚−1, 𝛿𝑚)

𝛿𝑚

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.7)

Since we have introduced the new limiter in the right hand side of (2.7), then 𝑥 and 𝑦 in (3.1) are neighboring
first order divided central differences. If they are computed in a smooth region, we have that 𝑥 = 𝑂(1),
𝑦 = 𝑂(1) and that

⃒⃒⃒
𝛼

𝛼+𝛽

⃒⃒⃒
= 𝑂 (1) and

⃒⃒⃒
𝛽

𝛼+𝛽

⃒⃒⃒
= 𝑂 (1). Then,

⃒⃒⃒
𝛼

𝛼+𝛽 𝑥
⃒⃒⃒

= 𝑂 (1),
⃒⃒⃒

𝛽
𝛼+𝛽 𝑦

⃒⃒⃒
= 𝑂 (1),

⃒⃒⃒
𝛼𝑥+𝛽𝑦
𝛼+𝛽

⃒⃒⃒
= 𝑂(1)

and |𝑥− 𝑦| = 𝑂(ℎ), being ℎ = max (ℎ𝑖, ℎ𝑖+1). Therefore hypothesis of Proposition 3.2 are satisfied.
It is easy to see that the point value discretization described only conserves local information at the sites 𝑥𝑖.

Although it is possible to localize the position of corner discontinuities, there is no hope in localizing the exact
position of jumps, as they are lost in the discretization process. Although, the new method presented does not
depend on the position of the discontinuity.

Remark 3.5. In the following proofs concerning the accuracy of the proposed reconstruction we will be using
the term “full accuracy” meaning fourth order of accuracy for boundary conditions which correspond to true
values of the underlying function, and the corresponding lower order in other case. For example it is known
that, in general, natural splines provide only second order approximations in the infinity norm.

Theorem 3.6. Let 𝑦(𝑥) be a strictly monotone function in 𝐶4 ([𝑎, 𝑏]) . Then, the new cubic splines adapted to
discontinuities maintain full order of accuracy.

Proof. Let 𝑦(𝑥) be a function in 𝐶4 ([𝑎, 𝑏]) , and 𝑋 = {𝑥𝑖}𝑚
𝑖=0, 𝑥0 = 𝑎, ℎ𝑖 = 𝑥𝑖 − 𝑥𝑖−1, a partition of [𝑎, 𝑏] in

subintervals. Let us call

𝑠𝑛(𝑥) = 𝑔𝑖(𝑥) = 𝑎̃𝑖 (𝑥− 𝑥𝑖)
3 + 𝑏̃𝑖 (𝑥− 𝑥𝑖)

2 + 𝑐𝑖 (𝑥− 𝑥𝑖) + 𝑑𝑖, 𝑥 ∈ [𝑥𝑖, 𝑥𝑖+1] ,

the adapted cubic spline with the coefficients calculated from (2.3) after solving (3). And in the same way let
us consider the classical cubic spline

𝑠𝑛(𝑥) = 𝑔𝑖(𝑥) = 𝑎𝑖 (𝑥− 𝑥𝑖)
3 + 𝑏𝑖 (𝑥− 𝑥𝑖)

2 + 𝑐𝑖 (𝑥− 𝑥𝑖) + 𝑑𝑖, 𝑥 ∈ [𝑥𝑖, 𝑥𝑖+1] ,

with the coefficients given in (2.3), but after solving (2.8). Applying the triangular inequality we have

|𝑦(𝑥)− 𝑠𝑛(𝑥)| ≤ |𝑦(𝑥)− 𝑠𝑛(𝑥)|+ |𝑠𝑛(𝑥)− 𝑠𝑛(𝑥)|.

Since we know that classical cubic splines are full order accurate, in order to finish the proof it is sufficient
to prove that

|𝑠𝑛(𝑥)− 𝑠𝑛(𝑥)| = 𝑂
(︀
ℎ4
)︀
,

where ℎ = max𝑖 ℎ𝑖.
From the systems of equations (2.8) and (3) we get that

||𝐷̃ −𝐷||∞ ≤ ||𝐴−1||∞||̃f − f ||∞. (3.8)

Then applying Theorem 2.1 and Proposition 3.2, we arrive to

||𝐷̃ −𝐷||∞ ≤ 𝑂(ℎ)𝑂
(︀
ℎ2
)︀

= 𝑂
(︀
ℎ3
)︀
. (3.9)
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Now substracting term by term

|𝑠𝑛(𝑥)− 𝑠𝑛(𝑥)| ≤ |𝑎̃𝑖 − 𝑎𝑖||𝑥− 𝑥𝑖|3 + |𝑏̃𝑖 − 𝑏𝑖||𝑥− 𝑥𝑖|2 + |𝑐𝑖 − 𝑐𝑖||𝑥− 𝑥𝑖|+ |𝑑𝑖 − 𝑑𝑖|. (3.10)

Taking into account the expression of the coefficients of 𝑠𝑛(𝑥) and 𝑠𝑛(𝑥) given by (2.3) and (3.9) we get

|𝑑𝑖 − 𝑑𝑖| = 0,

|𝑐𝑖 − 𝑐𝑖| = |𝐷̃𝑖 −𝐷𝑖| = 𝑂
(︀
ℎ3
)︀
,

|𝑎̃𝑖 − 𝑎𝑖| =
ℎ𝑖+1|𝐷̃𝑖+1 −𝐷𝑖+1|+ |𝐷̃𝑖 −𝐷𝑖|ℎ𝑖+1

ℎ3
𝑖+1

= 𝑂(ℎ),

|𝑏̃𝑖 − 𝑏𝑖| =
ℎ𝑖+1|𝐷̃𝑖+1 −𝐷𝑖+1|+ 2|𝐷̃𝑖 −𝐷𝑖|ℎ𝑖+1

ℎ2
𝑖+1

= 𝑂
(︀
ℎ2
)︀
.

(3.11)

Plugging in (3.10) the expressions in (3.11), we finish the proof. �

Remark 3.7. In the previous proof we have not taken into account what happens when the function contains
critical points in its domain. We will analyze this case in Section 3.2.

3.1. Power means

If we use a uniform grid spacing, the nonlinear weighted means introduced in the previous section transform
into de p-power means introduced in [33]. The p-power mean has the general expression,

𝐻𝑝(𝑥, 𝑦) =
𝑠𝑖𝑔𝑛(𝑥) + 𝑠𝑖𝑔𝑛(𝑦)

2

⃒⃒⃒⃒
𝑥 + 𝑦

2

⃒⃒⃒⃒ (︂
1−

⃒⃒⃒⃒
𝑥− 𝑦

𝑥 + 𝑦

⃒⃒⃒⃒𝑝)︂
. (3.12)

The most important properties that make the power means appropriate are (see [10,33] for more details):

Proposition 3.8. For all (𝑥, 𝑦) ∈ R2, the 𝐻𝑝(𝑥, 𝑦) mean satisfies
(1) 𝐻𝑝(𝑥, 𝑦) = 𝐻𝑝(𝑦, 𝑥).
(2) 𝐻𝑝(𝑥, 𝑦) = 0 𝑖𝑓 𝑥𝑦 ≤ 0.
(3) 𝐻𝑝(−𝑥,−𝑦) = −𝐻𝑝(𝑥, 𝑦).
(4) |𝐻𝑝(𝑥, 𝑦)| ≤ max (|𝑥|, |𝑦|).
(5) |𝐻𝑝(𝑥, 𝑦)| ≤ 𝑝 min (|𝑥|, |𝑦|) (related to adaption to the singularities).
(6) If 𝑥 = 𝑂(1), 𝑦 = 𝑂(1), |𝑦 − 𝑥| = 𝑂(ℎ) and 𝑥𝑦 > 0 then |𝑥+𝑦

2 −𝐻𝑝(𝑥, 𝑦)| = 𝑂(ℎ𝑝).

Assuring the adaption to jump discontinuities of the uniform cubic spline and, at the same time, guaranteeing
that the nonlinear modification introduced does not reduce the accuracy at smooth zones, can be done using
the p-power mean [10, 33] with 𝑝 = 3 in (3.12). For cubic splines, following property 6 of Proposition 3.8, we
have that if 𝛿𝑗 · 𝛿𝑗+1 > 0, ⃒⃒⃒⃒

𝛿𝑗 + 𝛿𝑗+1

2
−𝐻3 (𝛿𝑗 , 𝛿𝑗+1)

⃒⃒⃒⃒
= 𝑂

(︀
ℎ3
)︀
, (3.13)

since at smooth zones divided differences 𝛿𝑗+1 = 𝛿𝑗 = 𝑂(1).
Using a uniform grid spacing and simplifying and manipulating the right hand side term, the expression of

the system of equations in (2.7) transforms into⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 1 0 0 · · · 0 0
1 4 1 0 · · · 0 0
0 1 4 1 · · · 0 0
· · · · · · · · · · · · · · · · · · · · ·
0 0 0 0 · · · 4 1
0 0 0 0 · · · 1 2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝐷0

𝐷1

𝐷2

· · ·
𝐷𝑚−1

𝐷𝑚

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 6 ·

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝛿1
2

𝛿2+𝛿1
2

𝛿3+𝛿2
2

· · ·
𝛿𝑚+𝛿𝑚−1

2

𝛿𝑚

2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (3.14)
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Replacing the arithmetic mean in (3.14) by the p-power mean in (3.12) with 𝑝 = 3, we obtain the system of
equations for the adapted spline,⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 1 0 0 · · · 0 0
1 4 1 0 · · · 0 0
0 1 4 1 · · · 0 0
· · · · · · · · · · · · · · · · · · · · ·
0 0 0 0 · · · 4 1
0 0 0 0 · · · 1 2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝐷0

𝐷1

𝐷2

· · ·
𝐷𝑚−1

𝐷𝑚

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 6 ·

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝛿1
2

𝐻3(𝛿2, 𝛿1)
𝐻3(𝛿3, 𝛿2)
· · ·
𝐻3(𝛿𝑚, 𝛿𝑚−1)
𝛿𝑚

2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (3.15)

Remark 3.9. The process followed in this subsection to adapt the splines in a uniform grid-spacing to the pres-
ence of jump discontinuities in the function can be perfectly used for parametrized splines. We can parametrize
the spline in (2.1) just expressing it in terms of another variable 𝑢 that varies in the interval [0, 1] for every
polynomial segment of the spline, with

𝑢 =
𝑥− 𝑥𝑖

𝑥𝑖+1 − 𝑥𝑖
·

With this parametrization, the grid-spacing can be interpreted to be always ℎ = 1 and the divided differences
transform into differences. This means that the new technique can be used even when the original data does
not come from the sampling of a function and, for example, we can construct closed curves very easily.

3.2. Assuring maximum accuracy for nonlinear means close to critical points

Property 2 of Propositions 3.1 and 3.8 imply that the use of the new mean (3.1) or the power mean (3.12)
produces order reduction when the arguments have different sign and property 6 of Propositions 3.2 and 3.8 do
not allow to maintain the approximation order when one of the arguments is 𝑂(ℎ). Both conditions happen at
singular points or close to them. This problem can be solved translating both arguments, obtaining the mean
and then translating back the result by the same amount. The problem arises when deciding how many points
around those critical points must be translated in order to assure optimal accuracy. Mind that close to critical
points both arguments are 𝑂(ℎ). Let us introduce the definition of the translation 𝑇.

Definition 3.10. Given ℎ > 0, a translation 𝑇 is any function 𝑇 : R2 → R satisfying

(1) 𝑇 (0, 0) = 0.
(2) 𝑇 (𝑥, 𝑦) = 𝑇 (𝑦, 𝑥).
(3) 𝑠𝑖𝑔𝑛(𝑥 + 𝑇 (𝑥, 𝑦))𝑠𝑖𝑔𝑛(𝑦 + 𝑇 (𝑥, 𝑦)) > 0, ∀ (𝑥, 𝑦) ̸= (0, 0).
(4) If (𝑥, 𝑦) ̸= (0, 0), with |𝑥| ≤ |𝑦|, then 𝑠𝑖𝑔𝑛(𝑥 + 𝑇 (𝑥, 𝑦))𝑠𝑖𝑔𝑛(𝑦) > 0.
(5) min{|𝑥 + 𝑇 (𝑥, 𝑦)|, |𝑦 + 𝑇 (𝑥, 𝑦)|} = 𝑂(1), ∀ (𝑥, 𝑦) ̸= (0, 0), with min{|𝑥|, |𝑦|} = 𝑂(ℎ𝛼), for some 𝛼 ≤ 0.

Remark 3.11. Property 3 of Definition 3.10 ensures that it is going to be always possible to compute expres-
sion (3.1) without problems in the denominator. Property 4 assures a translation towards the largest of the
arguments in absolute value. And property 5 is essential to keep the reconstruction order (see Props. 3.2 and
3.13), and the adaption in case of discontinuities (see Props. 3.3 and 3.14).

The nonlinear weighted mean in (3.1) transforms into

HWT𝑝(𝑥, 𝑦) := HW𝑝(𝑥 + 𝑇, 𝑦 + 𝑇 )− 𝑇, (3.16)

with the translation. It is easy to prove the same kind of results as in Propositions 3.1–3.3 with this new mean.
In particular,

Proposition 3.12. For all (𝑥, 𝑦) ∈ R2, the HWT𝑝(𝑥, 𝑦) mean satisfies
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(1) HWT𝑝(𝑥, 𝑦) = HWT𝑝(𝑦, 𝑥).
(2) HWT𝑝(−𝑥,−𝑦) = −HWT𝑝(𝑥, 𝑦).

Proposition 3.13. The new limiter HWT𝑝 verifies the following property,⃒⃒⃒⃒
𝛼𝑥 + 𝛽𝑦

𝛼 + 𝛽
−HWT𝑝(𝑥, 𝑦)

⃒⃒⃒⃒
= 𝑂 (ℎ𝑝) . (3.17)

The previous three properties are trivial to prove and are not included for brevity.
Given |𝑥| ≤ |𝑦|, the authors propose in [7] a translation that is 𝑇 = 2|𝑥| at the places where there is a change

of sign in the arguments of the mean. This translation does not satisfy property 5 in Definition 3.10, and in
fact it does not guarantee the reconstruction order close to the critical points. Instead, it seems more suitable
to use a proper translation in the sense of Definition 3.10 defined as,

𝑇 =
{︂

𝑠𝑖𝑔𝑛(𝑦)(|𝑥|+ 𝜖), if 𝑥𝑦 < 0,
𝑠𝑖𝑔𝑛(𝑦)𝜖, if 𝑥𝑦 ≥ 0,

(3.18)

with 𝜖 > 0, 𝜖 = 𝑂(1). 𝜖 can be chosen much smaller 𝜖 = 𝑂(ℎ𝑝), 𝑝 ≥ 1 and it is a better option when min{|𝑥|, |𝑦|} =
𝑂(1). With this translation it is easy to prove the following proposition.

Proposition 3.14. With the translation defined in (3.18) and assuming, without loss of generality, that |𝑥| ≤
|𝑦|, the nonlinear weighted mean in (3.16) is bounded by

|HWT𝑝(𝑥, 𝑦)| ≤ 𝑝|𝑥|+ (𝑝 + 1)𝜖. (3.19)

Proof. We will consider five different cases to get the proof:

– If 𝑥 = 0, 𝑦 = 0, then 𝑇 = 0 and HWT𝑝(𝑥, 𝑦) = 0 and the result is trivially true.
– If 𝑥 ≤ 0 and 𝑦 > 0, the translation has the expression 𝑇 = −𝑥 + 𝜖 > 0 and the weighted mean is bounded

by,
𝜖 ≤ HW𝑝(𝜖, 𝑦 − 𝑥 + 𝜖) ≤ 𝑝𝜖,

due to Proposition 3.3 and the fact that HW𝑝 is a mean. Now the resultant value of the mean can be positive
or negative:
∙ If HWT𝑝(𝑥, 𝑦) = HW𝑝(𝑥 + 𝑇, 𝑦 + 𝑇 )− 𝑇 = HW𝑝(𝜖, 𝑦 − 𝑥 + 𝜖) + 𝑥− 𝜖 ≥ 0, then

|HWT𝑝(𝑥, 𝑦)| ≤ 𝑝𝜖 + |𝑥| − 𝜖 = |𝑥|+ (𝑝− 1)𝜖.

∙ If HWT𝑝(𝑥, 𝑦) = HW𝑝(𝑥 + 𝑇, 𝑦 + 𝑇 )− 𝑇 = HW𝑝(𝜖, 𝑦 − 𝑥 + 𝜖) + 𝑥− 𝜖 < 0, then

|HWT𝑝(𝑥, 𝑦)| = −𝑥 + 𝜖−HW𝑝(𝜖, 𝑦 − 𝑥 + 𝜖) ≤ |𝑥|.

– If 𝑥 ≥ 0 and 𝑦 < 0, the translation takes the value 𝑇 = −𝑥− 𝜖 < 0 and the weighted mean is bounded by,

−𝑝𝜖 ≤ HW𝑝(−𝜖, 𝑦 − 𝑥− 𝜖) ≤ −𝜖,

due again to Proposition 3.3 and the fact that HW𝑝 is a mean. Now the resultant value of the mean can be
positive or negative:
∙ If HWT𝑝(𝑥, 𝑦) = HW𝑝(𝑥 + 𝑇, 𝑦 + 𝑇 )− 𝑇 = HW𝑝(−𝜖, 𝑦 − 𝑥− 𝜖) + 𝑥 + 𝜖 ≥ 0, then

|HWT𝑝(𝑥, 𝑦)| ≤ |𝑥|.

∙ If HWT𝑝(𝑥, 𝑦) = HW𝑝(𝑥 + 𝑇, 𝑦 + 𝑇 )− 𝑇 = HW𝑝(−𝜖, 𝑦 − 𝑥− 𝜖) + 𝑥 + 𝜖 < 0, then

|HWT𝑝(𝑥, 𝑦)| ≤ |𝑥|+ (𝑝 + 1)𝜖.
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– If 𝑥 > 0 and 𝑦 > 0, the translation takes the value 𝑇 = 𝜖 > 0. Then HWT𝑝(𝑥, 𝑦) = HW𝑝(𝑥+𝑇, 𝑦 +𝑇 )−𝑇 =
HW𝑝(𝑥 + 𝜖, 𝑦 + 𝜖)− 𝜖 > 0 and the weighted mean is bounded by,

𝑥 + 𝜖 ≤ HW𝑝(𝑥 + 𝜖, 𝑦 + 𝜖) ≤ 𝑝(𝑥 + 𝜖).

In this case HW𝑝(𝑥 + 𝜖, 𝑦 + 𝜖) ≥ 0 and

|HWT𝑝(𝑥, 𝑦)| ≤ 𝑝|𝑥|+ (𝑝− 1)𝜖.

– If 𝑥 < 0 and 𝑦 < 0, the translation takes the value 𝑇 = −𝜖 < 0. Then HWT𝑝(𝑥, 𝑦) = HW𝑝(𝑥+𝑇, 𝑦+𝑇 )−𝑇 =
HW𝑝(𝑥− 𝜖, 𝑦 − 𝜖) + 𝜖 < 0 and the weighted mean is bounded by,

𝑝(𝑥− 𝜖) ≤ HW𝑝(𝑥− 𝜖, 𝑦 − 𝜖) ≤ 𝑥− 𝜖.

In this case HW𝑝(𝑥− 𝜖, 𝑦 − 𝜖) < 0 and

|HWT𝑝(𝑥, 𝑦)| = −HW𝑝(𝑥− 𝜖, 𝑦 − 𝜖)− 𝜖 ≤ −𝑝𝑥 + 𝑝𝜖− 𝜖 = 𝑝|𝑥|+ (𝑝− 1)𝜖. (3.20)

�

With the information provided by Proposition 3.14, it seems logical to suggest a nonlinear 𝜖 that is adapted
to the presence of critical points in the sense that is 𝑂(1) at critical points (and around them) and that goes
to zero away from them. The objective is that the translation does not affect the adaption attained at jump
discontinuities (provided by Prop. 3.3 for the non-translated mean) unless a change of sign in the first derivative
is placed exactly at the discontinuity. Inspired by the smoothness indicators proposed in [35], we propose an 𝜖
with the following expression,

𝜖𝑗 := 𝜏𝜇𝜖𝑗 , (3.21)

and
𝜖𝑗 :=

1
(|IS𝑗 |+ 𝜉)𝑡

, (3.22)

where IS𝑗 is a smoothness indicator. The idea is that these indicators are large when a jump discontinuity
affects the stencil used to obtain it, and small otherwise. We choose the parameter 𝜇 = ℎ4 . This normalization
is performed to assure that the maximum 𝜖𝑗 takes an order given by the parameter 𝜏 around critical points. In
the numerical experiments, a reasonable value for this parameter is 𝜏 ∈ (0, 1] with 𝜏 = 𝑂(1). We have chosen
𝜏 = 1 in our experiments. The parameter 𝜉 = ℎ4 is included to avoid divisions by zero. The parameter 𝑡 modifies
the rate of convergence of the function in (3.22) towards zero. We have chosen 𝑡 = 1 in our experiments.

As mentioned before, IS𝑗 is a smoothness indicator. In [35], Jiang and Shu propose to obtain smoothness
indicators using something similar to the total variation, but based in the 𝐿2 norm, so that the result is smoother
than the total variation. The proposed formula is just a scaled sum of the 𝐿2 norms of the derivatives of the
interpolation polynomials in the cell-averages 𝑝𝑗(𝑥) over the interval (𝑥𝑗−1/2, 𝑥𝑗+1/2). The expression proposed
for a uniform grid spacing is,

IS𝑗 =
𝑟−1∑︁
𝑙=1

ℎ2𝑙−1

∫︁ 𝑥
𝑗+ 1

2

𝑥
𝑗− 1

2

(︂
𝑑𝑙

d𝑥𝑙
𝑝𝑗(𝑥)

)︂2

d𝑥, (3.23)

where 𝑟 is the degree of the polynomial 𝑝𝑗(𝑥). The scaling factor ℎ2𝑙−1 = ∆𝑥2𝑙−1 is introduced to assure that
the final formulae for the smoothness indicator do not depend on the mesh size ℎ = ∆𝑥. We have chosen the
smoothness indicators in the point values for 𝑟 = 2 that result from (3.23). They have the following expression
for a uniform grid-spacing,

IS𝑗 =
13
12

(𝑓𝑗−1 − 2𝑓𝑗 + 𝑓𝑗+1)2 + (1/14) (𝑓𝑗−1 − 4𝑓𝑗 + 3𝑓𝑗+1)2 , (3.24)

IS𝑗+1 =
13
12

(𝑓𝑗 − 2𝑓𝑗+1 + 𝑓𝑗+2)2 + (1/14) (𝑓𝑗+2 − 𝑓𝑗)2 . (3.25)
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For these smoothness indicators, the polynomial 𝑝𝑗(𝑥) is a parabola. We could have chosen a smoothness
indicator with a wider stencil but the results are similar and more expensive computationally.

One important property of these smoothness indicators is the one presented in the following proposition.

Proposition 3.15. The smoothness indicators presented in (3.24) and (3.25) verify that

IS𝑗 =
(︀
ℎ𝑓 ′𝑗+1

)︀2 (︀1 + 𝑂
(︀
ℎ2
)︀)︀

, (3.26)

IS𝑗+1 =
(︀
ℎ𝑓 ′𝑗+1

)︀2 (︀1 + 𝑂
(︀
ℎ2
)︀)︀

, (3.27)

at smooth zones.

The proof of this property is straightforward and it is not included for brevity. The interested reader can refer
to [3] for a detailed description of the process for different smoothness indicators. If we develop 𝑓𝑗 and 𝑓𝑗−1

using Taylor expansion around 𝑥𝑗+1 and replace their expressions in (3.24) and (3.25) we get the proof. The
property is important, as it assures that 𝜖𝑗 is small away from critical points and large close to them. Moreover,
IS𝑗 is 𝑂(1) at a jump discontinuity following (3.24) and (3.25). Thus (3.21) assures that 𝜖𝑗 = 𝑂

(︀
ℎ4
)︀

at a jump
discontinuity, so the translation in (3.18) would be given by 𝑇 = 𝑠𝑖𝑔𝑛(𝑦)(|𝑥| + 𝑂

(︀
ℎ4
)︀
). Following (3.19), if

|𝑥| ≤ |𝑦|, the mean would be bounded by,

|HWT𝑝(𝑥, 𝑦)| < 𝑝|𝑥|+ (𝑝 + 1)𝑂
(︀
ℎ4
)︀
, (3.28)

and it would not affect the adaption properties of the nonlinear weighted mean, conserving in practice the
property exposed in Proposition 3.3 for the non-translated mean. At smooth zones, the translation defined
using (3.21) ensures to attain full accuracy even around critical points, since 𝜖𝑗 = 𝑂(1) in this case, and allows
the application of Proposition 3.2. In order to measure the smoothness of our function, we only need one
smoothness indicator, so we choose for example (3.24).

Remark 3.16. For a non uniform grid spacing, it is still possible to obtain a smoothness indicator like the
ones in (3.24) and (3.25) using (3.23). In this case, it is not possible to get rid of the dependency of the grid
spacing and the closed expressions are not as simple as in the uniform case.

Remark 3.17. In the numerical experiments presented for the uniform grid spacing, the nonlinear translated
mean (3.16) with the translation defined in (3.18) and the 𝜖 defined in (3.21) has been used.

With the introduction of the HWT𝑝 means we can give the following two theorems, which generalize the
result in Theorem 3.6.

Theorem 3.18. Let 𝑦(𝑥) be a function in 𝐶4 ([𝑎, 𝑏]) . Then, the new cubic splines adapted to discontinuities
based on the nonlinear mean HWT𝑝 defined in (3.16) through the translation 𝑇 defined in (3.18) maintain full
order of accuracy.

Proof. The proof is basically the same as for Theorem 3.6. The only difference is the application of Proposi-
tion 3.13 instead of Proposition 3.2. �

Let 𝐴−1 = (𝛼𝑖,𝑗) be the inverse of the coefficient matrix of system (3.15). There is a clear dependence between
the grid spacing and the size of the matrix, and it is not so clear but also between the size of the matrix and
the entries of 𝐴−1. In fact, using basic algebra and numerical analysis next lemma can be proven,

Lemma 3.19. Let 𝐴−1 = (𝛼𝑖,𝑗) be the inverse of the coefficient matrix of system (3.15). Then,

𝛼𝑖,𝑖±𝑠 = 𝑂(ℎ𝛾𝑠), 𝑠 ≥ 0, 𝑖 ∈ {1, . . . ,𝑚}, 𝑖± 𝑠 = 1, . . . ,𝑚,

with 𝛾 = log2 (2 +
√

3).
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Proof. The first observation is that according to an adaption to our case of the general result for tridiagonal
matrices in [38], the entries of 𝐴−1 can be computed as

𝛼𝑖,𝑗 =

⎧⎪⎪⎨⎪⎪⎩
(−1)𝑖+𝑗 𝜑(2,𝑖−1,4)𝜑(4,𝑚−𝑗,2)

𝜑(2,𝑚,2) , 𝑖 < 𝑗,

𝜑(2,𝑖−1,4)𝜑(4,𝑚−𝑖,2)
𝜑(2,𝑚,2) , 𝑖 = 𝑗,

(−1)𝑖+𝑗 𝜑(2,𝑗−1,4)𝜑(4,𝑚−𝑖,2)
𝜑(2,𝑚,2) , 𝑖 > 𝑗,

(3.29)

where 𝜑𝑘 := 𝜑(𝑑1, 𝑘, 𝑑𝑘), is the solution of the recurrence equation

𝜑0 = 1, 𝜑1 = 𝑑1, (3.30)
𝜑𝑖 = 4𝜑𝑖−1 − 𝜑𝑖−2, 𝑖 = 2, . . . , 𝑘 − 1,

𝜑𝑘 = 𝑑𝑘𝜑𝑘−1 − 𝜑𝑘−2.

Using theory about linear finite difference equations one can give the general term of 𝜑𝑘 in terms of the roots
of the characteristic polynomial 𝜆2 − 4𝜆 + 1 = 0. From Theorem 2.1 we deduce that limℎ→0 𝛼𝑖,𝑗 = 0, ∀ 𝑖, 𝑗 =
1, . . . ,𝑚. Therefore we can assume that 𝛼𝑖,𝑗 = 𝑂(ℎ𝛽), for some value of 𝛽 ≥ 0. We are going to compute 𝛽
for each 𝑖, 𝑗 = 1, . . . ,𝑚. In order to do so we consider two grid spacings ℎ and ℎ

2 , that is, sizes 𝑚 × 𝑚 and
(2𝑚− 1)× (2𝑚− 1) of the matrix 𝐴. Let us call 𝛼𝑖,𝑗 the entries of the inverse of the matrix 𝐴 of order 𝑚 and
𝜇𝑖,𝑗 the entries of the inverse of the matrix 𝐴 of order 2𝑚− 1. If we compute the limit lim𝑚→∞

𝛼𝑖,𝑗

𝜇2𝑖−1,2𝑗−1
, and

is equal to a constant 𝑀, then 𝛽 = log2(𝑀).
Thus, we consider for 𝑠 ≥ 0,

lim
𝑚→∞

| 𝛼𝑖,𝑖−𝑠

𝜇2𝑖−1,2𝑖−2𝑠−1
| = lim

𝑚→∞

𝜑(2,𝑖−𝑠−1,4)𝜑(4,𝑚−𝑖,2)
𝜑(2,𝑚,2)

𝜑(2,2𝑖−2𝑠−2,4)𝜑(4,2𝑚−2𝑖+1,2)
𝜑(2,2𝑚−1,2)

(3.31)

= lim
𝑚→∞

(2+
√

3)𝑖−𝑠(2+
√

3)𝑚−𝑖−2

(2+
√

3)𝑚−2

(2+
√

3)2𝑖−2𝑠−2(2+
√

3)2𝑚−2𝑖−1

(2+
√

3)2𝑚−3

= (2 +
√

3)𝑠.

From (3.31) we can apply logarithms and symmetry to get the general result 𝛼𝑖,𝑖±𝑠 = 𝑂(ℎ𝛾𝑠), 𝑠 ≥ 0, 𝑖 ∈
{1, . . . ,𝑚}, 𝑖± 𝑠 = 1, . . . ,𝑚, with 𝛾 = log2 (2 +

√
3). �

We can give now the following theorem about the approximation order of the presented nonlinear cubic
splines,

Theorem 3.20. Let 𝑦(𝑥) be a function in 𝐶4 ([𝑎, 𝑏] ∖𝐷) , where 𝐷 is a finite set of isolated jump discontinuities.
Let 𝑋 = {𝑥𝑗}𝑚

𝑗=0 be a grid in [𝑎, 𝑏] . Then, the new cubic splines adapted to discontinuities based on the nonlinear
mean HWT𝑝 defined in (3.16) through the translation 𝑇 defined in (3.18) maintain full order of accuracy at
smooth zones away from the isolated discontinuities.

Proof. We carry out the proof for the uniform case because of simplicity, although the same arguments are
valid for the nonuniform case. Let us suppose without loss of generality that the initial data come from a
𝐶4([𝑎, 𝑏] ∖{𝜇}) function 𝑦(𝑥) with an isolated jump discontinuity located at 𝜇 in the interval [𝑥𝑖, 𝑥𝑖+1] for some
𝑖 ∈ {2, . . . ,𝑚−3}. We are going to prove that the nonlinear cubic splines attain full order accuracy in [𝑎, 𝑥𝑖−2] .
By symmetry the result will also hold for [𝑥𝑖+3, 𝑏] . Let us call 𝑔[𝑎,𝑏] the classical cubic spline with original data,
𝑔[𝑎,𝑏] the corresponding nonlinear cubic spline in the hypothesis of the theorem, and 𝑔[𝑎,𝑏] an auxiliary classical
cubic spline built with certain modified data. The proof is based on the following four points, which will be
proved in detail later on:
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(1) If we modified the entries 𝑓𝑖, 𝑓𝑖+1 of the vector 𝑓 at the right hand side of system 𝐴𝐷̂ = 𝑓 in (3.15) by a
quantity of order 𝑂(1), then we get another system 𝐴𝐷̃ = 𝑓, such that |𝐷̂𝑖+𝑗 − 𝐷̃𝑖+𝑗 | = 𝑂(ℎ𝛾(𝑗−1)), 𝑗 ≥ 1
and |𝐷̂𝑖−𝑗 − 𝐷̃𝑖−𝑗 | = 𝑂(ℎ𝛾𝑗), 𝑗 ≥ 0, with 𝛾 = log2 (2 +

√
3). Therefore the modification gives an associated

reconstruction 𝑔[𝑎,𝑏] which satisfies |𝑔[𝑎,𝑏](𝑥)− 𝑔[𝑎,𝑏](𝑥)| = 𝑂
(︀
ℎ4
)︀

in [𝑎, 𝑥𝑖−2] .
(2) We can find a modification of the type described in point 1 such that the right hand side of system (3.15)

plus this modification can be seen as the right hand side of the system (3.14) for linear cubic splines with
modified data 𝑦𝑗 free of any discontinuity, i.e. coming from an underlying 𝐶4 ([𝑎, 𝑏]) function 𝑦(𝑥).

(3) If a linear cubic spline 𝑔[𝑎,𝑏] attains full order of approximation in [𝑎, 𝑏] , then also the function given by the
linear cubic spline 𝑔[𝑎,𝑥𝑖−2] attains full order of approximation in [𝑎, 𝑥𝑖−2] .

(4) The difference between the original data 𝑦𝑗 , 𝑗 = 0, . . . , 𝑖 − 2 and the modified data 𝑦𝑗 of step 2 is fourth
order. And therefore the difference between 𝑔[𝑎,𝑥𝑖−2] and 𝑔[𝑎,𝑥𝑖−2] is also fourth order accurate.

If we assume the points 1–4 proved, then it is immediate that for any 𝑥 ∈ [𝑎, 𝑥𝑖−2],

– |𝑔[𝑎,𝑏](𝑥)− 𝑔[𝑎,𝑏](𝑥)| = 𝑂
(︀
ℎ4
)︀

due to point 1.
– |𝑔[𝑎,𝑏](𝑥) − 𝑦(𝑥)| = 𝑂(ℎ𝑝) where 𝑝 ≤ 4 is the full accuracy attained by the considered linear cubic spline

(depends on the initial boundary conditions) due to point 2.
– |𝑦(𝑥)− 𝑔[𝑎,𝑥𝑖−2](𝑥)| = 𝑂(ℎ𝑝), due to point 3.
– |𝑔[𝑎,𝑥𝑖−2](𝑥)− 𝑔[𝑎,𝑥𝑖−2](𝑥)| = 𝑂

(︀
ℎ4
)︀

due to point 4.
– |𝑔[𝑎,𝑥𝑖−2](𝑥)− 𝑦(𝑥)| = 𝑂(ℎ𝑝) due to point 3.

And thus

|𝑔[𝑎,𝑏](𝑥)− 𝑦(𝑥)| ≤ |𝑔[𝑎,𝑏](𝑥)− 𝑔[𝑎,𝑏](𝑥)|+ |𝑔[𝑎,𝑏](𝑥)− 𝑦(𝑥)| (3.32)
+ |𝑦(𝑥)− 𝑔[𝑎,𝑥𝑖−2](𝑥)|+ |𝑔[𝑎,𝑥𝑖−2](𝑥)− 𝑔[𝑎,𝑥𝑖−2](𝑥)|
+ |𝑔[𝑎,𝑥𝑖−2](𝑥)− 𝑦(𝑥)| = 𝑂

(︀
ℎ4
)︀

+ 𝑂(ℎ𝑝) + 𝑂(ℎ𝑝) + 𝑂
(︀
ℎ4
)︀

+ 𝑂(ℎ𝑝)
= 𝑂(ℎ𝑝), ∀ 𝑥 ∈ [𝑎, 𝑥𝑖−2] ,

what will finish the proof.
Therefore, we need to prove the points 1–4. Let us start with point 1.

(1) Let us consider the system,⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 1 0 0 · · · 0 0
1 4 1 0 · · · 0 0
· · · · · · · · · · · · · · · · · · · · ·
0 1 4 1 · · · 0 0
0 1 4 1 · · · 0 0
· · · · · · · · · · · · · · · · · · · · ·
0 0 0 0 · · · 4 1
0 0 0 0 · · · 1 2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝐷̃0

𝐷̃1

· · ·
𝐷̃𝑖

𝐷̃𝑖+1

· · ·
𝐷̃𝑚−1

𝐷̃𝑚

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 6

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝛿1
2

𝐻3(𝛿1, 𝛿2)
· · ·
𝐻3(𝛿𝑖, 𝛿𝑖+1)
𝐻3(𝛿𝑖+1, 𝛿𝑖+2)
· · ·
𝐻3(𝛿𝑚−1, 𝛿𝑚)
𝛿𝑚

2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
· · ·
0(1)
0(1)
· · ·
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (3.33)

Then the difference |𝐷̂𝑖±𝑗 − 𝐷̃𝑖±𝑗 |, 𝑖± 𝑗 = 0, . . . ,𝑚, between the solution of the system 𝐴𝐷̂ = 𝑓 in (3.15)
and 𝐴𝐷̃ = 𝑓 in (3.33) is given by 𝐷̂ − 𝐷̃ = 𝐴−1(𝑓 − 𝑓). Let us compute a concrete |𝐷̂𝑖±𝑗 − 𝐷̃𝑖±𝑗 | for a
fixed value of 𝑗,

|𝐷̂𝑖±𝑗 − 𝐷̃𝑖±𝑗 | =
𝑚∑︁

𝑠=0

𝛼𝑖±𝑗,𝑠(𝑓𝑠 − 𝑓𝑠) = 𝛼𝑖±𝑗,𝑖𝑂(1) + 𝛼𝑖±𝑗,𝑖+1𝑂(1).
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From Lemma 3.19 we get the estimation for the needed entries of the inverse 𝐴−1, given by 𝛼𝑖±𝑗,𝑖 = 𝑂(ℎ𝛾𝑗)
and 𝛼𝑖±𝑗,𝑖+1 = 𝑂(ℎ𝛾|1∓𝑗|), with 𝛾 = log2 (2 +

√
3). Thus,

|𝐷̂𝑖±𝑗 − 𝐷̃𝑖±𝑗 | = 𝑂(ℎ𝛾𝑗)𝑂(1) + 𝑂(ℎ𝛾|1∓𝑗|)𝑂(1),

and therefore |𝐷̂𝑖+𝑗 − 𝐷̃𝑖+𝑗 | = 𝑂(ℎ𝛾(𝑗−1)), 𝑗 ≥ 1 and |𝐷̂𝑖−𝑗 − 𝐷̃𝑖−𝑗 | = 𝑂(ℎ𝛾𝑗), 𝑗 ≥ 0.
Using now expressions (2.3) we get,

|𝑔[𝑎,𝑏](𝑥)− 𝑔[𝑎,𝑏](𝑥)| =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝑂
(︀
ℎ4
)︀

if 𝑥 ∈ [𝑥𝑖−𝑗 , 𝑥𝑖−𝑗+1] , 𝑗 ≥ 3,
𝑂(ℎ𝛾+2) if 𝑥 ∈ [𝑥𝑖−2, 𝑥𝑖−1] ,
𝑂(ℎ) if 𝑥 ∈ [𝑥𝑖−1, 𝑥𝑖] ,
𝑂(ℎ) if 𝑥 ∈ [𝑥𝑖, 𝑥𝑖+1] ,
𝑂(ℎ) if 𝑥 ∈ [𝑥𝑖+1, 𝑥𝑖+2] ,
𝑂(ℎ𝛾+2) if 𝑥 ∈ [𝑥𝑖+2, 𝑥𝑖+3] ,
𝑂
(︀
ℎ4
)︀

if 𝑥 ∈ [𝑥𝑖+𝑗 , 𝑥𝑖+𝑗+1] , 𝑗 ≥ 3.

(2) From the right hand sides of (3.14) and (3.15) we impose the following system of equations based on data
to the left of the interval affected by the discontinuity,⎡⎢⎣ 𝛿1

2𝐻3(𝛿1, 𝛿2)
· · ·
2𝐻3(𝛿𝑖−2, 𝛿𝑖−1)

⎤⎥⎦ =

⎡⎢⎢⎣
𝛿1

𝛿1 + 𝛿2

· · ·
𝛿𝑖−2 + 𝛿𝑖−1

⎤⎥⎥⎦ , (3.34)

where 𝛿𝑗 := 𝑦𝑗−𝑦𝑗−1
ℎ stands for the first order differences based on modified input data 𝑦𝑗 . Solving the

system (3.34) we get 𝛿1 = 𝛿1, 𝛿𝑗 = 2𝐻3(𝛿𝑗−1, 𝛿𝑗) − 𝛿𝑗−1, 𝑗 = 2, . . . , 𝑖 − 1. Let us now prove by induction
that 𝛿𝑗 − 𝛿𝑗 = 𝑂

(︀
ℎ3
)︀
, 𝑗 = 1, . . . , 𝑖− 1. It is trivially true for 𝑗 = 1 since 𝛿1 = 𝛿1. Let us suppose then by

hypothesis of induction that 𝛿𝑗 − 𝛿𝑗 = 𝑂
(︀
ℎ3
)︀
. For 𝑗 + 1 we have,

𝛿𝑗+1 − 𝛿𝑗+1 = 2𝐻3(𝛿𝑗 , 𝛿𝑗+1)− 𝛿𝑗 − 𝛿𝑗+1 = 2𝐻3(𝛿𝑗 , 𝛿𝑗+1)− 𝛿𝑗 − 𝛿𝑗+1 + 𝑂
(︀
ℎ3
)︀

(3.35)

= 2(𝐻3(𝛿𝑗 , 𝛿𝑗+1)− 𝛿𝑗 + 𝛿𝑗+1

2
) + 𝑂

(︀
ℎ3
)︀

= 𝑂
(︀
ℎ3
)︀
.

Now, from the values of 𝛿𝑗 it is immediate to compute the corresponding values 𝑦𝑗 starting from 𝑦0 = 𝑦0.
In the same way from the system,⎡⎢⎣2𝐻3(𝛿𝑖+2, 𝛿𝑖+3)

2𝐻3(𝛿𝑖+3, 𝛿𝑖+4)
· · ·
𝛿𝑚

⎤⎥⎦ =

⎡⎢⎢⎣
𝛿𝑖+2 + 𝛿𝑖+3

𝛿𝑖+3 + 𝛿𝑖+4

· · ·
𝛿𝑚

⎤⎥⎥⎦ , (3.36)

we obtain the values for 𝛿𝑗 , 𝑗 = 𝑖 + 2, . . . ,𝑚 satisfying

𝛿𝑗 − 𝛿𝑗 = 𝑂
(︀
ℎ3
)︀
, 𝑗 = 𝑖 + 2, . . . ,𝑚. (3.37)

From these values 𝛿𝑗 , 𝑗 = 𝑖 + 2, . . . ,𝑚, it is easy again to obtain corresponding values for 𝑦𝑗 .
Now, we build a 𝐶4 function in [𝑎, 𝑏] , just by using piecewise Hermite interpolation 𝑞𝑗(𝑥) of the required
degree at each interval [𝑥𝑗 , 𝑥𝑗+1] , 𝑗 = 1, . . . , 𝑖 − 2, [𝑥𝑖−1, 𝑥𝑖+1], and [𝑥𝑗 , 𝑥𝑗+1] , 𝑗 = 𝑖 + 1, . . . ,𝑚 − 1. At a
interval [𝑥𝑗 , 𝑥𝑗+1] we use {𝑦𝑗 , 𝑦

(𝑖)
𝑗 , 𝑦

(𝑖𝑖)
𝑗 , 𝑦

(𝑖𝑖𝑖)
𝑗 , 𝑦

(𝑖𝑣)
𝑗 } and {𝑦𝑗+1, 𝑦

(𝑖)
𝑗+1, 𝑦

(𝑖𝑖)
𝑗+1, 𝑦

(𝑖𝑖𝑖)
𝑗+1 , 𝑦

(𝑖𝑣)
𝑗+1} as initial conditions to

build the piecewise Hermite intepolation. We observe then, that due to the use of these conditions coming
from a smooth original function, we ensure that the derivative that appear in the error formula for cubic



ON A CLASS OF SPLINES FREE OF GIBBS PHENOMENON S45

linear spline 𝑔[𝑎,𝑥𝑖−2] is bounded independently of the grid size. We then consider 𝑦𝑖 = 𝑞𝑖−1 (𝑥𝑖) . We notice

that 𝐻(𝛿𝑖, 𝛿𝑖+1)− 𝛿𝑖+𝛿𝑖+1
2 = 𝑂(1), 𝐻(𝛿𝑖+1, 𝛿𝑖+2)− 𝛿𝑖+1+𝛿𝑖+2

2 = 𝑂(1), and therefore using also (3.35) and (3.37)
we have ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝛿1
2

𝐻3(𝛿1, 𝛿2)
· · ·
𝐻3(𝛿𝑖, 𝛿𝑖+1)
𝐻3(𝛿𝑖+1, 𝛿𝑖+2)
· · ·
𝐻3(𝛿𝑚−1, 𝛿𝑚)
𝛿𝑚

2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
−

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝛿1
2

𝛿1+𝛿2
2

· · ·
𝛿𝑖+𝛿𝑖+1

2

𝛿𝑖+1+𝛿𝑖+2
2

· · ·
𝛿𝑚−1+𝛿𝑚

2

𝛿𝑚

2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
· · ·
0(1)
0(1)
· · ·
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (3.38)

(3) If the hypothesis needed to guarantee full order of approximation are satisfied in the whole interval [𝑎, 𝑏] ,
then these same hypothesis are also satisfied in the subinterval [𝑎, 𝑥𝑖−2] . Therefore point 3 is proved.

(4) The first affirmation in point 4 was already proved in point 2 since 𝛿𝑗−𝛿𝑗 = 𝑂
(︀
ℎ3
)︀
, 𝑗 = 1, . . . , 𝑖−2, 𝛿1 = 𝛿1

directly implies 𝑦𝑗 − 𝑦𝑗 = 𝑂
(︀
ℎ4
)︀
. Using now the expression of the system (3.14), Theorem 2.1, and the

expressions (2.3) we can easily finish the proof of this point.

Consequently as said before (3.32) finishes the proof. �

4. Analysis of the Gibbs phenomenon for nonlinear cubic splines

In this section we will study the Gibbs phenomenon of nonlinear cubic spline interpolation given by (3.15)
for the step function 𝑓(𝑡) in (4.1),

𝑓(𝑡) =
{︂

0, −1 ≤ 𝑡 < 0,
𝑎, 0 ≤ 𝑡 < 1,

(4.1)

with 𝑎 ∈ R, when uniform grid-spacing is used. Let’s set 𝑚 = 2𝑛 in (3.15), then ℎ = 1/𝑛 if we consider that
𝑡0 = −1, 𝑡𝑛 = 0 and 𝑡2𝑛 = 1. The values 𝐷𝑘 are symmetric with respect to 𝐷𝑛, as the step function that we
are considering is symmetric. Thus, we only need to consider half of them. Then, using the natural boundary
conditions, the system for the 𝐷𝑘 in (3) takes the form,

2𝐷0 + 𝐷1 = 0, (4.2)
𝐷𝑘−1 + 4𝐷𝑘 + 𝐷𝑘+1 = 0, 𝑘 = 1, . . . , 𝑛− 2 (4.3)
𝐷𝑛−2 + 4𝐷𝑛−1 + 𝐷𝑛 = 0, (4.4)
𝐷𝑛−1 + 4𝐷𝑛 + 𝐷𝑛+1 = 0, (𝐷𝑛−1 = 𝐷𝑛) . (4.5)

Let’s consider the elimination of the Gibbs phenomenon for jump discontinuities. First of all let’s remember
the definition of the Gibbs phenomenon introduced by Gottlieb and Shu [25]. Given a punctually discontinuous
function 𝑓 and its sampling 𝑓ℎ defined by 𝑓ℎ

𝑛 = 𝑓(𝑛ℎ), the Gibbs phenomenon deals with the convergence of
the function 𝑔 based on 𝑓ℎ towards 𝑓 when ℎ goes to 0. It can be characterized by two features [25]:

(1) Away from the discontinuity the convergence is rather slow and for any point 𝑥,

|𝑓(𝑥)− 𝑔(𝑥)| = 𝑂(ℎ).

(2) There is an overshoot, close to the discontinuity, that does not diminish with the reduction of ℎ. Thus,

max |𝑓(𝑥)− 𝑔(𝑥)| does not tend to zero with ℎ.
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Taking into account Theorem 2.1 and the definition of the Gibbs phenomenon it is easy to prove the following
theorem,

Theorem 4.1. The nonlinear spline obtained through (3.15) does not present Gibbs oscillations.

Proof. Let’s analyze the right hand side of the system in (3.15). If we remember now that 𝛿𝑖 and 𝛿𝑖−1 are
divided differences, we know that they are 𝑂(1/ℎ) in the presence of a jump discontinuity. Taking into account
property 5 of Proposition 3.8, we know that the right hand side of (3.15) will be,

||f ||∞ = 𝑂 (1) .

Then, the vector of derivatives D that results from solving (3.15) will be,

||D||∞ = ||𝐴−1f ||∞ = 𝑂(1).

Now, looking at the expressions in (2.3) we obtain that,

𝑑𝑖 = 𝑦𝑖,

𝑐𝑖 = 𝐷𝑖 = 𝑂(1),

𝑎𝑖 =
ℎ𝐷𝑖+1 + 𝐷𝑖ℎ + 2𝑦𝑖 − 2𝑦𝑖+1

ℎ3
=

𝑂(ℎ) + 𝑂(ℎ) + 2𝑦𝑖 − 2𝑦𝑖+1

ℎ3
,

𝑏𝑖 = −ℎ𝐷𝑖+1 + 2𝐷𝑖ℎ + 3𝑦𝑖 − 3𝑦𝑖+1

ℎ2
= −𝑂(ℎ) + 2𝑂(ℎ) + 3𝑦𝑖 − 3𝑦𝑖+1

ℎ2
·

(4.6)

At smooth zones 𝑦𝑖+1 − 𝑦𝑖 = 𝑂(ℎ) so,

𝑑𝑖 = 𝑦𝑖,

𝑐𝑖 = 𝐷𝑖 = 𝑂(1),

𝑏𝑖 = −ℎ𝐷𝑖+1 + 2𝐷𝑖ℎ + 3𝑦𝑖 − 3𝑦𝑖+1

ℎ2
= −𝑂(ℎ) + 2𝑂(ℎ)− 3𝑂(ℎ)

ℎ2
=

𝑂(ℎ)
ℎ2

= 𝑂

(︂
1
ℎ

)︂
,

𝑎𝑖 =
ℎ𝐷𝑖+1 + 𝐷𝑖ℎ + 2𝑦𝑖 − 2𝑦𝑖+1

ℎ3
=

𝑂(ℎ) + 𝑂(ℎ)− 2𝑂(ℎ)
ℎ3

=
𝑂(ℎ)
ℎ3

= 𝑂

(︂
1
ℎ2

)︂
,

(4.7)

and if 𝑥 ∈ [𝑥𝑖, 𝑥𝑖+1], the equation of the spline (2.1) transforms into,

𝑔𝑖(𝑥) = 𝑎𝑖 (𝑥− 𝑥𝑖)
3 + 𝑏𝑖 (𝑥− 𝑥𝑖)

2 + 𝑐𝑖 (𝑥− 𝑥𝑖) + 𝑑𝑖 = 𝑂

(︂
1
ℎ2

)︂
𝑂
(︀
ℎ3
)︀

+ 𝑂

(︂
1
ℎ

)︂
𝑂
(︀
ℎ2
)︀

+ 𝑂 (ℎ) + 𝑦𝑖 = 𝑦𝑖 + 𝑂(ℎ). (4.8)

If there is a discontinuity at the interval [𝑥𝑖, 𝑥𝑖+1] then 𝑦𝑖+1 − 𝑦𝑖 = 𝑂(1) and,

𝑑𝑖 = 𝑦𝑖,

𝑐𝑖 = 𝐷𝑖 = 𝑂(1),

𝑏𝑖 = −ℎ𝐷𝑖+1 + 2𝐷𝑖ℎ + 3𝑦𝑖 − 3𝑦𝑖+1

ℎ2
= −𝑂(ℎ) + 2𝑂(ℎ)− 3𝑂(1)

ℎ2
=

𝑂(1)
ℎ2

= 𝑂

(︂
1
ℎ2

)︂
,

𝑎𝑖 =
ℎ𝐷𝑖+1 + 𝐷𝑖ℎ + 2𝑦𝑖 − 2𝑦𝑖+1

ℎ3
=

𝑂(ℎ) + 𝑂(ℎ)− 2𝑂(1)
ℎ3

=
𝑂(1)
ℎ3

= 𝑂

(︂
1
ℎ3

)︂
,

(4.9)
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and if 𝑥 ∈ [𝑥𝑖, 𝑥𝑖+1], the equation of the spline (2.1) transforms into,

𝑔𝑖(𝑥) = 𝑎𝑖 (𝑥− 𝑥𝑖)
3 + 𝑏𝑖 (𝑥− 𝑥𝑖)

2 + 𝑐𝑖 (𝑥− 𝑥𝑖) + 𝑑𝑖 = 𝑂

(︂
1
ℎ3

)︂
𝑂
(︀
ℎ3
)︀

+ 𝑂

(︂
1
ℎ2

)︂
𝑂
(︀
ℎ2
)︀

+ 𝑂 (ℎ) + 𝑦𝑖 = 𝑦𝑖 + 𝑂(1). (4.10)

This means that the perturbation introduced by the nonlinear spline is 𝑂(ℎ) except at the interval that contains
the discontinuity.

Now we can try to prove that the nonlinear spline provides a prediction that is in the interval [𝑦𝑖, 𝑦𝑖+1] when
ℎ goes to zero. In order to do so, we express the equation of the spline (2.1) as

𝑔𝑖(𝑥) = 𝑎𝑖 (𝑥− 𝑥𝑖)
3 + 𝑏𝑖 (𝑥− 𝑥𝑖)

2 + 𝑐𝑖 (𝑥− 𝑥𝑖) + 𝑑𝑖

=
ℎ𝐷𝑖+1 + 𝐷𝑖ℎ + 2𝑦𝑖 − 2𝑦𝑖+1

ℎ3
(𝑥− 𝑥𝑖)

3 − ℎ𝐷𝑖+1 + 2𝐷𝑖ℎ + 3𝑦𝑖 − 3𝑦𝑖+1

ℎ2
(𝑥− 𝑥𝑖)

2

+ 𝐷𝑖 (𝑥− 𝑥𝑖) + 𝑦𝑖.

(4.11)

Now we can do the change of variables used before, 𝑠 = 𝑥−𝑥𝑖

ℎ , and we obtain

𝑔𝑖(𝑥) = (ℎ𝐷𝑖+1 + 𝐷𝑖ℎ + 2𝑦𝑖 − 2𝑦𝑖+1) 𝑠3 − (ℎ𝐷𝑖+1 + 2𝐷𝑖ℎ + 3𝑦𝑖 − 3𝑦𝑖+1) 𝑠2 + 𝐷𝑖ℎ𝑠 + 𝑦𝑖,

=
(︀
1− 𝑠2(3− 2𝑠)

)︀
𝑦𝑖 + 𝑠2(3− 2𝑠)𝑦𝑖+1 +

(︀
𝑠3 − 2𝑠2 + 𝑠

)︀
ℎ𝐷𝑖 +

(︀
𝑠3 − 𝑠2

)︀
ℎ𝐷𝑖+1

= 𝑏1(𝑠)𝑦𝑖+1 + 𝑏2(𝑠)𝑦𝑖 + 𝑏3(𝑠)ℎ𝐷𝑖 + 𝑏4(𝑠)ℎ𝐷𝑖+1,

(4.12)

for 𝑠 ∈ [0, 1]. In this last expression it is easy to see that the first two terms can be interpreted as a weighted
mean of 𝑦𝑖 and 𝑦𝑖+1 (as the element 𝑏1(𝑠) = 𝑠2(3 − 2𝑠) of the Hermite basis is always in the unit interval
𝑏1(𝑠) ∈ [0, 1] if 𝑠 ∈ [0, 1], and 𝑏2(𝑠) = 1− 𝑏1(𝑠)). Thus, the addition of the first two terms of the expression (2.4)
will take a value always in the interval [𝑦𝑖, 𝑦𝑖+1]. The expression can also be reformulated as follows,

𝑔𝑖(𝑥) = 𝑦𝑖 +
(︀
𝑠2(3− 2𝑠)

)︀
(𝑦𝑖+1 − 𝑦𝑖) +

(︀
𝑠3 − 2𝑠2 + 𝑠

)︀
ℎ𝐷𝑖 +

(︀
𝑠3 − 𝑠2

)︀
ℎ𝐷𝑖+1, (4.13)

where the first two terms of (4.13) amount to a dilation and a translation of the element 𝑏1(𝑠) = 𝑠2(3 − 2𝑠),
that has a minimum at 𝑠 = 0 and a maximum at 𝑠 = 1, so it can not introduce Gibbs phenomenon, nor 𝑏2(𝑠).
Let’s analyze the third and fourth terms of (4.13). We can see that 𝑏3(𝑠) and 𝑏4(𝑠) are oscillating functions so
the apparition of Gibbs phenomenon can be explained due to the presence of large coefficients accompanying
these two elements of the Hermite basis. In the case of the nonlinear spline in (3.15) we have already analyzed
that 𝐷𝑖 = 𝑂(1). If this is the case, the two last terms in (4.13) go to zero when ℎ → 0. Thus, there can not be
Gibbs oscillation. �

Remark 4.2. The previous proof is perfectly valid for the translated mean in (3.18) if we take into account
Proposition 3.14 and the definition of the 𝜖 given in (3.21). In the end, the proof presented is based on property
5 of Proposition 3.8 that, in practice, is equivalent to expression (3.19) for the translated mean.

The nonlinear spline does not present Gibbs oscillations for piecewise constant functions and the analysis of
this case is particularly simple and intuitive. The system in (4.2)–(4.5) is homogeneous, so 𝐷𝑖 = 0 ∀𝑖 is the
trivial solution of the system. Thus, looking at the expressions in (2.3) we obtain that

𝑑𝑖 = 𝑦𝑖,

𝑐𝑖 = 𝐷𝑖 = 0,

𝑎𝑖 =
ℎ𝑖+1𝐷𝑖+1 + 𝐷𝑖ℎ𝑖+1 + 2𝑦𝑖 − 2𝑦𝑖+1

ℎ3
𝑖+1

=
2𝑦𝑖 − 2𝑦𝑖+1

ℎ3
𝑖+1

,

𝑏𝑖 = −ℎ𝑖+1𝐷𝑖+1 + 2𝐷𝑖ℎ𝑖+1 + 3𝑦𝑖 − 3𝑦𝑖+1

ℎ2
𝑖+1

= −3𝑦𝑖 − 3𝑦𝑖+1

ℎ2
𝑖+1

,

(4.14)
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and the equation of the spline (2.1) transforms into,

𝑔𝑖(𝑥) = 𝑎𝑖 (𝑥− 𝑥𝑖)
3 + 𝑏𝑖 (𝑥− 𝑥𝑖)

2 + 𝑐𝑖 (𝑥− 𝑥𝑖) + 𝑑𝑖 =
2𝑦𝑖 − 2𝑦𝑖+1

ℎ3
𝑖+1

(𝑥− 𝑥𝑖)
3

− 3𝑦𝑖 − 3𝑦𝑖+1

ℎ2
𝑖+1

(𝑥− 𝑥𝑖)
2 + 𝑦𝑖.

The equation of the spline is

𝑔𝑖(𝑥) =

{︃
−2𝑎
ℎ3

𝑖+1
(𝑥− 𝑥𝑖)

3 + 3𝑎
ℎ2

𝑖+1
(𝑥− 𝑥𝑖)

2 + 𝑦𝑖, 𝑖 = 𝑛− 1,

𝑦𝑖, other case.
(4.15)

If we parametrize this expression, using the change of variables 𝑠 = 𝑥−𝑥𝑖

ℎ𝑖
, we obtain,

𝑔𝑖(𝑠) =
{︂

𝑎𝑠2(3− 2𝑠) + 𝑦𝑖, 𝑖 = 𝑛− 1,
𝑦𝑖, other case, (4.16)

for 𝑠 ∈ [0, 1]. It is clear that the polynomial that we obtain for 𝑖 = 𝑛 − 1 is a dilation and translation of the
element 𝑏1(𝑠) = 𝑠2(3 − 2𝑠) of the Hermite basis. Therefore, it presents a minimum for 𝑠 = 0 and a maximum
for 𝑠 = 1 in the interval [𝑥𝑛−1, 𝑥𝑛], so it does not oscillate. Thus, the resultant spline does not present Gibbs
oscillations for piecewise continuous functions.

Remark 4.3. The previous proof is perfectly valid for the translated mean in (3.18). Taking again into account
Proposition 3.14 and the definition of the 𝜖 given in (3.21), the only difference would be that 𝑐𝑖 = 𝐷𝑖 = 𝑂

(︀
ℎ2
)︀

but the result of the proof would be the same.

5. Numerical experiments

In this section we will present some numerical results that allow to conclude the validity of the theoretical
results presented in the article. More specifically we will show that the nonlinear cubic splines eliminate the Gibbs
phenomenon that appears when using cubic splines and that they keep the order of accuracy of cubic splines at
smooth zones. As it has been shown in Section 4, the nonlinear spline does not present Gibbs oscillations. We
will also test the performance of the new algorithm in the presence of noise. The functions used in this section
have been plotted in Figure 1. At the boundaries we have chosen the natural boundary condition. Any other
condition could have been chosen, as we are only interested in what happens close to the discontinuity.

5.1. Uniform grid-spacing

In this subsection we have chosen a uniform grid-spacing. The original functions have been sampled with 2048
points in the interval [−1, 1], thus the grid spacing is set to ℎ = 2

2047 for all the experiments. Then they have
been subsampled taking one of every 16 samples (here we can choose any number of samples, as we have the
expression of the spline and we can evaluate it at any point of the domain). This resolution has been used for
all the experiments in this section. Then we reconstruct using the information of the subsampled functions and
we compare with the data at the highest resolution. The original subsampled data has been represented with
red filled circles, the original high resolution data with blue crosses and the reconstruction with black points.
We are interested in determining if Gibbs phenomenon appears in the limit function obtained through linear
and nonlinear cubic splines. Moreover we will measure the size of the overshoot introduced by cubic splines
and compare it with the theoretical estimation obtained in Section B. As mentioned in Remark 3.17, all the
numerical experiments presented for the uniform grid spacing have been done using the nonlinear translated
mean (3.16) with the translation defined in (3.18) and the 𝜖 defined in (3.21).
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Figure 1. Functions in (5.1) and (5.2) used for the experiments presented in this section.

Example 5.1. Let’s start by the function,

𝑓(𝑥) =

{︃
sin
(︀

17
8 𝜋𝑥

)︀
if 𝑥 ≤ 0,

1
2 sin

(︀
17
8 𝜋𝑥

)︀
+ 10 if 𝑥 > 0,

(5.1)

presented in Figure 1, to the left. The results have been plotted in Figure 2, where at the top we can see the
results for the nonlinear spline and at the bottom the results for the classical cubic spline. We can see that the
oscillations that appear in the classical spline have been reduced in the results obtained by the nonlinear spline.
In fact, these oscillations go to zero as the grid is refined. Thus, they do not satisfy the conditions described in
[25] (and reproduced in Sect. 4) to be considered Gibbs phenomenon. For this example, the Gibbs oscillations
that appear in the results obtained by the cubic spline present a maximum overshoot that is 10.8% of the jump
in the function. This result agrees quite good with the bound given in (B.22). We observe that both methods
introduce diffusion close to jump discontinuities in the function. In the case that the discontinuity in the original
data is numerical, i.e. it is produced due to a not high enough sampling frequency close to high gradients in the
function, it is good that the method introduces diffusion, as the diffusion is also present in the function from
which the data was obtained.

Now we can check the performance of the linear and nonlinear cubic splines in the presence of noise. If we
add white gaussian noise of zero mean and amplitude 0.1 to the function in (5.1), we obtain the results shown
in Figure 3. We can appreciate that the Gibbs phenomenon is eliminated even in the presence of noise.

Example 5.2. Let’s finish this section with the function,

𝑙(𝑥) =
{︂

1
2𝑥5 − 𝑥2 if 𝑥 ≤ 0,
𝑥6 − 𝑥4 + 𝑥2 − 2 if 𝑥 > 0.

(5.2)

The results are presented in Figure 4. We can observe that the maximum overshoot obtained by the cubic spline
is the 10.78% of the jump, that again is inside the interval given in (B.22). In the results of both approaches we
can observe diffusion, as the proposed technique is not designed to avoid it. The comments that we did about
diffusion in the previous experiment can also be done here.

As before, we can check the performance of the cubic and nonlinear cubic splines in the presence of noise. If
we add white gaussian noise of zero mean and amplitude 0.1 to the function in (5.2) we obtain the results shown
in Figure 5. The results are similar as before and the Gibbs phenomenon is eliminated even in the presence of
noise.
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Figure 2. Top: Function in (5.1) reconstructed with an adapted cubic spline. Bottom: Same
function reconstructed with a non-adapted cubic spline. In both cases, we have presented to
the left the whole domain and to the right a zoom around the discontinuity. The low resolu-
tion discretization (red filled circles) has 128 points and the reconstruction (black points) 2048
points. The original high resolution data has been represented with blue crosses. We can clearly
appreciate that Gibbs phenomenon appears in the result of the cubic spline. We also observe a
very small oscillation in the reconstruction obtained through the nonlinear spline. It turns out
that the oscillation is 𝑂

(︀
ℎ4
)︀

and that goes to zero when ℎ goes to zero. (Color online).

5.2. Grid refinement analysis

In this subsection we present an experiment oriented to check the order of accuracy of the nonlinear cubic
splines close to critical points at smooth zones of the function. In order to do this, we check the error of
interpolation obtained at every grid point inside an interval around the discontinuity and then perform a grid
refinement analysis. We define the order of accuracy of the reconstruction as,

order𝑚 = log2

(︂
𝐸𝑚

𝐸𝑚+1

)︂
,

being 𝐸𝑚 the error obtained with a grid spacing ℎ𝑚 and 𝐸𝑚+1 the error obtained with a grid spacing ℎ𝑚/2.
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Figure 3. Top: Function in (5.1) plus additive white gaussian noise of amplitude 0.1 recon-
structed with an adapted cubic spline. Bottom: Same function reconstructed with a non-adapted
cubic spline. In both cases, we have presented to the left the whole domain and to the right
a zoom around the discontinuity. The low resolution discretization (red filled circles) has 128
points and the reconstruction (black points) 2048 points. The original high resolution data has
been represented with blue crosses. (Color online).

We will use the discrete 𝑙∞ norm,

||𝑓 ||∞ = max
𝑗∈Z

{|𝑓𝑗 |}.

Taking a fine mesh {𝑥𝑗}𝑗∈𝐻 of a small interval around the critical point not crossing any discontinuity, we
compute

𝐸𝑚 = max
𝑗∈𝐻

||𝑓𝑗 − 𝑠𝑗 ||∞,

where 𝑓𝑗 = 𝑓(𝑥𝑗) and 𝑠𝑗 = 𝑠𝑚(𝑥𝑗).

Example 5.3. Let’s consider the function

𝑓(𝑥) = cos
(︂

3𝜋

2
𝑥

)︂
, (5.3)
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Figure 4. Top: Function in (5.2) reconstructed with an adapted cubic spline. Bottom: Same
function reconstructed with a non-adapted cubic spline. In both cases, we have presented to
the left the whole domain and to the right a zoom around the discontinuity. The low resolu-
tion discretization (red filled circles) has 128 points and the reconstruction (black points) 2048
points.The original high resolution data has been represented with blue crosses. (Color online).

that has been plotted in Figure 6. We will check the accuracy of the nonlinear spline in the 𝑙∞ norm close to
the critical point at 𝑥 = 0. The result is presented in Table 1. We can see that the accuracy is order four, just
as the theoretical order attained by the cubic splines at smooth zones.

Example 5.4. Let’s consider again the function in (5.1). In this experiment we want to check if the order
of accuracy at critical points placed at smooth zones are affected by the presence of discontinuities. A grid
refinement analysis for the critical point placed at 𝑥 = −12/17 ≈ −0.7 is presented in Table 2. We can see how
the accuracy of the spline at smooth zones close to critical points is not affected by the discontinuity thanks to
the translation proposed in Section 3.2.

5.3. Non uniform grid-spacing

In this subsection we have chosen a non-uniform grid-spacing. The original functions have been sampled with
2048 points in the interval [−1, 1] at random positions determined by a uniform distribution in that interval.
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Figure 5. Top: Function in (5.2) plus additive white gaussian noise of amplitude 0.1 recon-
structed with an adapted cubic spline. Bottom: Same function reconstructed with a non-adapted
cubic spline. In both cases, we have presented to the left the whole domain and to the right
a zoom around the discontinuity. The low resolution discretization (blue red circles) has 128
points and the reconstruction (black points) 2048 points. The original high resolution data has
been represented with blue crosses. (Color online).

Then they have been subsampled to 128 points taking one of every 16 samples of the original discretization. The
reconstruction is obtained keeping the sampling positions of the original discretization. The original subsampled
data has been represented with red filled circles, the original high resolution data with blue crosses, and the
reconstruction with black points. Now, we are only interested in the apparition of Gibbs phenomenon in the
limit function. Thus, no translation have been used in the nonlinear mean.

Example 5.5. Let’s consider again the function in (5.1). The results have been plotted in Figure 7, where at
the top we can see the results for the nonlinear spline and at the bottom the results for the classical cubic spline.
The conclusions that can be obtained from this experiment are the same that we obtained for the uniform grid
spacing: the Gibbs phenomenon disappears from the result of the nonlinear spline. We can observe a very small
oscillation that goes to zero when the mesh is refined. The overshoot obtained for the cubic spline is about
10.84% of the jump, that agrees with the bound obtained for the uniform case in (B.22), although that formula
is only valid for the uniform case.
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Figure 6. Function in (5.3), used for the grid refinement analysis presented in Table 1.

Table 1. Grid refinement analysis in the 𝑙∞ norm for the new nonlinear spline close to the
critical point at 𝑥 = 0 of the function in (5.3).

𝑚 𝐸𝑚 Order𝑚

8 1.8025e-1 –
16 4.8849e-2 1.8836
32 5.1682e-3 3.2406
64 3.8821e-4 3.7348
128 2.9223e-5 3.7317
256 2.0865e-6 3.8080
512 1.7392e-7 3.5845
1024 1.0382e-8 4.0664

Table 2. Grid refinement analysis in the 𝑙∞ norm for the new nonlinear spline close to the
critical point at 𝑥 = −12/17 ≈ −0.7 of the function in (5.1).

𝑚 𝐸𝑚 Order𝑚

8 3.6224e-1 –
16 2.4647e-1 0.55551
32 7.3385e-2 1.7479
64 1.5542e-2 2.2393
128 1.0265e-3 3.9203
256 4.114e-05 4.6411
512 4.8575e-06 3.0823
1024 2.4875e-07 4.2874
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Figure 7. Top: Function in (5.1) reconstructed with an adapted cubic spline in a non-uniform
grid. The discretization has been done using random positions determined by a uniform distri-
bution in the interval [−1, 1]. Bottom: Same function reconstructed with a non-adapted cubic
spline. In both cases, we have presented to the left the whole domain and to the right a zoom
around the discontinuity. The low resolution discretization (red filled circles) has 128 points
and the reconstruction (black points) 2048 points. The original high resolution data has been
represented with blue crosses. (Color online).

Example 5.6. Let’s finish this subsection considering again the function in (5.2). The results have been plotted
in Figure 8, where at the top we can see the results for the nonlinear spline and at the bottom the results for
the classical cubic spline. These results are qualitatively the same as those obtained in previous subsection.
Gibbs phenomenon does not appear in the reconstruction obtained using the nonlinear spline. The overshoot
obtained for the cubic spline is around the 8.92% of the jump. In this case, the percentage is also inside the
limits provided for the uniform grid-spacing.

6. Conclusions

We have presented a new class of nonlinear cubic splines that are automatically adapted to the presence of
jump discontinuities in the function. The adaption is attained through the introduction of a limiter in the right
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Figure 8. Top: Function in (5.1) reconstructed with an adapted cubic spline in a non-uniform
grid. The discretization has been done using random positions determined by a uniform distri-
bution in the interval [−1, 1]. Bottom: Same function reconstructed with a non-adapted cubic
spline. In both cases, we have presented to the left the whole domain and to the right a zoom
around the discontinuity. The low resolution discretization (red filled circles) has 128 points
and the reconstruction (black points) 2048 points. The original high resolution data has been
represented with blue crosses. (Color online).

hand side of the system of equations of the spline. As far as we know, it is the first time that this limiter appears
in the literature and that this technique is used to adapt splines to the presence of discontinuities. We have
analyzed theoretically the properties of the limiter concluding that it can be used to attain adaption close to
discontinuities. We have proved theoretically that the new class of splines presented is free of Gibbs oscillations
and that it maintains the diffusion in the interval that contains the discontinuity. The diffusion introduced is an
advantage when the discontinuity is numerical, that means that it is produced in the discretization process, due
to a not high enough sampling frequency close to high gradients in the function. In the computer aided design
(CAD) field, this kind of discontinuities are usually solved through a post-processing using a local refinement
of the grid once the result is obtained and the numerical artifacts are observed. The new technique allows to
solve these problems automatically.

We have also proved that cubic splines loss their accuracy close to discontinuities and we have given an
explanation of why this phenomenon occurs. We have given a bound for the oscillations of the cubic splines
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close to the jump discontinuity of a step function in the uniform case. The given bound agrees very well with
the performed numerical tests. In fact all the numerical experiments presented for the uniform case agree very
well with the theoretical results analyzed. In the non-uniform case, the numerical experiments seem to satisfy
bounds for the Gibbs oscillations that are similar to those obtained for the uniform case.

Appendix A. Analysis of the Gibbs phenomenon for cubic splines

In this section we follow the proof in [39] where the authors prove that cubic splines do not present Gibbs
oscillations when interpolating a step function with a value in the middle of the jump. Our case is different, as
we are interested in analyzing piecewise smooth functions.

Theorem A.1. The cubic spline presents Gibbs oscillations for piecewise smooth functions with jump
discontinuities.

Proof. We can follow the proof presented before for nonlinear cubic splines. Let’s analyze the right hand side
of the system in (3.14). If we remember now that 𝛿𝑖 and 𝛿𝑖−1 are divided differences, we know that they are
𝑂(1/ℎ) in the presence of a jump discontinuity. The right hand side of (3.14) will be,

||f ||∞ = 𝑂

(︂
1
ℎ

)︂
·

Then, the vector of derivatives D that results from solving (3.14) will be,

||D||∞ = ||𝐴−1f ||∞ ≤ ||𝐴−1||∞||f ||∞ ≤ 𝑂(1)𝑂
(︂

1
ℎ

)︂
= 𝑂

(︂
1
ℎ

)︂
, (A.1)

since 𝐴 is a symmetric strictly diagonal dominant matrix. Now, looking at the expressions of the coefficients of
the spline in (2.3) we obtain that,

𝑑𝑖 = 𝑦𝑖,

𝑐𝑖 = 𝐷𝑖 = 𝑂

(︂
1
ℎ

)︂
,

𝑎𝑖 =
ℎ𝐷𝑖+1 + 𝐷𝑖ℎ + 2𝑦𝑖 − 2𝑦𝑖+1

ℎ3
=

𝑂 (1) + 𝑂 (1) + 2𝑦𝑖 − 2𝑦𝑖+1

ℎ3
,

𝑏𝑖 = −ℎ𝐷𝑖+1 + 2𝐷𝑖ℎ + 3𝑦𝑖 − 3𝑦𝑖+1

ℎ2
= −𝑂 (1) + 2𝑂 (1) + 3𝑦𝑖 − 3𝑦𝑖+1

ℎ2
·

(A.2)

At smooth zones 𝑦𝑖+1 − 𝑦𝑖 = 𝑂(ℎ) so,

𝑑𝑖 = 𝑦𝑖,

𝑐𝑖 = 𝐷𝑖 = 𝑂

(︂
1
ℎ

)︂
,

𝑏𝑖 = −ℎ𝐷𝑖+1 + 2𝐷𝑖ℎ + 3𝑦𝑖 − 3𝑦𝑖+1

ℎ2
= −𝑂 (1) + 2𝑂 (1)− 3𝑂(ℎ)

ℎ2
= 𝑂

(︂
1
ℎ2

)︂
,

𝑎𝑖 =
ℎ𝐷𝑖+1 + 𝐷𝑖ℎ + 2𝑦𝑖 − 2𝑦𝑖+1

ℎ3
=

𝑂 (1) + 𝑂 (1)− 2𝑂(ℎ)
ℎ3

= 𝑂

(︂
1
ℎ3

)︂
,

(A.3)

and if 𝑥 ∈ [𝑥𝑖, 𝑥𝑖+1], the equation of the spline (2.1) transforms into,

𝑔𝑖(𝑥) = 𝑎𝑖 (𝑥− 𝑥𝑖)
3 + 𝑏𝑖 (𝑥− 𝑥𝑖)

2 + 𝑐𝑖 (𝑥− 𝑥𝑖) + 𝑑𝑖 = 𝑦𝑖 + 𝑂(1), (A.4)

since (𝑥− 𝑥𝑖) = 𝑂(ℎ) if 𝑥 ∈ [𝑥𝑖, 𝑥𝑖+1].
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If there is a discontinuity in the interval [𝑥𝑖, 𝑥𝑖+1] then 𝑦𝑖+1 − 𝑦𝑖 = 𝑂(1) so,

𝑑𝑖 = 𝑦𝑖,

𝑐𝑖 = 𝐷𝑖 = 𝑂

(︂
1
ℎ

)︂
,

𝑏𝑖 = −ℎ𝐷𝑖+1 + 2𝐷𝑖ℎ + 3𝑦𝑖 − 3𝑦𝑖+1

ℎ2
= −𝑂 (1) + 2𝑂 (1)− 3𝑂(1)

ℎ2
= 𝑂

(︂
1
ℎ2

)︂
,

𝑎𝑖 =
ℎ𝐷𝑖+1 + 𝐷𝑖ℎ + 2𝑦𝑖 − 2𝑦𝑖+1

ℎ3
=

𝑂 (1) + 𝑂 (1)− 2𝑂(1)
ℎ3

= 𝑂

(︂
1
ℎ3

)︂
,

(A.5)

and if 𝑥 ∈ [𝑥𝑖, 𝑥𝑖+1], the equation of the spline (2.1) transforms into,

𝑔𝑖(𝑥) = 𝑎𝑖 (𝑥− 𝑥𝑖)
3 + 𝑏𝑖 (𝑥− 𝑥𝑖)

2 + 𝑐𝑖 (𝑥− 𝑥𝑖) + 𝑑𝑖 = 𝑦𝑖 + 𝑂(1). (A.6)

It is easy to make an interpretation of this result: equation (2.4) is valid for the cubic spline and, after (A.1),
we can see that in this case 𝐷𝑖 = 𝐷𝑖+1 = 𝑂

(︀
1
ℎ

)︀
in the 𝑙∞ norm, so the oscillations introduced by the two

Hermite base functions 𝑏3(𝑠) = 𝑠3 − 2𝑠2 + 𝑠 and 𝑏4(𝑠) = 𝑠3 − 𝑠2 do not go away when ℎ goes to zero. Using the
definition introduced by Gottlieb and Shu in [25], we can conclude that the precision of the spline is lost due to
the apparition of Gibbs oscillations. �

Appendix B. Estimation of the overshoot of the Gibbs phenomenon for cubic
splines

In this section we will try to estimate the overshoot that cubic splines introduce close to jump discontinuities
in the function. In order to do so, we follow the proof introduced in [39]. It is important to remark that the
bounds given for the oscillations in [39] are not valid in our case since the authors use for the proofs a step
function that has a value in the middle of the jump discontinuity.

B.1. 𝐿𝑝 convergence

We want to interpolate the step function,

𝑓(𝑡) =
{︂

0, −1 ≤ 𝑡 < 0,
𝑎, 0 ≤ 𝑡 < 1,

(B.1)

with 𝑎 > 0 without loss of generality.
In [39], the authors prove Theorem 2.1 and the following theorem,

Theorem B.1. If we denote by ℎ = max
1≤𝑖≤𝑛

ℎ𝑖, then ||𝑠𝑛 − 𝑓 ||𝑝 → 0 with rate ℎ1/𝑝 if

(︃
𝑛∑︁

𝑘=1

|ℎ𝑘𝐷𝑘−1|𝑝 + |ℎ𝑘𝐷𝑘|𝑝
)︃1/𝑝

is bounded uniformly with respect to 𝑛, 1 ≤ 𝑝 < ∞, where 𝑠𝑛(𝑥) = 𝑔𝑖(𝑥) in (2.1) when 𝑥 ∈ [𝑥𝑖, 𝑥𝑖+1].

A sequence of meshes is called quasi-uniform if there exist 𝜎 > 0 independent of 𝑛, such that
max𝑖 ℎ𝑖

min𝑗 ℎ𝑗
≤ 𝜎.

Theorem B.2. If we assume that the mesh is quasi-uniform, then ||𝑠𝑛−𝑓 ||𝑝 → 0 with rate ℎ1/𝑝 for 1 ≤ 𝑝 < ∞.



ON A CLASS OF SPLINES FREE OF GIBBS PHENOMENON S59

Proof. A sufficient condition for Theorem B.1 to hold is that ℎ||D||𝑝 ≤ 𝐶, where 𝐶 is a constant independent
of ℎ. Then, we need to estimate

||D||𝑝 ≤ ||𝐴−1||𝑝||f ||𝑝.

We already have an upper bound for ||𝐴−1||𝑝 using Theorem 2.1. From (2.7) and using the step function shown
in (4.1), it is straightforward to verify that the right hand side for this particular case is,

f =
(︂

0, . . . , 0,
3𝑎

ℎ2
𝑛

,
3𝑎

ℎ2
𝑛

, 0, . . . , 0
)︂𝑇

. (B.2)

Then, we can obtain the expression for ||f ||𝑝,

||f ||𝑝 =
3𝑎

ℎ2
𝑛

2
1
𝑝 . (B.3)

Then, using Theorem 2.1, we obtain that,

||D||𝑝 ≤ max
𝑖

(︂
1
ℎ𝑖

+
1

ℎ𝑖+1

)︂−1

||f ||𝑝, (B.4)

and we finish the proof. �

B.2. A bound for the overshoot of cubic splines close to a jump discontinuity

In this section we will study the Gibbs phenomenon of cubic spline interpolation for the step function 𝑓
in (4.1) when a uniform grid-spacing is used. Let’s set 𝑚 = 2𝑛 in (2.7), then ℎ = 1/𝑛 if we consider that
𝑡0 = −1, 𝑡𝑛 = 0 and 𝑡2𝑛 = 1, having in mind that we are going to interpolate the function in (4.1). The values
𝐷𝑘 are symmetric with respect to 𝐷𝑛, as the step function that we are considering is symmetric. Thus, we only
need to consider half of them. Then, the system for the 𝐷𝑘 in (3) takes the form,

2𝐷0 + 𝐷1 = 0, (B.5)
𝐷𝑘−1 + 4𝐷𝑘 + 𝐷𝑘+1 = 0, 𝑘 = 1, . . . , 𝑛− 2 (B.6)

𝐷𝑛−2 + 4𝐷𝑛−1 + 𝐷𝑛 =
3𝑎

ℎ
, (B.7)

𝐷𝑛−1 + 4𝐷𝑛 + 𝐷𝑛+1 =
3𝑎

ℎ
, (𝐷𝑛−1 = 𝐷𝑛) . (B.8)

Before proving the main theorems of this section we need the following technical lemma.

Lemma B.3. Let us consider the sequence {𝑐𝑘}𝑘∈N generated by{︂
𝑐1 ∈ R given,
𝑐𝑘+1 = 1

𝑏−𝑐𝑘
,

(B.9)

where 𝑏 is any positive real number. The following statements are true,

(1) The iteration function 𝑔(𝑐) = 1
𝑏−𝑐 has two fixed points given by 𝑐*1 = 𝑏−

√
𝑏2−4
2 and 𝑐*2 = 𝑏+

√
𝑏2−4
2 .

(2) If 𝑐*1 < 𝑐1 < 𝑐*2 then the sequence is monotonically decreasing and converges to 𝑐*1.
(3) If 𝑐1 < 𝑐*1 then the sequence is monotonically increasing and converges to 𝑐*1.

Proof. Solving the equation 𝑐 = 𝑔(𝑐) directly gives the two fixed points 𝑐*1 and 𝑐*2, and this proves the first
statement.

We observe that 𝑐2
𝑘 − 𝑏𝑐𝑘 + 1 = (𝑐𝑘 − 𝑐*1)(𝑐𝑘 − 𝑐*2). Then if 𝑐*1 < 𝑐1 < 𝑐*2, we have that 1

𝑏−𝑐𝑘
< 𝑐𝑘 and

1
𝑏−𝑐𝑦𝑘

> 𝑐*1 for all 𝑘 ∈ N. Therefore the sequence is monotonically decreasing and has a lower bound, which
implies using (B.9) that it converges to 𝑐*1, and we have proven the second statement.
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The proof for the third statement is similar. Since we start this time with 𝑐1 < 𝑐*1, we have that 1
𝑏−𝑐𝑘

> 𝑐𝑘

and 1
𝑏−𝑐𝑦𝑘

< 𝑐*1 for all 𝑘 ∈ N. Thus the sequence is monotonically increasing and has an upper bound, which
implies using (B.9) that it converges to 𝑐*1. �

Theorem B.4. The 𝐷𝑘’s present the following properties,

(1) They have alternating sign:
𝐷𝑛−𝑘(−1)𝑘 < 0, 𝑘 = 1, . . . , 𝑛− 1. (B.10)

(2) Exponential decay:
1
4
|𝐷𝑘+1| < |𝐷𝑘| <

2
7
|𝐷𝑘+1|, 𝑘 = 1, . . . , 𝑛− 2. (B.11)

(3) Upper and lower bounds:

45
71

𝑎 < 𝐷𝑛−1ℎ <
26𝑎

41
, (B.12)

−7𝑎

41
< 𝐷𝑛−2ℎ < −12𝑎

71
· (B.13)

(4) Asymptotical behavior:

lim
𝑛→∞

ℎ𝐷𝑛−2 = −3𝑎

19
, (B.14)

lim
𝑛→∞

ℎ𝐷𝑛−1 =
12𝑎

19
, (B.15)

lim
𝑛→∞

ℎ𝐷𝑛−3 = 0. (B.16)

Proof. Let’s first show that 𝐷0 ̸= 0. If we suppose that 𝐷0 = 0, then 𝐷1 = 0 from (B.5), and 𝐷2 = 0, . . . , 𝐷𝑛−1 =
0 from (B.6). Then, using (B.7) 𝐷𝑛−1 = 3𝑎

5ℎ · This a contradiction and 𝐷0 ̸= 0.
If 𝐷0 ̸= 0, then 𝐷0𝐷1 < 0 and |𝐷1| = 2|𝐷0| using (B.5). Then, from (B.6) it is easy to see that 𝐷0+4𝐷1+𝐷2 =

0 and then 𝐷1𝐷2 < 0 and,

|4𝐷1| = | −𝐷2 −𝐷0| = |𝐷2|+ |𝐷0| = |𝐷2|+
1
2
|𝐷1|. (B.17)

Thus
(︀
4− 1

2

)︀
|𝐷1| = |𝐷2|, and therefore |𝐷1| = 2

7 |𝐷2|. Following the same argument we obtain recursively
|𝐷𝑘| = 𝑐𝑘+1|𝐷𝑘+1|, with 𝑐𝑘 satisfying, {︂

𝑐1 = 1
2 ,

𝑐𝑘+1 = 1
4−𝑐𝑘

· (B.18)

Using Lemma B.3, since 2−
√

3 < 1
2 < 2+

√
3, the sequence {𝑐𝑘}𝑘∈N is, monotonically decreasing and converges

to 2−
√

3. Now, we get that,

1
4
|𝐷𝑘+1| ≤

1
4− 𝑐𝑘

|𝐷𝑘+1| = |𝐷𝑘| ≤
2
7
|𝐷𝑘+1|.

We have seen that 𝐷1 has different sign than 𝐷2. By induction we suppose that 𝐷𝑙 has different sign that 𝐷𝑙−1

for any 𝑙 = 3, 4, . . . , 𝑛−2. Since |4𝐷𝑙| = 4
4−𝑐𝑙−1

|𝐷𝑙−1| > |𝐷𝑙−1|, we get from the equation 𝐷𝑙−1 +4𝐷𝑙 +𝐷𝑙+1 = 0
that 𝐷𝑙 has also different sign than 𝐷𝑙+1, and we have proved properties 1 and 2 of the theorem.

Now we can obtain 𝐷𝑛−2 and 𝐷𝑛−1 solving (B.6) and (B.7),

𝐷𝑛−2ℎ = −5ℎ𝐷𝑛−3 + 3𝑎

19
, (B.19)

𝐷𝑛−1ℎ =
ℎ𝐷𝑛−3 + 12𝑎

19
· (B.20)
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Remind now that 𝐷𝑛−3𝐷𝑛−2 < 0 and |𝐷𝑛−2|/4 < |𝐷𝑛−3| < 2
7 |𝐷𝑛−2|. From (B.19) we can see that there is

no other option than 𝐷𝑛−3 > 0 to satisfy the condition 𝐷𝑛−3𝐷𝑛−2 < 0. Then 𝐷𝑛−2 < 0. We also have that
from (B.19),

− 3𝑎

19ℎ
= 𝐷𝑛−2 +

5
19

𝐷𝑛−3

= 𝐷𝑛−2 +
5
19
|𝐷𝑛−3|

{︃
< 𝐷𝑛−2 + 5

19
2
7 |𝐷𝑛−2| = − 123

133 |𝐷𝑛−2|,

> 𝐷𝑛−2 + 5
19
|𝐷𝑛−2|

4 = − 71
76 |𝐷𝑛−2|.

Operating from the first inequality we easily obtain that,

ℎ|𝐷𝑛−2| <
7𝑎

41
,

and manipulating the second inequality we arrive to,

ℎ|𝐷𝑛−2| >
12𝑎

71
·

Consequently we obtain that,

−7𝑎

41
< ℎ𝐷𝑛−2 < −12𝑎

71
·

Now, using the previous relation and (B.7) we obtain that,

𝐷𝑛−1ℎ =
3𝑎

5
− 𝐷𝑛−2ℎ

5
=

{︃
< 3𝑎

5 + 7𝑎
205 = 26𝑎

41 ,

> 3𝑎
5 + 1

5
12𝑎
71 = 45

71𝑎,
(B.21)

so 45
71𝑎 < 𝐷𝑛−1ℎ < 26𝑎

41 · Thus, we have proved property 3.
Again from Lemma B.3 and having into account that ℎ = 1

𝑛 it follows that 𝐷*
𝑛−3 = ℎ𝐷𝑛−3 is a monotonically

decreasing sequence with
lim

𝑛→∞
𝐷*

𝑛−3 = lim
𝑛→∞

ℎ𝐷𝑛−3 = 0.

Then from (B.19) 𝐷*
𝑛−2 = ℎ𝐷𝑛−2 is a monotonically increasing sequence and

lim
𝑛→∞

𝐷*
𝑛−2 = lim

𝑛→∞
ℎ𝐷𝑛−2 = −3𝑎

19
·

And from (B.20) 𝐷*
𝑛−1 = ℎ𝐷𝑛−1 is a monotonically decreasing sequence and

lim
𝑛→∞

𝐷*
𝑛−1 = lim

𝑛→∞
ℎ𝐷𝑛−1 =

12𝑎

19
,

and we have proved property 4. �

Theorem B.5. The overshoot for the cubic spline 𝑔𝑖(𝑡) close to the jump discontinuity of a step function 𝑓 is
bounded by,

0.1068𝑎 < max
𝑡𝑘−1≤𝑡≤𝑡𝑘

|𝑔𝑘−1(𝑡)− 𝑓(𝑡)| < 0.1089𝑎. (B.22)

Proof. From the properties obtained for the 𝐷𝑖 we can try to compute the size of the overshoot. We have already
seen that we can express the spline in terms of the Hermite basis. Let’s consider the expression of the 𝑙∞ norm
of the error at the region where 𝑓(𝑡) = 0 in (4.1). Using (4.13), the expression of the error is,

max
𝑡𝑘−1≤𝑡≤𝑡𝑘

|𝑠𝑛(𝑡)− 𝑓(𝑡)| = max
𝑡𝑘−1≤𝑡≤𝑡𝑘

⃒⃒⃒⃒
𝐷𝑘−1𝑏3

(︂
𝑡− 𝑡𝑘

ℎ

)︂
ℎ + 𝐷𝑘𝑏4

(︂
𝑡− 𝑡𝑘

ℎ

)︂
ℎ

⃒⃒⃒⃒
= |𝐷𝑘|ℎ max

0≤𝑠≤1

(︂
−𝐷𝑘−1

𝐷𝑘
𝑏3 (𝑠)− 𝑏4 (𝑠)

)︂
, (B.23)
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where we have made use of the fact that 𝐷𝑘𝐷𝑘−1 < 0 and 𝑏4(𝑠) < 0 ∀𝑠 ∈ [0, 1].
Now we can make use of the exponential decay property (B.11) in order to see that,

1
4
≤ − 𝐷𝑘

𝐷𝑘+1
≤ 2

7
, (B.24)

4−(𝑛−1−𝑘)𝐷𝑛−1 ≤ |𝐷𝑘| ≤
(︂

2
7

)︂𝑛−1−𝑘

𝐷𝑛−1. (B.25)

Now let’s use the bound in (B.24) in (B.23). Then we can write the error functions,

𝑒(𝑠) =
1
4
𝑏3(𝑠)− 𝑏4(𝑠),

𝐸(𝑠) =
2
7
𝑏3(𝑠)− 𝑏4(𝑠).

Then it is easy to see that

max
0≤𝑠≤1

𝑒(𝑠) = 𝑒

(︃√
13 + 2

9

)︃
=

35
486

+
13
486

√
13,

max
0≤𝑠≤1

𝐸(𝑠) = 𝐸

(︃
3 +

√
39

15

)︃
=

12
175

+
26
√

39
1575

·

Then, for 𝑘 = 1, . . . , 𝑛− 1,

35
486

+
13
486

√
13 < −𝐷𝑘−1

𝐷𝑘
𝑏3 (𝑠)− 𝑏4 (𝑠) <

12
175

+
26
√

39
1575

· (B.26)

Now, we have an estimate of 𝐷𝑘ℎ from (B.25) and (B.12),

4−𝑛+1+𝑘 45
71

𝑎 < |𝐷𝑘ℎ| <
(︂

2
7

)︂𝑛−1−𝑘 26𝑎

41
· (B.27)

Replacing (B.26) and (B.27) in (B.23), we have that for 𝑘 = 1, . . . , 𝑛− 1,

max
𝑡𝑘−1≤𝑡≤𝑡𝑘

|𝑠𝑛(𝑡)− 𝑓(𝑡)| <
(︂

2
7

)︂𝑛−1−𝑘 26𝑎

41

(︃
12
175

+
26
√

39
1575

)︃

<

(︂
2
7

)︂𝑛−1−𝑘

0.1089𝑎 (B.28)

max
𝑡𝑘−1≤𝑡≤𝑡𝑘

|𝑠𝑛(𝑡)− 𝑓(𝑡)| > 4−(𝑛−1−𝑘) 45
71

𝑎

(︂
35
486

+
13
486

√
13
)︂

> 4−(𝑛−1−𝑘)0.1068𝑎. (B.29)

Now setting 𝑘 = 𝑛− 1 in (B.28) and (B.29), we have that the overshoot for the cubic spline is bounded by,

0.1068𝑎 < max
𝑡𝑘−1≤𝑡≤𝑡𝑘

|𝑠𝑛(𝑡)− 𝑓(𝑡)| < 0.1089𝑎. (B.30)
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