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HIGH-ORDER GALERKIN METHOD FOR HELMHOLTZ AND LAPLACE
PROBLEMS ON MULTIPLE OPEN ARCS

Carlos Jerez-Hanckes1,* and José Pinto2

Abstract. We present a spectral Galerkin numerical scheme for solving Helmholtz and Laplace prob-
lems with Dirichlet boundary conditions on a finite collection of open arcs in two-dimensional space. A
boundary integral method is employed, giving rise to a first kind Fredholm equation whose variational
form is discretized using weighted Chebyshev polynomials. Well-posedness of the discrete problems is
established as well as algebraic or even exponential convergence rates depending on the regularities of
both arcs and excitations. Our numerical experiments show the robustness of the method with respect
to number of arcs and large wavenumber range. Moreover, we present a suitable compression algorithm
that further accelerates computational times.
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1. Introduction

We present a spectral Galerkin method for solving weakly singular boundary integral equations (BIEs) arising
from Laplace or Helmholtz Dirichlet problems on unbounded domains with boundaries composed of finite
collections of disjoints finite open arcs in R2. Such problems are of particular interest in multiple contexts: in
structural and mechanical engineering, wherein fractures or cracks are represented as slits [5, 24, 35, 36]; in the
detection of micro-fractures [1, 3] and even for the imaging of muscular strains due to sport injuries [38]. For
these applications, one is interested in developing a numerical scheme that can robustly deal with large numbers
of arcs – from tens to thousands – for a broad range of wavelengths – ranging from zero to several hundred
times the length of the arcs.

For a single arc, Well-posedness of these problems was studied in [34]. Here, we only perform minor extensions
to ensure uniqueness and existence of solutions for the multiple arcs case. In particular, volume solutions are
shown to be constructed as superpositions of single layer potentials applied to surface densities over each arc;
these layer densities are derived from solving a system of BIEs. Numerical approximations of these boundary
unknowns are traditionally obtained via either variational methods such as the boundary element method
(BEM) [32] or Nyström-type strategies [6, 9]. In this work, we opt for the former.
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Still, for the type of applications considered, several issues hinder the standard low-order BEM performance.
On one hand, solutions at the continuous level are well known to exhibit square-root singularities at the arcs’
endpoints [8, 13, 23]. Consequently, convergence of low-order uniform-mesh discretizations is suboptimal with
improvements relying on either graded [39] or adaptive mesh refinement [10], or on augmenting the approxi-
mation space [34]. Also, the Galerkin matrices derived from first kind Fredholm formulations are intrinsically
ill-conditioned, thus heavily requiring preconditioning [15, 27]. Moreover, the minimal number of unknowns to
ensure asymptotic convergence increases with the wavenumber [28] while the number of matrix entries grow
quadratically with the number of arcs in order to account for cross-interactions. Hence, for the present problems
of interest, one can expect extremely large numbers of degrees of freedom (dofs) when using mesh-dependent
methods and alternative ones must be sought.

In [4,21] a spectral Galerkin–Bubnov discretization for a single arc was shown to greatly reduce the number of
dofs in comparison to the case of locally defined low-order bases. Specifically, the approximation basis employed
is given by weighted first kind Chebyshev polynomials, where the weight mimics the singular behavior at the
endpoints. Our work expands the use of such bases to multiple arcs and Helmholtz cases providing also a rigorous
convergence analysis. The analysis presented here is based in the asymptotic decay of the Fourier–Chebyshev
expansions coefficients of the solutions. With these tools, one can derive convergence rates for order 𝑝 polynomial
approximations that only depend on the smoothness of excitations and arcs, with constants that may depend
on the wavenumber. In particular, one obtains super-algebraic convergence when both arcs and sources can be
represented by analytic functions.

Alternatively, for two-dimensional problems, the BIEs for open arcs can be recasted as a problem of integral
equations on closed boundaries for even functions. This is done using a cosine change of variables (cf. [4] or [31],
Chap. 11). Using this property along with classical Fourier analysis, we retrieve convergence rates given in [4]
for single arc. Thus, our proof of convergence can be seen as the Fourier–Chebyshev version of those results,
with the additional extension to the Helmholtz case.

For implementation purposes, we follow the scheme introduced in [16] wherein all integral kernel singularities
are subtracted. This gives rise to smooth and singular functions whose integrals are respectively computed
via the Fast Fourier Transform (FFT) [20] and analytically using a Chebyshev polynomial expansion of the
fundamental solution [11]. Recently, Slevinsky and Olver [33] devised a similar construction based on Chebyshev
polynomials for more general integral equations, but limited to line segments and focused exclusively on the
spectral properties of collocation methods. Though the authors also provide ideas on how to extend their
method to more general arcs, the focus remains in solving a linear system. Hewett et al. [14] propose a different
numerical method for which they also obtain super-convergence. Their discretization basis captures explicitly
the oscillatory behavior on a segment while employing an adaptive low polynomial order bases for the slow but
singular part. This splitting leads to impressive results especially for high-frequency, yet its use is restricted to
collinear segments and not for general arcs. Still, our approach could be combined with this one but this would
require significant work beyond the scope of the present manuscript.

The structure of a problem with multiple arcs implies that many of the interactions, in the BIE system, are
characterized by a smooth kernel functions. Thus, one can generally compress these interactions by considering
fewer functions than in the self-interaction case. This hints at a compression algorithm, in the same spirit of [22].
Here, the implementation is performed by a bisection algorithm which allows to reuse the integration routines
of self-interactions terms. Moreover, we obtain bounds on how the introduction of this compression algorithm
affects the accuracy of the numerical solution.

It is also well known that first kind formulations for open arc problems suffer from poor performance when
solving the associated linear system via iterative methods. Many remedies for this issue have been proposed,
among which the construction of preconditioners has received attention in recent years (cf. [15, 19, 25] for
detailed reviews). These preconditioning techniques could be combined with our spectral solver. Indeed, as
spectral methods entail significantly fewer dofs in comparison to low-order methods for a fixed accuracy, it is
feasible to invert self-interaction parts of the matrix using a direct method and, by doing so, obtain a better
preconditioner. Since the multiple scattering problem requires a large amount of memory to store the problem
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matrix, direct methods for the full matrix could only be used when the product of frequency and total length
of the arcs is small. Moreover, and contrary to what one could expect, the direct method also suffers from
numerical cancellation/round-off errors (see Sect. 7.1 for an ilustration). Hence, the need of iterative solvers is
mandatory and effective use requires matrix-vector product acceleration.

The paper is organized as follows. Section 2 sets forward formal definitions and properties needed throughout.
In Section 3, we formulate the problem as a system of BIEs and show that these are well posed. Section 4 gives
details on the Galerkin discretization method; in particular, we establish error convergence rates for the discrete
problem assuming regularity conditions on the data. Employed quadrature schemes are detailed in Section 5.
Our proposed compression algorithm is given in Section 6. Numerical results illustrating the accuracy of the
method as well as the performance of the compression algorithm are presented in Section 7. Finally, conclusions
are drawn along with appendices for completeness.

2. Mathematical tools

2.1. General notation

We employ the standard 𝒪(·) and 𝑜(·) notation for asymptotics. We also use the notation 𝑎𝑛 . 𝑏𝑛 if there
exists a positive constant 𝐶 and an integer 𝑁 > 0 such that 𝑎𝑛 ≤ 𝐶𝑏𝑛 for all 𝑛 > 𝑁 .

Vectors are indicated by boldface symbols with Euclidean norm written as ‖ · ‖2; other norms are signaled by
subscripts. Quantities defined over volume domains will be written in capital case whereas those on boundaries
in normal one, e.g. 𝑈 : 𝐺→ C while 𝑢 : 𝜕𝐺→ C.

Let 𝐺 ⊆ R𝑑, 𝑑 = 1, 2, be an open domain. For 𝑘 ∈ N ∪ {0}, 𝒞𝑘(𝐺) denotes the set of 𝑘-times continuously
differentiable functions over 𝐺. Compactly supported 𝒞𝑘(𝐺)-functions are designated by 𝒞𝑘

0 (𝐺). Denote by
𝒟(𝐺) ≡ 𝒞∞0 (𝐺) the space of infinitely differentiable functions with compact support on a open set 𝐺. Duals
are indicated by asterisks, e.g. the space of distributions is 𝒟*(𝐺). The class of 𝑝-integrable functions over 𝐺 is
written 𝐿𝑝(𝐺). Duality pairings and inner products are written as ⟨·, ·⟩ and (·, ·), respectively, with subscripts
declaring the domain involved, if not clear from the context.

We say that 𝑔 : (−1, 1) → C is in 𝒞𝑚
𝑣 (−1, 1), if 𝑔 is in 𝒞𝑚(−1, 1) and its 𝑚th derivative has bounded variation,

i.e. the distributional derivative 𝑔(𝑚+1) is Lebesgue integrable. Notice that 𝒞𝑚+1(−1, 1) ⊂ 𝒞𝑚
𝑣 (−1, 1). Also we

say 𝑔 (a function as before) is 𝜌-analytic, if there exists a Bernstein ellipse of parameter 𝜌 > 1, such that 𝑔 can
be extended to an analytic function in the complex ellipse containing the interval (−1, 1) (cf. [37], Chap. 8).

Lastly, throughout we will claim a sesquilinear form to be coercive if it is the addition of a positive definite
form and a compact one; similarly for induced operators.

2.2. Arcs

We call Λ ⊂ R2 a regular Jordan arc of class 𝒞𝑚 (resp. 𝒞𝑚
𝑣 ), for 𝑚 ∈ N, if there exists a bijective parametriza-

tion denoted by r : (−1, 1) → Λ, such that its components are 𝒞𝑚(−1, 1)-functions (resp. 𝒞𝑚
𝑣 (−1, 1)-functions)

and inf𝑡∈(−1,1) ‖r′(𝑡)‖2 > 0. Analogously, we say that Λ is 𝜌-analytic, if there is a corresponding parametrization
that is 𝜌-analytic. Henceforth, we assume all arcs to be Jordan arcs of a given regularity and we will refer to
them as open arcs or just arcs.

Assumption 2.1. For any Λ open arc, there exists an extension to Λ̃ which is a simple closed curve containing
and having the same regularity of Λ.

We consider a finite number 𝑀 ∈ N of open arcs {Γ𝑖}𝑀
𝑖=1, such that under Assumption 2.1 their extensions

are mutually disjoint. We define

Γ :=
𝑀⋃︁
𝑖=1

Γ𝑖 and Ω := R2 ∖ Γ.
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Assumption 2.2. There are 𝑀 domains Ω𝑖 whose boundaries are given by 𝜕Ω𝑖 = ̃︀Γ𝑖, for 𝑖 = 1, . . . ,𝑀 , and
their closures Ω𝑖 are disjoints.

For 𝑚 ∈ N, we say that the family of arcs Γ is of class 𝒞𝑚 (resp. 𝒞𝑚
𝑣 ), if each arc Γ𝑖 is of class 𝒞𝑚 (resp.

𝒞𝑚
𝑣 ), and write Γ ∈ 𝒞𝑚 (resp. Γ ∈ 𝒞𝑚

𝑣 ); similarly for 𝜌-analytic arcs. Denote by r𝑖 a parametrization of the
corresponding regularity mapping (−1, 1) to an arc Γ𝑖, 𝑖 ∈ {1, . . . ,𝑀}. For a vector function g = (𝑔1, . . . , 𝑔𝑀 )
such that 𝑔𝑖 : Γ𝑖 → C, for 𝑖 ∈ {1, . . . ,𝑀}, we state that g is of class 𝒞𝑚(Γ) (resp. 𝒞𝑚

𝑣 (Γ)), if 𝑔𝑖 ∘ r𝑖 ∈ 𝒞𝑚(−1, 1)
(resp. 𝑔𝑖 ∘ r𝑖 ∈ 𝒞𝑚

𝑣 (−1, 1)), for 𝑖 ∈ {1 . . .𝑀}, and denote g ∈ 𝒞𝑚(Γ) (resp. g ∈ 𝒞𝑚
𝑣 (Γ)), and again the 𝜌-analytic

case is defined analogously.
Finally, we will identify every open arc with a given parametrization so that for example Λ1 :={︀

(𝑡3, 1), 𝑡 ∈ (−1, 1)
}︀

and Λ2 := {(𝑡, 1), 𝑡 ∈ (−1, 1)} are different arcs, even if they are the same set of points in
R2. We will frequently refer to the canonical open arc:

̂︀Γ := {(𝑡, 0), 𝑡 ∈ (−1, 1)} .

2.3. Sobolev spaces and trace operators

Let 𝐺 ⊆ R𝑑, 𝑑 = 1, 2, be an open domain. For 𝑠 ∈ R, we denote by 𝐻𝑠(𝐺) the standard Sobolev spaces in
𝐿2(𝐺) and by 𝐻𝑠

loc(𝐺) their locally integrable counterparts ([32], Sect. 2.3). We also use the following Hilbert
space for 𝐺 ⊂ R2:

𝑊 (𝐺) :=

{︃
𝑈 ∈ 𝒟*(𝐺) :

𝑈(x)√︀
1 + ‖x‖22 log(2 + ‖x‖22)

∈ 𝐿2(𝐺),∇𝑈 ∈ 𝐿2(𝐺)

}︃
,

which is a subspace of 𝐻1
loc(𝐺). Under Assumption 2.1 for a open arc Λ, we define

̃︀𝐻𝑠(Λ) :=
{︁
𝑢 ∈ 𝒟*(Λ) : ̃︀𝑢 ∈ 𝐻𝑠(̃︀Λ)

}︁
, 𝑠 > 0,

wherein ̃︀𝑢 denotes the extension by zero of 𝑢 to ̃︀Λ. For 𝑠 > 0, we can identify

̃︀𝐻−𝑠(Λ) = (𝐻𝑠(Λ))* and 𝐻−𝑠(Λ) = ( ̃︀𝐻𝑠(Λ))*.

We will also need the family of mean-zero Sobolev spaces:

̃︀𝐻𝑠
⟨0⟩(Λ) =

{︁
𝑢 ∈ ̃︀𝐻𝑠(Λ) : ⟨𝑢, 1⟩ = 0

}︁
, 𝑠 ∈ R.

The following result will be used to establish convergence rates and error computations in our numerical exper-
iments (cf. Sect. 7) with proof given in Appendix B.

Lemma 2.3. Let 𝜁 ∈ 𝐻 1
2 (Γ𝑖), 𝜓 ∈ ̃︀𝐻− 1

2 (Γ𝑖), and r𝑖 : (−1, 1) → Γ𝑖, the parametrization of Γ𝑖. Then, we have
the norm equivalences:

𝑐 ‖𝜁‖
𝐻

1
2 (Γ𝑖)

≤ ‖𝜁 ∘ r𝑖‖
𝐻

1
2 (̂︀Γ)

≤ 𝐶 ‖𝜁‖
𝐻

1
2 (Γ𝑖)

,

𝑐 ‖𝜓‖ ̃︀𝐻− 1
2 (Γ𝑖)

≤ ‖𝜓 ∘ r𝑖‖ ̃︀𝐻− 1
2 (̂︀Γ)

≤ 𝐶 ‖𝜓‖ ̃︀𝐻− 1
2 (Γ𝑖)

,

where the pullbacks for negative order are defined by duality, with generic positive constants 𝑐 and 𝐶 depending
on Γ𝑖.

For the finite union of disjoint open arcs Γ, we define piecewise spaces as

H𝑠(Γ) := 𝐻𝑠(Γ1)×𝐻𝑠(Γ2)× · · · ×𝐻𝑠(Γ𝑀 ).
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Norms and dual products are naturally extended by the previous identification, similarly for spaces ̃︀H𝑠(Γ) and̃︀H𝑠
⟨0⟩(Γ), while H𝑠(̂︀Γ) is understood as the Cartesian product

∏︀𝑀
𝑖=1𝐻

𝑠(̂︀Γ).
For 𝑈 ∈ 𝒞∞(Ω𝑖) (resp. 𝑈 ∈ 𝒞∞(R2 ∖ Ω𝑖)), we can set the interior (−) (resp. exterior (+)) Dirichlet traces:

𝛾±𝑖 𝑈(x) := lim
𝜖↓0

𝑈(x± 𝜖n𝑖) ∀x ∈ Γ𝑖,

where n𝑖 denotes the unitary normal vector with direction (𝑟′𝑖,2,−𝑟′𝑖,1). If 𝛾+
𝑖 𝑈 = 𝛾−𝑖 𝑈 , we denote 𝛾𝑖𝑈 := 𝛾±𝑖 𝑈 .

These definitions can be extended to more general Sobolev spaces by density, in particular, we have that
𝛾±𝑖 : 𝐻1

loc(Ω) → 𝐻
1
2 (Γ𝑖) as a bounded linear operator (see [26], Thm. 3.37). Neumann traces can be defined for

smooth functions 𝑈 as
𝛾±N,𝑖𝑈 := lim

𝜖↓0
n𝑖 · ∇𝑈(x± 𝜖n𝑖), ∀x ∈ Γ𝑖.

In contrast to the Dirichlet trace, the extension to Sobolev spaces is carried out using Green’s formula in Ω𝑖

along with the restriction operator. For 𝑈 ∈ 𝐻1
loc(Ω𝑖) and ∆𝑈 ∈ 𝐿2

loc(Ω𝑖), then 𝛾±N,𝑖𝑈 ∈ 𝐻− 1
2 (Γ𝑖) (cf. [26],

Lem. 4.3). Finally, traces taken with respect to the domains Ω𝑖, 𝑖 ∈ {1, . . . ,𝑀} will be denoted ̃︀𝛾±𝑖 and ̃︀𝛾±N,𝑖

respectively.

3. Boundary integral problem formulation

As explained, we are interested in solving the families of boundary value problems in Ω below via suitable
integral representations with unknowns densities over the boundaries Γ.

Problem 3.1 (Volume problem). Let g = (𝑔1, . . . , 𝑔𝑀 ) ∈ H 1
2 (Γ) and consider a bounded real wavenumber

𝜅 ≥ 0. We seek 𝑈 ∈ 𝐻1
loc(Ω) such that

−∆𝑈 − 𝜅2𝑈 = 0 in Ω, (3.1)
𝛾±𝑖 𝑈 = 𝑔𝑖 for 𝑖 = 1, . . . ,𝑀, (3.2)

condition at infinity(𝜅). (3.3)

The case 𝜅 = 0 corresponds to the Laplace operator whereas 𝜅 > 0 to the Helmholtz one. The behavior at
infinity (3.3) depends on 𝜅 in the following way: if 𝜅 > 0, we employ the classical Sommerfeld condition:

lim
𝑅→∞

∫︁
‖x‖=𝑅

⃒⃒⃒⃒
𝜕𝑈

𝜕𝑟
(x)− 𝑖𝜅𝑈(x)

⃒⃒⃒⃒2
dΓx = 0,

where 𝑅 = ‖x‖2. If 𝜅 = 0, we seek solutions 𝑈 ∈𝑊 (Ω). For 𝜅 > 0 the existence and uniqueness of Problem 3.1
can be obtained from Lemma 1.2 of [34], while for 𝜅 = 0 although very similar to Lemma 1.1 of [34], the result
is sightly different as we need to use the space 𝑊 (Ω). For sake of completeness, uniqueness is addressed in
Appendix A.

We can express the volume solution 𝑈 as

𝑈(x) =
𝑀∑︁
𝑖=1

(SL𝑖[𝜅]𝜆𝑖)(x), ∀x ∈ Ω, (3.4)

where
(SL𝑖[𝜅]𝜆𝑖)(x) :=

∫︁
Γ𝑖

𝐺𝜅(x,y)𝜆𝑖(y)dΓ𝑖(y),

denotes the single layer potential generated at a curve Γ𝑖 with fundamental solution:

𝐺𝜅(x,y) =

⎧⎪⎨⎪⎩
−1
2𝜋

log ‖x− y‖2 𝑘 = 0,
𝑖

4
𝐻1

0 (𝜅‖x− y‖2) 𝑘 > 0.
(3.5)
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Here, 𝐻1
0 (·) denotes the zeroth-order first kind Hankel function ([2], Chap. 9). From the properties of the single

layer potential on closed domains ([26], Chap. 7) and the completion ̃︀Γ𝑖 for each arc, one can see that

SL𝑖[𝜅] : 𝐻− 1
2 (Γ𝑖) → 𝐻1

loc(R2),

as a bounded linear map. Moreover, if 𝑈 is expressed as in (3.4), then it solves (3.1). By Theorem 9.6 of [26]
for 𝜅 > 0, the representation (3.4) satisfies the Sommerfeld condition. The case 𝜅 = 0 is given by the following
result.

Lemma 3.2. The single layer potential SL𝑖[0] is a bounded linear map between the spaces ̃︀𝐻− 1
2

⟨0⟩ (Γ𝑖) and
𝑊 (R2 ∖ Γ𝑖).

Proof. As ̃︀𝐻− 1
2

⟨0⟩ (Γ𝑖) ⊂ ̃︀𝐻− 1
2 (Γ𝑖) we have that SL𝑖[0] : ̃︀𝐻− 1

2
⟨0⟩ (Γ𝑖) → 𝐻1

loc(R2). Hence, we only need to verify the
conditions:

(SL𝑖[0]𝑢)(x)√︁
1 + ‖x‖22 log(2 + ‖x‖22)

∈ 𝐿2(R2 ∖ Γ𝑖), and ∇ (SL𝑖[0]𝑢) ∈ 𝐿2(R2 ∖ Γ𝑖),

for every 𝑢 ∈ ̃︀𝐻− 1
2

⟨0⟩ (Γ𝑖). From Corollary 8.11 of [26], we know that the asymptotic behavior of the single layer
potential for large arguments is

(SL𝑖[0]𝑢)(x) = − 1
2𝜋
⟨𝑢, 1⟩ log ‖x‖2 +𝒪

(︁
‖x‖−1

2

)︁
, for ‖x‖2 →∞.

Thus, if 𝑢 ∈ ̃︀𝐻− 1
2

⟨0⟩ (Γ𝑖) then

(SL𝑖[0]𝑢)(x) = 𝒪
(︁
‖x‖−1

2

)︁
, for ‖x‖2 →∞. (3.6)

Using polar coordinates and the above bound, we can verify the conditions directly. �

In order to find the boundary unknowns 𝜆𝑖, we take Dirichlet traces of the single layers potentials and impose
(3.2). This induces the definition of weakly singular boundary integral operators (BIOs) as

ℒ𝑖𝑗 [𝜅] :=
1
2
(︀
𝛾+

𝑖 SL𝑗 [𝜅] + 𝛾−𝑖 SL𝑗 [𝜅]
)︀

= 𝛾𝑖SL𝑗 [𝜅],

the last equation resulting from the continuity properties of the SL𝑖 across Γ𝑖 for each 𝑖 = 1, . . . ,𝑀 .

Problem 3.3. For 𝜅 > 0 and g ∈ H 1
2 (Γ), we seek 𝜆 = (𝜆1, . . . , 𝜆𝑀 ) ∈ ̃︀H− 1

2 (Γ) such that

ℒ[𝜅]𝜆 = g,

or equivalently,
⟨ℒ[𝜅]𝜆,𝜑⟩Γ = ⟨g,𝜑⟩Γ , ∀𝜑 ∈ ̃︀H− 1

2 (Γ),

where

ℒ[𝜅] :=

⎡⎢⎢⎣
ℒ11[𝜅] ℒ12[𝜅] . . . ℒ1𝑀 [𝜅]
ℒ21[𝜅] ℒ22[𝜅] . . . ℒ2𝑀 [𝜅]

...
...

. . .
...

ℒ𝑀1[𝜅] ℒ𝑀2[𝜅] . . . ℒ𝑀𝑀 [𝜅]

⎤⎥⎥⎦ : ̃︀H− 1
2 (Γ) → H

1
2 (Γ).

In the case 𝜅 = 0, we need g ∈ (̃︀H− 1
2

⟨0⟩ (Γ))* and restrict 𝜆 to ̃︀H− 1
2

⟨0⟩ (Γ).

Remark 3.4. Problem 3.3 can be recast in the reference space ̃︀H− 1
2 (̂︀Γ) (̃︀H− 1

2
⟨0⟩ (̂︀Γ) for 𝜅 = 0) so as to find ̂︀𝜆

such that
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̂︀ℒ[𝜅]̂︀𝜆 = ̂︀g,
wherein ̂︀𝑔𝑗 := 𝑔𝑗 ∘ r𝑗 , ̂︀ℒ𝑖𝑗 are the BIOs defined over the reference arc ̂︀Γ with integral kernel 𝐺𝜅(r𝑖(𝑡), r𝑗(𝑠)) and
the unknowns ̂︀𝜆𝑗 := (𝜆𝑗 ∘ r𝑗)/‖r′𝑗‖2.

Remark 3.5. Later on we will use the operator ℒ𝑖𝑖[𝜅] for the choice Γ𝑖 = ̂︀Γ, which we denote by ℒ̌[𝜅]. The
difference with respect to ̂︀ℒ𝑖𝑖[𝜅] relies on the absence of parametrizations r𝑖 involved in the kernel. In the case
of a single open arc with parametrization r, we will write ̂︀ℒ[𝜅] ≡ ̂︀ℒ𝑖𝑖[𝜅]. In this case, and for 𝜅 = 0, one can
deduce that the kernel function of the integral operator ℒ̌[0]− ̂︀ℒ[0] is given by

𝐸r(𝑡, 𝑠) := − 1
2𝜋

log
(︂
‖r(𝑡)− r(𝑠)‖2

|𝑡− 𝑠|

)︂
for which we have the following result.

Lemma 3.6. Let 𝑚 ∈ N and Λ be a single 𝒞𝑚
𝑣 -arc. Then, the function 𝐸r(𝑡, 𝑠) is a 𝒞𝑚

𝑣 (−1, 1)-function in each
of its components. If Γ is 𝜌-analytic arc, 𝐸r(𝑡, 𝑠) is a bivariate 𝜌-analytic function.

Proof. By performing a Taylor expansion in 𝑡, we can write

Θr(𝑡, 𝑠) :=
r(𝑡)− r(𝑠)
𝑡− 𝑠

=
𝑚−1∑︁
𝑗=1

(𝑡− 𝑠)𝑗−1r(𝑗)(𝑠)
𝑗!

+
1

𝑡− 𝑠

∫︁ 𝑡

𝑠

(𝑡− 𝜉)𝑚r(𝑚)(𝜉)
𝑚!

d𝜉.

This function admits 𝑚 continuous derivatives in the 𝑡 variable. As mentioned at the beginning of Section 2.2,
open arc parametrizations are injective, and thus, the function can only be zero if 𝑡 = 𝑠. However, as 𝑡 approaches
𝑠, the above function behaves as r′(𝑠), which is not zero. Hence, Θr(𝑡, 𝑠) does not vanish and so 𝐸r(𝑡, 𝑠) is the
composition of 𝒞𝑚

𝑣 -functions, despite there being an absolute value. The 𝜌-analytic case follows from the same
argument. �

Remark 3.7. One should fully understand the differences between the cases 𝜅 = 0 and 𝜅 > 0. The first one
is posed over the smaller space ̃︀H− 1

2
⟨0⟩ (Γ), and the right-hand side must be in the dual of this space, which is

bigger than H 1
2 (Γ) under the identification of 𝐿2(Γ) with its own dual. However, one has to be careful with

the identifications that occur as many elements of H 1
2 (Γ) are identifiable with one element of (̃︀H− 1

2
⟨0⟩ (Γ))*: for

example, all constants are equivalent to the zero function. A more general formulation for the 𝜅 = 0 case can
be found in [34].

Now, we show that Problem 3.3 is well posed. First, we prove that the diagonal operators ℒ𝑖𝑖[𝑘] are coercive
and use ideas from [34] to transform the problem into a closed domain one.

Lemma 3.8. For 𝑖 ∈ {1, . . . ,𝑀}, 𝑘 ≥ 0, there exist a constant 𝑐𝑒,𝑖 such that

– if 𝜅 = 0, it holds
⟨ℒ𝑖𝑖[0]𝑢, 𝑢⟩Γ𝑖

≥ 𝑐𝑒,𝑖 ‖𝑢‖2̃︀𝐻− 1
2 (Γ𝑖)

, ∀𝑢 ∈ ̃︀𝐻− 1
2

⟨0⟩ (Γ𝑖);

– if 𝜅 > 0, then there are compact BIOs 𝒦𝑖𝑖[𝜅] : ̃︀𝐻− 1
2 (Γ𝑖) → 𝐻

1
2 (Γ𝑖), such that

⟨(ℒ𝑖𝑖[𝜅] +𝒦𝑖𝑖[𝜅])𝑢, 𝑢⟩Γ𝑖
≥ 𝑐𝑒,𝑖 ‖𝑢‖2̃︀𝐻− 1

2 (Γ𝑖)
, ∀𝑢 ∈ ̃︀𝐻− 1

2 (Γ𝑖).

Proof. Given 𝑢 and 𝑣 in ̃︀𝐻− 1
2 (Γ𝑖), consider their respective zero extension ̃︀𝑢 and ̃︀𝑣 to 𝜕Ω𝑖 (see Assumptions 2.1

and 2.2). Denote by 𝒱𝑖𝑖[𝑘] the weakly singular integral operator given by taking the trace over 𝜕Ω𝑖 of the single
layer potential in 𝜕Ω𝑖. Then, we have that

⟨ℒ𝑖𝑖[𝜅]𝑢, 𝑢⟩Γ𝑖
= ⟨𝒱𝑖𝑖[𝜅]̃︀𝑢, ̃︀𝑢⟩𝜕Ω𝑖

.

The results then follows from the closed curves case (cf. [7], Thm. 2). �



1982 C. JEREZ-HANCKES AND J. PINTO

Remark 3.9. Continuity of operators ℒ𝑖𝑗 , 𝑖, 𝑗 ∈ {1, . . . ,𝑀}, can be proved by using the same arguments as
those for Lemma 3.8. Then, one can easily show that

ℒ𝑖𝑗 [𝜅] : ̃︀𝐻− 1
2 (Γ𝑗) → 𝐻

1
2 (Γ𝑖)

as a bounded operator. Moreover, if 𝑖 ̸= 𝑗 the operator is compact as the kernel function is at least 𝒞1 in each
component.

Theorem 3.10. For 𝜅 > 0, Problem 3.3 has a unique solution 𝜆 ∈ ̃︀H− 1
2 (Γ), whereas for 𝜅 = 0 a unique

solution exists in the subspace 𝜆 ∈ ̃︀H− 1
2

⟨0⟩ (Γ). Also, we have the continuity estimate

‖𝜆‖̃︀H− 1
2 (Γ)

≤ 𝐶(Γ, 𝜅)‖g‖
H

1
2 (Γ)

.

Proof. By compactness of the cross-interaction BIOs and the coercivity result of Lemma 3.8, the Fredholm
alternative ([26], Thm. 2.33) indicates that we only need to prove injectivity to ensure existence. First, consider
the case 𝑀 = 1: for 𝜅 = 0, the result is obtained by applying the Lax–Milgram lemma while for 𝜅 > 0, we
obtain the result from Theorem 1.7 of [34].

Now, we focus on in the case 𝑀 > 1. Let 𝜆 = (𝜆1, . . . , 𝜆𝑀 ) be such that

𝑀∑︁
𝑗=1

ℒ𝑖𝑗 [𝜅]𝜆𝑗 = 0 ∀𝑖 = 1, . . . ,𝑀.

For 𝑗 ∈ {1, . . . ,𝑀}, let us define volume potentials 𝑈𝑗 := SL𝑗 [𝑘]𝜆𝑗 , solutions of individual homogenous Helmholtz
problems over R2 ∖ Γ𝑗 as well as the superposition 𝑈𝜎 :=

∑︀𝑀
𝑗=1 𝑈𝑗 defined over Ω. Then, it holds

𝛾𝑖𝑈𝜎 = 𝛾𝑖

𝑀∑︁
𝑗=1

𝑈𝑗 =
𝑀∑︁
𝑖=1

ℒ𝑖𝑗 [𝑘]𝜆𝑗 = 0, ∀𝑖 = 1, . . . ,𝑀.

However, 𝑈𝜎 is also the solution of Problem 3.1, with zero Dirichlet boundary condition. Hence, as this problem
has at most one solution we conclude that

𝑈𝜎 =
𝑀∑︁

𝑗=1

SL𝑗 [𝑘]𝜆𝑗 = 0,

and consequently, for all 𝑖 = 1, . . . ,𝑀, it holds that

𝑈𝑖 = SL𝑖[𝑘]𝜆𝑖 = −
∑︁
𝑗 ̸=𝑖

SL𝑗 [𝑘]𝜆𝑗 . (3.7)

Let us now consider the closed curve ̃︀Γ𝑖 = 𝜕Ω𝑖, and denote by 𝜆̃𝑖 ∈ ̃︀𝐻− 1
2 (̃︀Γ𝑖) the extension by zero of 𝜆𝑖. Then,

one derives,
𝑈𝑖(x) = SL𝑖[𝑘](x)𝜆𝑖 = SL̃︀Γ𝑖

[𝑘](x)𝜆̃𝑖 ∀x ∈ Ω,

where the last potential is defined on the closed curve ̃︀Γ𝑖. If we take normal jumps, defined as [𝛾𝑁𝑈 ] =
𝛾+

𝑁𝑈 − 𝛾−𝑁𝑈 , by Theorem 3.3.1 of [32], we obtain

[̃︀𝛾N,𝑖𝑈𝑖]̃︀Γ𝑖
= [̃︀𝛾N,𝑖SL̃︀Γ𝑖

[𝑘]𝜆̃𝑖]̃︀Γ𝑖
= −𝜆̃𝑖.

Using (3.7) in the expression above yields

[̃︀𝛾N,𝑖𝑈𝑖]̃︀Γ𝑖
= −

⎡⎣̃︀𝛾N,𝑖

∑︁
𝑗 ̸=𝑖

SL𝑗 [𝑘]𝜆𝑗

⎤⎦
̃︀Γ𝑖

= 0
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where the last equality comes from the smoothness of the integral kernel since ̃︀Γ𝑖 ∩ ̃︀Γ𝑗 = ∅, for 𝑗 ̸= 𝑖. Thus, we
can conclude that 𝜆𝑗 = 0 and the same follows for all other components. �

Remark 3.11. Much of the ideas presented in this section can be used in a more general context. In a more
abstract setting, the notion of open arcs Γ𝑖 has to be changed Lipschitz subsets of the boundary of a domain
Ω𝑖 ∈ R𝑑, for 𝑑 = 2, 3, and whose normal vector is continuous. Define Ω as the exterior of a finite set of generalized
open arcs Γ. As in Chapter 4 of [26], consider any strongly elliptic second-order self-adjoint partial differential
operator, denoted by 𝒫, with smooth coefficients, acting on vector fields of C𝑚. Thus, for a given Dirichlet or
Neumann datum, g ∈ [H 1

2 (Γ)]𝑚 or h ∈ [H− 1
2 (Γ)]𝑚, respectively, we seek for U ∈ [𝐻1

loc(Ω)]𝑚 such that,

𝒫U = 0 in Ω,
𝛾U = g or 𝐵nU = h on Γ,

with the conormal trace 𝐵n defined as in Chapter 4 of [26]. The following points are needed in order to establish
the existence and uniqueness of an equivalent boundary integral formulation for Cauchy data.

(i) An adequate condition at infinity that ensures the uniqueness of the boundary value problem.
(ii) A fundamental solution 𝐺(x,y), such that 𝒫x𝐺(x,y) = 𝛿x−yI, where I is the identity operator in R𝑚×𝑚.

(iii) Layer potentials:

(SL𝑖𝜆)(x) :=
∫︁

Γ𝑖

𝐺(x,y)𝜆(y)dΓ𝑖(y) (Dirichlet trace),

(DL𝑖𝜆)(x) :=
∫︁

Γ𝑖

𝐵n(y)𝐺(x,y)𝜆(y)dΓ𝑖(y) (Conormal trace),

that display the adequate behavior at infinity specified by the first point in the trace spaces. Specifically,
𝜆 ∈

[︁̃︀H− 1
2 (Γ)

]︁𝑚
for the Dirichlet problem and 𝜆 ∈

[︁̃︀H 1
2 (Γ)

]︁𝑚
for the conormal trace case.

With the above, the integral equation is constructed by imposing the boundary condition to the following
representations:

U =
𝑀∑︁
𝑖=1

SL𝑖𝜆𝑖 (Dirichlet trace),

U =
𝑀∑︁
𝑖=1

DL𝑖𝜆𝑖 (Conormal trace).

If the previously stated conditions are satisfied, then the construction of the arising BIEs as well as their
well-posedness proofs is done as in the cases that we presented in detail. The 2D-Laplace case is slightly different
as the condition at infinity of the potential only holds in a subspace.

4. Numerical analysis

We now describe a spectral Galerkin numerical scheme for solving Problem 3.3 and establish specific conver-
gence rates.

4.1. Approximation spaces

Our aim is to construct a dense conforming discretization of the spaces ̃︀𝐻−1/2(Γ𝑖) and ̃︀𝐻−1/2
⟨0⟩ (Γ𝑖), for 𝑖 ∈

{1, . . . ,𝑀}. Certainly, one could use traditional low-order bases built on arc meshes for which approximation
properties are well known. However, this would imply large numbers of dofs to solve problems with many arcs
and/or large values of 𝜅. Thus, we opt for high-order global polynomial bases such as weighted Chebyshev
polynomials per arc.
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4.1.1. Single arc approximation

We denote by {𝑇𝑛}𝑁
𝑛=0 the set of first 𝑁 + 1 first-kind Chebyshev polynomials, orthogonal under the weight

𝑤−1 with 𝑤(𝑡) :=
√

1− 𝑡2. Consider the elements 𝑝𝑖
𝑛 = 𝑇𝑛 ∘r−1

𝑖 over each arc Γ𝑖, the space they span is denoted
T𝑁 (Γ𝑖), and define the normalized space:

T𝑁 (Γ𝑖) :=

{︃
𝑝𝑖 ∈ 𝐶(Γ𝑖) : 𝑝𝑖 :=

𝑝𝑖⃦⃦
r′𝑖 ∘ r−1

𝑖

⃦⃦
2

, 𝑝𝑖 ∈ T𝑁 (Γ𝑖)

}︃
.

We account for edge singularities by multiplying by a suitable weight:

Q𝑁 (Γ𝑖) :=
{︀
𝑞𝑖 := 𝑤−1

𝑖 𝑝𝑖 : 𝑝𝑖 ∈ T𝑁 (Γ𝑖)
}︀
,

wherein 𝑤𝑖 := 𝑤 ∘ r−1
𝑖 . The corresponding bases for Q𝑁 (Γ𝑖) will be denoted

{︀
𝑞𝑖
𝑛

}︀𝑁

𝑛=0
, and are characterized by

𝑞𝑖
𝑛 = 𝑤−1

𝑖 ‖r′𝑖 ∘ r−1
𝑖 ‖−1

2 𝑇𝑛 ∘ r−1
𝑖 . By Chebyshev orthogonality, we can easily define the mean-zero subspace:

Q𝑁,⟨0⟩(Γ𝑖) := Q𝑁 (Γ𝑖)/Q0(Γ𝑖),

spanned by
{︀
𝑞𝑖
𝑛

}︀𝑁

𝑛=1
. Basic approximation properties of the spaces Q𝑁 (Γ𝑖) are detailed in Appendix C.

4.1.2. Multiple arcs approximation

Let us define the approximation product spaces:

H𝑁 :=
𝑀∏︁
𝑖=1

Q𝑁 (Γ𝑖), H𝑁
⟨0⟩ :=

𝑀∏︁
𝑖=1

Q𝑁,⟨0⟩(Γ𝑖).

With the previously defined discrete spaces, we can find an approximation to the solution of Problem 3.3 by
solving the following linear system.

Problem 4.1 (Linear system). Let 𝑚,𝑁 ∈ N, Γ ∈ 𝒞𝑚
𝑣 , 𝜅 > 0, and g ∈ H 1

2 (Γ), we seek coefficients u =
(u1, . . . , u𝑀 ) ∈ C𝑀(𝑁+1), such that

L[𝜅]u = g,

wherein we have defined the Galerkin matrix L[𝜅] ∈ C𝑀(𝑁+1)×𝑀(𝑁+1) with matrix blocks L𝑖𝑗 ∈ C(𝑁+1)×(𝑁+1)

whose entries are

(L𝑖𝑗 [𝜅])𝑙𝑚 =
⟨︀
ℒ𝑖𝑗 [𝜅]𝑞𝑗

𝑚, 𝑞
𝑖
𝑙

⟩︀
Γ𝑖
, ∀𝑖, 𝑗 = 1, . . . ,𝑀, and ∀𝑙,𝑚 = 0, . . . , 𝑁. (4.1)

The right-hand g = (g1, . . . , g𝑀 ) ∈ C𝑀(𝑁+1) has components (g𝑖)𝑙 =
⟨︀
𝑔𝑖, 𝑞

𝑖
𝑙

⟩︀
Γ𝑖

.

For 𝜅 = 0 we impose 𝑔 ∈ (̃︀H− 1
2

⟨0⟩ (Γ))*, and the spaces Q𝑁 (Γ𝑗) have to be changed to Q𝑁,⟨0⟩(Γ𝑗).

Approximations to solutions of Problem 3.3 are constructed using the solution u of Problem 4.1 as follows

(𝜆𝑁 )𝑖 =
𝑁∑︁

𝑙=0

(u𝑖)𝑙𝑞
𝑖
𝑙 in Γ𝑖, for all 𝑖 ∈ {1, . . . ,𝑀} .

Observe that the sum starts with 𝑙 = 1 if 𝜅 = 0.

Remark 4.2. By performing a change of variables, we can recast Problem 4.1 on ̂︀Γ with matrix terms given
by

(L𝑖𝑗 [𝜅])𝑙𝑚 =
⟨ ̂︀ℒ𝑖𝑗𝑤

−1𝑇𝑚, 𝑤
−1𝑇𝑙

⟩
̂︀Γ
, ∀𝑖, 𝑗 = 1, . . . ,𝑀, and ∀𝑙,𝑚 = 0, . . . , 𝑁,



HIGH-ORDER GALERKIN METHOD FOR PROBLEMS ON OPEN ARCS 1985

with 𝑤(𝑡) =
√

1− 𝑡2, and the right hand side g = (g1, . . . , g𝑀 ) ∈ C𝑀(𝑁+1) with components (g𝑖)𝑙 =⟨︀
𝑔 ∘ r𝑖, 𝑤

−1𝑇𝑙

⟩︀
̂︀Γ. We have the corresponding approximation of the pulled back solution ̂︀𝜆:

(̂︀𝜆𝑁 )𝑖 =
𝑁∑︁

𝑙=0

(̂︀u𝑖)𝑙𝑤
−1𝑇𝑙 in ̂︀Γ, for all 𝑖 ∈ {1, . . . ,𝑀} .

The following result is a direct consequence of the coercivity of ℒ[𝜅] and the basic approximation properties
presented in Appendix C (see [32], Thm. 4.29 for a detailed proof).

Theorem 4.3. For 𝜅 > 0, given g ∈ H 1
2 (Γ), there exist 𝑁0 ∈ N, and 𝐶 > 0, both depending of Γ, g, and

𝜅 such that for any 𝑁 ∈ N with 𝑁 > 𝑁0, there exists only one solution u of Problem 4.1. Moreover, for the
approximation 𝜆𝑁 ∈ H𝑁 we can bound the error as

‖𝜆𝑁 − 𝜆‖̃︀H− 1
2 (Γ)

≤ 𝐶 inf
v𝑁∈H𝑁

‖v𝑁 − 𝜆‖̃︀H− 1
2 (Γ)

.

For 𝜅 = 0, we need to take g ∈ (̃︀H− 1
2

⟨0⟩ (Γ))* and H𝑁
⟨0⟩ as the discrete space for the result to hold.

4.2. Convergence results

The density of the family of spaces
{︀
H𝑁
}︀

𝑁∈N in H− 1
2 (Γ)

(︂
resp.

{︁
H𝑁
⟨0⟩

}︁
𝑁∈N

in H−
1
2

⟨0⟩ (Γ)
)︂

shown in

Appendix C combined with Theorem 4.3 allows to conclude that when 𝑁 goes to infinity convergence occurs
in the general context. However, this does not provide any insight on convergence rates.

In this section, we will bound the error in terms of the dimension 𝑁 , the degree of polynomials used in each
arc. Explicit convergence rates with respect to 𝜅 are not analyzed and we leave this as future work. Similar
bounds for error convergence rates were established in [21] (for 𝜅 = 0 on an interval) and in [4]. This last work
while only shows the Laplace case for one arc, could be extended for multiple arcs easily. The authors also
consider the error introduced by the quadrature scheme. However, the extension to Helmholtz does not appear
to be straightforward, as it is hard to argue data regularity is preserved. In fact, proving this last point takes
significant effort. The effect of numeric integration will not be considered here but one can easily show that it
introduces an extra error which decays as fast as the Fourier–Chebyshev coefficients of the (regular) right-hand
side and the geometry (cf. Sect. 5).

Before carrying on, we outline the general ideas presented in this section. In Sections 4.2.1 and 4.2.2 we
characterize the decay of Chebyshev coefficients {𝜆𝑛}𝑛∈N appearing in the solution of the single scatterer
problem. This is done in a constructive way: we start with the most simple case (𝜅 = 0,Γ = ̂︀Γ) leading to
Lemma 4.5, and finalize with a general arc for non-zero wavenumber in Lemma 4.16 (Lems. 4.9 and 4.13 are
intermediate results). Once the coefficients’ decay is characterized, we use it in conjunction with the quasi-
optimality result to establish the error convergence of a single arc problem (Thm. 4.17). Finally, in Section 4.2.4
we generalize the results for multiple arcs. For this, we first establish the decay of the coefficients (Lem. 4.20)
and conclude, as in the single arc case, with Theorem 4.21 which gives the rate of convergence for general
multiple arcs and 𝜅 ≥ 0.

We start by analyzing the most simple problem – 𝜅 = 0 and a single interval –, and from there we gradually
consider more generalities until we arrive to the most complex case (𝜅 > 0 for multiple arcs). Every function ̂︀𝜆
in ̃︀𝐻− 1

2 (̂︀Γ), can be expressed as a convergent series:

̂︀𝜆(𝑠) = 𝑤−1
∑︁
𝑛≥0

𝜆𝑛𝑇𝑛(𝑠), 𝑠 ∈ (−1, 1).
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Furthermore, we have an explicit expression for the ̃︀𝐻− 1
2 (̂︀Γ)-norm when such representation is used⃦⃦⃦̂︀𝜆⃦⃦⃦2

̃︀𝐻−
1
2 (̂︀Γ)

=
∑︁
𝑛≥0

|𝜆𝑛|2𝑑𝑛, (4.2)

where 𝑑0 = 1, and 𝑑𝑛 = 𝑛−1 for 𝑛 > 0 ([18], proof of Prop. 3.5).

4.2.1. Chebyshev coefficients behavior: Laplace case

We recall operators ℒ̌[0] and ̂︀ℒ[0] defined over ̂︀Γ (cf. Rem. 3.5). In this section, we consider the pullback
problem:

Problem 4.4. For 𝑚 ∈ N given Γ ∈ 𝒞𝑚
𝑣 , and 𝑔 ∈ 𝒞𝑚

𝑣 (Γ) ∩ ( ̃︀𝐻− 1
2

⟨0⟩ (Γ))*, we seek ̂︀𝜆 ∈ ̃︀𝐻− 1
2

⟨0⟩ (̂︀Γ) such that

̂︀ℒ[0]̂︀𝜆 = ̂︀𝑔 on ̂︀Γ,
which is equivalent to Problem 3.3 with 𝜅 = 0 and 𝑀 = 1.

We aim to characterize the mapping properties of these weakly singular BIOs (defined as in Sect. 3) acting
on weighted Chebyshev polynomials.

Lemma 4.5. For 𝑛 and 𝑙 in N, it holds ⟨
ℒ̌[0]

𝑇𝑛

𝑤
,
𝑇𝑙

𝑤

⟩
=

𝜋

4𝑛
𝛿𝑛𝑙.

Proof. Direct consequence of the kernel expansion ([19], Thm. 4.4):

𝐺0(x,y) = − 1
2𝜋

log |𝑡− 𝑠| =
1

2𝜋
log 2 +

∑︁
𝑛≥1

1
𝜋𝑛

𝑇𝑛(𝑡)𝑇𝑛(𝑠), ∀𝑠 ̸= 𝑡.

and the orthogonality property of Chebyshev polynomials. �

One can interpret this result as follows: given an element in ̂︀𝜆 ∈ ̃︀𝐻− 1
2 (̂︀Γ), its image by ℒ̌[0] is a function

whose Chebyshev coefficients decay as 𝒪(𝑛−1). The rest of this section extends this idea to more general arcs.

Lemma 4.6. For 𝑚 ∈ N, let ℎ : [−1, 1]2 → C be such that ℎ(𝑡, ·) and ℎ(·, 𝑠) are 𝒞𝑚
𝑣 (−1, 1)-functions as

functions of 𝑠 and 𝑡, respectively. Thus, we can write ℎ as

ℎ(𝑡, 𝑠) =
∞∑︁

𝑛=0

∞∑︁
𝑘=0

𝑏𝑛𝑘𝑇𝑛(𝑡)𝑇𝑘(𝑠),

with coefficients decaying as follows:

𝑏𝑛𝑘 = 𝒪
(︀
min

{︀
𝑛−𝑚−1, 𝑘−𝑚−1

}︀)︀
.

If ℎ is 𝜌-analytic in both variables

𝑏𝑛𝑘 = 𝒪
(︁
𝜌min{−𝑛,−𝑘}

)︁
.

Proof. This is just the bivariate version of Theorem 7.1 from [37] and Theorem 8.1 from [37] (see Appendix B
for a detailed proof). �
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Lemma 4.7. Let 𝑚 ∈ N and ℎ : [−1, 1]2 → C be a 𝒞𝑚
𝑣 (−1, 1)-function in both arguments. Consider the integral

operator taking as kernel the bivariate function ℎ:

(ℋ𝑓)(𝑠) :=
∫︁
̂︀Γ
ℎ(𝑡, 𝑠)𝑓(𝑡) d𝑡,

Let 𝑓 ∈ ̃︀𝐻−1/2(̂︀Γ), then for 𝜖 ∈ R such that 0 < 𝜖 < 1, we have that the Fourier–Chebyshev coefficients of ℋ𝑓 ,
denoted {𝑣𝑙}𝑙∈N0

, decay as

𝑣𝑙 = 𝒪
(︁
𝑙(−1+𝜖)𝑚

)︁
.

Moreover, if the kernel is 𝜌-analityc we have that

𝑣𝑙 = 𝒪
(︀
𝜌−𝑙
)︀
.

Proof. See Appendix B. �

Remark 4.8. The previous result is by no means sharp. In the context of pseudo-differential operators using
Fourier expansion for the norms one could obtain better bounds, see for example Chapter 7 of [31]. Results for
open arcs in terms of Fourier–Chebyshev expansions can be obtained using the cosine change of variables.

We continue by estimating bounds for the Chebyshev coefficients of solutions of the BIE associated to the
Laplace problem for any sufficiently smooth single arc.

Lemma 4.9. Let ̂︀𝜆 ∈ ̃︀𝐻− 1
2

⟨0⟩ (̂︀Γ) be the unique solution of Problem 4.4, with 𝑚 ≥ 2. If we expand ̂︀𝜆 as

̂︀𝜆 = 𝑤−1
∞∑︁

𝑛=1

𝑎𝑛𝑇𝑛,

we obtain the following coefficient asymptotic behaviors:

𝑎𝑛 = 𝒪
(︀
𝑛−𝑚

)︀
.

Moreover, if Γ is a 𝜌-analytic arc and 𝑔 is also 𝜌-analytic, we obtain

𝑎𝑛 = 𝒪
(︀
𝑛𝜌−𝑛

)︀
.

Proof. Since ̂︀𝑔 = 𝑔 ∘ r, we can expand it as a Fourier–Chebyshev series with coefficients ̂︀𝑔𝑙 leading to

( ̂︀ℒ[0]̂︀𝜆)𝑙 = ̂︀𝑔𝑙, ∀𝑙 ∈ N.

The coefficients of the left-hand side of the last equation can be computed by adding and subtracting the term
ℒ̌[0]̂︀𝜆. By doing so and combining Lemmas 4.5–4.7 and 3.6, we obtain the following expression:

𝜋2

4
𝑎𝑙

𝑙
+ 𝑣𝑙 = ̂︀𝑔𝑙, ∀𝑙 ∈ N,

where the coefficient 𝑣𝑙 corresponds to that in the expansion of ( ̂︀ℒ[0]− ℒ̌[0])̂︀𝜆. By the regularity conditions, it
holds that ̂︀𝑔𝑙 = 𝒪(𝑙−𝑚−1), and therefore,

𝜋2

4
𝑎𝑙𝑙

−1 + 𝑣𝑙 = 𝒪
(︀
𝑙−𝑚−1

)︀
.

Hence, there are two alternatives: either (i) 𝑎𝑙 = 𝒪(𝑙−𝑚) and 𝑣𝑙 = 𝒪
(︀
𝑙−𝑚−1

)︀
, or (ii) both have the same decay

order. As the first implies the result directly, we assume the second alternative in what follows.
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Let 2 < 𝑚 < ∞. By Lemma 4.7 (i), we have that 𝑣𝑙 = 𝒪
(︁
𝑙(−1+𝜖′)𝑚

)︁
, and under our current assumption,

this implies that
𝑎𝑙 = 𝒪

(︁
𝑙(−1+𝜖′)𝑚

)︁
.

Since 𝑚 > 2, we can choose 𝜖 such that
∑︀∞

𝑛=1 𝑎𝑛 is finite and a new estimate for 𝑣𝑙 holds

𝑣𝑙 =
∞∑︁

𝑛=1

𝑏𝑛𝑙𝑎𝑛 . 𝑙
−𝑚−1.

Here, 𝑏𝑛𝑙 are the coefficients detailed in Lemma 4.6 for the function 𝐸r defined in Remark 3.5. This last equality
implies the result directly. The case 𝑚 = 2 is slightly more complicated as one can not directly ensure that the
coefficients 𝑎𝑙 are summable. However, by Lemma 4.7, for a small 𝛿 > 0, then 𝑣𝑙 = 𝒪

(︀
𝑙−2+𝛿

)︀
, which implies that

𝑎𝑙 = 𝒪
(︀
𝑙−1+𝛿

)︀
. By re-estimating bounds on 𝑣𝑙, we now obtain that 𝑣𝑙 = 𝒪

(︀
𝑙−3+2𝛿

)︀
. Hence, 𝑎𝑙 = 𝒪

(︀
𝑙−2+2𝛿

)︀
which are summable from where one can argue as before. For the 𝜌-analytic case, the result is direct as the 𝑣𝑙

already has a decay that implies the corresponding behavior of the coefficients 𝑎𝑙. �

4.2.2. Chebyshev coefficients behavior: Helmholtz case

We now consider the following single arc problem:

Problem 4.10. For 𝑚 ∈ N, 𝜅 > 0, given Γ ∈ 𝒞𝑚
𝑣 , and 𝑔 ∈ 𝒞𝑚

𝑣 (Γ), we seek ̂︀𝜆 ∈ ̃︀𝐻− 1
2

⟨0⟩ (̂︀Γ) such that

̂︀ℒ[𝜅]̂︀𝜆 = ̂︀𝑔 on ̂︀Γ, (4.3)

which is equivalent to Problem 3.3 with 𝜅 > 0 and 𝑀 = 1.

One could see the Helmholtz case as a perturbation of the previous one, but this perturbation is not smooth
as the operator difference ̂︀ℒ[𝜅]−ℒ̌[0] (cf. Rem. 3.5) only has a 𝒞1-kernel, even for smooth arcs. Thus, we can not
replicate the previous arguments and need to examine in depth ̂︀ℒ[𝜅]− ℒ̌[0] in terms of Chebyshev coefficients.

Using Formula (9.1.13) of [2], the kernel of ̂︀ℒ[𝜅], given in (3.5), can be also be written as

̂︀𝐺𝑘(𝑡, 𝑠) =
𝑖

4
𝐻1

0 (𝑘 ‖r(𝑡)− r(𝑠)‖2) =
∞∑︁

𝑝=0

𝑧𝑝𝑅𝑝(𝑡, 𝑠)|𝑡− 𝑠|2𝑝 log |𝑡− 𝑠|+ 𝜓𝑅(𝑡, 𝑠),

wherein r : (−1, 1) → Γ𝑖 is a suitable parametrization,

𝑧𝑝 :=
1

2𝜋
(−1)𝑝

(︂
𝑘

2

)︂2𝑝

(𝑝!)−2, (4.4)

𝑅𝑝(𝑡, 𝑠) :=
(︂
‖r(𝑡)− r(𝑠)‖2

|𝑡− 𝑠|

)︂2𝑝

, (4.5)

and 𝜓𝑅 is 𝐶𝑚
𝑣 (−1, 1)-regular in each component. Notice that the term |𝑡 − 𝑠|2𝑝 log |𝑡− 𝑠| is a 𝒞2𝑝−1(−1, 1)-

function in each component.
We begin by analyzing the Helmholtz case for ̂︀Γ following similar techniques to those in [11]. To simplify

notation, we define kernels ̂︀𝐺𝑝
𝑘(𝑡, 𝑠) := 𝑧𝑝𝑅𝑝(𝑡, 𝑠)|𝑡− 𝑠|2𝑝 log |𝑡− 𝑠| and their corresponding BIOs:

̂︀ℒ𝑝[𝜅]𝑓 :=
∫︁ 1

−1

̂︀𝐺𝑝
𝑘(𝑡, 𝑠)𝑓(𝑡) d𝑡.

Extensive use will be given to the following lemma:
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Lemma 4.11. For 𝑝 ∈ N0, we have

|𝑡− 𝑠|2𝑝 log |𝑡− 𝑠| =
∞∑︁

𝑛=0

∞∑︁
𝑙=0

𝑏𝑝𝑛𝑙𝑇𝑛(𝑡)𝑇𝑙(𝑠)

where

𝑏𝑝𝑛𝑙 =

{︃
𝒪(𝑙−(2𝑝+1)) 𝑛 = 𝑙, 𝑙 ± 2, . . . , 𝑙 ± 2𝑝
0 any other case.

Proof. We proceed by induction. As the case 𝑝 = 0 was proven in Lemma 4.5, we start by setting 𝑝 = 1. By
Lemma D.2, it holds

|𝑡− 𝑠|2 log |𝑡− 𝑠| =
∑︁

𝑗∈{−1,0,1}

∞∑︁
𝑛=0

𝛽(𝑗)
𝑛 𝑇𝑛(𝑡)𝑇|𝑛+2𝑗|(𝑠).

Moreover, bounds for coefficients 𝛽(𝑗)
𝑛 are found by using Lemma D.2. Since in this case 𝑎𝑛 := 𝑏0𝑛 = 𝒪( 1

𝑛 )
(cf. Lem. 4.5), we obtain the stated result.

Assuming now that the result holds for 𝑝 ≥ 2, we prove it for 𝑝+ 1. Indeed,

|𝑡− 𝑠|2(|𝑡− 𝑠|2𝑝 log |𝑡− 𝑠|) = |𝑡− 𝑠|2
∞∑︁

𝑛=0

∞∑︁
𝑙=0

𝑏𝑝𝑛𝑙𝑇𝑛(𝑡)𝑇𝑙(𝑠) = |𝑡− 𝑠|2
∑︁

𝑗∈{−1,0,1}𝑛

∞∑︁
𝑛=0

𝛽(𝑗)
𝑛 𝑇𝑛(𝑡)𝑇|𝑛+2

∑︀
𝑗|(𝑠)

and we proceed as in the proof of Lemma D.2 to obtain the expansion. The asymptotic behavior is obtained by
a direct computation using expressions of Lemma D.2. �

Lemma 4.12. Let ̂︀𝜆 ∈ ̃︀𝐻− 1
2 (̂︀Γ) with expansion

̂︀𝜆 = 𝑤−1
∞∑︁

𝑛=0

𝑎𝑛𝑇𝑛.

Then, the Fourier–Chebyshev coefficients of ̂︀ℒ𝑝[𝜅]̂︀𝜆, denoted {𝑣𝑝
𝑙 }𝑙∈N0

, are given by

𝑣𝑝
𝑙 = 𝑧𝑝

∞∑︁
𝑛=0

𝑏𝑝𝑛𝑙𝑎𝑛,

where the coefficients 𝑏𝑝𝑛𝑙 are given by Lemma 4.11, and terms 𝑧𝑝 are defined in (4.4). Moreover, it holds that

𝑣𝑝
𝑙 = 𝒪

(︁
𝑙−2𝑝− 1

2

)︁
.

Proof. The representation is a direct consequence of the Fourier–Chebyshev expansion of ̂︀𝜆 and the kernel
function given by Lemma 4.11. The asymptotic behavior is deduced as follows

|𝑣𝑝
𝑙 | ∼

⃒⃒⃒⃒
⃒
∞∑︁

𝑛=0

𝑏𝑝𝑛𝑙𝑎𝑛

⃒⃒⃒⃒
⃒ ≤ ‖̂︀𝜆‖ ̃︀𝐻− 1

2 (̂︀Γ)

⃒⃒⃒⃒
⃒
∞∑︁

𝑛=0

(𝑏𝑝𝑛𝑙)
2
𝑑−1

𝑛

⃒⃒⃒⃒
⃒
1
2

. 𝑙−2𝑝− 1
2 ,

with 𝑑𝑛 coming from (4.2) and where the last inequality is obtained using Lemma 4.11. �

With the above results, we can estimate the asymptotic order of the Chebyshev coefficients of ℒ̌[𝜅] − ℒ̌[0],
where ℒ̌[𝜅] is the weakly singular Helmholtz operator for the special case Γ ≡ ̂︀Γ. This bound turns out to be
crucial in proving the convergence of the proposed method.
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Lemma 4.13. Let ̂︀𝜆 ∈ ̃︀𝐻− 1
2 (̂︀Γ) be the only solution of Problem 4.10, with Γ = ̂︀Γ, and expand it as

̂︀𝜆 = 𝑤−1
∞∑︁

𝑛=0

𝑎𝑛𝑇𝑛.

Then, the coefficients 𝑎𝑛 decay as
𝑎𝑛 = 𝒪(𝑛−𝑚).

Moreover, if 𝑔 is 𝜌-analytic, we have that
𝑎𝑛 = 𝒪(𝑛𝜌−𝑛).

Proof. By the regularity of 𝑔, we have

(ℒ̌[𝜅]𝜆)𝑙 = 𝑔𝑙 = 𝒪
(︀
𝑙−𝑚−1

)︀
.

On the other hand, using the integral kernel expansion and Lemma 4.5, for any 𝑄 ∈ N, with 𝑄 > 1, we derive

(ℒ̌[𝜅]𝜆)𝑙 =
𝜋2

4
𝑎𝑙

𝑙
+

𝑄−1∑︁
𝑗=1

𝑣𝑗
𝑙 + 𝑣

𝑅(𝑄)
𝑙 ,

where coefficients 𝑣𝑗
𝑙 are given by Lemma 4.12 and 𝑣

𝑅(𝑄)
𝑙 is the remainder of order 𝒪

(︁
𝑙−2𝑄− 1

2

)︁
. Thus, if we

choose 𝑄 as the upper integer part of 𝑚+1
2 , we have that

𝜋2

4
𝑎𝑙

𝑙
+

𝑄−1∑︁
𝑗=1

𝑣𝑗
𝑙 = 𝒪(𝑙−𝑚−1).

From the last equation we need to deduce the behavior of the coefficients 𝑎𝑙 given the value of 𝑚. We proceed
by induction, if 𝑚 = 1 we have that

𝜋2

4
𝑎𝑙

𝑙
= 𝒪

(︀
𝑙−2
)︀
,

which directly implies 𝑎𝑙 = 𝒪(𝑙−1). For the induction hypothesis we denote 𝑄(𝑟) the corresponding value of 𝑄
given a natural number 𝑟 < 𝑚. Then, the induction hypothesis reads as: if

𝜋2

4
𝑎𝑙

𝑙
+

𝑄(𝑟)−1∑︁
𝑗=1

𝑣𝑗
𝑙 = 𝒪

(︀
𝑙−𝑟−1

)︀
, (4.6)

then 𝑎𝑙 = 𝒪(𝑙−𝑟). Now, we prove for 𝑟 + 1, since we do not assume that 𝑟 is even or odd we have two options:
𝑄(𝑟+ 1) = 𝑄(𝑟) or 𝑄(𝑟+ 1) = 𝑄(𝑟) + 1. If the latter is true, there is a new term of order −𝑟− 1. Thus, without
loss of generality we can assume that

𝜋2

4
𝑎𝑙

𝑙
+

𝑄(𝑟)−1∑︁
𝑗=1

𝑣𝑗
𝑙 = 𝒪

(︀
𝑙−𝑟−1

)︀
.

By the induction hypothesis, 𝑎𝑙 = 𝑂(𝑙−𝑟). Then, by definition of coefficients 𝑣𝑗
𝑙 as in Lemmas 4.12 and 4.11 one

has

𝑣1
𝑙 = 𝒪

(︀
𝑙−𝑟−3

)︀
𝑣2

𝑙 = 𝒪
(︀
𝑙−𝑟−5

)︀
... =

...
𝑣

𝑄(𝑛)−1
𝑙 = 𝒪

(︁
𝑙−𝑟−1−2(𝑄(𝑟)−1)

)︁
,
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and so from (4.6) we obtain the desire order for 𝑎𝑙.
The 𝜌-analytic case employs the same argument. As 𝑎𝑙𝑙

−1 and
∑︀∞

𝑗=1 𝑣
𝑗
𝑙 cannot have the same decay order,

the only option is for both terms to decay geometrically. �

To end this section, we consider the Helmholtz case for general arcs. Our main ingredients here are the bounds
for Chebyshev coefficients of the product of two functions. For one-dimensional 𝒞1-functions, this can be done
easily: let 𝑓(𝑡) =

∑︀
𝑘∈N0

𝑓𝑘𝑇𝑘(𝑡) and 𝑔(𝑡) =
∑︀

𝑙∈N0
𝑔𝑙𝑇𝑙(𝑡). One can write

𝑓(𝑡)𝑔(𝑡) =
∑︁

𝑛∈N0

𝑒𝑛𝑐𝑛𝑇𝑛(𝑡), where 𝑒𝑛 =
∫︁ 1

−1

𝑓(𝑡)𝑔(𝑡)
𝑇𝑛(𝑡)
𝑤(𝑡)

d𝑡,

and 𝑐0 = 𝜋−1, 𝑐𝑛 = 2𝜋−1, for 𝑛 > 0. By replacing the series expansion for 𝑓 above, we derive

𝑒𝑛 =
∑︁
𝑘∈N0

𝑓𝑘

∫︁ 1

−1

𝑔(𝑡)𝑇𝑘(𝑡)
𝑇𝑛(𝑡)
𝑤(𝑡)

d𝑡,

Using now Lemma D.1 and Chebyshev orthogonality, holds that

𝑒𝑛 =
∑︁
𝑘∈N0

𝑓𝑘

∫︁ 1

−1

𝑔(𝑡)
𝑇𝑘+𝑛(𝑡) + 𝑇|𝑘−𝑛|(𝑡)

2𝑤(𝑡)
d𝑡 =

∑︁
𝑘∈N0

𝑓𝑘

2

(︂
𝑔𝑘+𝑛

𝑐𝑘+𝑛
+
𝑔|𝑘−𝑛|

𝑐|𝑘−𝑛|

)︂
.

Consequently, we can estimate the decay of 𝑒𝑛 by the properties of 𝑓𝑛 and 𝑔𝑛. In two dimensions we have a
similar result.

Lemma 4.14. Let 𝑚 ∈ N, 𝑝 ∈ N, and recall the definition of 𝑅𝑝(𝑡, 𝑠) given in (4.5). Then, the series

𝑅𝑝(𝑡, 𝑠)|𝑡− 𝑠|2𝑝 log |𝑡− 𝑠| =
∞∑︁

𝑖=0

∞∑︁
𝑗=0

𝐶𝑝
𝑖𝑗𝑇𝑖(𝑡)𝑇𝑗(𝑡), ∀(𝑡, 𝑠) ∈ [−1, 1]2,

holds, with coefficients

𝐶𝑝
𝑖𝑗 =

∞∑︁
𝑛=0

∞∑︁
𝑙=0

𝑏𝑝𝑛𝑙

4
(︀
𝑟𝑛+𝑖,𝑙+𝑗 + 𝑟𝑛+𝑖,|𝑙−𝑗| + 𝑟|𝑛−𝑖|,𝑙+𝑗 + 𝑟|𝑛−𝑖|,|𝑙−𝑗|

)︀
with coefficients 𝑏𝑝𝑛𝑙 being those of Lemma 4.11 and 𝑟𝑖,𝑗 the Chebyshev coefficients of 𝑅𝑝(𝑡, 𝑠). Moreover, the
following asymptotic behavior hold

𝐶𝑝
𝑖𝑗 = 𝒪

(︁
min

{︁
𝑖−min(𝑚+1,2𝑝+1), 𝑗−min(𝑚+1,2𝑝+1)

}︁)︁
.

If we consider a 𝜌-analytic arc we have

𝐶𝑝
𝑖𝑗 = 𝒪

(︁
min

{︁
𝑖−(2𝑝+1), 𝑗−(2𝑝+1)

}︁)︁
.

Proof. See Appendix B. �

Lemma 4.15. For 𝑚 ∈ N, let Γ ∈ 𝒞𝑚
𝑣 and ̂︀𝜆 ∈ ̃︀𝐻− 1

2 (̂︀Γ) have the representation:

̂︀𝜆 = 𝑤−1
∞∑︁

𝑛=0

𝑎𝑛𝑇𝑛.

Then, the Fourier–Chebyshev coefficients of ̂︀ℒ𝑝[𝜅]̂︀𝜆, denoted {𝑣𝑝
𝑙 }𝑙∈N0

, satisfy

𝑣𝑝
𝑙 = 𝑧𝑝

∞∑︁
𝑛=0

𝐶𝑝
𝑛𝑙𝑎𝑛,

where the coefficients 𝐶𝑝
𝑛𝑙 are given in Lemma 4.14, 𝑧𝑝 are defined in (4.4), and the asymptotic behaviors hold
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(i) If 𝑚 ≤ 2𝑝 and for 𝜖 ∈ R such that 0 < 𝜖 < 1− 1
𝑚+1 , 𝑣𝑝

𝑙 = 𝒪
(︀
𝑙−𝑚+(𝑚+1)𝜖

)︀
.

(ii) If 𝑚 > 2𝑝 and for 𝜖 ∈ R such that 0 < 𝜖 < 1− 1
2𝑝+1 , 𝑣𝑝

𝑙 = 𝒪
(︀
𝑙−2𝑝+(2𝑝+1)𝜖

)︀
.

Proof. The proof follows the steps of Lemma 4.7 but by using Lemma 4.14 instead of Lemma 4.11. �

Lemma 4.16. For 𝑚 ∈ N with 𝑚 ≥ 2, let ̂︀𝜆 ∈ ̃︀𝐻− 1
2 (̂︀Γ) be the unique solution of Problem 4.10. Then, if the

solution is expanded as ̂︀𝜆 =
∑︀∞

𝑛=0 𝑎𝑛𝑤
−1𝑇𝑛, the following asymptotic behaviors for coefficients 𝑎𝑛 holds

𝑎𝑛 = 𝒪(𝑛−𝑚).

Moreover, if Γ and 𝑔 are 𝜌-analytic
𝑎𝑛 = 𝒪(𝑛𝜌−𝑛).

Proof. We follow similar steps of those for Lemmas 4.13 and 4.9, the integral equation reads as

( ̂︀ℒ[𝜅]̂︀𝜆)𝑙 =
𝜋2

4
𝑎𝑙

𝑙
+

𝑄∑︁
𝑗=1

𝑣𝑗
𝑙 + 𝑣𝑅

𝑙 = 𝒪(𝑙−𝑚−1),

where 𝑣𝑗
𝑙 are defined as in Lemma 4.15, and 𝑄 is fixed such that the remainder is given by a 𝒞𝑚

𝑣 (−1, 1)-function.
Thus, for 𝜖 ∈ (0, 1− 1

𝑚+1 ), 𝑣𝑅
𝑙 = 𝒪(𝑙−𝑚+(𝑚+1)𝜖). Moreover, we can assume that, for 𝛿 ∈ (0, 1− 1

3 ), by Lemma 4.15,
it holds 𝑣𝑗

𝑙 = 𝒪(𝑙−2𝑗+(2𝑗+1)𝛿), for all 𝑗 = 1, . . . , 𝑄. The rest of the proof is the same as in Lemma 4.9, and as
before, the 𝜌-analytic case follows the same arguments. �

4.2.3. Convergence rates for a single arc

From the decay properties of Chebyshev coefficients, we can obtain bounds for the approximation error. First,
notice that, by norm equivalences (cf. Lem. 2.3), we can do all the estimates in ̂︀Γ and transform 𝜆 ↦→ ̂︀𝜆. On the
other hand, we have the quasi-optimality result (cf. Thm. 4.3): there exists 𝑁0 > 0 and a constant 𝐶(Γ, 𝜅) > 0,
such that for all 𝑁 > 𝑁0:

‖𝜆− 𝜆𝑁‖ ̃︀𝐻− 1
2 (Γ)

≤ 𝐶(Γ, 𝜅) inf
𝑞𝑁∈Q𝑁 (̂︀Γ)

⃦⃦⃦̂︀𝜆− 𝑞𝑁

⃦⃦⃦
̃︀𝐻−

1
2 (̂︀Γ)

.

For ̂︀𝜆 we have an expansion of the form ̂︀𝜆 =
∑︀
𝑎𝑛𝑤

−1𝑇𝑛. Hence, we can choose 𝑞𝑁 =
∑︀

𝑛≤𝑁 𝑎𝑛𝑤
−1𝑇𝑛, and

use the norm representation to estimate the error aŝ⃦⃦⃦︀𝜆− 𝑞𝑁

⃦⃦⃦2

̃︀𝐻−
1
2 (̂︀Γ)

=
∑︁
𝑛>𝑁

|𝑎𝑛|2

𝑛
·

Finally, using the bounds from Lemmas 4.16 and 4.9 for the behavior of coefficients 𝑎𝑛, we can establish
convergence rates.

Theorem 4.17. Let 𝜅 > 0, 𝑚 ∈ N with 𝑚 ≥ 2, Γ ∈ 𝒞𝑚
𝑣 . For 𝑔 ∈ 𝒞𝑚

𝑣 (Γ), let 𝜆 be the unique solution of Prob-
lem 3.3, and 𝜆𝑁 the approximation obtained from the solution of 4.1, with 𝑁 > 𝑁0 according to Theorem 4.3.
Then there is a constant 𝐶(Γ, 𝜅), such that

‖𝜆− 𝜆𝑁‖ ̃︀𝐻− 1
2 (Γ)

≤ 𝐶(Γ, 𝜅)𝑁−𝑚.

Moreover, if Γ and 𝑔 are 𝜌-analytic we have that

‖𝜆− 𝜆𝑁‖ ̃︀𝐻− 1
2 (Γ)

≤ 𝐶(Γ, 𝜅)𝜌−𝑁+2
√
𝑁.

If 𝜅 = 0 we need also that 𝑔 ∈ ( ̃︀𝐻− 1
2

⟨0⟩ (Γ))*, for the result to hold true.



HIGH-ORDER GALERKIN METHOD FOR PROBLEMS ON OPEN ARCS 1993

Proof. Following the above discussion, we have to estimate
∑︀

𝑛>𝑁
|𝑎𝑛|2

𝑛 , where the 𝑎𝑛 are characterized in
Lemmas 4.9 and 4.16. Since these are decreasing, the result follows from the following elementary estimation:∑︁

𝑛>𝑁

|𝑎𝑛|2

𝑛
≤
∫︁ ∞

𝑁

𝑎(𝜉)2

𝜉
d𝜉,

the result follows
where 𝑎(𝜉) is a monotonously continuous decreasing function such that 𝑎(𝑛) = |𝑎𝑛|. �

Remark 4.18. Though 𝑁0 and 𝐶(Γ, 𝜅) depend on the geometry and wavenumber 𝜅, the decay rates do not
depend on any of these two.

4.2.4. Multiple arcs approximation

Since the existence of more than one arc translates into perturbations of the Chebyshev coefficients with
decay rates given by arc regularity, convergence rates for the case of multiple arcs are given by those of the
single arc case. To see this, let us recall Problem 3.3 for the case of two 𝒞𝑚

𝑣 -arcs pullbacked onto ̂︀Γ: for 𝑔1,
𝑔2 ∈ 𝐶𝑚

𝑣 (̂︀Γ), find ̂︀𝜆1, ̂︀𝜆2 ∈ ̃︀𝐻− 1
2 (̂︀Γ) such that

̂︀ℒ11[𝜅]̂︀𝜆1 + ̂︀ℒ12[𝜅]̂︀𝜆2 = ̂︀𝑔1,̂︀ℒ21[𝜅]̂︀𝜆1 + ̂︀ℒ22[𝜅]̂︀𝜆2 = ̂︀𝑔2.
By Assumption 2.2, the arcs cannot touch nor intersect. Hence, there is always 𝑑 > 0 such that for all (x,y) ∈
Γ1 × Γ2, ‖x− y‖2 > 𝑑. This leads to the next result.

Lemma 4.19. Let 𝑚 ∈ N consider two open 𝒞𝑚
𝑣 -arcs fulfilling Assumption 2.2. Then, if we write the pulled

back solutions as ̂︀𝜆𝑖 =
∑︁

𝑎𝑖
𝑛

𝑇𝑛

𝑤
,

for 𝑖 ̸= 𝑗, it holds (︁ ̂︀ℒ𝑖𝑗 [𝜅]̂︀𝜆)︁
𝑙

=
∑︁

𝑛

𝑏𝑛𝑙𝑎𝑛,

with asymptotic decay rate:
𝑏𝑛𝑙 = 𝒪

(︀
min

{︀
𝑛−𝑚−1, 𝑙−𝑚−1

}︀)︀
.

Moreover, if the arcs Γ1,Γ2 and g are 𝜌-analytics we have that

𝑏𝑛𝑙 = 𝒪
(︁
𝜌min{−𝑚,−𝑙}

)︁
.

Proof. As the distance between two disjoint arcs is strictly positive, the kernel 𝐺𝜅(r𝑖(𝑡), r𝑗(𝑠)) belongs to 𝒞𝑚
𝑣

and the proof follows verbatim that of Lemma 4.6. �

Lemma 4.20. Let 𝑚 ∈ N with 𝑚 ≥ 2, and 𝜆 be the only solution of Problem 3.3, whose pullback is expanded
as
∑︀

𝑛≥N0
𝑎𝑗

𝑛𝑤
−1𝑇𝑛, it holds

𝑎𝑗
𝑛 = 𝒪(𝑛−𝑚).

Moreover, for the 𝜌-analytic case we have that

𝑎𝑗
𝑛 = 𝒪(𝑛𝜌−𝑛).

Proof. The proof is similar to that of Lemma 4.16, now taking care of cross-interaction terms by Lemma 4.19
and using the same arguments from Lemma 4.9. �
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Theorem 4.21. Let 𝑚 ∈ N with 𝑚 > 2, 𝜅 > 0, Γ ∈ 𝒞𝑚
𝑣 , g ∈ 𝒞𝑚

𝑣 (Γ), 𝜆 the only solution of Problem 3.3 and
𝜆𝑁 approximation constructed from Problem 4.1, then we have the

‖𝜆− 𝜆𝑁‖̃︀H− 1
2 (Γ)

≤ 𝐶(Γ, 𝜅)𝑁−𝑚+1,

and for the 𝜌-analytic case
‖𝜆− 𝜆𝑁‖̃︀H− 1

2 (Γ)
≤ 𝐶(Γ, 𝜅)𝜌−𝑁+2

√
𝑁.

For 𝜅 = 0 we need to impose the condition g ∈ (̃︀H− 1
2

⟨0⟩ (Γ))*.

Proof. The proof follows that of Theorem 4.17 as the ̃︀H− 1
2 (Γ)-norm is equivalent to the Cartesian product of

𝑀 times the space ̃︀𝐻− 1
2 (̂︀Γ) with corresponding bounds for the coefficients established in Lemma 4.20. �

5. Matrix computations

We now explicitly describe numerically how to solve Problem 4.1 using the discrete spaces defined in
Section 4.1. By definition (4.1), the matrix entries are

(L𝑖𝑗 [𝜅])𝑙𝑛 =
⟨︀
ℒ𝑖𝑗 [𝜅]𝑞𝑗

𝑛, 𝑞
𝑖
𝑙

⟩︀
Γ𝑖
.

In Remark 4.2, we showed that these can be computed as

(L𝑖𝑗 [𝜅])𝑙𝑛 =
⟨ ̂︀ℒ𝑖𝑗 [𝜅]𝑤−1𝑇𝑛, 𝑤

−1𝑇𝑙

⟩
̂︀Γ
.

First, we review how the integrals involving the functions 𝑤−1𝑇𝑛 can be approximated.

5.1. Fourier–Chebyshev expansions

Every function in 𝒞1([−1, 1]) can be expanded as a Chebyshev series (cf. [37], Thm. 3.1),

𝑓(𝑠) =
∞∑︁

𝑛=0

𝑓𝑛𝑇𝑛(𝑠), ∀𝑠 ∈ [−1, 1] with 𝑓𝑛 := 𝑐𝑛
⟨︀
𝑓, 𝑤−1𝑇𝑛

⟩︀
̂︀Γ ,

with 𝑐0 = 𝜋 and 𝑐𝑛 = 𝜋/2 for 𝑛 > 0. For a given 𝑁 ∈ N, the Fourier–Chebyshev coefficients {𝑓𝑛}𝑛∈N0
can be

approximated using the FFT as follows:

(i) Construct a vector v𝑁 ∈ C𝑁+1 with entries 𝑓(𝑠𝑁
𝑛 ), for 𝑛 = 0, . . . , 𝑁 , and where the 𝑠𝑁

𝑛 = cos(𝑛𝜋/𝑁)
correspond to the Chebyshev points of order 𝑁 .

(ii) Apply the FFT to a periodic extension of the vector f𝑁 ,̃︁f𝑁 := FFT
(︀
𝑣𝑁

𝑁 , 𝑣
𝑁
𝑁−1, . . . , 𝑣

𝑁
1 , 𝑣

𝑁
0 , 𝑣

𝑁
1 , . . . , 𝑣

𝑁
𝑁

)︀
.

(iii) Define the approximations as

𝑓𝑁
𝑛 := ̃︁𝑓𝑁

𝑛, 𝑛 = 1, . . . , 𝑁 − 1, 𝑓𝑁
0 =

1
2
̃︁𝑓𝑁

0, 𝑓𝑁
𝑁 =

1
2
̃︁𝑓𝑁

𝑁 .

Remark 5.1. Notice that Fourier–Chebyshev expansions correspond to the expansions of even functions in
Fourier basis under a cosine change of variable.

Using aliasing properties of Chebyshev series, one can easily see that for 𝑓 ∈ 𝒞𝑚
𝑣 (−1, 1),

|𝑓𝑛 − 𝑓𝑁
𝑛 | = 𝒪

(︀
𝑁−𝑚−1

)︀
,

while for 𝜌-analytic functions, it holds
|𝑓𝑛 − 𝑓𝑁

𝑛 | = 𝒪
(︀
𝜌−𝑁

)︀
.

For more details see Chapter 4 of [37].
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5.2. Kernel expansion

An expansion similar to the one above holds for the fundamental solution 𝐺0(x,y) when 𝜅 = 0 over ̂︀Γ.
Specifically, for collinear vectors, i.e. x = (𝑡, 0) and y = (𝑠, 0), (𝑠, 𝑡) ∈ [−1, 1]2, it holds (cf. [29] and [19],
Thm. 4.4):

𝐺0(x,y) = − 1
2𝜋

log |𝑡− 𝑠| =
1

2𝜋
log 2 +

∑︁
𝑛≥1

1
𝜋𝑛

𝑇𝑛(𝑡)𝑇𝑛(𝑠), ∀𝑠 ̸= 𝑡. (5.1)

This series expansion converges point-wise for 𝑡 ̸= 𝑠 as the fundamental solution is then smooth.

5.3. Computations for 𝑖 ̸= 𝑗

We consider cross-interactions given by blocks L𝑖𝑗 [𝜅]. The associated kernel is smooth, and consequently, we
can expand it as a Chebyshev series using the FFT. To this end, we consider a bivariate version of the procedure
presented in Section 5.1:

(i) Evaluate the function 𝐹 (𝑡, 𝑠) := 𝐺𝜅(r𝑖(𝑡), r𝑗(𝑠)) in a grid of Chebyshev points (𝑡𝑁𝑖 , 𝑠
𝑁
𝑗 ), obtaining a matrix

F ∈ C(𝑁+1)×(𝑁+1).
(ii) For each row, we follow steps (i) and (ii) of the one-dimensional procedure detailed in Section 5.1. This

leads to the following expansion:
𝐹 (𝑡, 𝑠) =

∑︁
𝑛≥0

𝑎𝑛(𝑠)𝑇𝑛(𝑡),

where the coefficients of the matrix are approximations at the Chebyshev points, i.e. F𝑗𝑛 ≈ 𝑎𝑛(𝑥𝑁
𝑗 ),

𝑛 = 0, . . . , 𝑁 .
(iii) We repeat the last step but with the columns of the new matrix F, i.e. the same one-dimensional procedure

for the functions 𝑎𝑛(𝑠), 𝑛 = 0, . . . , 𝑁 . The matrix F is updated such that F𝑙𝑛 ≈ 𝑎𝑙𝑛, where

𝐹 (𝑡, 𝑠) =
∑︁
𝑙≥0

∑︁
𝑛≥0

𝑎𝑙𝑛𝑇𝑙(𝑠)𝑇𝑛(𝑡).

Notice that this procedure requires 2(𝑁+1) FFTs. Once the expansion is obtained, the integrals are computed
directly using the orthogonality property of Chebyshev polynomials.

5.4. Computations for 𝑖 = 𝑗

In this setting, we extract singularities by subtracting the purely logarithmic term:

𝑅𝑖
𝑘(𝑡, 𝑠) := − 1

2𝜋
log |𝑡− 𝑠|𝐽0(𝜅 ‖r𝑖(𝑡)− r𝑖(𝑠)‖2),

and obtain two families of integrals:

𝐼1
𝑙𝑛 :=

∫︁ 1

−1

∫︁ 1

−1

(𝐺𝜅(r𝑖(𝑡), r𝑖(𝑠))−𝑅𝑖
𝑘(𝑡, 𝑠))𝑤−1𝑇𝑛(𝑡)𝑤−1𝑇𝑙(𝑠) d𝑡d𝑠,

𝐼2
𝑙𝑛 :=

∫︁ 1

−1

∫︁ 1

−1

𝑅𝑖
𝑘(𝑡, 𝑠)𝑤−1𝑇𝑛(𝑡)𝑤−1𝑇𝑙(𝑠) d𝑡d𝑠.

Using the expansion ([2], 9.1.13), we find that 𝐺𝜅(r𝑖(𝑡), r𝑖(𝑠)) − 𝑅𝑖
𝑘(𝑡, 𝑠) has the same regularity of r𝑖, and

thus, we can compute 𝐼1
𝑙𝑛 as in the case 𝑖 ̸= 𝑗. For 𝐼2

𝑙𝑛, we notice that 𝑅𝑖
𝑘(𝑡, 𝑠) is a product of two functions:

− 1
2𝜋 log |𝑡− 𝑠|, with known Chebyshev expansion (5.1) and 𝐽0(𝜅 ‖r𝑖(𝑡)− r𝑖(𝑠)‖2), which by equation (9.1.12)

of [2] has the same regularity of r𝑖. Consequently, its Chebyshev expansion can be computed using the FFT.
Finally, the Chebyshev expansion of 𝑅𝑖

𝑘(𝑡, 𝑠) is computed using the technique shown in Lemma 4.14.

Remark 5.2. The evaluation of the Chebyshev expansion of 𝑅𝑖
𝑘(𝑡, 𝑠) can be accelerated by extrapolation

techniques like de-aliasing [16].
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6. Compression algorithm

While the presented spectral algorithm reduces the number of dofs needed to obtain a desired accuracy with
respect the most common low order ℎ-refinement schemes, we lack any form of matrix compression such as Fast
Multipole Method or Hierarchical Matrices ([32], Chap. 7). In what follows, we present a compression algorithm
specially designed for problems with multiples arcs. The key idea is to recognize that the entries of the matrix
L[𝜅] correspond to Fourier–Chebyshev coefficients of the kernel function. Hence, for smooth kernels, we observe
fast decaying entries, and thus it can be approximated by just considering the first coefficients and setting others
to zero. Specifically, the kernel function is smooth when we compute cross-interactions blocks.

Let the routine Quadrature(𝑙, 𝑚) compute the term (𝑙,𝑚) of this interaction matrix using a two-dimensional
Gauss–Chebyshev quadrature3. Given a tolerance 𝜖, we reduce the amount of computations needed by performing
the following binary search:

Algorithm 6.1 (H).
1: INPUT: Tolerance 𝜖, Max Level of search 𝐿max

2: OUTPUT: Number of columns to use 𝑁cols

3: INITIALIZE: 𝑁cols = 𝑁 , 𝑙𝑒𝑣𝑒𝑙 = 0, 𝑎 = 0, 𝑏 = 𝑁
4: while 𝑙𝑒𝑣𝑒𝑙 < 𝐿max do
5: 𝑚 = (𝑎+ 𝑏)/2
6: 𝑇left = 𝑚− 1
7: 𝑇center = 𝑚
8: 𝑇right = 𝑚+ 1
9: 𝑉left = abs(Quadrature(0, 𝑇left))

10: 𝑉center = abs(Quadrature(0, 𝑇center))
11: 𝑉right = abs(Quadrature(0, 𝑇right))
12: if {𝑉right&𝑉center < 0.5 * 𝜖} or {𝑉left&𝑉center < 0.5 * 𝜖} then
13: 𝑏 = 𝑚
14: else
15: 𝑎 = 𝑚
16: end if
17: 𝑙𝑒𝑣𝑒𝑙 + +
18: end while
19: 𝑁cols = 𝑏

The algorithm returns the minimum number of columns 𝑁cols to be used, by searching in the first row the
minimum index such that the absolute value of the matrix entries is lower than 𝜖. The binary search is restricted
to a depth 𝐿max ∈ N. The same procedure is used to estimate the number of rows, 𝑁rows, by executing a binary
search in the first column. Once 𝑁cols and 𝑁rows are selected, we define 𝑁𝜖 := max {𝑁rows, 𝑁cols} and compute
the block of size 𝑁𝜖 ×𝑁𝜖 as in the full implementation.

Matrix compression also induces an extra error as it perturbs the original linear system in Problem 4.1. We can
bound this error using the standard theory of perturbed linear systems. To that end, denote by L𝜖[𝜅] the matrix
generated by the compression algorithm with tolerance 𝜖, and define the matrix difference ∆L𝜖[𝜅] := L𝜖[𝜅]−L[𝜅].
We seek to control the solution u𝜖 = u + ∆u of

(L[𝜅] + ∆L𝜖[𝜅])u𝜖 = g,

where u and g are the same as in Problem 4.1. In order to bound this error, we will assume that, for every pair
of indices (𝑖, 𝑗) in the matrix L[𝜅], we have,

|(∆L𝜖[𝜅])𝑖𝑗 | < 𝜖. (6.1)

3We make the following approximation
∫︀
Γ𝑖

∫︀
Γ𝑗

𝐺𝜅(x,y)𝑞𝑗
𝑚(x)𝑞𝑖

𝑙 (y) dxdy ≈
∑︀𝑁𝑞

𝑝=1

∑︀𝑁𝑞

𝑟=1 𝜔𝑝𝜔𝑟𝐺𝜅(r𝑖(𝑥𝑝), r𝑗(𝑥𝑟))𝑇𝑚(𝑥𝑟)𝑇𝑙(𝑥𝑝),

where 𝜔𝑝, 𝑥𝑝 denote the Gauss–Chebyshev quadrature weights and points respectively, and 𝑁𝑞 is the number of points to use.
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Theorem 6.2. Let 𝑁 ∈ N be such there is only one solution of Problem 4.1. Then, there is a constant 𝐶(Γ, 𝜅) >
0 such that

‖∆u‖2
‖u‖2

≤
⃒⃒⃒⃒

𝑁𝜖

𝐶(𝜅,Γ)−𝑁𝜖

⃒⃒⃒⃒
·

Proof. By Section 1.13.2 of [30] we have that

‖∆u‖2
‖u‖2

≤
‖∆L𝜖[𝜅]‖2

‖(L[𝜅])−1‖2 − ‖∆L𝜖[𝜅]‖2
,

and thus, we need to estimate ‖∆L𝜖[𝜅]‖2 and
⃦⃦

(L[𝜅])−1
⃦⃦

2
. The bound for the first term can be obtained as

‖∆L𝜖[𝜅]‖2 = sup
x ̸=0

‖∆L𝜖[𝜅]x‖2
‖x‖2

= sup
x̸=0

(︁∑︀𝑁
𝑖=0(

∑︀𝑁
𝑗=0 ∆L𝜖[𝜅]𝑖𝑗𝑥𝑗)2

)︁1/2

‖x‖2
≤ sup

x ̸=0

(︁∑︀𝑁
𝑖=0 ‖x‖22𝑁𝜖2

)︁1/2

‖x‖2
≤ 𝑁𝜖.

To estimate
⃦⃦
(L[𝜅])−1

⃦⃦
2
, we have on one hand the classical result

⃦⃦
(L[𝜅])−1

⃦⃦
2
≥ ‖(L[𝜅])‖−1

2 . On the other hand,
by the operator continuity it is easy to see that

‖(L[𝜅])‖2 ≤ 𝐶(𝜅,Γ),

the results follows directly from the latter estimation. For 𝜅 = 0, the proof is analogous with the corresponding
change in the spaces. �

We can also estimate the error introduced by the compression algorithm in terms of the energy norm. In
order to do so, define (𝜆𝜖

𝑁 )𝑖 :=
∑︀𝑁

𝑚=0(u𝜖
𝑖)𝑚𝑞

𝑖
𝑚 in Γ𝑖. By the same arguments in the above proof, we obtain

‖𝜆𝑁 − 𝜆𝜖
𝑁‖̃︀H− 1

2 (Γ)
≤ 𝐶1(𝜅,Γ) ‖g‖

1
2
H (Γ)

𝜖𝑁
3
2

𝐶(𝜅,Γ)− 𝜖𝑁
,

where g is the same that in Problem 3.3, 𝐶1 is the constant of Theorem 4.3, and an extra factor 𝑁
1
2 appears

as ‖u‖2 ≤ 𝑁
1
2 ‖𝜆𝑁‖̃︀H− 1

2 (Γ)
≤ 𝐶1𝑁

1/2 ‖g‖
H

1
2 (Γ)

.

Remark 6.3. We can use the compression algorithm to make a fast version of the matrix-vector product by
splitting the product into blocks, and using the sparse representation for the cross interaction blocks.

Remark 6.4. For the Laplace case 𝜅 = 0, it is also possible to obtain sparse approximations of the self-
interaction blocks. We refer to [22], for details, and also for a more complete analysis of similar the compression
algorithm.

7. Numerical results

7.1. Convergence results

In what follows, we show experimental results confirming the convergence rates proven in Theorem 4.21.
Let us first consider the case of a single arc ̂︀Γ and an excitation 𝑔 with limited regularity. Figure 1 presents
convergence results for different excitation functions. The first three are of the form 𝑔(𝑡) = |𝑡|𝑝, with 𝑝 = 3, 5, 7.
For these, 𝑔 is in 𝒞𝑝

𝑣 (̂︀Γ). Hence, by Theorem 4.21, we should observe the following error bounds:

Error := ‖𝜆− 𝜆𝑁‖ ̃︀𝐻− 1
2 (̂︀Γ)

= 𝒪(𝑁−𝑝).

Thus, we have that the error as a function of 𝑁 has a slope of 𝑝 in logarithmic scale. The fourth case has as right-
hand side 𝑔(𝑡) = 𝑡2, and being an entire function, we observe the corresponding super-algebraic convergence.
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Figure 1. ̃︀𝐻− 1
2 (̂︀Γ) errors, for 𝑔(𝑡) = |𝑡|𝑝. Values 𝑚 are slopes of log10(Error) respect to

log10𝑁 . Errors are computed with respect to an overkill solution with 𝑁 = 440. (a) Laplace.
(b) Helmholtz 𝜅 = 10.

Figure 2. ̃︀𝐻− 1
2 (Γ) errors, for Γ given by r(𝑡) = (𝑡, |𝑡|𝑝) and 𝑔(𝑡) = 𝑡2. Values 𝑚 are slopes of

log10(Error) respect to log10𝑁 . Errors are computed with respect to an overkill solution with
𝑁 = 440. (a) Laplace. (b) Helmholtz 𝜅 = 10.

Figure 2 shows convergence results for geometries with limited regularity and smooth excitation. Just as in
the case of source terms of limited regularity, we obtain the convergence rates stated in Theorem 4.21.

Lastly, we consider the case of multiple arcs and where the excitation function and the geometry are smooth
(see Fig. 3). We observe exponential error convergence in the polynomial degree, which is the same for each
arc, as predicted. We also observe that, as a function of 𝜅, the errors are increasingly bounded by below. Our
experiments shows that this effect is caused by errors in the solution of the linear system, which is currently
solved by a direct method (the residual ‖L[𝜅]𝜆− 𝑏‖2 dominates the convergence error, see Fig. 3c). For the sake
of brevity, we will not attempt to solve this anomaly, as it is a common issue when computing waves scattered
by disjoint domains (cf. [12]). We remark that the ̃︀𝐻− 1

2 –norms are computed using expression (4.2).
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Figure 3. In (a), a smooth geometry with 𝑀 = 28 open arcs, each with a parametrization
(𝑎𝑡, 𝑐 sin(𝑏𝑡)) + d, where 𝑎 ∈ [0.45, 0.50], 𝑏 ∈ [1.0, 1.5], 𝑐 ∈ [1.0, 1.3], d ∈ [2, 3.5] × [11, 25],
and 𝑡 ∈ [−1, 1]. In (b), convergence for the corresponding geometry and different wavenumbers
using as right-hand side the trace of 𝑔(x) = exp−𝑖𝜅̂x · y, where 𝜅̂ = 𝜅 for 𝑘 > 0, 0̂ = 5,
y = (cos𝛼, sin𝛼), and 𝛼 = 𝜋/4. The x-axis denotes the number of polynomials used per arc.
Errors are computed with respect to an overkill solution with 𝑁 = 500 per arc. The mean arc
lengths in terms of the wavelength are 8𝜆, 16𝜆, 32𝜆 for 𝜅 = 25, 50, 100 respectively. In (c) the
error in the solution of the linear system for the different cases, and in (d) the corresponding
conditioning number (in norm 2) for the linear systems. (a) Geometry. (b) Convergence ̃︀H− 1

2 (̂︀Γ)-
norm. (c) Residuals: ‖L𝜆− 𝑏‖2. (d) Condition number.

7.2. Compression results

We consider the test cases presented in Figure 3. Tables 1 and 2 showcase different measurements of the
performance of the compression algorithm. We denote by: % NNZ, the percentage of non zero entries of the
compressed matrix; Rel. Error, to the maximum absolute value between of the difference of uncompressed and
compressed matrices; GMRES Full, the time (in seconds) that takes to solve the full linear system using GMRES
with a tolerance of 1𝑒−8; and, GMRES Sparse, same as last but with compressed matrix and an optimized
version of the matrix vector product. For the sake of completeness, we have also included the assembly times
(in seconds) for the full matrix (Full Assembly), and the compressed one (Sparse Assembly), and observe that
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Table 1. Compression performance 𝜖 = 1𝑒−10, 𝜅 = 100.

Order % NNZ Rel. Error GMRES Full GMRES Sparse Full Assembly Sparse Assembly
𝐿max = 1

250 24 1𝑒−10 25 12 109 96
300 24 1𝑒−10 37 15 163 148
350 24 1𝑒−10 48 19 215 198
400 24 1𝑒−10 62 23 309 294

𝐿max = 2
250 6 1𝑒−10 25 8 109 95
300 6 1𝑒−10 37 10 163 147
350 6 1𝑒−10 48 12 215 198
400 6 1𝑒−10 62 13 309 285

𝐿max = 3
250 5 1𝑒−10 25 7 109 95
300 3 1𝑒−10 37 9 163 147
350 2 1𝑒−10 48 9 215 196
400 1.7 1𝑒−10 62 11 309 286

Table 2. Compression performance 𝜖 = 1𝑒−14, 𝜅 = 100.

Order % NNZ Rel. Error GMRES Full GMRES Sparse Full Assembly Sparse Assembly
𝐿max = 1

250 24 1𝑒−14 25 12 109 96
300 24 1𝑒−14 37 16 163 149
350 25 1𝑒−14 48 20 215 199
400 25 1𝑒−14 62 24 309 294

𝐿max = 2
250 6 1𝑒−14 25 8 109 96
300 6 1𝑒−14 37 10 163 147
350 7 1𝑒−14 48 12 215 199
400 7 1𝑒−14 62 14 309 284

𝐿max = 3
250 5 1𝑒−14 25 8 109 96
300 4 1𝑒−14 37 10 163 148
350 5 1𝑒−14 48 11 215 196
400 4 1𝑒−14 62 12 309 283

they do not differ much as the most expensive part for this relative small problems is the computation of the
self-interaction matrices.

8. Concluding remarks

The present work presents a high-order discretization method for the wave scattering by multiple disjoint arcs
based on weighted polynomials bases with proven convergence rates similar to the classical interpolation theory
of smooth functions. As an efficient solver for the forward problem, our method could be easily used for solving
optimization or inverse problems, tasks which are currently under development. Still, for increasing frequencies
and numbers of arcs, we remark that the solution of the resulting linear system can become a bottleneck, thus
requiring further improvements.
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Appendix A. Laplace uniqueness result

We define the energy space of homogeneous boundary condition as

𝑊0(Ω) :=
{︀
𝑈 ∈𝑊 (Ω) : 𝛾±𝑖 𝑈 = 0, for 𝑖 = 1, . . . ,𝑀

}︀
.

We also will need the traces over the complementary arcs Γ𝑐
𝑖 := 𝜕Ω𝑖 ∖ Γ𝑖 that we denote them as 𝛾±𝑖𝑐 and

𝛾±𝑁,𝑖𝑐 respectively. The following technical results will be needed, we omit the proofs as they can be found in
the given references.

Lemma A.1 ([19], Lem. 2.2). The semi-norm |𝑈 |𝑊 (Ω) := ‖∇𝑈‖𝐿2(Ω) bounds the 𝑊 (Ω)-norm for functions in
𝑊0(Ω), i.e. there exists a constant 𝑐 > 0 such that

‖𝑈‖𝑊 (Ω) ≤ 𝑐 |𝑈 |𝑊 (Ω) , ∀𝑈 ∈𝑊0(Ω).

Lemma A.2 ([19], Prop. 2.6). Let 𝑈 belong to 𝑊 (Ω) such that −∆𝑈 ∈ 𝐿2
loc(Ω). For 𝑅 > 0, denote the ball of

radius 𝑅 centered at the origin by 𝐵𝑅 :=
{︀
x ∈ R2 : ‖x‖2 < 𝑅

}︀
. Then,

lim
𝑅→∞

⟨
𝛾−N,𝑅𝑈, 𝛾

−
𝑅𝑉
⟩

𝜕𝐵𝑅

= 0, ∀𝑉 ∈𝑊 (Ω),

where 𝛾−𝑅 and 𝛾−N,𝑅 denote interior Dirichlet and Neumann traces on 𝜕𝐵𝑅, respectively, the latter being equivalent
to the radial derivative on the boundary.

Lemma A.3 ([13], Thm. 1.7.1). Let 𝑉 ∈𝑊0(Ω). Then it holds

𝛾+
𝑖𝑐𝑉 = 𝛾−𝑖𝑐𝑉 𝑖 {1, . . . ,𝑀} .

Hence, we can denote indistinctly by 𝛾𝑖𝑐 the trace defined over Γ𝑐
𝑖 on 𝑊0(Ω).

Lemma A.4 ([19], Sect. 2.6.1). Let a function 𝑈 ∈ 𝑊0(Ω) such that −∆𝑈 = 0 in Ω. Then, the normal jump
on Γ𝑐

𝑖 is null, i.e. 𝛾+
𝑁,𝑖𝑐𝑈 − 𝛾−𝑁,𝑖𝑐𝑈 = 0.

Lemma A.5. If 𝑈 ∈𝑊0(Ω), is such that ∆𝑈 = 0, then 𝑈 = 0.

Proof. Let Ω* :=
⋃︀𝑀

𝑗=1 Ω𝑗 , where the collection is disjoint by Assumption 2.2, and choose 𝑅 > 0 such that
Ω* ⊂ 𝐵𝑅. Set Ω0(𝑅) := 𝐵𝑅 ∩ Ω

𝑐

*. We have that ∇𝑈,∇𝑉 ∈ 𝐿2(𝐵𝑅) (as they are in 𝐿2(Ω)), hence

⟨∇𝑈,∇𝑉 ⟩𝐵𝑅
=

𝑀∑︁
𝑖=1

⟨∇𝑈,∇𝑉 ⟩Ω𝑖
+ ⟨∇𝑈,∇𝑉 ⟩Ω0(𝑅) .

Using the Green formulas, and the null condition of 𝑉 in Γ we obtain that

⟨∇𝑈,∇𝑉 ⟩Ω𝑖
= ⟨−∆𝑈, 𝑉 ⟩Ω𝑖

+
⟨
𝛾+

𝑁,𝑖𝑐𝑈, 𝛾𝑖𝑐𝑉
⟩

Γ𝑐
𝑖

⟨∇𝑈,∇𝑉 ⟩Ω0(𝑅) = ⟨−∆𝑈, 𝑉 ⟩Ω0(𝑅) + ⟨𝛾𝑁,𝑅𝑈, 𝛾𝑅𝑉 ⟩𝜕𝐵𝑅
−

𝑀∑︁
𝑖=1

⟨
𝛾−𝑁,𝑖𝑐𝑈, 𝛾𝑖𝑐𝑉

⟩
Γ𝑐

𝑖

.

Finally adding the two terms and using Lemma A.4, and the condition −∆𝑈 = 0 in Ω we have that

⟨∇𝑈,∇𝑉 ⟩𝐵𝑅
= ⟨𝛾𝑁,𝑅𝑈, 𝛾𝑅𝑉 ⟩𝜕𝐵𝑅

.

The results follows directly from this last equation, and Lemmas A.1 and A.2. �
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Appendix B. Technical lemmas

B.1. Proof of Lemma 2.3

We only need to proof for 𝐻1/2 as the 𝐻̃−1/2 case is obtained by duality arguments. By definition, it holds

‖𝜁 ∘ r𝑖‖2
𝐻

1
2 (Γ̂)

=
∫︁ 1

−1

|𝜁 ∘ r𝑖(𝑡)|2 d𝑡+
∫︁ 1

−1

∫︁ 1

−1

|𝜁 ∘ r𝑖(𝑡)− 𝜁 ∘ r𝑖(𝑠)|2

|𝑡− 𝑠|2
d𝑡d𝑠. (B.1)

For the first integral on the right-hand side, we deduce∫︁ 1

−1

|𝜁 ∘ r𝑖(𝑡)|2 d𝑡 =
∫︁ 1

−1

|𝜁 ∘ r𝑖|2
‖r′𝑖(𝑡)‖2
‖r′𝑖(𝑡)‖2

d𝑡 =
∫︁

Γ𝑖

|𝜁|2⃦⃦
r′𝑖 ∘ r−1

𝑖

⃦⃦
2

dΓ𝑖

≤
⃦⃦⃦⃦⃦

r′𝑖 ∘ r−1
𝑖

⃦⃦−1

2

⃦⃦⃦
𝐿∞(Γ𝑖)

∫︁
Γ𝑖

|𝜁|2dΓ𝑖. (B.2)

Similarly, by changing variables, the second term in (B.1) becomes∫︁
Γ𝑖

∫︁
Γ𝑖

|𝜁(x)− 𝜁(y)|2

‖x− y‖22

(︃
‖x− y‖22⃦⃦

r−1
𝑖 (x)− r−1

𝑖 (y)
⃦⃦2

2

)︃
dΓ𝑖(x)dΓ𝑖(y)⃦⃦

r′𝑖 ∘ r−1
𝑖 (x)

⃦⃦
2

⃦⃦
r′𝑖 ∘ r−1

𝑖 (y)
⃦⃦

2

·

Using the mean value theorem for r−1
𝑖 , we arrive at∫︁ 1

−1

∫︁ 1

−1

|𝜁 ∘ r𝑖(𝑡)− 𝜁 ∘ r𝑖(𝑠)|2

|𝑡− 𝑠|2
d𝑡d𝑠 ≤ 𝐶𝑖

∫︁
Γ𝑖

∫︁
Γ𝑖

|𝜁(x)− 𝜁(y)|2

‖x− y‖22
dΓ𝑖(x)dΓ𝑖(y), (B.3)

where
𝐶𝑖 =

⃦⃦⃦⃦⃦
r′𝑖 ∘ r−1

𝑖

⃦⃦−1

2

⃦⃦⃦4

𝐿∞(Γ𝑖)
.

Using (B.2) and (B.3) to define 𝐶 we obtain the following inequality

‖𝜁 ∘ r𝑖‖
𝐻

1
2 (Γ̂)

≤ 𝐶 ‖𝜁‖
𝐻

1
2 (Γ̂𝑖)

.

The second equivalence inequality is obtained using the same arguments.

B.2. Proof of Lemma 4.6

For any 𝑠 ∈ [−1, 1], we can write the univariate Fourier–Chebyshev expansion in 𝑡:

ℎ(𝑡, 𝑠) =
∞∑︁

𝑛=0

𝑎𝑛(𝑠)𝑇𝑛(𝑡), ∀𝑡 ∈ [−1, 1].

In fact, the regularity of ℎ(𝑡, ·) implies that the functions 𝑎𝑛(𝑠) belong to 𝒞𝑚(−1, 1), and consequently, one can
write down expansions:

𝑎𝑛(𝑠) =
∞∑︁

𝑘=0

𝑏𝑛𝑘𝑇𝑘(𝑠), ∀𝑠 ∈ [−1, 1], ∀𝑛 ∈ N0.

If 𝑚 <∞, by Theorem 7.1 of [37], we have that 𝑏𝑛𝑘 . 𝑘−𝑚, where the constant depends on the 𝑚-th derivative
of 𝑎𝑛(𝑠), which is bounded by the 𝑚-th derivative of ℎ in 𝑠.

For the 𝜌-analytic case we have by Theorem 8.1 of [37] that 𝑏𝑛𝑘 . 𝜌−𝑘
𝑛 , with 𝜌𝑛 > 1. However, the coefficients

𝑎𝑛(𝑠) are given by

𝑎𝑛(𝑠) = 𝑐𝑛

∫︁ 1

−1

ℎ(𝑡, 𝑠)𝑤−1(𝑡)𝑇𝑛(𝑡) d𝑡,
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where 𝑐0 = 𝜋−1, and 𝑐𝑛 = 2𝜋−1, for 𝑛 ∈ N. Hence, since ℎ(𝑡, ·) is 𝜌-analytic, we have that, for every 𝑧 in the
corresponding ellipse we can write

𝑎𝑛(𝑧) =
∑︁
𝑝≥0

𝑧𝑝

∫︁ 1

−1

𝐴𝑝(𝑡)𝑤−1(𝑡)𝑇𝑛(𝑡) d𝑡,

where 𝐴𝑝(𝑡) are the coefficients of the power series of ℎ(𝑡, ·). From this last expression, we have that 𝑎𝑛 is
analytic in the ellipse of parameter 𝜌 for every 𝑛, and thus, we can take 𝜌𝑛 = 𝜌 for every 𝑛 ∈ N ∪ {0}.

The final result is obtained by repeating the above arguments inverting the roles of 𝑛 and 𝑘.

B.3. Proof of Lemma 4.7

Consider 𝑓 =
∑︀

𝑛≥0 𝑎𝑛𝑤
−1𝑇𝑛(𝑡), by Lemma 4.6, we expand ℎ(𝑡, 𝑠) as the series

∑︀∞
𝑛=0

∑︀∞
𝑘=0 𝑏𝑛𝑘𝑇𝑛(𝑡)𝑇𝑘(𝑠).

Hence, by the Chebyshev polynomials’ orthogonality property, we can write

𝑣𝑙 =
𝜋2

4

∞∑︁
𝑛=1

𝑏𝑛𝑙𝑎𝑛 +
𝜋2

2
𝑏0𝑙𝑎0, ∀𝑙 > 0.

Thus, by definition of constants 𝑑𝑛 (4.2) and the series expression for ̃︀𝐻−1/2(̂︀Γ)-norm, we obtain the following
bound:

|𝑣𝑙|2 . ‖𝑓‖2̃︀𝐻−1/2(̂︀Γ)

∞∑︁
𝑛=0

|𝑏𝑛𝑙|2𝑑−1
𝑛 .

From here the result is direct if ℎ is bivariate 𝜌-analytic function. For 𝑚 ∈ N, using Lemma 4.6, it holds

|𝑏𝑛𝑙|2 . 𝑙−2(𝑚+1)𝜇𝑛−2(𝑚+1)(1−𝜇), ∀𝜇 ∈ (0, 1).

With the above bound and the estimate 𝑑𝑛 ∼ 𝑛−1, we arrive to

|𝑣𝑙|2 . ‖𝑓‖2̃︀𝐻−1/2(̂︀Γ)
𝑙−2(𝑚+1)𝜇

∞∑︁
𝑛=1

𝑛−2(𝑚+1)(1−𝜇)+1,

by choosing 𝜇 = 1− 1
𝑚+1 − 𝜖, the series in the right-hand side converges and we get the stated result.

Appendix C. Basic approximation properties

Lemma C.1. The discretization is conforming, i.e. Q𝑁 (Γ𝑖) ⊂ ̃︀𝐻− 1
2 (Γ𝑖)

(resp. Q𝑁,⟨0⟩(Γ𝑖) ⊂ ̃︀𝐻− 1
2

⟨0⟩ (Γ𝑖)).

Proof. For any 𝜁𝑖 ∈ Q𝑁 (Γ𝑖) the representation:

𝜁𝑖 =
̂︀𝑝 ∘ r−1

𝑖

𝑤𝑖

⃦⃦
r′𝑖 ∘ r−1

𝑖

⃦⃦
2

,

holds, where ̂︀𝑝 is a polynomial in (−1, 1). By definition of dual norms, one can write

⃦⃦
𝜁𝑖
⃦⃦
̃︀𝐻−

1
2 (Γ𝑖)

= sup
𝜗∈𝐻

1
2 (Γ𝑖)

⟨︀
𝜁𝑖, 𝜗

⟩︀
𝐻

1
2 (Γ𝑖)

‖𝜗‖
𝐻

1
2 (Γ𝑖)

·
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At the same time, it holds⟨︀
𝜁𝑖, 𝜗

⟩︀
Γ𝑖

=
∫︁ 1

−1

̂︀𝑝(𝑡)√
1− 𝑡2

(𝜗 ∘ r𝑖)(𝑡) d𝑡 ≤ ‖̂︀𝑝‖𝐿∞(−1,1)

∫︁ 1

−1

(𝜗 ∘ r𝑖)(𝑡)
𝑤(𝑡)

d𝑡

≤ ‖̂︀𝑝‖𝐿∞(−1,1)

⃦⃦
𝑤−1

⃦⃦
̃︀𝐻−

1
2 (̂︀Γ)

‖𝜗 ∘ r𝑖‖
𝐻

1
2 (̂︀Γ)

,

where 𝑤(𝑡) :=
√

1− 𝑡2. Applying Lemma 2.3, we only need to check that the ̃︀𝐻− 1
2 (̂︀Γ)-norm of 𝑤−1 is finite,

which was already proved in Lemma 6.1.19 of [17]. The inclusion for the mean-zero spaces is immediate from
the Chebyshev polynomials’ orthogonality property. �

Lemma C.2. The family {Q𝑁 (Γ𝑖)}𝑁∈N is dense in ̃︀𝐻− 1
2 (Γ𝑖), while the family

{︀
Q𝑁,⟨0⟩(Γ𝑖)

}︀
𝑁∈N is dense iñ︀𝐻− 1

2
⟨0⟩ (Γ𝑖).

Proof. We only need to prove that there is a fixed constant 𝐶 such that, for a given 𝜖 > 0 and 𝜑 ∈ 𝒟(Γ𝑖), there
exists 𝜁𝑖 ∈ Q𝑁 (Γ𝑖) satisfying ⃦⃦

𝜁𝑖 − 𝜑
⃦⃦
̃︀𝐻−

1
2 (Γ𝑖)

≤ 𝐶𝜖.

By Lemma 6.1.20 of [17], there exists a polynomial ̂︀𝑝 ∈ P𝑁 (−1, 1) satisfying⃦⃦
𝑤−1̂︀𝑝− ‖r′𝑖‖2 (𝜑 ∘ r𝑖)

⃦⃦
̃︀𝐻−

1
2 (̂︀Γ)

< 𝜖.

Let 𝜁𝑖 =
̂︀𝑝 ∘ r𝑖

𝑤𝑖

⃦⃦
r′𝑖 ∘ r−1

𝑖

⃦⃦
2

. Again, we take the dual norm

⃦⃦
𝜁𝑖 − 𝜑

⃦⃦
̃︀𝐻−

1
2 (Γ𝑖)

= sup
𝜗∈𝐻

1
2 (Γ𝑖)

⟨︀
𝜁𝑖 − 𝜑, 𝜗

⟩︀
Γ𝑖

‖𝜗‖
𝐻

1
2 (Γ𝑖)

·

We can write ⟨︀
𝜁𝑖 − 𝜑, 𝜗

⟩︀
Γ𝑖

=
∫︁

Γ𝑖

(𝜁𝑖 − 𝜑)(x)𝜗(x)dΓ𝑖(x)

=
∫︁ 1

−1

(︀
𝑤−1(𝑡)̂︀𝑝(𝑡)− ‖r′𝑖‖2 (𝑡)(𝜑 ∘ r𝑖)(𝑡)

)︀
(𝜗 ∘ r𝑖)(𝑡) d𝑡.

By Lemma 2.3, there exists a constant 𝐶 independent of 𝜖 such that⟨︀
𝜁𝑖 − 𝜑, 𝜗

⟩︀
Γ𝑖
≤ 𝐶 ‖𝜗‖

𝐻
1
2 (Γ𝑖)

⃦⃦
𝑤−1̂︀𝑝− ‖r′𝑖‖2 (𝜑 ∘ r𝑖)

⃦⃦
̃︀𝐻−

1
2 (̂︀Γ)

≤ 𝐶𝜖 ‖𝜗‖
𝐻

1
2 (Γ𝑖)

,

and thus
⃦⃦
𝜁𝑖 − 𝜑

⃦⃦
ℋ𝑖 ≤ 𝐶𝜖 as stated.

For the family
{︀
Q𝑁,⟨0⟩(Γ𝑖)

}︀
𝑁∈N, by the previous result, we observe that, given 𝜑 ∈ ̃︀𝐻− 1

2
⟨0⟩ (Γ𝑖) and 𝜖 > 0. there

exists 𝑁 ∈ N and 𝜁𝑖 ∈ Q𝑁 (Γ𝑖), such that ⃦⃦
𝜁𝑖 − 𝜑

⃦⃦
̃︀𝐻−

1
2 (Γ𝑖)

≤ 𝜖.

Thus, by the definition of the norm in ̃︀𝐻− 1
2 (Γ𝑖), it holds⟨︀

𝜁𝑖, 1
⟩︀
Γ𝑖

=
⟨︀
𝜁𝑖 − 𝜑, 1

⟩︀
Γ𝑖
≤
⃦⃦
𝜁𝑖 − 𝜑

⃦⃦
̃︀𝐻−

1
2 (Γ𝑖)

.

Hence, we can define 𝜁𝑖
0 := 𝜁𝑖 − |Γ𝑖|−1

⟨︀
𝜁𝑖, 1

⟩︀
Γ𝑖

, where |Γ𝑖| is the length of the arc Γ𝑖. Now, it is direct that
𝜁𝑖
0 ∈ Q𝑁,⟨0⟩(Γ𝑖) and ⃦⃦

𝜁𝑖
0 − 𝜑

⃦⃦
̃︀𝐻−

1
2 (Γ𝑖)

≤ 2𝜖,

which gives the desired density. �



HIGH-ORDER GALERKIN METHOD FOR PROBLEMS ON OPEN ARCS 2005

C.1. Proof of Lemma 4.14

We proceed as in the one-dimensional case and assume, for simplicity, that the Chebyshev polynomials are
normalized, thus omitting constants 𝑐𝑛. The coefficients 𝐶𝑝

𝑖𝑗 are given by

𝐶𝑝
𝑖𝑗 =

∫︁ 1

−1

∫︁ 1

−1

𝑅𝑝(𝑡, 𝑠)|𝑡− 𝑠|2𝑝 log |𝑡− 𝑠|𝑇𝑖(𝑡)
𝑤(𝑡)

𝑇𝑗(𝑠)
𝑤(𝑠)

d𝑡d𝑠

=
∞∑︁

𝑛=0

∞∑︁
𝑙=0

𝑏𝑝𝑛𝑙

∫︁ 1

−1

∫︁ 1

−1

𝑅𝑝(𝑡, 𝑠)
1
4
𝑇𝑛+𝑖(𝑡) + 𝑇|𝑛−𝑖|(𝑡)

𝑤(𝑡)
𝑇𝑙+𝑗(𝑠) + 𝑇|𝑙−𝑗|(𝑠)

𝑤(𝑠)
d𝑡d𝑠

=
∞∑︁

𝑛=0

∞∑︁
𝑙=0

𝑏𝑝𝑛𝑙

4
(𝑟𝑛+𝑖,𝑙+𝑗 + 𝑟𝑛+𝑖,|𝑙−𝑗| + 𝑟|𝑛−𝑖|,𝑙+𝑗 + 𝑟|𝑛−𝑖|,|𝑙−𝑗|).

Now, we have to find the decay order for the different terms. Define the index set 𝐼𝑝(𝑙) :=
{𝑙, 𝑙 ± 2, 𝑙 ± 4, . . . , 𝑙 ± 2𝑝}. By Lemma 4.11, we have the estimate:

𝐶𝑝
𝑖𝑗 ∼

∞∑︁
𝑙=1

∑︁
𝑛∈𝐼𝑝(𝑙)

𝑙−2𝑝−1
(︀
𝑟𝑛+𝑖,𝑙+𝑗 + 𝑟𝑛+𝑖,|𝑙−𝑗| + 𝑟|𝑛−𝑖|,𝑙+𝑗 + 𝑟|𝑛−𝑖|,|𝑙−𝑗|

)︀
. (C.1)

By Lemma 4.6, it holds
𝑟𝜈,𝜇 = 𝒪

(︀
min

{︀
𝜈−𝑚−1, 𝜇−𝑚−1

}︀)︀
, for 𝜈, 𝜇 ∈ N,

and we can estimate each term in 𝐶𝑝
𝑖𝑗 as follows, we provide details for the first two.

Define 𝐾1 :=
∑︀∞

𝑙=1

∑︀
𝑛∈𝐼𝑝(𝑙) 𝑙

−2𝑝−1𝑟𝑛+𝑖,𝑙+𝑗 . Assume that 𝑟𝑛+𝑖,𝑙+𝑗 = 𝒪((𝑙 + 𝑗)−𝑚−1), then

𝐾1 . 2𝑝
∞∑︁

𝑙=1

𝑙−2𝑝−1(𝑙 + 𝑗)−𝑚−1 = 𝒪(𝑗−𝑚−1).

Alternatively, we can use that 𝑟𝑛+𝑖,𝑙+𝑗 = 𝒪((𝑛+ 𝑖)−𝑚−1) so that

𝐾1 .
∞∑︁

𝑙=1

∑︁
𝑛∈𝐼𝑝(𝑙)

𝑙−2𝑝−1(𝑛+ 𝑖)−𝑚−1 = 𝒪(𝑖−𝑚−1).

Thus, we then conclude that
𝐾1 = 𝒪

(︀
min

{︀
𝑖−𝑚−1, 𝑗−𝑚−1

}︀)︀
.

Now set 𝐾2 :=
∑︀∞

𝑙=1

∑︀
𝑛∈𝐼𝑝(𝑙) 𝑙

−2𝑝−1𝑟𝑛+𝑖,|𝑙−𝑗|. Let 𝑟𝑛+𝑖,|𝑙−𝑗| = 𝒪((|𝑙 − 𝑗|+ 1)−𝑚−1), we obtain

𝐾2 .
∞∑︁

𝑙=1

𝑙−2𝑝−1(|𝑙 − 𝑗|+ 1)−𝑚−1,

where we added one to avoid infinity. Thus, we can split this last sum into two terms

𝐾2 .
𝑗/2∑︁
𝑙=1

𝑙−2𝑝−1(𝑗 − 𝑙)−𝑚−1 +
∑︁

𝑙>𝑗/2

𝑙−2𝑝−1(|𝑙 − 𝑗|+ 1)−𝑚−1.

The first one is bounded as

𝑗/2∑︁
𝑙=0

𝑙−2𝑝−1(𝑗 − 𝑙)−𝑚−1 . 𝑗−𝑚−1

𝑗/2∑︁
𝑙=0

𝑙−2𝑝−1 . 𝑗−𝑚−1,



2006 C. JEREZ-HANCKES AND J. PINTO

whereas the second one ∑︁
𝑙>𝑗/2

𝑙−2𝑝−1(|𝑙 − 𝑗|+ 1)−𝑚−1 . 𝑗−2𝑝−1.

Hence, we have
𝐾2 = 𝒪(𝑗−𝑚−1) +𝒪(𝑗−2𝑝−1) = 𝒪

(︁
𝑗−min{𝑚,2𝑝+1}

)︁
.

If alternatively we use 𝑟𝑛+𝑖,|𝑙−𝑗| = 𝒪((𝑛+ 𝑖)−𝑚−1), then

𝐾2 .
∞∑︁

𝑙=0

𝑙−2𝑝−1(𝑛+ 𝑖)−𝑚−1 = 𝒪(𝑖−𝑚−1).

Combining both results yields

𝐾2 = 𝒪
(︁

min
{︁
𝑖−𝑚−1, 𝑗−min{𝑚+1,2𝑝+1}

}︁)︁
.

The remaining two terms in (C.1) are bounded in a similar manner so that

𝐾3 :=
∞∑︁

𝑙=0

∑︁
𝑛∈𝐼𝑝(𝑙)

𝑙−2𝑝−1𝑟|𝑛−𝑖|,𝑙+𝑗 = 𝒪
(︁

min
{︁
𝑗−𝑚−1, 𝑖−min{𝑚+1,2𝑝+1}

}︁)︁

𝐾4 :=
∞∑︁

𝑙=0

∑︁
𝑛∈𝐼𝑝(𝑙)

𝑙−2𝑝−1𝑟|𝑛−𝑖|,|𝑙−𝑗| = 𝒪
(︁

min
{︁
𝑗−min{𝑚+1,2𝑝+1}, 𝑖−min{𝑚+1,2𝑝+1}

}︁)︁
.

Finally, considering all the bounds yields the stated result. The 𝜌-analytic case follows from the same arguments.

Appendix D. Some properties of Chebyshev polynomials

The next two identities follow directly from the explicit definition of Chebyshev polynomials as 𝑇𝑛(𝑡) =
cos(𝑛 arccos(𝑡)).

Lemma D.1. For 𝑛, 𝑘 ∈ N0, let 𝑇𝑛 and 𝑇𝑘 denote two Chebyshev polynomials of first kind. Then,

𝑇𝑛𝑇𝑘 =
1
2
(︀
𝑇𝑛+𝑘 + 𝑇|𝑛−𝑘|

)︀
.

Moreover, for (𝑡, 𝑠) ∈ [−1, 1]2, it holds

|𝑡− 𝑠|2 = 1 +
1
2

(𝑇2(𝑡) + 𝑇2(𝑠))− 2𝑇1(𝑡)𝑇1(𝑠).

Lemma D.2. Consider a function of the form:

𝑈(𝑡, 𝑠) =
∞∑︁

𝑛=0

𝑎𝑛𝑇𝑛(𝑡)𝑇|𝑛−𝑘|(𝑠).

Then,

|𝑡− 𝑠|2𝑈(𝑡, 𝑠) =
∑︁

𝑗∈{−1,0,1}

∞∑︁
𝑛=0

𝛽(𝑗)
𝑛 𝑇𝑛(𝑡)𝑇|𝑛−𝑘+2𝑗|(𝑠),

wherein
𝛽(1)

𝑛 :=
1
4
𝑎𝑛 −

1
2
𝑎𝑛+1 +

1
4
𝑎𝑛+2,

and coefficients 𝛽(−1)
𝑛 and 𝛽(0)

𝑛 are given in Table D.1 for 𝑛 ∈ N0.
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Table D.1. Coefficients used in Lemma D.1.

𝛽
(−1)
𝑛 𝛽

(0)
𝑛

𝑛 = 0 1
4
𝑎0 𝑎0 − 1

2
𝑎1

𝑛 = 1 −𝑎0 + 1
4
𝑎1 −𝑎0 + 5

4
𝑎1 − 1

2
𝑎2

𝑛 = 2 1
2
𝑎0 − 1

2
𝑎1 + 1

4
𝑎2 − 1

2
𝑎1 + 𝑎2 − 1

2
𝑎3

𝑛 ≥ 3 1
4
𝑎𝑛−2 − 1

2
𝑎𝑛−1 + 1

4
𝑎𝑛 − 1

2
𝑎𝑛−1 + 𝑎𝑛 − 1

2
𝑎𝑛+1

Proof. Using Lemma D.1, we have that

|𝑡− 𝑠|2𝑈(𝑡, 𝑠) =
∞∑︁

𝑛=0

𝑎𝑛

(︂
𝑇𝑛(𝑡)𝑇|𝑛−𝑘|(𝑠) +

1
4
𝑇𝑛+2(𝑡)𝑇|𝑛−𝑘|(𝑠) +

1
4
𝑇|𝑛−2|(𝑡)𝑇|𝑛−𝑘|(𝑠)

+
1
4
𝑇𝑛(𝑡)𝑇||𝑛−𝑘|+2| +

1
4
𝑇𝑛(𝑡)𝑇|𝑛−𝑘−2|

− 1
2
[︀
𝑇||𝑛−𝑘|+1|(𝑠) + 𝑇||𝑛−𝑘|−1|(𝑠)

]︀ [︀
𝑇|𝑛−1|(𝑡) + 𝑇𝑛+1

]︀)︂
.

Observe that, for 𝑖 ∈ {1, 2}, the index sums

|𝑛− 𝑘|+ 𝑖 =

{︃
|𝑛− 𝑘 + 𝑖| 𝑛 ≥ 𝑘,

|𝑛− 𝑘 − 𝑖| 𝑛 < 𝑘,
||𝑛− 𝑘| − 𝑖| =

{︃
|𝑛− 𝑘 − 𝑖| 𝑛 ≥ 𝑘,

|𝑛− 𝑘 + 𝑖| 𝑛 < 𝑘.

Employing this in writing |𝑡− 𝑠|2𝑈(𝑡, 𝑠) as a series expansion, we find expressions for different 𝑢𝑛(𝑠):

𝑢0 =
𝑎0

4
𝑇|𝑘+2|(𝑠) +

(︁
𝑎0 −

𝑎1

2

)︁
𝑇|𝑘|(𝑠) +

(︁𝑎0

4
− 𝑎1

2
+
𝑎2

4

)︁
𝑇|𝑘−2|(𝑠)

𝑢1 =
(︁
−𝑎0 +

𝑎1

4

)︁
𝑇|𝑘+1|(𝑠)−

(︂
𝑎0 +

5𝑎1

4
+
𝑎2

2

)︂
𝑇|1−𝑘|(𝑠) +

(︁𝑎1

4
− 𝑎2

2
+
𝑎3

4

)︁
𝑇|𝑘−3|(𝑠)

𝑢2 =
(︁𝑎0

2
− 𝑎1

2
+
𝑎2

4

)︁
𝑇|𝑘|(𝑠)−

(︁𝑎1

2
− 𝑎2 +

𝑎3

2

)︁
𝑇|𝑘−2|(𝑠) +

(︁𝑎2

4
− 𝑎3

2
+
𝑎4

4

)︁
𝑇|𝑘−4|(𝑠)

𝑢𝑛 =
(︁𝑎𝑛−2

4
− 𝑎𝑛−1

2
+
𝑎𝑛

4

)︁
𝑇|𝑛−𝑘−2|(𝑠) +

(︁
−𝑎𝑛−1

2
+ 𝑎𝑛 −

𝑎𝑛+1

2

)︁
𝑇|𝑛−𝑘|(𝑠)

+
(︁𝑎𝑛

4
− 𝑎𝑛+1

2
+
𝑎𝑛+2

4

)︁
𝑇|𝑛−𝑘+2|(𝑠)

for 𝑛 ≥ 3, yielding the stated result. �
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