ESAIM: M2AN 54 (2020) 2159-2197 ESAIM: Mathematical Modelling and Numerical Analysis
https://doi.org/10.1051 /m2an/2020013 WWW.esalm-m2an.org

NONLINEAR MODEL REDUCTION ON METRIC SPACES. APPLICATION
TO ONE-DIMENSIONAL CONSERVATIVE PDES IN WASSERSTEIN SPACES

VIRGINIE EHRLACHER', DAMIANO LOMBARDI?, OLGA MULA*** AND
FRANCOIS-XAVIER VIALARD®

Abstract. We consider the problem of model reduction of parametrized PDEs where the goal is to
approximate any function belonging to the set of solutions at a reduced computational cost. For this,
the bottom line of most strategies has so far been based on the approximation of the solution set by
linear spaces on Hilbert or Banach spaces. This approach can be expected to be successful only when the
Kolmogorov width of the set decays fast. While this is the case on certain parabolic or elliptic problems,
most transport-dominated problems are expected to present a slow decaying width and require to study
nonlinear approximation methods. In this work, we propose to address the reduction problem from
the perspective of general metric spaces with a suitably defined notion of distance. We develop and
compare two different approaches, one based on barycenters and another one using tangent spaces when
the metric space has an additional Riemannian structure. Since the notion of linear vectorial spaces
does not exist in general metric spaces, both approaches result in nonlinear approximation methods.
We give theoretical and numerical evidence of their efficiency to reduce complexity for one-dimensional
conservative PDEs where the underlying metric space can be chosen to be the L2-Wasserstein space.
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1. INTRODUCTION

In modern applications of science, industry and numerous other fields, the available time for design and
decision-making is becoming shorter, and some tasks are even required to be performed in real time. The
process usually involves predictions of the state of complex systems which, in order to be reliable, need to
be described by sophisticated models. The predictions are generally the output of inverse or optimal control
problems that are formulated on these models and which cannot be solved in real time unless the overall
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complexity has been appropriately reduced. Our focus lies in the case where the model is given by a Partial
Differential Equation (PDE) that depends on certain parameters. In this setting, the routines for prediction
require to evaluate solutions of the PDE on a large set of dynamically updated parameters. This motivates the
search for accurate and online methods to approximate the solutions at a reduced computational cost. This
task, usually known as reduced modelling or model order reduction, can be summarized as follows.

Let © be a domain of R for a given dimension D > 1 and let (V,d) be a metric space with metric d,
containing the set of solutions of a given parametric PDE defined over the domain 2. The main goal of model
reduction is to approximate as accurately and quickly as possible the solution u(z) € V of a problem of the
form

Pu(z),z) =0 (1.1)
for many different values of a vector z = (z1,...,2p) in a certain range Z C RP. In the above formula, P is a
differential or integro-differential operator parametrized by z, and we assume that for each z € Z there exists a
unique solution u(z) € V' to problem (1.1). The set of all solutions is defined as

M={u(z) : z€ Z} CV, (1.2)

and is often referred to as the solution manifold with some abuse of terminology".

In the context of model reduction, V is traditionally chosen to be a Banach or a Hilbert space with the
metric given by its norm denoted by || - ||. However, relevant classes of problems could be posed either on
Banach spaces or on metric spaces and the latter characterization may be more convenient for model reduction
in some situations. To name a few examples involving gradient flows, we cite [28] for Hele-Shaw flows, [29] for
quantum problems, [53] for porous media flows, [37] for Fokker—Planck equations and [12,63] for Keller—Segel
models in chemotaxis. Other examples involving metric spaces that are not necessarily related to gradient flows
are [13] for the Camassa—Holm equation, [16] for the Hunter—Saxton equation. Such examples can often be
interpreted as a geodesic flow on a group of diffeomorphisms and can thus be encoded as Hamiltonian flows. In
addition to this, there are other problems which cannot be defined on Banach vector spaces and can only be
defined over metric spaces. Consider for instance the case of a pure transport equation with constant velocity
where the initial data is a Dirac measure concentrated on one point. The solution of this PDE remains at all
times a (translated) Dirac mass. More generally, it has been proven that solutions to certain nonlinear dissipative
evolution equations with measure-valued initial data are measure-valued and do not belong to some standard
Lebesgue or Sobolev spaces. They can however be formulated in the form of Wasserstein gradient flows.

It appears therefore that extending the notion of model reduction in Banach/Hilbert spaces to more general
metric spaces could enlarge the scope of problems that can potentially be addressed. Since the notion of linear
vectorial spaces does not exist in general metric spaces, both approaches result in nonlinear approximation
methods. To develop further on the potential interest brought by nonlinear model reduction on metric spaces,
let us briefly recall the classical lines followed for model reduction on Banach/Hilbert spaces. Assume for now
that V is a Banach space. Most methods are typically based on determining a “good” n-dimensional subspace
V., = span{vy,...,v,} C V that yields efficient approximations of u(z) in V;, of the form

n
un(2) =Y ci(2)v; (1.3)
i=1
for some coeflicients ¢1(z), - - - , ¢, (z) € R. This approach is the backbone of most existing methods among which
stand the reduced basis method [34,56], the empirical interpolation method and its generalized version (G-EIM,
[7,32,43,45]), Principal Component Analysis (PCA, see [8], Chap. 1), polynomial-based methods like [21,22] or
low-rank methods [38].
The approximation quality of the obtained subspace V,, is either measured through the worst case error

ewe(M,V, V) =sup inf d(u(z),w,), (1.4)
2€Z Wn€Va

IThis set of solutions may not be a differentiable manifold in infinite dimensions.
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or the average error

eav(M,V, V) = (/Z inf  d?(u(z),w,) d,u(z)) 1/2, (1.5)

cZ Wn €V

where p is a probability measure on Z, given a priori and from which the parameters are sampled.

The reduction method is considered efficient if ey.(M, V. V,,) (or e (M, V,V,,)) decays rapidly to 0 as n goes
to 0o. There is sound evidence of efficiency only in the case of certain elliptic and parabolic PDEs. More precisely,
it has been shown in [20] that for this type of equations, under suitable assumptions, the L> Kolmogorov width
defined as

dp(M,V): inf ewc(M,V,V},) (1.6)
Vo CV,

dimV, =n

and the L? Kolmogorov width
On (M, V) = inf eav(M,V, V) (1.7)
Vi, CV,
dimV, =n

decay exponentially or polynomially with high exponent as n grows. In the context of model reduction, this
quantity gives the best possible performance that one can achieve when approximating M with n-dimensional
linear spaces.

Optimal linear subspaces V,, C V of dimension n which realize the infimum of (1.6) cannot be computed in
practice in general. However, it has been shown that greedy algorithms can be used to build sequences of linear
spaces (V,,)n>1 whose approximation error ey.(M,V,,) decay at a comparable rate as the Kolmogorov n-width
dn (M, V). These algorithms are the backbone of the so-called Reduced Basis method [10]. In the case of (1.7),
the optimal subspaces for which the minimum is attained are obtained using the PCA or Proper Orthogonal
Decomposition (POD) method.

In this paper, our goal is to extend the above notion of model reduction to more general metric spaces in view
of the following facts. First of all, in the context of Banach or Hilbert spaces, linear methods are unfortunately
not well suited for hyperbolic problems. Among others, this is due to the transport of shock discontinuities
whose locations may vary together with the parameters. It was proved in ([8], Chap. 3, see Eq. (3.76)) that
the L> Kolmogorov width of simple pure transport problems decays very slowly, at a rate n='/2 if V = L2
(similar examples can be found in [11,52,61]). The same type of result has recently been derived for wave
propagation problems in [31]. These results highlight that linear methods of the type (1.3) are not expected
to provide a fast decay in numerous transport dominated problems, and may be highly suboptimal in terms of
the trade off between accuracy and numerical complexity. For these classes of problems, an efficient strategy for
model reduction requires to look for nonlinear methods that capture the geometry of M in a finer manner than
linear spaces. In addition to the idea of searching for nonlinear methods, it may be beneficial to move from the
classical Banach/Hilbert metric framework to more general metric spaces in order to better quantify the ability
to capture specific important features like translations or shifts. Finally, as already brought up, this broader
setting enlarges the scope of problems that can be treated.

We next describe the state of the art methods proposed to go beyond the linear case and to address hyperbolic
problems. Then, we summarize the contributions and the organization of this paper.

1.1. State of the art
Works on adaptivity

Several works try to circumvent the poor representation given by linear spaces by building local spaces. In [15]
a strategy inspired by the mesh h-refinement is proposed. In [5,6] a construction of linear subspaces is proposed,
based on a k-means clustering that groups together similar snapshots of the solution. A similar approach is
presented in [54] to overcome some shortcomings of the DEIM approach. In the two recent preprints [30,41],
the subspaces to be used for model reduction are identified by using autoencoders and neural networks.
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Stabilization strategies

Advection dominated problems tend to show potential instabilities when reduced-order integrators are built.
In [44,59] an online stabilization is proposed. A form of stabilization based on an L' minimisation problem is
proposed in [1].

Reduced-order modeling from a geometrical point of view

Several works in the literature propose to transform the snapshots by making a Lie group acting on them. In
[47] the authors propose a method to get rid of continuous symmetries in parametric dynamical systems whose
dynamics is invariant under continuous group action®. A similar approach was proposed in [51].

Conversely to transporting the snapshots, dynamical bases approaches are defined in which the subspace
used to approximate the solution evolves in time. An example of such a method is the Dynamically Orthogonal
(DO) decomposition (detailed in [25,39,40,48]). We also cite [4] and a recent extension [46], which have focused
on model reduction over the Grassman manifold.

In the context of Hamiltonian systems, Afkham and Hesthaven [2] and Hesthaven and Pagliantini [33] intro-
duce a reduced-order framework that preserves the symplectic structure of the dynamical system.

Non-linear transformations

In [61,62], a transformed snapshot interpolation method is introduced, aiming at finding a set of non-linear
transformations such that the approximation of the transformed snapshots by a linear combination of modes
is efficient. In [49], which addresses compressible fluid-dynamics, the set of the snapshots is transported into
a reference configuration by a displacement field which is identified through a polynomial expansion. In [36],
the authors propose a non-linear model reduction strategy based on optimal transport and the reduction of
optimal transport maps. Another strategy based on non-linear transformations was proposed in [14] to deal
with hyperbolic problems with applications to transonic flows around airfoils. Finally, the recent work [14]
introduces a general framework to look for reference configurations and for transformations depending upon few
parameters in order to deal with advection dominated problems.

1.2. Contribution and organization of the paper

The main contribution of this work is to develop the idea of reduced modeling in metric spaces

For this:

— We give theoretical evidence on two simple PDEs (pure transport and Burgers’ equation in 1D) that it is
beneficial to do model reduction on metric spaces rather than on more classical Banach spaces.

— We develop two model reduction strategies on general metric spaces, one based on tangent spaces, the second
one based on barycenters.

Our approach is, to the best of our knowledge, novel in the field of reduced modelling. The first approach
is however related to the so-called tangent PCA, which has drawn significant interest in numerous fields like
pattern recognition, shape analysis, medical imaging, computer vision [26,58]. More recently, it has also been
used in statistics [35] and machine learning to study families of histograms and probability densities [17]. Our
second approach based on barycenters is entirely novel to the best of our knowledge, and it could be used as an
alternative to tPCA in other applications apart from model reduction.

As a support for our numerical tests, we will consider the model reduction of one-dimensional conservative
PDEs in the L?-Wasserstein metric. Time will be seen as one of the parameters. The precise setting and
notation is the following. For a given open interval @ C R and a given final time 7' > 0, we define D’(£2) the set
of real-valued distributions defined on €2 and consider a 1d conservative PDE that depends on p € N*:= N\ {0}

20n the KdV equations these symmetries were studied analytically in [27].
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parameters. These parameters belong to a compact set denoted by Y C R?. For any y € Y, uy : [0,T] — D'(Q)
is the (distribution-valued) solution to

Opuy(t) — 0. F(uy(t);y,t) =0 in D'(Q), Vt € [0,T], (1.8)

with appropriate initial and boundary conditions. We assume that F(-;y,t) is a real-valued mapping defined on
a set of distributions defined on € so that the solution to (1.8) is well-defined.

We denote by P2(2) the set of probability measures on § with finite second-order moments. With a slight
abuse of notation, P(f2) can be seen as a subset of D/'(Q2) in the sense that for all v € P3(Q), the linear
application T}, : D(Q2) — R defined by

v € D(Q), Tu<¢>=/9¢du

defines a distribution on €.
In the following, we assume that

V(t,y) € Z:=[0,T] xY, wuy(t)="T,, forsome wv,(t)c P2(Q). (1.9)

In order not to overload notation, we will write the measure v, (t) € P2(§2) with the notation u,(t) with a slight
abuse of notation. Thus, w, (¢) will denote the measure v, (t) € P2(€2) such that (1.9) holds. In the case when an
element u € P5(Q) is absolutely continuous with respect to the Lebesgue measure, we denote by p,, its density,
so that du(z) = pu(z) dz.

Since time is an additional parameter, our parameter set is

Z=[0,T|xYCRP, p=p+1

thus the solution set is

M= {u(z) =uy(t) € Po(Q) : 2= (t,y) € Z} C P2(Q).
The paper is organized as follows

We begin by recalling in Section 2 basic notions on metric spaces, and more specifically on the L2-Wasserstein
space in one dimension. We then highlight in Section 3 the interest of doing model reduction of conservative
PDEs in metric spaces. For two simple PDEs (a pure transport equation and an inviscid Burgers’ equation in
1D), we prove theoretically that this point of view yields better approximation properties than classical linear
methods on Banach spaces. In Section 4, we describe the two numerical methods (tPCA and gBar) that we
propose for model reduction in general metric spaces. We also make the different steps of the algorithms explicit
in the particular case of the L? Wasserstein space in 1D. One distinguishing feature of the methods is that
they are purely data-driven in the sense that the online phase does not involve solving the original PDE in any
reduced space/manifold. The methods could thus be seen as a fast emulator of the high-fidelity solutions. This is
in contrast to traditional projection-based approaches which require solving the original equations in the online
phase. Finally, Section 6 gives numerical evidence of the performance of the two algorithms on four different
problems: an inviscid and viscous Burgers’ equation, a Camassa—Holm equation and a Korteweg—de Vries (KdV)
equation. The results illustrate the ability of the proposed methods to capture transport phenomena at a very
reduced computational cost. For the example of the viscous Burgers’ equations, the average online computational
time of one snapshot is reduced by a factor of about 100 with respect to the high-fidelity computation. The
KdV problem shows some limitations of the methodology in terms of capturing the fusion and separation of
peakons and motivates our final Section 7, where we list possible extensions to address not only this issue, but
also to treat more general multi-dimensional and non-conservative problems.
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2. METRIC SPACES AND WASSERSTEIN SPACE

Since in our numerical examples we focus on the model reduction of parametric one-dimensional conservative
PDEs in the L?-Wasserstein space, we start this section by recalling some basic properties of this space. We
next recall the definition of exponential and logarithmic maps on general Riemannian manifolds, and then detail
their expression in the case of the 1D Wasserstein space. Finally, we introduce the notion of barycenters on
general metric spaces.

2.1. Definition of the L2-Wasserstein space in one dimension

Let Q = [Zmin, Zmax] C R, with — 00 < Zpin < Tmax < 00 be the domain of interest. Let P(2) denote the
set of probability measures on € with finite second-order moments. For all u € Py(£2), we denote by

cdfu:{g - cdfu(m)[?;l}m du (2.1)

Zmin

its cumulative distribution function (cdf), and by

. - [0’ 1] — Q
icdf,, : { s N Cdf;1(8) = inf{x e, Cdfu(l‘) > 5} 22

the generalized inverse of the cdf (icdf). The L2-Wasserstein distance is defined by

1/2
Wo(u,v) == inf (/stz(x —7) dﬂ'(;r:,y)) , Y(u,v) € Pa(R2) x Pa(R),

weIl(u,v)

where TI(u,v) is the set of probability measures on Q x  with marginals v and v. In the particular case of
one dimensional marginal domains, it can be equivalently expressed using the inverse cumulative distribution
functions as

W2 (u, ’U) = H ICdfu — iCdfq, ||L2([0,1])- (23)

The space P5(f2) endowed with the distance W5 is a metric space, usually called L?-Wasserstein space (see [60]
for more details).

2.2. Exponential and logarithmic maps

Let (V, d) be a metric space where V' is a Riemannian manifold. For any w € V| we denote by T,V the tangent
space to V' at point w. Then, there exists a subset O,, C T,V such that the exponential map Exp,, : O, — V
can be defined and is a diffecomorphism onto its image. The logarithmic map Log,, : Exp,,(O,) — O, is then
defined as the generalized inverse of Exp,,.

In the case when (V,d) = (P2(Q2), W), the exponential and logarithmic maps have a particular simple form
which we explain next. We can take advantage of the fact that, after composition with the nonlinear map
P2() 3 u s icdf, € L*([0,1]), the space (P2(2), Wa) is isometric to (Z, || - ||2(j0,17)), Where

T = {icdf,, v € P2(Q)} (2.4)
is a convex subset of L%([0,1]). The following well-known result then holds.

Theorem 2.1. The map icdf : P2(Q) — T defined by icdf(u) = icdf,, is an (homeomorphism) isometry between
(P2(Q), W2) and (L, || - || 2(0,1))) -
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The fact that the map icdf is an isometry is actually a consequence of (2.3). Note that the inverse of icdf

can be defined® as
d

. —1 _ = _
icdf (f)_dx [f7'], VvfeL
For all fy € Z, we introduce

Kp={feL*(0,1;9) : fo+ f eI}, (2.5)

which is a closed convex subset of T, 7.

For a given element w € P3(2), using a slight abuse of notation, the exponential map can be advantageously
defined on Kicgt,, . Indeed, the definition domain O,, C T,,P2(2) of Exp,, is isomorphic to Kicqt,,. Using another
slight abuse of notation, we will denote in the sequel O, = Kicqar,, . This leads us to the following definition of
the exponential and logarithmic maps.

Definition 2.2. Let w € P3(2) be a probability measure. The exponential map Exp,, : O, — P2(Q) is defined
as

Exp,, (f) = icdf!(icdf, +f), Vf € O,. (2.6)

It is surjective and we can define its inverse Log,, : P2(Q) — O, as
Log,,(u) = icdf, —icdf,, VYu € Pa(R). (2.7)
As a consequence of Theorem 2.1, the following result holds.

Corollary 2.3. The exponential map Exp,, is an isometric homeomorphism between O,, and P2(2) with inverse
Log,, and it holds that

Wo(u,v) = [[Log,,(u) = Logy, (V)| 20,1y - V(s 0) € Pa(R2) X P2(€).

For the proofs of Theorems 2.3 and 2.1, we refer to [9]. We next give two simple common examples of
logarithmic and exponential maps:

— Dirac masses. Let Q = R and consider the family of Dirac masses {¢, : © € R} C P2(f2). For any z € R
and s € (0,1), icdfs, (s) = x, thus Wy (04,,04,) = |x1 — z2| for any (z1,2z2) € R x R. From (2.7), for all
s € (0,1), Logs, (0z,) (s) = 21 — 2.

~ Translations and rescaling. Let w € Po(R) with density p,, and, for (a,b) € (0,00) x R, let w(®?) be the
probability measure with density given by

P () = < pul(e — b))

In other words, {w(®®) : (a,b) € (0,00) x R} is the family of shifted and rescaled probabilities around w.
Then,

icdf,, (s) — b
cdf o () == cdfy, (ax +b), Ve € R,  icdfwn(s) = %, Vs € [0, 1]. (2.8)
Henceforth, the logarithmic map can be written as:
Log,, (w(‘“b)) = (a7 = 1)icdf,(s) — b/a. (2.9)

3The generalized inverse of f is a monotonic function which is of bounded variation and thus has a well-defined non-negative
measure as derivative.
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2.3. Barycenters

We next introduce the notion of barycenters in a general metric space (V,d). Let n € N* and let

Aizl}

be the set of barycentric weights. For any U, = (u;)1<i<n € V™ and barycentric weights A, = (Ai)1<i<n € Z,
an associated barycenter is an element of V' which minimizes

D, = {(Al,.-. ) € 10,1]"

Nx
I M:
I

n

f . 2.1
vlg\/ Nid (v, u;)? (2.10)

i=1
In full generality, minimizers to (2.10) may not be unique. In the following, we call Bar(U,, A,,) the set of
minimizers to (2.10), which is the set of barycenters of U,, with barycentric weights A,,.
It will be useful to introduce the notion of optimal barycenter of an element v € V for a given family U,, € V™.
The set of barycenters with respect to U, is

Bn(Un) = U Bar(Una An)
An€X,

and an optimal barycenter of the function v € V' with respect to the set U, is a minimizer of

in  d(u,b)?. 2.11
el | (u,b) (2.11)

In other words, a minimizer to (2.11) is the projection of u on the set of barycenters B, (Uy).

We next present some properties of barycenters in the Wasserstein space (V,d) = (P2(2), Wa) which will
be relevant for our developments (see [3] for further details). The first property is that problem (2.10) has a
unique solution, that is, for a family of probability measures U,, = (u;)1<i<n € P2(Q2)™ and barycentric weights
Ay = (MNi)i<i<n € Xy, there exists a unique minimizer to

AiWa (v, u;) 2 2.12
s, DA 222

which is denoted by Bar(Up, A,,). In addition, the barycenter can be easily characterized in terms of its inverse
cumulative distribution function since (2.12) implies that

icdfgar(v,,A,) = argmin Z)\ || icdf,, fHL2 ([0,1])7 (2.13)
fer2((o,1) =

which yields
icdfBar(tr, A,) = Z A;icdf,, . (2.14)
i=1

The optimal barycenter of a function u € Po(Q) for a given set of functions U, is unique. We denote it
b(u,U,,) and it can be easily characterized in terms of its inverse cumulative distribution function. Indeed, the
minimization problem (2.11) reads in this case

min  Wa(u, b)?
beB, (U,)
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and it has a unique minimizer b(u, Uy, ). An alternative formulation of the optimal barycenter is by finding first
the optimal weights
ASP* = arg min W3 (u, Bar(Up, A,,)) . (2.15)
An€X,

The optimal barycenter is then
b(u,Uy,) = Bar (Uy,, AOP") .
Note that for all A,, € ¥,, and all w € Ps(£),

n 2
W3 (u, Bar (Up, An)) = |[icdf, — ) Aiicdf.,

=1

L2([0,1])
2

Logw (U) - Z AiLogw(ui)
1=1

L2([0,1])

so the computation of the optimal weights ASP' in problem (2.15) is a simple convex quadratic optimization
problem.
For a given w € P2(Q2), denoting

Tn = Lng(Un) = {Lng(Ul), R 7L0gw(un>}

the logarithmic image of U, and Conv(T,,) the convex hull of T,,, we see that Log,,(b(u,U,)) is the projection
of Log,, (u) onto Conv(T;,), namely

Log,, (b(u,U,)) = argmin |Log, (u) — f||iz([o’1]) . (2.16)
feConv(Ty)

3. KOLMOGOROV n-WIDTHS FOR TWO SIMPLE CONSERVATIVE PDES

In the sequel, M is the set of solutions of a parametric conservative PDE in one dimension. Instead of working
in the usual Banach/Hilbert setting, we assume that M C P(Q2). We denote

T = Log,, (M) c L*([0,1]),

the image of M by the logarithmic map Log,,, where w is an element of P(2) which will be fixed later on.

To illustrate the interest of working with this metric, we show in a pure transport equation and in an inviscid
Burgers’ equation that the Kolmogorov widths d,, (7, L*([0,1])) and 6,,(7, L?([0,1])) decay at a faster rate than
the widths d,,(M, L?(2)) and 6,,(M, L*(Q) of the original set of solutions M. This shows that it is convenient to
transform the orginal data M to 7 by the nonlinear logarithmic mapping before performing the dimensionality
reduction. Indeed, if d,,(7, L*([0,1])) (or 6,(7, L*([0,1]))) decay fast, then there exist spaces V;, C L?([0,1])
such that

ewe(T, L*([0,1]), V;,) = ;‘ug Il.f = Pv, fllz20,1))
S

decays fast as n — oo. Thus if for all f € 7 the projections Py, f € O,, then their exponential map is well
defined and we can approximate any v € M with Exp,, (Py, Log,,(uz)). Due to the isometric properties of Exp,,
(see Cor. 2.3), the approximation error of M is

ewe(M, Wo, V;)) == sup Wa(u, Exp,, (Py, Log,, (1)) = ewe(T, L*([0,1]), V;,).
ueM

Thus the existence of linear spaces (V;,),>1 in L2([0, 1]) with good approximation properties for 7 automatically
yields good low rank nonlinear approximations for M (provided that the exponential map is well defined).
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The main reason why one can expect that the Kolmogorov widths decay faster after a logarithmic transforma-
tion in transport-dominated problems is connected to the fact that sets of translated functions, say for instance
a set of the form {u(- — 7), 7 € [0,1]} for some u € P»(2), are not well approximated by low-dimensional
linear spaces. On the contrary, the decay of the widths of the same type of set after logarithmic transformation
can become dramatically faster as we illustrate in the pure transport problem of Section 3.1.

3.1. A pure transport problem

We consider here a prototypical example similar to the one given in [11] (see also [31,61] for other examples).
Consider the univariate transport equation

Opy(t, ) + yOuppy(t,z) =0, z€R, t>0,

with initial value po(x) = 1j_1 o}, and parameter y € Y := [0, 1]. Note that this is a conservative problem since
for all t > 0, fR u(t,x)de = 1. We consider the parametrized family of solutions at time ¢ = 1 restricted to
x € Q:=[-1,1], that is

M= {u(z) = py(t =1,2)dz =11y (x)dz : z=(t,y) € {1} x [0,1]}.

Note that here t is fixed so it is not a varying parameter. We have kept it in the notation in order to remain
consistent with the notation of the introduction.
Since M C P2([—1,1]), we can define

T ={Log,,(u(z)), z € Z} = {icdfu(z) —icdf,,, y €0, 1]} ,

where w is chosen as 1, _1,,,) for some yo € [0,1].

In the following theorem, we state two extreme convergence results. On the one hand we prove that
d.(T,L*([0,1])) = 0 for n > 1. On the other hand, it holds that d,(M, L?(f2)) cannot decay faster that
the rate n~1/2. We state the result in the L? metric since it is very commonly considered but a similar reasoning
would give a rate of n=! in L' (see, e.g. [61]). This rigorously proves that standard linear methods cannot be
competitive for reducing this type of problems and that shifting the problem from M to 7 dramatically helps
in reducing the complexity in the pure transport case.

Theorem 3.1. There exists a constant ¢ > 0 such that for all n € N*,
dp(M, L3()) > 6,(M, L*(Q)) > en™ Y2, (3.1)

In addition,
Vo >1, d.(T,L%*[0,1])) = 0. (3.2)

Proof. Bound (3.1) was first proved in [52]. We provide an alternative proof in Appendix A. Let us prove that
dn(T,L3([0,1])) = 0 for n > 1. Since for every y € [0,1], Ljy_1,4] = Liyg—1,40](z — y + yo), using (2.8), it holds
that

icdf, (s) =icdfy, —yo+y, Vse]0,1],

and for all s € [0, 1],
Log,(u:)(s) = iedf1(s) — iedfz () =y — yo.

As a consequence, the set 7 is contained in the one-dimensional space of constant functions defined on (0, 1)
and d,, (7, L*([0,1])) = 0 for all n > 1. O
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3.2. An inviscid Burgers’ equation

In this section, we consider a simple inviscid Burgers’ equation. We study a simple though representative
example where we prove a priori estimates on the decay of the Kolmogorov n-width of 7 as n goes to infinity.
We are not able to prove that the Kolmogorov n-width of the set M decays slower than the one of the set 7,
but we present in Section 6.1 numerical tests on this particular example which indicate that this is indeed the

case (see Fig. 1a).

Let Y = [1/2,3], and for all y € Y, we consider the inviscid Burgers’ equation for (¢,z) € [0,T] x Q =
[0,5] x [-1,4],
: 0, —1<z<0
Orpy + 58,;(/)5) =0, pt=02)=¢ y 0<z< (3.3)
0, ,<z<4

x
with periodic boundary conditions on €. For every t € [0, 77, the solution p,(t) is the density of an absolutely

continuous measure uy(t) € P2(Q).

Problem (6.1) has a unique entropic solution which reads as follows. For 0 < t < 2/y, a wave composed of a
shock front and a rarefaction wave propagates from left to right and

py(tv x) =

—1<x<0
0<x <yt

1 t
1

0<t<2/y?

The rarefaction wave reaches the front at t = 2/y? so that for t > 2/y?,

0

z

t
0

py(ta I) =

)

—1<zx<0
0<z<+V2t,
x> V2t

vt > 2/y2. (3.5)

Let us denote uy ¢(2) := py(t, -)dr the measure associated with p,. The cumulative distribution function cdf,,, :

Q — [0,1] of uy 4 is equal to

0, -1<z<0
. 0<z<uyt
cdf,, (x) =4 7 ey , (3.6)
yr — 4= yt<z<_ +7%, 0<t<2/y?,
1, yt
and
0, -1<z<0
cdfy,,(x) =32, 0<z<V2A,  VE>2/2 (3.7)
1, x> \/2t
The generalized inverse icdf,, , : [0,1] — Q has also an explicit expression which reads as
-1 s=0
2
icdfy, , (s) = { V2s, 0<s< (3.8)
2 2
Ls+nt), m<s<i, o<t<2/y
and
-1 s=0
icdf, = 3.9
fedfu, .(s) {\/2ts, 0<s<1, vt > 2/y2. (3:9)
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We can easily check that the set of solutions
M={u,:==uy; : 2= (y,t) € Z2=100,T] xY}

is a subset of P2(€2). As before, we introduce the set 7 := {Log,,(u) : u € M}, where w € P2(2), and prove
the following result.

Lemma 3.2. There exists a constant C' > 0 such that for all n € N*,
dn(T,L*(0,1)) < Cn~2/10, (3.10)

Proof. Let us define _
T = {icdf, : v M} = {icdf, ;) : z€ Z}.

Since 7 is a shift by icdf,, of T , we have
i1 (?, L2(Jo, 1])) < d, (T, L%([0, 1)) < 2d,, (i, L2(Jo, 1]))

where the second inequality holds thanks to the fact that icdf,, is taken in the convex hull of 7.
Thus, to prove (3.10), it is enough to prove that there exists C' > 0 such that for all n € N*

dn(T,L3(0,1)) < Cn=24/10, (3.11)

Let us prove (3.11). To this aim, let us first point out that, for all (y,¢) €, the function g, : [0,1] — £ defined
by

0 s=0
2
gy(s) = { V2ts, 0<s<%t i 0<t<2/y (3.12)
1 2¢ 2¢
Ls+nt), Br<s<i,
and
0 s=0
= if > 2/42 3.13
gy,t(s) {\/%, 0<s<l, 1 = /3/ ( )

are equal almost everywhere to icdf,, ,, so that icdf,, , = g, in L*([0,1]).
It is easy to see that g, is continuous and that for all s € (0, 1),

gy.i(s) = 287 . 2 0<t < 2/y?, (3.14)

1 Yyt
o 5 <s<1

and

0 s=0
! = it t>2/42. 3.15
gy,t(s) { Qisv 0<s<1, 1 >2/y ( )

Let sp € (0,1) and € > 0 be such that I :== [sg — /2, s0 + €/2] C [0, 1]. We also denote

Vs € Iy, fl(s) =1, f2(3) =S, f3(3) = \/ga

and define W (Iy) := Span { f1, fa, f3} C L?(Ip).

Now, let us consider z = (y,t) € Z such that % € [so — €/2,s0 + €/2]. This implies in particular that
0 <t < 2/y* We denote by Py (j,) the orthogonal projection from L?(Iy) onto W (Iy).
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We begin by proving two different auxiliary inequalities. On the one hand, it holds that

1 t
g: — V2tfs — ekt %fl

= ||hZ||L2(10)7

9= = Pw 10) (9211 121y <
L2(Io)

where h, = g, — V203 — 1 fo + % f1. Tt then holds that h, (%f) — 0 and

1 y2t
—=, so—eg/2<s< Lt
Was)=3 ' 2 ; (3.16)
—\/ 55> b <s<sp+e/2.
The function h, is thus Lipschitz and its Lipschitz constant on the interval Iy is bounded by % Since
y € [1/2, 3], we obtain that
sup |h,(s)| < 2e. (3.17)
se€ly
This implies that
2
9= — PW(Io)(gz|Io)||%2(IO) < ||h2||L2(10) < 4537 (3.18)
so that
9= = Po(10) (92 10) | £2 (1) < 2%/, (3.19)

On the other hand, we make use of the following Taylor’s inequality: for all maps f : [0,1] — R whose
derivative is M-Lipschitz and all s, s" € [0, 1],

[F(s) = f(s) = f1(s)(s" = 5)| < %IS*S’I? (3.20)

Let us define by j. := g. — v/2£fs. Then, it holds that j.(s) = 0 if sp —£/2 < s < £ and

1 ¢ %t
j;(s)=§— 25 for %gsgso—i—s/Z (3.21)

2
As a consequence, j. is continuous on Iy, differentiable on I \ {yTt} and

.11 1 —-3/2 Yt
Jo(s) = —=Vts 2= for 5 <s < sp+¢e/2. (3.22)

2v2

Thus, if ¢ > 0, the Lipschitz constant of j. is bounded by ﬁ on the interval Ij.
We then apply the inequality (3.20) at the point s’ = % to obtain that for all s € I,

Therefore, we get the bound
2 2 L 5
92 — P (10) (9211172 (10) < N521172(1) < TR (3.23)

so that )
9= — Pw (15)(9=110)ll 22(10) < @55/2. (3.24)
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We are now in position to prove (3.11). Let 8 > 1 be a constant whose value will be fixed later on. Let n € N*
and let us consider a partition of the interval [0, 1] into 2n intervals (Iy)1<k<2n so that the n first intervals
(closest to the point s = 0) are of length n% and the other n intervals are of length at most % More precisely,
we define for 1 < k < n,

1 1 1 1

Besides, for all n + 1 < k < 2n, we define

n 1 1 . 1 . 1
Ty = ﬁ—’—%—’_(k_n_l)ﬁ and I == [mm (1,xk— Qn) ,min (1,xk+%))-

We then define the space V,, C L?(0, 1) as follows:
V,, = Span {IlIk(s), 17,.(s)s, 17, (s)Vs, 1 <k < 2n}.

In other words, V,, is composed of the functions which, on each interval I, is a linear combination of an affine
function and the square root function. The dimension of the space V,, is at most 6n. We denote by Py, the
orthogonal projection from L?(0,1) onto V.

It holds that for all z := (y,t) € Z,

||1Cdfu(z) _PVn (iCdf“(z))HLQ(OJ) = ng - PVn (gz)”LZ(O,l) = HPW(IK'O)(gZ‘IkO) - gz LQ(Ik )
°0

where 1 < kg < 2n is the unique integer between 1 and 2n such that y%)t € Ii,. On the one hand, if 1 < kg <mn,
we make use of inequality (3.19) to obtain that

< on—30/2,
L2(Ik,)

9: — Pw(r,)(9:]1,,)

On the other hand, if n +1 < kg < 2n, necessarily yth > % so that y*t > 2yn' . We then make use of

inequality (3.24) to obtain that

Choosing now (3 such that —33/2 = —-7/2+ (3, i.e. B = g, we obtain that for all n € N* and 2z € Z,

< 15251 < 1 728
L2(Iy,) ~ 4y 2

9: — Pw(r,)(9:]1,,)

liedfuce) =P, Giedfue)) [ ago,1) = 192 = P (92) 20,0y < 20721

This implies (3.11) and hence the desired result. O

4. ALGORITHMS FOR NONLINEAR REDUCED MODELLING IN METRIC SPACES

In this section, we introduce two methods for building in practice nonlinear reduced models for a set of
solutions M on general metric spaces. The methods involve a discrete training set Z;, C Z of N € N* parameters
and associated N snapshot solutions My, C M. Similarly as before, we denote

7jcr = Lng (Mtr) cT

the image of My, by the logarithmic map Log,,, where w is an element of P2(2) to be fixed in a moment. Since
our numerical tests are for one-dimensional conservative PDEs in W5, we also instantiate them in this setting.
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4.1. Tangent PCA (tPCA): offline stage

Our first method is based on the so-called Tangent PCA (tPCA) method [26,58]. Its definition requires that
the metric space (V,d) is embedded with a Riemannian structure. The tPCA method consists in mapping the
manifold to a tangent space and performing a standard PCA on this linearization.

In the offline phase of the tPCA method, we first fix a particular element w € M, usually the Fréchet mean

1 2
min — Z d(u,w)*,

wevV
UEMyy

and then define an inner product g,, on its tangent space T,,V. We next consider the PCA (or POD decompo-
sition) on T,V of the set

Zr = Lng (Mtr) 5

with respect to the inner product g,,. For every f € T,V its norm is denoted by || f||.,, = gi,/ 2(f. f ). There exists
an orthonormal family of functions ( fk)kN>1 of T,V and an orthogonal family (cg)g>1 of functions of ¢2(Z,)
norm such that B

N
Log,, (u(z)) = Z ek (2) fe, Vz € Ziy.

k=1
The kth singular value is defined as oy = ||ck||¢2(z,) and we arrange the indices so that (oj)r>1 is a non-
increasing sequence.
In the online phase, we fix n € N* and define V,, := Span(fy, -+ ,f,) and Py, the orthogonal projection on

T,V with respect to the scalar product g,,. For a given z € Z for which we want to approximate u(z), we
consider two possible versions:

— Projection. We compute

f1rei(2) = Py, Log,(u(2))

> erl2) f, (4.1)
k=1

and approximate u(z) as
U (2)POAPON = Exp,, (fR)(2)). (4.2)

Note that, in fact, the projection (4.1) cannot be computed online since the computation of the coefficients
¢ (z) requires the knowledge of Log,, (u(2)) (and thus of the snapshot u(z) itself). This motivates the following
strategy based on interpolation of the c(2).

— Interpolation. Among the possible ways to to make the method applicable online, we propose to compute
an interpolation ¢ : Z — R such that

p(z) = cx(z), Vz€Zy,1<k<n.

In the numerical experiments, to avoid stability problems, we restrict the interpolation to neighboring param-
eters of the target parameter z which belong to the training set Z;, Specifically, for a given fixed tolerance
7 > 0, we find the set N, (z, Z,) of parameters of Z;, whose ¢?-distance to the current z is at most 7, that
is,

NT(Z,ZH) = {2 S Ztr : ||Z — 2”52(]1@@) < 7'}.
Then, for k =1,...,n, we build a local interpolator ¢, that satisfies the local interpolating conditions®
& (2) = an(z), VzeNi(z, Zy).

4n our code, we use a local multiquadric radial basis interpolator.
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With the local interpolators ¢;’", we now compute

R OED B OF/ (4.3)
k=1

which is an online computable approximation of Log,,(u(z)). Finally, we approximate u(z) with
un(z)tPCA,interp — EXpw (fjlnterp (Z)) (44)
Before continuing, several comments are in order:

— In the online phase, it is necessary to compute exponential maps. However, in full generality, their compu-
tation may be expensive since it may require to solve a problem in the full space and not only in a reduced
space. This important issue is mitigated in our numerical examples because the exponential map in W5 in
one space dimension has an explicit expression. The development of efficient surrogates for the exponential
mapping is a topic by itself which we will address in future works.

— The approach involving the interpolation of the coefficients is purely data-driven in the sense that the online
phase does not require solving the original PDE in any reduced space/manifold. This is in contrast to
traditional projection-based reduction approaches.

— Note that utPCAProi(z) or utPCAMerP (2 are not always properly defined through (4.2) or (4.4) since it is
required that fP™(z) or finterp(z) belong to O, the definition domain of the map Log,. Since there is
a priori no guarantee that this is always the case, the approach does not lead to a fully robust numerical
method and is prone to numerical instabilities as we illustrate in our numerical examples. This drawback has
been one main motivation to develop the method based on barycenters, which will be stable by construction.
We emphasize nonetheless that the tPCA has important optimality properties in terms of its decay of the
approximation error as we describe next. This is probably the reason why numerical methods based on
tPCA have drawn significant interest in numerous fields like pattern recognition, shape analysis, medical
imaging, computer vision [26, 58], and, more recently, statistics [35] and machine learning to study families
of histograms and probability densities [17]. We show evidence that this method also carries potential for
model reduction of transport dominated systems in Section 6.

Case of the 1d Wasserstein space

When (V,d) = (P2(2), Wa), recalling formulas (2.6) and (2.7) for the Exp and Log maps and formula (2.3)
for the W5 distance, the offline phase of the tPCA method consists in performing the following steps:

— Compute f = % > uem,, iedf, and w = icdf ! (?)

— Compute 7y, = {icdf, —icdf,, : u € My} C L%([0,1]).

— Compute the n first modes of the PCA of the discrete set of functions 7;, in L?([0,1]) and denote them by
f17 T fn

— Similarly as before, there exists an orthonormal family of functions ( fk);cvg of L?([0,1]) and an orthogonal
family (cx)r>1 of functions of £2(Z;,) with non-increasing ¢? norm such that for all z € Zy,,

N
Log, (u(2)) =Y _cr(2)fr, V2 € Zux.
k=1
The kth singular value is defined as o = ||ck||¢2(z,,) and

ck(z) = <iCdfu(Z) — iCdfw, fk>L2(0,1)-

For the online phase, if we work with a dimension n € N* for the reduced space, we store the coefficients
cp(z) forall z € Zy, and 1 < k < n.
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In the online stage, we fix a dimension n € N* and, for a given target z € Z for which we want to approximate
u(z), we perform the following steps:

— Projection. Compute for all 1 < k < n,
ck(z) = <iCdfu(Z) — iCdfw7 fk>L2([0,1])

and

Froi(z) = en(2) -

n
k=1
The reduced-order model approximation w,, (z)*F¢APr of 4(z) then reads as
Uy (2)PCAPOI = jedf ! (icdf,, +£271(2))) (4.5)
provided that fP*(z) belongs to Kicar,, -
— Interpolation. For all 1 < k < n, from the knowledge of the values (ci(z)).cz, stored in the offline phase,
we compute an interpolation ¢ : Z — R such that

p(z) =cx(2), Vz€ Zy, 1<k<n.

We can proceed similarly as before and do a local interpolation. We then compute

fae(2) = en(2) fi (4.6)
k=1
and approximate u(z) with
un(z)tPCA,interp — icdf—l (iCdfw +f7iLnterp(Z))) , (47)

provided that fit'P(z) belongs to Kicar,, -

Error decay

By introducing a notion of resolution of the finite set 7;, with respect to 7 in terms of e-coverings, we can
derive a convergence result on the average error in the original set M which is, as defined in (1.5),

1/2
Can PN (M, W, V) = (/ W3 (u(2), uy (2) T OAPrT) dM(Z)) '
z€Z

We next recall the precise definition of e-covering of a set and its covering number and give a convergence result
of the error.

Definition 4.1 (e-covering and covering number). Let S be a subset of (P2(£2), W3). An e-covering of S is a
subset C' of S if and only if S C U,ccB(x,¢), where B(x,e) denotes the ball centered at z of radius e. The
covering number of S, denoted Ng(g), is the minimum cardinality of any e-covering of S.

Lemma 4.2. If Ty, is an e-covering of T, and if 2™ (z) € Kicar, for all z € Z, then

M 1/2
eLPCAPIOI (A Wy, V) < e+ (Z U?) :

k>n



2176 V. EHRLACHER ET AL.

Proof. Since for any u € 7T, there exists @& € T;, such that ||[u — 4| r20,1)) < €, then [lu — Py, ul[r2(0,1]) <
e+ Hﬂ - PVnaHLZ([O,l])- Thus

N 1/2
e SR (T L2([0,1]), V) < &+ e OAPO (T, L2([0,1)), V) = € + (Z o?) :
k>n

We conclude by observing that if fP™I(z) € Kieqe, for all 2 € Z, then

eae NPT LA([0,1]), Vo) = ey CHPON M, Wa, V).

4.2. The barycentric greedy algorithm (gBar)

The potential instabilities of the tPCA method lead us to consider an alternative strategy for the contruction
of reduced-order models, based on the use of barycenters [55]. The approach that we propose here can be
defined for general metric spaces (V,d) which may not be embedded with a Riemannian manifold structure.
Contrary to tPCA, it is guaranteed to be stable in the sense that all the steps of the algorithm are well-defined
(approximations in T3,V will be in O,, by construction). The stability comes at the price of difficulties in
connecting theoretically its approximation quality with optimal performance quantities. Thus its quality will be
evaluated through numerical examples.

The method relies on a greedy algorithm, and is henceforth referred to hereafter as the barycentric greedy
(¢Bar) method. Let € > 0 be a prescribed level of accuracy. The offline phase of the gBar method is an iterative
algorithm which can be written as follows:

— Initialization. Compute (21, 22) € Zi, X Zi, such that

(z1,22) € argmax d(u(z),u(%))°,
(%’1752)€ZU><Z"

and define Us = {u(z1),u(22)}. Then compute

As(2) € argmind (u(z), Bar(Us, A2))?, Vz € Zy.
A2€X2

— Iteration n > 3. Compute z, € Z;, such that

Zn € argmax min d(u(3),b)?%.
" ZgEZn. bEanl(Un—l) ( ( )’ )

and set U,, = U,_1 U {u(zy,)}. Then compute

An(z) € argmind (u(z), Bar(Un, Ay))?,  Vz € Ziy.
AnES,

The algorithm terminates when

d(u(3),b)? = d (u(zn),b)? < 2.

max = min
beBy—1(Un—1)

I min
2€Z4r bEBp—1(Un—1)

Note that the gBar algorithm selects via a greedy procedure particular snapshots U, = {u(z1), -+ ,u(zn)}
in order to approximate as well as possible each element u(z) € My, with its optimal barycenter associated to
the family U,,. The barycentric weights have to be determined via an optimization procedure.

Similarly to the tPCA method, we can consider two different versions of the online phase of the gBar algorithm,
whose aim is to reconstruct, for a given n € N*, a reduced-model approximation u82%(z) of u(z) for all z € Z.
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These two different versions consist in the following steps:
— Projection. Let z € Z. Compute A, (z) € X,, a minimizer of

An(z) € argmind (u(z), Bar(U,, An))2 ,
An €3y,
and choose ugB*Pri(z) € Bar (U, A,(2)).
— Interpolation. From the values (A, (z)),c,, which are known from the offline stage, compute an interpolant
A, : Z — %, such that
An(2) = A (2), Vz € Zy.

For a given z € Z, we approximate u(z) with u®*n%?(2) € Bar (U, An(2)).

Like for the tPCA method, the only efficient online strategy is the one based on the interpolation of the
barycentric coefficients, since the projection method requires the computation of the full solution w(z) for
z € Z. Both approaches are purely data-driven and do not involve solving the original PDE in a reduced space
or manifold in the online phase. We compare the quality of both strategies in our numerical tests.

Remark 4.3. Note that for the interpolation of the coefficients in tPCA and gBar, there is no guarantee that
the maps connecting parameters to coefficients is smooth. This property seems difficult to establish a priori
and it depends on the regularity of Log and Exp and on the specific problem. The regularity in the coefficients
may also strongly depend on the choice of the neighbors, hence on the resolution of the training set Ms,. The
results of Appendix C tend to confirm this fact since they reveal that the approximation error of the procedure
is pretty sensitive to the resolution of My,.

In the particular case where (V,d) = (P2(Q2), Wa), every step of the greedy barycentric algorithm can be
made explicit by means of inverse cumulative distribution functions. The offline phase is:

— Initialization. Compute (z1, 22) € Zi, X Zi, such that

(z1,22) €  argmax Hicdfu(gl) —icdf

_ @ u(%)HzL?(OA) ’
(Z1,22)€EZx X Zyy

and define Us := (u(z1),u(22)). Compute and store

2
As(z) = (A1(2),A3(2)) €  argmin icdfy, .y — Z Mg dcdfy, (2, , Vze Zy. (4.8)
Azi=(ArA2) €% k=1 L2(0,1)
— Iteration n > 3. Given the set of barycentric coefficients
An—l(z) = (A?_l(z)v e 7)\2:%(2)) l Vz € Ztra
from the previous iteration, find
n—1 2
Zp € argmax min icdf, ) — A icdf,
ZgEZtr An71:=()\17"'7)\n71)62n71 ( ) ; F ( k) L2(0 1)
n—1 2
= argmax |licdf, ;) — Z )\z_l(z) icdf, ()
2E€EZy k=1 L2(0,1)

and set U, = Up,, U{u(z,)}. Compute and store

2

iCdfu(z) - Z >\k iCdfu(zk)
k=1

Au(5) = (A (2),- XM € argmin
An::(kly"' 7>\7L)EE7L

5 Vz € Ztr~ (49)
L2(0,1)
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The algorithm terminates if

n—1
min icdf,, y— A icdfy, (s, < &2
An—1=(A1, , An—1)EXn_1 (#n) ; F (z) £2(0.1)

For a fixed n € N*, the two versions of the online phase of the gBar method read as follows:
— Projection. Given z € Z for which we want to approximate u(z), compute

2

An(2) € argmin
Ani=(A1,,An)EX,

, (4.10)

ICdfu(Z) - Z )\k iCdfu(zk)
k=1

L2(0,1)

and define u&BarProi(z) = Bar(U,,, A,,(2)). The function ugBaPri(2) € Py(Q) can easily be defined through
its icdf as

iCdfungar‘proj(Z) = Z )\k (Z) ICdfu(Zk) :
k=1

— Interpolation. From the known values (A, (z)) , compute an interpolation A,, : Z — ¥,, such that

2E€E L4y

A (2) = A (2), Vz € Z.

For a given target u(z) with z € Z, we approximate with ug®*""*'P(z) = Bar (U,, A,,(z)) which is the
function of P(2) such that

icdfu%’Bar,iuterp(Z) = Z Xk(z) iCdfu(Zk),
k=1

where Ay (2) = (A1(2), -+, An(2)).

Notice that (4.8) and (4.9) amounts to solving a simple convex quadratic programming problem.

5. NUMERICAL COST

We give simple estimates on the numerical complexity of the tPCA and gBar methods in terms of the number
of operations. We consider the versions where we do interpolation instead of projection. For this, we introduce
some perliminary notation. Let cost(u(z)) be the numerical cost to compute a given snapshot u(z) = u(¢,y). Let
us assume that the full-order PDE discretization has a uniform spatial mesh with A degrees of freedom and uses
a simple implicit Euler time intergration with time step dt. If the equation is linear, then cost(u(z)) ~ N3t/dt
with a direct linear system solver, or cost(u(z)) ~ kN?t/§t with an iterative solver requiring k iterations to
converge. In the case where the equation is nonlinear, then each time step requires the solution of a nonlinear
system, which can be dealt with a Newton-type method. If () iterations are performed, the overall complexity
is of order cost(u(z)) ~ QN3t/5t with a direct linear system solver, or cost(u(z)) ~ QkN?t/ét.

Let cost(Log,,) and cost(Exp,,) be the cost of computing the logarithmic and exponential maps.

tPCA

In the offline phase, we have to compute N snapshots, compute their logarithmic images to get 7;,, and
perform a PCA on 7;,. Thus cost!ECA = > .ez, cost(u(z)) + Ncost(Log,,) + costP“A. Counting the cost of

offline
computing the covariance matrix and the eigenvalue computation, we have cost? 4 ~ NA? 4+ N3, Therefore

costiiin ~ N (N®T/5t + cost(Log,,)) + NN? + N2,

offline
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For a given z € Z, to approximate u(z) with u, (z)FCAe® in the online phase, we have to compute an inter-
polant and an exponential mapping. If we do the local interpolation of each coefficient ¢ (z) with r neighbors,
the cost of the interpolation is of order 72 + pIn(V), where r3 is the cost to solve the final linear system and
pIn(NN) is the cost of finding the r nearest neighbors with state of the art algorithms like the ball tree. As a
result

cost (un (2) PP oy (13 4 pIn(N)) + cost (Exp,,) -

This cost has to be compared to cost(u(z)) ~ N3t/dt, the cost of computing u(z) with the full order model.
We clearly see the critical role that the cost of the exponential mapping plays in the efficiency of the reduction
method. As already brought up in Section 4.1, cost(Exp,,) can in general be expensive since it may require to
solve a problem in the full space. In the case of W5 in one space dimension, the cost is strongly reduced since
the exponential map has an explicit expression. The problem of building good surrogates of the exponential
mapping is a topic by itself and its treatment is deferred to future works.

gBar

If we perform n steps in the barycentric greedy algorithm, the offline cost scales like

costépt ~ N (N3T/6t + cost(Log,,) + ncost, (best Bar))

offline

where cost,, (best Bar) is the cost of computing the best barycenter of a function u with respect to a set U,
of n functions. It is equal to the complexity of solving the cone quadratic optimization problem (2.15) and is
typically proportional to n2. In the online phase, the cost to approximate a given target u(z) is

cost (un(z)tPCA’interp) ~ 7%+ pIn(N) + cost(Exp,,).

Like before, the cost cost(Exp,,) is the critical part for the efficiency.

6. NUMERICAL EXAMPLES

As a support for our tests, we consider four different conservative PDEs:

— The above discussed inviscid Burgers’ equation for which we have explicit expressions of the solutions and
icdf (see Sect. 3.2).

— The version with viscosity of the previous Burgers’ equation.

— A Camassa—Holm equation.

— A Korteweg—de Vries equation.

For each PDE, we compare the performance of the four following model reduction methods:

— The classical PCA method in L2.
— The tangent PCA method (with projection) in Wa.
— The gBar method (with interpolation and projection) in W.

The performance is measured in terms of the average and worst case approximation error of a set on a discrete
test set of 500 functions. Each test set is different from the training set My,. The training set is composed of
randomly generated snapshots. For every example, the number of training snapshots is #M,, = 5.10%. The size
and precise selection of the training snapshots defines the resolution of My, since it fixes the smallest value &y,
such that My, is an ey,-covering of M (see Def. 4.1). One difficulty is that it is hard to estimate e, in practice.
Also, for a given target resolution € > 0, the covering number Ng(e) becomes potentially very large for small € as
the parameter dimension becomes large due to the curse of dimensionality. Recent theoretical results obtained
in [8] show that in certain relevant PDE classes, e-coverings can be replaced by random training sets of smaller
cardinality in the reduced basis greedy algorithm [23]. One interesting direction for further research is to develop
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FIGURE 1. Convergence of average errors in training set. (a) Burgers’ equation. (b) Viscous
Burgers’ equation. (¢) CH equation. (d) KdV equation.

similar ideas in the context of the present PDEs and the present algorithms. This is however beyond the scope
of this paper so we limit ourselves to illustrate numerically the impact of the size #.My, in Appendix C.

In addition to the error study, we also provide run time statistics but only for the case of the viscous Burgers’
equation since it is the only example that involves a high-fidelity solver. In the case of the inviscid Burgers’
equation and KdV, the exact solutions can be explicitly written down with formulas so we did not use a solver to
which we can compare ourselves to. In the case of the Camassa—Holm equation, the solution was nearly analytic
too and we could not consider its numerical solution as a representative example which involves a solver.

The code to reproduce the numerical results is available online at:

https://github.com/olga-mula/2019-RBM-metric-spaces.

For each PDE example, we also provide reconstruction videos of a full propagation on the same link.

6.1. Inviscid Burgers’ equation

We consider the same parametric PDE as the one of Section 3.2 and focus first on the average error decay of
PCA and tPCA in the training set M., denoted by e,y (Mtr, L2, VnPCA) and e,y (Mm Wa, VTfPCA). Figure la
shows that the error with tPCA decreases much faster than the one with PCA. This is connected to the fact
that the decay of the n-width 6,,(M, L?(Q2)) and associated singular values is much slower than 6, (7", L?([0, 1])),
which is the width exploited in tPCA (see Sects. 3.2 and 4.1).
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FIGURE 2. Errors on Miest for the Burgers’ equation. Top figures: average error. Bottom figures:
worst case error. Left: natural norms. Right: H~! norm.

Figure 2 gives the errors in average and worst case over Mqs;. The plots on the left measure the errors in the
natural norm of each method, that is, L? for PCA and W, for the rest. Note first of all the dramatic difference
in the behavior of the error between PCA (which is very slow) and the rest of the approaches (which is much
faster). Also, we can see that tPCA presents a faster decay rate compared to the approach with barycenters.
This may lead to think that tPCA is a better choice for the present context but to confirm this it is necessary
to measure errors in a common metric which is “fair” for all approaches and which also quantifies the potential
numerical instabilities of tPCA. Since we are looking for metrics that quantify the quality of transport rather
than spatial averages, we discard the L? metric in favor of the H ! metric which can be seen as a relaxation of
the W distance. The space H ! is taken here as the dual of H} and its norm computed accordingly.

The plots on the right in Figure 2 measure the errors in this norm. We again observe the superiority of
tPCA and the barycenters’ approach with respect to the PCA. The plateau that tPCA and the approach with
barycenters reach at a value around 103 is due to the fact that the H~! requires to invert a Laplace operator.
For this, we used in our case a discretization with P1 finite elements on a spatial mesh of size h ~ 5.107%.
So the plateau is due to this discretization error and not to the fact that the approximation errors do not
tend to 0.

In Figure B.1, we give plots of the reconstruction of one snapshot with all the methods. The PCA approach
presents very strong oscillations and fails to capture the sharp-edged form of the snapshot. tPCA and the
approach with barycenters give an approximation of higher quality in terms of the “shape” of the reconstructed
function. The tPCA approximation presents unnatural “spikes” which are due to the instabilities described
in Section 4.1. We also provide videos of the reconstruction of a full evolution with our methods on the link
above.
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FIGURE 3. Errors on Mg for the Viscous Burgers’ equation. Top figures: average error. Bottom
figures: worst case error. Left: natural norms. Right: H ' norm.

6.2. Viscous Burgers’ equation

We consider the same problem as before but add a viscosity term v that ranges in [5.1075,0.1]. The equation
is then

) 0, -3<z<0
P+ 3 (pQ)z —vd?p =0, p(0,z,y) = y, 0<z< i (6.1)
0, Li<z<s,
y
where, like before, the parameter y € [1/2,3] and (t,z) € [0,T] x Q = [0,3] x [—3,5] (the space interval has

slightly been enlarged). The parameter domain is here
Z = {(t,y,v) € [0,3] x [0.5,3] x [5.107°,0.1] } .

We present the results following the same lines as in the previous example. Figure 1b shows the decay of the
error of the PCA and tPCA methods in the average sense and for the functions used in the training phase. Like
before, the error decays dramatically faster in tPCA than in PCA.

Next, Figure 3 gives the errors in average and worst case sense for the test set Myegt. If we first examine
the errors in the natural norms (plots on the left), it appears that the errors in tPCA do not seem to decay
significantly faster than in PCA. Also, the approach with barycenters does not seem to give a very good
performance and seems to perform worse than PCA. However, when we examine the errors in the unified H !
metric, we see that all the nonlinear methods are clearly outperforming PCA. This is more in accordance with
what we visually observe when we examine the reconstructed functions given by each method (see Fig. B.2).
Like before, the approximation with PCA has unnatural oscillations. Note that in this particular example the
tPCA presents a sharp unnatural spike at the propagation front, due to the above discussed stability issues of
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this method. This is in contrast to the approach with barycenters which does not suffer from this issue at the
cost of slightly degrading the final approximation quality. Like for the other examples, the reader may watch
videos of the reconstruction on the link above.

We next provide run time statistics for this test case. For any u € My, let rur(u), rpca(u), repca(u),
TgBar(u) and rggzp(u) be the respective run times of the high-fidelity solver, and of the PCA, tPCA, gBar
and gBar with interpolation methods. The high-fidelity solver uses an explicit piecewise linear finite-volume
method to evaluate the advective flux and then discretize the diffusion part implicitly (Crank—Nicolson) with
the advective piece as a source to update in time. The resulting discretization is second-order in space and time.
For each dynamic, the time step dt is fixed to be sufficiently small in order to satisfy a CFL condition. Figure 4
shows, as a function of the reduced dimension n, the average and the median of the ratios between the run time
of a given method and the run time of the high-fidelity computation,

1 rs(u) .
R, = e
Y #My o rar(u) an median = M€ lan{

ry(u)

’I“HF(U)

:uEMtr}.

The * symbol denotes all the previous methods. The figure shows that the run time is reduced by a factor of
about 100 in average and of about 500 in the median for all the methods. We observe that the classical PCA is
slightly faster than tPCA and the gBar algorithm. As discussed in Section 5, this is essentially due to the fact
that we need to compute exponential maps for the latter methods. We may also note that the run time remains
essentially with n: we think that this is due to the fact that n is pretty small and expect a mild increase for
larger values of n. One last final observation for these plots is to remark that the gBar method with interpolation
performs almost identically than the one with interpolation.

Since the time variable is treated as a parameter in our approach, it is interesting to compare run times with
respect to t since we expect that the high-fidelity method will be faster for smaller times. Figure 5 shows the
run times to compute each snapshot of My, as a function of its corresponding parameter ¢ (we take n = 20). We
observe that the reduced models are significantly faster, even for small values of ¢t. As expected, the difference
grows as t increases.

6.3. The Camassa—Holm equation

We next consider the dispersionless Camassa—Holm equation which, for o > 0 given, consists in finding the
solution p of
Oem 4+ pmg +2mOyp =0, with m = p — a?0yup. (6.2)
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The equation admits peakon solutions of the form
1
p(t,x) = =Y pi(t)elrmatl/e,

2 ¢4
i=1

where the evolution of the set of peakon parameters p;(t) and ¢;(t) satisfies the canonical Hamiltonian dynamics

Ohy

ji(t) = d pi(t) = 6.3
W)= G2 ad pilt) = =50 (63)
fori=1,..., N, with Hamiltonian given by
T
hy = 1 Z pipj€_|Qi_qj|/a- (6.4)
ij=1

For the parametrized model considered in our tests, we set N = 2 and a = 1. The initial values of the peakons
parameters are p1(0) = 0.2, p2(0) = 0.8, ¢1(0) € [-2,2] and ¢2(0) = —5. The parameter domain is then

Z ={(t,q1(0)) € [0,40] x [-2,2]}.

Figure 1c shows the decay of the error of the PCA and tPCA methods in the average sense and for the functions
used in the training phase. Like before, the error decays dramatically faster in tPCA than in PCA.

Figure 6 gives the errors in average and worst case sense for the test set Mg Very similar observations like
for the case of Viscous Burgers’ hold: in the natural norms, the errors in tPCA do not seem to decay significantly
faster than in PCA. The approach with barycenters does not seem to give a very good performance and seems
to perform worse than PCA. Very different conclusions can be drawn if we consider the unified H—! metric,
where we see that all the nonlinear methods are clearly outperforming PCA. Like previously, this is confirmed
visually (see Fig. B.3).

6.4. Two-soliton solution of the Korteweg—de Vries equation

The previous examples give solid numerical evidence that tPCA and our approach with barycenters are an
efficient strategy to build reduced models of certain classes of transport dominated conservative PDEs. We finish
the section on numerical results by presenting a PDE which poses certain challenges to the present methodology.
This will serve as a transition that will lead us to the end of the paper where we present possible extensions to
the present approach.
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FIGURE 6. Errors on Miest for the CH equation. Top figures: average error. Bottom figures:
worst case error. Left: natural norms. Right: H~! norm.

We consider a two-soliton solution of the Korteweg—de Vries equation (KdV) which, expressed in normalized
units, reads for all x € R,
Otp + 6p0p + 02p = 0.

The equation admits a general 2-soliton solution
p(x,t) = —202log det(I + A(x, 1)), (6.5)

where A(z,t) € R?*? is the interaction matrix whose components a; ; are

aijw,) = T exp (ko ke — (B 4+ K)D) . 1<ij<2.
i J

For any ¢t > 0, the total mass is equal to

/ p(t,x)de = 4(k1 + k2).
R

To illustrate the performance of our approach, we set
T =251073, ¢c1 =2, ¢ =3/2, k1 = 30 — ky.

The parameter domain is
Z ={(t, ko) €[0,2.5.107%] x [16,22]}

It follows that the total mass is equal to 120 for all the parametric solutions.
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FI1GURE 7. Errors on Mg for the KAV equation. Top figures: average error. Bottom figures:
worst case error. Left: natural norms. Right: H~! norm.

Similarly as before, Figure 1d shows the decay of the error of the PCA and tPCA methods in the average
sense and for the functions used in the training phase. Figure 7 gives the errors in average and worst case sense
for a set of 500 test functions. The observed behavior resembles the one of our previous examples. However,
note that this time the average errors are roughly of order 10 while they were of order 1072 or 10~ in the
previous examples. A visual inspection of the reconstructed functions reveals that PCA is in this case not
producing “worse-looking” reconstructions than the nonlinear methods (see Fig. B.4). Two points can explain
these observations: first, note that the exact solution does not present as sharp edges as in the other examples
so this is playing in favor of PCA since it tends to produce oscillatory reconstructions. Second, in the present
KdV evolution, we have two peakons of different masses propagating at different speeds. The fast peakon may
overcome the slow one after a transition in which both peakons merge into a single one. Our strategy is based
on a nonlinear mapping where translations can be treated simply but the mapping does not seem to be enough
adapted to treat the case of fusion and separation of masses. This motivates to search for further nonlinear
transformations to address this behavior. We outline some possibilities as well as further challenges in the next
section.

7. CONCLUSIONS AND PERSPECTIVES

In this work, we have shown how to exploit the geometry of some hyperbolic PDE in order to propose
efficient reduced basis methods, one based on tangent PCA and one based on barycenters. These two methods
are developed using the Wasserstein metric which captures the advection effects. There are multiple possible
extensions to this work, among which stand the following:
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— A first interesting theoretical question is the following: can the results of Section 3 on the decay of the
Kolmogorov n-widths of the set 7 be extended to more general transport equations, and under which
assumptions?

— Can one obtain theoretical convergence rates of the greedy barycentric algorithm similar to the existing
results on greedy algorithms for linear reduced bases [11,45]?

— Can one reduce more complicated problems, i.e. defined on sets of dimension greater than one, or non-
conservative problems; using one of the two presented algorithms? This seems to be the case at least for the
barycentric greedy algorithm. Indeed, one can consider for instance the Hellinger—-Kantorovich distance [19,
42], which appears to yield interesting approximation properties for problems where both transport and mass
transfer phenomena occur. The computation of approximate barycenters of densities defined on spaces of
dimension greater than one can be done using entropic regularization together with the Sinkhorn algorithm
as proposed in [18] for instance.

— More generally, how to systematically select the best metric with respect to a given PDE and how to build
non expensive surrogates of the exponential map? A promising direction to address these two issues seems
to use machine learning algorithm to learn the metric for a given PDE [50], and then to learn the associated
exponential map [24,57].

We intend to address these issues in forthcoming works.

APPENDIX A. ALTERNATIVE PROOF OF (3.1)
We give here an alternative proof to (3.1) to the one given in [52].

Alternative proof of (3.1). Let n € N*. The inequality d, (/\/l, L? (Q)) >0 (M, L? (Q)) is a direct consequence
of the fact that for all finite-dimensional subspace V;, C L?(f2) of dimension n,

1/2
sup [u(2) ~ Pr, @z = ([ 106) - Proa@a )
z€E A

Thus, we only have to prove that there exists a constant ¢ > 0 such that for all n € N*|

8, (M, L*(Q)) = en™ /2.

To obtain this result, we express &, (M, L?(Q)) as a function of the eigenvalues of the so-called correlation
operator K : L2(Q) — L?(Q) which is defined as follows:

Yo e L2(Q), (Kv)(x)= / k(x, 2" Yo(z") da’,
Q

where k(z,2') = [

ez w(z)(z)u(z)(2’) dy. Since u(z) = 1.1 .}, it holds that

max(0,1 — |z —2'|) if (x,2') € [-1,0] x [0,1] U [0,1] x [-1,0],
k(z,2') = { 1 — max(z,a’) if (z,2") €10,1] x [0, 1],
1 —max(|z|,|z'|) if (z,2') € [-1,0] x [-1,0].
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The function x is continuous and piecewise affine on 2 x Q, and k = 0 on 9(2 x Q). We denote by

e i (x) = %ei(’m"‘k/x/) for all k,k’ € Z, so the the Fourier coefficient of k associated to the (k,k’) Fourier
mode is defined by

k= (K, € )-
It can be easily checked that there exists a constant C' > 0 such that for all k, k" € Z,

1
|ak,k’| Z C( (Al)

[k + k)2
The correlation operator K is a compact self-adjoint non-negative operator on L?(£2). Thus, there exists an

orthonormal family (fx)ren+ and a non-increasing sequence of non-negative real numbers (o )ren< going to 0
as k goes to +oo such that

ka:kak, Vk € N*.

The scalars g1 > 02 > --+ > 0 are the eigenvalues of the operator K, and it holds that

O (M, L2Q) = | D o
k>n+1

The nth eigenvalue o,, can be identified through the Max—Min formulas

op = max min (Vn, Kvn) 2(0),
Vo, CL2(Q) v, €Vy
dimVn =N ||Un||L2(Q) =1

where (-,-)2(q) is the L?(Q2) scalar product. We define V,, := Span {%eik', keZ, k| < n} Using (A.1), it
can easily be checked that there exists a constant ¢’ > 0 such that for all n € N*,

1
min (U, Kvp)p2(~1,1) = min > A = d—
vy € Vi (W) jkj<n € CF e < "
[vnllr2) =1 2pki<n P =1

Thus, for all n € N*, 0, > ¢/n™2 and there exists a constant ¢ > 0 such that for all n € N*,

6n(M, L*(Q)) = Z o > en V2
k>n+1
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APPENDIX B. RECONSTRUCTION PLOTS
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FIGURE B.1. Burgers’ equation: Reconstruction of a function with n = 5 (left) and n = 10
(right). Black: exact function. Red: PCA. Green: tPCA. Blue: Barycenter.
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FIGURE B.2. Viscous Burgers’ equation: Reconstruction of a function with n = 5 (left) and
n = 10 (right). Black: exact function. Red: PCA. Green: tPCA. Blue: Barycenter.




NONLINEAR MODEL REDUCTION ON METRIC SPACES

0.30
0.251
. 0.20]
o)
©
5 0.151
0.10{
0.05
0.00
-0 -5 0 5 10 15 20
X
0.20
0.151
0.15]
0.10
< <
g & 0.101
0.051
0.05
0.00
0.00
-10 -5 0 5 10 15 20 -10 -5 0 5 10 15 20
X X
0.4]
2.0
0.3
15
<
9 0.2 o
= 1.0
0.1 0.5
0.0 0.0 ~—
-10 -5 10 15 20 -10 -5 o 5 10 15 20
X
0.3 0.3
20.2 20.2
@ 3
0.11 0.1
0.0 0.0
-0 s 10 15 20 -0 -5 0 5 10 15 20

FIGURE B.3. CH equation: Reconstruction of a function with n =5 (left) and n = 10 (right).

Black: exact function. Red: PCA. Green: tPCA. Blue: Barycenter.
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FIGURE B.4. KdV equation: Reconstruction of a function with n =5 (left) and n = 10 (right).

Black: exact function. Red: PCA. Green: tPCA. Blue: Barycenter.
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APPENDIX C. IMPACT OF THE SIZE OF THE TRAINING SET M,,

We investigate the impact of the size of the training set My, on the reconstruction errors of the Burgers’ test
case. For this, we randomly generate 10 realisations of training sets of cardinality

# M, =102, 5.10%, 10, 3.10%, 5.10%, 7.10°.

For each realisation of My, we evaluate the error on a randomly generated test set Mqs; of 500 samples. Then
we average the mean and wort case error over the 10 realizations of My, with the same cardinality.

X —— #Mg =100 10-2 —— #My =100
2x1071 —— #My =500 —— # My =500
—x— # M =1000 i —x— # My =1000
& —— #M=3000 s —— #M=3000
= — # Mg = 5000 c1073 —— # Mg =5000
o o
5 # My = 7000 s # M= 7000
(=l o
Z 107! E:
< < 107
O O
a a
<
6x1072 10-5
0 10 20 0 10 20
n n
10° L —%— #My =100 < 109 E —x— #My =100
\ —— #My=500 £ ‘ —— #My=500
) —— #M=1000 5 —— #M=1000
£ i #My = 3000 o —— #My = 3000
< —— #My=5000 z —— #My =5000
5 #M = 7000 S1074 #M = 7000
o o
21072 g
= g
I \, IS
@ \\ <
=
_ E
10-3 % 21072
a
0 10 20 0 10 20
n n

Ficure C.1. Burgers’ equation. Impact of the cardinality of My,. Average error over 10 real-
izations. Natural norm.

Figure C.1 shows the mean error on in the natural norm of each algorithm (Ls for PCA and W; for tPCA
and the approach with the gBar algorithm). The general observed behavior is that, for a fixed dimension n, the
approximation error tends to decrease as the size #My, increases. Figure C.1 also shows that PCA and tPCA
seem more robust to the resolution of My, than the approach with barycenters. The errors are particularly
sensitive to the resolution of My, in the case when we interpolate the coefficients of the barycenter to obtain a
fully online procedure. This behavior comes from our interpolation strategy: for each targeted snapshot u(y) to
reconstruct, we build a local interpolant based on its neighbors in My,. As a result, the finer My, is, the closest
the neighbors will be, and one can expect to obtain a more precise and stable procedure as is observed in the
plots.

Figures C.2-C.4 show the behavior of the mean and worst case errors for the natural norms of each algorithm
and for the H~! norm. We may draw similar conclusions to the ones already discussed for Figure C.1.
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