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NONLINEAR MODEL REDUCTION ON METRIC SPACES. APPLICATION
TO ONE-DIMENSIONAL CONSERVATIVE PDES IN WASSERSTEIN SPACES

Virginie Ehrlacher1, Damiano Lombardi2, Olga Mula3,4,* and
François-Xavier Vialard5

Abstract. We consider the problem of model reduction of parametrized PDEs where the goal is to
approximate any function belonging to the set of solutions at a reduced computational cost. For this,
the bottom line of most strategies has so far been based on the approximation of the solution set by
linear spaces on Hilbert or Banach spaces. This approach can be expected to be successful only when the
Kolmogorov width of the set decays fast. While this is the case on certain parabolic or elliptic problems,
most transport-dominated problems are expected to present a slow decaying width and require to study
nonlinear approximation methods. In this work, we propose to address the reduction problem from
the perspective of general metric spaces with a suitably defined notion of distance. We develop and
compare two different approaches, one based on barycenters and another one using tangent spaces when
the metric space has an additional Riemannian structure. Since the notion of linear vectorial spaces
does not exist in general metric spaces, both approaches result in nonlinear approximation methods.
We give theoretical and numerical evidence of their efficiency to reduce complexity for one-dimensional
conservative PDEs where the underlying metric space can be chosen to be the 𝐿2-Wasserstein space.
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1. Introduction

In modern applications of science, industry and numerous other fields, the available time for design and
decision-making is becoming shorter, and some tasks are even required to be performed in real time. The
process usually involves predictions of the state of complex systems which, in order to be reliable, need to
be described by sophisticated models. The predictions are generally the output of inverse or optimal control
problems that are formulated on these models and which cannot be solved in real time unless the overall
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complexity has been appropriately reduced. Our focus lies in the case where the model is given by a Partial
Differential Equation (PDE) that depends on certain parameters. In this setting, the routines for prediction
require to evaluate solutions of the PDE on a large set of dynamically updated parameters. This motivates the
search for accurate and online methods to approximate the solutions at a reduced computational cost. This
task, usually known as reduced modelling or model order reduction, can be summarized as follows.

Let Ω be a domain of R𝐷 for a given dimension 𝐷 ≥ 1 and let (𝑉, 𝑑) be a metric space with metric 𝑑,
containing the set of solutions of a given parametric PDE defined over the domain Ω. The main goal of model
reduction is to approximate as accurately and quickly as possible the solution 𝑢(𝑧) ∈ 𝑉 of a problem of the
form

𝒫(𝑢(𝑧), 𝑧) = 0 (1.1)

for many different values of a vector 𝑧 = (𝑧1, . . . , 𝑧𝑝) in a certain range 𝑍 ⊂ R𝑝. In the above formula, 𝒫 is a
differential or integro-differential operator parametrized by 𝑧, and we assume that for each 𝑧 ∈ 𝑍 there exists a
unique solution 𝑢(𝑧) ∈ 𝑉 to problem (1.1). The set of all solutions is defined as

ℳ := {𝑢(𝑧) : 𝑧 ∈ 𝑍} ⊂ 𝑉, (1.2)

and is often referred to as the solution manifold with some abuse of terminology1.
In the context of model reduction, 𝑉 is traditionally chosen to be a Banach or a Hilbert space with the

metric given by its norm denoted by ‖ · ‖. However, relevant classes of problems could be posed either on
Banach spaces or on metric spaces and the latter characterization may be more convenient for model reduction
in some situations. To name a few examples involving gradient flows, we cite [28] for Hele-Shaw flows, [29] for
quantum problems, [53] for porous media flows, [37] for Fokker–Planck equations and [12, 63] for Keller–Segel
models in chemotaxis. Other examples involving metric spaces that are not necessarily related to gradient flows
are [13] for the Camassa–Holm equation, [16] for the Hunter–Saxton equation. Such examples can often be
interpreted as a geodesic flow on a group of diffeomorphisms and can thus be encoded as Hamiltonian flows. In
addition to this, there are other problems which cannot be defined on Banach vector spaces and can only be
defined over metric spaces. Consider for instance the case of a pure transport equation with constant velocity
where the initial data is a Dirac measure concentrated on one point. The solution of this PDE remains at all
times a (translated) Dirac mass. More generally, it has been proven that solutions to certain nonlinear dissipative
evolution equations with measure-valued initial data are measure-valued and do not belong to some standard
Lebesgue or Sobolev spaces. They can however be formulated in the form of Wasserstein gradient flows.

It appears therefore that extending the notion of model reduction in Banach/Hilbert spaces to more general
metric spaces could enlarge the scope of problems that can potentially be addressed. Since the notion of linear
vectorial spaces does not exist in general metric spaces, both approaches result in nonlinear approximation
methods. To develop further on the potential interest brought by nonlinear model reduction on metric spaces,
let us briefly recall the classical lines followed for model reduction on Banach/Hilbert spaces. Assume for now
that 𝑉 is a Banach space. Most methods are typically based on determining a “good” 𝑛-dimensional subspace
𝑉𝑛 = span{𝑣1, . . . , 𝑣𝑛} ⊂ 𝑉 that yields efficient approximations of 𝑢(𝑧) in 𝑉𝑛 of the form

𝑢𝑛(𝑧) :=
𝑛∑︁

𝑖=1

𝑐𝑖(𝑧)𝑣𝑖 (1.3)

for some coefficients 𝑐1(𝑧), · · · , 𝑐𝑛(𝑧) ∈ R. This approach is the backbone of most existing methods among which
stand the reduced basis method [34,56], the empirical interpolation method and its generalized version (G-EIM,
[7,32,43,45]), Principal Component Analysis (PCA, see [8], Chap. 1), polynomial-based methods like [21,22] or
low-rank methods [38].

The approximation quality of the obtained subspace 𝑉𝑛 is either measured through the worst case error

𝑒wc(ℳ, 𝑉, 𝑉𝑛) := sup
𝑧∈𝑍

inf
𝑤𝑛∈𝑉𝑛

𝑑(𝑢(𝑧), 𝑤𝑛), (1.4)

1This set of solutions may not be a differentiable manifold in infinite dimensions.
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or the average error

𝑒av(ℳ, 𝑉, 𝑉𝑛) :=
(︂∫︁

𝑧∈𝑍

inf
𝑤𝑛∈𝑉𝑛

𝑑2(𝑢(𝑧), 𝑤𝑛) d𝜇(𝑧)
)︂1/2

, (1.5)

where 𝜇 is a probability measure on 𝑍, given a priori and from which the parameters are sampled.
The reduction method is considered efficient if 𝑒wc(ℳ, 𝑉, 𝑉𝑛) (or 𝑒av(ℳ, 𝑉, 𝑉𝑛)) decays rapidly to 0 as 𝑛 goes

to∞. There is sound evidence of efficiency only in the case of certain elliptic and parabolic PDEs. More precisely,
it has been shown in [20] that for this type of equations, under suitable assumptions, the 𝐿∞ Kolmogorov width
defined as

𝑑𝑛(ℳ, 𝑉 ) := inf
𝑉𝑛 ⊂ 𝑉,

dim 𝑉𝑛 = 𝑛

𝑒wc(ℳ, 𝑉, 𝑉𝑛) (1.6)

and the 𝐿2 Kolmogorov width
𝛿𝑛(ℳ, 𝑉 ) := inf

𝑉𝑛 ⊂ 𝑉,
dim 𝑉𝑛 = 𝑛

𝑒av(ℳ, 𝑉, 𝑉𝑛) (1.7)

decay exponentially or polynomially with high exponent as 𝑛 grows. In the context of model reduction, this
quantity gives the best possible performance that one can achieve when approximating ℳ with 𝑛-dimensional
linear spaces.

Optimal linear subspaces 𝑉𝑛 ⊂ 𝑉 of dimension 𝑛 which realize the infimum of (1.6) cannot be computed in
practice in general. However, it has been shown that greedy algorithms can be used to build sequences of linear
spaces (𝑉𝑛)𝑛≥1 whose approximation error 𝑒wc(ℳ, 𝑉𝑛) decay at a comparable rate as the Kolmogorov 𝑛-width
𝑑𝑛(ℳ, 𝑉 ). These algorithms are the backbone of the so-called Reduced Basis method [10]. In the case of (1.7),
the optimal subspaces for which the minimum is attained are obtained using the PCA or Proper Orthogonal
Decomposition (POD) method.

In this paper, our goal is to extend the above notion of model reduction to more general metric spaces in view
of the following facts. First of all, in the context of Banach or Hilbert spaces, linear methods are unfortunately
not well suited for hyperbolic problems. Among others, this is due to the transport of shock discontinuities
whose locations may vary together with the parameters. It was proved in ([8], Chap. 3, see Eq. (3.76)) that
the 𝐿∞ Kolmogorov width of simple pure transport problems decays very slowly, at a rate 𝑛−1/2 if 𝑉 = 𝐿2

(similar examples can be found in [11, 52, 61]). The same type of result has recently been derived for wave
propagation problems in [31]. These results highlight that linear methods of the type (1.3) are not expected
to provide a fast decay in numerous transport dominated problems, and may be highly suboptimal in terms of
the trade off between accuracy and numerical complexity. For these classes of problems, an efficient strategy for
model reduction requires to look for nonlinear methods that capture the geometry of ℳ in a finer manner than
linear spaces. In addition to the idea of searching for nonlinear methods, it may be beneficial to move from the
classical Banach/Hilbert metric framework to more general metric spaces in order to better quantify the ability
to capture specific important features like translations or shifts. Finally, as already brought up, this broader
setting enlarges the scope of problems that can be treated.

We next describe the state of the art methods proposed to go beyond the linear case and to address hyperbolic
problems. Then, we summarize the contributions and the organization of this paper.

1.1. State of the art

Works on adaptivity

Several works try to circumvent the poor representation given by linear spaces by building local spaces. In [15]
a strategy inspired by the mesh ℎ-refinement is proposed. In [5,6] a construction of linear subspaces is proposed,
based on a 𝑘-means clustering that groups together similar snapshots of the solution. A similar approach is
presented in [54] to overcome some shortcomings of the DEIM approach. In the two recent preprints [30, 41],
the subspaces to be used for model reduction are identified by using autoencoders and neural networks.
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Stabilization strategies

Advection dominated problems tend to show potential instabilities when reduced-order integrators are built.
In [44, 59] an online stabilization is proposed. A form of stabilization based on an 𝐿1 minimisation problem is
proposed in [1].

Reduced-order modeling from a geometrical point of view

Several works in the literature propose to transform the snapshots by making a Lie group acting on them. In
[47] the authors propose a method to get rid of continuous symmetries in parametric dynamical systems whose
dynamics is invariant under continuous group action2. A similar approach was proposed in [51].

Conversely to transporting the snapshots, dynamical bases approaches are defined in which the subspace
used to approximate the solution evolves in time. An example of such a method is the Dynamically Orthogonal
(DO) decomposition (detailed in [25,39,40,48]). We also cite [4] and a recent extension [46], which have focused
on model reduction over the Grassman manifold.

In the context of Hamiltonian systems, Afkham and Hesthaven [2] and Hesthaven and Pagliantini [33] intro-
duce a reduced-order framework that preserves the symplectic structure of the dynamical system.

Non-linear transformations

In [61, 62], a transformed snapshot interpolation method is introduced, aiming at finding a set of non-linear
transformations such that the approximation of the transformed snapshots by a linear combination of modes
is efficient. In [49], which addresses compressible fluid-dynamics, the set of the snapshots is transported into
a reference configuration by a displacement field which is identified through a polynomial expansion. In [36],
the authors propose a non-linear model reduction strategy based on optimal transport and the reduction of
optimal transport maps. Another strategy based on non-linear transformations was proposed in [14] to deal
with hyperbolic problems with applications to transonic flows around airfoils. Finally, the recent work [14]
introduces a general framework to look for reference configurations and for transformations depending upon few
parameters in order to deal with advection dominated problems.

1.2. Contribution and organization of the paper

The main contribution of this work is to develop the idea of reduced modeling in metric spaces

For this:

– We give theoretical evidence on two simple PDEs (pure transport and Burgers’ equation in 1D) that it is
beneficial to do model reduction on metric spaces rather than on more classical Banach spaces.

– We develop two model reduction strategies on general metric spaces, one based on tangent spaces, the second
one based on barycenters.

Our approach is, to the best of our knowledge, novel in the field of reduced modelling. The first approach
is however related to the so-called tangent PCA, which has drawn significant interest in numerous fields like
pattern recognition, shape analysis, medical imaging, computer vision [26, 58]. More recently, it has also been
used in statistics [35] and machine learning to study families of histograms and probability densities [17]. Our
second approach based on barycenters is entirely novel to the best of our knowledge, and it could be used as an
alternative to tPCA in other applications apart from model reduction.

As a support for our numerical tests, we will consider the model reduction of one-dimensional conservative
PDEs in the 𝐿2-Wasserstein metric. Time will be seen as one of the parameters. The precise setting and
notation is the following. For a given open interval Ω ⊂ R and a given final time 𝑇 > 0, we define 𝒟′(Ω) the set
of real-valued distributions defined on Ω and consider a 1d conservative PDE that depends on 𝑝 ∈ N*:= N ∖ {0}

2On the KdV equations these symmetries were studied analytically in [27].
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parameters. These parameters belong to a compact set denoted by 𝑌 ⊂ R𝑝. For any 𝑦 ∈ 𝑌 , 𝑢𝑦 : [0, 𝑇 ] → 𝒟′(Ω)
is the (distribution-valued) solution to

𝜕𝑡𝑢𝑦(𝑡)− 𝜕𝑥𝐹 (𝑢𝑦(𝑡); 𝑦, 𝑡) = 0 in 𝒟′(Ω), ∀𝑡 ∈ [0, 𝑇 ], (1.8)

with appropriate initial and boundary conditions. We assume that 𝐹 (·; 𝑦, 𝑡) is a real-valued mapping defined on
a set of distributions defined on Ω so that the solution to (1.8) is well-defined.

We denote by 𝒫2(Ω) the set of probability measures on Ω with finite second-order moments. With a slight
abuse of notation, 𝒫2(Ω) can be seen as a subset of 𝒟′(Ω) in the sense that for all 𝜈 ∈ 𝒫2(Ω), the linear
application 𝑇𝜈 : 𝒟(Ω) → R defined by

∀𝜑 ∈ 𝒟(Ω), 𝑇𝜈(𝜑) =
∫︁

Ω

𝜑 d𝜈

defines a distribution on Ω.
In the following, we assume that

∀(𝑡, 𝑦) ∈ 𝑍 := [0, 𝑇 ]× 𝑌, 𝑢𝑦(𝑡) = 𝑇𝜈𝑦(𝑡) for some 𝜈𝑦(𝑡) ∈ 𝒫2(Ω). (1.9)

In order not to overload notation, we will write the measure 𝜈𝑦(𝑡) ∈ 𝒫2(Ω) with the notation 𝑢𝑦(𝑡) with a slight
abuse of notation. Thus, 𝑢𝑦(𝑡) will denote the measure 𝜈𝑦(𝑡) ∈ 𝒫2(Ω) such that (1.9) holds. In the case when an
element 𝑢 ∈ 𝒫2(Ω) is absolutely continuous with respect to the Lebesgue measure, we denote by 𝜌𝑢 its density,
so that d𝑢(𝑥) = 𝜌𝑢(𝑥) d𝑥.

Since time is an additional parameter, our parameter set is

𝑍 := [0, 𝑇 ]× 𝑌 ⊂ R𝑝, 𝑝 := 𝑝 + 1

thus the solution set is
ℳ := {𝑢(𝑧) = 𝑢𝑦(𝑡) ∈ 𝒫2(Ω) : 𝑧 = (𝑡, 𝑦) ∈ 𝑍} ⊂ 𝒫2(Ω).

The paper is organized as follows

We begin by recalling in Section 2 basic notions on metric spaces, and more specifically on the 𝐿2-Wasserstein
space in one dimension. We then highlight in Section 3 the interest of doing model reduction of conservative
PDEs in metric spaces. For two simple PDEs (a pure transport equation and an inviscid Burgers’ equation in
1D), we prove theoretically that this point of view yields better approximation properties than classical linear
methods on Banach spaces. In Section 4, we describe the two numerical methods (tPCA and gBar) that we
propose for model reduction in general metric spaces. We also make the different steps of the algorithms explicit
in the particular case of the 𝐿2 Wasserstein space in 1D. One distinguishing feature of the methods is that
they are purely data-driven in the sense that the online phase does not involve solving the original PDE in any
reduced space/manifold. The methods could thus be seen as a fast emulator of the high-fidelity solutions. This is
in contrast to traditional projection-based approaches which require solving the original equations in the online
phase. Finally, Section 6 gives numerical evidence of the performance of the two algorithms on four different
problems: an inviscid and viscous Burgers’ equation, a Camassa–Holm equation and a Korteweg–de Vries (KdV)
equation. The results illustrate the ability of the proposed methods to capture transport phenomena at a very
reduced computational cost. For the example of the viscous Burgers’ equations, the average online computational
time of one snapshot is reduced by a factor of about 100 with respect to the high-fidelity computation. The
KdV problem shows some limitations of the methodology in terms of capturing the fusion and separation of
peakons and motivates our final Section 7, where we list possible extensions to address not only this issue, but
also to treat more general multi-dimensional and non-conservative problems.
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2. Metric spaces and Wasserstein space

Since in our numerical examples we focus on the model reduction of parametric one-dimensional conservative
PDEs in the 𝐿2-Wasserstein space, we start this section by recalling some basic properties of this space. We
next recall the definition of exponential and logarithmic maps on general Riemannian manifolds, and then detail
their expression in the case of the 1D Wasserstein space. Finally, we introduce the notion of barycenters on
general metric spaces.

2.1. Definition of the 𝐿2-Wasserstein space in one dimension

Let Ω = [𝑥min, 𝑥max] ⊂ R, with −∞ ≤ 𝑥min < 𝑥max ≤ ∞ be the domain of interest. Let 𝒫2(Ω) denote the
set of probability measures on Ω with finite second-order moments. For all 𝑢 ∈ 𝒫2(Ω), we denote by

cdf𝑢 :
{︂

Ω → [0, 1]
𝑥 ↦→ cdf𝑢(𝑥) :=

∫︀ 𝑥

𝑥min
d𝑢

(2.1)

its cumulative distribution function (cdf), and by

icdf𝑢 :
{︂

[0, 1] → Ω
𝑠 ↦→ cdf−1

𝑢 (𝑠) := inf{𝑥 ∈ Ω, cdf𝑢(𝑥) > 𝑠} (2.2)

the generalized inverse of the cdf (icdf). The 𝐿2-Wasserstein distance is defined by

𝑊2(𝑢, 𝑣) := inf
𝜋∈Π(𝑢,𝑣)

(︂∫︁
Ω×Ω

(𝑥− 𝑦)2 d𝜋(𝑥, 𝑦)
)︂1/2

, ∀(𝑢, 𝑣) ∈ 𝒫2(Ω)× 𝒫2(Ω),

where Π(𝑢, 𝑣) is the set of probability measures on Ω × Ω with marginals 𝑢 and 𝑣. In the particular case of
one dimensional marginal domains, it can be equivalently expressed using the inverse cumulative distribution
functions as

𝑊2(𝑢, 𝑣) = ‖ icdf𝑢− icdf𝑣 ‖𝐿2([0,1]). (2.3)

The space 𝒫2(Ω) endowed with the distance 𝑊2 is a metric space, usually called 𝐿2-Wasserstein space (see [60]
for more details).

2.2. Exponential and logarithmic maps

Let (𝑉, 𝑑) be a metric space where 𝑉 is a Riemannian manifold. For any 𝑤 ∈ 𝑉 , we denote by 𝑇𝑤𝑉 the tangent
space to 𝑉 at point 𝑤. Then, there exists a subset 𝒪𝑤 ⊂ 𝑇𝑤𝑉 such that the exponential map Exp𝑤 : 𝒪𝑤 → 𝑉
can be defined and is a diffeomorphism onto its image. The logarithmic map Log𝑤 : Exp𝑤(𝒪𝑤) → 𝒪𝑤 is then
defined as the generalized inverse of Exp𝑤.

In the case when (𝑉, 𝑑) = (𝒫2(Ω), 𝑊2), the exponential and logarithmic maps have a particular simple form
which we explain next. We can take advantage of the fact that, after composition with the nonlinear map
𝒫2(Ω) ∋ 𝑢 ↦→ icdf𝑢 ∈ 𝐿2([0, 1]), the space (𝒫2(Ω), 𝑊2) is isometric to

(︀
ℐ, ‖ · ‖𝐿2([0,1])

)︀
, where

ℐ := {icdf𝑢, 𝑢 ∈ 𝒫2(Ω)} (2.4)

is a convex subset of 𝐿2([0, 1]). The following well-known result then holds.

Theorem 2.1. The map icdf : 𝒫2(Ω) → ℐ defined by icdf(𝑢) = icdf𝑢 is an (homeomorphism) isometry between
(𝒫2(Ω), 𝑊2) and

(︀
ℐ, ‖ · ‖𝐿2([0,1])

)︀
.
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The fact that the map icdf is an isometry is actually a consequence of (2.3). Note that the inverse of icdf
can be defined3 as

icdf−1(𝑓) =
d

d𝑥

[︀
𝑓−1

]︀
, ∀𝑓 ∈ ℐ.

For all 𝑓0 ∈ ℐ, we introduce
𝒦𝑓0 =

{︀
𝑓 ∈ 𝐿2([0, 1]; Ω) : 𝑓0 + 𝑓 ∈ ℐ

}︀
, (2.5)

which is a closed convex subset of 𝑇𝑓0ℐ.
For a given element 𝑤 ∈ 𝒫2(Ω), using a slight abuse of notation, the exponential map can be advantageously

defined on 𝒦icdf𝑤
. Indeed, the definition domain 𝒪𝑤 ⊂ 𝑇𝑤𝒫2(Ω) of Exp𝑤 is isomorphic to 𝒦icdf𝑤

. Using another
slight abuse of notation, we will denote in the sequel 𝒪𝑤 := 𝒦icdf𝑤

. This leads us to the following definition of
the exponential and logarithmic maps.

Definition 2.2. Let 𝑤 ∈ 𝒫2(Ω) be a probability measure. The exponential map Exp𝑤 : 𝒪𝑤 → 𝒫2(Ω) is defined
as

Exp𝑤(𝑓) = icdf−1(icdf𝑤 +𝑓), ∀𝑓 ∈ 𝒪𝑤. (2.6)

It is surjective and we can define its inverse Log𝑤 : 𝒫2(Ω) → 𝒪𝑤 as

Log𝑤(𝑢) = icdf𝑢− icdf𝑤, ∀𝑢 ∈ 𝒫2(Ω) . (2.7)

As a consequence of Theorem 2.1, the following result holds.

Corollary 2.3. The exponential map Exp𝑤 is an isometric homeomorphism between 𝒪𝑤 and 𝒫2(Ω) with inverse
Log𝑤 and it holds that

𝑊2(𝑢, 𝑣) = ‖Log𝑤(𝑢)− Log𝑤(𝑣)‖𝐿2([0,1]) , ∀(𝑢, 𝑣) ∈ 𝒫2(Ω)× 𝒫2(Ω).

For the proofs of Theorems 2.3 and 2.1, we refer to [9]. We next give two simple common examples of
logarithmic and exponential maps:

– Dirac masses. Let Ω = R and consider the family of Dirac masses {𝛿𝑥 : 𝑥 ∈ R} ⊂ 𝒫2(Ω). For any 𝑥 ∈ R
and 𝑠 ∈ (0, 1), icdf𝛿𝑥(𝑠) = 𝑥, thus 𝑊2 (𝛿𝑥1 , 𝛿𝑥2) = |𝑥1 − 𝑥2| for any (𝑥1, 𝑥2) ∈ R × R. From (2.7), for all
𝑠 ∈ (0, 1), Log𝛿𝑥2

(𝛿𝑥1) (𝑠) = 𝑥1 − 𝑥2.
– Translations and rescaling. Let 𝑤 ∈ 𝒫2(R) with density 𝜌𝑤 and, for (𝑎, 𝑏) ∈ (0,∞)×R, let 𝑤(𝑎,𝑏) be the

probability measure with density given by

𝜌(𝑎,𝑏)(𝑥) =
1
𝑎
𝜌𝑤((𝑥− 𝑏)/𝑎).

In other words,
{︀
𝑤(𝑎,𝑏) : (𝑎, 𝑏) ∈ (0,∞)× R

}︀
is the family of shifted and rescaled probabilities around 𝑤.

Then,

cdf𝑤(𝑎,𝑏)(𝑥) := cdf𝑤 (𝑎𝑥 + 𝑏) , ∀𝑥 ∈ R, icdf𝑤(𝑎,𝑏)(𝑠) :=
icdf𝑤 (𝑠)− 𝑏

𝑎
, ∀𝑠 ∈ [0, 1]. (2.8)

Henceforth, the logarithmic map can be written as:

Log𝑤

(︁
𝑤(𝑎,𝑏)

)︁
= (𝑎−1 − 1) icdf𝑤(𝑠)− 𝑏/𝑎. (2.9)

3The generalized inverse of 𝑓 is a monotonic function which is of bounded variation and thus has a well-defined non-negative
measure as derivative.
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2.3. Barycenters

We next introduce the notion of barycenters in a general metric space (𝑉, 𝑑). Let 𝑛 ∈ N* and let

Σ𝑛 :=

{︃
(𝜆1, · · · , 𝜆𝑛) ∈ [0, 1]𝑛,

𝑛∑︁
𝑖=1

𝜆𝑖 = 1

}︃

be the set of barycentric weights. For any 𝑈𝑛 = (𝑢𝑖)1≤𝑖≤𝑛 ∈ 𝑉 𝑛 and barycentric weights Λ𝑛 = (𝜆𝑖)1≤𝑖≤𝑛 ∈ Σ𝑛,
an associated barycenter is an element of 𝑉 which minimizes

inf
𝑣∈𝑉

𝑛∑︁
𝑖=1

𝜆𝑖𝑑(𝑣, 𝑢𝑖)2. (2.10)

In full generality, minimizers to (2.10) may not be unique. In the following, we call Bar(𝑈𝑛, Λ𝑛) the set of
minimizers to (2.10), which is the set of barycenters of 𝑈𝑛 with barycentric weights Λ𝑛.

It will be useful to introduce the notion of optimal barycenter of an element 𝑢 ∈ 𝑉 for a given family 𝑈𝑛 ∈ 𝑉 𝑛.
The set of barycenters with respect to 𝑈𝑛 is

ℬ𝑛(𝑈𝑛) :=
⋃︁

Λ𝑛∈Σ𝑛

Bar(𝑈𝑛, Λ𝑛)

and an optimal barycenter of the function 𝑢 ∈ 𝑉 with respect to the set 𝑈𝑛 is a minimizer of

min
𝑏∈ℬ𝑛(𝑈𝑛)

𝑑(𝑢, 𝑏)2. (2.11)

In other words, a minimizer to (2.11) is the projection of 𝑢 on the set of barycenters ℬ𝑛(𝑈𝑛).
We next present some properties of barycenters in the Wasserstein space (𝑉, 𝑑) = (𝒫2(Ω), 𝑊2) which will

be relevant for our developments (see [3] for further details). The first property is that problem (2.10) has a
unique solution, that is, for a family of probability measures 𝑈𝑛 = (𝑢𝑖)1≤𝑖≤𝑛 ∈ 𝒫2(Ω)𝑛 and barycentric weights
Λ𝑛 = (𝜆𝑖)1≤𝑖≤𝑛 ∈ Σ𝑛, there exists a unique minimizer to

min
𝑣∈𝒫2(Ω)

𝑛∑︁
𝑖=1

𝜆𝑖𝑊2(𝑣, 𝑢𝑖)2, (2.12)

which is denoted by Bar(𝑈𝑛, Λ𝑛). In addition, the barycenter can be easily characterized in terms of its inverse
cumulative distribution function since (2.12) implies that

icdfBar(𝑈𝑛,Λ𝑛) = arg min
𝑓∈𝐿2([0,1])

𝑛∑︁
𝑖=1

𝜆𝑖‖ icdf𝑢𝑖 −𝑓‖2𝐿2([0,1]), (2.13)

which yields

icdfBar(𝑈𝑛,Λ𝑛) =
𝑛∑︁

𝑖=1

𝜆𝑖 icdf𝑢𝑖
. (2.14)

The optimal barycenter of a function 𝑢 ∈ 𝒫2(Ω) for a given set of functions 𝑈𝑛 is unique. We denote it
𝑏(𝑢, 𝑈𝑛) and it can be easily characterized in terms of its inverse cumulative distribution function. Indeed, the
minimization problem (2.11) reads in this case

min
𝑏∈ℬ𝑛(𝑈𝑛)

𝑊2(𝑢, 𝑏)2
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and it has a unique minimizer 𝑏(𝑢, 𝑈𝑛). An alternative formulation of the optimal barycenter is by finding first
the optimal weights

Λopt
𝑛 = arg min

Λ𝑛∈Σ𝑛

𝑊 2
2 (𝑢, Bar(𝑈𝑛, Λ𝑛)) . (2.15)

The optimal barycenter is then
𝑏(𝑢, 𝑈𝑛) = Bar

(︀
𝑈𝑛, Λopt

𝑛

)︀
.

Note that for all Λ𝑛 ∈ Σ𝑛 and all 𝑤 ∈ 𝒫2(Ω),

𝑊 2
2 (𝑢, Bar (𝑈𝑛, Λ𝑛)) =

⃦⃦⃦⃦
⃦icdf𝑢−

𝑛∑︁
𝑖=1

𝜆𝑖 icdf𝑢𝑖

⃦⃦⃦⃦
⃦

2

𝐿2([0,1])

=

⃦⃦⃦⃦
⃦Log𝑤(𝑢)−

𝑛∑︁
𝑖=1

𝜆𝑖Log𝑤(𝑢𝑖)

⃦⃦⃦⃦
⃦

2

𝐿2([0,1])

so the computation of the optimal weights Λopt
𝑛 in problem (2.15) is a simple convex quadratic optimization

problem.
For a given 𝑤 ∈ 𝒫2(Ω), denoting

𝑇𝑛 = Log𝑤(𝑈𝑛) = {Log𝑤(𝑢1), . . . , Log𝑤(𝑢𝑛)}

the logarithmic image of 𝑈𝑛 and Conv(𝑇𝑛) the convex hull of 𝑇𝑛, we see that Log𝑤(𝑏(𝑢, 𝑈𝑛)) is the projection
of Log𝑤(𝑢) onto Conv(𝑇𝑛), namely

Log𝑤(𝑏(𝑢, 𝑈𝑛)) = arg min
𝑓∈Conv(𝑇𝑛)

‖Log𝑤(𝑢)− 𝑓‖2𝐿2([0,1]) . (2.16)

3. Kolmogorov 𝑛-widths for two simple conservative PDEs

In the sequel, ℳ is the set of solutions of a parametric conservative PDE in one dimension. Instead of working
in the usual Banach/Hilbert setting, we assume that ℳ⊂ 𝒫2(Ω). We denote

𝒯 := Log𝑤(ℳ) ⊂ 𝐿2([0, 1]),

the image of ℳ by the logarithmic map Log𝑤, where 𝑤 is an element of 𝒫2(Ω) which will be fixed later on.
To illustrate the interest of working with this metric, we show in a pure transport equation and in an inviscid

Burgers’ equation that the Kolmogorov widths 𝑑𝑛(𝒯 , 𝐿2([0, 1])) and 𝛿𝑛(𝒯 , 𝐿2([0, 1])) decay at a faster rate than
the widths 𝑑𝑛(ℳ, 𝐿2(Ω)) and 𝛿𝑛(ℳ, 𝐿2(Ω) of the original set of solutions ℳ. This shows that it is convenient to
transform the orginal data ℳ to 𝒯 by the nonlinear logarithmic mapping before performing the dimensionality
reduction. Indeed, if 𝑑𝑛(𝒯 , 𝐿2([0, 1])) (or 𝛿𝑛(𝒯 , 𝐿2([0, 1]))) decay fast, then there exist spaces 𝑉𝑛 ⊂ 𝐿2([0, 1])
such that

𝑒wc(𝒯 , 𝐿2([0, 1]), 𝑉𝑛) = sup
𝑓∈𝒯

‖𝑓 − 𝑃𝑉𝑛𝑓‖𝐿2([0,1])

decays fast as 𝑛 → ∞. Thus if for all 𝑓 ∈ 𝒯 the projections 𝑃𝑉𝑛𝑓 ∈ 𝒪𝑤, then their exponential map is well
defined and we can approximate any 𝑢 ∈ℳ with Exp𝑤(𝑃𝑉𝑛

Log𝑤(𝑢)). Due to the isometric properties of Exp𝑤

(see Cor. 2.3), the approximation error of ℳ is

𝑒wc(ℳ, 𝑊2, 𝑉𝑛) := sup
𝑢∈ℳ

𝑊2(𝑢, Exp𝑤(𝑃𝑉𝑛Log𝑤(𝑢))) = 𝑒wc(𝒯 , 𝐿2([0, 1]), 𝑉𝑛).

Thus the existence of linear spaces (𝑉𝑛)𝑛≥1 in 𝐿2([0, 1]) with good approximation properties for 𝒯 automatically
yields good low rank nonlinear approximations for ℳ (provided that the exponential map is well defined).
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The main reason why one can expect that the Kolmogorov widths decay faster after a logarithmic transforma-
tion in transport-dominated problems is connected to the fact that sets of translated functions, say for instance
a set of the form {𝑢(· − 𝜏), 𝜏 ∈ [0, 1]} for some 𝑢 ∈ 𝒫2(Ω), are not well approximated by low-dimensional
linear spaces. On the contrary, the decay of the widths of the same type of set after logarithmic transformation
can become dramatically faster as we illustrate in the pure transport problem of Section 3.1.

3.1. A pure transport problem

We consider here a prototypical example similar to the one given in [11] (see also [31,61] for other examples).
Consider the univariate transport equation

𝜕𝑡𝜌𝑦(𝑡, 𝑥) + 𝑦𝜕𝑥𝜌𝑦(𝑡, 𝑥) = 0, 𝑥 ∈ R, 𝑡 ≥ 0,

with initial value 𝜌0(𝑥) = 1]−1,0], and parameter 𝑦 ∈ 𝑌 := [0, 1]. Note that this is a conservative problem since
for all 𝑡 ≥ 0,

∫︀
R 𝑢(𝑡, 𝑥)d𝑥 = 1. We consider the parametrized family of solutions at time 𝑡 = 1 restricted to

𝑥 ∈ Ω := [−1, 1], that is

ℳ =
{︀
𝑢(𝑧) = 𝜌𝑦(𝑡 = 1, 𝑥) d𝑥 := 1[𝑦−1,𝑦](𝑥) d𝑥 : 𝑧 = (𝑡, 𝑦) ∈ {1} × [0, 1]

}︀
.

Note that here 𝑡 is fixed so it is not a varying parameter. We have kept it in the notation in order to remain
consistent with the notation of the introduction.

Since ℳ⊂ 𝒫2([−1, 1]), we can define

𝒯 = {Log𝑤(𝑢(𝑧)), 𝑧 ∈ 𝑍} =
{︀

icdf𝑢(𝑧)− icdf𝑤, 𝑦 ∈ [0, 1]
}︀

,

where 𝑤 is chosen as 1[𝑦0−1,𝑦0] for some 𝑦0 ∈ [0, 1].
In the following theorem, we state two extreme convergence results. On the one hand we prove that

𝑑𝑛(𝒯 , 𝐿2([0, 1])) = 0 for 𝑛 > 1. On the other hand, it holds that 𝑑𝑛(ℳ, 𝐿2(Ω)) cannot decay faster that
the rate 𝑛−1/2. We state the result in the 𝐿2 metric since it is very commonly considered but a similar reasoning
would give a rate of 𝑛−1 in 𝐿1 (see, e.g. [61]). This rigorously proves that standard linear methods cannot be
competitive for reducing this type of problems and that shifting the problem from ℳ to 𝒯 dramatically helps
in reducing the complexity in the pure transport case.

Theorem 3.1. There exists a constant 𝑐 > 0 such that for all 𝑛 ∈ N*,

𝑑𝑛(ℳ, 𝐿2(Ω)) ≥ 𝛿𝑛(ℳ, 𝐿2(Ω)) ≥ 𝑐𝑛−1/2. (3.1)

In addition,
∀𝑛 > 1, 𝑑𝑛(𝒯 , 𝐿2([0, 1])) = 0. (3.2)

Proof. Bound (3.1) was first proved in [52]. We provide an alternative proof in Appendix A. Let us prove that
𝑑𝑛(𝒯 , 𝐿2([0, 1])) = 0 for 𝑛 > 1. Since for every 𝑦 ∈ [0, 1], 1[𝑦−1,𝑦] = 1[𝑦0−1,𝑦0](𝑥 − 𝑦 + 𝑦0), using (2.8), it holds
that

icdf𝑢𝑧
(𝑠) = icdf𝑤 −𝑦0 + 𝑦, ∀𝑠 ∈ [0, 1],

and for all 𝑠 ∈ [0, 1],
Log𝑤(𝑢𝑧)(𝑠) = icdf−1

𝑢𝑧
(𝑠)− icdf−1

𝑤 (𝑠) = 𝑦 − 𝑦0.

As a consequence, the set 𝒯 is contained in the one-dimensional space of constant functions defined on (0, 1)
and 𝑑𝑛(𝒯 , 𝐿2([0, 1])) = 0 for all 𝑛 > 1. �
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3.2. An inviscid Burgers’ equation

In this section, we consider a simple inviscid Burgers’ equation. We study a simple though representative
example where we prove a priori estimates on the decay of the Kolmogorov 𝑛-width of 𝒯 as 𝑛 goes to infinity.
We are not able to prove that the Kolmogorov 𝑛-width of the set ℳ decays slower than the one of the set 𝒯 ,
but we present in Section 6.1 numerical tests on this particular example which indicate that this is indeed the
case (see Fig. 1a).

Let 𝑌 = [1/2, 3], and for all 𝑦 ∈ 𝑌 , we consider the inviscid Burgers’ equation for (𝑡, 𝑥) ∈ [0, 𝑇 ] × Ω =
[0, 5]× [−1, 4],

𝜕𝑡𝜌𝑦 +
1
2
𝜕𝑥(𝜌2

𝑦) = 0, 𝜌𝑦(𝑡 = 0, 𝑥) =

⎧⎪⎨⎪⎩
0, −1 ≤ 𝑥 < 0
𝑦, 0 ≤ 𝑥 < 1

𝑦

0, 1
𝑦 ≤ 𝑥 ≤ 4,

(3.3)

with periodic boundary conditions on Ω. For every 𝑡 ∈ [0, 𝑇 ], the solution 𝜌𝑦(𝑡) is the density of an absolutely
continuous measure 𝑢𝑦(𝑡) ∈ 𝒫2(Ω).

Problem (6.1) has a unique entropic solution which reads as follows. For 0 < 𝑡 < 2/𝑦, a wave composed of a
shock front and a rarefaction wave propagates from left to right and

𝜌𝑦(𝑡, 𝑥) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, −1 ≤ 𝑥 < 0
𝑥
𝑡 , 0 ≤ 𝑥 < 𝑦𝑡

𝑦, 𝑦𝑡 ≤ 𝑥 ≤ 1
𝑦 + 𝑦𝑡

2 , 0 < 𝑡 < 2/𝑦2.

0, 1
𝑦 + 𝑦𝑡

2 < 𝑥 ≤ 4

(3.4)

The rarefaction wave reaches the front at 𝑡 = 2/𝑦2 so that for 𝑡 ≥ 2/𝑦2,

𝜌𝑦(𝑡, 𝑥) =

⎧⎪⎨⎪⎩
0, −1 ≤ 𝑥 < 0
𝑥
𝑡 , 0 ≤ 𝑥 ≤

√
2𝑡, ∀𝑡 ≥ 2/𝑦2.

0, 𝑥 >
√

2𝑡

(3.5)

Let us denote 𝑢𝑦,𝑡(𝑧) := 𝜌𝑦(𝑡, ·)d𝑥 the measure associated with 𝜌𝑦. The cumulative distribution function cdf𝑢𝑦,𝑡
:

Ω → [0, 1] of 𝑢𝑦,𝑡 is equal to

cdf𝑢𝑦,𝑡
(𝑥) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, −1 ≤ 𝑥 < 0
𝑥2

2𝑡 , 0 ≤ 𝑥 < 𝑦𝑡

𝑦𝑥− 𝑦2𝑡
2 , 𝑦𝑡 ≤ 𝑥 ≤ 1

𝑦 + 𝑦𝑡
2 , 0 < 𝑡 < 2/𝑦2,

1, 1
𝑦 + 𝑦𝑡

2 < 𝑥 ≤ 4

(3.6)

and

cdf𝑢𝑦,𝑡(𝑥) =

⎧⎪⎨⎪⎩
0, −1 ≤ 𝑥 < 0
𝑥2

2𝑡 , 0 ≤ 𝑥 ≤
√

2𝑡, ∀𝑡 ≥ 2/𝑦2.

1, 𝑥 >
√

2𝑡

(3.7)

The generalized inverse icdf𝑢𝑦,𝑡
: [0, 1] → Ω has also an explicit expression which reads as

icdf𝑢𝑦,𝑡(𝑠) =

⎧⎪⎨⎪⎩
−1 𝑠 = 0√

2𝑡𝑠, 0 < 𝑠 < 𝑦2𝑡
2

1
𝑦

(︁
𝑠 + 𝑦2𝑡

2

)︁
, 𝑦2𝑡

2 ≤ 𝑠 ≤ 1, 0 < 𝑡 < 2/𝑦2

(3.8)

and

icdf𝑢𝑦,𝑡(𝑠) =

{︃
−1 𝑠 = 0√

2𝑡𝑠, 0 < 𝑠 ≤ 1, ∀𝑡 ≥ 2/𝑦2.
(3.9)
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We can easily check that the set of solutions

ℳ = {𝑢𝑧 := 𝑢𝑦,𝑡 : 𝑧 = (𝑦, 𝑡) ∈ 𝑍 = [0, 𝑇 ]× 𝑌 }

is a subset of 𝒫2(Ω). As before, we introduce the set 𝒯 := {Log𝑤(𝑢) : 𝑢 ∈ ℳ}, where 𝑤 ∈ 𝒫2(Ω), and prove
the following result.

Lemma 3.2. There exists a constant 𝐶 > 0 such that for all 𝑛 ∈ N*,

𝑑𝑛(𝒯 , 𝐿2(0, 1)) ≤ 𝐶𝑛−21/10. (3.10)

Proof. Let us define ̃︀𝒯 := {icdf𝑢 : 𝑢 ∈ℳ} = {icdf𝑢(𝑧) : 𝑧 ∈ 𝑍}.

Since 𝒯 is a shift by icdf𝑤 of ̃︀𝒯 , we have

𝑑𝑛+1

(︁̃︀𝒯 , 𝐿2([0, 1])
)︁
≤ 𝑑𝑛

(︀
𝒯 , 𝐿2([0, 1])

)︀
≤ 2𝑑𝑛

(︁̃︀𝒯 , 𝐿2([0, 1])
)︁

where the second inequality holds thanks to the fact that icdf𝑤 is taken in the convex hull of 𝒯 .
Thus, to prove (3.10), it is enough to prove that there exists 𝐶 > 0 such that for all 𝑛 ∈ N*,

𝑑𝑛(̃︀𝒯 , 𝐿2(0, 1)) ≤ 𝐶𝑛−21/10. (3.11)

Let us prove (3.11). To this aim, let us first point out that, for all (𝑦, 𝑡) ∈, the function 𝑔𝑦,𝑡 : [0, 1] → Ω defined
by

𝑔𝑦,𝑡(𝑠) =

⎧⎪⎨⎪⎩
0 𝑠 = 0√

2𝑡𝑠, 0 < 𝑠 < 𝑦2𝑡
2

1
𝑦

(︁
𝑠 + 𝑦2𝑡

2

)︁
, 𝑦2𝑡

2 ≤ 𝑠 ≤ 1,

if 0 < 𝑡 < 2/𝑦2, (3.12)

and

𝑔𝑦,𝑡(𝑠) =

{︃
0 𝑠 = 0√

2𝑡𝑠, 0 < 𝑠 ≤ 1,
if 𝑡 ≥ 2/𝑦2 (3.13)

are equal almost everywhere to icdf𝑢𝑦,𝑡
, so that icdf𝑢𝑦,𝑡

= 𝑔𝑦,𝑡 in 𝐿2([0, 1]).
It is easy to see that 𝑔𝑦,𝑡 is continuous and that for all 𝑠 ∈ (0, 1),

𝑔′𝑦,𝑡(𝑠) =

⎧⎨⎩
√︁

𝑡
2𝑠 , 0 < 𝑠 < 𝑦2𝑡

2

1
𝑦 , 𝑦2𝑡

2 ≤ 𝑠 ≤ 1,
if 0 < 𝑡 < 2/𝑦2, (3.14)

and

𝑔′𝑦,𝑡(𝑠) =

{︃
0 𝑠 = 0√︁

𝑡
2𝑠 , 0 < 𝑠 ≤ 1,

if 𝑡 ≥ 2/𝑦2 . (3.15)

Let 𝑠0 ∈ (0, 1) and 𝜀 > 0 be such that 𝐼0 := [𝑠0 − 𝜀/2, 𝑠0 + 𝜀/2] ⊂ [0, 1]. We also denote

∀𝑠 ∈ 𝐼0, 𝑓1(𝑠) := 1, 𝑓2(𝑠) := 𝑠, 𝑓3(𝑠) :=
√

𝑠,

and define 𝑊 (𝐼0) := Span {𝑓1, 𝑓2, 𝑓3} ⊂ 𝐿2(𝐼0).
Now, let us consider 𝑧 := (𝑦, 𝑡) ∈ 𝑍 such that 𝑦2𝑡

2 ∈ [𝑠0 − 𝜀/2, 𝑠0 + 𝜀/2]. This implies in particular that
0 < 𝑡 ≤ 2/𝑦2. We denote by 𝑃𝑊 (𝐼0) the orthogonal projection from 𝐿2(𝐼0) onto 𝑊 (𝐼0).
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We begin by proving two different auxiliary inequalities. On the one hand, it holds that

⃦⃦
𝑔𝑧 − 𝑃𝑊 (𝐼0)(𝑔𝑧|𝐼0)

⃦⃦
𝐿2(𝐼0)

≤
⃦⃦⃦⃦
𝑔𝑧 −

√
2𝑡𝑓3 −

1
𝑦
𝑓2 +

𝑦𝑡

2
𝑓1

⃦⃦⃦⃦
𝐿2(𝐼0)

= ‖ℎ𝑧‖𝐿2(𝐼0)
,

where ℎ𝑧 := 𝑔𝑧 −
√

2𝑡𝑓3 − 1
𝑦 𝑓2 + 𝑦𝑡

2 𝑓1. It then holds that ℎ𝑧

(︁
𝑦2𝑡
2

)︁
= 0 and

ℎ′𝑧(𝑠) =

⎧⎨⎩−
1
𝑦 , 𝑠0 − 𝜀/2 ≤ 𝑠 < 𝑦2𝑡

2

−
√︁

𝑡
2𝑠 , 𝑦2𝑡

2 ≤ 𝑠 ≤ 𝑠0 + 𝜀/2.
(3.16)

The function ℎ𝑧 is thus Lipschitz and its Lipschitz constant on the interval 𝐼0 is bounded by 1
𝑦 . Since

𝑦 ∈ [1/2, 3], we obtain that
sup
𝑠∈𝐼0

|ℎ𝑧(𝑠)| ≤ 2𝜀. (3.17)

This implies that
‖𝑔𝑧 − 𝑃𝑊 (𝐼0)(𝑔𝑧|𝐼0)‖2𝐿2(𝐼0)

≤ ‖ℎ𝑧‖2𝐿2(𝐼0)
≤ 4𝜀3, (3.18)

so that
‖𝑔𝑧 − 𝑃𝑊 (𝐼0)(𝑔𝑧|𝐼0)‖𝐿2(𝐼0) ≤ 2𝜀3/2. (3.19)

On the other hand, we make use of the following Taylor’s inequality: for all maps 𝑓 : [0, 1] → R whose
derivative is 𝑀 -Lipschitz and all 𝑠, 𝑠′ ∈ [0, 1],

|𝑓(𝑠′)− 𝑓(𝑠)− 𝑓 ′(𝑠)(𝑠′ − 𝑠)| ≤ 𝑀

2
|𝑠− 𝑠′|2. (3.20)

Let us define by 𝑗𝑧 := 𝑔𝑧 −
√

2𝑡𝑓3. Then, it holds that 𝑗𝑧(𝑠) = 0 if 𝑠0 − 𝜀/2 ≤ 𝑠 ≤ 𝑦2𝑡
2 and

𝑗′𝑧(𝑠) =
1
𝑦
−
√︂

𝑡

2𝑠
, for

𝑦2𝑡

2
≤ 𝑠 ≤ 𝑠0 + 𝜀/2. (3.21)

As a consequence, 𝑗′𝑧 is continuous on 𝐼0, differentiable on 𝐼0 ∖
{︁

𝑦2𝑡
2

}︁
and

𝑗′′𝑧 (𝑠) =
1

2
√

2

√
𝑡𝑠−3/2, for

𝑦2𝑡

2
< 𝑠 ≤ 𝑠0 + 𝜀/2. (3.22)

Thus, if 𝑡 > 0, the Lipschitz constant of 𝑗′𝑧 is bounded by 1
𝑦3𝑡 on the interval 𝐼0.

We then apply the inequality (3.20) at the point 𝑠′ = 𝑦2𝑡
2 to obtain that for all 𝑠 ∈ 𝐼0,

|𝑗𝑧(𝑠)| ≤ 𝜀2 1
2𝑦3𝑡

·

Therefore, we get the bound

‖𝑔𝑧 − 𝑃𝑊 (𝐼0)(𝑔𝑧|𝐼0)‖2𝐿2(𝐼0)
≤ ‖𝑗𝑧‖2𝐿2(𝐼0)

≤ 1
4𝑦6𝑡2

𝜀5, (3.23)

so that
‖𝑔𝑧 − 𝑃𝑊 (𝐼0)(𝑔𝑧|𝐼0)‖𝐿2(𝐼0) ≤

1
2𝑦3𝑡

𝜀5/2. (3.24)
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We are now in position to prove (3.11). Let 𝛽 > 1 be a constant whose value will be fixed later on. Let 𝑛 ∈ N*
and let us consider a partition of the interval [0, 1] into 2𝑛 intervals (𝐼𝑘)1≤𝑘≤2𝑛 so that the 𝑛 first intervals
(closest to the point 𝑠 = 0) are of length 1

𝑛𝛽 and the other 𝑛 intervals are of length at most 1
𝑛 . More precisely,

we define for 1 ≤ 𝑘 ≤ 𝑛,

𝑥𝑘 :=
1

2𝑛𝛽
+ (𝑘 − 1)

1
𝑛𝛽

and 𝐼𝑘 :=
[︂
𝑥𝑘 −

1
2𝑛𝛽

, 𝑥𝑘 +
1

2𝑛𝛽

)︂
·

Besides, for all 𝑛 + 1 ≤ 𝑘 ≤ 2𝑛, we define

𝑥𝑘 :=
𝑛

𝑛𝛽
+

1
2𝑛

+ (𝑘 − 𝑛− 1)
1
𝑛

and 𝐼𝑘 :=
[︂
min

(︂
1, 𝑥𝑘 −

1
2𝑛

)︂
, min

(︂
1, 𝑥𝑘 +

1
2𝑛

)︂)︂
·

We then define the space 𝑉𝑛 ⊂ 𝐿2(0, 1) as follows:

𝑉𝑛 := Span
{︀
1𝐼𝑘

(𝑠), 1𝐼𝑘
(𝑠)𝑠, 1𝐼𝑘

(𝑠)
√

𝑠, 1 ≤ 𝑘 ≤ 2𝑛
}︀

.

In other words, 𝑉𝑛 is composed of the functions which, on each interval 𝐼𝑘, is a linear combination of an affine
function and the square root function. The dimension of the space 𝑉𝑛 is at most 6𝑛. We denote by 𝑃𝑉𝑛

the
orthogonal projection from 𝐿2(0, 1) onto 𝑉𝑛.

It holds that for all 𝑧 := (𝑦, 𝑡) ∈ 𝑍,⃦⃦
icdf𝑢(𝑧)−𝑃𝑉𝑛

(icdf𝑢(𝑧))
⃦⃦

𝐿2(0,1)
= ‖𝑔𝑧 − 𝑃𝑉𝑛

(𝑔𝑧)‖𝐿2(0,1) =
⃦⃦⃦
𝑃𝑊 (𝐼𝑘0 )(𝑔𝑧|𝐼𝑘0

)− 𝑔𝑧

⃦⃦⃦
𝐿2(𝐼𝑘0 )

where 1 ≤ 𝑘0 ≤ 2𝑛 is the unique integer between 1 and 2𝑛 such that 𝑦2𝑡
2 ∈ 𝐼𝑘0 . On the one hand, if 1 ≤ 𝑘0 ≤ 𝑛,

we make use of inequality (3.19) to obtain that⃦⃦⃦
𝑔𝑧 − 𝑃𝑊 (𝐼𝑘0 )(𝑔𝑧|𝐼𝑘0

)
⃦⃦⃦

𝐿2(𝐼𝑘0 )
≤ 2𝑛−3𝛽/2.

On the other hand, if 𝑛 + 1 ≤ 𝑘0 ≤ 2𝑛, necessarily 𝑦2𝑡
2 ≥ 𝑛

𝑛𝛽 , so that 𝑦3𝑡 ≥ 2𝑦𝑛1−𝛽 . We then make use of
inequality (3.24) to obtain that⃦⃦⃦

𝑔𝑧 − 𝑃𝑊 (𝐼𝑘0 )(𝑔𝑧|𝐼𝑘0
)
⃦⃦⃦

𝐿2(𝐼𝑘0 )
≤ 1

4𝑦
𝑛−5/2𝑛𝛽−1 ≤ 1

2
𝑛−7/2+𝛽 .

Choosing now 𝛽 such that −3𝛽/2 = −7/2 + 𝛽, i.e. 𝛽 = 7
5 , we obtain that for all 𝑛 ∈ N* and 𝑧 ∈ 𝑍,⃦⃦

icdf𝑢(𝑧)−𝑃𝑉𝑛(icdf𝑢(𝑧))
⃦⃦

𝐿2(0,1)
= ‖𝑔𝑧 − 𝑃𝑉𝑛(𝑔𝑧)‖𝐿2(0,1) ≤ 2𝑛−21/10.

This implies (3.11) and hence the desired result. �

4. Algorithms for nonlinear reduced modelling in metric spaces

In this section, we introduce two methods for building in practice nonlinear reduced models for a set of
solutions ℳ on general metric spaces. The methods involve a discrete training set 𝑍tr ⊂ 𝑍 of 𝑁 ∈ N* parameters
and associated 𝑁 snapshot solutions ℳtr ⊂ℳ. Similarly as before, we denote

𝒯tr := Log𝑤(ℳtr) ⊂ 𝒯

the image of ℳtr by the logarithmic map Log𝑤, where 𝑤 is an element of 𝒫2(Ω) to be fixed in a moment. Since
our numerical tests are for one-dimensional conservative PDEs in 𝑊2, we also instantiate them in this setting.
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4.1. Tangent PCA (tPCA): offline stage

Our first method is based on the so-called Tangent PCA (tPCA) method [26,58]. Its definition requires that
the metric space (𝑉, 𝑑) is embedded with a Riemannian structure. The tPCA method consists in mapping the
manifold to a tangent space and performing a standard PCA on this linearization.

In the offline phase of the tPCA method, we first fix a particular element 𝑤 ∈ℳ, usually the Fréchet mean

min
𝑤̃∈𝑉

1
𝑁

∑︁
𝑢∈ℳtr

𝑑(𝑢, 𝑤̃)2,

and then define an inner product 𝑔𝑤 on its tangent space 𝑇𝑤𝑉 . We next consider the PCA (or POD decompo-
sition) on 𝑇𝑤𝑉 of the set

𝒯tr := Log𝑤(ℳtr),

with respect to the inner product 𝑔𝑤. For every 𝑓 ∈ 𝑇𝑤𝑉 , its norm is denoted by ‖𝑓‖𝑤 = 𝑔
1/2
𝑤 (𝑓, 𝑓). There exists

an orthonormal family of functions (𝑓𝑘)𝑁
𝑘≥1 of 𝑇𝑤𝑉 and an orthogonal family (𝑐𝑘)𝑘≥1 of functions of ℓ2(𝑍tr)

norm such that

Log𝑤(𝑢(𝑧)) =
𝑁∑︁

𝑘=1

𝑐𝑘(𝑧)𝑓𝑘, ∀𝑧 ∈ 𝑍tr.

The 𝑘th singular value is defined as 𝜎𝑘 := ‖𝑐𝑘‖ℓ2(𝑍tr) and we arrange the indices so that (𝜎𝑘)𝑘≥1 is a non-
increasing sequence.

In the online phase, we fix 𝑛 ∈ N* and define 𝑉𝑛 := Span(f1, · · · , fn) and 𝑃𝑉𝑛 the orthogonal projection on
𝑇𝑤𝑉 with respect to the scalar product 𝑔𝑤. For a given 𝑧 ∈ 𝑍 for which we want to approximate 𝑢(𝑧), we
consider two possible versions:

– Projection. We compute

𝑓proj
𝑛 (𝑧) := 𝑃𝑉𝑛

Log𝑤(𝑢(𝑧)) =
𝑛∑︁

𝑘=1

𝑐𝑘(𝑧)𝑓𝑘, (4.1)

and approximate 𝑢(𝑧) as
𝑢𝑛(𝑧)tPCA,proj := Exp𝑤(𝑓proj

𝑛 (𝑧)). (4.2)

Note that, in fact, the projection (4.1) cannot be computed online since the computation of the coefficients
𝑐𝑘(𝑧) requires the knowledge of Log𝑤(𝑢(𝑧)) (and thus of the snapshot 𝑢(𝑧) itself). This motivates the following
strategy based on interpolation of the 𝑐𝑘(𝑧).

– Interpolation. Among the possible ways to to make the method applicable online, we propose to compute
an interpolation 𝑐𝑘 : 𝑍 → R such that

𝑐𝑘(𝑧) = 𝑐𝑘(𝑧), ∀𝑧 ∈ 𝑍tr, 1 ≤ 𝑘 ≤ 𝑛.

In the numerical experiments, to avoid stability problems, we restrict the interpolation to neighboring param-
eters of the target parameter 𝑧 which belong to the training set 𝑍tr Specifically, for a given fixed tolerance
𝜏 > 0, we find the set 𝒩𝜏 (𝑧, 𝑍tr) of parameters of 𝑍tr whose ℓ2-distance to the current 𝑧 is at most 𝜏 , that
is,

𝒩𝜏 (𝑧, 𝑍tr) := {𝑧 ∈ 𝑍tr : ||𝑧 − 𝑧||ℓ2(R𝑝) ≤ 𝜏}.

Then, for 𝑘 = 1, . . . , 𝑛, we build a local interpolator 𝑐𝑧,𝜏
𝑘 that satisfies the local interpolating conditions4

𝑐𝑧,𝜏
𝑘 (𝑧) = 𝑐𝑘(𝑧), ∀𝑧 ∈ 𝒩𝜏 (𝑧, 𝑍tr).

4In our code, we use a local multiquadric radial basis interpolator.
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With the local interpolators 𝑐𝑧,𝜏
𝑘 , we now compute

𝑓 interp
𝑛 (𝑧) :=

𝑛∑︁
𝑘=1

𝑐𝑧,𝜏
𝑘 (𝑧)𝑓𝑘, (4.3)

which is an online computable approximation of Log𝑤(𝑢(𝑧)). Finally, we approximate 𝑢(𝑧) with

𝑢𝑛(𝑧)tPCA,interp := Exp𝑤(𝑓 interp
𝑛 (𝑧)). (4.4)

Before continuing, several comments are in order:

– In the online phase, it is necessary to compute exponential maps. However, in full generality, their compu-
tation may be expensive since it may require to solve a problem in the full space and not only in a reduced
space. This important issue is mitigated in our numerical examples because the exponential map in 𝑊2 in
one space dimension has an explicit expression. The development of efficient surrogates for the exponential
mapping is a topic by itself which we will address in future works.

– The approach involving the interpolation of the coefficients is purely data-driven in the sense that the online
phase does not require solving the original PDE in any reduced space/manifold. This is in contrast to
traditional projection-based reduction approaches.

– Note that 𝑢tPCA,proj
𝑛 (𝑧) or 𝑢tPCA,interp

𝑛 (𝑧) are not always properly defined through (4.2) or (4.4) since it is
required that 𝑓proj

𝑛 (𝑧) or 𝑓 interp
𝑛 (𝑧) belong to 𝒪𝑤, the definition domain of the map Log𝑤. Since there is

a priori no guarantee that this is always the case, the approach does not lead to a fully robust numerical
method and is prone to numerical instabilities as we illustrate in our numerical examples. This drawback has
been one main motivation to develop the method based on barycenters, which will be stable by construction.
We emphasize nonetheless that the tPCA has important optimality properties in terms of its decay of the
approximation error as we describe next. This is probably the reason why numerical methods based on
tPCA have drawn significant interest in numerous fields like pattern recognition, shape analysis, medical
imaging, computer vision [26, 58], and, more recently, statistics [35] and machine learning to study families
of histograms and probability densities [17]. We show evidence that this method also carries potential for
model reduction of transport dominated systems in Section 6.

Case of the 1d Wasserstein space

When (𝑉, 𝑑) = (𝒫2(Ω), 𝑊2), recalling formulas (2.6) and (2.7) for the Exp and Log maps and formula (2.3)
for the 𝑊2 distance, the offline phase of the tPCA method consists in performing the following steps:

– Compute 𝑓 := 1
𝑁

∑︀
𝑢∈ℳtr

icdf𝑢 and 𝑤 = icdf−1
(︀
𝑓
)︀
.

– Compute 𝒯tr := {icdf𝑢− icdf𝑤 : 𝑢 ∈ℳtr} ⊂ 𝐿2([0, 1]).
– Compute the 𝑛 first modes of the PCA of the discrete set of functions 𝒯tr in 𝐿2([0, 1]) and denote them by

𝑓1, · · · , 𝑓𝑛.
– Similarly as before, there exists an orthonormal family of functions (𝑓𝑘)𝑁

𝑘≥1 of 𝐿2([0, 1]) and an orthogonal
family (𝑐𝑘)𝑘≥1 of functions of ℓ2(𝑍tr) with non-increasing ℓ2 norm such that for all 𝑧 ∈ 𝑍tr,

Log𝑤(𝑢(𝑧)) =
𝑁∑︁

𝑘=1

𝑐𝑘(𝑧)𝑓𝑘, ∀𝑧 ∈ 𝑍tr.

The 𝑘th singular value is defined as 𝜎𝑘 := ‖𝑐𝑘‖ℓ2(𝑍tr) and

𝑐𝑘(𝑧) := ⟨icdf𝑢(𝑧)− icdf𝑤, 𝑓𝑘⟩𝐿2(0,1).

For the online phase, if we work with a dimension 𝑛 ∈ N* for the reduced space, we store the coefficients
𝑐𝑘(𝑧) for all 𝑧 ∈ 𝑍tr and 1 ≤ 𝑘 ≤ 𝑛.
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In the online stage, we fix a dimension 𝑛 ∈ N* and, for a given target 𝑧 ∈ 𝑍 for which we want to approximate
𝑢(𝑧), we perform the following steps:

– Projection. Compute for all 1 ≤ 𝑘 ≤ 𝑛,

𝑐𝑘(𝑧) := ⟨icdf𝑢(𝑧)− icdf𝑤, 𝑓𝑘⟩𝐿2([0,1])

and

𝑓proj
𝑛 (𝑧) :=

𝑛∑︁
𝑘=1

𝑐𝑘(𝑧)𝑓𝑘.

The reduced-order model approximation 𝑢𝑛(𝑧)tPCA,proj of 𝑢(𝑧) then reads as

𝑢𝑛(𝑧)tPCA,proj := icdf−1
(︀
icdf𝑤 +𝑓proj

𝑛 (𝑧))
)︀
, (4.5)

provided that 𝑓proj
𝑛 (𝑧) belongs to 𝒦icdf𝑤 .

– Interpolation. For all 1 ≤ 𝑘 ≤ 𝑛, from the knowledge of the values (𝑐𝑘(𝑧))𝑧∈𝑍tr stored in the offline phase,
we compute an interpolation 𝑐𝑘 : 𝑍 → R such that

𝑐𝑘(𝑧) = 𝑐𝑘(𝑧), ∀𝑧 ∈ 𝑍tr, 1 ≤ 𝑘 ≤ 𝑛.

We can proceed similarly as before and do a local interpolation. We then compute

𝑓 interp
𝑛 (𝑧) :=

𝑛∑︁
𝑘=1

𝑐𝑘(𝑧)𝑓𝑘, (4.6)

and approximate 𝑢(𝑧) with

𝑢𝑛(𝑧)tPCA,interp := icdf−1
(︀
icdf𝑤 +𝑓 interp

𝑛 (𝑧))
)︀
, (4.7)

provided that 𝑓 interp
𝑛 (𝑧) belongs to 𝒦icdf𝑤 .

Error decay

By introducing a notion of resolution of the finite set 𝒯tr with respect to 𝒯 in terms of 𝜀-coverings, we can
derive a convergence result on the average error in the original set ℳ which is, as defined in (1.5),

𝑒tPCA,proj
av (ℳ, 𝑊2, 𝑉𝑛) :=

(︂∫︁
𝑧∈𝑍

𝑊 2
2

(︀
𝑢(𝑧), 𝑢𝑛(𝑧)tPCA,proj

)︀
d𝜇(𝑧)

)︂1/2

.

We next recall the precise definition of 𝜀-covering of a set and its covering number and give a convergence result
of the error.

Definition 4.1 (𝜀-covering and covering number). Let 𝑆 be a subset of (𝒫2(Ω), 𝑊2). An 𝜀-covering of 𝑆 is a
subset 𝐶 of 𝑆 if and only if 𝑆 ⊆ ∪𝑥∈𝐶𝐵(𝑥, 𝜀), where 𝐵(𝑥, 𝜀) denotes the ball centered at 𝑥 of radius 𝜀. The
covering number of 𝑆, denoted 𝑁𝑆(𝜀), is the minimum cardinality of any 𝜀-covering of 𝑆.

Lemma 4.2. If 𝒯tr is an 𝜀-covering of 𝒯 , and if 𝑓proj
𝑛 (𝑧) ∈ 𝒦icdf𝑤 for all 𝑧 ∈ 𝑍, then

𝑒tPCA,proj
av (ℳ, 𝑊2, 𝑉𝑛) ≤ 𝜀 +

(︃
𝑀∑︁

𝑘>𝑛

𝜎2
𝑖

)︃1/2

.
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Proof. Since for any 𝑢 ∈ 𝒯 , there exists 𝑢̃ ∈ 𝒯tr such that ‖𝑢 − 𝑢̃‖𝐿2([0,1]) ≤ 𝜀, then ‖𝑢 − 𝑃𝑉𝑛
𝑢‖𝐿2([0,1]) ≤

𝜀 + ‖𝑢̃− 𝑃𝑉𝑛
𝑢̃‖𝐿2([0,1]). Thus

𝑒tPCA,proj
av (𝒯 , 𝐿2([0, 1]), 𝑉𝑛) ≤ 𝜀 + 𝑒tPCA,proj

av (𝒯tr, 𝐿
2([0, 1]), 𝑉𝑛) = 𝜀 +

(︃
𝑁∑︁

𝑘>𝑛

𝜎2
𝑖

)︃1/2

.

We conclude by observing that if 𝑓proj
𝑛 (𝑧) ∈ 𝒦icdf𝑤 for all 𝑧 ∈ 𝑍, then

𝑒tPCA,proj
av (𝒯 , 𝐿2([0, 1]), 𝑉𝑛) = 𝑒tPCA,proj

av (ℳ, 𝑊2, 𝑉𝑛).

�

4.2. The barycentric greedy algorithm (gBar)

The potential instabilities of the tPCA method lead us to consider an alternative strategy for the contruction
of reduced-order models, based on the use of barycenters [55]. The approach that we propose here can be
defined for general metric spaces (𝑉, 𝑑) which may not be embedded with a Riemannian manifold structure.
Contrary to tPCA, it is guaranteed to be stable in the sense that all the steps of the algorithm are well-defined
(approximations in 𝑇𝑤𝑉 will be in 𝒪𝑤 by construction). The stability comes at the price of difficulties in
connecting theoretically its approximation quality with optimal performance quantities. Thus its quality will be
evaluated through numerical examples.

The method relies on a greedy algorithm, and is henceforth referred to hereafter as the barycentric greedy
(gBar) method. Let 𝜀 > 0 be a prescribed level of accuracy. The offline phase of the gBar method is an iterative
algorithm which can be written as follows:

– Initialization. Compute (𝑧1, 𝑧2) ∈ 𝑍tr × 𝑍tr such that

(𝑧1, 𝑧2) ∈ argmax
(̃︀𝑧1,̃︀𝑧2)∈𝑍tr×𝑍tr

𝑑 (𝑢(̃︀𝑧1), 𝑢(̃︀𝑧2))2 ,

and define 𝑈2 := {𝑢(𝑧1), 𝑢(𝑧2)}. Then compute

Λ2(𝑧) ∈ argmin
Λ2∈Σ2

𝑑 (𝑢(𝑧), Bar(𝑈2, Λ2))2 , ∀𝑧 ∈ 𝑍tr.

– Iteration 𝑛 ≥ 3. Compute 𝑧𝑛 ∈ 𝑍tr such that

𝑧𝑛 ∈ argmax
𝑧∈𝑍tr

min
𝑏∈ℬ𝑛−1(𝑈𝑛−1)

𝑑 (𝑢(𝑧), 𝑏)2 .

and set 𝑈𝑛 := 𝑈𝑛−1 ∪ {𝑢(𝑧𝑛)}. Then compute

Λ𝑛(𝑧) ∈ argmin
Λ𝑛∈Σ𝑛

𝑑 (𝑢(𝑧), Bar(𝑈𝑛, Λ𝑛))2 , ∀𝑧 ∈ 𝑍tr.

The algorithm terminates when

max
𝑧∈𝑍tr

min
𝑏∈ℬ𝑛−1(𝑈𝑛−1)

𝑑 (𝑢(𝑧), 𝑏)2 = min
𝑏∈ℬ𝑛−1(𝑈𝑛−1)

𝑑 (𝑢(𝑧𝑛), 𝑏)2 < 𝜀2.

Note that the gBar algorithm selects via a greedy procedure particular snapshots 𝑈𝑛 = {𝑢(𝑧1), · · · , 𝑢(𝑧𝑛)}
in order to approximate as well as possible each element 𝑢(𝑧) ∈ ℳtr with its optimal barycenter associated to
the family 𝑈𝑛. The barycentric weights have to be determined via an optimization procedure.

Similarly to the tPCA method, we can consider two different versions of the online phase of the gBar algorithm,
whose aim is to reconstruct, for a given 𝑛 ∈ N*, a reduced-model approximation 𝑢gBar

𝑛 (𝑧) of 𝑢(𝑧) for all 𝑧 ∈ 𝑍.



NONLINEAR MODEL REDUCTION ON METRIC SPACES 2177

These two different versions consist in the following steps:
– Projection. Let 𝑧 ∈ 𝑍. Compute Λ𝑛(𝑧) ∈ Σ𝑛 a minimizer of

Λ𝑛(𝑧) ∈ argmin
Λ𝑛∈Σ𝑛

𝑑 (𝑢(𝑧), Bar(𝑈𝑛, Λ𝑛))2 ,

and choose 𝑢gBar,proj
𝑛 (𝑧) ∈ Bar (𝑈𝑛, Λ𝑛(𝑧)).

– Interpolation. From the values (Λ𝑛(𝑧))𝑧∈𝑍tr
which are known from the offline stage, compute an interpolant

Λ𝑛 : 𝑍 → Σ𝑛 such that
Λ𝑛(𝑧) = Λ𝑛(𝑧), ∀𝑧 ∈ 𝑍tr.

For a given 𝑧 ∈ 𝑍, we approximate 𝑢(𝑧) with 𝑢gBar,interp
𝑛 (𝑧) ∈ Bar

(︀
𝑈𝑛, Λ𝑛(𝑧)

)︀
.

Like for the tPCA method, the only efficient online strategy is the one based on the interpolation of the
barycentric coefficients, since the projection method requires the computation of the full solution 𝑢(𝑧) for
𝑧 ∈ 𝑍. Both approaches are purely data-driven and do not involve solving the original PDE in a reduced space
or manifold in the online phase. We compare the quality of both strategies in our numerical tests.

Remark 4.3. Note that for the interpolation of the coefficients in tPCA and gBar, there is no guarantee that
the maps connecting parameters to coefficients is smooth. This property seems difficult to establish a priori
and it depends on the regularity of Log and Exp and on the specific problem. The regularity in the coefficients
may also strongly depend on the choice of the neighbors, hence on the resolution of the training set ℳtr. The
results of Appendix C tend to confirm this fact since they reveal that the approximation error of the procedure
is pretty sensitive to the resolution of ℳtr.

In the particular case where (𝑉, 𝑑) = (𝒫2(Ω), 𝑊2), every step of the greedy barycentric algorithm can be
made explicit by means of inverse cumulative distribution functions. The offline phase is:
– Initialization. Compute (𝑧1, 𝑧2) ∈ 𝑍tr × 𝑍tr such that

(𝑧1, 𝑧2) ∈ argmax
(̃︀𝑧1,̃︀𝑧2)∈𝑍tr×𝑍tr

⃦⃦
icdf𝑢(̃︀𝑧1)− icdf𝑢(̃︀𝑧2)

⃦⃦2

𝐿2(0,1)
,

and define 𝑈2 := (𝑢(𝑧1), 𝑢(𝑧2)). Compute and store

Λ2(𝑧) :=
(︀
𝜆2

1(𝑧), 𝜆2
2(𝑧)

)︀
∈ argmin

Λ2:=(𝜆1,𝜆2)∈Σ2

⃦⃦⃦⃦
⃦icdf𝑢(𝑧)−

2∑︁
𝑘=1

𝜆𝑘 icdf𝑢(𝑧𝑘)

⃦⃦⃦⃦
⃦

2

𝐿2(0,1)

, ∀𝑧 ∈ 𝑍tr. (4.8)

– Iteration 𝑛 ≥ 3. Given the set of barycentric coefficients

Λ𝑛−1(𝑧) :=
(︀
𝜆𝑛−1

1 (𝑧), · · · , 𝜆𝑛−1
𝑛−1(𝑧)

)︀
, ∀𝑧 ∈ 𝑍tr,

from the previous iteration, find

𝑧𝑛 ∈ argmax
𝑧∈𝑍tr

min
Λ𝑛−1:=(𝜆1,··· ,𝜆𝑛−1)∈Σ𝑛−1

⃦⃦⃦⃦
⃦icdf𝑢(𝑧)−

𝑛−1∑︁
𝑘=1

𝜆𝑘 icdf𝑢(𝑧𝑘)

⃦⃦⃦⃦
⃦

2

𝐿2(0,1)

= argmax
𝑧∈𝑍tr

⃦⃦⃦⃦
⃦icdf𝑢(𝑧)−

𝑛−1∑︁
𝑘=1

𝜆𝑛−1
𝑘 (𝑧) icdf𝑢(𝑧𝑘)

⃦⃦⃦⃦
⃦

2

𝐿2(0,1)

and set 𝑈𝑛 := 𝑈𝑛1 ∪ {𝑢(𝑧𝑛)}. Compute and store

Λ𝑛(𝑧) := (𝜆𝑛
1 (𝑧), · · · , 𝜆𝑛

𝑛(𝑧)) ∈ argmin
Λ𝑛:=(𝜆1,··· ,𝜆𝑛)∈Σ𝑛

⃦⃦⃦⃦
⃦icdf𝑢(𝑧)−

𝑛∑︁
𝑘=1

𝜆𝑘 icdf𝑢(𝑧𝑘)

⃦⃦⃦⃦
⃦

2

𝐿2(0,1)

, ∀𝑧 ∈ 𝑍tr. (4.9)
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The algorithm terminates if

min
Λ𝑛−1:=(𝜆1,··· ,𝜆𝑛−1)∈Σ𝑛−1

⃦⃦⃦⃦
⃦icdf𝑢(𝑧𝑛)−

𝑛−1∑︁
𝑘=1

𝜆𝑘 icdf𝑢(𝑧𝑘)

⃦⃦⃦⃦
⃦

2

𝐿2(0,1)

< 𝜀2.

For a fixed 𝑛 ∈ N*, the two versions of the online phase of the gBar method read as follows:

– Projection. Given 𝑧 ∈ 𝑍 for which we want to approximate 𝑢(𝑧), compute

Λ𝑛(𝑧) ∈ argmin
Λ𝑛:=(𝜆1,··· ,𝜆𝑛)∈Σ𝑛

⃦⃦⃦⃦
⃦icdf𝑢(𝑧)−

𝑛∑︁
𝑘=1

𝜆𝑘 icdf𝑢(𝑧𝑘)

⃦⃦⃦⃦
⃦

2

𝐿2(0,1)

, (4.10)

and define 𝑢gBar,proj
𝑛 (𝑧) = Bar(𝑈𝑛, Λ𝑛(𝑧)). The function 𝑢gBar,proj

𝑛 (𝑧) ∈ 𝒫2(Ω) can easily be defined through
its icdf as

icdf𝑢gBar,proj
𝑛 (𝑧) =

𝑛∑︁
𝑘=1

𝜆𝑘(𝑧) icdf𝑢(𝑧𝑘) .

– Interpolation. From the known values (Λ𝑛(𝑧))𝑧∈𝑍tr
, compute an interpolation Λ𝑛 : 𝑍 → Σ𝑛 such that

Λ𝑛(𝑧) = Λ𝑛(𝑧), ∀𝑧 ∈ 𝑍tr.

For a given target 𝑢(𝑧) with 𝑧 ∈ 𝑍, we approximate with 𝑢gBar,interp
𝑛 (𝑧) = Bar

(︀
𝑈𝑛, Λ𝑛(𝑧)

)︀
which is the

function of 𝒫2(Ω) such that

icdf𝑢gBar,interp
𝑛 (𝑧) =

𝑛∑︁
𝑘=1

𝜆𝑘(𝑧) icdf𝑢(𝑧𝑘),

where Λ𝑛(𝑧) =
(︀
𝜆1(𝑧), · · · , 𝜆𝑛(𝑧)

)︀
.

Notice that (4.8) and (4.9) amounts to solving a simple convex quadratic programming problem.

5. Numerical cost

We give simple estimates on the numerical complexity of the tPCA and gBar methods in terms of the number
of operations. We consider the versions where we do interpolation instead of projection. For this, we introduce
some perliminary notation. Let cost(𝑢(𝑧)) be the numerical cost to compute a given snapshot 𝑢(𝑧) = 𝑢(𝑡, 𝑦). Let
us assume that the full-order PDE discretization has a uniform spatial mesh with 𝒩 degrees of freedom and uses
a simple implicit Euler time intergration with time step 𝛿𝑡. If the equation is linear, then cost(𝑢(𝑧)) ∼ 𝒩 3𝑡/𝛿𝑡
with a direct linear system solver, or cost(𝑢(𝑧)) ∼ 𝑘𝒩 2𝑡/𝛿𝑡 with an iterative solver requiring 𝑘 iterations to
converge. In the case where the equation is nonlinear, then each time step requires the solution of a nonlinear
system, which can be dealt with a Newton-type method. If 𝑄 iterations are performed, the overall complexity
is of order cost(𝑢(𝑧)) ∼ 𝑄𝒩 3𝑡/𝛿𝑡 with a direct linear system solver, or cost(𝑢(𝑧)) ∼ 𝑄𝑘𝒩 2𝑡/𝛿𝑡.

Let cost(Log𝑤) and cost(Exp𝑤) be the cost of computing the logarithmic and exponential maps.

tPCA

In the offline phase, we have to compute 𝑁 snapshots, compute their logarithmic images to get 𝒯tr, and
perform a PCA on 𝒯tr. Thus costtPCA

offline =
∑︀

𝑧∈𝑍tr
cost(𝑢(𝑧)) + 𝑁cost(Log𝑤) + costPCA. Counting the cost of

computing the covariance matrix and the eigenvalue computation, we have costPCA ∼ 𝑁𝒩 2 +𝒩 3. Therefore

costtPCA
offline ∼ 𝑁

(︀
𝒩 3𝑇/𝛿𝑡 + cost(Log𝑤)

)︀
+ 𝑁𝒩 2 +𝒩 3.



NONLINEAR MODEL REDUCTION ON METRIC SPACES 2179

For a given 𝑧 ∈ 𝑍, to approximate 𝑢(𝑧) with 𝑢𝑛(𝑧)tPCA,interp in the online phase, we have to compute an inter-
polant and an exponential mapping. If we do the local interpolation of each coefficient 𝑐𝑘(𝑧) with 𝑟 neighbors,
the cost of the interpolation is of order 𝑟3 + 𝑝 ln(𝑁), where 𝑟3 is the cost to solve the final linear system and
𝑝 ln(𝑁) is the cost of finding the 𝑟 nearest neighbors with state of the art algorithms like the ball tree. As a
result

cost
(︀
𝑢𝑛(𝑧)tPCA,interp

)︀
∼ 𝑛

(︀
𝑟3 + 𝑝 ln(𝑁)

)︀
+ cost (Exp𝑤) .

This cost has to be compared to cost(𝑢(𝑧)) ∼ 𝒩 3𝑡/𝛿𝑡, the cost of computing 𝑢(𝑧) with the full order model.
We clearly see the critical role that the cost of the exponential mapping plays in the efficiency of the reduction
method. As already brought up in Section 4.1, cost(Exp𝑤) can in general be expensive since it may require to
solve a problem in the full space. In the case of 𝑊2 in one space dimension, the cost is strongly reduced since
the exponential map has an explicit expression. The problem of building good surrogates of the exponential
mapping is a topic by itself and its treatment is deferred to future works.

gBar

If we perform 𝑛 steps in the barycentric greedy algorithm, the offline cost scales like

costgBar
offline ∼ 𝑁

(︀
𝒩 3𝑇/𝛿𝑡 + cost(Log𝑤) + 𝑛cost𝑛(best Bar)

)︀
where cost𝑛(best Bar) is the cost of computing the best barycenter of a function 𝑢 with respect to a set 𝑈𝑛

of 𝑛 functions. It is equal to the complexity of solving the cone quadratic optimization problem (2.15) and is
typically proportional to 𝑛2. In the online phase, the cost to approximate a given target 𝑢(𝑧) is

cost
(︀
𝑢𝑛(𝑧)tPCA,interp

)︀
∼ 𝑟3 + 𝑝 ln(𝑁) + cost(Exp𝑤).

Like before, the cost cost(Exp𝑤) is the critical part for the efficiency.

6. Numerical examples

As a support for our tests, we consider four different conservative PDEs:

– The above discussed inviscid Burgers’ equation for which we have explicit expressions of the solutions and
icdf (see Sect. 3.2).

– The version with viscosity of the previous Burgers’ equation.
– A Camassa–Holm equation.
– A Korteweg–de Vries equation.

For each PDE, we compare the performance of the four following model reduction methods:

– The classical PCA method in 𝐿2.
– The tangent PCA method (with projection) in 𝑊2.
– The gBar method (with interpolation and projection) in 𝑊2.

The performance is measured in terms of the average and worst case approximation error of a set on a discrete
test set of 500 functions. Each test set is different from the training set ℳtr. The training set is composed of
randomly generated snapshots. For every example, the number of training snapshots is #ℳtr = 5.103. The size
and precise selection of the training snapshots defines the resolution of ℳtr since it fixes the smallest value 𝜀tr

such that ℳtr is an 𝜀tr-covering of ℳ (see Def. 4.1). One difficulty is that it is hard to estimate 𝜀tr in practice.
Also, for a given target resolution 𝜀 > 0, the covering number 𝑁𝑆(𝜀) becomes potentially very large for small 𝜀 as
the parameter dimension becomes large due to the curse of dimensionality. Recent theoretical results obtained
in [8] show that in certain relevant PDE classes, 𝜀-coverings can be replaced by random training sets of smaller
cardinality in the reduced basis greedy algorithm [23]. One interesting direction for further research is to develop
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Figure 1. Convergence of average errors in training set. (a) Burgers’ equation. (b) Viscous
Burgers’ equation. (c) CH equation. (d) KdV equation.

similar ideas in the context of the present PDEs and the present algorithms. This is however beyond the scope
of this paper so we limit ourselves to illustrate numerically the impact of the size #ℳtr in Appendix C.

In addition to the error study, we also provide run time statistics but only for the case of the viscous Burgers’
equation since it is the only example that involves a high-fidelity solver. In the case of the inviscid Burgers’
equation and KdV, the exact solutions can be explicitly written down with formulas so we did not use a solver to
which we can compare ourselves to. In the case of the Camassa–Holm equation, the solution was nearly analytic
too and we could not consider its numerical solution as a representative example which involves a solver.

The code to reproduce the numerical results is available online at:

https://github.com/olga-mula/2019-RBM-metric-spaces.

For each PDE example, we also provide reconstruction videos of a full propagation on the same link.

6.1. Inviscid Burgers’ equation

We consider the same parametric PDE as the one of Section 3.2 and focus first on the average error decay of
PCA and tPCA in the training set ℳtr, denoted by 𝑒av

(︀
ℳtr, 𝐿

2, 𝑉 PCA
𝑛

)︀
and 𝑒av

(︀
ℳtr, 𝑊2, 𝑉

tPCA
𝑛

)︀
. Figure 1a

shows that the error with tPCA decreases much faster than the one with PCA. This is connected to the fact
that the decay of the 𝑛-width 𝛿𝑛(ℳ, 𝐿2(Ω)) and associated singular values is much slower than 𝛿𝑛(𝒯 , 𝐿2([0, 1])),
which is the width exploited in tPCA (see Sects. 3.2 and 4.1).

https://github.com/olga-mula/2019-RBM-metric-spaces
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Figure 2. Errors onℳtest for the Burgers’ equation. Top figures: average error. Bottom figures:
worst case error. Left: natural norms. Right: 𝐻−1 norm.

Figure 2 gives the errors in average and worst case over ℳtest. The plots on the left measure the errors in the
natural norm of each method, that is, 𝐿2 for PCA and 𝑊2 for the rest. Note first of all the dramatic difference
in the behavior of the error between PCA (which is very slow) and the rest of the approaches (which is much
faster). Also, we can see that tPCA presents a faster decay rate compared to the approach with barycenters.
This may lead to think that tPCA is a better choice for the present context but to confirm this it is necessary
to measure errors in a common metric which is “fair” for all approaches and which also quantifies the potential
numerical instabilities of tPCA. Since we are looking for metrics that quantify the quality of transport rather
than spatial averages, we discard the 𝐿2 metric in favor of the 𝐻−1 metric which can be seen as a relaxation of
the 𝑊2 distance. The space 𝐻−1 is taken here as the dual of 𝐻1

0 and its norm computed accordingly.

The plots on the right in Figure 2 measure the errors in this norm. We again observe the superiority of
tPCA and the barycenters’ approach with respect to the PCA. The plateau that tPCA and the approach with
barycenters reach at a value around 10−3 is due to the fact that the 𝐻−1 requires to invert a Laplace operator.
For this, we used in our case a discretization with P1 finite elements on a spatial mesh of size ℎ ≈ 5.10−4.
So the plateau is due to this discretization error and not to the fact that the approximation errors do not
tend to 0.

In Figure B.1, we give plots of the reconstruction of one snapshot with all the methods. The PCA approach
presents very strong oscillations and fails to capture the sharp-edged form of the snapshot. tPCA and the
approach with barycenters give an approximation of higher quality in terms of the “shape” of the reconstructed
function. The tPCA approximation presents unnatural “spikes” which are due to the instabilities described
in Section 4.1. We also provide videos of the reconstruction of a full evolution with our methods on the link
above.
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Figure 3. Errors onℳtest for the Viscous Burgers’ equation. Top figures: average error. Bottom
figures: worst case error. Left: natural norms. Right: 𝐻−1 norm.

6.2. Viscous Burgers’ equation

We consider the same problem as before but add a viscosity term 𝜈 that ranges in [5.10−5, 0.1]. The equation
is then

𝜌𝑡 +
1
2
(︀
𝜌2
)︀
𝑥
− 𝜈𝜕2

𝑥𝜌 = 0, 𝜌(0, 𝑥, 𝑦) =

⎧⎪⎨⎪⎩
0, −3 ≤ 𝑥 < 0
𝑦, 0 ≤ 𝑥 < 1

𝑦

0, 1
𝑦 ≤ 𝑥 ≤ 5,

(6.1)

where, like before, the parameter 𝑦 ∈ [1/2, 3] and (𝑡, 𝑥) ∈ [0, 𝑇 ] × Ω = [0, 3] × [−3, 5] (the space interval has
slightly been enlarged). The parameter domain is here

𝑍 =
{︀

(𝑡, 𝑦, 𝜈) ∈ [0, 3]× [0.5, 3]× [5.10−5, 0.1]
}︀

.

We present the results following the same lines as in the previous example. Figure 1b shows the decay of the
error of the PCA and tPCA methods in the average sense and for the functions used in the training phase. Like
before, the error decays dramatically faster in tPCA than in PCA.

Next, Figure 3 gives the errors in average and worst case sense for the test set ℳtest. If we first examine
the errors in the natural norms (plots on the left), it appears that the errors in tPCA do not seem to decay
significantly faster than in PCA. Also, the approach with barycenters does not seem to give a very good
performance and seems to perform worse than PCA. However, when we examine the errors in the unified 𝐻−1

metric, we see that all the nonlinear methods are clearly outperforming PCA. This is more in accordance with
what we visually observe when we examine the reconstructed functions given by each method (see Fig. B.2).
Like before, the approximation with PCA has unnatural oscillations. Note that in this particular example the
tPCA presents a sharp unnatural spike at the propagation front, due to the above discussed stability issues of
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Figure 4. Run times as a function of the dimension 𝑛: Average 𝑅*av (left plot) and median
𝑅*median (right plot).

this method. This is in contrast to the approach with barycenters which does not suffer from this issue at the
cost of slightly degrading the final approximation quality. Like for the other examples, the reader may watch
videos of the reconstruction on the link above.

We next provide run time statistics for this test case. For any 𝑢 ∈ ℳtr, let 𝑟HF(𝑢), 𝑟PCA(𝑢), 𝑟tPCA(𝑢),
𝑟gBar(𝑢) and 𝑟interp

gBar (𝑢) be the respective run times of the high-fidelity solver, and of the PCA, tPCA, gBar
and gBar with interpolation methods. The high-fidelity solver uses an explicit piecewise linear finite-volume
method to evaluate the advective flux and then discretize the diffusion part implicitly (Crank–Nicolson) with
the advective piece as a source to update in time. The resulting discretization is second-order in space and time.
For each dynamic, the time step 𝛿𝑡 is fixed to be sufficiently small in order to satisfy a CFL condition. Figure 4
shows, as a function of the reduced dimension 𝑛, the average and the median of the ratios between the run time
of a given method and the run time of the high-fidelity computation,

𝑅*av =
1

#ℳtr

∑︁
𝑢∈ℳtr

𝑟*(𝑢)
𝑟HF(𝑢)

and 𝑅*median = median
{︂

𝑟*(𝑢)
𝑟HF(𝑢)

: 𝑢 ∈ℳtr

}︂
.

The * symbol denotes all the previous methods. The figure shows that the run time is reduced by a factor of
about 100 in average and of about 500 in the median for all the methods. We observe that the classical PCA is
slightly faster than tPCA and the gBar algorithm. As discussed in Section 5, this is essentially due to the fact
that we need to compute exponential maps for the latter methods. We may also note that the run time remains
essentially with 𝑛: we think that this is due to the fact that 𝑛 is pretty small and expect a mild increase for
larger values of 𝑛. One last final observation for these plots is to remark that the gBar method with interpolation
performs almost identically than the one with interpolation.

Since the time variable is treated as a parameter in our approach, it is interesting to compare run times with
respect to 𝑡 since we expect that the high-fidelity method will be faster for smaller times. Figure 5 shows the
run times to compute each snapshot of ℳtr as a function of its corresponding parameter 𝑡 (we take 𝑛 = 20). We
observe that the reduced models are significantly faster, even for small values of 𝑡. As expected, the difference
grows as 𝑡 increases.

6.3. The Camassa–Holm equation

We next consider the dispersionless Camassa–Holm equation which, for 𝛼 > 0 given, consists in finding the
solution 𝜌 of

𝜕𝑡𝑚 + 𝜌𝑚𝑥 + 2𝑚𝜕𝑥𝜌 = 0, with 𝑚 = 𝜌− 𝛼2𝜕𝑥𝑥𝜌. (6.2)
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Figure 5. Run times to compute each snapshot of ℳtr as a function of the parameter 𝑡 (𝑛 = 20).

The equation admits peakon solutions of the form

𝜌(𝑡, 𝑥) =
1
2

𝑁∑︁
𝑖=1

𝑝𝑖(𝑡)𝑒−|𝑥−𝑞𝑖(𝑡)|/𝛼,

where the evolution of the set of peakon parameters 𝑝𝑖(𝑡) and 𝑞𝑖(𝑡) satisfies the canonical Hamiltonian dynamics

𝑞𝑖(𝑡) =
𝜕ℎ𝑁

𝜕𝑝𝑖
and 𝑝̇𝑖(𝑡) = −𝜕ℎ𝑁

𝜕𝑞𝑖
(6.3)

for 𝑖 = 1, . . . , 𝑁 , with Hamiltonian given by

ℎ𝑁 =
1
4

𝑁∑︁
𝑖,𝑗=1

𝑝𝑖𝑝𝑗𝑒
−|𝑞𝑖−𝑞𝑗 |/𝛼. (6.4)

For the parametrized model considered in our tests, we set 𝑁 = 2 and 𝛼 = 1. The initial values of the peakons
parameters are 𝑝1(0) = 0.2, 𝑝2(0) = 0.8, 𝑞1(0) ∈ [−2, 2] and 𝑞2(0) = −5. The parameter domain is then

𝑍 = {(𝑡, 𝑞1(0)) ∈ [0, 40]× [−2, 2]} .

Figure 1c shows the decay of the error of the PCA and tPCA methods in the average sense and for the functions
used in the training phase. Like before, the error decays dramatically faster in tPCA than in PCA.

Figure 6 gives the errors in average and worst case sense for the test set ℳtest. Very similar observations like
for the case of Viscous Burgers’ hold: in the natural norms, the errors in tPCA do not seem to decay significantly
faster than in PCA. The approach with barycenters does not seem to give a very good performance and seems
to perform worse than PCA. Very different conclusions can be drawn if we consider the unified 𝐻−1 metric,
where we see that all the nonlinear methods are clearly outperforming PCA. Like previously, this is confirmed
visually (see Fig. B.3).

6.4. Two-soliton solution of the Korteweg–de Vries equation

The previous examples give solid numerical evidence that tPCA and our approach with barycenters are an
efficient strategy to build reduced models of certain classes of transport dominated conservative PDEs. We finish
the section on numerical results by presenting a PDE which poses certain challenges to the present methodology.
This will serve as a transition that will lead us to the end of the paper where we present possible extensions to
the present approach.
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Figure 6. Errors on ℳtest for the CH equation. Top figures: average error. Bottom figures:
worst case error. Left: natural norms. Right: 𝐻−1 norm.

We consider a two-soliton solution of the Korteweg–de Vries equation (KdV) which, expressed in normalized
units, reads for all 𝑥 ∈ R,

𝜕𝑡𝜌 + 6𝜌𝜕𝑥𝜌 + 𝜕3
𝑥𝜌 = 0.

The equation admits a general 2-soliton solution

𝜌(𝑥, 𝑡) = −2𝜕2
𝑥 log det(𝐼 + 𝐴(𝑥, 𝑡)), (6.5)

where 𝐴(𝑥, 𝑡) ∈ R2×2 is the interaction matrix whose components 𝑎𝑖,𝑗 are

𝑎𝑖,𝑗(𝑥, 𝑡) =
𝑐𝑖𝑐𝑗

𝑘𝑖 + 𝑘𝑗
exp

(︀
(𝑘𝑖 + 𝑘𝑗)𝑥− (𝑘3

𝑖 + 𝑘3
𝑗 )𝑡
)︀
, 1 ≤ 𝑖, 𝑗 ≤ 2.

For any 𝑡 > 0, the total mass is equal to ∫︁
R

𝜌(𝑡, 𝑥) d𝑥 = 4(𝑘1 + 𝑘2).

To illustrate the performance of our approach, we set

𝑇 = 2.5.10−3, 𝑐1 = 2, 𝑐2 = 3/2, 𝑘1 = 30− 𝑘2.

The parameter domain is
𝑍 = {(𝑡, 𝑘2) ∈ [0, 2.5.10−3]× [16, 22]}

It follows that the total mass is equal to 120 for all the parametric solutions.
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Figure 7. Errors on ℳtest for the KdV equation. Top figures: average error. Bottom figures:
worst case error. Left: natural norms. Right: 𝐻−1 norm.

Similarly as before, Figure 1d shows the decay of the error of the PCA and tPCA methods in the average
sense and for the functions used in the training phase. Figure 7 gives the errors in average and worst case sense
for a set of 500 test functions. The observed behavior resembles the one of our previous examples. However,
note that this time the average errors are roughly of order 10 while they were of order 10−2 or 10−3 in the
previous examples. A visual inspection of the reconstructed functions reveals that PCA is in this case not
producing “worse-looking” reconstructions than the nonlinear methods (see Fig. B.4). Two points can explain
these observations: first, note that the exact solution does not present as sharp edges as in the other examples
so this is playing in favor of PCA since it tends to produce oscillatory reconstructions. Second, in the present
KdV evolution, we have two peakons of different masses propagating at different speeds. The fast peakon may
overcome the slow one after a transition in which both peakons merge into a single one. Our strategy is based
on a nonlinear mapping where translations can be treated simply but the mapping does not seem to be enough
adapted to treat the case of fusion and separation of masses. This motivates to search for further nonlinear
transformations to address this behavior. We outline some possibilities as well as further challenges in the next
section.

7. Conclusions and perspectives

In this work, we have shown how to exploit the geometry of some hyperbolic PDE in order to propose
efficient reduced basis methods, one based on tangent PCA and one based on barycenters. These two methods
are developed using the Wasserstein metric which captures the advection effects. There are multiple possible
extensions to this work, among which stand the following:
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– A first interesting theoretical question is the following: can the results of Section 3 on the decay of the
Kolmogorov 𝑛-widths of the set 𝒯 be extended to more general transport equations, and under which
assumptions?

– Can one obtain theoretical convergence rates of the greedy barycentric algorithm similar to the existing
results on greedy algorithms for linear reduced bases [11,45]?

– Can one reduce more complicated problems, i.e. defined on sets of dimension greater than one, or non-
conservative problems, using one of the two presented algorithms? This seems to be the case at least for the
barycentric greedy algorithm. Indeed, one can consider for instance the Hellinger–Kantorovich distance [19,
42], which appears to yield interesting approximation properties for problems where both transport and mass
transfer phenomena occur. The computation of approximate barycenters of densities defined on spaces of
dimension greater than one can be done using entropic regularization together with the Sinkhorn algorithm
as proposed in [18] for instance.

– More generally, how to systematically select the best metric with respect to a given PDE and how to build
non expensive surrogates of the exponential map? A promising direction to address these two issues seems
to use machine learning algorithm to learn the metric for a given PDE [50], and then to learn the associated
exponential map [24,57].

We intend to address these issues in forthcoming works.

Appendix A. Alternative proof of (3.1)

We give here an alternative proof to (3.1) to the one given in [52].

Alternative proof of (3.1). Let 𝑛 ∈ N*. The inequality 𝑑𝑛

(︀
ℳ, 𝐿2(Ω)

)︀
≥ 𝛿𝑛

(︀
ℳ, 𝐿2(Ω)

)︀
is a direct consequence

of the fact that for all finite-dimensional subspace 𝑉𝑛 ⊂ 𝐿2(Ω) of dimension 𝑛,

sup
𝑧∈𝑍

‖𝑢(𝑧)− 𝑃𝑉𝑛𝑢(𝑧)‖𝐿2(Ω) ≥
(︂∫︁

𝑍

‖𝑢(𝑧)− 𝑃𝑉𝑛𝑢(𝑧)‖2𝐿2(Ω) d𝑧

)︂1/2

.

Thus, we only have to prove that there exists a constant 𝑐 > 0 such that for all 𝑛 ∈ N*,

𝛿𝑛

(︀
ℳ, 𝐿2(Ω)

)︀
≥ 𝑐𝑛−1/2.

To obtain this result, we express 𝛿𝑛

(︀
ℳ, 𝐿2(Ω)

)︀
as a function of the eigenvalues of the so-called correlation

operator 𝐾 : 𝐿2(Ω) → 𝐿2(Ω) which is defined as follows:

∀𝑣 ∈ 𝐿2(Ω), (𝐾𝑣)(𝑥) =
∫︁

Ω

𝜅(𝑥, 𝑥′)𝑣(𝑥′) d𝑥′,

where 𝜅(𝑥, 𝑥′) :=
∫︀

𝑧∈𝑍
𝑢(𝑧)(𝑥)𝑢(𝑧)(𝑥′) d𝑦. Since 𝑢(𝑧) = 1[𝑧−1,𝑧], it holds that

𝜅(𝑥, 𝑥′) =

⎧⎨⎩max(0, 1− |𝑥− 𝑥′|) if (𝑥, 𝑥′) ∈ [−1, 0]× [0, 1] ∪ [0, 1]× [−1, 0],
1−max(𝑥, 𝑥′) if (𝑥, 𝑥′) ∈ [0, 1]× [0, 1],
1−max(|𝑥|, |𝑥′|) if (𝑥, 𝑥′) ∈ [−1, 0]× [−1, 0].
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The function 𝜅 is continuous and piecewise affine on Ω × Ω, and 𝜅 = 0 on 𝜕(Ω × Ω). We denote by
𝑒𝑘,𝑘′(𝑥) := 1

2𝑒𝑖(𝑘𝑥+𝑘′𝑥′) for all 𝑘, 𝑘′ ∈ Z, so the the Fourier coefficient of 𝜅 associated to the (𝑘, 𝑘′) Fourier
mode is defined by

𝛼𝑘,𝑘′ := ⟨𝜅, 𝑒𝑘,𝑘′⟩.

It can be easily checked that there exists a constant 𝐶 > 0 such that for all 𝑘, 𝑘′ ∈ Z,

|𝛼𝑘,𝑘′ | ≥ 𝐶
1

(|𝑘|+ |𝑘′|)2
· (A.1)

The correlation operator 𝐾 is a compact self-adjoint non-negative operator on 𝐿2(Ω). Thus, there exists an
orthonormal family (𝑓𝑘)𝑘∈N* and a non-increasing sequence of non-negative real numbers (𝜎𝑘)𝑘∈N* going to 0
as 𝑘 goes to +∞ such that

𝐾𝑓𝑘 = 𝜎𝑘𝑓𝑘, ∀𝑘 ∈ N*.

The scalars 𝜎1 ≥ 𝜎2 ≥ · · · ≥ 0 are the eigenvalues of the operator 𝐾, and it holds that

𝛿𝑛

(︀
ℳ, 𝐿2(Ω)

)︀
=
√︃ ∑︁

𝑘≥𝑛+1

𝜎𝑘.

The 𝑛th eigenvalue 𝜎𝑛 can be identified through the Max–Min formulas

𝜎𝑛 = max
𝑉𝑛 ⊂ 𝐿2(Ω)
dim𝑉𝑛 = 𝑛

min
𝑣𝑛 ∈ 𝑉𝑛

‖𝑣𝑛‖𝐿2(Ω) = 1

⟨𝑣𝑛, 𝐾𝑣𝑛⟩𝐿2(Ω),

where ⟨·, ·⟩𝐿2(Ω) is the 𝐿2(Ω) scalar product. We define 𝑉𝑛 := Span
{︁

1√
2
𝑒𝑖𝑘·, 𝑘 ∈ Z, |𝑘| ≤ 𝑛

}︁
. Using (A.1), it

can easily be checked that there exists a constant 𝑐′ > 0 such that for all 𝑛 ∈ N*,

min
𝑣𝑛 ∈ 𝑉𝑛

‖𝑣𝑛‖𝐿2(Ω) = 1

⟨𝑣𝑛, 𝐾𝑣𝑛⟩𝐿2(−1,1) = min
(𝛾𝑘)|𝑘|≤𝑛 ∈ C2𝑛+1∑︀

|𝑘|≤𝑛 |𝛾𝑘|2 = 1

∑︁
|𝑘|,|𝑘′|≤𝑛

𝛼𝑘,𝑘′𝛾𝑘𝛾𝑘′ ≥ 𝑐′
1
𝑛2
·

Thus, for all 𝑛 ∈ N*, 𝜎𝑛 ≥ 𝑐′𝑛−2 and there exists a constant 𝑐 > 0 such that for all 𝑛 ∈ N*,

𝛿𝑛(ℳ, 𝐿2(Ω)) =
√︃ ∑︁

𝑘≥𝑛+1

𝜎𝑘 ≥ 𝑐𝑛−1/2.

�
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Appendix B. Reconstruction plots

Figure B.1. Burgers’ equation: Reconstruction of a function with 𝑛 = 5 (left) and 𝑛 = 10
(right). Black: exact function. Red: PCA. Green: tPCA. Blue: Barycenter.
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Figure B.2. Viscous Burgers’ equation: Reconstruction of a function with 𝑛 = 5 (left) and
𝑛 = 10 (right). Black: exact function. Red: PCA. Green: tPCA. Blue: Barycenter.
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Figure B.3. CH equation: Reconstruction of a function with 𝑛 = 5 (left) and 𝑛 = 10 (right).
Black: exact function. Red: PCA. Green: tPCA. Blue: Barycenter.
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Figure B.4. KdV equation: Reconstruction of a function with 𝑛 = 5 (left) and 𝑛 = 10 (right).
Black: exact function. Red: PCA. Green: tPCA. Blue: Barycenter.
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Appendix C. Impact of the size of the training set ℳtr

We investigate the impact of the size of the training set ℳtr on the reconstruction errors of the Burgers’ test
case. For this, we randomly generate 10 realisations of training sets of cardinality

#ℳtr = 102, 5.102, 103, 3.103, 5.103, 7.103.

For each realisation of ℳtr, we evaluate the error on a randomly generated test set ℳtest of 500 samples. Then
we average the mean and wort case error over the 10 realizations of ℳtr with the same cardinality.

Figure C.1. Burgers’ equation. Impact of the cardinality of ℳtr. Average error over 10 real-
izations. Natural norm.

Figure C.1 shows the mean error on in the natural norm of each algorithm (𝐿2 for PCA and 𝑊2 for tPCA
and the approach with the gBar algorithm). The general observed behavior is that, for a fixed dimension 𝑛, the
approximation error tends to decrease as the size #ℳtr increases. Figure C.1 also shows that PCA and tPCA
seem more robust to the resolution of ℳtr than the approach with barycenters. The errors are particularly
sensitive to the resolution of ℳtr in the case when we interpolate the coefficients of the barycenter to obtain a
fully online procedure. This behavior comes from our interpolation strategy: for each targeted snapshot 𝑢(𝑦) to
reconstruct, we build a local interpolant based on its neighbors in ℳtr. As a result, the finer ℳtr is, the closest
the neighbors will be, and one can expect to obtain a more precise and stable procedure as is observed in the
plots.

Figures C.2–C.4 show the behavior of the mean and worst case errors for the natural norms of each algorithm
and for the 𝐻−1 norm. We may draw similar conclusions to the ones already discussed for Figure C.1.
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Figure C.2. Burgers’ equation. Impact of the cardinality of ℳtr. Average error over 10 real-
izations. 𝐻−1 norm.

Figure C.3. Burgers’ equation. Impact of the cardinality of ℳtr. Worst case error over 10
realizations. Natural norm.
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Figure C.4. Burgers’ equation. Impact of the cardinality of ℳtr. Worst case error over 10
realizations. 𝐻−1 norm.
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