ESAIM: M2AN 54 (2020) 16891723 ESAIM: Mathematical Modelling and Numerical Analysis
https://doi.org/10.1051/m2an/2020009 WWW.esalm-m2an.org

A CONFORMING MIXED FINITE ELEMENT METHOD FOR THE
NAVIER-STOKES/DARCY-FORCHHEIMER COUPLED PROBLEM

SERGIO CAUCAO!, MARCO DISCACCIATI?, GABRIEL N. GATICA®* AND
RICARDO OYARZUA®S*

Abstract. In this work we present and analyse a mixed finite element method for the coupling of fluid
flow with porous media flow. The flows are governed by the Navier—Stokes and the Darcy—Forchheimer
equations, respectively, and the corresponding transmission conditions are given by mass conservation,
balance of normal forces, and the Beavers—Joseph—Saffman law. We consider the standard mixed for-
mulation in the Navier—Stokes domain and the dual-mixed one in the Darcy—Forchheimer region, which
yields the introduction of the trace of the porous medium pressure as a suitable Lagrange multiplier.
The well-posedness of the problem is achieved by combining a fixed-point strategy, classical results
on nonlinear monotone operators and the well-known Schauder and Banach fixed-point theorems. As
for the associated Galerkin scheme we employ Bernardi-Raugel and Raviart—-Thomas elements for the
velocities, and piecewise constant elements for the pressures and the Lagrange multiplier, whereas its
existence and uniqueness of solution is established similarly to its continuous counterpart, using in this
case the Brouwer and Banach fixed-point theorems, respectively. We show stability, convergence, and
a priori error estimates for the associated Galerkin scheme. Finally, we report some numerical examples
confirming the predicted rates of convergence, and illustrating the performance of the method.
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1. INTRODUCTION

The modelling and numerical simulation of incompressible fluid flows in regions partially occupied by porous
media has become a very active research area during the last decades, mostly due to its relevance in the fields
of natural sciences and engineering branches. In particular, these kind of phenomena can be found in several
applications such as in vuggy porous media appearing in petroleum extraction (see, e.g., [3,4]), groundwater
system in karst aquifers (see, e.g., [26,43]), reservoir wellbore (see, e.g., [2,5]), internal ventilation of a motorcycle
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helmet (see, e.g., [14,18]), and blood motion in tumors and microvessels (see, e.g., [45,52]), to name a few. One
of the most popular models utilised to describe the aforementioned interaction is the Navier—Stokes/Darcy—
Forchheimer (or Navier—Stokes/Darcy, Stokes/Darcy) model, which consists in a set of differential equations
where the Navier—Stokes (or Stokes) problem is coupled with the Darcy—Forchheimer (or Darcy) model through
a set of coupling equations acting on a common interface, which are given by mass conservation, balance
of normal forces, and the so called Beavers—Joseph—Saffman condition. In [7,15,16,20-22,28-31], and in the
references therein, we can find a large list of contributions devoted to numerically approximate the solution
of this interaction problem, including primal and mixed conforming formulations, as well as nonconforming
methods. At this point we remark that the Navier—Stokes/Darcy—Forchheimer model is considered when the
fluid velocity is higher and the porosity is nonuniform, which holds when the kinematic forces dominates over
viscous forces. We refer the reader to [6, 34, 44,48] for the derivation and analysis of the Darcy—Forchheimer
equations.

Up to the authors’ knowledge, one of the first works in analysing the coupling of Navier—Stokes and Darcy—
Forchheimer equations is [2]. In that work, the authors study the coupling of a 2D reservoir model with a 1.5D
vertical wellbore model, both written in axisymmetric form. The physical problems are described by the Darcy—
Forchheimer and the compressible Navier-Stokes equations, respectively, together with an exhaustive energy
equation. Later on, motivated by the study of the internal ventilation of a motorcycle helmet, a penalization
approach was introduced and analysed in [18]. In particular, the authors consider the velocity and pressure in
the whole domain as the main unknowns of the system, and the corresponding Galerkin approximation employs
piecewise quadratic elements and piecewise linear for the velocity and pressure, respectively. Notice that this
method is applied to both 2D and 3D domains. More recently, in [53] a 3D discrete dynamical system was derived
from the generalized Navier—Stokes equations for incompressible flow with nonlinear drag forces (represented by
Forchheimer terms) in porous media via a Galerkin procedure. We observe that this method can be employed
in subgrid-scale models of synthetic-velocity form for large-eddy simulation of turbulent flow through porous
media.

Furthermore, and concerning simpler related models, we highlight that a conforming mixed method for the
Stokes—Darcy coupled problem has been introduced and analysed in [28]. In this work, the velocity-pressure
formulation in the Stokes equation and the dual-mixed approach in the Darcy region is considered, which yields
the introduction of the trace of the porous medium pressure as a suitable Lagrange multiplier. Later on, it was
shown in [29] that the use of any pair of stable Stokes and Darcy elements guarantees the well-posedness of
the corresponding Stokes—Darcy Galerkin scheme. More recently, in [21] the authors extend the results from
[28] to the Navier—Stokes/Darcy coupled problem. Since this coupled system is nonlinear (due to the convective
term in the free fluid region), the analysis of the continuous problem begins with the linearisation of the Oseen
problem in the free fluid domain. This simplified model is then studied by means of the classical Babuska—Brezzi
theory, similarly as it was done for the Stokes—Darcy coupling in [28]. Then, a fixed-point strategy based on
the aforementioned linearisation is associate to the nonlinear coupling, which allows to establish existence and
uniqueness of solution thanks to Schauder’s and Banach’s fixed point theorems, respectively.

According to the above bibliographic discussion, in this paper we aim to extend the results obtained in
[21, 28, 29] to the Navier-Stokes/Darcy—Forchheimer coupled problem. We consider the standard velocity-
pressure formulation for the Navier-Stokes equation and unlike [21], in the porous medium we consider the
Darcy—Forchheimer equation in its dual-mixed formulation. In this way, we obtain the velocity and the pressure
of the fluid in both media as the main unknowns of the coupled system. Since one of the interface conditions
becomes essential, we proceed similarly to [21,28] and incorporate the trace of the porous medium pressure as an
additional unknown. The well-posedness of both the continuous and discrete formulations is proved, employing
a fixed-point argument and clasical results on nonlinear monotone operators (see [50,51]). In particular, for
the continuous formulation, under a smallness data assumption, we prove existence and uniqueness of solution
by means of a fixed-point strategy where the Schauder (for existence) and Banach (for uniqueness) fixed-point
theorems are employed.
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Using similar arguments (but applying Brower’s fixed-point theorem instead of Schauder’s for the existence
result) we prove the well-posedness of the discrete problem for a specific choice of discrete space. More precisely,
we consider Bernardi-Raugel elements for the velocity in the free fluid region, Raviart-Thomas elements of
lowest order for the filtration velocity in the porous media, piecewise constants with null mean value for the
pressures, and piecewise constant elements for the Lagrange multiplier on the interface.

The rest of this paper is organised as follows. In Section 2 we introduce the model problem and derive
the variational formulation. Next, in Section 3, we establish that our variational formulation is well posed. The
corresponding Galerkin scheme is introduced and analysed in Section 4. In Section 5 we derive the corresponding
Céa’s estimate and a sub-optimal rate of convergence. Finally, several numerical examples illustrating the
performance of the method, confirming the theoretical sub-optimal order of convergence and suggesting an
optimal rate of convergence, are reported in Section 6.

We end this section by introducing some definitions and fixing some notations. Let O C R", n € {2,3},
denote a domain with Lipschitz boundary I'. For s > 0 and p € [1, +oc0], we denote by LP(O) and W*?(O) the
usual Lebesgue and Sobolev spaces endowed with the norms | - ||Lr(0) and || - [|sp;0, respectively. Note that
WOP(O) = LP(O). If p = 2, we write H*(O) in place of W*2(0), and denote the corresponding Lebesgue and
Sobolev norms by | - [jo,0 and || - ||s,0, respectively, and the seminorm by | - |s 0. In addition, we denote by
W%’p(F) the trace space of WH?(0) and W_%’q(l“) the dual space of W%p(I‘) endowed with the norms || - || 1T

and || - ||_1 .., respectively, with p,q € (1, +o0) satisfying 1/p +1/¢ = 1. By M and M we will denote the
La
corresponding vectorial and tensorial counterparts of the generic scalar functional space M, and || - ||, with no

subscripts, will stand for the natural norm of either an element or an operator in any product functional space.
Additionally, we recall that H(div;O) := {w € L?(0) : divw € LQ((’))}, is a standard Hilbert space in the
realm of mixed problems (see, e.g., [12]). On the other hand, the following symbol for the L?(T") inner product

(&, Np ::/ng Ve N e LA,

will also be employed for their respective extension as the duality parity between W_%’Q(I‘) and WaP .
Hereafter, when no confusion arises, | - | will denote the Euclidean norm in R™ or R”*™. Furthermore, given a
non-negative integer k and a subset S of R™, P(S) stands for the space of polynomials defined on S of degree
< k. Finally, we employ 0 as a generic null vector, and use C' and ¢, with or without subscripts, bars, tildes or
hats, to denote generic positive constants independent of the discretization parameters, which may take different
values at different places.

2. THE CONTINUOUS FORMULATION

In this section we introduce the model problem and derive the corresponding weak formulation. For sim-
plicity of exposition we set the problem in R?. However, our study can be extended to the 3D case with few
modifications, which will be pointed out appropriately in the paper.

2.1. The model problem

In order to describe the geometry, we let 25 and Qp be two bounded and simply connected polygonal domains
in R? such that 9Qs N INp = X # @ and Qs N Qp = 0. Then, let T's := INs \ X, I'p := I0p \ T, and denote
by n the unit normal vector on the boundaries, which is chosen pointing outward from 2 := Qg U X U Qp and
Qg (and hence inward to p when seen on ). On ¥ we also consider a unit tangent vector t (see Figure 1).
The problem we are interested in consists of the movement of an incompressible viscous fluid occupying (g
which flows towards and from a porous medium Qp through X, where Qp is saturated with the same fluid. The
mathematical model is defined by two separate groups of equations and by a set of coupling terms. In the free
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FIGURE 1. Sketch of a 2D geometry of our Navier—Stokes/Darcy—Forchheimer model.

fluid domain g, the motion of the fluid can be described by the incompressible Navier—Stokes equations:

os = —psl+2ue(ug) in Qg, —dives+ p(Vug)us=1fs in Qg,

divus =0 in Qs, us=0 on Ig, (2.1)

where the unknowns are the fluid velocity ug, the pressure ps, and the Cauchy stress tensor og. In addition,
1
e(ug) := 3 {Vus + (Vus)t} stands for the strain tensor of small deformations, u is the viscosity of the fluid, p

is the density, and fs € L2(f)g) is a given external force.

In the porous medium €2p we consider a nonlinear version of the Darcy problem to approximate the velocity
up and the pressure pp, which is considered when the fluid velocity is higher and the porosity is nonuniform.
More precisely, we consider the Darcy—Forchheimer equations [44, 48]:

F
HK_luD + —|uplup+Vpp=1fp in Qp, divup=gp in Qp, up-n=0 on Ip, (2.2)
p p

where F' represents the Forchheimer number of the porous medium, and K € L>°({)p) is a symmetric tensor
in Qp representing the intrinsic permeability « of the porous medium divided by the viscosity p of the fluid.
Throughout the paper we assume that there exists Cx > 0 such that

w- K (x)w > Ck|w|?, (2.3)

for almost all x € Qp, and for all w € R2. In turn, as will be explained below, fp and gp are given functions
in L3/2(Qp) and L?(Qp), respectively. In addition, according to the compressibility conditions, the boundary
conditions on up and ug, and the principle of mass conservation (cf. (2.4)), gp must satisfy the compatibility

condition:
/ gp = 0.
Qp

Finally, the transmission conditions that couple the Navier—-Stokes and the Darcy—Forchheimer models through
the interface ¥ are given by

Qg
VvVt Kkt

where g is a dimensionless positive constant which depends only on the geometrical characteristics of the porous
medium and usually assumes values between 0.8 and 1.2 (see [9,18]). The first condition in (2.4) is a consequence

us-n=up-n on X and osn+ (ug-t)t=—ppn on I, (2.4)
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of the incompressibility of the fluid and of the conservation of mass across . The second transmission condition
on X can be decomposed, at least formally, into its normal and tangential components as follows:

Qg

VvVt -kt

The first equation in (2.5) corresponds to the balance of normal forces, whereas the second one is known as the
Beavers—Joseph—Saffman condition, which establishes that the slip velocity along ¥ is proportional to the shear
stress long ¥. We refer the reader to Section 3.2 of [8] (see also [40,49]) for further details on the choice of this
interface condition.

(osn) -n=—-pp and (ogn)-t=-—

(ug-t) on 3. (2.5)

2.2. The variational formulation

In this section we proceed analogously to Section 2 of [28] and derive a weak formulation of the coupled
problem given by (2.1), (2.2), and (2.4). To this end, let us first introduce further notations and definitions. In
what follows, given x € {S, D}, we set

(9, 0)s = / pa, (Wv)ei= / u-v, and (o,7) = / ——
Q. Q, Q.

where, given two arbitrary tensors o and 7, o : 7 = tr (o'r) = Z?jzl 0;§Tij. Furthermore, in the sequel we
will employ the following Banach space,

H3(diV;QD) = {VD € LS(QD) : divvp € LQ(QD)},
endowed with the norm /
Vb llessaiv ) = (VD IEaa) + Idivolia, )

and the following subspaces of H!(2g) and H3(div; Qp), respectively

H%S(Qs) = VseHl(Qs)i vs =0 on Fs},
H} (div;Qp) :={vp € H*(div;Qp): vp-n=0 on FD}.

Notice that H3(div;Qp) = H(div;Qp) N L3(Qp), which guarantees that vp - n is well defined for vp €
H?._ (div;Qp).

To begin with the derivation of our variational formulation for the Navier—Stokes/Darcy—Forchheimer problem
we first proceed similarly to [21,28] and test the second equation of (2.1) by vs € H{_(f2s), integrate by parts
and utilize the second equation of (2.4) to obtain

2u(e(us), e(vs))s + <\/:%US -t,vs 't>2 + p((Vus)us, vs)s (2.6)

— (ps,divvs)s + (vs -n,A)y, = (f, vg)s,

for all vg € HILS(QS), where A is a further unknown representing the trace of the porous medium pressure
on X, that is A = ppl|s. The corresponding space of A will be specified next. In turn, we incorporate the
incompressibility condition divug = 0 in {2g weakly as follows

(gs,divusg)s =0  Vqs € L*(Qg). (2.7)

Next, we multiply the first equation of (2.2) by vp € H%D (div; Qp) and integrate by parts to obtain

_ F )
%(K Yup, vp)p + ;(|UD|UD7VD)D — (pp,divvp)p — (vp - n, A)y, = (fbo, vD)D, (2.8)
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for all vp € H}_(div;Qp). Observe that if up € H3(div;Qp) and pp € L*(Qp), then Jup|up - vp € L*(Qp)
and pp divvp € L'(Qp), and hence the second and third terms of (2.8) are well defined, which justifies the
introduction of the spaces H?(div;{p) for the derivation of our weak formulation. Moreover, for each vp €
H3(div; Qp), the normal trace vp - n : H3(div; Qp) — W=33(9Qp) is well defined and continuous. In fact,
since W13 (Qp) is continuously embedded into L2(€2p) then for each & € W3:3(9Qp) the quantity

¥ 1.0, = [

Qp

vb VO + / 7o 1 (€)div v,

Qp

is well defined, where (,-),q_ stands for the duality pairing between W—33(8Qp) and W33 (8Qp), and !

is the right inverse of the well known trace operator g : Wi (Qp) — W33 (0Qp). Furthermore, given vp €

H?._ (div;Qp), the boundary condition vp -n =0 on I'p means (see e.g. [24], Appendix A and [21,31])
(vb 1, By p(€))yq, =0 VEE W3 (Ip),
where Eop : W33 (I'p) — W22 (9Qp) is the extension operator defined by

Eopl(€) = {g M vee whir),

We observe that according to Theorem 1.5.2.3 of [37], the operator Ey p is well defined. In turn, similarly to
equation (A.6) of [24] we can identify the restriction of vp - n to ¥ with an element of W—3:3(3), namely

(vp 1,8y = (vp 1, Ex(€))pa, VEEWHE(T), (2.9)

where Fy, : W33 () — W32 () is any bounded extension operator. In addition, analogously to the proof
of Lemma A.2 from [24] one can show that for all ¢y € W32 (8Qp), there exist unique elements 1y, € W32 (X)
and ¢r, € W33 (I'p) such that

Y = Ex(¥s) + Eop(Yry), (2.10)
and there exist Cy,Cy > 0, such that
sl 3+ lerolly giro b < 105 300, < CofI0slly 35 + lernlly gur |- (2.11)

In fact, although Lemma A.2 of [24] is derived for Wl_%’p(aﬂD) with p > 2, using a slight modification of
Section 2 from [35] one can easily extend the analysis to the case p > 1. According to the above, for each
vp € H%D (div;Qp), vp - |y € W*§’3(Z), which suggests to set Wé’%(E) as the appropriate space for the
unknown A, that is
A=ppls € W%’%(Z)
Note that, in principle, the space for pp does not allow enough regularity for the trace A to exist. However, the
solution of (2.2) has the pressure in W2 (Qp) N L2(Qp).
Finally, we impose the second equation of (2.2) and the first equation of (2.4) weakly as follows

(¢gp,divup)p = (gp,ap)D Vap € L*(Qp), (2.12)

and .
(us'n—up-n&)y=0 VEeWs2(X). (2.13)

As a consequence of the above, we write ) := Qg U X U Qp, and define p := psxs + ppXxp, with x4 being the
characteristic function:

1 in Q,,
X700 i Q\Q,,
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for x € {S,D}, to obtain the variational problem: Find ug € Hf_ (%), p € L*(Q), up € H}_(div;Qp) and
A € W32 (%) such that (2.6)-(2.13) hold.

Now, let us observe that if (ug, up,p, A) is a solution of the resulting variational problem, then for all ¢ € R,
(us,up,p+c, A+c¢) is also a solution. Then, we avoid the non-uniqueness of (2.6)—(2.13) by requiring from now

on that p € L3(2), where
L2(Q) = {qELQ(Q): /qu}.
Q

In this way, we group the spaces and unknowns as follows:

H = H}_(Qs) x H} (div;Qp), Q:=L3(Q) x W53 (%),
u:=(us,up) €H, (p,A)€Q,

and propose the mixed variational formulation: Find (u, (p, A\)) € H x Q, such that

[a(ug)(u), v] + [b(v), (p, A)] = [f, V] Vv := (vg,vp) € H, (2.14)
[b(u), (¢, )] =g (¢:8)] V(4,6 €Q, ’
where, given ws € Hy_(Qs), the operator a(ws) : H — H' is defined by
[a(ws)(u), v] := [As(us), vs] + [Bs(ws)(us), vs] + [Ap(up), vp], (2.15)
with
[As(os). v = 2ufeiag).e(vs))s + {2z tvst)
[Bs(ws)(us), vs] := p((Vus)ws, vs)s, (2.16)
[Ap(up), vp] := % (K_luDND)D + " (luplup, vp)p ,
whereas the operator b : H — Q' is given by
[b(v), (¢,€)] := —(divvs,q)s — (divvp,q)p + (vs -n — vp - n, ) . (2.17)
In turn, the functionals f and g are defined by
[f,v] == (fs,vs)s + (fo,vp)p and [g,(q,§)] :== —(9p, ). (2.18)

In all the terms above, [-,-] denotes the duality pairing induced by the corresponding operators.

2.3. Stability properties

Let us now discuss the stability properties of the operators in (2.16) and (2.17). We begin by observing that
the operators Ag, Bg and b are continuous:

[[As (us), vs]| < Cu lus]r.a
|1Bs(ws)(us), vs]| < pC2(%%)]
b(v), (¢:9)]] < ColIvlnll(@.€) .

(
( (2.19)

where C'(Qg) is the continuity constant of the Sobolev embedding from H*({2g) into L*(2s). In turn, from the
definition of Ap (cf. (2.16)), (2.3), and the triangle and Holder inequalities, we obtain that there exists L 4, > 0,
depending only on u, p, F, K, and Qp, such that

[ Ap (up) — Ap (vp) |l (113 (div ;00))7

2.20
< Ly {up — vollesscaiv 20 + 105 — vb ety ) (1p lsss ) + Voo ) o 20
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for all up, vp € H?(div;p). In addition, using the Cauchy—Schwarz and Young inequalities, it is not difficult
to see that f and g are bounded, that is, there exist constants cg, cg > 0, such that

Il < er{

+ IIfDIILsx2(QD>} (2.21)

and
Igller < cgllgpllo.apn, (2.22)
which confirm the announced smoothness of fp. On the other hand, from the well known Korn and Poincaré

inequalities (see, e.g., [27]), we easily obtain that there exists a constant ag > 0, depending only on Qg, such
that

[.As(Vs),Vs] > 2/1,Ozs||VsHiQS Vvg € H%‘S (Qs). (2.23)
In turn, integrating by parts and assuming that divwg = 0 in Qg, similarly to equation (29) of [21], we obtain
[BS(WS)(VS),VS} = g/(WS . 1’1)|Vs‘2 VWS,VS S H%‘s (Qs) (2.24)

b

Finally, from the definition of Ap (cf. (2.16)) and the inequality (2.3), we deduce that for a fixed tp € L*(Qp),
there holds

[AD(UD +tp) — AD(VD +tp),up — VD]

2.25
> %C’KHuD = Vol + 5 (1o + o](p + £) = VD + £|(vp + o). up ~ vD)p (2:25)

for all up,vp € L3(2p). Then, thanks to Lemma 5.1 of [35], there exist Cp > 0, depending only on €p, such
that

(lup + tp|(up + tp) — [vp + tp|(VD + tn),up — vp)p, > Opllup — vbllEs(g,),
which, together with (2.25), and neglecting the first term on the right hand side of (2.25), yields
[AD<U-D + tD) — Ap(vp + tD), up — VD} > aDHuD — VD||i3(QD) Yup, vp € L3<QD), (2.26)
FCp

with ap =

3. ANALYSIS OF THE CONTINUOUS FORMULATION

In this section we analyse the well-posedness of problem (2.14) by means of a fixed-point argument and
classical results on nonlinear monotone operators. We begin by introducing our fixed-point strategy.

3.1. The fixed-point operator
Let T : Hf(Qs) — Hf_(92s) be the operator defined by

T(ws) :=1ts VYws € Hp (), (3.1)

where @ := (Gg, Up) € H is the first component of the unique solution (to be confirmed below) of the nonlinear
problem: Find (1, (p,\)) € H x Q, such that

[ ( )(ﬁ) V] [ ( )ﬂ(ﬁ?A)] = [fv V] Vv eH, (32)
[b(w), (¢,¢) =[8(¢,9)] V(g6 eQ

It is not difficult to see that (u,(p,\)) € H x Q is a solution of (2.14) if and only if ug € Hp_(2s) satisfies:
T(ug) = ug. In this way, in order to prove the well-posedness of (2.14), in what follows we equlvalently show
that T possesses a unique fixed-point in a closed ball of H%S (Qg). Before continuing with the solvability analysis
of (2.14), we first provide the hypotheses under which operator T is well defined. To that end we first collect
some preliminary results and notations that will serve for the forthcoming analysis.
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3.2. Preliminary results

First we introduce some definitions that will be utilized next. To this end we let X and Y be reflexive Banach
spaces. Then, we say that a nonlinear operator T : X — Y is bounded if T'(S) is bounded for each bounded
set S C X. In addition, we say that a nonlinear operator T : X — X’ is of type M if u,, — u, Tu,, — f and
lim sup [Ty, up] < f(u) imply Tu = f. In turn, we say that T is coercive if

[T, u]
[l

— oo as |ul] — oo.

Now, we establish the following abstract result taken from Proposition 2.3 of [50], which has been adapted
to our context where the nonlinear operator is defined on a product space X = X; x X5, with X; and X,
depending on parameters p; and po, respectively, in place of an space X depending on a parameter p.

Theorem 3.1. Let X1, Xo and Y be separable and reflexive Banach spaces, being X1 and Xo uniformly conver,
set X = X7 x Xo, and let X1, X5, Y', and X' := X{ x X}, be their respective duals. Let a : X — X' be a
nonlinear operator and b : X — Y’ be a linear bounded operator. In turn, we denote by V the kernel of b, that is,

Vo= {veX: [b(v),q] = 0 quy}.

Assume that
(i) a is hemi-continuous, that is, for each u,v € X, the real mapping
J:R—=R, t— J()=][a(u+tv),v]
18 continuous.
(ii) there exist constants v > 0 and p1,p2 > 2, such that

2 pj—2
lo(w) = a(@)llx: <73 {llus = vsllx, + llus = villx, (gl + Iosllx,) ™ s
j=1
for all u = (u1,us),v = (v1,v3) € X.
(i) for fized t € X, the operator a(-+1t) : V. — V' is strictly monotone in the following sense: there exist
a >0 and py,ps > 2, such that

la(u+ ) = a(v+),u—v] = af lur = v |}, + lluz — val2, },

for all u = (uy,uz),v = (vy,v9) € V.
(iv) there exists 8 > 0 such that
[b(v), q]

[l x

sup > Blally VgeY.
veX
v#0
Then, for each (f,g) € X' x Y’ there exists a unique (u,p) € X XY such that

[a(u), v] + [b(v), p] = [f, 0] Vv € X,

3.3
[b(u), d] =lg.dVaeY. (3:3)
Moreover, there exists C > 0, depending only on «,~, 3,p1, and pa, such that
[(u, p)xxy < CM(f,g), (3.4)
where ) ) - -
M(f,g) i= max {N(f,9) 7175 N (f,9) 5 N (f,9), N (f,9) 7, N(£,9) 77 },
and

N(f,9) = Ifllxe + lgly + lglBs" + g5z~ + lla(0)l|x--
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Proof. We begin by noting that hypothesis (iv) establishes, equivalently, that b is surjective.
Then, given g € Y’ there exists uy € X, such that (see [23], Lems. A.36 and A.42 for details):

1
blug) =g and ugllx < Zllgllv. (3.5)

Then, given this u, in X satisfying (3.5), we observe that problem (3.3) with v € V leads to: find & € V, such
that

[ag (), v] == la(u +ug),v] = [f,0] YveV, (3.6)
which suggests to define later on u as @+ u,. In this way, since f —a(u) € °V:={G € X' : G(v) =0,Vv e V}

and hypothesis (iv) also guarantees that the adjoint operator b’ is an isomorphism from Y into °V, we deduce
that there exists a unique p € Y such that ¥'(p) = f — a(u) and

Iplly < 5@l < 5{170 + lalx . (3.7)

Therefore to prove that problem (3.3) is well posed, in what follows we prove equivalently that a,(-) = a(-+uy) is
bijective from V' to V’. We begin by observing that the injectivity of the operator a,( - ) follows straightforwardly
from hypothesis (iii). In addition, from hypotheses (i) and (iii) and Chapter II, Lemma 2.1 of [51] it can be
readily seen that a,(-) is an operator of type M. Now, given v = (v1,v2) € V, and denoting by uf, j = 1,2, the
components of u,, we observe that, owing to (ii), (111) and using the inequality (a + b)? < C(g )(aq + bq), with
C(q) depending only on ¢, which is valid for all ¢ € [0, +00) and a,b > 0 Lemma 2.2 of [3], there hold

lag()llx < llag(v) = ag(O)llx + llag(O)llx- = lla(v + ug) = alug) [ x- + flalug)llx

pj—2
<73 { il + ol (los + ufllx, + el )™~} + llatug)lx:
Jj= 1

J71 172
<OZ{|UJ||XJ+HUJ|V’ ozl Nl + llatug)llxe
Jj=1

—2 2 —2 2
< C (14 a3 + oallB72 + g 187 + g7 ) llolx + llaCug)lx-,

and

lag(v),v]  la(v+uy) —a(04uy),v] | la(ug),v] a{||v1||§(11 + ||v2|§§2} e
ol — Tellx Tl 2 ol laug)llx

. —1 —1
> Cmin { ol ol ™ = llatug)

which clearly show that a, is bounded and coercive on V, respectively. In this way, by applying Chapter II,
Corollary 2.2 of [51] it can be readily seen that a, is surjective on V. Having verified the bijectivity of ag on V'
we deduce that problem (3.6) is well-posed, or equivalently (3.3) admits a unique solution (u,p) = (+ugy,p) €
X x Y. Now, in order to obtain (3.4), we proceed similarly to Proposition 2.3 of [50]. In fact, taking v =u € V
n (3.6), we have

(alii +1y) = a(0 + uy), i) = £, ] — [a(u,), ]
Then, combining hypothesis (ii), (iii) and (3.5), it is clear that
o I, + W21, b < {17 x: + laCug)lx il x

1—1 2—1 ~
<01{||fIIXf+||g||w+\|9||p + llgll¥ +Ha(0)IIX/}HUI|x,
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with ¢; > 0 depending only on +, 3, p1, and pa, which yields

il x < 2max { (Z2nir.0) " (Z2ntra) } , (35)

«

where N'(f,g) == Iflx: + lglly: + gl + gl + la(0)]l - Tn this way, due to u = & + uy, combining
(3.5) and (3.8), we conclude that

Jullx < ilx + llugllx < ez max {N(f, 0)77, N (£, )77 |, (3.9)

with ¢g > 0 depending only on «,~, 3,p1, and ps. On the other hand, from (3.7) and using again (ii), we deduce
that

Iplly < es{llfllx + lullx + luallB" + w187 + la()llx (3.10)
with ¢3 > 0 depending only on v and . Then, (3.9) and (3.10) conclude the proof. |

We remark that when p; = p; = 2 and ||a(0)||x- is equal to zero, the previous analysis leads to the classical
estimate

I, p)lxxy < C{Ifllxe + lglly

with C' > 0, depending only on «,~, and 3.

Finally, we observe that, since H'/2(9f)g) is continuously embedded into LP(9€g), with 2 < p < oo for the
two dimensional case and 1 < p < 4 for the three dimensional case (see [46], Thm. 1.3.4), and the trace operator
is continuous, the following inequality holds:

[vsllLes) < Ivsllnr@as) < COQs)[[vslij2,00s < C(092s)Cillvsllias  Vvs € Hp, (Qs), (3.11)

where C(9€g) is the continuity constant of the Sobolev embedding from H'/2(9Qg) into LP(99s), and Ci, is
the norm of the usual trace operator from H'(Qg) into H/?(99s).

3.3. Well-definiteness of T

Given wg € Hf_ (), it is clear that problem (3.2) has the same structure of the one in Theorem 3.1.
Therefore, in what follows we apply this result to establish the well-posedness of (3.2), or equivalently, the
well-definiteness of T. We begin by observing that, thanks to the uniform convexity and separability of LP()
for p € (1,+00), each space defining H and Q shares the same properties, which implies that H and Q are
uniformly convex and separable as well.

We continue with the required continuity property of a(wg) for each wg € HILS (Qs).

Lemma 3.2. Given wg € H%s (Qs), the operator a(wg) is hemi-continuous in H.

Proof. For fixed wg € H}S (Qs), u = (us,up), and v = (vg, vp) € H, we introduce the real function 7 : R — R
defined by

J(t) = [a(ws)(u +tv),v] = [As(ug + tvs), vg]
+[Bs(ws)(us + tvs), vs] + [Ap(up +tvp), vp].

Then, the hemi-continuity of a(wg), that is the continuity of J, follows straightforwardly from the linearity
and continuity of Ag and Bg(wsg) and from Proposition 3 of [34]. We omit further details. O

We continue our analysis with the verification of hypothesis (ii) of Theorem 3.1.
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Lemma 3.3. Let ws € Hf (). Then, there exists v > 0, depending on C a5 and L, (cf. (2.19) and (2.20)),
such that

la(ws)(u) —a(ws)(v)|la < 7{(1 + [[wsll1,0¢)[us — vsll1,0s + [lup — vb s aiv:on)
+ [[up = Vb |la3 (div ;00) (HUD||H3(div;QD) + ||VD||H3(div;QD)) }7
for allu = (ug,up),v = (vs,vp) € H.

Proof. The result follows straightforwardly from the definition of a(ws) (¢f. (2.15)), the triangle inequality, and
the stability properties (2.19) and (2.20). We omit further details. O

Now, let us look at the kernel of the operator b, that is

Vi={veH: bM) (@8 =0 v4cQal. (3.12)
According to the definition of b (¢f. (2.17)), we observe that v = (vs,vp) € V if and only if
(div vs,q)s + (divvp,q)p =0 Vq € L§(Q)

and -
(Vs *n—vp - Il,§'>Z =0 V&Ee Ws2(X).

In this way, noting that L2(Q) = LZ(Q) @ R, and taking £ € R in the latter equation, we deduce that
(divvs,q)s + (divvp,q)p =0 Vq € L*(),

which implies
divvg=0 in Qg and divvp=0 in Op. (3.13)

In the following result we provide the assumptions under which operator a(wg) satisfies hypothesis (iii) of
Theorem 3.1.

Lemma 3.4. Let ws € Hf, (Qs) such that divwg = 0 in Qg and

< 2uag
0% = pC2C2(09s)

[ws-n (3.14)

Then, for each t € H\ V|, the nonlinear operator a(wg)(- +t) is strictly monotone on 'V (cf. (3.12)).

Proof. Let t := (ts,tp) € H\ V fixed, and let wg € H}_(Qs) as indicated. Then, according to (2.15), the
linearity of Ag and Bs(wg), the identity (3.13) and the stabilities properties (2.23) and (2.26), we find that

[a(ws)(u +t) — a(ws)(v +t),u —v] > 2uas|us — vs||f g
+ ap|up — Vbl (aiv son) + Bs(ws)(us — vs), us — vs],

for all u,v € V. In addition, similarly to Lemma 2 of [21], we deduce from (2.24), applying Cauchy—Schwarz’s
inequality and (3.11) with p = 4, that

< P Ct2rc2 (aQS)

[1Bs(ws)(us = vs), us = vs]| < ZE2E s - nllo,s |Jus = v o

which implies

[a(ws)(u+t) —a(ws)(v+t),u—v]
_ pCLC?(90s)

> < 2pas B

[ws - n||0,2}|us — vs|[f.as + aplup — Vb l[3s iy 0n) -
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Consequently, the hypothesis (3.14) and the foregoing inequality imply
[aws)(u+t) — a(ws)(v + 6),u—v] > a(@){Jus ~ vs [ o, + [0~ V0 s |

for all u,v € V, with a(Q) := min {uas, aD} independent of wg. ([

We remark that, similarly to the strict monotonicity of a(wg)(-+t) on V with t € H\ V fixed, using (2.26)
with tp = 0 € L3(Qp), we deduce that

[a(ws) () — a(ws)(v),u — v] = a(@){|lus = s o, + a0 = Vb & iy o) | (3.15)

for all u,v € H with div (up — vp) =0 in Qp.

We end the verification of the hypotheses of Theorem 3.1 by proving the continuous inf-sup condition for
b. To that end, we adapt the proof of Lemma 2.1 from [28] to the present case, using similar results from
Lemma 3.3 of [31] and Lemma 1 of [21] to handle the mixed boundary conditions on 9p.

Lemma 3.5. There exists 3 > 0 such that

b(v), (¢,€

5(0.9) = sup D@5 50 )1 v eq (3.16)
veH ||VHH
v#0

Proof. Let (q,€&) € Q. Since ¢ € L3(Q), it is well known (see, e.g., [33], Cor. 2.4) that there exists z € H}(Q)
such that divz = —q in Q and ||z|1.0 < c|lgllo.a. Setting Vv := (Vs,Vp) with Vv, = z|q, for x € {S,D}, we
find that Vs -n = Vp - n on ¥, and using the continuous embedding from H!(Qp) into L3(Qp), we obtain
V[l < €llzllo < cllgllo.q, whence

b@, @91 g2

Ve Vla

S(q,€) >

> cillqllo,o- (3.17)

On the other hand, given ¢ € W~33(X), we define n € W—33(0p) as

(0, gy = (b px)y Y€ W3 (80p),

where iy, € W32 (%) is given by the decomposition (2.10). It is not difficult to see that

(1, Bo.p(p))go, =0 Vp€ Wi3(I'p), (3.18)
(1, Ex(9))pap = (0:0)s Vo € WHE(D), (3.19)

and
M- 1 3000 < Clll_1 5 (3.20)

Next, we set vp := Vz in Qp, with 2 € W3(Qp) being the unique solution of the boundary value problem (see
[32] for details):

1 .
—Az = T M Dsq, in Op, Vz-n=n on Jd0p, (z1)p=0. (3.21)
Tt follows that divvp = ﬁ (1, 1) pa, € Po(2p), vb - n =1 on dp, and using (3.20) we find that

VD les (aivian) < cllnll-1 s00, < ClEl-1 55 (3.22)
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Note that the first inequality here follows from the definition of the norm || - [[gs(qiv;0,), the continuous
dependence result of the boundary value problem (3.21), and the fact that ||[Vp|Lsp) = V2|Lsap) and
divvp = ﬁ (1,1) 5y, - In addition, using (2.9), (3.18) and (3.19), we deduce that

(Vb 'n, &)y = (VD ‘naEE(§)>aQD = <777EE(§)>BQD =(6,8)s,
and .
@b 1, Bo.n(0)) ey, = (1 Fon(P))pa, =0 Vpe Whi(Ip),

The latter means that vp € H%D (div; Qp). In this way, defining v := (0,vp) € H, we obtain, thanks to (3.20)
and (3.22), that

B@. @) | (@ + 57 (0 Vo, (@ Do

S(q,€) > = = -
||VHH ||VD||H3(diV;QD)
|(6.0)s |
> o — c3lqllo,0,
1611 55

which, considering that ¢ € W—3:3(X) is arbitrary, yields
566 2 eallelly 3.5 — csllllo: (323

Then, combining (3.17) and (3.23) we easily obtain that

C1C2

S(Q)f) > 7”5”1%5)’

c1+c3 3
which, together with (3.17), completes the proof with 8 depending on ¢;,co and c3. ([l

We are now in position of establishing the well-definiteness of T. To that end, and in order to simplify the
subsequent analysis, given wg € Hy, (Qg) we first note that ||a(ws)(0)|/g: = 0, and then, by considering p; = 2
and ps = 3 in Theorem 3.1, we introduce the following notation

M(fs, fp, gp) := max {N(fsnyﬂD)l/Q,N(fs, fDagD)vN(fS,vagD)2}7 (3.24)

with

N(fs, o, 9p) == lIfsllo.s + 1o llLs2(an) + lgpllo.on + llgnllf.ap-

The main result of this section is established now.
Theorem 3.6. Let wg € H%S(Qs) such that divwg = 0 in Qg and

< 2uag
0¥ = 020 (00s)

[ws -m

and let fs € L2(Qg), fp € L3/2(Qp) and gp € L2(Qp). Then, (3.2) has a unique solution (1, (p,\)) € H x Q,
with & := (g, Gp), which allows to define T(wg) := Gs. Moreover, there exists a constant ct > 0, independent
of the solution, such that

IT(ws) 1,05 = l8s]las < (18, (2, ) lrxq < ez M(fs, o, 9). (3.25)

Proof. 1t follows from Lemmas 3.4 and 3.5 and a straightforward application of Theorem 3.1. In turn, estimate
(3.25) is a direct consequence of (3.4) (¢f. Thm. 3.1) and (2.21) and (2.22). O
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3.4. Solvability analysis of the fixed-point equation

In this section we proceed analogously to Section 2.4 of [21] (see also [13,15]) and establish the existence
of a fixed-point of operator T (cf. (3.1)) by means of the well known Schauder fixed-point theorem and a
sufficiently small data assumption. In addition, under a more restrictive small data assumption, the uniqueness
of solution is also established by means of the Banach fixed-point theorem. We begin by recalling the first of
the aforementioned results (see, e.g., [17], Thm. 9.12-1(b)).

Theorem 3.7. Let W be a closed and convex subset of a Banach space X, and letT : W — W be a continuous
mapping such that T(W) is compact. Then T' has at least one fized-point.

The verification of the hypotheses of Theorem 3.7 is provided in what follows. To this aim, we start by
introducing the set

W= {vs €HL(Qs): divvg=0 in Qg and [[vs|ias < cTM(fS,fD,gD)}. (3.26)
Then, assuming that (c¢f. (3.24)):
2uag
fs, f < H%S 3.27
M( Sy DagD) > CTpCE’rC2(aQS) ( )

with e the positive constant satisfying (3.25), it is not difficult to see that T is well defined from W to W. In
fact, given wg € W, from (3.27) we deduce that

2uas

pCLC?(09s)’ 325

lws - nllox < Cullwsll1,0s <

which together with Theorem 3.6 proves that T is well defined. In this way, we obtain the following result.

Lemma 3.8. Let W be the closed ball defined by (3.26) and assume that the data fs € L?(Qg), fp € L3/?(Qp)
and gp € L2(Qp) satisfy (3.27). Then there holds T(W) C W.

We continue with the following result providing an estimate needed to derive next the required continuity
and compactness properties of the operator T (¢f. (3.1)).

Lemma 3.9. Let W be the closed ball defined by (3.26) and assume that the data fs € L?(Qs), fp € L*/?(Qp)
and gp € L?(Qp) satisfy (3.27). Then,

~ c( - . ~
[T(ws) — T(Ws)ll1,0s < mlT(WS)lll,as [ws = WsllLias) Vws,ws € W. (3:29)

Proof. Given wg,wg € W, we let ug := T(wg) and ug := T(Ws). According to the definition of T, it follows

that
[a(ws)(u),v] + [b(v), (p, A)] = [f, V] Vv € H,
[b(u), (¢,€) =18, (0,8 V(g€ €Q,
and
[f,v] Vv e H,

[a(Ws) (@), v] + [b(v), (5, \)]
[b(w), (¢,€) 8,(4,6)] V(g6 € Q.

]
Then, recalling the definition of a(wg) (¢f. (2.15)) and subtracting both problems we obtain

a(ws)(u) — a(Ws)(W), v] + [b(v), (p = 5, A = \)] = 0
b(u - 1), (q,€)] —0
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for all (v,(q,&)) € H x Q. In particular, taking v=u—u,¢=p—pand £ = X — X in the latter system, the
first equation becomes
[a(ws)(u) — a(ws)(u),u —u] = 0. (3.30)

Hence, adding and subtracting Bgs(wg)(ug) in the second term of the left-hand side of (3.30), using the fact
that u —u € V (¢f. (3.13)), and the strict monotonicity of a(wg) (cf. (3.15)), it follows that

pas|lus — usllf o, < [a(ws)(u) —a(ws) (1), u — u] = [Bs(Ws — ws)(Us), ug — Ug].
In this way, the continuity of Bs (cf. (2.19)) gives from the foregoing equation
pas|lus —8sf o, < pC(Qs)ws — Ws|lLa(os) [8sl10s us — s|l1,0s,
which yields the result. O
Owing to the above analysis, we establish now the announced properties of the operator T.

Lemma 3.10. Assume that the data fs € L?(Qs), fp € L3/2(Qp) and gp € L?(Qp) satisfy (3.27) Then T has
at least one fized-point in W.

Proof. The required result follows straightforwardly from estimate (3.29), the continuity of the Sobolev embed-
ding from H'(g) into L*(Qs), and the Schauder theorem. We omit further details and refer to Lemma 5 of
[21]. O

Under a more restrictive assumption on the data, in what follows we prove that T has exactly one fixed-point
by means of the well-known Banach fixed-point theorem.

Lemma 3.11. Let fs € L?(Qs), fp € L3/2(Qp) and gp € L2(Qp), such that
M(fsa fD7gD) <7, (331)

where

= ] min L 2
Y C2(Qs)” C2(09s)CF,
Then, T has a unique fized-point.

Proof. The result follows straightforwardly from (3.29), the continuity of the compact injection from H(Qg)
into L4(€2g), the fact that T(W) C W, and the constraint (3.31). O

We are now in position of establishing the main result of this section.

Theorem 3.12. Assume that the data fs € L?(Qs), fp € L3/?(Qp) and gp € L2(Qp) satisfy (3.27). Then the
problem (2.14) admits a solution (u, (p,\)) € H x Q. In addition, if it is assumed that (3.31) holds, then the
solution is unique. In any case, there exists a constant cx > 0 (cf. (3.25)), independent of the solution, such
that

[(u, (p, A))[[xq < exM(fs, fp, gp). (3.32)

Proof. The existence and uniqueness of solution of problem (2.14) follows by recalling the definition of operator
T and combining Lemmas 3.10 and 3.11. In addition, it is clear that the estimate (3.32) is consequence of
(3.25). |
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4. THE GALERKIN SCHEME
In this section we introduce the Galerkin scheme of problem (2.14) and analyse its well-posedness.

4.1. Discrete setting

Let Ths and 7;° be respective triangulations of the domains (25 and Qp formed by shape-regular triangles of
diameter hr and denote by hg and hp their corresponding mesh sizes. Assume that they match on ¥ so that
T, = Ths U ZID is a triangulation of © := Qg U X U Qp. Hereafter h := max {hs,hD}. For each T € ’ThD we
consider the local Raviart—-Thomas space of the lowest order [47]:

RTo(7) i= span{ (1,0, (0, 1), (21,2) }.
In addition, for each T € 7,5 we denote by BR(T) the local Bernardi-Raugel space (see [10,33]):
BR(T) := [P1(T)]? & span{ nmsny, mana, munans |

where {771,772,773} are the baricentric coordinates of T', and {nl, no, Ilg} are the unit outward normals to the
opposite sides of the corresponding vertices of T'. Hence, we define the following finite element subspaces:

Hy () = {veH'(%): vlr €BR(T), VTeTs},
H,,(Qp) i= {v € H3(diviQp): vl € RTy(T), VT eTP},
L(Q) == {q €L2(Q): qlr €Py(T), VT ¢ Th}
Then, the finite element subspaces for the velocities and pressure are, respectively,

H, rg(Qs) := Hy(Qs) NHE (Qs),
Hj, 1, (p) := Hu(Qp) NHY_(div; Qp),
Lp,0(Q) := Ly () NLE(Q).

Next, for introducing the finite element subspace of Wi2 (X), we denote by X, the partition of ¥ inherited from
ThD (or Ths), which is formed by edges e of length h, and set hy := max {he re€ Zh}. In turn, since the space

[Les, W5 (e) coincides with W'~ 57(2), without extra conditions when 1 < p < 2 ([37], Thm. 1.5.2.3-(a);
see also [38], Prop. 1.4.3 and [36], Sect. 2 for the 3D case), it can be readily seen that a conforming finite element
subspace for W33 () can be defined by

Ap(X) := {fh Y- R: &yl €Pole) Vedgeece Zh}.

Notice that this space coincides with the set of discrete normal traces on ¥ of Hy(Q2p). Notice also that since
'ThS and ThD match on X, there holds hy; < min {hs, hD}.
In this way, grouping the unknowns and spaces as follows:

Hh = H}L,Fs (QS) X H’MFD (QD)7 Qh = Lh’O(Q) x Ah(z),
uy = (US,hauD,h) € Hy, (pfu)‘h) € Qn,

where pp, := ps.pXxs + Pp,nXD, our Galerkin scheme for (2.14) reads: Find (uy, (pn, An)) € Hy, X Qp,, such that

[an(us,n)(n), va] + [b(Vh), (P, An)] = [f, V] Vvp = (Vsh, vDn) € Hy, (4.1)
[b(ur), (qn, &n)] =18, (qn,&n)] VY (qn,&n) € Qn- :
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Here, aj,(ws ;) : Hy — Hj, is the discrete version of a(wg) (with wg;, € Hy, rs (Qs) in place of wg € Hj_ (Qs)),
which is defined by

[an (Ws.n)(un), vi] == [As(us n), Vs n] + [BE (Ws 1) (us n), vs n] + [Ap(up.n), Vo ul, (4.2)
where Bl (wsg ;) is the well-known skew-symmetric convection form [54]:
[B&(ws.n)(us,n), Vsl = p((Vus,n)Ws n, Vs n)s + g(div WS hUS h; VS,h)S,

for all ug p,vs n, ws n € Hp, rg(Qg). Observe that integrating by parts, similarly to (2.24), there holds
[BE(Ws,n)(Vs,h), Vsl = g/(WS,h ‘n)|vsul>  Vwsp, vss € Hyrg(Qs). (4.3)
b

Moreover, proceeding as for Bg (c¢f. (2.19)), it is easy to see that for all wg, ugp,vs,, € Hprg(Qs), there
holds

|1BE (ws.) (ws.0), vs.al| < Callws.nlv.os s ull s [V alls, (4.4)

with Cy := p C2(Qs) (1 + Q)

Now, let ITs : Hp (Qs) — Hp rs(Qs) be the Bernardi-Raugel interpolation operator [10], which is linear and
bounded with respect to the H!(2g)-norm. In this regard, we recall that, given v € HlLS (Qs), there holds

/HS(V) ‘n = /V -n for each edge e of 7>, (4.5)

e

and hence
(divls(v),an)s = (divv,qn)s Van € Ln(Q). (4.6)

Equivalently, if Ps denotes the L?(fg)-orthogonal projection onto the restriction of Ly (2) to Qg, then the
relation (4.6) can be written as

Ps(div (IIs(v))) = Ps(divv) Vv € Hf (Qg). (4.7)

On the other hand, let Il : H*(Qp) — Hy,(2p) be the well-known Raviart-Thomas interpolation operator.
We recall that, given v € H*(Q2p), this operator is characterized by

/HD(V) ‘n = /v -n for each edge e of 7;°, (4.8)

which implies that
(diV HD(V), qh)D = (le V,qh)D th S Lh(Q) (49)

Equivalently, if Pp denotes the L?(dp)-orthogonal projection onto the restriction of Ly () to Qp, then the
relation (4.9) can be written as

div (IIp(v)) = Pp(divv) Vv € HY(Qp). (4.10)

At this point we recall, according to Sections 1.2.7 and 1.4.7 of [23] (see also [12], Chapt. I11.3.3), that the
Raviart-Thomas operator IIp is also well defined for all v € V4V (Qp) := {v € LP(Qp) : divv € LS(QD)},

with p > 2 and s > g, % =14 1 gince the local space VU (T') coincides with W1t (T) when ¢ > f—J_‘Q, for each

P n’
T e ’ThD. In particular, considering n = 2, p = 3, and s = 2, we deduce that IIp can be applied to functions in
H3(div; Qp). We will use this fact later on in the proof of the discrete inf-sup condition of b.
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4.2. Well-posedness of the discrete problem

In this section, analogously to the analysis of the continuous problem, we apply a fixed-point argument to
prove the well-posedness of the Galerkin scheme (4.1). To that end, we now let T}, : Hy rg(Qs) — Hj rg(Qg)
be the discrete operator defined by

T (ws,p) :==1g, Vws, € Hy rg(Qs), (4.11)

where 0, := (Ggp,Up,,) € Hy, is the first component of the unique solution (to be confirmed below) of the
discrete nonlinear problem: Find (g, (pn, An)) € Hp X Qp, such that

(2, (W) (W), vi] + [b(Va), (Br, An)] = [£, V] Vvi € Hy, (4.12)
[b(), (qn, &n)] = [g, (an,&n)] Y(an, &n) € Qn. '

Then, similarly as for the continuous case, the Galerkin scheme (4.1) can be rewritten, equivalently, as the
fixed-point problem: Find ug; € Hp rg(€2s) such that

T (us n) = ug .

In this way, in what follows we focus on analysing the existence and uniqueness of such a fixed-point, for which
we require the following discrete version of Theorem 3.1.

Theorem 4.1. In addition to the spaces and operators defined in Theorem 3.1, let X; p, Xop and Yy, be finite

dimensional subspaces of X1, Xa2, and Y, respectively, and set Xp = X1, X Xop € X 1= X1 x Xa. In addition,
let Vi, be the discrete kernel of b, that is,

Vi = {vh €Xpn: [blvn),gn] =0 Vagn € Yh}.
Assume that
(i) a is hemi-continuous from X, to X}, that is, for each u,v € Xy, the real mapping
J:R->R, t— J(t)=[a(u+tv),v]

18 continuous.
(ii) there exist constants ¥ > 0 and p1,p2 > 2, such that

]

Dbj—
Ja(un) = a(vn)lx- < Z{ fwin = vinllx, + g = vinllx, (gl +loialx )},

fO’f’ all up = (ul,haUZ,h), vy = (vl,hvvlh) c Xh-
(tii) for fized tp, € Xy, the operator a( - +ty) : Vi — V) is strictly monotone, that is, there exists & > 0 and
p1,P2 > 2, such that

[a(un +tn) — a(vn +th), up — vu] > &{Ilul,h — vl + lluzn — Uz,h||§?2}a

for all up = (u1,n,u2,n),vn = (V1,h,V2,0) € Vi
(iv) there exists 8 > 0 such that
p [b(vn), gn]

v €Xp ||Uh||X
Vh 0

> Blanlly Van € Ya.
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Then, for each (f,g) € X' x Y’ there exists a unique (up,pp) € Xp X Yy, such that

la(un),vn] + [b(vn), pr] = [f,vn] Yon € Xp,
[b(un), qn] = [9,qn] Van € Y.

Moreover, there exists C > 0, depending only on a, 7, 5,291, and ps, such that

| (un, )l x xy < C M(f,9),

where
M(f,g) i=max {N (£, 9) 77, N (f.9) = N (£,9), N (£, ) H3 N (£, )77 |,
and
N(f,9) = Ifllxe + llallys + g%~ + lglfz ™" + la0) | x--
Proof. Tt reduces to a simple application of Theorem 3.1 to the present discrete setting. (]

Similarly to the analysis developed in Section 3.3, in what follows we provide suitable assumptions under
which problem (4.12) is well posed or equivalently T}, is well defined. For this purpose, we must verify that
the operators defining the discrete problem (4.12) satisfy the hypotheses of Theorem 4.1. We begin with the
hemi-continuity of ay,.

Lemma 4.2. Given wgp, € H}L,FS(QS)7 the operator ap(wg. ) is hemi-continuous in Hy,.

Proof. The proof follows analogously to the proof of Lemma 3.2, by using now the linearity and continuity of
Bl (ws ) (in addition to those of Asg). O

Now we verify that hypothesis (ii) of Theorem 4.1 holds.

Lemma 4.3. Let wg ), € Hy, g (Qs). Then, there exists ¥ > 0, depending on Cay and Lag, (cf (2.19), (2.20)),
such that

la(ws.n)(un) —a(wsn)(va)|lm < W{(l + lws,nll1,06) [us,n — vsnllios + [[ap,n — vo,nllEs(div0n)
. = Vol i o) (1100, a0y + VD (e 00)) b

for all uy, = (us p,upr), vih = (Vs,h, vD,r) € Hy.

Proof. Similarly to the continuous case, the result follows straightforwardly from the definition of aj,(ws ) (cf.
(4.2)), the triangle inequality, and the stability properties (2.19), (2.20) and (4.4). We omit further details. [

Now, we proceed to establish the strict monotonicity of aj(ws ) on the discrete kernel of b:

Vi = {Vh = (vs,n, vpon) € Hy oo [b(vh), (qr, &r)] =0 Y(qn,&n) € Qh}7 (4.13)
for suitable wg j, € Hj g (€2g). Observe that, similarly to the continuous case, v, € V, if and only if

(diVVs7h,qh)s + (diVVD’h,qh)D =0 Vq, € Lmo(ﬂ),

and
(Vs,n - m—vpp-n,&p) =0 V& € Ay(X),
which, in particular, imply that
(divvgn,dn)s =0 Vay € Lp(Qg) and divvpp, =0 in Qp, (4.14)

where L, (Qg) is the set of functions of L () restricted to Qg. Then, the announced result is as follows.
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Lemma 4.4. Let wgp, € Hj rg(Qs) such that

2uag

P CRC2(005) e

[ws,n - nllos <

Then, for fized t, € Hy \ V},, the nonlinear operator ap(ws ) (- + tp) is strictly monotone on Vy, (cf. (4.13)).
Proof. The proof follows analogously to the proof of Lemma 3.4. Further details are omitted. (]

We continue by adapting the results provided in Section 4 of [28] to our domain and spaces configuration to
prove that b satisfies the corresponding discrete inf-sup condition. We start by establishing the following two
preliminary lemmas.

Lemma 4.5. There exists 51 > 0, independent of h, such that for all (qn,&n) € Qn, there holds

[b(vh), (gns&n)]

Shlansn) = sup > Cillénlly g.m — lanllog- (4.16)
v €Hy, [vhrlea
vp#0
Proof. Let &, € Ap(X) C W32(X), &, # 0. Since
<$7 €h>
sp LR gy
¢ewf* () H¢”—§,3 by
340
we deduce that there exists ¢ € W=33(X)\{0} such that
~ 1
(d.6n)_ = 51911y mlénly - (4.17)

Next, exactly as we did in the proof of Lemma 3.5, we “extend” %E W_%’?’(Z) ton € W_%’?’(@QD) by
- 13
<773:U’>3QD = <¢7/LE>E V‘LL S W3’2(aQD),

where uy, € Wi (X) is given by the decomposition (2.10). Then, proceeding again as in the second part of the
proof of Lemma 3.5, we find vp € H%D (div; Qp) satisfying vp - n =7 on 0Qp, and (cf. (3.22))

90 ks aivs0) < Cllml—3 500, < Cloll-s 55,

which, combined with (4.17), implies

(Vo 1, &)y = (VD "1, Ex(§r)) g, = (1 Es(&n))aqp = <¢~57 §h>2

1 (4.18)
= 2C||VD”H3 div; QD)Hfh”, 3.3

3’2’

On the other hand, given vp € H3(div;Qp), the properties of IIp (cf. (4.8), (4.9)) and Lemma 3.2 of [25] allow
to establish that

(v 1)y = /2 (Tp(vp) -n)én  Vén € An(E), (4.19)

and
ITIn (VD) |13 (div ;00) < CpllVD |la3 div;on)- (4.20)
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Thus, defining vp 5, := IIp(vp) € Hy, ry (), and then using (4.18), (4.19), and (4.20), we obtain

Fon-n&)y| 1 |Fooné)s]

v A SNIIE: > Chllénlls s.5. 4.21)
||VD,h||H3(div;QD) CD HVDHHS(diV;QD) H ||3’27Z (

Finally, setting vy, := (0,Vp, ) € Hy,, we deduce that

b (an&)] _ [P (00,60

Sn(qn,&n) == sup

vy,EH) ||Vh||H o ||vh||H
Vi #0
(VD,h -1, &)y, — (divVD,h&h)D‘ ‘ (Vo -1, &)y ‘
= — > = = llanllo.a
VD nllH3 (div;00) VD, [l 53 (aiv s00)
which, together with (4.21), imply (4.16) and complete the proof. |

Lemma 4.6. There exists 52 > 0, independent of h, such that for all (qn,&n) € Qn, there holds

Sn(an,&n) == sup [bvn). (an€n)]

vihE€Hy ||Vh||H
Vh 0

> Csllgnllo,0- (4.22)

Proof. The proof follows similarly to the first part of the proof of Lemma 3.5. In fact, given (gn, &) € Qp we
recall that g, € LZ(Q) and apply again ([33], Cor. 2.4) to deduce that there exists z € H}(2) such that

divz=—q, in Q and [z]1,0<c|danlo0- (4.23)
Then, we let z, := z|q, for x € {S,D} and observe that zg = zp on X, which implies that
(zs —zp) n=0 on 3.

Hence, defining z;, := (zs 1,2p.1), with zg ) = lg(zs) and zpj, = Ip(zp), we observe from (4.5), (4.8), and
the fact that 7,° and 7,° match on %, that

<(ZS,h — ZD,h) . n,£h>2 = <(ZS — ZD) -1, €h>2 = 0. (424)

In addition, since z = 0 on 0f) := I's U 'p, it is clear that z; € Hy, and therefore, thanks to the continuity of
IIg and the estimate (4.20), we obtain that

llznlla < Cllanl

0,0 (4.25)
with C' > 0 independent of h. Finally, from the identities (4.7) and (4.10), it can be readily seen that
divz, = —q, in Q, (4.26)

which, together with (4.24) and (4.25), yield

b b 1
sup [ (vh)a (Qha fh)} > [ (Zh)7 (Qha Eh)] > *th”O,Qa
vieH,  |[valla (Al
Vh 0
which concludes the proof. (Il

Owing to Lemmas 4.5 and 4.6, now we are in position of establishing the full discrete inf-sup condition of b.
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Lemma 4.7. There exists B > 0, independent of h, such that for all (qn,&n) € Qp there holds
[b(Vh), (th gh)]

Sh(qn,&n) = sup > Bll(an. &) lq- (4.27)
v €Hy [vhlla
Vh 0
Proof. Tt follows straightforwardly from the estimates (4.16) and (4.22). O

The following result establishes the well-definiteness of operator T},.
Theorem 4.8. Let wg ), € Hy, g (Qs) such that
2uag
14 CEYCQ(OQS) ’

and let fs € L2(Qg), fp € L32(Qp) and g € L2(Qp). Then, (4.12) has a unique solution (Qn, (P, An))
€ Hy, x Qp, with Gy, := (Gg , Up,pn), which allows to define Ty(ws ) = Us . Moreover, there exists a constant
¢t > 0, independent of the solution, such that

[ws,n-nflos < (4.28)

ITh(ws.n)llos = lasnllLes < (@, (9r, An))llxq < ErM(fs, fo, gp)- (4.29)
Proof. Similarly to the continuous case, the result is a direct consequence of Lemmas 4.2-4.4, 4.7 and
Theorem 4.1. d

Having verified the well-definiteness of operator T}, now we are in position of establishing the main result
of this section, namely, the well-posedness of problem (4.1).

Theorem 4.9. Let W, be the compact convex subset of H%L,Fs (Qs) defined by

W), = {vs,h €HL () [venlias < ETM(f&fD,gD)}. (4.30)
Assume that the data fs, fp, and gp satisfy
M(fs, fD, gD) < ?, (431)

where

~ 2uas 1 1
7 := —— min : )
crp C2(Qs)(2 4+ v2)" C*(09s)C
and ¢t > 0 is the constant in (4.29). Then, there exists a unique (up, (pn, An)) € Hy X Qp, solution to (4.1),
which satisfies ug p, € Wy, and

[ (an, (P, An))laxq < e M(fs, fb, gp). (4.32)

Proof. We first observe thanks to (4.29), that assumption (4.31) guarantees that Ty (W}p) C W,. Next, pro-
ceeding analogously to the proof of Lemma 3.9, the assumption (4.31) implies the estimate

pas||Th(ws n) — Ta(Wsn)lIT as < [an(wsp)(un) — an(ws n) (A5), up — U]
= [BS(Ws.p — Ws.n)(Ts,n), Us p — Us ],
which, together with the continuity of BY (see (4.4)) leads to

~ C2 Q 2+ D)
ITh(ws,n) = Th(Ws,n)llL0s < Al 25)( v2)
Has

thus proving the continuity of T}. Then, the existence result follows from the Brower fixed-point theorem.
Moreover, from (4.33) and the fact that Tp(wsg ) belongs to Wy, it is easy to see that T}, is a contraction
mapping if and only if (4.31) holds, which due to the Banach fixed-point theorem, implies the uniqueness of
solution. In turn, the a priori estimate (4.32) follows directly from (4.29). O

1T (Ws.n)llLosllWsn = Ws nll1og, (4.33)
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5. A PRIORI ERROR ANALYSIS

Now we establish the corresponding Céa estimate and the theoretical rate of convergence of the Galerkin
scheme (4.1). To that end, we first introduce some notations and state some previous results. We begin by
defining the set

Hf = {Vh = (vs,n,vp,a) € Hy o [b(Vn), (qn, )] = [8, (an, &n)]  Y(an,&n) € Qh}7

which is clearly noempty, since (4.27) holds. Also, it is not difficult to see that, due to the inf-sup condition
(4.27), the following inequality holds (¢f. [27], Thm. 2.6, [50], Thm. 2.1):

Ch
inf |lu—vpla < <1+ ) inf ||u—vh||H (5.1)
Hh /8

VhE n€EH

In turn, in order to simplify the subsequent analysis, we write ey = us — Us h, €up, = Up — UD A, €p = P — Ph,
and ex = A — \p. As usual, for a given V), = (Vs n, VD) € H% and (7;,,&,) € Qun, we shall then decompose
these errors into

€ug = 6us + Nug>y €up = 6uD + Nup» €p = 617 +Np, ex= Ox + 1y, (52)
with

Ous =Us — Vs, Mug =VSh —Ush, Oup, =UD —VDhy Ny, = VD,h — UDhs

! _ 5.3
0p=D—Tqpy Mp=0qp —DPhy N=A—E& =&, — (5:3)

Finally, since the exact solution ug € H%S (Qg) satisfies divug = 0 in Qg, we have

[B&(ug)(us), vs,n] = [Bs(us)(us), vs.n]  Vvsn € Hyrg(Qs).
Consequently, the following Galerkin orthogonality property holds:

[As(eus), vs,n] + [Bé(us)(us), vs n] — [BE&(us n)(us ), vs i)
+ [Ap(up) — Ap(up ), vp.n] + [b(vh), (ep, ex)] = (5.4)
[ (eusﬂeuD) (qhagh)]

for all Vp 1= (VS,haVD,h) S Hh and (qh,ﬁh) S Qh.
We now establish the main result of this section.

Theorem 5.1. Let fs € L?(Qs), fp € L3/2(Qp) and gp € L*(Op), such that
P
M(fs,fp, gp) < §mln{r,r}, (5.5)

where v and T are the constants defined in Lemma 3.11 and Theorem 4.9, respectively. Let (u,(p,\)) :=

((ug,up), (p,A)) € H x Q and (up, (pn, A\n)) := ((ug,n,upp), (Pr, An)) € Hy x Qp be the unique solutions
of the continuous and discrete problems (2.14) and (4.1), respectively. Then there exists C > 0, independent of
h and the continuous and discrete solutions, such that

I, (3, )= (s (o, M) i < € max {( inf (lu=vallatu—vllE)+ it ||<p,x>—<qh,5h>||q)”}.

i€{2,3} vp€Hp (an,€n)EQR
(5.6)

Proof. In what follows we adapt the proof of Theorem 5 of [21] to the present case. To do that, we let v, =
(Vs,n,Vp,n) € HY and (g, &,) € Qn, and define Ous, Oup s Op, Ox, Mug > Mup» p> and 7y, as in (5.3). In addition,
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we recall that thanks to assumption (5.5), it follows that ug € W and us , € W, (¢f. (3.26) and (4.30)), which
implies (¢f. Thm. 3.12 and 4.9):

lup |13 (div ;00), [us]l1,0s < cx M(fs, b, gp),

lup, i s divson), Iusallies < e M(fs, fo, gp). (5.7)
In turn, since uy, vy, € HE, we observe that
(Mug: Mup) =V —Up € Vi (5.8)
According to the above, we first note that for all vs ;, € Hy, rg(€Qg), there holds
(B (us)(us), vs,n] — [BE(usp)(usn), vsn] = [BE(eus)(us), vsn] + [BE(us,n)(eus), Vi)
= [B&(usn)(Myy)s vs.n] + R(vs,n), (5.9)

with

R(vs,n) = [BE(usn)(dus), vs.n] + [BE(Sus) (us), vs.u] + [BE (1) (us), vs.n] -
Then, adding and subtracting suitable terms in the first equation of (5.4) with v, = (1,4, M,,,) € Vi (cf. (5.8)),
and observing that [b(n,,, My, ), (7, 71)] = 0, we obtain

[an(us ) (V) —an(us p)(an), Vi — up
= [AS(JUS)’T’us] - R(T]us) - [AD(uD) - AD(VD,h)>"7uD] - [b(nusanuD)a (6;0,6)\)] .

Hence, proceeding analogously to the proof of Lemma 3.4, using the continuity of Ag, Bg and b (¢f. (2.19) and
(4.4)), and inequality (2.20), we deduce that

Has ”nug ||%,Qs +ap HnuD ||%{3(div iOp)
< {Caa + Ca[luslls + s .02 ) Fldus s llug .02 + Cacllus 1.0z [, 2.0,

+ L.AD 1 + 2||uDHH3(diV;QD) ||5uD HHB(diV;QD) + ||6uD H%—I?’(div;QD)}HnuD ||H3(diV;QD)
+ Cbll(Mug; Mup) 11155, 63) @

which, together with (5.7) and assumption (5.5), implies that there exists C' > 0, depending only on parameters,
data and other constants, all of them independent of h, such that

9070l < € s { (160 B s+ 1B+ 15000) b (5.10)
1€{2,3}

In this way, from (5.2), (5.10), and the triangle inequality, we obtain

l(€us) €up )1 < [[(Guss Fup) ) l[1 + [|(Mug s My, )1

~ = 5.11
< € o { (16 )l + 6 80 + 166,000 1) ™ }- (1)
1€{2,3}

In turn, to estimate e, and ey we observe that from the discrete inf-sup condition (4.27), the first equation of
(5.4), and the first equation of (5.9), there holds

B”(T’pv UA)HQ < sup [b(vh)7 (77pa 77>\)} = sup [b(vh)> (6177 6>\)] — [b(vh)7 (51)7 6>\)]
vieH,  |[vallm vieH, [vhallm
v #0 v #0
— sup _d As(Cus) Ve + [BS (eus ) (us), vs.] + [BE(us.n)(€us), vs.n]
vp€Hy ”Vh”H
Vh;éo

[Valla

. Ap(up) = Ap(up,1), vou] + [b(va). (5, 61)] }
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Then, the continuity of As, BY, and b (cf. (2.19) and (4.4)), and the inequality (2.20), imply

Bl )l < {Cac + CacIlus s + s allns ) Plews lox
+ Lap {1+ [unllsss aiv ) + 101 155 v s0) 1@ 133 v s + Coll B 03)
which, together with assumption (5.5), inequalities (5.7) and (5.11), yield

i—1

[l < e max {(|<6US,6uD>||H /(B Bun) I+ 165 63) ) } .

Thus, from (5.2), the triangle inequality, and the foregoing bound, we obtain

e enlla < 1680 lq + 1 1)l 1
<@ max {(n(éus,zsuD)uH +11(Buss S s + 15 8) ) } ,

i€{2,3}

(5.12)
where ¢ > 0 is independent of h. Therefore, recalling that v, € H® and (g, An) € Qy, are arbitrary, (5.11) and
(5.12) give

||((eUS7eUD)7 (€p7€>\))HHXQ

<O max {( it (= vl u = valle) + ) = (an&)la) }

i€{2,3} v, €EHY (gn,€n)EQR

which, together with (5.1), concludes the proof. |

Now, in order to provide the theoretical rate of convergence of the Galerkin scheme (4.1), we recall the
approximation properties of the subspaces involved (see, e.g., [10,23,25,27]). Note that each one of them is
named after the unknown to which it is applied later on.

(AP}®) For each vg € H?({g), there holds

|lvs — g(vs)|

(AP}®) For each vp € WH3(Qp) with divvp € H'(Qp), there holds

1,05 < Chlvsl2,0s-

[V = o (D) 155 v ) < Ch{ [¥Dll13 + ldiv v 1.0 |-

(APY) For each g € H'(2) N LE(2), there exists g5 € Ly, 0(Q) such that

lg — anllo,o < Ch|lqll1,0-

(AP}) For each £ € W2 (%), there exists & € Ay (X) such that

16 = &nll1,2.5 < CR|E]ly 35

R

The following theorem provides the theoretical sub-optimal rate of convergence of the Galerkin scheme (4.1),
under suitable regularity assumptions on the exact solution.

Theorem 5.2. Let fs € L?(Qs),fp € L¥2(Qp) and gp € L*(Qp), such that (5.5) holds. Let (u,(p,\)) :=
((ug,up), (p,A)) € Hx Q and (up, (pn, An)) := ((us,n, up.p), (Pr, An)) € Hy x Qy, be the unique solutions of the
continuous and discrete problems (2.14) and (4.1), respectively, and assume that us € H?(2s), up € WH3(Qp),
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divup € H'(Qp), p € HY(Q), and A € WL3(X). Then, there exists C > 0, independent of h and the continuous
and discrete solutions, such that

1(w, (p,A)) — (wh, (s An))Hxq < ChY? max {<||US||2,QS + lupl1,3:05 + Idivup|l1,05

i€{2,3}

155

Tll
+ lplle + Al e z) } (5.13)

Proof. From (AP}®) and (AP)"), it is not difficult to see that

Jinf (= vl + = vilif) < Ch(Jluslzo; + [0, + ldivan
h h

|1,QD)

+ 20212 (JluslB g, + (lupls0n + Idivup|,e.)?)
= C’hA||us 2,05 T ChB(HU_D

1,3:0p + [[divupl1,0p),

with A = 142Chljugl|2,0s and B = 14+2Ch(|lup||1,3;0p +||div upl|1,0p ). Then, using the fact that for sufficiently
small values of h there hold A < ¢ and B < ¢, with ¢ > 0 independent of h, from the above inequality it follows
that

inf (Jlu = vallu + Ju - val) < Ch(Jlug

vpeHy

In turn, from (AP?}) and (AP?), we have that

20 + [upllvgen, + div up]l1ap ). (5.14)

inf s A) — (an, <C(h 12BN s ),
B2 = (@)l < (Rl + 1N )

which together with (5.14), implies

inf (JJu—valu+la=valf) + it (p0) = (an€0lla < Ch(Ilusllza; + lupllison

vih€H) (qn,€n)EQR
+ lldivuplgp + [pll1e ) + OB/ [All g
In this way, from the latter and (5.6) we obtain the desired result. ]

6. NUMERICAL RESULTS

In this section we present some examples illustrating the performance of our mixed finite element scheme
(4.1) on a set of quasi-uniform triangulations of the corresponding domains. Our implementation is based on a
FreeFem++ code [39], in conjunction with the direct linear solver UMFPACK [19].

In order to solve the nonlinear problem (4.1), given wp € H%D (div; Qp) we introduce the Gateaux derivative
associated to Ap (cf. (2.16)), i.e.,

_ F F (wp-u
D.AD(WD)(UD,VD) = L (K 1uD,vD)D + — (|WD|UD7VD)D + — (DD,WD -VD> s
P p |wp| D

p
for all up,vp € H%D (div; Qp). In this way, we propose the Newton-type strategy: Given u) = (ug7h,u%7h) €
Hy, pj), € Lino(Q) and A} € Ap(%), for m > 1, find uj? = (ug,,up ;) € Hy, pi* € Ly o(Q) and A € Ap(%),
such that

[As(ug’y), vs.n] + [BE (g, 1) (ugy), vs ul + [BE(ug) (g, ), vs.n] + DAp (ufy, ) (ui 1, vo.h)
+ IbCvn), (R AT = [BE g ) (g5 ), vl + = (g Bt vo) o+ 16w (6.1)
[b(uzn)a (th Eh)] = [g7 (qh7€h)]

o
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for all vy, = (vsn, vp,n) € Hy, and (gp, &) € Qp.
In all the numerical experiments below, the iterations are terminated once the relative error of the entire

coeflicient vectors between two consecutive iterates is sufficiently small, i.e.,

7 — coeff”||;2

ﬁ'm+1

lcoe

< tol,

lcoe le2

where || - ||;2 is the standard {?>-norm in R, with N denoting the total number of degrees of freedom defining
the finite element subspaces Hj;, and Q, and tol is a fixed tolerance chosen as tol = 1E — 06. For each example
shown below we simply take u) = (0, (0.1,0)) and (p), \?) = 0 as initial guess. As usual, the individual errors
are denoted by:

e(us) == [[us —usnllioq, e(up) := [lup — up all#s@iv;on)>
e(ps) == llps = psullo.os,  e®p) == llpp —Poalloon, €A = A= Aullpsrz(s).-

Notice that we considered [|A — Ay||ps/2(s) in place of [A — Ap[[1 2.5 because of the last norm is not com-
putable. Notice also that [[A — Ayl s/2(x) satisfies the sub-optimal rate of convergence (5.13). Next, we define
the experimental rates of convergence

r(ug) = 0BLE(S)/Cus) o Tog(e(up)/e'(up))

T T loglhs/h) )T log(ho/hp)
r(ps) = PBCES)/EWS)) L Togle(pp)/€(pp)) )y loB(e(N)/€'(N)
ST loglhs /) P log(hp/hp) T log(hs/ly)

where h, and h, (x € {S,D,X}) denote two consecutive mesh sizes with their respective errors e and ¢/,
respectively.

The examples to be considered in this section are described next. In all of them, for the sake of simplicity, we
choose the parameters pu =1, p=1, ag = 1, Kk =1, and K = I. In addition, the condition fﬂ pr = 0 is imposed
via a penalization strategy.

6.1. Example 1: Tombstone-shaped domain without source in the porous media

In our first example we consider a semi-disk-shaped fluid domain coupled with a porous unit square, i.e.,
Qs = {(a:1,x2) : 23 + (22 — 0.5)% < 0.5, 2y > 0.5} and Qp := (—0.5,0.5)2. We consider the Forchheimer
number F' = 1 and the data fg, fp, and gp, are adjusted so that the exact solution in the tombstone-shaped
domain = Qg U X U Qp is given by the smooth functions

_ ( wcos(may) sin(mzs) .
ug(21, 72) = (—7r sin(may) cos(mas) in- O,
[ wsin(mxs) exp(z1) .
up(zy,x2) = (cos(ﬂxg) exp(z1) in Qp,

Di(T1,T2) = sin(wzy) sin(mxs) in Q,, withxe {S,D}.

Notice that the source of the porous media is gp = 0. Notice also that this solution satisfies ug-n = up - n on
Y. However, the Beavers-Joseph—Saffman condition (cf. (2.4)) is not satisfied, the Dirichlet boundary condition
for the Navier—Stokes velocity on I's and the Neumann boundary condition for the Darcy—Forchheimer velocity
on I'p are both non-homogeneous. In this way, the right-hand side of the resulting system must be modified
accordingly.
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TABLE 1. Example 1: Degrees of freedom, mesh sizes, errors, convergence history and Newton
iteration count for the approximation of the Navier—Stokes/Darcy—Forchheimer problem with

F=1.
N hs e(us) r(us) e(ps)  r(ps)
691 0.1915 0.4439 - 0.1588 —
2491 0.0911 0.2293 0.8896 0.0725 1.0561
9562 0.0486 0.1188 1.0441 0.0382 1.0179
37815 0.0242 0.0531 1.1558 0.0175 1.1214
149693 0.0134 0.0288 1.0380 0.0094 1.0474
588445 0.0078 0.0147 1.2290 0.0048 1.2231
N ho e(up) r(up) e(pp) r(pp)
691 0.1901 0.3481 — 0.0643 —
2491 0.0978 0.1678 1.0974 0.0305 1.1202
9562 0.0535 0.0856 1.1169 0.0151 1.1629
37815 0.0249 0.0427 0.9122 0.0075 0.9206
149693 0.0145 0.0214 1.2713 0.0037 1.2840
588445 0.0068 0.0107 0.9140 0.0019 0.9087
N hs e(A) r(A) iter
691 0.1250 0.0718 - 7
2491 0.0625 0.0352 1.0308 7
9562 0.0313 0.0175 1.0084 8
37815 0.0156  0.0087 1.0060 8
149693 0.0078 0.0043 1.0012 8
588445 0.0039 0.0022 1.0004 8

6.2. Example 2: Rectangle domain with a Kovasznay solution

In our second example we consider a rectangular domain ) = Qg U X U Qp, with Qg := (—0.5,1.5) x (0,0.5)
and Qp := (—0.5,1.5) x (—=0.5,0). We consider the Forchheimer number F' =1 and the data fs, fp, and gp, are
adjusted so that the exact solution in the rectangle domain €2 is given by the smooth functions

1 — exp(wz1) cos(2mxs) )
us(1,22) = (;;exp(wml)sin(%rxg) > in Qs
_ ( (z1 4+ 0.5)(z1 — 1.5) exp(x2) )
up(z1,22) = <(x2 +2)(220 + 1) exp(;)l) ) in Qp,

1
Du(X1, ) = ~3 exp(2wz1) + Po

and

w

in

—872

- L+ M—1+16ﬂ.2'

O,

with x € {S,D},

The constant pg is such that fQ p = 0. Notice that (ug, ps) is the well known analytical solution for the Navier—
Stokes problem obtained by Kovasznay in [41], which presents a boundary layer at {—0.5} x (—0.5,0.5). Notice
also that in this example both the conservation of mass and the Beavers—Joseph—Saffman boundary conditions
(¢f. (2.4)) are not satisfied and the right-hand side of the resulting system must be modified accordingly.

6.3. Example 3: 2D helmet-shaped domain with different Forchheimer numbers

In our last example we focus on the performance of the iterative method (6.1) with respect to the Forchheimer
number F'. To that end, and motivated by Section 2 of [14], we consider a 2D helmet-shaped domain. More
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TABLE 2. Example 2: Degrees of freedom, mesh sizes, errors, convergence history and Newton
iteration count for the approximation of the Navier—Stokes/Darcy—Forchheimer problem with
F=1.

N hs e(us) r(us) e(ps)  r(ps)

989 0.2001 10.3170 - 8.2614 -
3880 0.0966  4.5495 1.1249 3.9855 1.0015
13888 0.0492 2.2051 1.0713 1.8753 1.1151
55727 0.0270 1.1168 1.1342 0.9489 1.1357
213833 0.0161 0.5456 1.3877 0.4746 1.3423
858658 0.0078 0.2769 0.9419 0.2404 0.9444
N hp efup)  r(up) e(pp) r(pp)
989 0.2001  0.4678 -
3880 0.0950 0.2249 0.9835 3.3197 1.0578
13 888 0.0500 0.1145 1.0518 1.7322 1.0135
55727 0.0254  0.0569 1.0326 0.9133 0.9457
213833 0.0160 0.0278 1.5453 0.4353 1.5956
858658 0.0066 0.0141 0.7674 0.2295 0.7283
N hs e(N) r(A) iter
989 0.1250  8.9940 - 6
3880 0.0625 4.6538 0.9505 6
13 888 0.0313  2.3459 0.9883 6
55727 0.0156  1.1788 0.9928 6

6

6

213833 0.0078 0.5962 0.9835
858658 0.0039 0.3078 0.9539

TABLE 3. Example 3: Degrees of freedom, mesh sizes, errors, convergence history and Newton
iteration count for the approximation of the Navier-Stokes/Darcy—Forchheimer problem with
F =10.

N hs e(us) r(us) e(ps)  r(ps)

1007 0.1881 1.0274 — 0.5355 -
3790 0.1088 0.5114 1.2753 0.2156 1.6636
14014 0.0481 0.2472 0.8896 0.0978 0.9668
55428 0.0254 0.1243 1.0742 0.0483 1.1028
214828 0.0137 0.0620 1.1285 0.0237 1.1564
883963 0.0077 0.0307 1.2174 0.0123 1.1392
N hp e(up) r(up) e(pp) r(pp)
1007 0.2001 1.2760 —
3790 0.0950 0.6135 0.9837 0.0385 1.4165
14014 0.0494 0.3115 1.0366 0.0150 1.4375
55428 0.0262 0.1566 1.0813 0.0067 1.2820
214828 0.0146 0.0784 1.1839 0.0033 1.2215
883963 0.0072 0.0393 0.9815 0.0016 0.9948
N hs; e(N) () iter
1007 0.1250 0.1930 — 7
3790 0.0625 0.0704 1.4545 8
14014 0.0313 0.0296 1.2527 9

9

9

9

55428 0.0156 0.0141 1.0638
214828 0.0078 0.0070 1.0217
883963 0.0039 0.0035 1.0093
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TABLE 4. Example 3: Convergence behavior of the iterative method (6.1) with respect to the

Forchheimer number F.

F h=0.2001 h=0.1088 h=0.0494 h=0.0262 h=0.0146 h =0.0077
0 4 4 4 4 4 4
1 5 5 5 6 6 6
10 7 8 9 9 9 9
100 8 9 10 10 11 11
[“s,h] 1 [USJL] 2

[uD’h] 2- .5 -0. ‘0‘.‘8 .

|uh | 0.018 1.7 35 52

FIGURE 2. Example 1: Velocity components (top panels), velocity streamlines and pressure field

in the whole domain (bottom panels).
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-1.6e+02

Py,

FIGURE 3. Example 2: Velocity components (top panels), velocity streamlines and pressure field
in the whole domain (bottom panels).

precisely, we consider the domain Q = s UX U Qp, where Qp := (—1,1) x (—=0.5,0) and Qg := (-1, —0.75) x
(0,1.25) U Qs.1 U (—0.5,0.5) x (0,0.25) U Qg5 U (0.75,1) x (0, 1.25), with

Qg = {(a:l, 22) 1 (21 +0.5)2 + (w2 — 0.5)% > 0.252, —0.75 < &1 < —0.5, x5 > 0}

and
Qg 1= {(xl,m2) : (w1 — 0.5)2 + (22 — 0.5)2 > 0.252, 0.5 < 21 < 0.75, 23 > o}.

The data fg, fp, and gp, are chosen so that the exact solution in the 2D helmet-shaped domain 2 is given by
the smooth functions

_( —sin(27z1) cos(2mx2) i
uS(!Elal’2) - (cos(27rz1)sin(27rx2) s

_ ([ sin(2mwy) exp(as) i
uD(:lZ1,132) - (sin(Qﬂx2)eXP<xl) e

ps (1, 22) = sin(mxy) exp(z2) + po in Q,, with x€ {S,D}.

The constant pg is such that pr = 0. Notice that, this solution satisfies us-n =up-non ¥ and up -n =0
on I'p. However, the Beavers—Joseph—Saffman condition (¢f. (2.4)) is not satisfied and the Dirichlet boundary
condition for the Navier—Stokes velocity on I's is non-homogeneous and therefore the right-hand side of the
resulting system must be modified accordingly.

In Tables 1-3 we summarise the convergence history for a sequence of quasi-uniform triangulations, consid-
ering the finite element spaces introduced in Section 4.1, and solving the nonlinear problem (6.1), which require
around eight, six and nine Newton iterations for the Examples 1, 2 and 3, respectively. We observe that the
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FIGURE 4. Example 3: Velocity components (top panels), velocity streamlines and pressure field
in the whole domain (bottom panels).

sub-optimal rate of convergence O(h'/?) provided by Theorem 5.2 is attained in all the cases. Even more, the
numerical result suggest that there exist a way to prove optimal rate of convergence O(h). In Table 4 we show
the behaviour of the iterative method (6.1) as a function of the Forchheimer number F', considering different
mesh sizes h := max {hs, hD}, and a tolerance tol = 1E — 06. Here we observe that the higher the parameter
F the higher the number of iterations as it occurs also in the Newton method for the Navier—Stokes/Darcy—
Forchheimer coupled problem. Notice also that when F' = 0 the Darcy-Forchheimer equations reduce to the
classical linear Darcy equations and as expected the iterative Newton method (6.1) is faster.

On the other hand, the velocity components, velocity streamlines and pressure field in the whole domain of
the approximate solutions for the three examples are displayed in Figures 2—4. All the figures were obtained
with 588445, 858 658, and 883 963 degrees of freedom for the Examples 1, 2, and 3, respectively. In particular,
we can observe in Figure 2 that the second components of ug and up coincide on ¥ as expected, and hence,
the continuity of the normal components of the velocities on X is preserved. In turn, we can see that the
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velocity streamlines are higher in the Darcy—Forchheimer domain. Moreover, it can be seen that the pressure
is continuous in the whole domain and preserves the sinusoidal behaviour. Next, in Figure 3 we observe that
the pressure presents a boundary layer at {—0.5} x (—0.5,0.5) as expected. Finally, similarly to Figure 2, in
Figure 4 we can also observe the continuity of the normal components of the velocities on ¥ since their second
components coincide on the interface.
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