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A CONFORMING MIXED FINITE ELEMENT METHOD FOR THE
NAVIER–STOKES/DARCY–FORCHHEIMER COUPLED PROBLEM
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Ricardo Oyarzúa3,5,*

Abstract. In this work we present and analyse a mixed finite element method for the coupling of fluid
flow with porous media flow. The flows are governed by the Navier–Stokes and the Darcy–Forchheimer
equations, respectively, and the corresponding transmission conditions are given by mass conservation,
balance of normal forces, and the Beavers–Joseph–Saffman law. We consider the standard mixed for-
mulation in the Navier–Stokes domain and the dual-mixed one in the Darcy–Forchheimer region, which
yields the introduction of the trace of the porous medium pressure as a suitable Lagrange multiplier.
The well-posedness of the problem is achieved by combining a fixed-point strategy, classical results
on nonlinear monotone operators and the well-known Schauder and Banach fixed-point theorems. As
for the associated Galerkin scheme we employ Bernardi–Raugel and Raviart–Thomas elements for the
velocities, and piecewise constant elements for the pressures and the Lagrange multiplier, whereas its
existence and uniqueness of solution is established similarly to its continuous counterpart, using in this
case the Brouwer and Banach fixed-point theorems, respectively. We show stability, convergence, and
a priori error estimates for the associated Galerkin scheme. Finally, we report some numerical examples
confirming the predicted rates of convergence, and illustrating the performance of the method.
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1. Introduction

The modelling and numerical simulation of incompressible fluid flows in regions partially occupied by porous
media has become a very active research area during the last decades, mostly due to its relevance in the fields
of natural sciences and engineering branches. In particular, these kind of phenomena can be found in several
applications such as in vuggy porous media appearing in petroleum extraction (see, e.g., [3, 4]), groundwater
system in karst aquifers (see, e.g., [26,43]), reservoir wellbore (see, e.g., [2,5]), internal ventilation of a motorcycle
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helmet (see, e.g., [14,18]), and blood motion in tumors and microvessels (see, e.g., [45,52]), to name a few. One
of the most popular models utilised to describe the aforementioned interaction is the Navier–Stokes/Darcy–
Forchheimer (or Navier–Stokes/Darcy, Stokes/Darcy) model, which consists in a set of differential equations
where the Navier–Stokes (or Stokes) problem is coupled with the Darcy–Forchheimer (or Darcy) model through
a set of coupling equations acting on a common interface, which are given by mass conservation, balance
of normal forces, and the so called Beavers–Joseph–Saffman condition. In [7, 15, 16, 20–22, 28–31], and in the
references therein, we can find a large list of contributions devoted to numerically approximate the solution
of this interaction problem, including primal and mixed conforming formulations, as well as nonconforming
methods. At this point we remark that the Navier–Stokes/Darcy–Forchheimer model is considered when the
fluid velocity is higher and the porosity is nonuniform, which holds when the kinematic forces dominates over
viscous forces. We refer the reader to [6, 34, 44, 48] for the derivation and analysis of the Darcy–Forchheimer
equations.

Up to the authors’ knowledge, one of the first works in analysing the coupling of Navier–Stokes and Darcy–
Forchheimer equations is [2]. In that work, the authors study the coupling of a 2D reservoir model with a 1.5D
vertical wellbore model, both written in axisymmetric form. The physical problems are described by the Darcy–
Forchheimer and the compressible Navier–Stokes equations, respectively, together with an exhaustive energy
equation. Later on, motivated by the study of the internal ventilation of a motorcycle helmet, a penalization
approach was introduced and analysed in [18]. In particular, the authors consider the velocity and pressure in
the whole domain as the main unknowns of the system, and the corresponding Galerkin approximation employs
piecewise quadratic elements and piecewise linear for the velocity and pressure, respectively. Notice that this
method is applied to both 2D and 3D domains. More recently, in [53] a 3D discrete dynamical system was derived
from the generalized Navier–Stokes equations for incompressible flow with nonlinear drag forces (represented by
Forchheimer terms) in porous media via a Galerkin procedure. We observe that this method can be employed
in subgrid-scale models of synthetic-velocity form for large-eddy simulation of turbulent flow through porous
media.

Furthermore, and concerning simpler related models, we highlight that a conforming mixed method for the
Stokes–Darcy coupled problem has been introduced and analysed in [28]. In this work, the velocity-pressure
formulation in the Stokes equation and the dual-mixed approach in the Darcy region is considered, which yields
the introduction of the trace of the porous medium pressure as a suitable Lagrange multiplier. Later on, it was
shown in [29] that the use of any pair of stable Stokes and Darcy elements guarantees the well-posedness of
the corresponding Stokes–Darcy Galerkin scheme. More recently, in [21] the authors extend the results from
[28] to the Navier–Stokes/Darcy coupled problem. Since this coupled system is nonlinear (due to the convective
term in the free fluid region), the analysis of the continuous problem begins with the linearisation of the Oseen
problem in the free fluid domain. This simplified model is then studied by means of the classical Babuška–Brezzi
theory, similarly as it was done for the Stokes–Darcy coupling in [28]. Then, a fixed-point strategy based on
the aforementioned linearisation is associate to the nonlinear coupling, which allows to establish existence and
uniqueness of solution thanks to Schauder’s and Banach’s fixed point theorems, respectively.

According to the above bibliographic discussion, in this paper we aim to extend the results obtained in
[21, 28, 29] to the Navier–Stokes/Darcy–Forchheimer coupled problem. We consider the standard velocity-
pressure formulation for the Navier–Stokes equation and unlike [21], in the porous medium we consider the
Darcy–Forchheimer equation in its dual-mixed formulation. In this way, we obtain the velocity and the pressure
of the fluid in both media as the main unknowns of the coupled system. Since one of the interface conditions
becomes essential, we proceed similarly to [21,28] and incorporate the trace of the porous medium pressure as an
additional unknown. The well-posedness of both the continuous and discrete formulations is proved, employing
a fixed-point argument and clasical results on nonlinear monotone operators (see [50, 51]). In particular, for
the continuous formulation, under a smallness data assumption, we prove existence and uniqueness of solution
by means of a fixed-point strategy where the Schauder (for existence) and Banach (for uniqueness) fixed-point
theorems are employed.
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Using similar arguments (but applying Brower’s fixed-point theorem instead of Schauder’s for the existence
result) we prove the well-posedness of the discrete problem for a specific choice of discrete space. More precisely,
we consider Bernardi–Raugel elements for the velocity in the free fluid region, Raviart–Thomas elements of
lowest order for the filtration velocity in the porous media, piecewise constants with null mean value for the
pressures, and piecewise constant elements for the Lagrange multiplier on the interface.

The rest of this paper is organised as follows. In Section 2 we introduce the model problem and derive
the variational formulation. Next, in Section 3, we establish that our variational formulation is well posed. The
corresponding Galerkin scheme is introduced and analysed in Section 4. In Section 5 we derive the corresponding
Céa’s estimate and a sub-optimal rate of convergence. Finally, several numerical examples illustrating the
performance of the method, confirming the theoretical sub-optimal order of convergence and suggesting an
optimal rate of convergence, are reported in Section 6.

We end this section by introducing some definitions and fixing some notations. Let 𝒪 ⊆ R𝑛, 𝑛 ∈ {2, 3},
denote a domain with Lipschitz boundary Γ. For 𝑠 ≥ 0 and 𝑝 ∈ [1,+∞], we denote by L𝑝(𝒪) and W𝑠,𝑝(𝒪) the
usual Lebesgue and Sobolev spaces endowed with the norms ‖ · ‖L𝑝(𝒪) and ‖ · ‖𝑠,𝑝;𝒪, respectively. Note that
W0,𝑝(𝒪) = L𝑝(𝒪). If 𝑝 = 2, we write H𝑠(𝒪) in place of W𝑠,2(𝒪), and denote the corresponding Lebesgue and
Sobolev norms by ‖ · ‖0,𝒪 and ‖ · ‖𝑠,𝒪, respectively, and the seminorm by | · |𝑠,𝒪. In addition, we denote by
W

1
𝑞 ,𝑝(Γ) the trace space of W1,𝑝(𝒪) and W− 1

𝑞 ,𝑞(Γ) the dual space of W
1
𝑞 ,𝑝(Γ) endowed with the norms ‖ ·‖ 1

𝑞 ,𝑝;Γ

and ‖ · ‖− 1
𝑞 ,𝑞;Γ, respectively, with 𝑝, 𝑞 ∈ (1,+∞) satisfying 1/𝑝 + 1/𝑞 = 1. By M and M we will denote the

corresponding vectorial and tensorial counterparts of the generic scalar functional space M, and ‖ · ‖, with no
subscripts, will stand for the natural norm of either an element or an operator in any product functional space.
Additionally, we recall that H(div ;𝒪) :=

{︁
w ∈ L2(𝒪) : div w ∈ L2(𝒪)

}︁
, is a standard Hilbert space in the

realm of mixed problems (see, e.g., [12]). On the other hand, the following symbol for the L2(Γ) inner product

⟨𝜉, 𝜆⟩Γ :=
∫︁

Γ

𝜉𝜆 ∀𝜉, 𝜆 ∈ L2(Γ),

will also be employed for their respective extension as the duality parity between W− 1
𝑞 ,𝑞(Γ) and W

1
𝑞 ,𝑝(Γ).

Hereafter, when no confusion arises, | · | will denote the Euclidean norm in R𝑛 or R𝑛×𝑛. Furthermore, given a
non-negative integer 𝑘 and a subset 𝑆 of R𝑛, P𝑘(𝑆) stands for the space of polynomials defined on 𝑆 of degree
≤ 𝑘. Finally, we employ 0 as a generic null vector, and use 𝐶 and 𝑐, with or without subscripts, bars, tildes or
hats, to denote generic positive constants independent of the discretization parameters, which may take different
values at different places.

2. The continuous formulation

In this section we introduce the model problem and derive the corresponding weak formulation. For sim-
plicity of exposition we set the problem in R2. However, our study can be extended to the 3D case with few
modifications, which will be pointed out appropriately in the paper.

2.1. The model problem

In order to describe the geometry, we let ΩS and ΩD be two bounded and simply connected polygonal domains
in R2 such that 𝜕ΩS ∩ 𝜕ΩD = Σ ̸= ∅ and ΩS ∩ ΩD = ∅. Then, let ΓS := 𝜕ΩS ∖ Σ, ΓD := 𝜕ΩD ∖ Σ, and denote
by n the unit normal vector on the boundaries, which is chosen pointing outward from Ω := ΩS ∪ Σ ∪ ΩD and
ΩS (and hence inward to ΩD when seen on Σ). On Σ we also consider a unit tangent vector t (see Figure 1).
The problem we are interested in consists of the movement of an incompressible viscous fluid occupying ΩS

which flows towards and from a porous medium ΩD through Σ, where ΩD is saturated with the same fluid. The
mathematical model is defined by two separate groups of equations and by a set of coupling terms. In the free
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Figure 1. Sketch of a 2D geometry of our Navier–Stokes/Darcy–Forchheimer model.

fluid domain ΩS, the motion of the fluid can be described by the incompressible Navier–Stokes equations:

𝜎S = −𝑝SI + 2𝜇e(uS) in ΩS, −div𝜎S + 𝜌(∇uS)uS = fS in ΩS,
div uS = 0 in ΩS, uS = 0 on ΓS,

(2.1)

where the unknowns are the fluid velocity uS, the pressure 𝑝S, and the Cauchy stress tensor 𝜎S. In addition,

e(uS) :=
1
2

{︁
∇uS + (∇uS)t

}︁
stands for the strain tensor of small deformations, 𝜇 is the viscosity of the fluid, 𝜌

is the density, and fS ∈ L2(ΩS) is a given external force.
In the porous medium ΩD we consider a nonlinear version of the Darcy problem to approximate the velocity

uD and the pressure 𝑝D, which is considered when the fluid velocity is higher and the porosity is nonuniform.
More precisely, we consider the Darcy–Forchheimer equations [44,48]:

𝜇

𝜌
K−1uD +

𝐹

𝜌
|uD|uD +∇𝑝D = fD in ΩD, div uD = gD in ΩD, uD · n = 0 on ΓD, (2.2)

where 𝐹 represents the Forchheimer number of the porous medium, and K ∈ L∞(ΩD) is a symmetric tensor
in ΩD representing the intrinsic permeability 𝜅 of the porous medium divided by the viscosity 𝜇 of the fluid.
Throughout the paper we assume that there exists 𝐶K > 0 such that

w ·K−1(x)w ≥ 𝐶K|w|2, (2.3)

for almost all x ∈ ΩD, and for all w ∈ R2. In turn, as will be explained below, fD and 𝑔D are given functions
in L3/2(ΩD) and L2(ΩD), respectively. In addition, according to the compressibility conditions, the boundary
conditions on uD and uS, and the principle of mass conservation (cf. (2.4)), 𝑔D must satisfy the compatibility
condition: ∫︁

ΩD

𝑔D = 0.

Finally, the transmission conditions that couple the Navier–Stokes and the Darcy–Forchheimer models through
the interface Σ are given by

uS · n = uD · n on Σ and 𝜎Sn +
𝛼𝑑𝜇√
t · 𝜅t

(uS · t) t = −𝑝Dn on Σ, (2.4)

where 𝛼𝑑 is a dimensionless positive constant which depends only on the geometrical characteristics of the porous
medium and usually assumes values between 0.8 and 1.2 (see [9,18]). The first condition in (2.4) is a consequence
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of the incompressibility of the fluid and of the conservation of mass across Σ. The second transmission condition
on Σ can be decomposed, at least formally, into its normal and tangential components as follows:

(𝜎Sn) · n = −𝑝D and (𝜎Sn) · t = − 𝛼𝑑𝜇√
t · 𝜅t

(uS · t) on Σ. (2.5)

The first equation in (2.5) corresponds to the balance of normal forces, whereas the second one is known as the
Beavers–Joseph–Saffman condition, which establishes that the slip velocity along Σ is proportional to the shear
stress long Σ. We refer the reader to Section 3.2 of [8] (see also [40,49]) for further details on the choice of this
interface condition.

2.2. The variational formulation

In this section we proceed analogously to Section 2 of [28] and derive a weak formulation of the coupled
problem given by (2.1), (2.2), and (2.4). To this end, let us first introduce further notations and definitions. In
what follows, given ⋆ ∈ {S,D}, we set

(𝑝, 𝑞)⋆ :=
∫︁

Ω⋆

𝑝 𝑞, (u,v)⋆ :=
∫︁

Ω⋆

u · v, and (𝜎, 𝜏 )⋆ :=
∫︁

Ω⋆

𝜎 : 𝜏 ,

where, given two arbitrary tensors 𝜎 and 𝜏 , 𝜎 : 𝜏 = tr (𝜎t𝜏 ) =
∑︀2

𝑖,𝑗=1 𝜎𝑖𝑗𝜏𝑖𝑗 . Furthermore, in the sequel we
will employ the following Banach space,

H3(div ; ΩD) :=
{︁
vD ∈ L3(ΩD) : div vD ∈ L2(ΩD)

}︁
,

endowed with the norm

‖vD‖H3(div ;ΩD) :=
(︁
‖vD‖3L3(ΩD) + ‖div vD‖30,ΩD

)︁1/3

,

and the following subspaces of H1(ΩS) and H3(div ; ΩD), respectively

H1
ΓS

(ΩS) :=
{︁
vS ∈ H1(ΩS) : vS = 0 on ΓS

}︁
,

H3
ΓD

(div ; ΩD) :=
{︁
vD ∈ H3(div ; ΩD) : vD · n = 0 on ΓD

}︁
.

Notice that H3(div ; ΩD) = H(div ; ΩD) ∩ L3(ΩD), which guarantees that vD · n is well defined for vD ∈
H3

ΓD
(div ; ΩD).

To begin with the derivation of our variational formulation for the Navier–Stokes/Darcy–Forchheimer problem
we first proceed similarly to [21,28] and test the second equation of (2.1) by vS ∈ H1

ΓS
(ΩS), integrate by parts

and utilize the second equation of (2.4) to obtain

2𝜇(e(uS), e(vS))S +
⟨

𝛼𝑑𝜇√
t · 𝜅t

uS · t,vS · t
⟩

Σ

+ 𝜌((∇uS)uS,vS)S

− (𝑝S,div vS)S + ⟨vS · n, 𝜆⟩Σ = (f ,vS)S,
(2.6)

for all vS ∈ H1
ΓS

(ΩS), where 𝜆 is a further unknown representing the trace of the porous medium pressure
on Σ, that is 𝜆 = 𝑝D|Σ. The corresponding space of 𝜆 will be specified next. In turn, we incorporate the
incompressibility condition div uS = 0 in ΩS weakly as follows

(𝑞S,div uS)S = 0 ∀ qS ∈ L2(ΩS). (2.7)

Next, we multiply the first equation of (2.2) by vD ∈ H3
ΓD

(div ; ΩD) and integrate by parts to obtain

𝜇

𝜌
(K−1uD,vD)D +

𝐹

𝜌
(|uD|uD,vD)D − (𝑝D,div vD)D − ⟨vD · n, 𝜆⟩Σ = (fD,vD)D, (2.8)
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for all vD ∈ H3
ΓD

(div ; ΩD). Observe that if uD ∈ H3(div ; ΩD) and 𝑝D ∈ L2(ΩD), then |uD|uD · vD ∈ L1(ΩD)
and 𝑝D div vD ∈ L1(ΩD), and hence the second and third terms of (2.8) are well defined, which justifies the
introduction of the spaces H3(div ; ΩD) for the derivation of our weak formulation. Moreover, for each vD ∈
H3(div ; ΩD), the normal trace vD · n : H3(div ; ΩD) → W− 1

3 ,3(𝜕ΩD) is well defined and continuous. In fact,
since W1, 3

2 (ΩD) is continuously embedded into L2(ΩD) then for each 𝜉 ∈ W
1
3 , 3

2 (𝜕ΩD) the quantity

⟨vD · n, 𝜉⟩𝜕ΩD
:=
∫︁

ΩD

vD · ∇̃︀𝛾−1
0 (𝜉) +

∫︁
ΩD

̃︀𝛾−1
0 (𝜉)div vD,

is well defined, where ⟨·, ·⟩𝜕ΩD
stands for the duality pairing between W− 1

3 ,3(𝜕ΩD) and W
1
3 , 3

2 (𝜕ΩD), and ̃︀𝛾−1
0

is the right inverse of the well known trace operator 𝛾0 : W1, 3
2 (ΩD) → W

1
3 , 3

2 (𝜕ΩD). Furthermore, given vD ∈
H3

ΓD
(div ; ΩD), the boundary condition vD · n = 0 on ΓD means (see e.g. [24], Appendix A and [21,31])

⟨vD · n, 𝐸0,D(𝜉)⟩𝜕ΩD
= 0 ∀ 𝜉 ∈ W

1
3 , 3

2 (ΓD),

where 𝐸0,D : W
1
3 , 3

2 (ΓD) → W
1
3 , 3

2 (𝜕ΩD) is the extension operator defined by

𝐸0,D(𝜉) :=
{︂
𝜉 on ΓD

0 on Σ ∀ 𝜉 ∈ W
1
3 , 3

2 (ΓD),

We observe that according to Theorem 1.5.2.3 of [37], the operator 𝐸0,D is well defined. In turn, similarly to
equation (A.6) of [24] we can identify the restriction of vD · n to Σ with an element of W− 1

3 ,3(Σ), namely

⟨vD · n, 𝜉⟩Σ := ⟨vD · n, 𝐸Σ(𝜉)⟩𝜕ΩD
∀𝜉 ∈ W

1
3 , 3

2 (Σ), (2.9)

where 𝐸Σ : W
1
3 , 3

2 (Σ) → W
1
3 , 3

2 (𝜕ΩD) is any bounded extension operator. In addition, analogously to the proof
of Lemma A.2 from [24] one can show that for all 𝜓 ∈ W

1
3 , 3

2 (𝜕ΩD), there exist unique elements 𝜓Σ ∈ W
1
3 , 3

2 (Σ)
and 𝜓ΓD ∈ W

1
3 , 3

2 (ΓD) such that
𝜓 = 𝐸Σ(𝜓Σ) + 𝐸0,D(𝜓ΓD), (2.10)

and there exist 𝐶1, 𝐶2 > 0, such that

𝐶1

{︁
‖𝜓Σ‖ 1

3 , 3
2 ;Σ + ‖𝜓ΓD‖ 1

3 , 3
2 ;ΓD

}︁
≤ ‖𝜓‖ 1

3 , 3
2 ;𝜕ΩD

≤ 𝐶2

{︁
‖𝜓Σ‖ 1

3 , 3
2 ;Σ + ‖𝜓ΓD‖ 1

3 , 3
2 ;ΓD

}︁
. (2.11)

In fact, although Lemma A.2 of [24] is derived for W1− 1
𝑝 ,𝑝(𝜕ΩD) with 𝑝 ≥ 2, using a slight modification of

Section 2 from [35] one can easily extend the analysis to the case 𝑝 > 1. According to the above, for each
vD ∈ H3

ΓD
(div ; ΩD), vD · n|Σ ∈ W− 1

3 ,3(Σ), which suggests to set W
1
3 , 3

2 (Σ) as the appropriate space for the
unknown 𝜆, that is

𝜆 = 𝑝D|Σ ∈ W
1
3 , 3

2 (Σ).

Note that, in principle, the space for 𝑝D does not allow enough regularity for the trace 𝜆 to exist. However, the
solution of (2.2) has the pressure in W1, 3

2 (ΩD) ∩ L2(ΩD).
Finally, we impose the second equation of (2.2) and the first equation of (2.4) weakly as follows

(𝑞D,div uD)D = (gD, qD)D ∀ qD ∈ L2(ΩD), (2.12)

and
⟨uS · n− uD · n, 𝜉⟩Σ = 0 ∀ 𝜉 ∈ W

1
3 , 3

2 (Σ). (2.13)

As a consequence of the above, we write Ω := ΩS ∪ Σ ∪ ΩD, and define 𝑝 := 𝑝S𝜒S + 𝑝D𝜒D, with 𝜒⋆ being the
characteristic function:

𝜒⋆ :=
{︂

1 in Ω⋆,
0 in Ω ∖ Ω⋆,
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for ⋆ ∈ {S,D}, to obtain the variational problem: Find uS ∈ H1
ΓS

(ΩS), 𝑝 ∈ L2(Ω), uD ∈ H3
ΓD

(div ; ΩD) and
𝜆 ∈ W

1
3 , 3

2 (Σ) such that (2.6)–(2.13) hold.
Now, let us observe that if (uS,uD, 𝑝, 𝜆) is a solution of the resulting variational problem, then for all 𝑐 ∈ R,

(uS,uD, 𝑝+ 𝑐, 𝜆+ 𝑐) is also a solution. Then, we avoid the non-uniqueness of (2.6)–(2.13) by requiring from now
on that 𝑝 ∈ L2

0(Ω), where

L2
0(Ω) :=

{︂
𝑞 ∈ L2(Ω) :

∫︁
Ω

𝑞 = 0
}︂
.

In this way, we group the spaces and unknowns as follows:

H := H1
ΓS

(ΩS)×H3
ΓD

(div ; ΩD), Q := L2
0(Ω)×W

1
3 , 3

2 (Σ),
u := (uS,uD) ∈ H, (𝑝, 𝜆) ∈ Q,

and propose the mixed variational formulation: Find (u, (𝑝, 𝜆)) ∈ H×Q, such that

[a(uS)(u),v] + [b(v), (𝑝, 𝜆)] = [f ,v] ∀v := (vS,vD) ∈ H,
[b(u), (𝑞, 𝜉)] = [g, (𝑞, 𝜉)] ∀(𝑞, 𝜉) ∈ Q, (2.14)

where, given wS ∈ H1
ΓS

(ΩS), the operator a(wS) : H → H′ is defined by

[a(wS)(u),v] := [𝒜S(uS),vS] + [ℬS(wS)(uS),vS] + [𝒜D(uD),vD], (2.15)

with

[𝒜S(uS),vS] := 2𝜇(e(uS), e(vS))S +
⟨

𝛼𝑑𝜇√
t · 𝜅t

uS · t,vS · t
⟩

Σ

,

[ℬS(wS)(uS),vS] := 𝜌((∇uS)wS,vS)S,

[𝒜D(uD),vD] :=
𝜇

𝜌

(︀
K−1uD,vD

)︀
D

+
𝐹

𝜌
(|uD|uD,vD)D ,

(2.16)

whereas the operator b : H → Q′ is given by

[b(v), (𝑞, 𝜉)] := −(div vS, q)S − (div vD, q)D + ⟨vS · n− vD · n, 𝜉⟩Σ . (2.17)

In turn, the functionals f and g are defined by

[f ,v] := (fS,vS)S + (fD,vD)D and [g, (𝑞, 𝜉)] := −(𝑔D, 𝑞)D. (2.18)

In all the terms above, [ ·, · ] denotes the duality pairing induced by the corresponding operators.

2.3. Stability properties

Let us now discuss the stability properties of the operators in (2.16) and (2.17). We begin by observing that
the operators 𝒜S, ℬS and b are continuous:⃒⃒⃒

[𝒜S(uS),vS]
⃒⃒⃒
≤ 𝐶𝒜S‖uS‖1,ΩS‖vS‖1,ΩS ,⃒⃒⃒

[ℬS(wS)(uS),vS]
⃒⃒⃒
≤ 𝜌𝐶2(ΩS)‖wS‖1,ΩS‖uS‖1,ΩS‖vS‖1,ΩS ,⃒⃒⃒

[b(v), (𝑞, 𝜉)]
⃒⃒⃒
≤ 𝐶b‖v‖H‖(𝑞, 𝜉)‖Q,

(2.19)

where 𝐶(ΩS) is the continuity constant of the Sobolev embedding from H1(ΩS) into L4(ΩS). In turn, from the
definition of 𝒜D (cf. (2.16)), (2.3), and the triangle and Hölder inequalities, we obtain that there exists 𝐿𝒜D > 0,
depending only on 𝜇, 𝜌, 𝐹,K, and ΩD, such that

‖𝒜D(uD)−𝒜D(vD)‖(H3(div ;ΩD))′

≤ 𝐿𝒜D

{︁
‖uD − vD‖H3(div ;ΩD) + ‖uD − vD‖H3(div ;ΩD)

(︁
‖uD‖H3(div ;ΩD) + ‖vD‖H3(div ;ΩD)

)︁}︁
,

(2.20)
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for all uD,vD ∈ H3(div ; ΩD). In addition, using the Cauchy–Schwarz and Young inequalities, it is not difficult
to see that f and g are bounded, that is, there exist constants 𝑐f , 𝑐g > 0, such that

‖f‖H′ ≤ 𝑐f

{︁
‖fS‖0,ΩS + ‖fD‖L3/2(ΩD)

}︁
(2.21)

and
‖g‖Q′ ≤ 𝑐g‖𝑔D‖0,ΩD , (2.22)

which confirm the announced smoothness of fD. On the other hand, from the well known Korn and Poincaré
inequalities (see, e.g., [27]), we easily obtain that there exists a constant 𝛼S > 0, depending only on ΩS, such
that

[𝒜S(vS),vS] ≥ 2𝜇𝛼S‖vS‖21,ΩS
∀vS ∈ H1

ΓS
(ΩS). (2.23)

In turn, integrating by parts and assuming that div wS = 0 in ΩS, similarly to equation (29) of [21], we obtain

[ℬS(wS)(vS),vS] =
𝜌

2

∫︁
Σ

(wS · n)|vS|2 ∀wS,vS ∈ H1
ΓS

(ΩS). (2.24)

Finally, from the definition of 𝒜D (cf. (2.16)) and the inequality (2.3), we deduce that for a fixed tD ∈ L3(ΩD),
there holds

[𝒜D(uD + tD)−𝒜D(vD + tD),uD − vD]

≥ 𝜇

𝜌
𝐶K‖uD − vD‖20,ΩD

+
𝐹

𝜌
(|uD + tD|(uD + tD)− |vD + tD|(vD + tD),uD − vD)D ,

(2.25)

for all uD,vD ∈ L3(ΩD). Then, thanks to Lemma 5.1 of [35], there exist 𝐶D > 0, depending only on ΩD, such
that

(|uD + tD|(uD + tD)− |vD + tD|(vD + tD),uD − vD)D ≥ 𝐶D‖uD − vD‖3L3(ΩD),

which, together with (2.25), and neglecting the first term on the right hand side of (2.25), yields

[𝒜D(uD + tD)−𝒜D(vD + tD),uD − vD] ≥ 𝛼D‖uD − vD‖3L3(ΩD) ∀uD,vD ∈ L3(ΩD), (2.26)

with 𝛼D =
𝐹𝐶D

𝜌
.

3. Analysis of the continuous formulation

In this section we analyse the well-posedness of problem (2.14) by means of a fixed-point argument and
classical results on nonlinear monotone operators. We begin by introducing our fixed-point strategy.

3.1. The fixed-point operator

Let T : H1
ΓS

(ΩS) → H1
ΓS

(ΩS) be the operator defined by

T(wS) := ûS ∀wS ∈ H1
ΓS

(ΩS), (3.1)

where û := (ûS, ûD) ∈ H is the first component of the unique solution (to be confirmed below) of the nonlinear
problem: Find (û, (𝑝, 𝜆̂)) ∈ H×Q, such that

[a(wS)(û),v] + [b(v), (𝑝, 𝜆̂)] = [f ,v] ∀v ∈ H,
[b(û), (𝑞, 𝜉)] = [g, (𝑞, 𝜉)] ∀(𝑞, 𝜉) ∈ Q.

(3.2)

It is not difficult to see that (u, (𝑝, 𝜆)) ∈ H ×Q is a solution of (2.14) if and only if uS ∈ H1
ΓS

(ΩS) satisfies:
T(uS) = uS. In this way, in order to prove the well-posedness of (2.14), in what follows we equivalently show
that T possesses a unique fixed-point in a closed ball of H1

ΓS
(ΩS). Before continuing with the solvability analysis

of (2.14), we first provide the hypotheses under which operator T is well defined. To that end we first collect
some preliminary results and notations that will serve for the forthcoming analysis.
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3.2. Preliminary results

First we introduce some definitions that will be utilized next. To this end we let 𝑋 and 𝑌 be reflexive Banach
spaces. Then, we say that a nonlinear operator 𝑇 : 𝑋 → 𝑌 is bounded if 𝑇 (𝑆) is bounded for each bounded
set 𝑆 ⊆ 𝑋. In addition, we say that a nonlinear operator 𝑇 : 𝑋 → 𝑋 ′ is of type M if 𝑢𝑛 ⇀ 𝑢, 𝑇𝑢𝑛 ⇀ 𝑓 and
lim sup [𝑇𝑢𝑛, 𝑢𝑛] ≤ 𝑓(𝑢) imply 𝑇𝑢 = 𝑓 . In turn, we say that 𝑇 is coercive if

[𝑇𝑢, 𝑢]
‖𝑢‖

→ ∞ as ‖𝑢‖ → ∞.

Now, we establish the following abstract result taken from Proposition 2.3 of [50], which has been adapted
to our context where the nonlinear operator is defined on a product space 𝑋 = 𝑋1 × 𝑋2, with 𝑋1 and 𝑋2

depending on parameters 𝑝1 and 𝑝2, respectively, in place of an space 𝑋 depending on a parameter 𝑝.

Theorem 3.1. Let 𝑋1, 𝑋2 and 𝑌 be separable and reflexive Banach spaces, being 𝑋1 and 𝑋2 uniformly convex,
set 𝑋 = 𝑋1 × 𝑋2, and let 𝑋 ′

1, 𝑋
′
2, 𝑌

′, and 𝑋 ′ := 𝑋 ′
1 × 𝑋 ′

2, be their respective duals. Let 𝑎 : 𝑋 → 𝑋 ′ be a
nonlinear operator and 𝑏 : 𝑋 → 𝑌 ′ be a linear bounded operator. In turn, we denote by 𝑉 the kernel of 𝑏, that is,

𝑉 :=
{︁
𝑣 ∈ 𝑋 : [𝑏(𝑣), 𝑞] = 0 ∀𝑞 ∈ 𝑌

}︁
.

Assume that

(i) 𝑎 is hemi-continuous, that is, for each 𝑢, 𝑣 ∈ 𝑋, the real mapping

𝐽 : R → R, 𝑡→ 𝐽(𝑡) = [𝑎(𝑢+ 𝑡𝑣), 𝑣]

is continuous.
(ii) there exist constants 𝛾 > 0 and 𝑝1, 𝑝2 ≥ 2, such that

‖𝑎(𝑢)− 𝑎(𝑣)‖𝑋′ ≤ 𝛾

2∑︁
𝑗=1

{︁
‖𝑢𝑗 − 𝑣𝑗‖𝑋𝑗

+ ‖𝑢𝑗 − 𝑣𝑗‖𝑋𝑗

(︁
‖𝑢𝑗‖𝑋𝑗

+ ‖𝑣𝑗‖𝑋𝑗

)︁𝑝𝑗−2}︁
,

for all 𝑢 = (𝑢1, 𝑢2), 𝑣 = (𝑣1, 𝑣2) ∈ 𝑋.
(iii) for fixed 𝑡 ∈ 𝑋, the operator 𝑎( · + 𝑡) : 𝑉 → 𝑉 ′ is strictly monotone in the following sense: there exist

𝛼 > 0 and 𝑝1, 𝑝2 ≥ 2, such that

[𝑎(𝑢+ 𝑡)− 𝑎(𝑣 + 𝑡), 𝑢− 𝑣] ≥ 𝛼
{︁
‖𝑢1 − 𝑣1‖𝑝1

𝑋1
+ ‖𝑢2 − 𝑣2‖𝑝2

𝑋2

}︁
,

for all 𝑢 = (𝑢1, 𝑢2), 𝑣 = (𝑣1, 𝑣2) ∈ 𝑉 .
(iv) there exists 𝛽 > 0 such that

sup
𝑣∈𝑋
𝑣 ̸=0

[𝑏(𝑣), 𝑞]
‖𝑣‖𝑋

≥ 𝛽‖𝑞‖𝑌 ∀𝑞 ∈ 𝑌.

Then, for each (𝑓, 𝑔) ∈ 𝑋 ′ × 𝑌 ′ there exists a unique (𝑢, 𝑝) ∈ 𝑋 × 𝑌 such that

[𝑎(𝑢), 𝑣] + [𝑏(𝑣), 𝑝] = [𝑓, 𝑣] ∀𝑣 ∈ 𝑋,
[𝑏(𝑢), 𝑞] = [𝑔, 𝑞] ∀𝑞 ∈ 𝑌. (3.3)

Moreover, there exists 𝐶 > 0, depending only on 𝛼, 𝛾, 𝛽, 𝑝1, and 𝑝2, such that

‖(𝑢, 𝑝)‖𝑋×𝑌 ≤ 𝐶ℳ(𝑓, 𝑔), (3.4)

where
ℳ(𝑓, 𝑔) := max

{︁
𝒩 (𝑓, 𝑔)

1
𝑝1−1 ,𝒩 (𝑓, 𝑔)

1
𝑝2−1 ,𝒩 (𝑓, 𝑔),𝒩 (𝑓, 𝑔)

𝑝1−1
𝑝2−1 ,𝒩 (𝑓, 𝑔)

𝑝2−1
𝑝1−1

}︁
,

and
𝒩 (𝑓, 𝑔) := ‖𝑓‖𝑋′ + ‖𝑔‖𝑌 ′ + ‖𝑔‖𝑝1−1

𝑌 ′ + ‖𝑔‖𝑝2−1
𝑌 ′ + ‖𝑎(0)‖𝑋′ .
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Proof. We begin by noting that hypothesis (iv) establishes, equivalently, that 𝑏 is surjective.
Then, given 𝑔 ∈ 𝑌 ′ there exists 𝑢𝑔 ∈ 𝑋, such that (see [23], Lems. A.36 and A.42 for details):

𝑏(𝑢𝑔) = 𝑔 and ‖𝑢𝑔‖𝑋 ≤ 1
𝛽
‖𝑔‖𝑌 ′ . (3.5)

Then, given this 𝑢𝑔 in 𝑋 satisfying (3.5), we observe that problem (3.3) with 𝑣 ∈ 𝑉 leads to: find ̃︀𝑢 ∈ 𝑉 , such
that

[𝑎𝑔(̃︀𝑢), 𝑣] := [𝑎(̃︀𝑢+ 𝑢𝑔), 𝑣] = [𝑓, 𝑣] ∀𝑣 ∈ 𝑉, (3.6)

which suggests to define later on 𝑢 as ̃︀𝑢+𝑢𝑔. In this way, since 𝑓 − 𝑎(𝑢) ∈ ∘𝑉 := {𝐺 ∈ 𝑋 ′ : 𝐺(𝑣) = 0, ∀ 𝑣 ∈ 𝑉 }
and hypothesis (iv) also guarantees that the adjoint operator 𝑏′ is an isomorphism from 𝑌 into ∘𝑉 , we deduce
that there exists a unique 𝑝 ∈ 𝑌 such that 𝑏′(𝑝) = 𝑓 − 𝑎(𝑢) and

‖𝑝‖𝑌 ≤ 1
𝛽
‖𝑏′(𝑝)‖𝑋′ ≤

1
𝛽

{︁
‖𝑓‖𝑋′ + ‖𝑎(𝑢)‖𝑋′

}︁
. (3.7)

Therefore to prove that problem (3.3) is well posed, in what follows we prove equivalently that 𝑎𝑔( · ) = 𝑎(·+𝑢𝑔) is
bijective from 𝑉 to 𝑉 ′. We begin by observing that the injectivity of the operator 𝑎𝑔( · ) follows straightforwardly
from hypothesis (iii). In addition, from hypotheses (i) and (iii) and Chapter II, Lemma 2.1 of [51] it can be
readily seen that 𝑎𝑔( · ) is an operator of type M. Now, given 𝑣 = (𝑣1, 𝑣2) ∈ 𝑉 , and denoting by 𝑢𝑔

𝑗 , 𝑗 = 1, 2, the
components of 𝑢𝑔, we observe that, owing to (ii), (iii) and using the inequality (𝑎 + 𝑏)𝑞 ≤ 𝐶(𝑞)(𝑎𝑞 + 𝑏𝑞), with
𝐶(𝑞) depending only on 𝑞, which is valid for all 𝑞 ∈ [0,+∞) and 𝑎, 𝑏 ≥ 0 Lemma 2.2 of [3], there hold

‖𝑎𝑔(𝑣)‖𝑋′ ≤ ‖𝑎𝑔(𝑣)− 𝑎𝑔(0)‖𝑋′ + ‖𝑎𝑔(0)‖𝑋′ = ‖𝑎(𝑣 + 𝑢𝑔)− 𝑎(𝑢𝑔)‖𝑋′ + ‖𝑎(𝑢𝑔)‖𝑋′

≤ 𝛾

2∑︁
𝑗=1

{︁
‖𝑣𝑗‖𝑋𝑗 + ‖𝑣𝑗‖𝑋𝑗

(︀
‖𝑣𝑗 + 𝑢𝑔

𝑗‖𝑋𝑗 + ‖𝑢𝑔
𝑗‖𝑋𝑗

)︀𝑝𝑗−2
}︁

+ ‖𝑎(𝑢𝑔)‖𝑋′

≤ 𝐶

2∑︁
𝑗=1

{︁
‖𝑣𝑗‖𝑋𝑗

+ ‖𝑣𝑗‖
𝑝𝑗−1
𝑋𝑗

+ ‖𝑣𝑗‖𝑋𝑗
‖𝑢𝑔

𝑗‖
𝑝𝑗−2
𝑋𝑗

}︁
+ ‖𝑎(𝑢𝑔)‖𝑋′

≤ 𝐶
(︁

1 + ‖𝑣1‖𝑝1−2
𝑋1

+ ‖𝑣2‖𝑝2−2
𝑋2

+ ‖𝑢𝑔
1‖

𝑝1−2
𝑋1

+ ‖𝑢𝑔
2‖

𝑝2−2
𝑋2

)︁
‖𝑣‖𝑋 + ‖𝑎(𝑢𝑔)‖𝑋′ ,

and

[𝑎𝑔(𝑣), 𝑣]
‖𝑣‖𝑋

=
[𝑎(𝑣 + 𝑢𝑔)− 𝑎(0 + 𝑢𝑔), 𝑣]

‖𝑣‖𝑋
+

[𝑎(𝑢𝑔), 𝑣]
‖𝑣‖𝑋

≥ 𝛼

{︁
‖𝑣1‖𝑝1

𝑋1
+ ‖𝑣2‖𝑝2

𝑋2

}︁
‖𝑣‖𝑋

− ‖𝑎(𝑢𝑔)‖𝑋′

≥ 𝐶 min
{︁
‖𝑣‖𝑝1−1

𝑋 , ‖𝑣‖𝑝2−1
𝑋

}︁
− ‖𝑎(𝑢𝑔)‖𝑋′ ,

which clearly show that 𝑎𝑔 is bounded and coercive on 𝑉 , respectively. In this way, by applying Chapter II,
Corollary 2.2 of [51] it can be readily seen that 𝑎𝑔 is surjective on 𝑉 . Having verified the bijectivity of 𝑎𝑔 on 𝑉
we deduce that problem (3.6) is well-posed, or equivalently (3.3) admits a unique solution (𝑢, 𝑝) = (̃︀𝑢+𝑢𝑔, 𝑝) ∈
𝑋 × 𝑌 . Now, in order to obtain (3.4), we proceed similarly to Proposition 2.3 of [50]. In fact, taking 𝑣 = ̃︀𝑢 ∈ 𝑉
in (3.6), we have

[𝑎(̃︀𝑢+ 𝑢𝑔)− 𝑎(0 + 𝑢𝑔), ̃︀𝑢] = [𝑓, ̃︀𝑢]− [𝑎(𝑢𝑔), ̃︀𝑢].

Then, combining hypothesis (ii), (iii) and (3.5), it is clear that

𝛼
{︁
‖̃︀𝑢1‖𝑝1

𝑋1
+ ‖̃︀𝑢2‖𝑝2

𝑋2

}︁
≤
{︁
‖𝑓‖𝑋′ + ‖𝑎(𝑢𝑔)‖𝑋′

}︁
‖̃︀𝑢‖𝑋

≤ 𝑐1

{︁
‖𝑓‖𝑋′ + ‖𝑔‖𝑌 ′ + ‖𝑔‖𝑝1−1

𝑌 ′ + ‖𝑔‖𝑝2−1
𝑌 ′ + ‖𝑎(0)‖𝑋′

}︁
‖̃︀𝑢‖𝑋 ,



MIXED-FEM FOR NAVIER–STOKES/DARCY–FORCHHEIMER 1699

with 𝑐1 > 0 depending only on 𝛾, 𝛽, 𝑝1, and 𝑝2, which yields

‖̃︀𝑢‖𝑋 ≤ 2 max

{︃(︂
2𝑐1
𝛼
𝒩 (𝑓, 𝑔)

)︂ 1
𝑝1−1

,

(︂
2𝑐1
𝛼
𝒩 (𝑓, 𝑔)

)︂ 1
𝑝2−1

}︃
, (3.8)

where 𝒩 (𝑓, 𝑔) := ‖𝑓‖𝑋′ + ‖𝑔‖𝑌 ′ + ‖𝑔‖𝑝1−1
𝑌 ′ + ‖𝑔‖𝑝2−1

𝑌 ′ + ‖𝑎(0)‖𝑋′ . In this way, due to 𝑢 = ̃︀𝑢 + 𝑢𝑔, combining
(3.5) and (3.8), we conclude that

‖𝑢‖𝑋 ≤ ‖̃︀𝑢‖𝑋 + ‖𝑢𝑔‖𝑋 ≤ 𝑐2 max
{︁
𝒩 (𝑓, 𝑔)

1
𝑝1−1 ,𝒩 (𝑓, 𝑔)

1
𝑝2−1

}︁
, (3.9)

with 𝑐2 > 0 depending only on 𝛼, 𝛾, 𝛽, 𝑝1, and 𝑝2. On the other hand, from (3.7) and using again (ii), we deduce
that

‖𝑝‖𝑌 ≤ 𝑐3

{︁
‖𝑓‖𝑋′ + ‖𝑢‖𝑋 + ‖𝑢1‖𝑝1−1

𝑋1
+ ‖𝑢2‖𝑝2−1

𝑋2
+ ‖𝑎(0)‖𝑋′

}︁
, (3.10)

with 𝑐3 > 0 depending only on 𝛾 and 𝛽. Then, (3.9) and (3.10) conclude the proof. �

We remark that when 𝑝1 = 𝑝2 = 2 and ‖𝑎(0)‖𝑋′ is equal to zero, the previous analysis leads to the classical
estimate

‖(𝑢, 𝑝)‖𝑋×𝑌 ≤ 𝐶
{︁
‖𝑓‖𝑋′ + ‖𝑔‖𝑌 ′

}︁
,

with 𝐶 > 0, depending only on 𝛼, 𝛾, and 𝛽.
Finally, we observe that, since H1/2(𝜕ΩS) is continuously embedded into L𝑝(𝜕ΩS), with 2 ≤ 𝑝 < ∞ for the

two dimensional case and 1 ≤ 𝑝 ≤ 4 for the three dimensional case (see [46], Thm. 1.3.4), and the trace operator
is continuous, the following inequality holds:

‖vS‖L𝑝(Σ) ≤ ‖vS‖L𝑝(𝜕ΩS) ≤ 𝐶(𝜕ΩS)‖vS‖1/2,𝜕ΩS ≤ 𝐶(𝜕ΩS)𝐶tr‖vS‖1,ΩS ∀vS ∈ H1
ΓS

(ΩS), (3.11)

where 𝐶(𝜕ΩS) is the continuity constant of the Sobolev embedding from H1/2(𝜕ΩS) into L𝑝(𝜕ΩS), and 𝐶tr is
the norm of the usual trace operator from H1(ΩS) into H1/2(𝜕ΩS).

3.3. Well-definiteness of T

Given wS ∈ H1
ΓS

(ΩS), it is clear that problem (3.2) has the same structure of the one in Theorem 3.1.
Therefore, in what follows we apply this result to establish the well-posedness of (3.2), or equivalently, the
well-definiteness of T. We begin by observing that, thanks to the uniform convexity and separability of L𝑝(Ω)
for 𝑝 ∈ (1,+∞), each space defining H and Q shares the same properties, which implies that H and Q are
uniformly convex and separable as well.

We continue with the required continuity property of a(wS) for each wS ∈ H1
ΓS

(ΩS).

Lemma 3.2. Given wS ∈ H1
ΓS

(ΩS), the operator a(wS) is hemi-continuous in H.

Proof. For fixed wS ∈ H1
ΓS

(ΩS), u = (uS,uD), and v = (vS,vD) ∈ H, we introduce the real function 𝒥 : R → R
defined by

𝒥 (𝑡) := [a(wS)(u + 𝑡v),v] = [𝒜S(uS + 𝑡vS),vS]
+[ℬS(wS)(uS + 𝑡vS),vS] + [𝒜D(uD + 𝑡vD),vD].

Then, the hemi-continuity of a(wS), that is the continuity of 𝒥 , follows straightforwardly from the linearity
and continuity of 𝒜S and ℬS(wS) and from Proposition 3 of [34]. We omit further details. �

We continue our analysis with the verification of hypothesis (ii) of Theorem 3.1.
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Lemma 3.3. Let wS ∈ H1
ΓS

(ΩS). Then, there exists 𝛾 > 0, depending on 𝐶𝒜S and 𝐿𝒜D (cf. (2.19) and (2.20)),
such that

‖a(wS)(u)− a(wS)(v)‖H′ ≤ 𝛾
{︁

(1 + ‖wS‖1,ΩS)‖uS − vS‖1,ΩS + ‖uD − vD‖H3(div ;ΩD)

+ ‖uD − vD‖H3(div ;ΩD)

(︁
‖uD‖H3(div ;ΩD) + ‖vD‖H3(div ;ΩD)

)︁}︁
,

for all u = (uS,uD),v = (vS,vD) ∈ H.

Proof. The result follows straightforwardly from the definition of a(wS) (cf. (2.15)), the triangle inequality, and
the stability properties (2.19) and (2.20). We omit further details. �

Now, let us look at the kernel of the operator b, that is

V :=
{︁
v ∈ H : [b(v), (𝑞, 𝜉)] = 0 ∀(𝑞, 𝜉) ∈ Q

}︁
. (3.12)

According to the definition of b (cf. (2.17)), we observe that v = (vS,vD) ∈ V if and only if

(div vS, q)S + (div vD, q)D = 0 ∀q ∈ L2
0(Ω)

and
⟨vS · n− vD · n, 𝜉⟩Σ = 0 ∀𝜉 ∈ W

1
3 , 3

2 (Σ).

In this way, noting that L2(Ω) = L2
0(Ω)⊕ R, and taking 𝜉 ∈ R in the latter equation, we deduce that

(div vS, q)S + (div vD, q)D = 0 ∀q ∈ L2(Ω),

which implies
div vS = 0 in ΩS and div vD = 0 in ΩD. (3.13)

In the following result we provide the assumptions under which operator a(wS) satisfies hypothesis (iii) of
Theorem 3.1.

Lemma 3.4. Let wS ∈ H1
ΓS

(ΩS) such that div wS = 0 in ΩS and

‖wS · n‖0,Σ ≤
2𝜇𝛼S

𝜌𝐶2
tr𝐶

2(𝜕ΩS)
· (3.14)

Then, for each t ∈ H ∖V, the nonlinear operator a(wS)( ·+ t) is strictly monotone on V (cf. (3.12)).

Proof. Let t := (tS, tD) ∈ H ∖ V fixed, and let wS ∈ H1
ΓS

(ΩS) as indicated. Then, according to (2.15), the
linearity of 𝒜S and ℬS(wS), the identity (3.13) and the stabilities properties (2.23) and (2.26), we find that

[a(wS)(u + t)− a(wS)(v + t),u− v] ≥ 2𝜇𝛼S‖uS − vS‖21,ΩS

+ 𝛼D‖uD − vD‖3H3(div ;ΩD) + [ℬS(wS)(uS − vS),uS − vS],

for all u,v ∈ V. In addition, similarly to Lemma 2 of [21], we deduce from (2.24), applying Cauchy–Schwarz’s
inequality and (3.11) with 𝑝 = 4, that⃒⃒⃒

[ℬS(wS)(uS − vS),uS − vS]
⃒⃒⃒
≤ 𝜌𝐶2

tr𝐶
2(𝜕ΩS)
2

‖wS · n‖0,Σ ‖uS − vS‖21,ΩS
,

which implies

[a(wS)(u + t)− a(wS)(v + t),u− v]

≥

{︃
2𝜇𝛼S −

𝜌𝐶2
tr𝐶

2(𝜕ΩS)
2

‖wS · n‖0,Σ

}︃
‖uS − vS‖21,ΩS

+ 𝛼D‖uD − vD‖3H3(div ;ΩD).
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Consequently, the hypothesis (3.14) and the foregoing inequality imply

[a(wS)(u + t)− a(wS)(v + t),u− v] ≥ 𝛼(Ω)
{︁
‖uS − vS‖21,ΩS

+ ‖uD − vD‖3H3(div ;ΩD)

}︁
,

for all u,v ∈ V, with 𝛼(Ω) := min
{︀
𝜇𝛼S, 𝛼D

}︀
independent of wS. �

We remark that, similarly to the strict monotonicity of a(wS)( ·+ t) on V with t ∈ H ∖V fixed, using (2.26)
with tD = 0 ∈ L3(ΩD), we deduce that

[a(wS)(u)− a(wS)(v),u− v] ≥ 𝛼(Ω)
{︁
‖uS − vS‖21,ΩS

+ ‖uD − vD‖3H3(div ;ΩD)

}︁
, (3.15)

for all u,v ∈ H with div (uD − vD) = 0 in ΩD.
We end the verification of the hypotheses of Theorem 3.1 by proving the continuous inf-sup condition for

b. To that end, we adapt the proof of Lemma 2.1 from [28] to the present case, using similar results from
Lemma 3.3 of [31] and Lemma 1 of [21] to handle the mixed boundary conditions on 𝜕ΩD.

Lemma 3.5. There exists 𝛽 > 0 such that

𝑆(𝑞, 𝜉) := sup
v∈H
v ̸=0

[b(v), (𝑞, 𝜉)]
‖v‖H

≥ 𝛽 ‖(𝑞, 𝜉)‖Q ∀(𝑞, 𝜉) ∈ Q. (3.16)

Proof. Let (𝑞, 𝜉) ∈ Q. Since 𝑞 ∈ L2
0(Ω), it is well known (see, e.g., [33], Cor. 2.4) that there exists z ∈ H1

0(Ω)
such that div z = −q in Ω and ‖z‖1,Ω ≤ 𝑐‖𝑞‖0,Ω. Setting ̂︀v := (̂︀vS, ̂︀vD) with ̂︀v⋆ = z|Ω⋆

for ⋆ ∈ {S,D}, we
find that ̂︀vS · n = ̂︀vD · n on Σ, and using the continuous embedding from H1(ΩD) into L3(ΩD), we obtain
‖̂︀v‖H ≤ ̂︀𝑐‖z‖1,Ω ≤ ̃︀𝑐‖𝑞‖0,Ω, whence

𝑆(𝑞, 𝜉) ≥

⃒⃒⃒
[b(̂︀v), (𝑞, 𝜉)]

⃒⃒⃒
‖̂︀v‖H =

‖𝑞‖20,Ω

‖̂︀v‖H ≥ 𝑐1‖𝑞‖0,Ω. (3.17)

On the other hand, given 𝜑 ∈ W− 1
3 ,3(Σ), we define 𝜂 ∈ W− 1

3 ,3(𝜕ΩD) as

⟨𝜂, 𝜇⟩𝜕ΩD
:= ⟨𝜑, 𝜇Σ⟩Σ ∀𝜇 ∈ W

1
3 , 3

2 (𝜕ΩD),

where 𝜇Σ ∈ W
1
3 , 3

2 (Σ) is given by the decomposition (2.10). It is not difficult to see that

⟨𝜂,𝐸0,D(𝜌)⟩𝜕ΩD
= 0 ∀𝜌 ∈ W

1
3 , 3

2 (ΓD), (3.18)

⟨𝜂,𝐸Σ(𝜙)⟩𝜕ΩD
= ⟨𝜑, 𝜙⟩Σ ∀𝜙 ∈ W

1
3 , 3

2 (Σ), (3.19)

and
‖𝜂‖− 1

3 ,3;𝜕ΩD
≤ 𝐶‖𝜑‖− 1

3 ,3;Σ. (3.20)

Next, we set ̃︀vD := ∇𝑧 in ΩD, with 𝑧 ∈ W1,3(ΩD) being the unique solution of the boundary value problem (see
[32] for details):

−∆𝑧 = − 1
|ΩD|

⟨𝜂, 1⟩𝜕ΩD
in ΩD, ∇𝑧 · n = 𝜂 on 𝜕ΩD, (𝑧, 1)D = 0. (3.21)

It follows that div ̃︀vD = 1
|ΩD| ⟨𝜂, 1⟩𝜕ΩD

∈ P0(ΩD), ̃︀vD · n = 𝜂 on 𝜕ΩD, and using (3.20) we find that

‖̃︀vD‖H3(div ;ΩD) ≤ 𝑐‖𝜂‖− 1
3 ,3;𝜕ΩD

≤ 𝐶‖𝜑‖− 1
3 ,3;Σ. (3.22)
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Note that the first inequality here follows from the definition of the norm ‖ · ‖H3(div ;ΩD), the continuous
dependence result of the boundary value problem (3.21), and the fact that ‖̃︀vD‖L3(ΩD) = ‖∇𝑧‖L3(ΩD) and
div ̃︀vD = 1

|ΩD| ⟨𝜂, 1⟩𝜕ΩD
. In addition, using (2.9), (3.18) and (3.19), we deduce that

⟨̃︀vD · n, 𝜉⟩Σ = ⟨̃︀vD · n, 𝐸Σ(𝜉)⟩𝜕ΩD
= ⟨𝜂,𝐸Σ(𝜉)⟩𝜕ΩD

= ⟨𝜑, 𝜉⟩Σ ,

and
⟨̃︀vD · n, 𝐸0,D(𝜌)⟩𝜕ΩD

= ⟨𝜂,𝐸0,D(𝜌)⟩𝜕ΩD
= 0 ∀𝜌 ∈ W

1
3 , 3

2 (ΓD).

The latter means that ̃︀vD ∈ H3
ΓD

(div ; ΩD). In this way, defining ̃︀v := (0, ̃︀vD) ∈ H, we obtain, thanks to (3.20)
and (3.22), that

𝑆(𝑞, 𝜉) ≥

⃒⃒⃒
[b(̃︀v), (𝑞, 𝜉)]

⃒⃒⃒
‖̃︀v‖H =

⃒⃒⃒
⟨𝜑, 𝜉⟩Σ + 1

|ΩD| ⟨𝜂, 1⟩𝜕ΩD
(𝑞, 1)D

⃒⃒⃒
‖̃︀vD‖H3(div ;ΩD)

≥ 𝑐2

⃒⃒⃒
⟨𝜑, 𝜉⟩Σ

⃒⃒⃒
‖𝜑‖− 1

3 ,3;Σ

− 𝑐3‖𝑞‖0,Ω,

which, considering that 𝜑 ∈ W− 1
3 ,3(Σ) is arbitrary, yields

𝑆(𝑞, 𝜉) ≥ 𝑐2‖𝜉‖ 1
3 , 3

2 ;Σ − 𝑐3‖𝑞‖0,Ω. (3.23)

Then, combining (3.17) and (3.23) we easily obtain that

𝑆(𝑞, 𝜉) ≥ 𝑐1𝑐2
𝑐1 + 𝑐3

‖𝜉‖ 1
3 , 3

2 ;Σ,

which, together with (3.17), completes the proof with 𝛽 depending on 𝑐1, 𝑐2 and 𝑐3. �

We are now in position of establishing the well-definiteness of T. To that end, and in order to simplify the
subsequent analysis, given wS ∈ H1

ΓS
(ΩS) we first note that ‖a(wS)(0)‖H′ = 0, and then, by considering 𝑝1 = 2

and 𝑝2 = 3 in Theorem 3.1, we introduce the following notation

ℳ(fS, fD, 𝑔D) := max
{︁
𝒩 (fS, fD, 𝑔D)1/2,𝒩 (fS, fD, 𝑔D),𝒩 (fS, fD, 𝑔D)2

}︁
, (3.24)

with
𝒩 (fS, fD, 𝑔D) := ‖fS‖0,ΩS + ‖fD‖L3/2(ΩD) + ‖𝑔D‖0,ΩD + ‖𝑔D‖20,ΩD

.

The main result of this section is established now.

Theorem 3.6. Let wS ∈ H1
ΓS

(ΩS) such that div wS = 0 in ΩS and

‖wS · n‖0,Σ ≤
2𝜇𝛼S

𝜌𝐶2
tr𝐶

2(𝜕ΩS)
,

and let fS ∈ L2(ΩS), fD ∈ L3/2(ΩD) and 𝑔D ∈ L2(ΩD). Then, (3.2) has a unique solution (û, (𝑝, 𝜆̂)) ∈ H ×Q,
with û := (ûS, ûD), which allows to define T(wS) := ûS. Moreover, there exists a constant 𝑐T > 0, independent
of the solution, such that

‖T(wS)‖1,ΩS = ‖ûS‖1,ΩS ≤ ‖(û, (𝑝, 𝜆̂))‖H×Q ≤ 𝑐Tℳ(fS, fD, 𝑔D). (3.25)

Proof. It follows from Lemmas 3.4 and 3.5 and a straightforward application of Theorem 3.1. In turn, estimate
(3.25) is a direct consequence of (3.4) (cf. Thm. 3.1) and (2.21) and (2.22). �
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3.4. Solvability analysis of the fixed-point equation

In this section we proceed analogously to Section 2.4 of [21] (see also [13, 15]) and establish the existence
of a fixed-point of operator T (cf. (3.1)) by means of the well known Schauder fixed-point theorem and a
sufficiently small data assumption. In addition, under a more restrictive small data assumption, the uniqueness
of solution is also established by means of the Banach fixed-point theorem. We begin by recalling the first of
the aforementioned results (see, e.g., [17], Thm. 9.12-1(b)).

Theorem 3.7. Let 𝑊 be a closed and convex subset of a Banach space 𝑋, and let 𝑇 : 𝑊 →𝑊 be a continuous
mapping such that 𝑇 (𝑊 ) is compact. Then 𝑇 has at least one fixed-point.

The verification of the hypotheses of Theorem 3.7 is provided in what follows. To this aim, we start by
introducing the set

W :=
{︁
vS ∈ H1

ΓS
(ΩS) : div vS = 0 in ΩS and ‖vS‖1,ΩS ≤ cTℳ(fS, fD, gD)

}︁
. (3.26)

Then, assuming that (cf. (3.24)):

ℳ(fS, fD, 𝑔D) ≤ 2𝜇𝛼S

𝑐T 𝜌𝐶3
tr𝐶

2(𝜕ΩS)
, (3.27)

with 𝑐T the positive constant satisfying (3.25), it is not difficult to see that T is well defined from W to W. In
fact, given wS ∈ W, from (3.27) we deduce that

‖wS · n‖0,Σ ≤ 𝐶tr‖wS‖1,ΩS ≤
2𝜇𝛼S

𝜌𝐶2
tr𝐶

2(𝜕ΩS)
, (3.28)

which together with Theorem 3.6 proves that T is well defined. In this way, we obtain the following result.

Lemma 3.8. Let W be the closed ball defined by (3.26) and assume that the data fS ∈ L2(ΩS), fD ∈ L3/2(ΩD)
and 𝑔D ∈ L2(ΩD) satisfy (3.27). Then there holds T(W) ⊆ W.

We continue with the following result providing an estimate needed to derive next the required continuity
and compactness properties of the operator T (cf. (3.1)).

Lemma 3.9. Let W be the closed ball defined by (3.26) and assume that the data fS ∈ L2(ΩS), fD ∈ L3/2(ΩD)
and 𝑔D ∈ L2(ΩD) satisfy (3.27). Then,

‖T(wS)−T(̃︀wS)‖1,ΩS ≤
𝜌𝐶(ΩS)
𝜇𝛼S

‖T(̃︀wS)‖1,ΩS ‖wS − ̃︀wS‖L4(ΩS) ∀wS, ̃︀wS ∈ W. (3.29)

Proof. Given wS, ̃︀wS ∈ W, we let uS := T(wS) and ̃︀uS := T(̃︀wS). According to the definition of T, it follows
that

[a(wS)(u),v] + [b(v), (𝑝, 𝜆)] = [f ,v] ∀v ∈ H,
[b(u), (𝑞, 𝜉)] = [g, (𝑞, 𝜉)] ∀(𝑞, 𝜉) ∈ Q,

and
[a(̃︀wS)(̃︀u),v] + [b(v), (̃︀𝑝, ̃︀𝜆)] = [f ,v] ∀v ∈ H,
[b(̃︀u), (𝑞, 𝜉)] = [g, (𝑞, 𝜉)] ∀(𝑞, 𝜉) ∈ Q.

Then, recalling the definition of a(wS) (cf. (2.15)) and subtracting both problems we obtain

[a(wS)(u)− a(̃︀wS)(̃︀u),v] + [b(v), (𝑝− ̃︀𝑝, 𝜆− ̃︀𝜆)] = 0
[b(u− ̃︀u), (𝑞, 𝜉)] = 0
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for all (v, (𝑞, 𝜉)) ∈ H ×Q. In particular, taking v = u − ̃︀u, 𝑞 = 𝑝 − ̃︀𝑝 and 𝜉 = 𝜆 − ̃︀𝜆 in the latter system, the
first equation becomes

[a(wS)(u)− a(̃︀wS)(̃︀u),u− ̃︀u] = 0. (3.30)

Hence, adding and subtracting ℬS(wS)(̃︀uS) in the second term of the left-hand side of (3.30), using the fact
that u− ̃︀u ∈ V (cf. (3.13)), and the strict monotonicity of a(wS) (cf. (3.15)), it follows that

𝜇𝛼S‖uS − ̃︀uS‖21,ΩS
≤ [a(wS)(u)− a(wS)(̃︀u),u− ̃︀u] = [ℬS(̃︀wS −wS)(̃︀uS),uS − ̃︀uS].

In this way, the continuity of ℬS (cf. (2.19)) gives from the foregoing equation

𝜇𝛼S‖uS − ̃︀uS‖21,ΩS
≤ 𝜌𝐶(ΩS)‖wS − ̃︀wS‖L4(ΩS) ‖̃︀uS‖1,ΩS ‖uS − ̃︀uS‖1,ΩS ,

which yields the result. �

Owing to the above analysis, we establish now the announced properties of the operator T.

Lemma 3.10. Assume that the data fS ∈ L2(ΩS), fD ∈ L3/2(ΩD) and 𝑔D ∈ L2(ΩD) satisfy (3.27) Then T has
at least one fixed-point in W.

Proof. The required result follows straightforwardly from estimate (3.29), the continuity of the Sobolev embed-
ding from H1(ΩS) into L4(ΩS), and the Schauder theorem. We omit further details and refer to Lemma 5 of
[21]. �

Under a more restrictive assumption on the data, in what follows we prove that T has exactly one fixed-point
by means of the well-known Banach fixed-point theorem.

Lemma 3.11. Let fS ∈ L2(ΩS), fD ∈ L3/2(ΩD) and 𝑔D ∈ L2(ΩD), such that

ℳ(fS, fD, 𝑔D) < 𝑟, (3.31)

where

𝑟 :=
𝜇𝛼S

𝑐T𝜌
min

{︃
1

𝐶2(ΩS)
,

2
𝐶2(𝜕ΩS)𝐶3

tr

}︃
·

Then, T has a unique fixed-point.

Proof. The result follows straightforwardly from (3.29), the continuity of the compact injection from H1(ΩS)
into L4(ΩS), the fact that T(W) ⊆ W, and the constraint (3.31). �

We are now in position of establishing the main result of this section.

Theorem 3.12. Assume that the data fS ∈ L2(ΩS), fD ∈ L3/2(ΩD) and 𝑔D ∈ L2(ΩD) satisfy (3.27). Then the
problem (2.14) admits a solution (u, (𝑝, 𝜆)) ∈ H ×Q. In addition, if it is assumed that (3.31) holds, then the
solution is unique. In any case, there exists a constant 𝑐T > 0 (cf. (3.25)), independent of the solution, such
that

‖(u, (𝑝, 𝜆))‖H×Q ≤ 𝑐Tℳ(fS, fD, 𝑔D). (3.32)

Proof. The existence and uniqueness of solution of problem (2.14) follows by recalling the definition of operator
T and combining Lemmas 3.10 and 3.11. In addition, it is clear that the estimate (3.32) is consequence of
(3.25). �
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4. The Galerkin scheme

In this section we introduce the Galerkin scheme of problem (2.14) and analyse its well-posedness.

4.1. Discrete setting

Let 𝒯 S
ℎ and 𝒯 D

ℎ be respective triangulations of the domains ΩS and ΩD formed by shape-regular triangles of
diameter ℎ𝑇 and denote by ℎS and ℎD their corresponding mesh sizes. Assume that they match on Σ so that
𝒯ℎ := 𝒯 S

ℎ ∪ 𝒯 D
ℎ is a triangulation of Ω := ΩS ∪ Σ ∪ ΩD. Hereafter ℎ := max

{︀
ℎS, ℎD

}︀
. For each 𝑇 ∈ 𝒯 D

ℎ we
consider the local Raviart–Thomas space of the lowest order [47]:

RT0(𝑇 ) := span
{︁

(1, 0), (0, 1), (𝑥1, 𝑥2)
}︁
.

In addition, for each 𝑇 ∈ 𝒯 S
ℎ we denote by BR(𝑇 ) the local Bernardi–Raugel space (see [10,33]):

BR(𝑇 ) := [P1(𝑇 )]2 ⊕ span
{︁
𝜂2𝜂3n1, 𝜂1𝜂3n2, 𝜂1𝜂2n3

}︁
,

where
{︀
𝜂1, 𝜂2, 𝜂3

}︀
are the baricentric coordinates of 𝑇 , and

{︀
n1,n2,n3

}︀
are the unit outward normals to the

opposite sides of the corresponding vertices of 𝑇 . Hence, we define the following finite element subspaces:

Hℎ(ΩS) :=
{︁
v ∈ H1(ΩS) : v|𝑇 ∈ BR(𝑇 ), ∀𝑇 ∈ 𝒯 S

ℎ

}︁
,

Hℎ(ΩD) :=
{︁
v ∈ H3(div ; ΩD) : v|T ∈ RT0(T), ∀T ∈ 𝒯 D

h

}︁
,

Lℎ(Ω) :=
{︁
𝑞 ∈ L2(Ω) : 𝑞|𝑇 ∈ P0(𝑇 ), ∀𝑇 ∈ 𝒯ℎ

}︁
.

Then, the finite element subspaces for the velocities and pressure are, respectively,

Hℎ,ΓS(ΩS) := Hℎ(ΩS) ∩H1
ΓS

(ΩS),
Hℎ,ΓD(ΩD) := Hℎ(ΩD) ∩H3

ΓD
(div ; ΩD),

Lℎ,0(Ω) := Lℎ(Ω) ∩ L2
0(Ω).

Next, for introducing the finite element subspace of W
1
3 , 3

2 (Σ), we denote by Σℎ the partition of Σ inherited from
𝒯 D

ℎ (or 𝒯 S
ℎ ), which is formed by edges 𝑒 of length ℎ𝑒, and set ℎΣ := max

{︀
ℎ𝑒 : 𝑒 ∈ Σℎ

}︀
. In turn, since the space∏︀

𝑒∈Σℎ
W1− 1

𝑝 ,𝑝(𝑒) coincides with W1− 1
𝑝 ,𝑝(Σ), without extra conditions when 1 < 𝑝 < 2 ([37], Thm. 1.5.2.3-(a);

see also [38], Prop. 1.4.3 and [36], Sect. 2 for the 3D case), it can be readily seen that a conforming finite element
subspace for W

1
3 , 3

2 (Σ) can be defined by

Λℎ(Σ) :=
{︁
𝜉ℎ : Σ → R : 𝜉ℎ|𝑒 ∈ P0(𝑒) ∀ edge 𝑒 ∈ Σℎ

}︁
.

Notice that this space coincides with the set of discrete normal traces on Σ of Hℎ(ΩD). Notice also that since
𝒯 S

ℎ and 𝒯 D
ℎ match on Σ, there holds ℎΣ ≤ min

{︀
ℎS, ℎD

}︀
.

In this way, grouping the unknowns and spaces as follows:

Hℎ := Hℎ,ΓS(ΩS)×Hℎ,ΓD(ΩD), Qℎ := Lℎ,0(Ω)× Λℎ(Σ),
uℎ := (uS,ℎ,uD,ℎ) ∈ Hℎ, (𝑝ℎ, 𝜆ℎ) ∈ Qℎ,

where 𝑝ℎ := 𝑝S,ℎ𝜒S + 𝑝D,ℎ𝜒D, our Galerkin scheme for (2.14) reads: Find (uℎ, (𝑝ℎ, 𝜆ℎ)) ∈ Hℎ ×Qℎ, such that

[aℎ(uS,ℎ)(uℎ),vℎ] + [b(vℎ), (𝑝ℎ, 𝜆ℎ)] = [f ,vℎ] ∀vℎ := (vS,ℎ,vD,ℎ) ∈ Hℎ,
[b(uℎ), (𝑞ℎ, 𝜉ℎ)] = [g, (𝑞ℎ, 𝜉ℎ)] ∀ (𝑞ℎ, 𝜉ℎ) ∈ Qℎ.

(4.1)
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Here, aℎ(wS,ℎ) : Hℎ → H′
ℎ is the discrete version of a(wS) (with wS,ℎ ∈ Hℎ,ΓS(ΩS) in place of wS ∈ H1

ΓS
(ΩS)),

which is defined by

[aℎ(wS,ℎ)(uℎ),vℎ] := [𝒜S(uS,ℎ),vS,ℎ] + [ℬℎ
S(wS,ℎ)(uS,ℎ),vS,ℎ] + [𝒜D(uD,ℎ),vD,ℎ], (4.2)

where ℬℎ
S(wS,ℎ) is the well-known skew-symmetric convection form [54]:

[ℬℎ
S(wS,ℎ)(uS,ℎ),vS,ℎ] := 𝜌((∇uS,ℎ)wS,ℎ,vS,ℎ)S +

𝜌

2
(div wS,huS,h,vS,h)S,

for all uS,ℎ,vS,ℎ,wS,ℎ ∈ Hℎ,ΓS(ΩS). Observe that integrating by parts, similarly to (2.24), there holds

[ℬℎ
S(wS,ℎ)(vS,ℎ),vS,ℎ] =

𝜌

2

∫︁
Σ

(wS,ℎ · n)|vS,ℎ|2 ∀wS,ℎ,vS,ℎ ∈ Hℎ,ΓS(ΩS). (4.3)

Moreover, proceeding as for ℬS (cf. (2.19)), it is easy to see that for all wS,ℎ, uS,ℎ,vS,ℎ ∈ Hℎ,ΓS(ΩS), there
holds ⃒⃒⃒

[ℬℎ
S(wS,ℎ)(uS,ℎ),vS,ℎ]

⃒⃒⃒
≤ 𝐶sk‖wS,ℎ‖1,ΩS‖uS,ℎ‖1,ΩS‖vS,ℎ‖1,ΩS , (4.4)

with 𝐶sk := 𝜌𝐶2(ΩS)
(︁

1 +
√

2
2

)︁
.

Now, let ΠS : H1
ΓS

(ΩS) → Hℎ,ΓS(ΩS) be the Bernardi–Raugel interpolation operator [10], which is linear and
bounded with respect to the H1(ΩS)-norm. In this regard, we recall that, given v ∈ H1

ΓS
(ΩS), there holds∫︁

𝑒

ΠS(v) · n =
∫︁

𝑒

v · n for each edge 𝑒 of 𝒯 S
ℎ , (4.5)

and hence
(div ΠS(v), qh)S = (div v, qh)S ∀qh ∈ Lh(Ω). (4.6)

Equivalently, if 𝒫S denotes the L2(ΩS)-orthogonal projection onto the restriction of Lℎ(Ω) to ΩS, then the
relation (4.6) can be written as

𝒫S(div (ΠS(v))) = 𝒫S(div v) ∀v ∈ H1
ΓS

(ΩS). (4.7)

On the other hand, let ΠD : H1(ΩD) → Hℎ(ΩD) be the well-known Raviart–Thomas interpolation operator.
We recall that, given v ∈ H1(ΩD), this operator is characterized by∫︁

𝑒

ΠD(v) · n =
∫︁

𝑒

v · n for each edge 𝑒 of 𝒯 D
ℎ , (4.8)

which implies that
(div ΠD(v), qh)D = (div v, qh)D ∀qh ∈ Lh(Ω). (4.9)

Equivalently, if 𝒫D denotes the L2(ΩD)-orthogonal projection onto the restriction of Lℎ(Ω) to ΩD, then the
relation (4.9) can be written as

div (ΠD(v)) = 𝒫D(div v) ∀v ∈ H1(ΩD). (4.10)

At this point we recall, according to Sections 1.2.7 and 1.4.7 of [23] (see also [12], Chapt. III.3.3), that the
Raviart–Thomas operator ΠD is also well defined for all v ∈ Vdiv (ΩD) :=

{︁
v ∈ L𝑝(ΩD) : div v ∈ Ls(ΩD)

}︁
,

with 𝑝 > 2 and 𝑠 ≥ 𝑞, 1
𝑞 = 1

𝑝 + 1
𝑛 , since the local space Vdiv (𝑇 ) coincides with W1,𝑡(𝑇 ) when 𝑡 > 2𝑛

𝑛+2 , for each
𝑇 ∈ 𝒯 D

ℎ . In particular, considering 𝑛 = 2, 𝑝 = 3, and 𝑠 = 2, we deduce that ΠD can be applied to functions in
H3(div ; ΩD). We will use this fact later on in the proof of the discrete inf-sup condition of b.
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4.2. Well-posedness of the discrete problem

In this section, analogously to the analysis of the continuous problem, we apply a fixed-point argument to
prove the well-posedness of the Galerkin scheme (4.1). To that end, we now let Tℎ : Hℎ,ΓS(ΩS) → Hℎ,ΓS(ΩS)
be the discrete operator defined by

Tℎ(wS,ℎ) := ûS,ℎ ∀wS,ℎ ∈ Hℎ,ΓS(ΩS), (4.11)

where ûℎ := (ûS,ℎ, ûD,ℎ) ∈ Hℎ is the first component of the unique solution (to be confirmed below) of the
discrete nonlinear problem: Find (ûℎ, (𝑝ℎ, 𝜆̂ℎ)) ∈ Hℎ ×Qℎ, such that

[aℎ(ŵS,ℎ)(ûℎ),vℎ] + [b(vℎ), (𝑝ℎ, 𝜆̂ℎ)] = [f ,vℎ] ∀vℎ ∈ Hℎ,
[b(ûℎ), (𝑞ℎ, 𝜉ℎ)] = [g, (𝑞ℎ, 𝜉ℎ)] ∀(𝑞ℎ, 𝜉ℎ) ∈ Qℎ.

(4.12)

Then, similarly as for the continuous case, the Galerkin scheme (4.1) can be rewritten, equivalently, as the
fixed-point problem: Find uS,ℎ ∈ Hℎ,ΓS(ΩS) such that

Tℎ(uS,ℎ) = uS,ℎ.

In this way, in what follows we focus on analysing the existence and uniqueness of such a fixed-point, for which
we require the following discrete version of Theorem 3.1.

Theorem 4.1. In addition to the spaces and operators defined in Theorem 3.1, let 𝑋1,ℎ, 𝑋2,ℎ and 𝑌ℎ be finite
dimensional subspaces of 𝑋1, 𝑋2, and 𝑌 , respectively, and set 𝑋ℎ = 𝑋1,ℎ×𝑋2,ℎ ⊆ 𝑋 := 𝑋1×𝑋2. In addition,
let 𝑉ℎ be the discrete kernel of 𝑏, that is,

𝑉ℎ :=
{︁
𝑣ℎ ∈ 𝑋ℎ : [𝑏(𝑣ℎ), 𝑞ℎ] = 0 ∀𝑞ℎ ∈ 𝑌ℎ

}︁
.

Assume that

(i) 𝑎 is hemi-continuous from 𝑋ℎ to 𝑋 ′
ℎ, that is, for each 𝑢, 𝑣 ∈ 𝑋ℎ, the real mapping

𝐽 : R → R, 𝑡→ 𝐽(𝑡) = [𝑎(𝑢+ 𝑡𝑣), 𝑣]

is continuous.
(ii) there exist constants ̃︀𝛾 > 0 and 𝑝1, 𝑝2 ≥ 2, such that

‖𝑎(𝑢ℎ)− 𝑎(𝑣ℎ)‖𝑋′ ≤ ̃︀𝛾 2∑︁
𝑗=1

{︁
‖𝑢𝑗,ℎ − 𝑣𝑗,ℎ‖𝑋𝑗 + ‖𝑢𝑗,ℎ − 𝑣𝑗,ℎ‖𝑋𝑗

(︁
‖𝑢𝑗,ℎ‖𝑋𝑗 + ‖𝑣𝑗,ℎ‖𝑋𝑗

)︁𝑝𝑗−2}︁
,

for all 𝑢ℎ = (𝑢1,ℎ, 𝑢2,ℎ), 𝑣ℎ = (𝑣1,ℎ, 𝑣2,ℎ) ∈ 𝑋ℎ.
(iii) for fixed 𝑡ℎ ∈ 𝑋ℎ, the operator 𝑎( · + 𝑡ℎ) : 𝑉ℎ → 𝑉 ′ℎ is strictly monotone, that is, there exists ̃︀𝛼 > 0 and

𝑝1, 𝑝2 ≥ 2, such that

[𝑎(𝑢ℎ + 𝑡ℎ)− 𝑎(𝑣ℎ + 𝑡ℎ), 𝑢ℎ − 𝑣ℎ] ≥ ̃︀𝛼{︁‖𝑢1,ℎ − 𝑣1,ℎ‖𝑝1
𝑋1

+ ‖𝑢2,ℎ − 𝑣2,ℎ‖𝑝2
𝑋2

}︁
,

for all 𝑢ℎ = (𝑢1,ℎ, 𝑢2,ℎ), 𝑣ℎ = (𝑣1,ℎ, 𝑣2,ℎ) ∈ 𝑉ℎ.

(iv) there exists ̃︀𝛽 > 0 such that

sup
𝑣ℎ∈𝑋ℎ
𝑣ℎ ̸=0

[𝑏(𝑣ℎ), 𝑞ℎ]
‖𝑣ℎ‖𝑋

≥ ̃︀𝛽‖𝑞ℎ‖𝑌 ∀𝑞ℎ ∈ 𝑌ℎ.



1708 S. CAUCAO ET AL.

Then, for each (𝑓, 𝑔) ∈ 𝑋 ′ × 𝑌 ′ there exists a unique (𝑢ℎ, 𝑝ℎ) ∈ 𝑋ℎ × 𝑌ℎ, such that

[𝑎(𝑢ℎ), 𝑣ℎ] + [𝑏(𝑣ℎ), 𝑝ℎ] = [𝑓, 𝑣ℎ] ∀𝑣ℎ ∈ 𝑋ℎ,
[𝑏(𝑢ℎ), 𝑞ℎ] = [𝑔, 𝑞ℎ] ∀𝑞ℎ ∈ 𝑌ℎ.

Moreover, there exists ̃︀𝐶 > 0, depending only on ̃︀𝛼, ̃︀𝛾, ̃︀𝛽, 𝑝1, and 𝑝2, such that

‖(𝑢ℎ, 𝑝ℎ)‖𝑋×𝑌 ≤ ̃︀𝐶ℳ(𝑓, 𝑔),

where
ℳ(𝑓, 𝑔) := max

{︁
𝒩 (𝑓, 𝑔)

1
𝑝1−1 ,𝒩 (𝑓, 𝑔)

1
𝑝2−1 ,𝒩 (𝑓, 𝑔),𝒩 (𝑓, 𝑔)

𝑝1−1
𝑝2−1 ,𝒩 (𝑓, 𝑔)

𝑝2−1
𝑝1−1

}︁
,

and
𝒩 (𝑓, 𝑔) := ‖𝑓‖𝑋′ + ‖𝑔‖𝑌 ′ + ‖𝑔‖𝑝1−1

𝑌 ′ + ‖𝑔‖𝑝2−1
𝑌 ′ + ‖𝑎(0)‖𝑋′ .

Proof. It reduces to a simple application of Theorem 3.1 to the present discrete setting. �

Similarly to the analysis developed in Section 3.3, in what follows we provide suitable assumptions under
which problem (4.12) is well posed or equivalently Tℎ is well defined. For this purpose, we must verify that
the operators defining the discrete problem (4.12) satisfy the hypotheses of Theorem 4.1. We begin with the
hemi-continuity of aℎ.

Lemma 4.2. Given wS,ℎ ∈ H1
ℎ,ΓS

(ΩS), the operator aℎ(wS,ℎ) is hemi-continuous in Hℎ.

Proof. The proof follows analogously to the proof of Lemma 3.2, by using now the linearity and continuity of
ℬℎ

S(wS,ℎ) (in addition to those of 𝒜S). �

Now we verify that hypothesis (ii) of Theorem 4.1 holds.

Lemma 4.3. Let wS,ℎ ∈ Hℎ,ΓS(ΩS). Then, there exists 𝛾 > 0, depending on 𝐶𝒜S and 𝐿𝒜D (cf. (2.19), (2.20)),
such that

‖a(wS,ℎ)(uℎ)− a(wS,ℎ)(vℎ)‖H′ ≤ 𝛾
{︁

(1 + ‖wS,ℎ‖1,ΩS)‖uS,ℎ − vS,ℎ‖1,ΩS + ‖uD,ℎ − vD,ℎ‖H3(div ;ΩD)

+ ‖uD,ℎ − vD,ℎ‖H3(div ;ΩD)

(︁
‖uD,ℎ‖H3(div ;ΩD) + ‖vD,ℎ‖H3(div ;ΩD)

)︁}︁
,

for all uℎ = (uS,ℎ,uD,ℎ),vℎ = (vS,ℎ,vD,ℎ) ∈ Hℎ.

Proof. Similarly to the continuous case, the result follows straightforwardly from the definition of aℎ(wS,ℎ) (cf.
(4.2)), the triangle inequality, and the stability properties (2.19), (2.20) and (4.4). We omit further details. �

Now, we proceed to establish the strict monotonicity of aℎ(wS,ℎ) on the discrete kernel of b:

Vℎ :=
{︁
vℎ := (vS,ℎ,vD,ℎ) ∈ Hℎ : [b(vℎ), (𝑞ℎ, 𝜉ℎ)] = 0 ∀(𝑞ℎ, 𝜉ℎ) ∈ Qℎ

}︁
, (4.13)

for suitable wS,ℎ ∈ Hℎ,ΓS(ΩS). Observe that, similarly to the continuous case, vℎ ∈ Vℎ if and only if

(div vS,h, qh)S + (div vD,h, qh)D = 0 ∀qh ∈ Lh,0(Ω),

and
⟨vS,ℎ · n− vD,ℎ · n, 𝜉ℎ⟩Σ = 0 ∀𝜉ℎ ∈ Λℎ(Σ),

which, in particular, imply that

(div vS,h, qh)S = 0 ∀qh ∈ Lh(ΩS) and div vD,h = 0 in ΩD, (4.14)

where Lℎ(ΩS) is the set of functions of Lℎ(Ω) restricted to ΩS. Then, the announced result is as follows.
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Lemma 4.4. Let wS,ℎ ∈ Hℎ,ΓS(ΩS) such that

‖wS,ℎ · n‖0,Σ ≤
2𝜇𝛼S

𝜌𝐶2
tr𝐶

2(𝜕ΩS)
. (4.15)

Then, for fixed tℎ ∈ Hℎ ∖Vℎ, the nonlinear operator aℎ(wS,ℎ)( ·+ tℎ) is strictly monotone on Vℎ (cf. (4.13)).

Proof. The proof follows analogously to the proof of Lemma 3.4. Further details are omitted. �

We continue by adapting the results provided in Section 4 of [28] to our domain and spaces configuration to
prove that b satisfies the corresponding discrete inf-sup condition. We start by establishing the following two
preliminary lemmas.

Lemma 4.5. There exists ̃︀𝐶1 > 0, independent of ℎ, such that for all (𝑞ℎ, 𝜉ℎ) ∈ Qℎ, there holds

𝑆ℎ(𝑞ℎ, 𝜉ℎ) := sup
vℎ∈Hℎ
vℎ ̸=0

[b(vℎ), (𝑞ℎ, 𝜉ℎ)]
‖vℎ‖H

≥ ̃︀𝐶1‖𝜉ℎ‖ 1
3 , 3

2 ;Σ − ‖𝑞ℎ‖0,Ω. (4.16)

Proof. Let 𝜉ℎ ∈ Λℎ(Σ) ⊆ W
1
3 , 3

2 (Σ), 𝜉ℎ ̸= 0. Since

sup
̃︀𝜑∈W− 1

3 ,3(Σ)
̃︀𝜑 ̸=0

⟨̃︀𝜑, 𝜉ℎ⟩
Σ

‖̃︀𝜑‖− 1
3 ,3;Σ

= ‖𝜉ℎ‖ 1
3 , 3

2 ;Σ,

we deduce that there exists ̃︀𝜑 ∈ W− 1
3 ,3(Σ)∖{0} such that⟨̃︀𝜑, 𝜉ℎ⟩

Σ
≥ 1

2
‖̃︀𝜑‖− 1

3 ,3;Σ‖𝜉ℎ‖ 1
3 , 3

2 ;Σ. (4.17)

Next, exactly as we did in the proof of Lemma 3.5, we “extend” ̃︀𝜑 ∈ W− 1
3 ,3(Σ) to 𝜂 ∈ W− 1

3 ,3(𝜕ΩD) by

⟨𝜂, 𝜇⟩𝜕ΩD
:=
⟨̃︀𝜑, 𝜇Σ

⟩
Σ

∀𝜇 ∈ W
1
3 , 3

2 (𝜕ΩD),

where 𝜇Σ ∈ W
1
3 , 3

2 (Σ) is given by the decomposition (2.10). Then, proceeding again as in the second part of the
proof of Lemma 3.5, we find ̃︀vD ∈ H3

ΓD
(div ; ΩD) satisfying ̃︀vD · n = 𝜂 on 𝜕ΩD, and (cf. (3.22))

‖̃︀vD‖H3(div ;ΩD) ≤ 𝐶‖𝜂‖− 1
3 ,3;𝜕ΩD

≤ 𝐶‖̃︀𝜑‖− 1
3 ,3;Σ,

which, combined with (4.17), implies

⟨̃︀vD · n, 𝜉ℎ⟩Σ := ⟨̃︀vD · n, 𝐸Σ(𝜉ℎ)⟩𝜕ΩD
= ⟨𝜂,𝐸Σ(𝜉ℎ)⟩𝜕ΩD

=
⟨̃︀𝜑, 𝜉ℎ⟩

Σ

≥ 1
2𝐶
‖̃︀vD‖H3(div ;ΩD)‖𝜉ℎ‖ 1

3 , 3
2 ;Σ.

(4.18)

On the other hand, given vD ∈ H3(div ; ΩD), the properties of ΠD (cf. (4.8), (4.9)) and Lemma 3.2 of [25] allow
to establish that

⟨vD · n, 𝜉ℎ⟩Σ =
∫︁

Σ

(ΠD(vD) · n)𝜉ℎ ∀𝜉ℎ ∈ Λℎ(Σ), (4.19)

and
‖ΠD(vD)‖H3(div ;ΩD) ≤ 𝐶D‖vD‖H3(div ;ΩD). (4.20)
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Thus, defining ̃︀vD,ℎ := ΠD(̃︀vD) ∈ Hℎ,ΓD(ΩD), and then using (4.18), (4.19), and (4.20), we obtain⃒⃒⃒
⟨̃︀vD,ℎ · n, 𝜉ℎ⟩Σ

⃒⃒⃒
‖̃︀vD,ℎ‖H3(div ;ΩD)

≥ 1
𝐶D

⃒⃒⃒
⟨̃︀vD · n, 𝜉ℎ⟩Σ

⃒⃒⃒
‖̃︀vD‖H3(div ;ΩD)

≥ ̃︀𝐶1‖𝜉ℎ‖ 1
3 , 3

2 ;Σ. (4.21)

Finally, setting ̃︀vℎ := (0, ̃︀vD,ℎ) ∈ Hℎ, we deduce that

𝑆ℎ(𝑞ℎ, 𝜉ℎ) := sup
vℎ∈Hℎ
vℎ ̸=0

[b(vℎ), (𝑞ℎ, 𝜉ℎ)]
‖vℎ‖H

≥

⃒⃒⃒
[b(̃︀vℎ), (𝑞ℎ, 𝜉ℎ)]

⃒⃒⃒
‖̃︀vℎ‖H

=

⃒⃒⃒
⟨̃︀vD,ℎ · n, 𝜉ℎ⟩Σ − (div ̃︀vD,h, qh)D

⃒⃒⃒
‖̃︀vD,ℎ‖H3(div ;ΩD)

≥

⃒⃒⃒
⟨̃︀vD,ℎ · n, 𝜉ℎ⟩Σ

⃒⃒⃒
‖̃︀vD,ℎ‖H3(div ;ΩD)

− ‖𝑞ℎ‖0,Ω,

which, together with (4.21), imply (4.16) and complete the proof. �

Lemma 4.6. There exists ̃︀𝐶2 > 0, independent of ℎ, such that for all (𝑞ℎ, 𝜉ℎ) ∈ Qℎ, there holds

𝑆ℎ(𝑞ℎ, 𝜉ℎ) := sup
vℎ∈Hℎ
vℎ ̸=0

[b(vℎ), (𝑞ℎ, 𝜉ℎ)]
‖vℎ‖H

≥ ̃︀𝐶2‖𝑞ℎ‖0,Ω. (4.22)

Proof. The proof follows similarly to the first part of the proof of Lemma 3.5. In fact, given (𝑞ℎ, 𝜉ℎ) ∈ Qℎ we
recall that 𝑞ℎ ∈ L2

0(Ω) and apply again ([33], Cor. 2.4) to deduce that there exists z ∈ H1
0(Ω) such that

div z = −qh in Ω and ‖z‖1,Ω ≤ c‖qh‖0,Ω. (4.23)

Then, we let z⋆ := z|Ω⋆ for ⋆ ∈ {S,D} and observe that zS = zD on Σ, which implies that

(zS − zD) · n = 0 on Σ.

Hence, defining zℎ := (zS,ℎ, zD,ℎ), with zS,ℎ = ΠS(zS) and zD,ℎ = ΠD(zD), we observe from (4.5), (4.8), and
the fact that 𝒯 S

ℎ and 𝒯 D
ℎ match on Σ, that

⟨(zS,ℎ − zD,ℎ) · n, 𝜉ℎ⟩Σ = ⟨(zS − zD) · n, 𝜉ℎ⟩Σ = 0. (4.24)

In addition, since z = 0 on 𝜕Ω := ΓS ∪ ΓD, it is clear that zℎ ∈ Hℎ, and therefore, thanks to the continuity of
ΠS and the estimate (4.20), we obtain that

‖zℎ‖H ≤ 𝐶‖𝑞ℎ‖0,Ω, (4.25)

with 𝐶 > 0 independent of ℎ. Finally, from the identities (4.7) and (4.10), it can be readily seen that

div zh = −qh in Ω, (4.26)

which, together with (4.24) and (4.25), yield

sup
vℎ∈Hℎ
vℎ ̸=0

[b(vℎ), (𝑞ℎ, 𝜉ℎ)]
‖vℎ‖H

≥ [b(zℎ), (𝑞ℎ, 𝜉ℎ)]
‖zℎ‖H

≥ 1
𝐶
‖𝑞ℎ‖0,Ω,

which concludes the proof. �

Owing to Lemmas 4.5 and 4.6, now we are in position of establishing the full discrete inf-sup condition of b.
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Lemma 4.7. There exists ̃︀𝛽 > 0, independent of ℎ, such that for all (𝑞ℎ, 𝜉ℎ) ∈ Qℎ there holds

𝑆ℎ(𝑞ℎ, 𝜉ℎ) := sup
vℎ∈Hℎ
vℎ ̸=0

[b(vℎ), (𝑞ℎ, 𝜉ℎ)]
‖vℎ‖H

≥ ̃︀𝛽‖(𝑞ℎ, 𝜉ℎ)‖Q. (4.27)

Proof. It follows straightforwardly from the estimates (4.16) and (4.22). �

The following result establishes the well-definiteness of operator Tℎ.

Theorem 4.8. Let wS,ℎ ∈ Hℎ,ΓS(ΩS) such that

‖wS,ℎ · n‖0,Σ ≤
2𝜇𝛼S

𝜌𝐶2
tr𝐶

2(𝜕ΩS)
, (4.28)

and let fS ∈ L2(ΩS), fD ∈ L3/2(ΩD) and 𝑔D ∈ L2(ΩD). Then, (4.12) has a unique solution (ûℎ, (𝑝ℎ, 𝜆̂ℎ))
∈ Hℎ ×Qℎ, with ûℎ := (ûS,ℎ, ûD,ℎ), which allows to define Tℎ(wS,ℎ) = ûS,ℎ. Moreover, there exists a constant̃︀𝑐T > 0, independent of the solution, such that

‖Tℎ(wS,ℎ)‖1,ΩS = ‖ûS,ℎ‖1,ΩS ≤ ‖(ûℎ, (𝑝ℎ, 𝜆̂ℎ))‖H×Q ≤ ̃︀𝑐Tℳ(fS, fD, 𝑔D). (4.29)

Proof. Similarly to the continuous case, the result is a direct consequence of Lemmas 4.2–4.4, 4.7 and
Theorem 4.1. �

Having verified the well-definiteness of operator Tℎ, now we are in position of establishing the main result
of this section, namely, the well-posedness of problem (4.1).

Theorem 4.9. Let Wℎ be the compact convex subset of H1
ℎ,ΓS

(ΩS) defined by

Wℎ :=
{︁
vS,ℎ ∈ H1

ℎ,ΓS
(ΩS) : ‖vS,ℎ‖1,ΩS ≤ ̃︀𝑐Tℳ(fS, fD, 𝑔D)

}︁
. (4.30)

Assume that the data fS, fD, and 𝑔D satisfy

ℳ(fS, fD, 𝑔D) < ̃︀𝑟, (4.31)

where ̃︀𝑟 :=
2𝜇𝛼S̃︀𝑐T𝜌 min

{︃
1

𝐶2(ΩS)(2 +
√

2)
,

1
𝐶2(𝜕ΩS)𝐶3

tr

}︃
,

and ̃︀𝑐T > 0 is the constant in (4.29). Then, there exists a unique (uℎ, (𝑝ℎ, 𝜆ℎ)) ∈ Hℎ ×Qℎ solution to (4.1),
which satisfies uS,ℎ ∈ Wℎ and

‖(uℎ, (𝑝ℎ, 𝜆ℎ))‖H×Q ≤ ̃︀𝑐Tℳ(fS, fD, 𝑔D). (4.32)

Proof. We first observe thanks to (4.29), that assumption (4.31) guarantees that Tℎ(Wℎ) ⊆ Wℎ. Next, pro-
ceeding analogously to the proof of Lemma 3.9, the assumption (4.31) implies the estimate

𝜇𝛼S‖Tℎ(wS,ℎ)−Tℎ(̃︀wS,ℎ)‖21,ΩS
≤ [aℎ(wS,ℎ)(uℎ)− aℎ(wS,ℎ)(̃︀uℎ),uℎ − ̃︀uℎ]

= [ℬℎ
S(̃︀wS,ℎ −wS,ℎ)(̃︀uS,ℎ),uS,ℎ − ̃︀uS,ℎ],

which, together with the continuity of ℬℎ
S (see (4.4)) leads to

‖Tℎ(wS,ℎ)−Tℎ(̃︀wS,ℎ)‖1,ΩS ≤
𝜌𝐶2(ΩS)(2 +

√
2)

2𝜇𝛼S
‖Tℎ(̃︀wS,ℎ)‖1,ΩS‖wS,ℎ − ̃︀wS,ℎ‖1,ΩS , (4.33)

thus proving the continuity of Tℎ. Then, the existence result follows from the Brower fixed-point theorem.
Moreover, from (4.33) and the fact that Tℎ(̃︀wS,ℎ) belongs to Wℎ, it is easy to see that Tℎ is a contraction
mapping if and only if (4.31) holds, which due to the Banach fixed-point theorem, implies the uniqueness of
solution. In turn, the a priori estimate (4.32) follows directly from (4.29). �
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5. A PRIORI error analysis

Now we establish the corresponding Céa estimate and the theoretical rate of convergence of the Galerkin
scheme (4.1). To that end, we first introduce some notations and state some previous results. We begin by
defining the set

Hg
ℎ :=

{︁
vℎ := (vS,ℎ,vD,ℎ) ∈ Hℎ : [b(vℎ), (𝑞ℎ, 𝜉ℎ)] = [g, (𝑞ℎ, 𝜉ℎ)] ∀(𝑞ℎ, 𝜉ℎ) ∈ Qℎ

}︁
,

which is clearly noempty, since (4.27) holds. Also, it is not difficult to see that, due to the inf-sup condition
(4.27), the following inequality holds (cf. [27], Thm. 2.6, [50], Thm. 2.1):

inf
vℎ∈Hg

ℎ

‖u− vℎ‖H ≤
(︂

1 +
𝐶b̃︀𝛽
)︂

inf
vℎ∈Hℎ

‖u− vℎ‖H. (5.1)

In turn, in order to simplify the subsequent analysis, we write euS = uS − uS,ℎ, euD = uD − uD,ℎ, 𝑒𝑝 = 𝑝− 𝑝ℎ,
and 𝑒𝜆 = 𝜆 − 𝜆ℎ. As usual, for a given vℎ = (vS,ℎ,vD,ℎ) ∈ Hg

ℎ and (𝑞ℎ, 𝜉ℎ) ∈ Qℎ, we shall then decompose
these errors into

euS = 𝛿uS + 𝜂uS
, euD = 𝛿uD + 𝜂uD

, 𝑒𝑝 = 𝛿𝑝 + 𝜂𝑝, 𝑒𝜆 = 𝛿𝜆 + 𝜂𝜆, (5.2)

with
𝛿uS = uS − vS,ℎ, 𝜂uS

= vS,ℎ − uS,ℎ, 𝛿uD = uD − vD,ℎ, 𝜂uD
= vD,ℎ − uD,ℎ,

𝛿𝑝 = 𝑝− 𝑞ℎ, 𝜂𝑝 = 𝑞ℎ − 𝑝ℎ, 𝛿𝜆 = 𝜆− 𝜉ℎ, 𝜂𝜆 = 𝜉ℎ − 𝜆ℎ.
(5.3)

Finally, since the exact solution uS ∈ H1
ΓS

(ΩS) satisfies div uS = 0 in ΩS, we have

[ℬℎ
S(uS)(uS),vS,ℎ] = [ℬS(uS)(uS),vS,ℎ] ∀vS,ℎ ∈ Hℎ,ΓS(ΩS).

Consequently, the following Galerkin orthogonality property holds:

[𝒜S(euS),vS,ℎ] + [ℬℎ
S(uS)(uS),vS,ℎ]− [ℬℎ

S(uS,ℎ)(uS,ℎ),vS,ℎ]
+ [𝒜D(uD)−𝒜D(uD,ℎ),vD,ℎ] + [b(vℎ), (𝑒𝑝, 𝑒𝜆)] = 0

[b(euS , euD), (𝑞ℎ, 𝜉ℎ)] = 0
(5.4)

for all vℎ := (vS,ℎ,vD,ℎ) ∈ Hℎ and (𝑞ℎ, 𝜉ℎ) ∈ Qℎ.
We now establish the main result of this section.

Theorem 5.1. Let fS ∈ L2(ΩS), fD ∈ L3/2(ΩD) and 𝑔D ∈ L2(ΩD), such that

ℳ(fS, fD, 𝑔D) <
1
2

min
{︀
𝑟, ̃︀𝑟}︀, (5.5)

where 𝑟 and ̃︀𝑟 are the constants defined in Lemma 3.11 and Theorem 4.9, respectively. Let (u, (𝑝, 𝜆)) :=
((uS,uD), (𝑝, 𝜆)) ∈ H × Q and (uℎ, (𝑝ℎ, 𝜆ℎ)) := ((uS,ℎ,uD,ℎ), (𝑝ℎ, 𝜆ℎ)) ∈ Hℎ × Qℎ be the unique solutions
of the continuous and discrete problems (2.14) and (4.1), respectively. Then there exists 𝐶 > 0, independent of
ℎ and the continuous and discrete solutions, such that

‖(u, (𝑝, 𝜆))−(uℎ, (𝑝ℎ, 𝜆ℎ))‖H×Q ≤ 𝐶 max
𝑖∈{2,3}

{︃(︂
inf

vℎ∈Hℎ

(︁
‖u−vℎ‖H+‖u−vℎ‖2H

)︁
+ inf

(𝑞ℎ,𝜉ℎ)∈Qℎ

‖(𝑝, 𝜆)−(𝑞ℎ, 𝜉ℎ)‖Q
)︂ 1

𝑖−1
}︃

.

(5.6)

Proof. In what follows we adapt the proof of Theorem 5 of [21] to the present case. To do that, we let vℎ =
(vS,ℎ,vD,ℎ) ∈ Hg

ℎ and (𝑞ℎ, 𝜉ℎ) ∈ Qℎ, and define 𝛿uS , 𝛿uD , 𝛿𝑝, 𝛿𝜆,𝜂uS
,𝜂uD

, 𝜂𝑝, and 𝜂𝜆, as in (5.3). In addition,
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we recall that thanks to assumption (5.5), it follows that uS ∈ W and uS,ℎ ∈ Wℎ (cf. (3.26) and (4.30)), which
implies (cf. Thm. 3.12 and 4.9):

‖uD‖H3(div ;ΩD), ‖uS‖1,ΩS ≤ 𝑐Tℳ(fS, fD, 𝑔D),
‖uD,ℎ‖H3(div ;ΩD), ‖uS,ℎ‖1,ΩS ≤ ̃︀𝑐Tℳ(fS, fD, 𝑔D). (5.7)

In turn, since uℎ,vℎ ∈ Hg
ℎ, we observe that

(𝜂uS
,𝜂uD

) := vℎ − uℎ ∈ Vℎ. (5.8)

According to the above, we first note that for all vS,ℎ ∈ Hℎ,ΓS(ΩS), there holds[︀
ℬℎ

S(uS)(uS),vS,ℎ

]︀
−
[︀
ℬℎ

S(uS,ℎ)(uS,ℎ),vS,ℎ

]︀
=
[︀
ℬℎ

S(euS)(uS),vS,ℎ

]︀
+
[︀
ℬℎ

S(uS,ℎ)(euS),vS,ℎ

]︀
=
[︀
ℬℎ

S(uS,ℎ)(𝜂uS
),vS,ℎ

]︀
+ℛ(vS,ℎ), (5.9)

with
ℛ(vS,ℎ) =

[︀
ℬℎ

S(uS,ℎ)(𝛿uS),vS,ℎ

]︀
+
[︀
ℬℎ

S(𝛿uS)(uS),vS,ℎ

]︀
+
[︀
ℬℎ

S(𝜂uS
)(uS),vS,ℎ

]︀
.

Then, adding and subtracting suitable terms in the first equation of (5.4) with vℎ = (𝜂uS
,𝜂uD

) ∈ Vℎ (cf. (5.8)),
and observing that [b(𝜂uS

,𝜂uD
), (𝜂𝑝, 𝜂𝜆)] = 0, we obtain

[aℎ(uS,ℎ)(vℎ)− aℎ(uS,ℎ)(uℎ),vℎ − uℎ]
= −

[︀
𝒜S(𝛿uS),𝜂uS

]︀
−ℛ(𝜂uS

)−
[︀
𝒜D(uD)−𝒜D(vD,ℎ),𝜂uD

]︀
−
[︀
b(𝜂uS

,𝜂uD
), (𝛿𝑝, 𝛿𝜆)

]︀
.

Hence, proceeding analogously to the proof of Lemma 3.4, using the continuity of 𝒜S, ℬℎ
S and b (cf. (2.19) and

(4.4)), and inequality (2.20), we deduce that

𝜇𝛼S‖𝜂uS
‖21,ΩS

+ 𝛼D‖𝜂uD
‖3H3(div ;ΩD)

≤
{︁
𝐶𝒜S + 𝐶sk

(︁
‖uS,ℎ‖1,ΩS + ‖uS‖1,ΩS

)︁}︁
‖𝛿uS‖1,ΩS‖𝜂uS

‖1,ΩS + 𝐶sk‖uS‖1,ΩS‖𝜂uS
‖21,ΩS

+ 𝐿𝒜D

{︁(︁
1 + 2‖uD‖H3(div ;ΩD)

)︁
‖𝛿uD‖H3(div ;ΩD) + ‖𝛿uD‖2H3(div ;ΩD)

}︁
‖𝜂uD

‖H3(div ;ΩD)

+ 𝐶b‖(𝜂uS
,𝜂uD

)‖H‖(𝛿𝑝, 𝛿𝜆)‖Q,

which, together with (5.7) and assumption (5.5), implies that there exists 𝐶 > 0, depending only on parameters,
data and other constants, all of them independent of ℎ, such that

‖(𝜂uS
,𝜂uD

)‖H ≤ 𝐶 max
𝑖∈{2,3}

{︂(︁
‖(𝛿uS , 𝛿uD)‖H + ‖(𝛿uS , 𝛿uD)‖2H + ‖(𝛿𝑝, 𝛿𝜆)‖Q

)︁ 1
𝑖−1
}︂
. (5.10)

In this way, from (5.2), (5.10), and the triangle inequality, we obtain

‖(euS , euD)‖H ≤ ‖(𝛿uS , 𝛿uD)‖H + ‖(𝜂uS
,𝜂uD

)‖H
≤ ̃︀𝐶 max

𝑖∈{2,3}

{︂(︁
‖(𝛿uS , 𝛿uD)‖H + ‖(𝛿uS , 𝛿uD)‖2H + ‖(𝛿𝑝, 𝛿𝜆)‖Q

)︁ 1
𝑖−1
}︂
.

(5.11)

In turn, to estimate 𝑒𝑝 and 𝑒𝜆 we observe that from the discrete inf-sup condition (4.27), the first equation of
(5.4), and the first equation of (5.9), there holds

̃︀𝛽‖(𝜂𝑝, 𝜂𝜆)‖Q ≤ sup
vℎ∈Hℎ
vℎ ̸=0

[b(vℎ), (𝜂𝑝, 𝜂𝜆)]
‖vℎ‖H

= sup
vℎ∈Hℎ
vℎ ̸=0

[b(vℎ), (𝑒𝑝, 𝑒𝜆)]− [b(vℎ), (𝛿𝑝, 𝛿𝜆)]
‖vℎ‖H

= sup
vℎ∈Hℎ
vℎ ̸=0

−

{︃
[𝒜S(euS),vS,ℎ] + [ℬℎ

S(euS)(uS),vS,ℎ] + [ℬℎ
S(uS,ℎ)(euS),vS,ℎ]

‖vℎ‖H

+
[𝒜D(uD)−𝒜D(uD,ℎ),vD,ℎ] + [b(vℎ), (𝛿𝑝, 𝛿𝜆)]

‖vℎ‖H

}︃
·
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Then, the continuity of 𝒜S, ℬℎ
S , and b (cf. (2.19) and (4.4)), and the inequality (2.20), imply

̃︀𝛽‖(𝜂𝑝, 𝜂𝜆)‖Q ≤
{︁
𝐶𝒜S + 𝐶sk

(︁
‖uS‖1,ΩS + ‖uS,ℎ‖1,ΩS

)︁}︁
‖euS‖1,ΩS

+ 𝐿𝒜D

{︁
1 + ‖uD‖H3(div ;ΩD) + ‖uD,ℎ‖H3(div ;ΩD)

}︁
‖euD‖H3(div ;ΩD) + 𝐶b‖(𝛿𝑝, 𝛿𝜆)‖Q,

which, together with assumption (5.5), inequalities (5.7) and (5.11), yield

‖(𝜂𝑝, 𝜂𝜆)‖Q ≤ 𝑐 max
𝑖∈{2,3}

{︂(︁
‖(𝛿uS , 𝛿uD)‖H + ‖(𝛿uS , 𝛿uD)‖2H + ‖(𝛿𝑝, 𝛿𝜆)‖Q

)︁ 1
𝑖−1
}︂
.

Thus, from (5.2), the triangle inequality, and the foregoing bound, we obtain

‖(𝑒𝑝, 𝑒𝜆)‖Q ≤ ‖(𝛿𝑝, 𝛿𝜆)‖Q + ‖(𝜂𝑝, 𝜂𝜆)‖Q
≤ ̃︀𝑐 max

𝑖∈{2,3}

{︂(︁
‖(𝛿uS , 𝛿uD)‖H + ‖(𝛿uS , 𝛿uD)‖2H + ‖(𝛿𝑝, 𝛿𝜆)‖Q

)︁ 1
𝑖−1
}︂
,

(5.12)

where ̃︀𝑐 > 0 is independent of ℎ. Therefore, recalling that vℎ ∈ Hg
ℎ and (𝑞ℎ, 𝜆ℎ) ∈ Qℎ are arbitrary, (5.11) and

(5.12) give

‖((euS , euD), (𝑒𝑝, 𝑒𝜆))‖H×Q

≤ 𝐶 max
𝑖∈{2,3}

{︃(︂
inf

vℎ∈Hg
ℎ

(︁
‖u− vℎ‖H + ‖u− vℎ‖2H

)︁
+ inf

(𝑞ℎ,𝜉ℎ)∈Qℎ

‖(𝑝, 𝜆)− (𝑞ℎ, 𝜉ℎ)‖Q
)︂ 1

𝑖−1
}︃
,

which, together with (5.1), concludes the proof. �

Now, in order to provide the theoretical rate of convergence of the Galerkin scheme (4.1), we recall the
approximation properties of the subspaces involved (see, e.g., [10, 23, 25, 27]). Note that each one of them is
named after the unknown to which it is applied later on.

(APuS
ℎ ) For each vS ∈ H2(ΩS), there holds

‖vS −ΠS(vS)‖1,ΩS ≤ 𝐶ℎ‖vS‖2,ΩS .

(APuD
ℎ ) For each vD ∈ W1,3(ΩD) with div vD ∈ H1(ΩD), there holds

‖vD −ΠD(vD)‖H3(div ;ΩD) ≤ 𝐶ℎ
{︁
‖vD‖1,3;ΩD + ‖div vD‖1,ΩD

}︁
.

(AP𝑝
ℎ) For each 𝑞 ∈ H1(Ω) ∩ L2

0(Ω), there exists 𝑞ℎ ∈ Lℎ,0(Ω) such that

‖𝑞 − 𝑞ℎ‖0,Ω ≤ 𝐶ℎ‖𝑞‖1,Ω.

(AP𝜆
ℎ) For each 𝜉 ∈ W1, 3

2 (Σ), there exists 𝜉ℎ ∈ Λℎ(Σ) such that

‖𝜉 − 𝜉ℎ‖ 1
3 , 3

2 ;Σ ≤ 𝐶ℎ2/3‖𝜉‖1, 3
2 ;Σ.

The following theorem provides the theoretical sub-optimal rate of convergence of the Galerkin scheme (4.1),
under suitable regularity assumptions on the exact solution.

Theorem 5.2. Let fS ∈ L2(ΩS), fD ∈ L3/2(ΩD) and 𝑔D ∈ L2(ΩD), such that (5.5) holds. Let (u, (𝑝, 𝜆)) :=
((uS,uD), (𝑝, 𝜆)) ∈ H×Q and (uℎ, (𝑝ℎ, 𝜆ℎ)) := ((uS,ℎ,uD,ℎ), (𝑝ℎ, 𝜆ℎ)) ∈ Hℎ×Qℎ be the unique solutions of the
continuous and discrete problems (2.14) and (4.1), respectively, and assume that uS ∈ H2(ΩS), uD ∈ W1,3(ΩD),
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div uD ∈ H1(ΩD), 𝑝 ∈ H1(Ω), and 𝜆 ∈ W1, 3
2 (Σ). Then, there exists 𝐶 > 0, independent of ℎ and the continuous

and discrete solutions, such that

‖(u, (𝑝, 𝜆))− (uℎ, (𝑝ℎ, 𝜆ℎ))‖H×Q ≤ 𝐶ℎ1/3 max
𝑖∈{2,3}

{︃(︂
‖uS‖2,ΩS + ‖uD‖1,3;ΩD + ‖div uD‖1,ΩD

+ ‖𝑝‖1,Ω + ‖𝜆‖1, 3
2 ;Σ

)︂ 1
𝑖−1
}︃
. (5.13)

Proof. From (APuS
ℎ ) and (APuD

ℎ ), it is not difficult to see that

inf
vℎ∈Hℎ

(︁
‖u− vℎ‖H + ‖u− vℎ‖2H

)︁
≤ 𝐶ℎ

(︁
‖uS‖2,ΩS + ‖uD‖1,3;ΩD + ‖div uD‖1,ΩD

)︁
+ 2𝐶2 ℎ2

(︁
‖uS‖22,ΩS

+ (‖uD‖1,3;ΩD + ‖div uD‖1,ΩD)2
)︁

= 𝐶ℎ𝐴‖uS‖2,ΩS + 𝐶ℎ𝐵(‖uD‖1,3;ΩD + ‖div uD‖1,ΩD),

with 𝐴 = 1+2𝐶ℎ‖uS‖2,ΩS and 𝐵 = 1+2𝐶ℎ(‖uD‖1,3;ΩD +‖div uD‖1,ΩD). Then, using the fact that for sufficiently
small values of ℎ there hold 𝐴 ≤ 𝑐 and 𝐵 ≤ 𝑐, with 𝑐 > 0 independent of ℎ, from the above inequality it follows
that

inf
vℎ∈Hℎ

(︁
‖u− vℎ‖H + ‖u− vℎ‖2H

)︁
≤ 𝐶ℎ

(︁
‖uS‖2,ΩS + ‖uD‖1,3;ΩD + ‖div uD‖1,ΩD

)︁
. (5.14)

In turn, from (AP𝑝
ℎ) and (AP𝜆

ℎ), we have that

inf
(𝑞ℎ,𝜉ℎ)∈Qℎ

‖(𝑝, 𝜆)− (𝑞ℎ, 𝜉ℎ)‖Q ≤ 𝐶
(︁
ℎ‖𝑝‖1,Ω + ℎ2/3‖𝜆‖1, 3

2 ;Σ

)︁
,

which together with (5.14), implies

inf
vℎ∈Hℎ

(︁
‖u− vℎ‖H + ‖u− vℎ‖2H

)︁
+ inf

(𝑞ℎ,𝜉ℎ)∈Qℎ

‖(𝑝, 𝜆)− (𝑞ℎ, 𝜉ℎ)‖Q ≤ 𝐶ℎ
(︁
‖uS‖2,ΩS + ‖uD‖1,3;ΩD

+ ‖div uD‖1,ΩD + ‖p‖1,Ω

)︁
+ Ch2/3‖𝜆‖1, 3

2 ;Σ.

In this way, from the latter and (5.6) we obtain the desired result. �

6. Numerical results

In this section we present some examples illustrating the performance of our mixed finite element scheme
(4.1) on a set of quasi-uniform triangulations of the corresponding domains. Our implementation is based on a
FreeFem++ code [39], in conjunction with the direct linear solver UMFPACK [19].

In order to solve the nonlinear problem (4.1), given wD ∈ H3
ΓD

(div ; ΩD) we introduce the Gâteaux derivative
associated to 𝒜D (cf. (2.16)), i.e.,

𝒟𝒜D(wD)(uD,vD) :=
𝜇

𝜌

(︀
K−1uD,vD

)︀
D

+
𝐹

𝜌
(|wD|uD,vD)D +

𝐹

𝜌

(︂
wD · uD

|wD|
,wD · vD

)︂
D

,

for all uD,vD ∈ H3
ΓD

(div ; ΩD). In this way, we propose the Newton-type strategy: Given u0
ℎ = (u0

S,ℎ,u
0
D,ℎ) ∈

Hℎ, 𝑝
0
ℎ ∈ Lℎ,0(Ω) and 𝜆0

ℎ ∈ Λℎ(Σ), for 𝑚 ≥ 1, find u𝑚
ℎ = (u𝑚

S,ℎ,u
𝑚
D,ℎ) ∈ Hℎ, 𝑝

𝑚
ℎ ∈ Lℎ,0(Ω) and 𝜆𝑚

ℎ ∈ Λℎ(Σ),
such that

[𝒜S(u𝑚
S,ℎ),vS,ℎ] + [ℬℎ

S(u𝑚−1
S,ℎ )(u𝑚

S,ℎ),vS,ℎ] + [ℬℎ
S(u𝑚

S,ℎ)(u𝑚−1
S,ℎ ),vS,ℎ] +𝒟𝒜D(u𝑚−1

D,ℎ )(u𝑚
D,ℎ,vD,ℎ)

+ [b(vℎ), (𝑝𝑚
ℎ , 𝜆

𝑚
ℎ )] = [ℬℎ

S(u𝑚−1
S,ℎ )(u𝑚−1

S,ℎ ),vS,ℎ] +
𝐹

𝜌

(︁
|u𝑚−1

D,ℎ |u𝑚−1
D,ℎ ,vD,ℎ

)︁
D

+ [f ,vℎ]

[b(u𝑚
ℎ ), (𝑞ℎ, 𝜉ℎ)] = [g, (𝑞ℎ, 𝜉ℎ)]

(6.1)
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for all vℎ = (vS,ℎ,vD,ℎ) ∈ Hℎ and (𝑞ℎ, 𝜉ℎ) ∈ Qℎ.
In all the numerical experiments below, the iterations are terminated once the relative error of the entire

coefficient vectors between two consecutive iterates is sufficiently small, i.e.,

‖coeff𝑚+1 − coeff𝑚‖𝑙2

‖coeff𝑚+1‖𝑙2
≤ 𝑡𝑜𝑙,

where ‖ · ‖𝑙2 is the standard 𝑙2-norm in R𝑁 , with 𝑁 denoting the total number of degrees of freedom defining
the finite element subspaces Hℎ and Qℎ, and 𝑡𝑜𝑙 is a fixed tolerance chosen as 𝑡𝑜𝑙 = 1𝐸− 06. For each example
shown below we simply take u0

ℎ = (0, (0.1, 0)) and (𝑝0
ℎ, 𝜆

0
ℎ) = 0 as initial guess. As usual, the individual errors

are denoted by:

e(uS) := ‖uS − uS,ℎ‖1,ΩS , e(uD) := ‖uD − uD,ℎ‖H3(div ;ΩD),
e(𝑝S) := ‖𝑝S − 𝑝S,ℎ‖0,ΩS , e(𝑝D) := ‖𝑝D − 𝑝D,ℎ‖0,ΩD , e(𝜆) := ‖𝜆− 𝜆ℎ‖L3/2(Σ).

Notice that we considered ‖𝜆 − 𝜆ℎ‖L3/2(Σ) in place of ‖𝜆 − 𝜆ℎ‖ 1
3 , 3

2 ;Σ because of the last norm is not com-
putable. Notice also that ‖𝜆 − 𝜆ℎ‖L3/2(Σ) satisfies the sub-optimal rate of convergence (5.13). Next, we define
the experimental rates of convergence

𝑟(uS) :=
log(𝑒(uS)/𝑒′(uS))

log(ℎS/ℎ′S)
, 𝑟(uD) :=

log(𝑒(uD)/𝑒′(uD))
log(ℎD/ℎ′D)

,

𝑟(𝑝S) :=
log(𝑒(𝑝S)/𝑒′(𝑝S))

log(ℎS/ℎ′S)
, 𝑟(𝑝D) :=

log(𝑒(𝑝D)/𝑒′(𝑝D))
log(ℎD/ℎ′D)

, 𝑟(𝜆) :=
log(𝑒(𝜆)/𝑒′(𝜆))

log(ℎΣ/ℎ′Σ)
,

where ℎ⋆ and ℎ′⋆ (⋆ ∈ {S,D,Σ}) denote two consecutive mesh sizes with their respective errors 𝑒 and 𝑒′,
respectively.

The examples to be considered in this section are described next. In all of them, for the sake of simplicity, we
choose the parameters 𝜇 = 1, 𝜌 = 1, 𝛼d = 1, 𝜅 = I, and K = I. In addition, the condition

∫︀
Ω
𝑝ℎ = 0 is imposed

via a penalization strategy.

6.1. Example 1: Tombstone-shaped domain without source in the porous media

In our first example we consider a semi-disk-shaped fluid domain coupled with a porous unit square, i.e.,
ΩS :=

{︁
(𝑥1, 𝑥2) : 𝑥2

1 + (𝑥2 − 0.5)2 < 0.52, 𝑥2 > 0.5
}︁

and ΩD := (−0.5, 0.5)2. We consider the Forchheimer
number 𝐹 = 1 and the data fS, fD, and 𝑔D, are adjusted so that the exact solution in the tombstone-shaped
domain Ω = ΩS ∪ Σ ∪ ΩD is given by the smooth functions

uS(𝑥1, 𝑥2) =
(︂
𝜋 cos(𝜋𝑥1) sin(𝜋𝑥2)
−𝜋 sin(𝜋𝑥1) cos(𝜋𝑥2)

)︂
in ΩS,

uD(𝑥1, 𝑥2) =
(︂
𝜋 sin(𝜋𝑥2) exp(𝑥1)
cos(𝜋𝑥2) exp(𝑥1)

)︂
in ΩD,

𝑝⋆(𝑥1, 𝑥2) = sin(𝜋𝑥1) sin(𝜋𝑥2) in Ω⋆, with ⋆ ∈ {S,D}.

Notice that the source of the porous media is 𝑔D = 0. Notice also that this solution satisfies uS · n = uD · n on
Σ. However, the Beavers–Joseph–Saffman condition (cf. (2.4)) is not satisfied, the Dirichlet boundary condition
for the Navier–Stokes velocity on ΓS and the Neumann boundary condition for the Darcy–Forchheimer velocity
on ΓD are both non-homogeneous. In this way, the right-hand side of the resulting system must be modified
accordingly.
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Table 1. Example 1: Degrees of freedom, mesh sizes, errors, convergence history and Newton
iteration count for the approximation of the Navier–Stokes/Darcy–Forchheimer problem with
𝐹 = 1.

𝑁 ℎS e(uS) 𝑟(uS) e(𝑝S) 𝑟(𝑝S)

691 0.1915 0.4439 – 0.1588 –
2491 0.0911 0.2293 0.8896 0.0725 1.0561
9562 0.0486 0.1188 1.0441 0.0382 1.0179
37 815 0.0242 0.0531 1.1558 0.0175 1.1214
149 693 0.0134 0.0288 1.0380 0.0094 1.0474
588 445 0.0078 0.0147 1.2290 0.0048 1.2231

𝑁 ℎD e(uD) 𝑟(uD) e(𝑝D) 𝑟(𝑝D)

691 0.1901 0.3481 – 0.0643 –
2491 0.0978 0.1678 1.0974 0.0305 1.1202
9562 0.0535 0.0856 1.1169 0.0151 1.1629
37 815 0.0249 0.0427 0.9122 0.0075 0.9206
149 693 0.0145 0.0214 1.2713 0.0037 1.2840
588 445 0.0068 0.0107 0.9140 0.0019 0.9087

𝑁 ℎΣ e(𝜆) 𝑟(𝜆) iter

691 0.1250 0.0718 – 7
2491 0.0625 0.0352 1.0308 7
9562 0.0313 0.0175 1.0084 8
37 815 0.0156 0.0087 1.0060 8
149 693 0.0078 0.0043 1.0012 8
588 445 0.0039 0.0022 1.0004 8

6.2. Example 2: Rectangle domain with a Kovasznay solution

In our second example we consider a rectangular domain Ω = ΩS ∪Σ ∪ΩD, with ΩS := (−0.5, 1.5)× (0, 0.5)
and ΩD := (−0.5, 1.5)× (−0.5, 0). We consider the Forchheimer number 𝐹 = 1 and the data fS, fD, and 𝑔D, are
adjusted so that the exact solution in the rectangle domain Ω is given by the smooth functions

uS(𝑥1, 𝑥2) =

(︃
1− exp(𝜔𝑥1) cos(2𝜋𝑥2)
𝜔

2𝜋
exp(𝜔𝑥1) sin(2𝜋𝑥2)

)︃
in ΩS,

uD(𝑥1, 𝑥2) =
(︂

(𝑥1 + 0.5)(𝑥1 − 1.5) exp(𝑥2)
(𝑥2 + 2)(2𝑥2 + 1) exp(𝑥1)

)︂
in ΩD,

𝑝⋆(𝑥1, 𝑥2) = −1
2

exp(2𝜔𝑥1) + 𝑝0 in Ω⋆, with ⋆ ∈ {S,D},

and

𝜔 =
−8𝜋2

𝜇−1 +
√︀
𝜇−1 + 16𝜋2

·

The constant 𝑝0 is such that
∫︀
Ω
𝑝 = 0. Notice that (uS, 𝑝S) is the well known analytical solution for the Navier–

Stokes problem obtained by Kovasznay in [41], which presents a boundary layer at {−0.5}× (−0.5, 0.5). Notice
also that in this example both the conservation of mass and the Beavers–Joseph–Saffman boundary conditions
(cf. (2.4)) are not satisfied and the right-hand side of the resulting system must be modified accordingly.

6.3. Example 3: 2D helmet-shaped domain with different Forchheimer numbers

In our last example we focus on the performance of the iterative method (6.1) with respect to the Forchheimer
number 𝐹 . To that end, and motivated by Section 2 of [14], we consider a 2D helmet-shaped domain. More
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Table 2. Example 2: Degrees of freedom, mesh sizes, errors, convergence history and Newton
iteration count for the approximation of the Navier–Stokes/Darcy–Forchheimer problem with
𝐹 = 1.

𝑁 ℎS e(uS) 𝑟(uS) e(𝑝S) 𝑟(𝑝S)

989 0.2001 10.3170 – 8.2614 –
3880 0.0966 4.5495 1.1249 3.9855 1.0015
13 888 0.0492 2.2051 1.0713 1.8753 1.1151
55 727 0.0270 1.1168 1.1342 0.9489 1.1357
213 833 0.0161 0.5456 1.3877 0.4746 1.3423
858 658 0.0078 0.2769 0.9419 0.2404 0.9444
𝑁 ℎD e(uD) 𝑟(uD) e(𝑝D) 𝑟(𝑝D)
989 0.2001 0.4678 – 7.2964 –
3880 0.0950 0.2249 0.9835 3.3197 1.0578
13 888 0.0500 0.1145 1.0518 1.7322 1.0135
55 727 0.0254 0.0569 1.0326 0.9133 0.9457
213 833 0.0160 0.0278 1.5453 0.4353 1.5956
858 658 0.0066 0.0141 0.7674 0.2295 0.7283
𝑁 ℎΣ e(𝜆) 𝑟(𝜆) iter
989 0.1250 8.9940 – 6
3880 0.0625 4.6538 0.9505 6
13 888 0.0313 2.3459 0.9883 6
55 727 0.0156 1.1788 0.9928 6
213 833 0.0078 0.5962 0.9835 6
858 658 0.0039 0.3078 0.9539 6

Table 3. Example 3: Degrees of freedom, mesh sizes, errors, convergence history and Newton
iteration count for the approximation of the Navier–Stokes/Darcy–Forchheimer problem with
𝐹 = 10.

𝑁 ℎS e(uS) 𝑟(uS) e(𝑝S) 𝑟(𝑝S)

1007 0.1881 1.0274 – 0.5355 –
3790 0.1088 0.5114 1.2753 0.2156 1.6636
14 014 0.0481 0.2472 0.8896 0.0978 0.9668
55 428 0.0254 0.1243 1.0742 0.0483 1.1028
214 828 0.0137 0.0620 1.1285 0.0237 1.1564
883 963 0.0077 0.0307 1.2174 0.0123 1.1392
𝑁 ℎD e(uD) 𝑟(uD) e(𝑝D) 𝑟(𝑝D)
1007 0.2001 1.2760 – 0.1105 –
3790 0.0950 0.6135 0.9837 0.0385 1.4165
14 014 0.0494 0.3115 1.0366 0.0150 1.4375
55 428 0.0262 0.1566 1.0813 0.0067 1.2820
214 828 0.0146 0.0784 1.1839 0.0033 1.2215
883 963 0.0072 0.0393 0.9815 0.0016 0.9948
𝑁 ℎΣ e(𝜆) 𝑟(𝜆) iter
1007 0.1250 0.1930 – 7
3790 0.0625 0.0704 1.4545 8
14 014 0.0313 0.0296 1.2527 9
55 428 0.0156 0.0141 1.0638 9
214 828 0.0078 0.0070 1.0217 9
883 963 0.0039 0.0035 1.0093 9
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Table 4. Example 3: Convergence behavior of the iterative method (6.1) with respect to the
Forchheimer number 𝐹 .

𝐹 ℎ = 0.2001 ℎ = 0.1088 ℎ = 0.0494 ℎ = 0.0262 ℎ = 0.0146 ℎ = 0.0077

0 4 4 4 4 4 4
1 5 5 5 6 6 6
10 7 8 9 9 9 9
100 8 9 10 10 11 11

-1.4  1.4   2.42.4- -0.84 0.84  5.25.2-

1.7   3.5   2.5810.0 -0.33 0.33  0.10.1-

Figure 2. Example 1: Velocity components (top panels), velocity streamlines and pressure field
in the whole domain (bottom panels).
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4.04  8.08  0.00056 12. -102. -47.6 -1.6e+02 7.1 

-0.358 1.37  -2.1 3.1 -0.690 1.62  -3.0 3.9 

Figure 3. Example 2: Velocity components (top panels), velocity streamlines and pressure field
in the whole domain (bottom panels).

precisely, we consider the domain Ω = ΩS ∪ Σ ∪ ΩD, where ΩD := (−1, 1)× (−0.5, 0) and ΩS := (−1,−0.75)×
(0, 1.25) ∪ ΩS,1 ∪ (−0.5, 0.5)× (0, 0.25) ∪ ΩS,2 ∪ (0.75, 1)× (0, 1.25), with

ΩS,1 :=
{︁

(𝑥1, 𝑥2) : (𝑥1 + 0.5)2 + (𝑥2 − 0.5)2 > 0.252, −0.75 < 𝑥1 < −0.5, 𝑥2 > 0
}︁

and
ΩS,2 :=

{︁
(𝑥1, 𝑥2) : (𝑥1 − 0.5)2 + (𝑥2 − 0.5)2 > 0.252, 0.5 < 𝑥1 < 0.75, 𝑥2 > 0

}︁
.

The data fS, fD, and 𝑔D, are chosen so that the exact solution in the 2D helmet-shaped domain Ω is given by
the smooth functions

uS(𝑥1, 𝑥2) =
(︂
− sin(2𝜋𝑥1) cos(2𝜋𝑥2)
cos(2𝜋𝑥1) sin(2𝜋𝑥2)

)︂
in ΩS,

uD(𝑥1, 𝑥2) =
(︂

sin(2𝜋𝑥1) exp(𝑥2)
sin(2𝜋𝑥2) exp(𝑥1)

)︂
in ΩD,

𝑝⋆(𝑥1, 𝑥2) = sin(𝜋𝑥1) exp(𝑥2) + 𝑝0 in Ω⋆, with ⋆ ∈ {S,D}.

The constant 𝑝0 is such that
∫︀
Ω
𝑝 = 0. Notice that, this solution satisfies uS · n = uD · n on Σ and uD · n = 0

on ΓD. However, the Beavers–Joseph–Saffman condition (cf. (2.4)) is not satisfied and the Dirichlet boundary
condition for the Navier–Stokes velocity on ΓS is non-homogeneous and therefore the right-hand side of the
resulting system must be modified accordingly.

In Tables 1–3 we summarise the convergence history for a sequence of quasi-uniform triangulations, consid-
ering the finite element spaces introduced in Section 4.1, and solving the nonlinear problem (6.1), which require
around eight, six and nine Newton iterations for the Examples 1, 2 and 3, respectively. We observe that the
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-0.336 0.334 -1.0 1.0 -1.48 -0.239-2.7 1.0 

0.906 1.81  0.0014 2.7 -0.867 0.792 -2.5 2.5 

Figure 4. Example 3: Velocity components (top panels), velocity streamlines and pressure field
in the whole domain (bottom panels).

sub-optimal rate of convergence 𝑂(ℎ1/3) provided by Theorem 5.2 is attained in all the cases. Even more, the
numerical result suggest that there exist a way to prove optimal rate of convergence 𝑂(ℎ). In Table 4 we show
the behaviour of the iterative method (6.1) as a function of the Forchheimer number 𝐹 , considering different
mesh sizes ℎ := max

{︀
ℎS, ℎD

}︀
, and a tolerance 𝑡𝑜𝑙 = 1𝐸 − 06. Here we observe that the higher the parameter

𝐹 the higher the number of iterations as it occurs also in the Newton method for the Navier–Stokes/Darcy–
Forchheimer coupled problem. Notice also that when 𝐹 = 0 the Darcy–Forchheimer equations reduce to the
classical linear Darcy equations and as expected the iterative Newton method (6.1) is faster.

On the other hand, the velocity components, velocity streamlines and pressure field in the whole domain of
the approximate solutions for the three examples are displayed in Figures 2–4. All the figures were obtained
with 588 445, 858 658, and 883 963 degrees of freedom for the Examples 1, 2, and 3, respectively. In particular,
we can observe in Figure 2 that the second components of uS and uD coincide on Σ as expected, and hence,
the continuity of the normal components of the velocities on Σ is preserved. In turn, we can see that the
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velocity streamlines are higher in the Darcy–Forchheimer domain. Moreover, it can be seen that the pressure
is continuous in the whole domain and preserves the sinusoidal behaviour. Next, in Figure 3 we observe that
the pressure presents a boundary layer at {−0.5} × (−0.5, 0.5) as expected. Finally, similarly to Figure 2, in
Figure 4 we can also observe the continuity of the normal components of the velocities on Σ since their second
components coincide on the interface.
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