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CONVERGENCE RATES OF HIGH DIMENSIONAL SMOLYAK QUADRATURE

Jakob Zech1,* and Christoph Schwab2

Abstract. We analyse convergence rates of Smolyak integration for parametric maps 𝑢 : 𝑈 → 𝑋
taking values in a Banach space 𝑋, defined on the parameter domain 𝑈 = [−1, 1]N. For parametric maps
which are sparse, as quantified by summability of their Taylor polynomial chaos coefficients, dimension-
independent convergence rates superior to 𝑁 -term approximation rates under the same sparsity are
achievable. We propose a concrete Smolyak algorithm to a priori identify integrand-adapted sets of
active multiindices (and thereby unisolvent sparse grids of quadrature points) via upper bounds for the
integrands’ Taylor gpc coefficients. For so-called “(𝑏, 𝜀)-holomorphic” integrands 𝑢 with 𝑏 ∈ ℓ𝑝(N) for
some 𝑝 ∈ (0, 1), we prove the dimension-independent convergence rate 2/𝑝− 1 in terms of the number
of quadrature points. The proposed Smolyak algorithm is proved to yield (essentially) the same rate
in terms of the total computational cost for both nested and non-nested univariate quadrature points.
Numerical experiments and a mathematical sparsity analysis accounting for cancellations in quadratures
and in the combination formula demonstrate that the asymptotic rate 2/𝑝−1 is realized computationally
for a moderate number of quadrature points under certain circumstances. By a refined analysis of model
integrand classes we show that a generally large preasymptotic range otherwise precludes reaching the
asymptotic rate 2/𝑝− 1 for practically relevant numbers of quadrature points.
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1. Introduction

Let 𝑋 be a Banach space, set 𝑈 = [−1, 1]N and let 𝜇 be the infinite product (probability) measure
⨂︀

𝑗∈N 𝜆/2
on 𝑈 , where 𝜆 denotes the Lebesgue measure on [−1, 1]. The efficient numerical approximation of formally
infinite-dimensional integrals ∫︁

𝑈

𝑢(𝑦) d𝜇(𝑦), (1.1)

of strongly 𝜇-measurable, parametric maps 𝑢 : 𝑈 → 𝑋 is a key problem in computational uncertainty quantifi-
cation (“UQ” for short). In computational UQ, the integrand function 𝑢 in (1.1) is implicitly given as solution
of a so-called forward model, typically an operator equation parametrized by a sequence 𝑦 ∈ 𝑈 . The parame-
ter sequences 𝑦 can, for example, describe distributed uncertain constitutive relations or uncertain geometric
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shapes. Equation (1.1) then describes an “ensemble average” (with respect to 𝜇) of the parametric solution,
over all admissible realizations of the uncertainty.

The high (in this case infinite) dimension of the integration domain 𝑈 demands the integrand to possess
appropriate sparsity properties in order to make a numerical computation feasible, and overcome the so-called
curse of dimensionality. For this reason, the integrand is typically assumed to be very smooth, e.g. to allow a
bounded holomorphic extension into certain cylindrical subsets of CN: here, as in [20], we consider paramet-
ric integrands which are holomorphic in cartesian products of discs with increasing radii. The rate at which
those radii increase is a measure of the sparsity of the function, and as was observed in [20, 22, 30] governs
the (dimension-independent) rate of convergence of the quadrature. These assumptions on the integrand are
condensed in the notion of (𝑏, 𝜀)-holomorphy for a positive sequence 𝑏 = (𝑏𝑗)𝑗∈N ∈ ℓ𝑝(N) and some 𝑝 ∈ (0, 1),
see Definition 3.1 and also cp. [10–12]. This function class comprises in particular functions of the following
type: Let 𝑍 and 𝑋 be two complex Banach spaces and (𝜓𝑗)𝑗∈N ⊆ 𝑍 such that (‖𝜓𝑗‖𝑍)𝑗∈N ∈ ℓ𝑝(N). Assume
that u : 𝑍 → 𝑋 is Fréchet differentiable (this can be weakened to Fréchet differentiability on a certain subset
of 𝑍). Then, as we show in Lemma 3.3, the function

𝑢(𝑦) = u

⎛⎝∑︁
𝑗∈N

𝑦𝑗𝜓𝑗

⎞⎠ ∈ 𝑋 𝑦 ∈ 𝑈 (1.2)

is (𝑏, 𝜀)-holomorphic with 𝑏𝑗 = ‖𝜓𝑗‖𝑍 . Functions of this type arise in the context of parametrized partial differ-
ential equations (PDEs) for a large variety of linear and nonlinear equations see for example [12, 13, 23, 25, 27].
Our new results, which imply the convergence rate 2/𝑝 − 1 for the numerical approximation of (1.1), may
consequently be applied to all such models.

One possibility to numerically approximate the integral (1.1) is with a Monte Carlo method. Its advantage is
that the convergence rate does not depend on the dimension of the integration domain. Its main disadvantage is
the notoriously slow convergence rate of 1/2. For this reason, quasi Monte Carlo (QMC) methods exploiting the
integrands’ sparsity to attain higher order dimension-independent rates have been developed; we refer to [14,15],
to the surveys [15,28] and to the references there. QMC quadrature is free from the curse of dimensionality, and
additionally retains the Monte-Carlo feature of “embarrassingly parallel” integrand evaluation at the quadrature
points. For high numbers of computationally intensive function evaluations (as is the case for numerical PDE
solutions in the context of computational UQ) this becomes an important feature.

The present error analysis is based on so-called generalized polynomial chaos (“gpc” for short) expansions
of the parametric integrand function. Expansions of gpc type have proved a valuable tool in regularity and
sparsity analysis of countably-parametric functions taking values in a Banach space 𝑋; we refer to [10–12, 36]
and to the survey [33] and the references there. The idea is to expand the integrand in a polynomial basis, and
approximate the integral (1.1) with an interpolatory quadrature rule that is exact for the terms contributing
most in the expansion. Such reasoning gives best 𝑁 -term results, but in practice the optimal set of quadrature
points is not known. The effectiveness of the method is due to the high smoothness of the integrand, which
is why polynomial approximations converge very fast. We refer to [4, 17, 35] for a general description of sparse
grid quadrature. For our proofs, as a basis we shall use the monomials, i.e. as in [11,12,36], we consider Taylor
gpc expansions around 0 = (0, 0, . . . ) ∈ 𝑈 . Unconditional convergence of such Taylor gpc expansion stipulates
holomorphy of the integrand in polydiscs around 0. We choose the monomials for ease of presentation, but point
out that holomorphy assumptions can be weakened by considering expansions in orthogonal bases such as the
Legendre polynomials which merely require holomorphy on so-called Bernstein ellipses (cp. [12]). This results in
more technical arguments, but also in weaker holomorphy assumptions, as shown in [37], see also Remark 2.17.
The question remains on how to choose the quadrature points such that possibly few function evaluations result
in a minimal error. In [18] an adaptive strategy has been proposed. The algorithm does not allow for parallel
function evaluations in general however. Nonetheless, it delivers good results and has also been applied for
parametrized PDEs, e.g. in [32]. In the case of a priori chosen quadrature points, the convergence for isotropic
and anisotropic sparse grids was investigated in [2,30], and more recently in [20,22]. The last two papers can be
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considered as the closest to ours. Numerical experiments in these works often revealed much better convergence
rates, than what the theoretical findings suggested, see in particular [22,32].

The first aim of the present paper is to establish new, dimension-independent convergence rate bounds.
These are stated in Theorem 4.3. This result will shed some new light on the previously observed discrepancy
between the observed convergence rates, and the proven ones. As a general idea, we use a priori knowledge
on size scaling of domains of holomorphic extension of the parametric integrand to estimate the norm of the
Taylor coefficients. Based on these estimates, a sparse grid is constructed a priori. The crucial observation,
allowing us to improve earlier estimates, is then the following: The linear term 𝑦 ↦→ 𝑦 has integral 0 over [−1, 1],
and is integrated exactly by the midpoint rule (i.e. by an evaluation at 𝑦 = 0 multiplied with the weight 1
corresponding to the probability measure 𝜆/2). As a consequence, any polynomial in the multivariate Taylor
expansion containing a linear term will always be integrated exactly by the Smolyak quadrature operator.
This implies higher, dimension-independent convergence rates since the sequence of the remaining Taylor gpc
coefficients has summability which is superior to the sequence of all Taylor gpc coefficients. Indeed, our new
results improve previously established, dimension-independent convergence rates, by more than a factor two;
see Remark 4.5 and Examples 5.2 and 5.3.

The second contribution concerns a novel a priori construction of gpc index sets which we prove to pro-
vide near optimal, dimension-independent convergence rates. Whereas many authors consider the number of
quadrature points as a measure for the work, in fact, due to its structure based on differences of tensor product
quadratures, the actual cost of the Smolyak algorithm does not in general behave linearly in the number of
quadrature points. The mentioned convergence rates are proven with respect to the total number of quadrature
points in case of nested point sets such as Leja points. In addition, we show that essentially the same rate can
be obtained also for non-nested point sets, such as the Gauss points. Finally, this rate is also proven in terms
of the total number of floating point operations. The precise statements are given in Theorem 2.16 and in a bit
more generality in Theorem 4.3. The proven rates are asymptotic, and might not always be observable in the
range of “small” numbers of quadrature points that are realizable in practice, as our numerical experiments and
further analysis of particular model parametric integrand families in Section 5 reveal.

Structure of the paper

In Section 2 we first set up notation and state a few assumptions used throughout. Subsequently the Smolyak
algorithm is recalled, and we present a short complexity analysis. This then provides sufficient preliminaries to
state our main result in Theorem 2.16.

In Section 3 we formalize the concept of (𝑏, 𝜀)-holomorphic, parametric maps from the parameter domain 𝑈
into a complex Banach space 𝑋. Maps of this type admit unconditionally convergent Taylor gpc expansions, with
a specific decay of the Taylor gpc coefficients (𝑡𝜈)𝜈∈ℱ ⊆ 𝑋. In Section 3.3, we prove novel summability results
for certain subsequences of (𝑡𝜈)𝜈∈ℱ . These results quantify the effect of cancellations of Taylor gpc coefficients
due to symmetries in the Smolyak quadrature operators. As they are abstract sequence summation results, they
play a role also in more general gpc approximation results. The main result of the section is Theorem 3.14.

In Section 4, we prove a convergence result for the Smolyak algorithm in Theorem 4.3. The algebraic conver-
gence rate is stated in terms of the number of function evaluations for both nested and non-nested quadrature
points, and additionally in terms of the number of required floating point operations. Additionally, we provide
explicit constructions of suitable sets of multiindices, which allows to a priori devise a sparse-grid. This provides
an algorithm for which the integrand can be evaluated at all quadrature points in parallel.

Section 5 is devoted to numerical experiments. We give more details on the implementation in Section 5.1.
In Section 5.2 we provide a precise description of the proposed algorithm. As already mentioned above, a large
preasymptotic range is observed in certain situations. This is numerically investigated in Section 5.3, and we
give (heuristic) arguments why it occurs. Finally, in Section 5.4 the convergence of our algorithm is tested for
two exemplary real valued functions.
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2. Smolyak algorithm and main result

2.1. Notation

Throughout we let N = {1, 2, . . .} and N0 := N∪{0}. The symbol 𝐶 will stand for a generic, positive constant
independent of any quantities determining the asymptotic behaviour of an estimate. It may change even within
the same formula.

Multiindices are denoted by 𝜈 = (𝜈𝑗)𝑗∈N ∈ NN
0 . The notation supp 𝜈 stands for the support of the multiindex,

i.e. the set {𝑗 ∈ N : 𝜈𝑗 ̸= 0}. For the total order of a multiindex we write |𝜈| :=
∑︀
𝑗∈N 𝜈𝑗 and introduce the

countable sets

ℱ := {𝜈 ∈ NN
0 : |𝜈| <∞} and ℱ𝑘 := {𝜈 ∈ ℱ : 𝜈𝑗 ≥ 𝑘 ∀𝑗 ∈ supp 𝜈} (2.1)

for all 𝑘 ∈ N. In particular ℱ = ℱ1. Note that ℱ consists of all finitely supported multiindices in NN
0 . For two

multiindices 𝜈, 𝜇 ∈ ℱ , by 𝜇 ≤ 𝜈 we mean mean 𝜇𝑗 ≤ 𝜈𝑗 , for all 𝑗 ≥ 1. A subset Λ ⊆ ℱ will be called downward
closed if for every 𝜈 ∈ Λ it holds {𝜇 ∈ ℱ : 𝜇 ≤ 𝜈} ⊆ Λ.

For 𝑝 > 0 we let ℓ𝑝(ℱ𝑘) be the space of R-valued sequences a = (𝑎𝜈)𝜈∈ℱ𝑘
, satisfying

‖a‖ℓ𝑝(ℱ𝑘) :=

(︃∑︁
𝜈∈ℱ𝑘

|𝑎𝜈 |𝑝
)︃1/𝑝

<∞.

Similarly, ℓ𝑝(N) is defined for sequences indexed over N. By a decreasing rearrangement (𝑎*𝑗 )𝑗∈N of a sequence
(𝑎𝜈)𝜈∈ℱ𝑘

, we mean that there exists a bijection 𝜋 : N → ℱ𝑘 such that 𝑎*𝑗 = 𝑎𝜋(𝑗) for all 𝑗 ∈ N, and additionally
𝑎*𝑗 ≥ 𝑎*𝑗+1 for all 𝑗 ∈ N.

As a topology on CN we choose the product topology, and any subset such as [−1, 1]N is equipped with the
subspace topology. For a ball of radius 𝑟 > 0 in C we write 𝐵C

𝑟 := {𝑧 ∈ C : |𝑧| < 𝑟} ⊆ C. Furthermore, if
𝜌 = (𝜌𝑗)𝑗∈N ⊆ (0,∞), then 𝐵C

𝜌 :=×𝑗∈N 𝐵
C
𝜌𝑗
⊆ CN. Moreover, the parameter set 𝑈 = [−1, 1]N endowed with

the Borel product sigma algebra and the uniform product probability measure 𝜇 :=
⨂︀

𝑗∈N 𝜆/2 is a probability
space. Here, 𝜆 denotes the Lebesgue measure on [−1, 1]. With this topology, for a Banach space 𝑋 we write
𝐶0(𝑈,𝑋) for the space of (bounded) continuous functions mapping from 𝑈 to 𝑋. Denoting the norm on 𝑋 by
‖ · ‖𝑋 , we let

‖𝑢‖𝐶0(𝑈,𝑋) := sup
𝑦∈𝑈

‖𝑢(𝑦)‖𝑋 .

Similarly we define 𝐶0([−1, 1], 𝑋), and in case 𝑋 = R we simply write 𝐶0([−1, 1]) := 𝐶0([−1, 1], 𝑋) and
𝐶0(𝑈) := 𝐶0(𝑈,𝑋). Elements of CN are denoted by boldface characters such as 𝑦 = (𝑦𝑗)𝑗∈N ∈ [−1, 1]N. For
𝜈 ∈ ℱ , standard multivariate notations 𝑦𝜈 :=

∏︀
𝑗∈N 𝑦

𝜈𝑗

𝑗 and 𝜈! =
∏︀
𝑗∈N 𝜈𝑗 ! will be employed.

For a complex Banach space (𝑋, ‖ · ‖𝑋), 𝑥 ∈ 𝑋 and 𝜖 > 0, as above we write 𝐵𝑋𝜖 := {𝑧 ∈ 𝑋 : ‖𝑧‖𝑋 < 𝜖}. A
function 𝑢 mapping from an open subset of CN to 𝑋 will be called separately holomorphic, if it is holomorphic
in each variable. For such a function we denote by

𝜕𝜈
𝑦𝑢(𝑦) =

𝜕|𝜈|

𝜕𝑦𝜈11 𝜕𝑦
𝜈2
2 · · ·

𝑢(𝑦)

the partial derivatives of 𝑢 w.r.t. the multiindex 𝜈 ∈ ℱ where |𝜈| < ∞. We write 𝑋 ′ for the topological dual
space of 𝑋 (i.e. the continuous linear functionals). The space of bounded linear maps between two Banach
spaces 𝑋 and 𝑌 is denoted by 𝐿(𝑋,𝑌 ).

Finally, for a set 𝐴 we denote by |𝐴| the cardinality of the set.
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2.2. Smolyak quadrature

Let in the following 𝑋 be a Banach space and 𝑢 : 𝑈 → 𝑋 a pointwise defined function. For 𝑛 ∈ N0, let
(𝜒𝑛;𝑗)𝑛𝑗=0 ⊆ [−1, 1] be a sequence of pairwise distinct points in [−1, 1]. The Smolyak algorithm is built on a
family of univariate quadrature rules 𝑄𝑛 : 𝐶0([−1, 1], 𝑋) → 𝑋 that we assume to be interpolatory quadrature
rules with quadrature points (𝜒𝑛;0, . . . , 𝜒𝑛;𝑛), and w.r.t. the probability measure 𝜆/2 on [−1, 1]. That is, for all
𝑓 ∈ 𝐶0([−1, 1], 𝑋)

𝑄𝑛𝑓 =
𝑛∑︁
𝑗=0

𝑓(𝜒𝑛;𝑗)𝛼𝑛;𝑗 where 𝛼𝑛;𝑗 =
1
2

∫︁ 1

−1

𝑛∏︁
𝑖=0
𝑖 ̸=𝑗

𝑦 − 𝜒𝑛;𝑖

𝜒𝑛;𝑗 − 𝜒𝑛;𝑖
d𝑦, (2.2)

with an empty product denoting the constant unit function, i.e. 𝛼0;0 = 1. We interpret 𝑄𝑛 in the following both
as an operator mapping from 𝐶0([−1, 1], 𝑋) → 𝑋 and 𝐶0([−1, 1]) → R (recall that 𝐶0([−1, 1]) = 𝐶0([−1, 1],R)).
The definition of 𝑄𝑛 implies 𝑄𝑛𝑤 =

∫︀ 1

−1
𝑤(𝑦) d𝜆(𝑦)/2 for all polynomials 𝑤 of degree at most 𝑛. Note that in

general the quadrature weights 𝛼𝑛;𝑗 of 𝑄𝑛 can be negative. Throughout we assume that there exists 𝜗 ∈ [0,∞)
such that the condition of the univariate quadratures 𝑄𝑛 is polynomially bounded according to

∀𝑛 ∈ N0 : sup
0̸=𝑓∈𝐶0([−1,1])

|𝑄𝑛𝑓 |
‖𝑓‖𝐶0([−1,1])

≤ (𝑛+ 1)𝜗. (2.3)

To introduce the Smolyak quadrature, first define 𝑄−1 := 0. For every 𝜈 ∈ ℱ set 𝑄𝜈 :=
⨂︀

𝑗∈N 𝑄𝜈𝑗
, i.e. for

𝑢 : 𝑈 → 𝑋

𝑄𝜈𝑢 =
∑︁

{𝜇∈ℱ : 𝜇≤𝜈}

𝑢((𝜒𝜈𝑗 ;𝜇𝑗 )𝑗∈N)
∏︁
𝑗∈N

𝛼𝜈𝑗 ;𝜇𝑗 =
∑︁

{𝜇∈ℱ : 𝜇≤𝜈}

𝑢((𝜒𝜈𝑗 ;𝜇𝑗 )𝑗∈N)
∏︁

𝑗∈supp 𝜈

𝛼𝜈𝑗 ;𝜇𝑗 , (2.4)

where an empty product equals 1 by convention. For a downward closed index set Λ ⊆ ℱ of finite cardinality,
the Smolyak quadrature 𝑄Λ is defined by

𝑄Λ :=
∑︁
𝜈∈Λ

⨂︁
𝑗∈N

(𝑄𝜈𝑗
−𝑄𝜈𝑗−1).

By induction over 𝑑 = | supp 𝜈|, it is easily verified that 𝑄Λ allows the representation

𝑄Λ =
∑︁
𝜈∈Λ

𝜍Λ,𝜈𝑄𝜈 where 𝜍Λ,𝜈 :=
∑︁

{e∈{0,1}N : 𝜈+e∈Λ}

(−1)|e|. (2.5)

We also refer to (𝜍Λ,𝜈)𝜈∈Λ as the “combination coefficients”. The latter representation of 𝑄Λ in (2.5) is preferred
in implementations, since it skips evaluations of 𝑄𝜈 for all 𝜈 ∈ Λ with 𝜍Λ,𝜈 = 0.

2.3. Number of function evaluations

2.3.1. Quadrature points

Denote in the following the array of univariate sampling points

𝜒 = ((𝜒𝑛;𝑗)𝑛𝑗=0)𝑛∈N0 . (2.6)

By (2.4) and (2.5) the computation of 𝑄Λ𝑢 requires to evaluate 𝑢 at all points in

pts(Λ,𝜒) :=
{︀

(𝜒𝜈𝑗 ;𝜇𝑗 )𝑗∈N : 𝜈 ∈ Λ, 𝜍Λ,𝜈 ̸= 0, 𝜇 ≤ 𝜈
}︀
⊆ 𝑈. (2.7)

Definition 2.1. The univariate points 𝜒 = ((𝜒𝑛;𝑗)𝑛𝑗=0)𝑛∈N0 ⊂ [−1, 1] are called nested if there exists a sequence
(𝜒𝑗)𝑗∈N0 such that 𝜒𝑛;𝑗 = 𝜒𝑗 for every 𝑗 ∈ {0, . . . , 𝑛} and every 𝑛 ∈ N0. Otherwise, 𝜒 are called non-nested.
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Lemma 2.2. Let Λ ⊆ ℱ be finite and downward closed. For nested points 𝜒 holds |pts(Λ,𝜒)| = |Λ|.

Lemma 2.2 for nested points is easily verified. In the general case (of possibly non-nested points), due to
|{𝜇 ∈ ℱ : 𝜇 ≤ 𝜈}| =

∏︀
𝑗∈N(1 + 𝜈𝑗), it follows immediately from (2.7) that

|pts(Λ,𝜒)| ≤
∑︁

{𝜈∈Λ : 𝜍Λ,𝜈 ̸=0}

∏︁
𝑗∈N

(1 + 𝜈𝑗). (2.8)

Note that we have an equality in (2.8) in case

{𝜒𝑛,𝑗 : 0 ≤ 𝑗 ≤ 𝑛} ∩ {𝜒𝑚,𝑗 : 0 ≤ 𝑗 ≤ 𝑚} = ∅ ∀𝑛 ̸= 𝑚. (2.9)

To obtain good bounds on |pts(Λ,𝜒)| for non-nested points 𝜒, we will devise multiindex sets Λ for which certain
combination coefficients vanish, i.e. 𝜍Λ,𝜈 = 0 for certain 𝜈 ∈ Λ. This is exploited in the next example, which
demonstrates that the right-hand side of (2.8) can be smaller for larger multiindex sets.

Example 2.3. For 𝑛 ∈ N consider the two sets of (two dimensional) multiindices

Λ1(𝑛) := {(𝜈1, 𝜈2) ∈ N2
0 : 𝜈1 + 𝜈2 < 2𝑛}, Λ2(𝑛) := Λ1(𝑛) ∪ {(2𝑗 − 1, 2(𝑛− 𝑗) + 1) : 𝑗 = 1, . . . , 𝑛},

and we also use the shortcuts Λ𝑗 = Λ𝑗(𝑛) in the following. For 𝑛 = 3 these sets are shown in Figure 1. One
checks that (with 𝜍Λ,𝜈 defined in (2.5))

𝜍Λ1,𝜈 =

⎧⎪⎨⎪⎩
1 if 𝜈1 + 𝜈2 = 2𝑛− 1
−1 if 𝜈1 + 𝜈2 = 2𝑛− 2
0 otherwise,

𝜍Λ2,𝜈 =

⎧⎪⎨⎪⎩
1 if (𝜈1 + 𝜈2 = 2𝑛) ∧ (𝜈1, 𝜈2 are odd)
−1 if (𝜈1 + 𝜈2 = 2𝑛− 2) ∧ (𝜈1, 𝜈2 are odd)
0 otherwise.

(2.10)

Therefore with

𝐴(𝑁) :=
∑︁

{𝜈∈N2 : 𝜈1+𝜈2=𝑁+1}

𝜈1𝜈2 =
𝑁∑︁
𝑗=1

𝑗(𝑁 + 1− 𝑗) =
𝑁3

6
+𝑂(𝑁2)

it holds ∑︁
{𝜈∈Λ1 : 𝜍Λ1,𝜈 ̸=0}

2∏︁
𝑗=1

(1 + 𝜈𝑗) = 𝐴(2𝑛) +𝐴(2𝑛− 1) =
16
6
𝑛3 +𝑂(𝑛2)

whereas

∑︁
{𝜈∈Λ2 : 𝜍Λ2,𝜈 ̸=0}

2∏︁
𝑗=1

(1 + 𝜈𝑗) = 4
∑︁

{𝜈∈Λ2 : 𝜍Λ2,𝜈 ̸=0}

2∏︁
𝑗=1

1 + 𝜈𝑗
2

= 4𝐴(𝑛) + 4𝐴(𝑛− 1) =
8
6
𝑛3 +𝑂(𝑛2).

Hence, even though Λ1 ( Λ2, in case of non-nested quadrature points, the number of function evaluations
required to compute 𝑄Λ1 is about twice the number of function evaluations required to compute 𝑄Λ2 (cp. (2.7)
and recall that there holds an equality in (2.8) if (2.9) is satisfied). This is a consequence of the specific structure
of Λ2 which implies (in particular) 𝜍Λ2,𝜈 = 0 whenever 𝜈𝑗 is an even number for at least one 𝑗 ∈ {1, 2}. Let us
also stress that in this specific example, for Λ3 := {(𝜈1, 𝜈2) ∈ N2

0 : max{𝜈1, 𝜈2} < 2𝑛} we even have

∑︁
{𝜈∈Λ3 : 𝜍Λ3,𝜈 ̸=0}

2∏︁
𝑗=1

(1 + 𝜈𝑗) = (1 + 2𝑛− 1)(1 + 2𝑛− 1) = 𝑂(𝑛2),

since 𝜈 = (2𝑛− 1, 2𝑛− 1) is the only multiindex in Λ3 for which 𝜍Λ3,𝜈 ̸= 0.
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Figure 1. The multiindex sets Λ1(3) ( Λ2(3) ( Λ3(3) from Example 2.3. The numbers in the
squares show the values of 𝜍Λ𝑗 ,𝜈 in (2.5) for each 𝜈 ∈ Λ𝑗 with 𝜍Λ𝑗 ,𝜈 ̸= 0. (A) Λ1. (B) Λ2. (C)
Λ3.

2.3.2. Admissible indices

To formalize the observation that the structure of Λ can imply 𝜍Λ,𝜈 = 0 for certain 𝜈 ∈ Λ, we will work with
a set I = {i𝑗 : 𝑗 ∈ N0} ⊆ N0 of the so-called admissible indices. The interpretation of I is as follows: We shall
build Smolyak quadrature rules based on (2.5). They will have the property that 𝜍Λ,𝜈 = 0 for all 𝜈 ∈ Λ for
which there exists at least one 𝑗 ∈ N such that 𝜈𝑗 /∈ I. In other words, 𝑄Λ in (2.5) will be a linear combination
of tensorized quadrature rules 𝑄𝜈 for multiindices 𝜈 satisfying 𝜈𝑗 ∈ I for all 𝑗 ∈ N, i.e. each 𝜈𝑗 must be an
admissible index. This allows to control the number of function evaluations required for the computation of 𝑄Λ,
as we show subsequently. In order to do so, in certain cases (see Rem. 5.5 ahead) it will be crucial that the set of
admissible indices consists of an exponentially increasing sequence, as stated in the following assumption on I.

Assumption 2.4 (Admissible indices). The set I = {i𝑗 : 𝑗 ∈ N0} ⊆ N0 consists of the set of the strictly
monotonically increasing, nonnegative sequence (i𝑗)𝑗∈N0 where i0 = 0. There exists a constant 𝐾I ≥ 1 such that

(i) i𝑗+1 + 1 ≤ 𝐾I(i𝑗 + 1) for all 𝑗 ∈ N0,
(ii)

∑︀𝑚
𝑗=1(i𝑗 + 1) ≤ 𝐾Ii𝑚 for all 𝑚 ∈ N.

Remark 2.5. The concrete choice of I will only influence constants (but not the convergence rates) of the
convergence results presented in the following. A natural choice satisfying Assumption 2.4 is i𝑗+1 = 2𝑗 for
𝑗 ∈ N0, i.e. I = {0} ∪ {2𝑗 : 𝑗 ∈ N0}.

For 𝑥 ≥ 0 denote in the following

⌊𝑥⌋I := max{𝑎 ∈ I : 𝑎 ≤ 𝑥} and ⌈𝑥⌉I := min{𝑎 ∈ I : 𝑎 ≥ 𝑥}. (2.11)

Application of these rounding operators to sequences is understood componentwise.

Remark 2.6. With I = {i𝑗 : 𝑗 ∈ N0} as in Assumption 2.4, define

I+ := {0} ∪ {i𝑗 + 1 : 𝑗 ∈ N0}. (2.12)

For 𝑘, 𝑛 ∈ N0 it holds ⌈𝑘⌉I = ⌈𝑛⌉I iff either 𝑘 = 𝑛 = 0 or there exists 𝑗 ∈ N0 such that 𝑘, 𝑛 ∈ (i𝑗 , i𝑗+1] ∩ N.
The latter is equivalent to 𝑘, 𝑛 ∈ [i𝑗 + 1, i𝑗+1 + 1) ∩ N. Hence, for any 𝜈, 𝜇 ∈ ℱ

⌈𝜈⌉I = ⌈𝜇⌉I ⇔ ⌊𝜈⌋I+ = ⌊𝜇⌋I+ .
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Figure 2. The sketch shows a set Λ ⊆ N2
0 of multiindices corresponding to the grey squares.

Equation (2.13) is satisfied for some set I = {0, 2, 5, 9, . . .}. By Lemma 2.8, 𝜍Λ,𝜈 ̸= 0 can only
be true if 𝜈𝑗 ∈ I for all 𝑗 ∈ N. The numbers in the squares show the values of 𝜍Λ,𝜈 for each
𝜈 ∈ Λ with 𝜍Λ,𝜈 ̸= 0.

Remark 2.7. From Assumption 2.4 (i) we infer that for every 𝑛 ∈ N0 and with I+ as in (2.12)

𝑛 ≤ 𝐾I⌊𝑛⌋I+ and ⌈𝑛⌉I+ ≤ 𝐾I𝑛.

We will consider sets of multiindices satisfying

(𝜈 ∈ Λ and ⌈𝜇⌉I = ⌈𝜈⌉I) ⇒ 𝜇 ∈ Λ. (2.13)

The following lemma in conjunction with (2.7) elucidate the significance of this property. The statement of the
lemma is visualized in Figure 2. In the following we write

Λ|I := {𝜈 ∈ Λ : 𝜈𝑗 ∈ I ∀𝑗 ∈ N}.

Lemma 2.8. Let I ⊆ N0. Let Λ be finite and downward closed with the property (2.13). Then for all 𝜈 ∈ Λ∖Λ|I

𝜍Λ,𝜈 =
∑︁

{e∈{0,1}N : 𝜈+e∈Λ}

(−1)|e| = 0.

Proof. Fix 𝜈 ∈ Λ∖(Λ|I). Since 𝜈 /∈ Λ|I, there exists 𝑗 ∈ N with 𝜈𝑗 /∈ I. Set 𝐴𝑗 := {e = (𝑒𝑖)𝑖∈N ∈ {0, 1}N :
𝜈 + e ∈ Λ, 𝑒𝑗 = 0}, and let e ∈ 𝐴𝑗 arbitrary. By (2.13) it holds ⌈𝜈 + e⌉I ∈ Λ since 𝜈 + e ∈ Λ. Furthermore,
with e𝑗 = (𝛿𝑖𝑗)𝑖∈N we get ⌈𝜈 + e + e𝑗⌉I = ⌈𝜈 + e⌉I since 𝜈𝑗 /∈ I, and thus

𝐴𝑗 ∪ {e + e𝑗 : e ∈ 𝐴𝑗} ⊆ {e ∈ {0, 1}N : 𝜈 + e ∈ Λ}.

On the other hand, if 𝛿 = (𝛿𝑖)𝑖∈N ∈ {e ∈ {0, 1}N : 𝜈 + e ∈ Λ} and 𝛿𝑗 = 1, then due to the downward closedness
of Λ also 𝜈 + 𝛿 − e𝑗 ∈ Λ which implies 𝛿 − e𝑗 ∈ 𝐴𝑗 and consequently

𝐴𝑗 ∪ {e + e𝑗 : e ∈ 𝐴𝑗} ⊇ {e ∈ {0, 1}N : 𝜈 + e ∈ Λ}.

Thus ∑︁
{e∈{0,1}N : 𝜈+e∈Λ}

(−1)|e| =
∑︁
e∈𝐴𝑗

(−1)|e| +
∑︁
e∈𝐴𝑗

(−1)|e+e𝑗 | =
∑︁
e∈𝐴𝑗

(−1)|e| −
∑︁
e∈𝐴𝑗

(−1)|e| = 0.

�
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For a finite set Λ ⊆ ℱ of multi-indices, the effective dimension 𝑑(Λ) is defined as

𝑑(Λ) := sup
𝜈∈Λ

| supp 𝜈|. (2.14)

The proof of the following lemma is given in Appendix A.

Lemma 2.9. Let I ⊆ N0 satisfy Assumption 2.4. Let Λ ⊆ ℱ be finite and downward closed. Then∑︁
𝜈∈Λ

∏︁
𝑗∈N

(𝜈𝑗 + 1) ≤ |Λ|2 and
∑︁

𝜈∈Λ|I

∏︁
𝑗∈N

(𝜈𝑗 + 1) ≤ 𝐾
𝑑(Λ)
I |Λ|. (2.15)

A key element of the present paper is the a priori construction of (sequences of) finite index sets Λ ⊆ ℱ which
capture provably the dominating part of gpc expansions of (𝑏, 𝜀)-holomorphic maps. The index sets constructed
in the following will satisfy

𝑑(Λ) = 𝑜(log(|Λ|)) as |Λ| → ∞. (2.16)

In this case, the number of quadrature points (also for non-nested points 𝜒 in the sense of Def. 2.1) grows only
slightly faster than linear in terms of the cardinality of the multiindex sets as the next lemma shows. Thus the
properties (2.13) and (2.16) allow us to obtain good bounds on the number of required function evaluations also
for non-nested quadrature points.

Lemma 2.10. Fix 𝛿 > 0. Let I satisfy Assumption 2.4. Let (Λ𝜖)𝜖>0 be a family of finite downward closed index
sets satisfying (2.13) and (2.16). Let the quadrature points 𝜒 be non-nested. Then

|pts(Λ𝜖,𝜒)| ≤
∑︁

𝜈∈Λ|I

∏︁
𝑗∈N

(1 + 𝜈𝑗) = 𝑂(|Λ𝜖|1+𝛿) as |Λ𝜖| → ∞.

Proof. W.l.o.g. we assume |Λ𝜖| > 1 for all 𝜖 > 0 in the following, since the statement of the lemma only concerns
the limit |Λ𝜖| → ∞. Equation (2.16) is equivalently stated as: there exists a constant 𝐶 > 0 and numbers
𝑐|Λ𝜖| > 0 such that for all 𝜖 > 0

𝑑(Λ𝜖) ≤ 𝐶 log(|Λ𝜖|)𝑐|Λ𝜖|

and 𝑐|Λ𝜖| → 0 as |Λ𝜖| → ∞. We conclude

𝐾
𝑑(Λ𝜖)
I ≤ 𝐾

𝐶 log(|Λ𝜖|)𝑐|Λ𝜖|
I = 𝑒𝐶 log(𝐾I) log(|Λ𝜖|)𝑐|Λ𝜖| = |Λ𝜖|𝐶 log(𝐾I)𝑐|Λ𝜖| .

Due to 𝑐|Λ𝜖| → 0, for any 𝛿 > 0 the last term behaves like 𝑂(|Λ𝜖|𝛿) as |Λ𝜖| → ∞. The statement of the lemma
now follows by (2.8), Lemmas 2.8 and 2.9. �

Remark 2.11. The bounds (2.15) are sharp in the following sense: Let Λ = {𝜈 ∈ ℱ : supp 𝜈 ⊆ {1, . . . , 𝑑}, 𝜈𝑗 ≤
𝑁 ∀𝑗} and set I := {0} ∪ {2𝑗 : 𝑗 ∈ N0}. Then, with 𝑁 = 2𝑚 for some 𝑚 ∈ N, we have |Λ| = (𝑁 + 1)𝑑 and

∑︁
𝜈∈Λ

∏︁
𝑗∈N

(𝜈𝑗 + 1) =
𝑑∏︁
𝑗=1

𝑁+1∑︁
𝑖=1

𝑖 =
(︂

(𝑁 + 1)(𝑁 + 2)
2

)︂𝑑
≥ 2−𝑑((𝑁 + 1)𝑑)2 = 2−𝑑|Λ|2, (2.17)

as well as

∑︁
𝜈∈Λ|I

∏︁
𝑗∈N

(𝜈𝑗 + 1) =
𝑑∏︁
𝑗=1

(︃
1 +

𝑚∑︁
𝑖=0

(2𝑖 + 1)

)︃
≥

𝑑∏︁
𝑗=1

(1 + 2𝑚+1 − 1 +𝑚+ 1) ≥ (2(2𝑚 + 1))𝑑 ≥ 2𝑑(𝑁 + 1)𝑑 = 2𝑑|Λ|.

(2.18)
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Letting 𝑁 →∞ in (2.17) and 𝑑→∞ in (2.18), a better asymptotic behaviour than quadratic in |Λ| in the first
case, and linear in |Λ| with a constant depending exponentially on 𝑑(Λ) in the second case cannot be expected
in general.

However, these estimates may not accurately measure the actual number of function evaluations required in
(2.5), since they do not take into account the fact that some (further) combination coefficients in (2.5) might
vanish. Indeed, for the above example 𝑄Λ is the tensor product quadrature 𝑄𝜈 with 𝜈𝑗 = 𝑁 if 𝑗 ≤ 𝑑 and 𝜈𝑗 = 0
otherwise. The number of function evaluations is then equal to |Λ| = (𝑁 + 1)𝑑.

2.4. Computational cost

In the following let 𝑢 : 𝑈 → 𝑋 be a pointwise defined function and let Λ ⊆ ℱ be a finite downward closed
index set. While the number of function evaluations is in practice a good indicator of the computational cost (in
particular for PDEs where evaluating 𝑢 is computationally intensive), we also analyse the error of the Smolyak
quadrature in terms of the number of floating point operations required to compute 𝑄Λ𝑢.

Remark 2.12. We stress that the term “computational cost” in the following merely refers to the computa-
tional complexity of evaluating 𝑄Λ𝑢 in (2.5), essentially under the assumption that each evaluation of 𝑢 at a
point 𝑦 ∈ 𝑈 has computational complexity 𝑂(1) (this will be slightly relaxed in Assumption 2.13). In particular,
our present analysis does not take into account the cost of approximating the integrand 𝑢(𝑦), in case 𝑢(𝑦) cannot
be evaluated exactly. For UQ problems, this is usually the case however, as 𝑢(𝑦) typically denotes the solution
to a PDE whose coefficients depend on 𝑦 ∈ 𝑈 (cp. Example 2.18). While such a discussion is outside the scope
of this manuscript, in [37,38] we provide an analysis of the full computational complexity (taking into account
the error and the computational work stemming from the approximation of 𝑢(𝑦)) of a multilevel version of the
here analysed Smolyak algorithm.

We now make an assumption regarding the computational complexity of evaluating 𝑢.

Assumption 2.13. There exists a constant 𝐶 > 0 such that for every 𝜈 ∈ ℱ , 𝑢 can be evaluated at each
(𝜒𝜈𝑗 ;𝜇𝑗

)𝑗∈N for 𝜇 ≤ 𝜈 with a number of floating point operations that is bounded by 𝐶| supp 𝜈|.

Remark 2.14. Consider a function 𝑢(𝑦) = u(
∑︀
𝑗∈N 𝑦𝑗𝜓𝑗) as in (1.2) where u : C → C. If 𝜒0;0 = 0, then the

computation of
∑︀
𝑗∈N 𝜒𝜈𝑗 ;𝜇𝑗

𝜓𝑗 =
∑︀
𝑗∈supp 𝜈 𝜒𝜈𝑗 ;𝜇𝑗

𝜓𝑗 requires | supp 𝜈| multiplications and | supp 𝜈|−1 additions.
If u can be evaluated with 𝑂(1) floating point operations, then Assumption 2.13 is satisfied.

Less generally, if 𝑢(𝑦) can be evaluated with complexity 𝑂(1) at every 𝑦 ∈ 𝑈 , then clearly Assumption 2.13
is also fulfilled.

We point out again, that for parametric PDEs, i.e. where 𝑢(𝑦) ∈ 𝑋 denotes the solution of a PDE in
a Sobolev space 𝑋, Assumption 2.13 is usually not satisfied. This is because 𝑢(𝑦) is typically unknown and
has to be approximated by a numerical method such as the finite element method. The cost of evaluating an
approximation of 𝑢 is then linked to the discretization in space of the numerical PDE solver.

Additional to the effective dimension 𝑑(Λ) in (2.14), the maximal total order

𝑚(Λ) := max
𝜈∈Λ

|𝜈| (2.19)

has a certain significance when analysing the computational complexity.
To bound the cost of evaluating the Smolyak quadrature 𝑄Λ𝑢, we use the representations (2.4) and (2.5).

– The coefficients (𝜍Λ,𝜈)𝜈∈Λ =
∑︀
{e∈{0,1}N : 𝜈+e∈Λ}(−1)|e| can be computed with a number of floating point

operations bounded by 𝐶𝑑(Λ)|Λ|2𝑑(Λ): this is achieved by looping over all 𝜈 ∈ Λ, and updating the coefficient
of all (at most 2𝑑(Λ)) neighbours in Λ of the type 𝜈 − e for some e ∈ {0, 1}N (this implies supp e ⊆ supp 𝜈).
The computation of |e| =

∑︀
𝑗∈supp e 1 requires at most | supp 𝜈| − 1 ≤ 𝑑(Λ) additions.
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– Evaluating 𝑄𝜈𝑢 in (2.4) requires knowledge of the quadrature weights (𝛼𝑛;𝑗) for 𝑗 = 0, . . . , 𝑛 all 0 ≤ 𝑛 ≤
max𝜈∈Λ 𝜈𝑗 ≤ 𝑚(Λ). These weights can be computed by solving a linear system of dimension 𝑛 × 𝑛. Hence
this part contributes at most 𝐶

∑︀𝑚(Λ)
𝑛=0 𝑛3 ≤ 𝐶𝑚(Λ)4 floating point operations.

– To compute 𝑄𝜈𝑢 in (2.4) we need to evaluate 𝑢 at all points in {(𝜒𝜈𝑗 ;𝜇𝑗 )𝑗∈N : 𝜇 ≤ 𝜈}. Under Assumption 2.13
this requires at most 𝐶𝑑(Λ)

∏︀
𝑗∈N(1+𝜈𝑗) floating point operations, since |{𝜇 ∈ ℱ : 𝜇 ≤ 𝜈}| =

∏︀
𝑗∈N(1+𝜈𝑗).

The computation of the quadrature weight
∏︀
𝑗∈supp 𝜈 𝛼𝜈𝑗 ;𝜇𝑗 for all 𝜇 ≤ 𝜈 requires at most 𝑑(Λ)

∏︀
𝑗∈N(1+𝜈𝑗)

floating point operations. The summation over all 𝜇 ≤ 𝜈 is again of complexity
∏︀
𝑗∈N(1 + 𝜈𝑗).

In all, we introduce

cost(Λ) := 𝑚(Λ)4⏟  ⏞  
comp. of ((𝛼𝑛,𝑗)

𝑛
𝑗=0)

𝑚(Λ)
𝑛=0

+ 𝑑(Λ)2𝑑(Λ)|Λ|⏟  ⏞  
comp. of (𝜍Λ,𝜈)𝜈∈Λ

+
∑︁

{𝜈∈Λ : 𝜍Λ,𝜈 ̸=0}

𝑑(Λ)
∏︁
𝑗∈N

(𝜈𝑗 + 1)⏟  ⏞  
evaluation of 𝑄𝜈𝑢

, (2.20)

as a measure for the cost of evaluating the Smolyak quadrature 𝑄Λ𝑢. As a consequence of Lemma 2.10 we
obtain an asymptotic bound on the cost term defined in (2.20).

Lemma 2.15. Fix 𝛿 > 0. Let I satisfy Assumption 2.4. Let (Λ𝜖)𝜖>0 be a family of finite, downward closed
index sets satisfying (2.13). Let further

𝑑(Λ𝜖) = 𝑜(log |Λ𝜖|) and 𝑚(Λ𝜖) = 𝑂(log |Λ𝜖|) as |Λ𝜖| → ∞. (2.21)

Then with cost(Λ𝜖) as in (2.20)

cost(Λ𝜖) = 𝑂(|Λ𝜖|1+𝛿) as |Λ𝜖| → ∞.

2.5. Main result

Let 𝑍 and 𝑋 be two complex Banach spaces. Recall that 𝐵𝑍𝑟 = {𝜑 ∈ 𝑍 : ‖𝜑‖𝑍 < 𝑟}. A function u : 𝐵𝑍𝑟 → 𝑋
is called holomorphic, if it is Fréchet differentiable. The following theorem is our main result. In the subsequent
sections, we prove a slight generalization of this statement, and also provide details on the explicit construction
of the index sets (see Thm. 4.3). The cost term in the formulation of the theorem was defined in (2.20), and
we mention again that it can be interpreted as a measure of the computational cost of evaluating (2.5) under
Assumption 2.13, also cp. Remark 2.12.

Theorem 2.16. Let (𝜓𝑗)𝑗∈N ⊆ 𝑍, 𝑟 > 0 and 𝑝 ∈ (0, 1). Fix 𝛿 > 0 arbitrarily small. Assume that

(i)
∑︀
𝑗∈N ‖𝜓𝑗‖𝑍 < 𝑟 and (‖𝜓𝑗‖𝑍)𝑗∈N ∈ ℓ𝑝(N) →˓ ℓ1(N),

(ii) u : 𝐵𝑍𝑟 → 𝑋 is holomorphic and bounded,
(iii) the quadrature points 𝜒 (either nested or non-nested) satisfy (2.3).

For 𝑦 ∈ 𝑈 = [−1, 1]N set 𝑢(𝑦) := u(
∑︀
𝑗∈N 𝑦𝑗𝜓𝑗). Then, there exists a constant 𝐶 > 0 such that for every 𝜖 > 0

there exists a finite downward closed multiindex set Λ𝜖 ⊆ ℱ with |Λ𝜖| → ∞ as 𝜖→ 0 and such that⃦⃦⃦⃦∫︁
𝑈

𝑢(𝑦) d𝜇(𝑦)−𝑄Λ𝜖𝑢

⃦⃦⃦⃦
𝑋

≤ 𝐶|pts(Λ𝜖,𝜒)|−
2
𝑝 +1+𝛿, (2.22a)

and additionally ⃦⃦⃦⃦∫︁
𝑈

𝑢(𝑦) d𝜇(𝑦)−𝑄Λ𝜖
𝑢

⃦⃦⃦⃦
𝑋

≤ 𝐶cost(Λ𝜖)−
2
𝑝 +1+𝛿. (2.22b)

Remark 2.17. More generally, in [37] we prove the following variant of Theorem 2.16, which merely assumes
u to be holomorphic on some open set containing all inputs rather than a ball (see (ii) below):

Let (𝜓𝑗)𝑗∈N ⊆ 𝑍, 𝑟 > 0 and 𝑝 ∈ (0, 1). Fix 𝛿 > 0 arbitrarily small. Assume that
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(i) (‖𝜓𝑗‖𝑍)𝑗∈N ∈ ℓ𝑝(N) →˓ ℓ1(N),
(ii) there is an open set 𝑂 ⊆ 𝑍 such that {

∑︀
𝑗∈N 𝑦𝑗𝜓𝑗 : 𝑦 ∈ 𝑈} ⊆ 𝑂 and u : 𝑂 → 𝑋 is holomorphic and

bounded,
(iii) the quadrature points 𝜒 (either nested or non-nested) satisfy (2.3).

For 𝑦 ∈ 𝑈 = [−1, 1]N set 𝑢(𝑦) := u(
∑︀
𝑗∈N 𝑦𝑗𝜓𝑗). Then, there exists 𝐶 > 0 such that for every 𝜖 > 0 exists a

finite downward closed multiindex set Λ𝜖 ⊆ ℱ such that |Λ𝜖| → ∞ as 𝜖→ 0 and (2.22) holds.
The proof in [37] also covers general Jacobi (probability) measures whose density on [−1, 1] is given by

(1 − 𝑥)𝛼(1 + 𝑥)𝛽𝐶𝛼,𝛽 where 𝛼, 𝛽 > −1 and 𝐶𝛼,𝛽 = Γ(𝛼 + 𝛽 + 2)/(2𝛼+𝛽+1Γ(𝛼 + 1)Γ(𝛽 + 1)). For brevity, we
provide here a proof of Theorem 2.16 corresponding to 𝛼 = 𝛽 = 0, under stronger assumptions on the domain
of holomorphy of u. This allows to avoid certain technicalities.

In view of Lemmas 2.10 and 2.15, it suffices to prove the asymptotic bounds (2.22) in terms of the cardinality
|Λ𝜖| of the multiindex sets, and to verify that Λ𝜖 complies with the assumptions of Lemmas 2.10 and 2.15.
Furthermore we shall see that in case of nested points (2.22a) also holds with 𝛿 = 0 (as a consequence of
Lem. 2.2). We now give an example of a holomorphic function u as in Theorem 2.16.

Example 2.18. Let 𝑑 ∈ N. Let D ⊆ R𝑑 be a bounded (nonempty) Lipschitz domain and set 𝑋 := 𝐻1
0 (D; C)

so that 𝑋 ′ = 𝐻−1(D; C). For 𝜓 ∈ 𝑍 := 𝐿∞(D; C) define the bounded linear operator 𝐴(𝜓) ∈ 𝐿(𝑋,𝑋 ′) by

⟨𝐴(𝜓)𝑢, 𝑣⟩ =
∫︁

D

𝜓∇𝑢⊤∇𝑣 d𝑥.

Then 𝐴 ∈ 𝐿(𝑍,𝐿(𝑋,𝑋 ′)), and with the norm ‖𝑢‖2𝑋 :=
∫︀
D
∇𝑢⊤∇𝑢d𝑥 on 𝑋 (here ∇𝑢 is the complex conjugate)

it holds
‖𝐴‖𝐿(𝑍,𝐿(𝑋,𝑋′)) = sup

‖𝜓‖𝑍=1

sup
‖𝑢‖𝑋=1

sup
‖𝑣‖𝑋=1

|⟨𝐴(𝜓)𝑢, 𝑣⟩| = 1.

Suppose that 𝜓0 ∈ 𝐿∞(D; R) satisfies 0 < 𝜚 ≤ 𝜓0(𝑥) a.e. in D. Then by the (complex) Lax–Milgram Lemma,
𝐴(𝜓0) : 𝑋 → 𝑋 ′ is an isomorphism and ‖𝐴(𝜓0)−1‖𝐿(𝑋′,𝑋) ≤ 𝜚−1. For any 𝜓 ∈ 𝑍 it holds

‖𝐴(𝜓)−𝐴(𝜓0)‖𝐿(𝑋,𝑋′) = ‖𝐴(𝜓 − 𝜓0)‖𝐿(𝑋,𝑋′) ≤ ‖𝜓 − 𝜓0‖𝑍 .

Using a Neumann series, if ‖𝜓 − 𝜓0‖𝑍 < ‖𝐴(𝜓0)−1‖−1
𝐿(𝑋′,𝑋), then 𝐴(𝜓) : 𝑋 → 𝑋 ′ is also an isomorphism and

𝐴(𝜓)−1 = (𝐴(𝜓0)−𝐴(𝜓0 − 𝜓))−1 = (𝐼 −𝐴(𝜓0)−1𝐴(𝜓0 − 𝜓))−1𝐴(𝜓0)−1 =
∑︁
𝑛∈N0

(𝐴(𝜓0)−1𝐴(𝜓0 − 𝜓))𝑛𝐴(𝜓0)−1.

Since (𝐴(𝜓0)−1𝐴(ℎ))𝑛𝐴(𝜓0)−1 ∈ 𝐿(𝑋,𝑋) can be interpreted as an 𝑛-linear function of ℎ𝑛 ∈ 𝑍𝑛, this constitutes
a power series expansion (in Banach spaces) of 𝜓 ↦→ 𝐴(𝜓)−1 ∈ 𝐿(𝑋 ′, 𝑋) around 𝜓0. Due to

‖(𝐴(𝜓0)−1𝐴(ℎ))𝑛𝐴(𝜓0)−1‖𝐿(𝑋′,𝑋) ≤ 𝐶‖ℎ‖𝑛𝑍‖𝐴(𝜓0)−1‖𝑛𝐿(𝑋′,𝑋)

the power series converges to a uniformly bounded function for all elements of {ℎ ∈ 𝑍 : ‖ℎ − 𝜓0‖𝑍 <
‖𝐴(𝜓0)−1‖−1

𝐿(𝑋′,𝑋)}, and it is Fréchet differentiable (i.e. holomorphic) as a function of 𝜓 ∈ 𝑍 there, which
is classical (see e.g. [7], 14.13).

Fix 𝐹 ∈ 𝑋 ′. We showed that the solution operator u mapping a diffusion coefficient 𝜓 ∈ 𝑍 to the unique
solution u(𝜓) ∈ 𝑋 of ∫︁

D

𝜓∇u(𝜓)⊤∇𝑣 d𝑥 = 𝐹 (𝑣)

is locally a well-defined holomorphic map around 𝜓0 ∈ 𝑍, since it is given by u(𝜓) = 𝐴(𝜓)−1𝐹 and 𝜓 ↦→ 𝐴(𝜓)−1

is holomorphic (for more details see [37], Chap. 1).
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Assume that (𝜓𝑗)𝑗∈N ⊆ 𝑍 and 𝑝 ∈ (0, 1) are such that∑︁
𝑗∈N

‖𝜓𝑗‖𝑍 < ‖𝐴(𝜓0)−1‖−1
𝐿(𝑋′,𝑋) and (‖𝜓𝑗‖𝑍)𝑗∈N ∈ ℓ𝑝(N).

By Theorem 2.16, the Smolyak quadrature allows to approximate the Bochner integral
∫︀
𝑈

u(𝜓0 +∑︀
𝑗∈N 𝑦𝑗𝜓𝑗) d𝜇(𝑦) ∈ 𝑋 with (essentially) the convergence rate 2/𝑝− 1.

The argument in the above example was completely independent of the concrete differential operator. The
same calculation holds for any linear (differential) operator 𝐴(𝜓0) ∈ 𝐿(𝑋,𝑋 ′) which is an isomorphism and
depends linearly on the data 𝜓0 in some Banach space 𝑍.

3. Summability of Taylor GPC coefficients

With 𝑈 := [−1, 1]N, consider 𝑢 : 𝑈 → 𝑋, for some fixed Banach space 𝑋 over C. In this section we are
concerned with the Taylor expansion

𝑢(𝑦) =
∑︁
𝜈∈ℱ

𝑡𝜈𝑦𝜈 (3.1)

of 𝑢 and the summability properties of the Taylor gpc coefficients (‖𝑡𝜈‖𝑋)𝜈∈ℱ .

3.1. (b, 𝜀)-holomorphy and GPC expansions

In the following 𝑍 and 𝑋 are two complex Banach spaces. We now characterize the functions in Theorem 2.16
in terms of their domains of holomorphic extension. We show that they satisfy the conditions summarized in
the notion of (𝑏, 𝜀)-holomorphy, which is introduced next. This definition has similarly been used for example
in [12,13,25].

Definition 3.1. Let 𝜀 > 0, 𝑝 ∈ (0, 1) and 𝑀𝑢 > 0. For a given sequence 𝑏 = (𝑏𝑗)𝑗∈N ⊆ (0,∞), we say that
𝑢 : 𝑈 → 𝑋 is (𝑏, 𝜀)-holomorphic, if

(i) 𝑢 : 𝑈 → 𝑋 is continuous,
(ii) for every sequence 𝜌 = (𝜌𝑗)𝑗∈N ⊆ (1,∞) which is (𝑏, 𝜀)-admissible, i.e. satisfies∑︁

𝑗∈N
𝑏𝑗(𝜌𝑗 − 1) ≤ 𝜀, (3.2)

𝑢 allows a separately holomorphic extension onto the polydisc 𝐵C
𝜌 =×𝑗∈N 𝐵

C
𝜌𝑗

(this extension is denoted
by the same symbol 𝑢 in the following),

(iii) for every (𝑏, 𝜀)-admissible sequence the extension from (ii) satisfies

sup
𝑧∈𝐵C

𝜌

‖𝑢(𝑧)‖𝑋 ≤𝑀𝑢 <∞, (3.3)

and for two (𝑏, 𝜀)-admissible sequences 𝜌1 and 𝜌2 the extensions from (ii) coincide on 𝐵C
𝜌1
∩𝐵C

𝜌2
.

We start with a statement about continuity, and recall that any subset of 𝑆 ⊆ CN (such as 𝑈 = [−1, 1]N) is
considered with the product topology. Hence{︃

𝑆 ∩

(︃
𝑁×
𝑗=1

𝑂𝑗 ××
𝑗>𝑁

C

)︃
: 𝑁 ∈ N, 𝑂𝑗 ⊆ C is open ∀𝑗 ∈ {1, . . . , 𝑁}

}︃

is a basis of the topology on 𝑆.
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Lemma 3.2. Let (𝜓𝑗)𝑗∈N ⊆ 𝑍 satisfy (‖𝜓𝑗‖𝑍)𝑗∈N ∈ ℓ1(N). Then 𝑦 ↦→
∑︀
𝑗∈N 𝑦𝑗𝜓𝑗 is continuous from 𝑈 to 𝑍.

Proof. Fix 𝜖 > 0 and 𝑦 ∈ 𝑈 . We need to find an open set 𝑂 ⊆ 𝑈 (open w.r.t. the topology on 𝑈) such that
‖
∑︀
𝑗∈N 𝑦𝑗𝜓𝑗 −

∑︀
𝑗∈N 𝑧𝑗𝜓𝑗‖𝑍 < 𝜖 for all 𝑧 = (𝑧𝑗)𝑗∈N ∈ 𝑂. Let 𝐽 ∈ N be so large that

∑︀
𝑗>𝐽 ‖𝜓𝑗‖𝑍 < 𝜖/4. Let

𝛿 := 𝜖/(2𝐽). Then for every 𝑧 ∈ 𝑂 :=×𝐽

𝑗=1
{𝑧 ∈ [−1, 1] : |𝑧 − 𝑦𝑗 | < 𝛿} ××𝑗>𝐽

[−1, 1]⃦⃦⃦⃦
⃦⃦∑︁
𝑗∈N

𝑦𝑗𝜓𝑗 −
∑︁
𝑗∈N

𝑧𝑗𝜓𝑗

⃦⃦⃦⃦
⃦⃦
𝑍

<

𝐽∑︁
𝑗=1

𝛿 +
∑︁
𝑗>𝐽

2‖𝜓𝑗‖𝑍 <
𝜖

2
+
𝜖

2
= 𝜖.

�

Lemma 3.3. Let 𝜀 > 0, 𝑝 ∈ (0, 1) and 𝑀𝑢 > 0. For a sequence (𝜓𝑗)𝑗∈N ⊆ 𝑍 and a sequence 𝑏 = (𝑏𝑗)𝑗∈N assume
that ‖𝜓𝑗‖𝑍 ≤ 𝑏𝑗 for all 𝑗 ∈ N, and 𝑏 = (𝑏𝑗)𝑗∈N ∈ ℓ𝑝(N). With 𝑟 := ‖𝑏‖ℓ1(N) + 𝜀 assume that u : 𝐵𝑍𝑟 → 𝑋 is
holomorphic (i.e. Fréchet differentiable) and sup𝜑∈𝐵𝑍

𝑟
‖u(𝜑)‖𝑋 ≤ 𝑀𝑢. For 𝑦 ∈ 𝑈 define 𝑢(𝑦) = u(

∑︀
𝑗∈N 𝑦𝑗𝜓𝑗).

Then 𝑢 is (𝑏, 𝜀)-holomorphic.

Proof. The map 𝑢 : 𝑈 → 𝑋 defined as 𝑢(𝑦) = u(
∑︀
𝑗∈N 𝑦𝑗𝜓𝑗) is continuous, since u : 𝐵𝑍𝑟 → 𝑋 is continuous

(even holomorphic) and 𝑦 ↦→
∑︀
𝑗∈N 𝑦𝑗𝜓𝑗 is continuous from 𝑈 to 𝑍 by Lemma 3.2.

Let 𝜌 = (𝜌𝑗)𝑗∈N ⊆ (1,∞) be (𝑏, 𝜀)-admissible, i.e. 𝜌 satisfies (3.2). Fix 𝑧 ∈ 𝐵C
𝜌 ⊆ CN. Then∑︁

𝑗∈N
|𝑧𝑗 |‖𝜓𝑗‖𝑍 ≤

∑︁
𝑗∈N

‖𝜓𝑗‖𝑍 +
∑︁
𝑗∈N

(𝜌𝑗 − 1)‖𝜓𝑗‖𝑍 ≤
∑︁
𝑗∈N

𝑏𝑗 +
∑︁
𝑗∈N

(𝜌𝑗 − 1)𝑏𝑗 ≤ ‖𝑏‖ℓ1(N) + 𝜀 ≤ 𝑟. (3.4)

Therefore
∑︀
𝑗∈N 𝑧𝑗𝜓𝑗 ∈ 𝑍 is well-defined. Moreover,

∑︀
𝑗∈N 𝑧𝑗𝜓𝑗 ∈ 𝐵𝑍𝑟 .

Now fix 𝑗 ∈ N and (𝑧𝑖)𝑖 ̸=𝑗 ∈×𝑖 ̸=𝑗 𝐵
C
𝜌𝑖

. Then 𝑧𝑗 ↦→
∑︀
𝑗∈N 𝑧𝑗𝜓𝑗 is an affine bounded (and thus holomorphic)

map from 𝐵C
𝜌𝑗
→ 𝐵𝑍𝑟 ⊆ 𝑍. Due to the holomorphy of u : 𝐵𝑍𝑟 → 𝑋, we obtain that 𝑢(𝑧) = u(

∑︀
𝑗∈N 𝑧𝑗𝜓𝑗) is

holomorphic as a function of 𝑧𝑗 ∈ 𝐵C
𝜌𝑗

, which shows (ii).
For two (𝑏, 𝜀)-admissible sequences 𝜌1 and 𝜌2, by definition their corresponding extensions agree on 𝐵C

𝜌1
∩𝐵C

𝜌1
.

Finally, (3.3) follows by {
∑︀
𝑗∈N 𝑧𝑗𝜓𝑗 : 𝑧 ∈ 𝐵C

𝜌} ⊆ 𝐵𝑍𝑟 ⊆ 𝑍 whenever 𝜌 is (𝑏, 𝜀)-holomorphic, and the assumption
sup𝜑∈𝐵𝑍

𝑟
‖u(𝜑)‖𝑋 ≤𝑀𝑢. �

Next, we recall bounds on the norms of the Taylor coefficients.
The next lemma is essentially a consequence of the Cauchy integral theorem ([24], Thm. 2.1.2), see the proof

of Lemma 2.4 from [10].

Lemma 3.4. Let 𝜌 = (𝜌𝑗)𝑗∈N ⊆ (1,∞) and assume that 𝑢 : 𝐵C
𝜌 → 𝑋 is separately holomorphic (i.e. holomor-

phic in each variable), such that sup𝑦∈𝐵C
𝜌
‖𝑢(𝑦)‖𝑋 ≤𝑀𝑢 <∞. Then for every 𝜈 ∈ ℱ the Taylor gpc coefficient

𝑡𝜈 :=
𝜕𝜈

𝑦𝑢(𝑦)
𝜈!

|𝑦=0 ∈ 𝑋 (3.5)

satisfies the bound
‖𝑡𝜈‖𝑋 ≤𝑀𝑢𝜌

−𝜈 . (3.6)

In Section 3.3 we will show that (‖𝑡𝜈‖𝑋)𝜈∈ℱ ∈ ℓ1(ℱ) for (𝑏, 𝜀)-holomorphic functions. This implies that the
series

∑︀
𝜈∈ℱ 𝑡𝜈𝑦𝜈 ∈ 𝑋 is pointwise well-defined for every 𝑦 ∈ 𝑈 . In this case the expansion converges to 𝑢(𝑦),

as recalled in the next Lemma. For a proof see, e.g., Proposition 2.1.4 of [37]. Absolute convergence of a series∑︀
𝑗∈N 𝑥𝑗 in a Banach space 𝑋 means

∑︀
𝑗∈N ‖𝑥𝑗‖𝑋 <∞.

Lemma 3.5. Let 𝑝 ∈ (0, 1), 𝜀 > 0 and 𝑏 = (𝑏𝑗)𝑗∈N ∈ ℓ𝑝(N). Let 𝑢 : 𝑈 → 𝑋 be (𝑏, 𝜀)-holomorphic and assume
that (‖𝑡𝜈‖𝑋)𝜈∈ℱ ∈ ℓ1(ℱ). Then 𝑢(𝑦) =

∑︀
𝜈∈ℱ 𝑡𝜈𝑦𝜈 with uniform and absolute convergence for all 𝑦 ∈ 𝑈 .
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3.2. Multiindex sets

Lemma 3.5 states that (𝑏, 𝜀)-holomorphic functions 𝑢 : 𝑈 → 𝑋 allow representations as Taylor expansions
𝑢(𝑦) =

∑︀
𝜈∈ℱ 𝑡𝜈𝑦𝜈 in infinitely many variables. For a finite subset Λ ⊆ ℱ , the function 𝑢̃(𝑦) :=

∑︀
𝜈∈Λ 𝑡𝜈𝑦𝜈

defines an approximation to 𝑢, and for every 𝑦 ∈ 𝑈 the error can be bounded by ‖𝑢(𝑦) − 𝑢̃(𝑦)‖𝑋 ≤∑︀
𝜈∈ℱ∖Λ ‖𝑡𝜈‖𝑋 . This line of argument leads to best 𝑁 -term rates, and determining suitable index sets Λ (pos-

sibly minimizing
∑︀

𝜈∈ℱ∖Λ ‖𝑡𝜈‖𝑋) is typically the first step required to prove convergence rates for numerical
algorithms. In order to obtain good bounds of the computational complexity, we aim to devise Λ in such a way
that the asymptotics (2.21) as well as (2.13) are satisfied. This is the topic of the current subsection.

Definition 3.6. We say that (𝑎𝜈)𝜈∈ℱ ⊆ [0,∞) is a monotonically decreasing sequence if 𝜈 ≤ 𝜇 implies 𝑎𝜈 ≥ 𝑎𝜇

for all 𝜈, 𝜇 ∈ ℱ .

The following assumption gathers all properties required of (𝑎𝜈)𝜈∈ℱ , such that the set

Λ𝜖((𝑎𝜈)𝜈∈ℱ ) = {𝜈 ∈ ℱ : 𝑎𝜈 ≥ 𝜖}

satisfies the assumptions of Lemmas 2.10 and 2.15. This is shown subsequently.

Assumption 3.7. There exist constants 𝐶0 > 0, 𝐶κ > 0, κ > 0, 𝛿 > 1, a sequence (𝑓𝑑)𝑑∈N ⊆ (0,∞) with
𝑓𝑑 → ∞ as 𝑑 → ∞ and a set I ⊆ N0 satisfying Assumption 2.4 (i), such that the sequence (𝑎𝜈)𝜈∈ℱ ⊆ [0,∞)
satisfies

(i) (𝑎𝜈)𝜈∈ℱ is monotonically decreasing (see Def. 3.6),
(ii) (𝑎𝜈)𝜈∈ℱ has the property

⌈𝜈⌉I = ⌈𝜇⌉I ⇒ 𝑎𝜈 = 𝑎𝜇, (3.7)

(iii) with a decreasing rearrangement (𝑎*𝑗 )𝑗∈N of (𝑎𝜈)𝜈∈ℱ it holds

𝑎*𝑗 ≥ 𝐶κ𝑗
−κ ∀𝑗 ∈ N,

sup
{𝜈∈ℱ : |𝜈|≥𝑑}

𝑎𝜈 ≤ 𝐶0𝛿
−𝑑 ∀𝑑 ∈ N,

sup
{𝜈∈ℱ : | supp 𝜈|≥𝑑}

𝑎𝜈 ≤ 𝐶0 e−𝑑𝑓𝑑 ∀𝑑 ∈ N.
(3.8)

Lemma 3.8. Let (𝑎𝜈)𝜈∈ℱ ⊆ [0,∞) satisfy Assumption 3.7 and assume that (𝑎𝜈)𝜈∈ℱ ∈ ℓ𝑞(ℱ) for some 𝑞 > 0.
Then, for every 𝜖 > 0 the set Λ𝜖 = Λ𝜖((𝑎𝜈)𝜈∈ℱ ) := {𝜈 ∈ ℱ : 𝑎𝜈 ≥ 𝜖} satisfies

(i) Λ𝜖 is finite and downward closed,
(ii) it holds

(𝜈 ∈ Λ𝜖 and ⌈𝜇⌉I = ⌈𝜈⌉I) ⇒ 𝜇 ∈ Λ𝜖,

(iii) it holds
𝑑(Λ𝜖) = 𝑜(log(|Λ𝜖|)) and 𝑚(Λ𝜖) = 𝑂(log(|Λ𝜖|)) as 𝜖→ 0. (3.9)

Proof. Fix 𝜖 > 0. Assume that 𝜈 ≤ 𝜇 and 𝜇 ∈ Λ𝜖. Then 𝑎𝜇 ≥ 𝜖 and due to monotonicity 𝑎𝜈 ≥ 𝑎𝜇 ≥ 𝜖 so that
𝜈 ∈ Λ𝜖. This and the fact that

∑︀
𝜈∈ℱ 𝑎

𝑞
𝜈 <∞ show (i). Item (ii) is an immediate consequence of (3.7) and the

definition of Λ𝜖.
To show the first statement in (3.9), note that with κ and 𝐶κ as in Assumption 3.7 (iii), for any 𝑑0 ∈ N and

any 𝜖 > 0 (such that |Λ𝜖| > 0) it holds

𝑑(Λ𝜖) ≥ 𝑑0 ⇒ sup
{𝜈∈ℱ : | supp 𝜈|≥𝑑0}

𝑎𝜈 ≥ min
𝜈∈Λ𝜖

𝑎𝜈 ≥ 𝐶κ |Λ𝜖|−κ .
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Moreover, we may write sup{𝜈∈ℱ : | supp 𝜈|≥𝑑0} 𝑎𝜈 ≤ 𝐶0 exp(−𝑑0𝑓𝑑0) for the sequence (𝑓𝑑)𝑑∈N and 𝐶0 > 0 as in
Assumption 3.7 (i.e. 𝑓𝑑 →∞ as 𝑑→∞). Hence

𝑑(Λ𝜖) = max{𝑑0 ∈ N : 𝑑(Λ𝜖) ≥ 𝑑0}
≤ max{𝑑0 ∈ N : 𝐶0 exp(−𝑑0𝑓𝑑0) ≥ 𝐶κ |Λ𝜖|−κ}
= max{𝑑0 ∈ N : 𝑑0𝑓𝑑0 ≤ − log(𝐶κ/𝐶0) + 𝑟 log(|Λ𝜖|)}.

For 𝑥 ≥ inf𝑑∈N 𝑑𝑓𝑑 set 𝑔(𝑥) := max{𝑑0 ∈ N : 𝑑0𝑓𝑑0 ≤ 𝑥}. We claim that 𝑔(𝑥) = 𝑜(𝑥) as 𝑥 → ∞. Assume on
the contrary that lim sup𝑥→∞ 𝑔(𝑥)/𝑥 ̸= 0. Then there exists a sequence (𝑥𝑗)𝑗∈N with 𝑥𝑗 → ∞ and a positive
constant 𝐶 such that 𝑔(𝑥𝑗) ≥ 𝐶𝑥𝑗 for all 𝑗 ∈ N. For every 𝑗 ∈ N, let 𝑑𝑗 := 𝑔(𝑥𝑗). Then

𝐶𝑥𝑗𝑓𝑑𝑗
≤ 𝑔(𝑥𝑗)𝑓𝑑𝑗

= 𝑑𝑗𝑓𝑑𝑗
≤ 𝑥𝑗 ∀𝑗 ∈ N,

which is a contradiction since 𝑓𝑑𝑗
→∞ as 𝑑𝑗 →∞. Hence 𝑔(𝑥) = 𝑜(𝑥) as 𝑥→∞. This shows 𝑑(Λ𝜖) = 𝑜(log(|Λ𝜖|))

as |Λ𝜖| → ∞ or equivalently as 𝜖→ 0.
For 𝑚(Λ𝜖) we proceed similarly. It holds for any 𝑑0 ∈ N

𝑚(Λ𝜖) ≥ 𝑑0 ⇒ sup
{𝜈∈ℱ : |𝜈|≥𝑑0}

𝑎𝜈 ≥ min
𝜈∈Λ𝜖

𝑎𝜈 ≥ 𝐶κ |Λ𝜖|−κ .

By assumption sup{𝜈∈ℱ : |𝜈|≥𝑑0} 𝑎𝜈 ≤ 𝐶0𝛿
−𝑑0 for some 𝛿 > 1 and some 𝐶0 > 0. Hence

𝑚(Λ𝜖) ≤ max{𝑑0 ∈ N : 𝐶0𝛿
−𝑑0 ≥ 𝐶κ |Λ𝜖|−κ} ≤ − log(𝐶κ/𝐶0) + κ log(|Λ𝜖|)

log(𝛿)
= 𝑂(log(|Λ𝜖|)),

which concludes the proof. �

The next lemma facilitates the construction of sequences satisfying (3.7) (while leaving the asymptotic decay
properties of the sequence unchanged). For its formulation recall the set I+ = {0}∪{i𝑗+1 : 𝑗 ∈ N0} introduced
in Remark 2.6.

Lemma 3.9. Let 𝑘 ∈ N and 𝑠 > 0, let I satisfy Assumption 2.4 (i) and let I+ be as in (2.12). Let (𝑎𝜈)𝜈∈ℱ𝑘
⊆

[0,∞). Define

𝜈 := (𝜈𝑗)𝑗∈N where 𝜈𝑗 :=

{︃
𝑘 if 1 ≤ ⌊𝜈𝑗⌋I+ < 𝑘

⌊𝜈𝑗⌋I+ otherwise.
(3.10)

Then there exists 𝐶𝐾I,𝑘 > 0 depending on 𝑘 and 𝐾I such that with 𝑎̂𝜈 := 𝑎𝜈 for all 𝜈 ∈ ℱ ,∑︁
𝜈∈ℱ

𝑎̂𝑠𝜈 ≤
∑︁

𝜈∈ℱ𝑘

𝑎𝑠𝜈𝐶
| supp 𝜈|
𝐾I,𝑘

∏︁
𝑗∈supp 𝜈

(1 + 𝜈𝑗). (3.11)

Proof. First note that 𝜈 ∈ ℱ𝑘 for every 𝜈 ∈ ℱ (cp. (2.1)). By Remark 2.7 it holds ⌈1 + 𝑛⌉I+ ≤ 𝐾I(1 + 𝑛) for
all 𝑛 ∈ N0. Fix 𝜇 ∈ ℱ . Then for any 𝜈 ∈ ℱ

𝜇̂𝑗 = 𝜈𝑗 ⇔

{︃
𝜈𝑗 ∈ {1, . . . ,min{i𝑗 + 1 : i𝑗 + 1 > 𝑘} − 1} if 𝜇̂𝑗 = 𝑘

𝜇̂𝑗 ≤ 𝜈𝑗 < ⌈1 + 𝜇̂𝑗⌉I+ otherwise.

Therefore, there exists a constant 𝐶𝐾I,𝑘 such that for every 𝜇 ∈ ℱ𝑘

|{𝜈 ∈ ℱ : 𝜈 = 𝜇}| ≤
∏︁

𝑗∈supp 𝜈

𝐶𝐾I,𝑘(1 + 𝜈𝑗).

This implies the lemma. �
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The next two lemmata will be crucial to prove summability of the Taylor gpc coefficients in Section 3.3.
They are a generalization of Lemma 7.1 from [10] and Theorem 7.2 from [10], in that they consider (improved)
summability over ℱ𝑘 for general 𝑘 ∈ N instead of just ℱ1. The proofs are provided in Appendix B.

Lemma 3.10. Let 𝑏 = (𝑏𝑗)𝑗∈N ⊆ (0,∞), 𝜗 ≥ 0 and 𝑅 ≥ 1. Set 𝑤𝜈 := 𝑅| supp 𝜈|∏︀
𝑗∈N(1 + 𝜈𝑗)𝜗. Let 𝑝 ∈ (0,∞)

and 𝑘 ∈ N. The sequence (𝑤𝜈𝑏𝜈)𝜈∈ℱ𝑘
belongs to ℓ𝑝/𝑘(ℱ𝑘), iff ‖𝑏‖ℓ𝑝(N) <∞ and ‖𝑏‖ℓ∞(N) < 1.

Lemma 3.11. Let 𝑏 = (𝑏𝑗)𝑗∈N ⊆ (0,∞), 𝜗 ≥ 0 and 𝑅 ≥ 1. Set 𝑤𝜈 := 𝑅| supp 𝜈|∏︀
𝑗∈N(1 + 𝜈𝑗)𝜗. Let 𝑝 ∈ (0, 1]

and 𝑘 ∈ N. The sequence (𝑤𝜈𝑏𝜈 |𝜈|!/𝜈!)𝜈∈ℱ𝑘
belongs to ℓ𝑝/𝑘(ℱ𝑘) iff ‖𝑏‖ℓ𝑝(N) <∞ and ‖𝑏‖ℓ1(N) < 1.

We now provide an example of a sequence satisfying Assumption 3.7.

Lemma 3.12. Fix 𝑘 ∈ N, let I satisfy Assumption 2.4 and let I+ be as in (2.12). Let 𝜚 = (𝜚𝑗)𝑗∈N ⊆ (1,∞) be
such that (𝜚−1

𝑗 )𝑗∈N ∈ ℓ𝑞(N) for some 𝑞 > 0 and additionally 𝜚𝑗 ≤ 𝐶κ𝑗
κ for some fixed constants κ > 0, 𝐶κ > 0

and all 𝑗 ∈ N. For all 𝜈 ∈ ℱ define

𝑐𝑘,𝜈 := 𝜚−𝜈 where 𝜈𝑗 :=

{︃
𝑘 if 1 ≤ ⌊𝜈𝑗⌋I+ < 𝑘

⌊𝜈𝑗⌋I+ otherwise.
(3.12)

Then (𝑐𝑘,𝜈)𝜈∈ℱ ∈ ℓ𝑞/𝑘(ℱ) and the sequence satisfies Assumption 3.7.

Proof. First we show (𝑐𝑘,𝜈)𝜈∈ℱ ∈ ℓ𝑞/𝑘(ℱ). By Lemma 3.9∑︁
𝜈∈ℱ

𝑐
𝑞
𝑘

𝑘,𝜈 =
∑︁
𝜈∈ℱ

(𝜚−𝜈)
𝑞
𝑘 ≤

∑︁
𝜈∈ℱ𝑘

(𝜚−𝜈)
𝑞
𝑘𝐶

| supp 𝜈|
𝐾I,𝑘

∏︁
𝑗∈N

(1 + 𝜈𝑗).

Since (𝜚−1
𝑗 )𝑗∈N ⊆ (0, 1) and (𝜚−1

𝑗 )𝑗∈N ∈ ℓ𝑞(N), Lemma 3.10 implies (𝑐𝑘,𝜈)𝜈∈ℱ ∈ ℓ𝑞/𝑘(ℱ).
Next we check Assumption 3.7. Items (i) and (ii) are immediate consequences of Remark 2.6 and (3.12). To

verify (iii) we first note that (𝜚−𝑘𝑗 )𝑗∈N is a subsequence of (𝑐𝑘,𝜈)𝜈∈ℱ and 𝜚−𝑘𝑗 ≥ 𝐶−𝑘κ 𝑗−κ𝑘 for all 𝑗 ∈ N, which
shows the first inequality in (3.8). For the third inequality in (3.8), we use Lemma 3.13 to obtain a constant 𝐶0

such that 𝜚−1
𝑗 ≤ 𝐶0𝑗

−1/𝑞. If 𝜈 ∈ ℱ then 𝜈𝑗 = 0 or 𝜈𝑗 ≥ 𝑘 for all 𝑗 ∈ N. Therefore

sup
{𝜈∈ℱ : | supp 𝜈|≥𝑑}

𝑐𝑘,𝜈 = sup
{𝜈∈ℱ : | supp 𝜈|≥𝑑}

∏︁
𝑗∈N

𝜚
−𝜈𝑗

𝑗 ≤
𝑑∏︁
𝑗=1

𝐶0𝑗
− 𝑘

𝑞 = 𝐶𝑑0 (𝑑!)−
𝑘
𝑞 ≤ 𝐶𝑑0 e

𝑑𝑘
𝑞 𝑑−

𝑑𝑘
𝑞

due to 𝑑! ≥ e−𝑑 𝑑𝑑. This implies that there exists a sequence (𝑓𝑑)𝑑∈N as stated in Assumption 3.7. Finally, for
the second inequality in (3.8) we use that for all 𝑛 ∈ N0 it holds ⌊𝑛⌋I+ ≥ 𝑛/𝐾I by Remark 2.7. Thus with
𝛿 := inf𝑗∈N 𝜚𝑗 > 1

sup
{𝜈∈ℱ : |𝜈|≥𝑑}

𝑐𝑘,𝜈 = sup
{𝜈∈ℱ : |𝜈|≥𝑑}

∏︁
𝑗∈N

𝜚
−𝜈𝑗

𝑗 ≤ sup
{𝜈∈ℱ : |𝜈|≥𝑑}

∏︁
𝑗∈N

𝜚
−⌊𝜈𝑗⌋I+
𝑗 ≤ sup

{𝜈∈ℱ : |𝜈|≥𝑑}

∏︁
𝑗∈supp 𝜈

𝛿
−

𝜈𝑗
𝐾I ,

which equals (𝛿1/𝐾I)−𝑑. This verifies (3.8) and Assumption 3.7. �

3.3. ℓ𝑝-summability of Taylor GPC coefficients

We now show that for (𝑏, 𝜀)-holomorphic functions with a sequence 𝑏 ∈ ℓ𝑝(N) for some 0 < 𝑝 < 1, the norms
of the Taylor gpc coefficients of 𝑢 belong to ℓ𝑝/𝑘(ℱ𝑘) for every 𝑘 ∈ N, with ℱ𝑘 defined in (2.1). This summability
is the essential property in order to verify the improved, dimension-independent algebraic convergence rate for
suitably adapted Smolyak quadratures, see Section 4. 𝑁 -term approximation rate bounds for Taylor and other
gpc expansions have previously been established by several authors, we only mention [10–12] and the references
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therein. Our new contribution here is twofold: first, instead of ℱ we consider the smaller sets ℱ𝑘 and in particular
ℱ2. As we shall see in Section 4, the set ℱ2 is better suited for analyzing Smolyak-style quadrature algorithms,
as it quantifies increased sparsity due to cancellation by symmetry (in the Smolyak quadratures). Our second
contribution concerns a computable estimator bounding the norm of the Taylor gpc coefficients. We show that,
without loss of convergence order, it can be chosen constant on certain subsets of ℱ . This is to be contrasted
with greedy computational schemes based on numerical solutions of knapsack problems as, for example, in [3,4].
Our new, a priori construction allows to localize the multiindex set for the Smolyak quadrature in near linear
complexity (work and memory), as explained in Section 3.1.3 of [37]. Before presenting the result we state three
lemmata required in the proof.

Lemma 3.13. Let 𝑝 ∈ (0,∞) and let (𝑡𝑗)𝑗∈N be nonnegative and monotonically decreasing. Then, for all 𝑁 ∈ N

𝑡𝑁 ≤

⎛⎝ 𝑁∑︁
𝑗=1

𝑡𝑝𝑗

⎞⎠ 1
𝑝

𝑁− 1
𝑝 .

Proof. Due to the monotonicity of (𝑡𝑝𝑗 )𝑗∈N it holds 𝑡𝑝𝑁 ≤ 𝑁−1
∑︀𝑁
𝑗=1 𝑡

𝑝
𝑗 which implies the lemma. �

The following theorem is an extension of results in [10,12], in particular of Theorem 1.3 from [10], Theorem 2.2
from [12]. Items four and five will provide explicit constructions of multiindex sets.

Theorem 3.14. Let 𝑘 ∈ N, 0 ≤ 𝜗 < ∞, 𝑝 ∈ (0, 1) and let the set of admissible indices I ⊆ N0 satisfy
Assumption 2.4 (i). Let 𝑢 : 𝑈 → 𝑋 be (𝑏, 𝜀)-holomorphic for some 𝑏 ∈ ℓ𝑝(N) (see Def. 3.1). For 𝜈 ∈ ℱ define
𝑤𝜈 :=

∏︀
𝑗∈N(1 + 𝜈𝑗)𝜗.

Then there exists 𝐶 > 0, 𝐶0 > 0 and a sequence (𝑎𝑘,𝜈)𝜈∈ℱ solely depending on I, 𝑏, 𝜖 and 𝜗 such that

(i) (𝑎𝑘,𝜈)𝜈∈ℱ satisfies Assumption 3.7 (with the set of admissible indices I),
(ii) (𝑎𝑘,𝜈)𝜈∈ℱ ∈ ℓ𝑝/𝑘(ℱ),
(iii) the Taylor gpc coefficients 𝑡𝜈 of 𝑢 in (3.5) satisfy

𝑤𝜈‖𝑡𝜈‖𝑋 ≤ 𝐶𝑀𝑢𝑎𝑘,𝜈 ∀𝜈 ∈ ℱ𝑘 (3.13)

so that in particular (‖𝑡𝜈‖𝑋)𝜈∈ℱ𝑘
∈ ℓ𝑝/𝑘(ℱ𝑘).

Moreover

(iv) there exist 𝑇 > 1 and 𝜏0 > 0 such that with

𝑐𝑘,𝜈 := 𝜚−𝜈 , 𝜚𝑗 := max{𝑇, 𝜏0 min{𝑏−1
𝑗 , 𝑗2/𝑝}}1−𝑝, 𝜈𝑗 :=

{︃
𝑘 if 1 ≤ ⌊𝜈𝑗⌋I+ < 𝑘

⌊𝜈𝑗⌋I+ otherwise
(3.14)

it holds (𝑎𝑘,𝜈𝑐−1
𝑘,𝜈)𝜈∈ℱ ∈ ℓ1(ℱ) and (𝑐𝑘,𝜈)𝜈∈ℱ ∈ ℓ𝑝/(2(1−𝑝))(ℱ),

(v) in case ‖𝑏‖ℓ𝑝(N) < 𝐶0, there exist 𝜏1, 𝜏2 > 0 such that we have the explicit representation

𝑎𝑘,𝜈 :=
∏︁
𝑗∈N

max
{︂

e,
𝜏2𝜈𝑗

|𝜈|max{𝑏𝑗 , 𝜏1𝑗−2/𝑝}

}︂−𝜈𝑗

, 𝜈𝑗 :=

{︃
𝑘 if 1 ≤ ⌊𝜈𝑗⌋I+ < 𝑘

⌊𝜈𝑗⌋I+ otherwise.
(3.15)

Proof. We proceed in four steps. In the first two steps 𝑎𝑘,𝜈 as stated in the theorem is constructed. In the third
step item (i) is shown, and finally we show (iv) in Step 4. For a constant 𝜏1 ∈ (0, 1] (chosen subsequently in
Step 1) throughout this proof set

𝑏̃𝑗 := max{𝑏𝑗 , 𝜏1𝑗−2/𝑝} (3.16)
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and 𝑏̃ = (𝑏̃𝑗)𝑗∈N. Then 𝑏̃𝑗 ≥ 𝑏𝑗 for each 𝑗 ∈ N, and thus the (𝑏, 𝜀)-holomorphic function 𝑢 is also (𝑏̃, 𝜀)-
holomorphic (cp. Def. 3.1). Furthermore, w.l.o.g. we assume 𝑀𝑢 > 0 in Definition 3.1 (if 𝑀𝑢 = 0 then 𝑢 ≡ 0, in
which case (iii) becomes trivial).

Step 1. We introduce (𝑎𝑘,𝜈)𝜈∈ℱ and show that the sequence is monotonically decreasing (cp. Def. 3.6) and
that it holds (3.13). Let the constant 𝐶𝐾I,𝑘 > 0 be as in Lemma 3.9. Observe that with 𝑏̃ as in (3.16) (where
𝜏1 is to be chosen), it is possible to find constants 𝜏1 ∈ (0, 1], 𝜅0 > 1, 𝐶𝜗 ≥ 1 and 𝐽 ∈ N with the properties

(1 + 𝑛)𝜗 ≤ 𝐶𝜗𝜅
𝑛
0 ∀𝑛 ∈ N, (3.17a)

and with 𝛿 := 𝜀/3

(𝜅2
0 − 1)

𝐽−1∑︁
𝑗=1

𝑏̃𝑗 + 𝜅1

∑︁
𝑗≥𝐽

𝑏̃𝑗 < 𝜀− 𝛿,
∑︁
𝑗≥𝐽

𝑏̃𝑗 <
𝛿

𝐶𝜗𝐶
𝑘/𝑝
𝐾I,𝑘

𝜅0 e
,

∑︁
𝑗≥𝐽

𝑏̃𝑝𝑗 <
𝛿

𝐶𝜗𝐶𝐾I,𝑘𝜅0 e
, 𝑏̃𝑗 ≤

1
2
∀𝑗 ≥ 𝐽

(3.17b)
where e = exp(1) and

𝜅1 := 𝐶𝜗𝜅0e.

In the general case they are obtained as follows: first set 𝜏1 = 1. Employing ‖𝑏̃‖ℓ1(N) < ∞ we choose 𝜅0 > 1
with (𝜅2

0 − 1)
∑︀
𝑗∈N 𝑏̃𝑗 < 𝜀 − 2𝛿 where 𝛿 := 𝜀/3, then choose 𝐶𝜗 such that (1 + 𝑛)𝜗 ≤ 𝐶𝜗𝜅

𝑛
0 for all 𝑛 ∈ N, and

afterwards choose 𝐽 ∈ N large enough such that 𝜅1

∑︀
𝑗≥𝐽 𝑏̃𝑗 < 𝛿 and the last three conditions in (3.17b) hold.

At this point we note that if

‖𝑏‖ℓ𝑝(N) < min

{︃
2𝜀
3
,

𝛿

𝐶𝜗𝐶
𝑘/𝑝
𝐾I,𝑘

𝜅0 e
,

(︂
𝛿

𝐶𝜗𝐶𝐾I,𝑘𝜅0 e

)︂1/𝑝

,
1
2

}︃
=: 𝐶0, (3.18)

then we may choose 𝐽 = 1 and fix 𝜏1 > 0 so small that with 𝑏̃𝑗 = max{𝑏𝑗 , 𝜏1𝑗−2/𝑝} it also holds ‖𝑏̃‖ℓ𝑝(N) < 𝐶0.
In this case the conditions in (3.17b) are satisfied with 𝐽 = 1. We will use this below to show (v).

For 𝜈 ∈ ℱ , in the following 𝜈𝐸 denotes the multiindex which coincides with 𝜈 in the first 𝐽 components and
is zero otherwise, and 𝜈𝐹 := 𝜈 − 𝜈𝐸 . Set

𝜌𝜈;𝑗 :=

{︃
𝜅2

0 if 𝑗 < 𝐽,

max
{︁
𝜅1,

𝛿𝜈𝑗

|𝜈𝐹 |𝑏̃𝑗

}︁
if 𝑗 ≥ 𝐽.

Here and in the following we adhere to the notational convention 𝜈𝑗/|𝜈𝐹 | = 0 in case |𝜈𝐹 | = 0. Then, with
(3.17),

∑︁
𝑗∈N

(𝜌𝜈;𝑗 − 1)𝑏̃𝑗 ≤ (𝜅2
0 − 1)

𝐽−1∑︁
𝑗=1

𝑏̃𝑗 +
∑︁
𝑗≥𝐽

𝜌𝜈;𝑗 𝑏̃𝑗 ≤ (𝜅2
0 − 1)

𝐽−1∑︁
𝑗=1

𝑏̃𝑗 + 𝜅1

∑︁
𝑗≥𝐽

𝑏̃𝑗 + 𝛿
∑︁
𝑗≥𝐽

𝜈𝑗
|𝜈𝐹 |

< 𝜀.

Therefore 𝜌𝜈 = (𝜌𝜈;𝑗)𝑗∈N is (𝑏̃, 𝜀)-admissible (in the sense of Def. 3.1). Hence, with 𝑀𝑢 as in Definition 3.1 and
𝐶𝜗 as in (3.17a), we obtain from (3.6)

‖𝑢𝜈‖𝑋
∏︁
𝑗∈N

(1 + 𝜈𝑗)𝜗 ≤𝑀𝑢

⎛⎝𝐶 | supp 𝜈|
𝜗

∏︁
𝑗∈supp 𝜈

𝜅
𝜈𝑗

0

⎞⎠∏︁
𝑗∈N

𝜌
−𝜈𝑗

𝜈;𝑗

≤𝑀𝑢𝐶
| supp 𝜈|
𝜗 𝜅

|𝜈|
0

𝐽−1∏︁
𝑗=1

𝜅
−2𝜈𝑗

0

∏︁
𝑗≥𝐽

max

{︃
𝜅1,

𝛿𝜈𝑗

|𝜈𝐹 |𝑏̃𝑗

}︃−𝜈𝑗
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≤𝑀𝑢𝐶
𝐽−1
𝜗

𝐽−1∏︁
𝑗=1

𝜅
−𝜈𝑗

0

∏︁
𝑗≥𝐽

max

{︃
𝜅1

𝐶𝜗𝜅0
,

𝛿𝜈𝑗

𝐶𝜗𝜅0|𝜈𝐹 |𝑏̃𝑗

}︃−𝜈𝑗

⏟  ⏞  
=:𝑓𝜈

. (3.19)

We point out that 𝜅1/(𝐶𝜗𝜅0) = e by definition of 𝜅1.
We now prove that 𝑓𝜈 is monotonically decreasing in 𝜈. For 𝑗 < 𝐽 and with e𝑗 := (𝛿𝑗𝑖)𝑖∈N, since 𝜅0 > 1 we

have 𝑓𝜈+e𝑗
≤ 𝜅−1

0 𝑓𝜈 ≤ 𝑓𝜈 . Next, fix 𝑗 ≥ 𝐽 . Note that

max

{︃
e,

𝛿𝜈𝑗

𝐶𝜗𝜅0|𝜈𝐹 |𝑏̃𝑗

}︃
= max

{︃
e,

𝛿𝜈𝑗

𝐶𝜗𝜅0𝑏̃𝑗(𝜈𝑗 +
∑︀
{𝑖≥𝐽 : 𝑖 ̸=𝑗} 𝜈𝑖)

}︃
(3.20)

is monotonically increasing as a function of 𝜈𝑗 , and is always larger or equal to e. Therefore

𝑓𝜈+e𝑗

𝑓𝜈
≤ max

{︃
e,

𝛿𝜈𝑗

𝐶𝜗𝜅0(|𝜈𝐹 |+ 1)𝑏̃𝑗

}︃−1 ∏︁
𝑖≥𝐽

max
{︁

e, 𝛿𝜈𝑖

𝐶𝜗𝜅0|𝜈𝐹 |𝑏̃𝑖

}︁𝜈𝑖

max
{︁

e, 𝛿𝜈𝑖

𝐶𝜗𝜅0(|𝜈𝐹 |+1)𝑏̃𝑖

}︁𝜈𝑖
≤ e−1

(︂
1 +

1
|𝜈𝐹 |

)︂|𝜈𝐹 |

≤ 1.

For all 𝜈 ∈ ℱ define 𝑎𝑘,𝜈 := 𝑓𝜈 with 𝜈 as in (3.15). Note that 𝜈 ≤ 𝜈 for all 𝜈 ∈ ℱ𝑘. Due to the monotonicity
of (𝑓𝜈)𝜈∈ℱ it thus holds 𝑎𝑘,𝜈 ≥ 𝑓𝜈 for all 𝜈 ∈ ℱ𝑘. Together with (3.19) this shows (3.13).

Finally we point out that if ‖𝑏‖ℓ𝑝(N) < 𝐶0, then as explained after (3.18), we can choose 𝐽 = 1 so that

𝑎𝑘,𝜈 = 𝑓𝜈 =
∏︁
𝑗∈N

max
{︂

e,
𝛿𝜈𝑗

𝐶𝜗𝜅0|𝜈|max{𝑏𝑗 , 𝜏1𝑗−2/𝑝}

}︂−𝜈𝑗

(3.21)

is of the type described in (v).

Step 2. We now show (𝑎𝑘,𝜈)𝜈∈ℱ ∈ ℓ𝑝/𝑘(ℱ). By Lemma 3.9 it holds∑︁
𝜈∈ℱ

𝑎
𝑝/𝑘
𝑘,𝜈 =

∑︁
𝜈∈ℱ

𝑓
𝑝/𝑘
𝜈 ≤

∑︁
𝜈∈ℱ𝑘

𝑓𝑝/𝑘𝜈 𝐶
| supp 𝜈|
𝐾I,𝑘

∏︁
𝑗∈N

(1 + 𝜈𝑗).

In the following we use that by Stirling’s inequalities 𝑛𝑛 ≤ e𝑛 𝑛! and thus

|𝜈||𝜈|

𝜈𝜈
≤ e|𝜈|

|𝜈|!
𝜈!

∀𝜈 ∈ ℱ .

Set ℱ𝐺 := {𝜈𝐺 : 𝜈 ∈ ℱ}, 𝐺 ∈ {𝐸,𝐹}. Employing the definition of 𝑓𝜈 in (3.19), 𝑑𝑗 := 𝐶
𝑘/𝑝
𝐾I,𝑘

𝐶𝜗𝜅0e𝑏̃𝑗/𝛿 and
𝑑𝑗 := 𝑑𝑗+𝐽−1, 𝑗 ∈ N, we get∑︁

𝜈∈ℱ𝑘

𝑎𝑘,𝜈 ≤
∑︁

𝜈∈ℱ𝑘

𝐶
| supp 𝜈𝐸 |
𝐾I,𝑘

𝐶
| supp 𝜈𝐹 |
𝐾I,𝑘

𝑓𝑝/𝑘𝜈

∏︁
𝑗∈N

(1 + 𝜈𝑗)

≤
∑︁

𝜈∈ℱ𝑘

𝐶𝐽−1
𝐾I,𝑘

𝐶
|𝜈𝐹 |
𝐾I,𝑘

𝑓𝑝/𝑘𝜈

∏︁
𝑗∈N

(1 + 𝜈𝑗)

≤ 𝐶𝐽−1
𝐾I,𝑘

∑︁
𝜇∈ℱ𝐸∩ℱ𝑘

𝜅
−|𝜇|𝑝/𝑘
0

(︃
𝐽−1∏︁
𝑖=1

(1 + 𝜇𝑖)

)︃ ∑︁
𝜈∈ℱ𝐹∩ℱ𝑘

⎛⎝ |𝜈||𝜈|
𝜈𝜈

∏︁
𝑗∈supp 𝜈

×

(︃
𝐶
𝑘/𝑝
𝐾I,𝑘

𝐶𝜗𝜅0𝑏̃𝑗

𝛿

)︃𝜈𝑗
⎞⎠𝑝/𝑘⎛⎝∏︁

𝑗≥𝐽

(1 + 𝜈𝑗)

⎞⎠
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≤ 𝐶𝐽−1
𝐾I,𝑘

∑︁
𝜇∈ℱ𝐸∩ℱ𝑘

𝜅
−|𝜇|𝑝/𝑘
0

(︃
𝐽−1∏︁
𝑖=1

(1 + 𝜇𝑖)

)︃ ∑︁
𝜈∈ℱ𝐹∩ℱ𝑘

(︂
|𝜈|!
𝜈!

𝑑𝜈

)︂𝑝/𝑘⎛⎝∏︁
𝑗≥𝐽

(1 + 𝜈𝑗)

⎞⎠
= 𝐶𝐽−1

𝐾I,𝑘

∑︁
𝜇∈ℱ𝐸

𝜅
−|𝜇|𝑝/𝑘
0

(︃
𝐽−1∏︁
𝑖=1

(1 + 𝜇𝑖)

)︃ ∑︁
𝜈∈ℱ𝑘

(︂
|𝜈|!
𝜈!

𝑑𝜈

)︂𝑝/𝑘⎛⎝∏︁
𝑗∈N

(1 + 𝜈𝑗)

⎞⎠ . (3.22)

We have ‖(𝑑𝑗)𝑗∈N‖ℓ𝑝(N) ≤ 𝐶‖𝑏̃‖ℓ𝑝(N) <∞. Furthermore, due to (3.17b) it holds

‖(𝑑𝑗)𝑗∈N‖ℓ1(N) =
𝐶
𝑘/𝑝
𝐾I,𝑘

𝐶𝜗𝜅0e
𝛿

∑︁
𝑗≥𝐽

𝑏̃𝑗 < 1.

Therefore, both sums on the right-hand side of (3.22) are finite according to Lemmas 3.10 and 3.11.

Step 3. We prove that (𝑎𝑘,𝜈)𝜈∈ℱ satisfies Assumption 3.7.
Since (𝑓𝜈)𝜈∈ℱ is monotonically decreasing, and since 𝜈 ≤ 𝜇 implies 𝜈 ≤ 𝜇̂ (cp. (3.10)), also (𝑎𝑘,𝜈)𝜈∈ℱ is

monotonically decreasing.
To see (3.7) assume that ⌈𝜈⌉I = ⌈𝜇⌉I. By Remark 2.6 we then have ⌊𝜈⌋I+ = ⌊𝜇⌋I+ . By definition of 𝜈, this

implies 𝜈 = 𝜇̂ and therefore 𝑎𝑘,𝜈 = 𝑓𝜈 = 𝑓𝜇̂ = 𝑎𝑘,𝜇.
It remains to show Assumption 3.7 (iii). Denote e𝑗 = (𝛿𝑖𝑗)𝑖∈N. The sequence (𝑎𝑘,e𝑗 )𝑗≥𝐽 is a subsequence of

(𝑎𝑘,𝜈)𝜈∈ℱ . By (3.19) and (3.16), it holds (since 𝑏̃𝑗 → 0 as 𝑗 →∞)

𝑎𝑘,e𝑗
= 𝑓ê𝑗

= 𝑓𝑘e𝑗 = max

{︃
e,

𝛿

𝐶𝜗𝜅0𝑏̃𝑗

}︃−𝑘
≥ 𝐶𝑏̃𝑘𝑗 ≥ 𝐶𝑗−2𝑘/𝑝.

This shows the first inequality in (3.8) with κ = 2𝑘/𝑝 > 0.
For the third property in (3.8) we use 𝑏̃ ∈ ℓ𝑝(N), so that by Lemma 3.13 we have 𝑏̃𝑗 ≤ 𝐶𝑏̃𝑗

−1/𝑝 for some
𝐶𝑏̃ <∞. Then for 𝑑 > 𝐽 with (3.19) and due to the monotonicity of (𝑓𝜈)𝜈∈ℱ

sup
{𝜈∈ℱ : | supp 𝜈|≥𝑑}

𝑎𝑘,𝜈 ≤ sup
{𝜈∈ℱ : | supp 𝜈|≥𝑑}

𝑓𝜈

≤
𝑑∏︁

𝑗=𝐽

(︂
𝐶𝜗𝜅0(𝑑− 𝐽)

𝛿

)︂
𝑏̃𝑗 ≤

𝑑∏︁
𝑗=𝐽

(︂
𝐶𝜗(𝑑− 𝐽)

𝛿

)︂
𝐶𝑏̃𝑗

−1/𝑝

≤
(︂
𝐶𝑏̃𝐶𝜗𝜅0(𝑑− 𝐽)

𝛿

)︂𝑑−𝐽+1

𝑑𝑑
𝑑∏︁

𝑗=𝐽

𝑗−1/𝑝 ≤ ((𝐽 − 1)!)1/𝑝𝐶𝑑𝑑𝑑(𝑑!)−1/𝑝,

where 𝐶 = (𝐶𝑏̃𝐶𝜗)/𝛿. By Stirling’s inequality, 𝑑! ≥ 𝑑𝑑 e−𝑑 for all 𝑑 ∈ N. Therefore, there exists a constant 𝐶 > 0
such that for every 𝑑 ∈ N holds with 𝑐 = 1/𝑝− 1 > 0

sup
{𝜈∈ℱ : | supp 𝜈|≥𝑑}

𝑎𝑘,𝜈 ≤ 𝐶𝑑𝑑−𝑐𝑑.

This shows the third property in (3.8).
Finally, we show the second property in (3.8). By Remark 2.7 it holds ⌊𝑛⌋I+ ≥ 𝑛/𝐾I for all 𝑛 ∈ N0. Using

that 𝜈 ≥ ⌊𝜈⌋I+ and that (𝑓𝜈)𝜈∈ℱ𝑘
is monotonically decreasing we get

sup
{𝜈∈ℱ : |𝜈|≥𝑑}

𝑎𝑘,𝜈 = sup
{𝜈∈ℱ : |𝜈|≥𝑑}

𝑓𝜈 ≤ sup
{𝜈∈ℱ : |𝜈|≥𝑑}

𝑓⌊𝜈⌋I+
≤ sup
{𝜈∈ℱ : |𝜈|≥𝑑}

𝐽−1∏︁
𝑗=1

𝜅
−𝜈𝑗/𝐾I

0

∏︁
𝑗≥𝐽

e−𝜈𝑗/𝐾I

≤
(︁

min{𝜅0, e}1/𝐾I

)︁−𝑑
,
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which shows the second property in (3.8).

Step 4. We show (iv). By definition 𝑎𝑘,𝜈 = 𝑓𝜈 and 𝑐𝑘,𝜈 = 𝜚−𝜈 where

𝜚𝑗 = max{𝑇, 𝜏0 min{𝑏−1
𝑗 , 𝑗2/𝑝}}1−𝑝

and the constants 𝑇 > 1, 𝜏0 > 0 are still at our disposal. Lemma 3.9 gives∑︁
𝜈∈ℱ

𝑎𝑘,𝜈𝑐
−1
𝑘,𝜈 ≤

∑︁
𝜈∈ℱ𝑘

𝑓𝜈𝜚
𝜈𝐶

| supp 𝜈|
𝐾I,𝑘

∏︁
𝑗∈N

(1 + 𝜈𝑗).

Fix 𝑇 ∈ (1,min{𝜅1/(1−𝑝)
0 , 2}). Let 𝜏0 ∈ (0, 1] be so small that max{𝑇, 𝜏0𝑏̃−1

𝑗 } ≤ 𝑇 for all 𝑗 < 𝐽 . By (3.17b) we
have 𝑏̃𝑗 = max{𝑏𝑗 , 𝜏1𝑗−2/𝑝} ≤ 1/2 and thus 𝑏̃−1

𝑗 ≥ 2 ≥ 𝑇 for all 𝑗 ≥ 𝐽 . Due to 𝜏0, 𝜏1 ∈ (0, 1] we get

𝜚𝑗 = max{𝑇, 𝜏0 min{𝑏−1
𝑗 , 𝑗2/𝑝}}1−𝑝 ≤ min{𝑏−1

𝑗 , 𝜏−1
1 𝑗2/𝑝}1−𝑝 = 𝑏̃𝑝−1

𝑗 ∀𝑗 ≥ 𝐽.

Then by definition of 𝑓𝜈 in (3.19)

∑︁
𝜈∈ℱ

𝑎𝑘,𝜈𝑐
−1
𝑘,𝜈 ≤

∑︁
𝜈∈ℱ𝑘

𝐶
| supp 𝜈|
𝐾I,𝑘

⎛⎝ ∏︁
𝑖∈supp 𝜈

(1 + 𝜈𝑖)

⎞⎠⎛⎝𝐽−1∏︁
𝑗=1

(︂
𝑇 1−𝑝

𝜅0

)︂𝜈𝑗

⎞⎠⎛⎝∏︁
𝑗≥𝐽

(︂
𝐶𝜗𝜅0

𝛿

|𝜈𝐹 |
𝜈𝑗

𝑏̃𝑝𝑗

)︂𝜈𝑗

⎞⎠ .

Using once more 𝑛! ≥ 𝑛𝑛 e−𝑛, similar as before we get with 𝑑𝑗 := (𝐶𝜗𝜅0 e /𝛿)𝑏̃𝑝𝑗+𝐽−1 for 𝑗 ∈ N and 𝑑 = (𝑑𝑗)𝑗∈N

∑︁
𝜈∈ℱ

𝑎𝑘,𝜈𝑐
−1
𝑘,𝜈 ≤

∑︁
𝜈∈ℱ𝑘

𝐶
| supp 𝜈|
𝐾I,𝑘

⎛⎝ ∏︁
𝑖∈supp 𝜈

(1 + 𝜈𝑖)

⎞⎠ |𝜈𝐹 |!
𝜈𝐹 !

⎛⎝𝐽−1∏︁
𝑗=1

(︂
𝑇 1−𝑝

𝜅0

)︂𝜈𝑗

⎞⎠⎛⎝∏︁
𝑗≥𝐽

(︂
𝐶𝜗𝜅0 e
𝛿

𝑏̃𝑝𝑗

)︂𝜈𝑗

⎞⎠
≤

⎛⎝ ∑︁
𝜇∈N𝐽−1

0

𝐶
| supp 𝜇|
𝐾I,𝑘

𝐽−1∏︁
𝑗=1

(1 + 𝜇𝑗)
(︂
𝑇 1−𝑝

𝜅0

)︂|𝜇|⎞⎠⎛⎝∑︁
𝜈∈ℱ𝑘

|𝜈|!
𝜈!

𝑑𝜈𝐶
| supp 𝜈|
𝐾I,𝑘

∏︁
𝑗∈N

(1 + 𝜈𝑗)

⎞⎠ . (3.23)

By (3.17b) we have ∑︁
𝑗∈N

𝑑𝑗 =
∑︁
𝑗≥𝐽

𝐶𝐾I,𝑘𝐶𝜗𝜅0 e
𝛿

𝑏̃𝑝𝑗 < 1.

Therefore both sums in (3.23) are finite by Lemmas 3.10 and 3.11.
Finally, since (𝑏̃𝑗)𝑗∈N ∈ ℓ𝑝(N), with 𝜚−1

𝑗 = max{𝑇, 𝜏0 min{𝑏−1
𝑗 , 𝑗2/𝑝}}1−𝑝, we have (𝜚−1

𝑗 )𝑗∈N ∈ ℓ𝑝/(1−𝑝)(N) and
inf𝑗∈N 𝜚𝑗 > 1. Therefore (𝑐𝑘,𝜈)𝜈∈ℱ ∈ ℓ𝑝/(2(1−𝑝))(ℱ) by Lemma 3.12. �

Remark 3.15. Whenever 𝑏 ∈ ℓ𝑝(N) is a positive sequence, and 𝜏1, 𝜏2 > 0, then the sequence (𝑎𝑘,𝜈)𝜈∈ℱ defined
in (3.15) belongs to ℓ𝑝/𝑘(ℱ). This follows by similar arguments as used in the proof of Theorem 3.14.

4. Smolyak convergence rates

Hereafter the main results of this paper are established. First, we show some elementary properties of the
Smolyak quadrature operator. In particular it will be verified that any multivariate monomial 𝑦𝜈 with 𝜈 ∈ ℱ∖ℱ2

is integrated exactly. Subsequently the dimension-independent convergence rate of 2/𝑝 − 1 for the Smolyak
quadrature with nested quadrature rules in terms of number of number of quadrature points is given for (𝑏, 𝜀)-
holomorphic functions with 𝑏 ∈ ℓ𝑝(N) for some 0 < 𝑝 < 1. For non-nested quadrature points, nearly the same
convergence rate is obtained. Similarly, we obtain the same algebraic convergence in terms of the cost measure
(which counts the number of required floating operations) introduced in Section 2.4.
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4.1. Properties of the Smolyak quadrature

Lemma 4.1. Let Λ ⊆ ℱ be finite and downward closed. Then

(i) for 𝜈 ∈ ℱ it holds 𝑄Λ𝑦𝜈 = 𝑄{𝜇∈Λ : 𝜇≤𝜈}𝑦
𝜈 ,

(ii) 𝑄Λ𝑃 =
∫︀
𝑈
𝑃 (𝑦) d𝜇(𝑦) for all 𝑃 ∈ span{𝑦𝜈 : 𝜈 ∈ Λ},

(iii) if 𝜒0;0 = 0, then 𝑄Λ𝑃 =
∫︀
𝑈
𝑃 (𝑦) d𝜇(𝑦) = 0 for all 𝑃 ∈ span{𝑦𝜈 : 𝜈 ∈ ℱ∖ℱ2},

(iv) if (2.3) holds for some 𝜗 ≥ 1, then for all 𝜈 ∈ ℱ

|𝑄Λ𝑦𝜈 | ≤
∏︁
𝑗∈N

(1 + 𝜈𝑗)𝜗+1.

Proof. Fix 𝜈 ∈ ℱ . Due to 𝑄𝑛𝑦𝑘 =
∫︀ 1

−1
𝑦𝑘 d𝑦/2 for all 𝑛 ≥ 𝑘 we have (

⨂︀
𝑗∈N(𝑄𝜇𝑗

−𝑄𝜇𝑗−1))(𝑦𝜈) = 0 whenever
there exists 𝑗 ∈ N such that 𝜇𝑗 > 𝜈𝑗 . Thus

𝑄Λ𝑦𝜈 =
∑︁
𝜇∈Λ

⎛⎝⨂︁
𝑗∈N

(𝑄𝜇𝑗
−𝑄𝜇𝑗−1)

⎞⎠𝑦𝜈 =
∑︁

{𝜇∈Λ : 𝜇≤𝜈}

⎛⎝⨂︁
𝑗∈N

(𝑄𝜇𝑗
−𝑄𝜇𝑗−1)

⎞⎠𝑦𝜈 ,

which shows (i). Next observe that due to the convention 𝑄−1 ≡ 0

∑︁
{𝜇∈ℱ : 𝜇≤𝜈}

⎛⎝⨂︁
𝑗∈N

(𝑄𝜇𝑗
−𝑄𝜇𝑗−1)

⎞⎠ =
⨂︁
𝑗∈N

𝜈𝑗∑︁
𝑖=0

(𝑄𝑖 −𝑄𝑖−1) =
⨂︁
𝑗∈N

𝑄𝜈𝑗
= 𝑄𝜈 .

Therefore, if 𝜈 ∈ Λ then by (i) it holds 𝑄Λ𝑦𝜈 = 𝑄𝜈𝑦𝜈 =
∏︀
𝑗∈N 𝑄𝜈𝑗

𝑦
𝜈𝑗

𝑗 =
∫︀
𝑈

𝑦𝜈 d𝜇(𝑦).
For (iii) consider the univariate quadrature operator𝑄𝑛 : 𝐶0([−1, 1]) → R, employing 𝑛+1 distinct quadrature

points in [−1, 1]. The monomial 𝑦 ↦→ 𝑦 satisfies 𝑄𝑛𝑦 =
∫︀ 1

−1
𝑦 d𝑦/2 = 0 for all 𝑛 ∈ N0: this is true for 𝑛 ≥ 1, as

stated at the beginning of the proof. It is true for 𝑛 = 0, because 𝑄0𝑦 = 𝜒0;0 = 0. For 𝜈 ∈ ℱ and 𝜇 ∈ ℱ∖ℱ2

arbitrary there exists 𝑗 with 𝜇𝑗 = 1 and thus

𝑄𝜈𝑦𝜇 =

⎛⎝⨂︁
𝑗∈N

𝑄𝜈𝑗

⎞⎠𝑦𝜇 =
∏︁
𝑗∈N

𝑄𝜈𝑗
𝑦
𝜇𝑗

𝑗 = 0 =
∫︁
𝑈

𝑦𝜇 d𝜇(𝑦),

which by (2.5) gives 𝑄Λ𝑦𝜇 = 0 =
∫︀
𝑈

𝑦𝜈 d𝜇(𝑦) for all 𝜇 ∈ ℱ∖ℱ2.
For item (iv), fix 𝜈 ∈ ℱ . By (i) and (2.3) we can bound |𝑄Λ𝑦𝜈 | by⃒⃒⃒⃒

⃒⃒∑︁
𝜇≤𝜈

∏︁
𝑗∈N

(𝑄𝜇𝑗
−𝑄𝜇𝑗−1)𝑦𝜈𝑗

𝑗

⃒⃒⃒⃒
⃒⃒ ≤ ∑︁

𝜇≤𝜈

∏︁
𝑗∈N

(︀
(1 + 𝜇𝑗)𝜗 + 𝜇𝜗𝑗

)︀
=
∏︁
𝑗∈N

𝜈𝑗∑︁
𝑖=0

(︀
(1 + 𝑖)𝜗 + 𝑖𝜗

)︀
.

So we need to show
∑︀𝑚
𝑖=0((1 + 𝑖)𝜗 + 𝑖𝜗) ≤ (1 +𝑚)𝜗+1. The statement is true for 𝑚 = 0. For the induction step

we get
∑︀𝑚+1
𝑖=0 ((1 + 𝑖)𝜗 + 𝑖𝜗) ≤ (1 +𝑚)𝜗+1 + (2 +𝑚)𝜗 + (1 +𝑚)𝜗. It suffices to show that ((1 +𝑚)𝜗+1 + (2 +

𝑚)𝜗 + (1 + 𝑚)𝜗)/(2 + 𝑚)𝜗 ≤ 2 + 𝑚. The latter is equivalent to ((1 + 𝑚)/(2 + 𝑚))𝜗(2 + 𝑚) ≤ 1 + 𝑚. This is
satisfied because 𝜗 ≥ 1. �

Remark 4.2. Let −∞ ≤ 𝑎 < 𝑏 ≤ ∞ and let 𝜂 be a probability measure on (𝑎, 𝑏) equipped with the Borel
𝜎-Algebra. The idea of Lemma 4.1 (iii) is generalized as follows. Set 𝜒0,0 :=

∫︀ 𝑏
𝑎
𝑦 d𝜂(𝑦). Then the one point

quadrature rule 𝑄0 : 𝑓 ↦→ 𝑓(𝜒0,0) w.r.t. the measure 𝜂 is exact on span{1, 𝑦}: it holds 𝑄01 = 1 =
∫︀ 𝑏
𝑎

1 d𝜂(𝑦) and
𝑄0𝑦 = 𝜒0,0 =

∫︀ 𝑏
𝑎
𝑦 d𝜂(𝑦).
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4.2. Convergence rates

We now turn to the proof of Theorem 2.16. Due to Lemma 3.3, Theorem 2.16 is implied by the following,
stronger statement.

Theorem 4.3. Let 𝑋 be a Banach space, 𝑈 = [−1, 1]N and let 𝑢 : 𝑈 → 𝑋 be (𝑏, 𝜀)-holomorphic (see Def. 3.1)
for a sequence 𝑏 = (𝑏𝑗)𝑗∈N ∈ ℓ𝑝(N) and some 𝑝 ∈ (0, 1). Let the quadrature points 𝜒 in (2.6) satisfy the bound
(2.3) for some 𝜗 ≥ 0, and let the set of admissible indices I ⊆ N0 satisfy Assumption 2.4.

Then for any 𝛿 > 0 there exists a constant 𝐶 such that

(i) with (𝑎2,𝜈)𝜈∈ℱ as in Theorem 3.14 for 𝜗 := 𝜗 + 1, for every 𝜖 > 0 the set Λ𝜖 := {𝜈 ∈ ℱ : 𝑎2,𝜈 ≥ 𝜖} is
finite and downward closed and (cp. (2.7))⃦⃦⃦⃦∫︁

𝑈

𝑢(𝑦) d𝜇(𝑦)−𝑄Λ𝜖
𝑢

⃦⃦⃦⃦
𝑋

≤ 𝐶|pts(Λ𝜖,𝜒)|−( 2
𝑝−1)+𝛿 (4.1)

as well (cp. (2.20)) ⃦⃦⃦⃦∫︁
𝑈

𝑢(𝑦) d𝜇(𝑦)−𝑄Λ𝜖
𝑢

⃦⃦⃦⃦
𝑋

≤ 𝐶cost(Λ𝜖)−( 2
𝑝−1)+𝛿, (4.2)

(ii) with (𝑐2,𝜈)𝜈∈ℱ as in Theorem 3.14 for 𝜗 := 𝜗 + 1, for every 𝜖 > 0 the set Λ𝜖 := {𝜈 ∈ ℱ : 𝑐2,𝜈 ≥ 𝜖} is
finite and downward closed, and (cp. (2.7))⃦⃦⃦⃦∫︁

𝑈

𝑢(𝑦) d𝜇(𝑦)−𝑄Λ𝜖
𝑢

⃦⃦⃦⃦
𝑋

≤ 𝐶|pts(Λ𝜖,𝜒)|−( 2
𝑝−2)+𝛿 (4.3)

as well (cp. (2.20)) ⃦⃦⃦⃦∫︁
𝑈

𝑢(𝑦) d𝜇(𝑦)−𝑄Λ𝜖𝑢

⃦⃦⃦⃦
𝑋

≤ 𝐶cost(Λ𝜖)−( 2
𝑝−2)+𝛿, (4.4)

(iii) if the points 𝜒 are nested, then (4.1) and (4.3) remain true for 𝛿 = 0, and Assumption 2.4 (ii) (exponential
increase of the admissible indices) on I can be dropped.

We refer to Remark 5.5 for more details on the concrete choice of the set I.

Remark 4.4. The convergence rate for Λ𝜖((𝑐2,𝜈)𝜈∈ℱ ) in Theorem 4.3 (ii) is off by a factor 1 compared to the
index sets Λ𝜖((𝑎2,𝜈)𝜈∈ℱ ) in Theorem 4.3 (i). In Lemma 1.4.19 of [37] we give an example which shows that this
is not due to a rough estimate, but the index sets Λ𝜖((𝑐2,𝜈)𝜈∈ℱ ) are in fact suboptimal in general. However,
in our numerical experiments we shall see that the index sets Λ𝜖((𝑐2,𝜈)𝜈∈ℱ ) seem to perform better in practice
than Λ𝜖((𝑎2,𝜈)𝜈∈ℱ ), see Figure 9.

Proof of Theorem 4.3. We start with (i) and let Λ𝜖 = Λ𝜖((𝑎2,𝜈)𝜈∈ℱ ), where (𝑎2,𝜈)𝜈∈ℱ is as in Theorem 3.14
By Theorem 3.14 (iii), the Taylor gpc coefficients (𝑡𝜈)𝜈∈ℱ ⊆ 𝑋 of 𝑢 satisfy (‖𝑡𝜈‖𝑋)𝜈∈ℱ ∈ ℓ𝑝(ℱ) →˓ ℓ1(ℱ).

By Lemma 3.5, 𝑢(𝑦) =
∑︀

𝜈∈ℱ 𝑡𝜈𝑦𝜈 converges absolutely in 𝐶0(𝑈,𝑋). Fix 𝜖 > 0. As 𝑄Λ𝜖
: 𝐶0(𝑈) → 𝑋 is a

bounded linear operator, by Lemma 4.1 (ii) and (iii)

𝑄Λ𝜖
𝑢 = 𝑄Λ𝜖

∑︁
𝜈∈ℱ

𝑡𝜈𝑦𝜈 =
∑︁
𝜈∈ℱ

𝑡𝜈𝑄Λ𝜖
𝑦𝜈 =

∫︁
𝑈

∑︁
𝜈∈Λ𝜖

𝑡𝜈𝑦𝜈 d𝜇(𝑦) +
∑︁

𝜈∈ℱ2∖Λ𝜖

𝑡𝜈𝑄Λ𝜖
𝑦𝜈 , (4.5)

where the latter sum is absolutely convergent in 𝑋. Lemma 4.1 (iii) also implies
∫︀
𝑈
𝑢(𝑦) d𝜇(𝑦) =∫︀

𝑈

∑︀
𝜈∈ℱ2

𝑡𝜈𝑦𝜈 d𝜇(𝑦). Using Theorem 3.14 (iii) and Lemma 4.1 (iv) we get that there exists a constant 𝐶 > 0
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such that for every 𝜖 > 0

⃦⃦⃦⃦∫︁
𝑈

𝑢(𝑦) d𝜇(𝑦)−𝑄Λ𝜖𝑢

⃦⃦⃦⃦
𝑋

≤

⃦⃦⃦⃦
⃦⃦∫︁

𝑈

∑︁
𝜈∈ℱ2∖Λ𝜖

𝑡𝜈𝑦𝜈 d𝜇(𝑦)

⃦⃦⃦⃦
⃦⃦
𝑋

+
∑︁

𝜈∈ℱ2∖Λ𝜖

‖𝑡𝜈‖𝑋 |𝑄Λ𝜖𝑦
𝜈 |

≤
∑︁

𝜈∈ℱ2∖Λ𝜖

‖𝑡𝜈‖𝑋‖𝑦𝜈‖𝐶0(𝑈,R)

⎛⎝1 +
∏︁
𝑗∈N

(𝜈𝑗 + 1)𝜗+1

⎞⎠
≤ 𝐶

∑︁
𝜈∈ℱ2∖Λ𝜖

𝑎2,𝜈 ≤ 𝐶
∑︁

{𝜈∈ℱ : 𝑎2,𝜈<𝜖}

𝑎2,𝜈 . (4.6)

Exploiting (𝑎2,𝜈)𝜈∈ℱ ∈ ℓ𝑝/2(ℱ) allows to bound the last sum by 𝐶|Λ𝜖|1−2/𝑝. This follows by rearranging the
sequence (𝑎2,𝜈)𝜈∈ℱ as a monotonically decreasing sequence (𝑎*𝑗 )𝑗∈N, so that Lemma 3.13 gives 𝑎*𝑗 ≤ 𝐶𝑗−2/𝑝 and
consequently

∑︀
𝑗>𝑁 𝑎

*
𝑗 ≤ 𝐶

∫︀∞
𝑁
𝑥−2/𝑝 d𝑥 ≤ 𝐶𝑁1−2/𝑝.

In case the points are nested we have |pts(Λ𝜖,𝜒)| = |Λ𝜖| by Lemma 2.2, which shows (4.1) for 𝛿 = 0, and
thus the statement in (iii) in this case. If the points are non-nested, then we use that for any 𝛿 > 0 it holds
|pts(Λ𝜖,𝜒)| = 𝑂(|Λ𝜖|1+𝛿) as 𝜖→ 0. This is an immediate consequence of Theorem 3.14 (i), Lemmas 3.8 and 2.10.
This shows (4.1) also for non-nested points.

For (4.2) we argue similarly by invoking Theorem 3.14 (i), Lemmas 3.8 and 2.10.
Next we prove (ii), i.e. in the following Λ𝜖 = Λ𝜖((𝑐2,𝜈)𝜈∈ℱ ) = {𝜈 ∈ ℱ : 𝑐2,𝜈 ≥ 𝜖}, where (𝑐2,𝜈)𝜈∈ℱ is as in

Theorem 3.14 (iv). As in (4.6) we obtain

⃦⃦⃦⃦∫︁
𝑈

𝑢(𝑦) d𝜇(𝑦)−𝑄Λ𝜖
𝑢

⃦⃦⃦⃦
𝑋

≤ 𝐶
∑︁

𝜈∈ℱ2∖Λ𝜖

𝑎2,𝜈 ≤ 𝐶

(︃
sup

𝜈∈ℱ∖Λ𝜖

𝑐2,𝜈

)︃⎛⎝ ∑︁
𝜇∈ℱ2∖Λ𝜖

𝑎2,𝜇𝑐
−1
2,𝜇

⎞⎠ .

Since (𝑐2,𝜈)𝜈∈ℱ ∈ ℓ𝑝/(2(1−𝑝))(ℱ) and (𝑎2,𝜈𝑐
−1
2,𝜈)𝜈∈ℱ ∈ ℓ1(ℱ) by Theorem 3.14 (iv), Lemma 3.13 implies⃦⃦⃦⃦∫︁

𝑈

𝑢(𝑦) d𝜇(𝑦)−𝑄Λ𝜖𝑢

⃦⃦⃦⃦
𝑋

≤ 𝐶 sup
𝜈∈ℱ∖Λ𝜖

𝑐2,𝜈 ≤ 𝐶|Λ𝜖|−2/𝑝−2.

For nested points, Lemma 2.2 then implies (4.3), which also shows (iii) in this case. In order to prove (4.4)
as well as the estimate (4.3) for non-nested points, we use the fact that (𝑐2,𝜈)𝜈∈ℱ satisfies Assumption 3.7 by
Lemma 3.12, so that we can employ Lemmas 3.8, 2.10 and 2.15 as above. �

Remark 4.5. In the papers [20, 22], rather than (𝑏, 𝜀)-holomorphy, a requirement of the following type is
presumed:

𝑢 is separately holomorphic and uniformly bounded on some polydisc
𝐵C

𝜌 ⊆ CN, where 𝜌𝑗 > 1 for all 𝑗 ∈ N and (𝜌−1
𝑗 )𝑗∈N ∈ ℓ𝑝(N), 𝑝 ∈ (0, 1). (4.7)

In these references, under assumptions similar to (4.7), dimension-independent convergence rates (1/𝑝− 1) and
(1/𝑝 − 1)/2, respectively, are established (see [20], Cor. 5.9, [22], Assumption 4.2, Thm. 5.5 for the precise
assumptions and statements).

Let 𝑢 be (𝑏, 𝜀)-holomorphic for some 𝑏 ∈ ℓ𝑝(N) and some 𝑝 ∈ (0, 1), 𝜀 > 0. Let 𝜅 > 1 be so small and
𝐽 ∈ N be so large that (𝜅 − 1)

∑︀
𝑗∈N 𝑏𝑗 +

∑︀
𝑗>𝐽 𝑏

𝑝
𝑗 < 𝜀. This is possible because ‖𝑏‖ℓ1(N), ‖𝑏‖ℓ𝑝(N) < ∞. Set

𝜌𝑗 := 𝜅 for 𝑗 ≤ 𝐽 and 𝜌𝑗 := max{𝜅, 𝑏𝑝−1
𝑗 } for 𝑗 > 𝐽 . Then

∑︀
𝑗∈N 𝑏𝑗(𝜌𝑗 − 1) ≤

∑︀
𝑗∈N(𝜅 − 1)𝑏𝑗 +

∑︀
𝑗>𝐽 𝑏

𝑝
𝑗 ≤ 𝜀.

Thus (𝑏, 𝜀)-holomorphy implies (4.7) with this 𝜌. Note that (𝜌−1
𝑗 )𝑗∈N ∈ ℓ𝑝/(1−𝑝)(N) and 𝑝/(1− 𝑝) > 𝑝. On the

other hand, (4.7) implies (𝑏̃, 1)-holomorphy, with 𝑏̃𝑗 := (𝜌𝑗 − 1)−1 and (𝑏̃𝑗)𝑗∈N ∈ ℓ𝑝(N): if 𝜌 is arbitrary with∑︀
𝑗∈N 𝑏̃𝑗(𝜌𝑗 − 1) < 1, then 𝑏̃𝑗(𝜌𝑗 − 1) < 1, and thus (𝜌𝑗 − 1)/(𝜌𝑗 − 1) < 1 implying 𝜌𝑗 < 𝜌𝑗 for each 𝑗 ∈ N. Since
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𝑢 allows a bounded holomorphic extension to 𝐵C
𝜌 by (4.7), it also allows a bounded holomorphic extension to

𝐵C
𝜌 ⊆ 𝐵C

𝜌 . Hence (𝑏, 𝜀)-holomorphy is more general than (4.7).
In summary, Theorem 4.3 improves the dimension-independent convergence rates 1/𝑝−1, (1/𝑝−1)/2 for the

anisotropic Smolyak quadrature proved in [20,22] to 2/𝑝−1, i.e. by more than a factor 2 and 4, respectively, and
under weaker assumptions regarding the domain of holomorphy (namely (𝑏, 𝜀)-holomorphy rather than (4.7)).
We explain this in more detail in Examples 5.2 and 5.3 ahead.

5. Numerical experiments

This section reports on the numerical testing, which we have performed for the presented algorithm. More
details on the construction of the index sets will be given in Section 5.1. We shall see, that there is a large
preasymptotic range, which is addressed in Section 5.3. Afterwards, in Section 5.4 we consider the integration
of two real valued test functions.

We now introduce the two test integrands and discuss the proven convergence rate of the Smolyak quadrature
implied by Theorem 4.3. Additionally, we compare it with the results of [20,22].

Remark 5.1. Some of the convergence rates presented in Theorem 4.3 only hold up to some (arbitrarily small)
𝛿 > 0. Throughout what follows, the mentioned convergence rates are usually understood up to 𝛿 > 0. We omit
to state this at every instance.

Example 5.2. Let 𝑝 ∈ (0, 1) and assume that 𝑏 = (𝑏𝑗)𝑗∈N ⊆ (0,∞) satisfies ‖𝑏‖ℓ∞(N) < 1 and ‖𝑏‖ℓ𝑝(N) < ∞.
Define

𝑢1(𝑦) :=
∏︁
𝑗∈N

(1 + 𝑏𝑗𝑦𝑗)
−1

𝑦 ∈ 𝑈. (5.1)

(i) Fix 𝜀 ∈ (0, 1 − ‖𝑏‖ℓ∞(N)) and let 𝜌 = (𝜌𝑗)𝑗∈N ⊆ (1,∞) be (𝑏, 𝜀)-admissible, i.e.
∑︀
𝑗∈N 𝑏𝑗(𝜌𝑗 − 1) < 𝜀

(cp. Def. 3.1). Fix 𝑧 ∈ 𝐵C
𝜌 ⊆ CN and set 𝛿 := 𝜀 + ‖𝑏‖ℓ∞(N) < 1. We can find a constant 𝐶𝛿 such that for

0 ≤ 𝑥 ≤ 𝛿 it holds log(1/(1− 𝑥)) ≤ 𝐶𝛿𝑥. Since 𝑏𝑗𝜌𝑗 = 𝑏𝑗(𝜌𝑗 − 1) + 𝑏𝑗 ≤ 𝛿 < 1, we get

|𝑢1(𝑧)| =

⃒⃒⃒⃒
⃒⃒∏︁
𝑗∈N

(1 + 𝑏𝑗𝑧𝑗)
−1

⃒⃒⃒⃒
⃒⃒ ≤∏︁

𝑗∈N
(1− 𝑏𝑗𝜌𝑗)

−1 ≤ exp

⎛⎝𝐶𝛿∑︁
𝑗∈N

𝑏𝑗𝜌𝑗

⎞⎠ .

The last term is finite (independent of 𝜌) because
∑︀
𝑗∈N 𝑏𝑗𝜌𝑗 =

∑︀
𝑗∈N 𝑏𝑗(𝜌𝑗−1)+

∑︀
𝑗∈N 𝑏𝑗 ≤ 𝜀+‖𝑏‖ℓ1(N) <∞.

Therefore 𝑢 allows a well-defined uniformly bounded extension to 𝐵C
𝜌 . Clearly 𝑢(𝑧) is holomorphic in each

𝑧𝑗 ∈ 𝐵C
𝜌𝑗

. Continuity of 𝑈 ∋ 𝑦 ↦→ 𝑢1(𝑦) is easily checked, and thus 𝑢 is (𝑏, 𝜀)-holomorphic. By Theorem 4.3,
the asymptotic convergence rate of the Smolyak quadrature is at least 2/𝑝− 1.

(ii) Consider now assumption (4.7), i.e. the requirement which was similarly presumed in [20, 22]. We wish to
find 𝜌 = (𝜌𝑗)𝑗∈N such that 𝑢 allows a uniformly bounded holomorphic extension onto the polydisc 𝐵C

𝜌 . In
view of Remark 4.5, the sequence 𝜌 should be chosen such that (𝜌−1

𝑗 )𝑗∈N ∈ ℓ𝑝(N) for some possibly small
𝑝 > 0.
For 0 ≤ 𝑥 < 1 we have 1/(1−𝑥) ≥ 1 +𝑥 and furthermore log(1 +𝑥) ≥ 𝑥/2, which gives − log(1−𝑥) ≥ 𝑥/2.
Thus for 𝑧 := (−𝜌𝑗/2)𝑗∈N ∈ 𝐵C

𝜌

|𝑢1(𝑧)| =
∏︁
𝑗∈N

(1− 𝑏𝑗𝜌𝑗/2)−1 = exp

⎛⎝−∑︁
𝑗∈N

log(1− 𝑏𝑗𝜌𝑗/2)

⎞⎠ ≥ exp

⎛⎝1
4

∑︁
𝑗∈N

𝑏𝑗𝜌𝑗

⎞⎠ .
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Hence 𝜌 must satisfy
∑︀
𝑗∈N 𝜌𝑗𝑏𝑗 <∞. This implies 𝜌−1

𝑗 = 𝑏𝑗/𝑐𝑗 for some sequence (𝑐𝑗)𝑗∈N ∈ ℓ1(N). Suppose
that (𝜌−1

𝑗 )𝑗∈N ∈ ℓ𝑝(N) for some 0 < 𝑝 < 1. Then with 𝑝 := 𝑝/(1 + 𝑝) < 1

∑︁
𝑗∈N

𝑏𝑝𝑗 =
∑︁
𝑗∈N

(︂
𝑏𝑗
𝑐𝑗

)︂𝑝
𝑐𝑝𝑗 ≤

⎛⎝∑︁
𝑗∈N

(︂
𝑏𝑗
𝑐𝑗

)︂ 𝑝
1−𝑝

⎞⎠1−𝑝⎛⎝∑︁
𝑗∈N

𝑐𝑗

⎞⎠𝑝

=

⎛⎝∑︁
𝑗∈N

(︂
𝑏𝑗
𝑐𝑗

)︂𝑝⎞⎠1−𝑝⎛⎝∑︁
𝑗∈N

𝑐𝑗

⎞⎠𝑝

and we obtain 𝑏 ∈ ℓ𝑝(N). Assuming that 𝑝 > 0 was an optimal choice, in the sense that 𝑏 ∈ ℓ𝑝(N) but
𝑏 /∈ ℓ𝑞(N) with 𝑞 < 𝑝, it must hold 𝑝 = 𝑝/(1 + 𝑝) ≥ 𝑝, and therefore 𝑝 ≥ 𝑝/(1 − 𝑝). Hence (𝜌−1

𝑗 )𝑗∈N,
can at best be in ℓ𝑝/(1−𝑝)(N). One possible choice achieving this is 𝜌𝑗 := max{𝜅, 𝑏𝑝−1

𝑗 }, with 𝜅 > 1
fulfilling 𝜅‖𝑏‖ℓ∞(N) < 1. One checks that 𝑢 then allows a uniformly bounded extension onto 𝐵C

𝜌 and it holds
(𝜌−1
𝑗 ) ∈ ℓ𝑝(N) with 𝑝 := 𝑝/(1−𝑝). The statements in Corollary 5.9 of [20] and Assumption 4.2, Theorem 5.5

of [22], then essentially give the convergence rates 𝑠1 := 𝑝−1−1 = 1/𝑝−2 and 𝑠2 := (𝑝−1−1)/2 = 1/(2𝑝)−1.
In comparison, Theorem 4.3 gives the convergence rate 2/𝑝− 1 = 2𝑠1 + 3 = 4𝑠2 + 3.

Example 5.3. Let 𝑏 = (𝑏𝑗)𝑗∈N ⊆ (0,∞) satisfy ‖𝑏‖ℓ1(N) < 1, and define

𝑢2(𝑦) :=

⎛⎝1 +
∑︁
𝑗∈N

𝑏𝑗𝑦𝑗

⎞⎠−1

𝑦 ∈ 𝑈. (5.2)

With u(𝑧) := 1/(1 + 𝑧) we have 𝑢2(𝑦) = u(
∑︀
𝑗∈N 𝑦𝑗𝑏𝑗). Hence, Lemma 3.3 implies 𝑢 to be (𝑏, 𝜀)-holomorphic

for any fixed 𝜀 ∈ (0, 1− ‖𝑏‖ℓ1(N)).
Similar as in Example 5.2, the corresponding results in Corollary 5.9 of [20], Assumption 4.2, Theorem 5.5

of [22] give the convergence rates 𝑠1 = 1/𝑝− 2 and 𝑠2 = 1/(2𝑝)− 1, while Theorem 4.3 implies the convergence
rate 2/𝑝− 1 = 2𝑠1 + 3 = 4𝑠2 + 3 in terms of the number of quadrature points.

Remark 5.4. Differentiating 𝑢1, 𝑢2 in (5.1), (5.2) for some 𝜈 ∈ ℱ we find

1
𝜈!
𝜕𝜈

𝑦𝑢1(𝑦)|𝑦=0 = (−1)|𝜈|𝑏𝜈 and
1
𝜈!
𝜕𝜈

𝑦𝑢2(𝑦)|𝑦=0 = (−1)|𝜈|
|𝜈|!
𝜈!

𝑏𝜈 .

Thus the modulus of the Taylor gpc coefficients of 𝑢1, 𝑢2 agree with the sequences in Lemmas 3.10 and 3.11
(for 𝜗 = 0 and 𝑅 = 1).

5.1. A priori construction of quadrature rules

We consider two different types of quadrature points: sections of a Leja sequence serve as an example of
nested quadrature points, and the Gauss-Legendre points will be used as an example of non-nested quadrature
points. To construct a quadrature rule for (𝑏, 𝜀)-holomorphic functions, throughout Section 5.1 the sequence
𝑏 = (𝑏𝑗)𝑗∈N in Definition 3.1 is assumed to satisfy

𝑏𝑗 = 𝜃𝑗−𝑟 ∀𝑗 ∈ N, (5.3)

for some fixed values of 𝜃 ∈ (0, 1), 𝑟 > 1 and a constant 𝐶. Then 𝑏 = (𝜃𝑗−𝑟)𝑗∈N ∈ ℓ𝑝(N) for any 𝑝 > 1/𝑟.

5.1.1. Leja quadrature

So called Leja sequences provide nested quadrature points which possess polynomial bounds on the growth
of the Lebesgue constant. We use the following construction given in Section 3 of [8]. Set 𝜙0 := 0, 𝜙1 := 𝜋,
𝜙2 := 𝜋/2 and

𝜙2𝑛+1 :=
𝜙𝑛+1

2
, 𝜙2𝑛+2 := 𝜙2𝑛+1 + 𝜋 ∀𝑛 ≥ 1.
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Now let 𝜒𝑛 := cos(𝜙𝑛) for all 𝑛 ∈ N0. For every 𝑛 ∈ N0 and 𝑗 ∈ {0, . . . , 𝑛} we define 𝜒leja
𝑛;0 := 0, 𝜒leja

𝑛;1 := 1,
𝜒leja
𝑛;2 := −1 and 𝜒leja

𝑛;𝑗 := 𝜒𝑛 for 𝑗 ≥ 3. As shown in Theorem 3.1 of [8] there holds a bound of the type (2.3),
also see [5, 6]. This yields nested one dimensional quadrature points (cp. Def. 2.1).

Theorem 4.3 proposes two strategies to determine sets of multiindices Λ𝜖 providing proven asymptotic con-
vergence of the Smolyak quadrature. First, let (𝑐2,𝜈)𝜈∈ℱ be as in (3.12) with 𝜚𝑗 = max{𝑇, 𝜏0 min{𝑏−1

𝑗 , 𝑗2/𝑝}}1−𝑝
as in Theorem 3.14 (iv). Here the constants 𝑇 > 1 and 𝜏0 > 0 are in practice unknown. We simplify this by
setting 𝜚𝑗 = 𝑏𝑝−1

𝑗 . With I = N0 in (3.12) and with (5.3) we arrive at

𝑐2,𝜈 =
∏︁
𝑗∈N

(𝜃𝑗−𝑟)(1−𝑝)𝜈𝑗 where 𝜈𝑗 =

{︃
2 if 𝜈𝑗 = 1
𝜈𝑗 otherwise.

(5.4)

Note that I = N0 satisfies Assumption 2.4 (i), but not Assumption 2.4 (ii). Due to the nestedness of the univariate
points 𝜒, Theorem 4.3, item (iii) is applicable. With Λ𝜖((𝑐2,𝜈)𝜈∈ℱ ) = {𝜈 ∈ ℱ : 𝑐2,𝜈 ≥ 𝜖}, Theorem 4.3 suggests
the convergence rate 2𝑟 − 2 for (𝑏, 𝜀)-holomorphic functions, where 𝑏 is as in (5.3). Due to

{𝜈 ∈ ℱ : 𝑐2,𝜈 ≥ 𝜖} = {𝜈 ∈ ℱ : 𝑐𝑠2,𝜈 ≥ 𝜖𝑠}

for any 𝑠 > 0, the choice of exponent 1− 𝑝 in (5.4) is irrelevant for the definition of the index sets Λ𝜖. Thus we
set

𝑐leja2,𝜈 :=
∏︁
𝑗∈N

(𝜃𝑗−𝑟)𝜈𝑗 where 𝜈𝑗 =

{︃
2 if 𝜈𝑗 = 1
𝜈𝑗 otherwise

(5.5a)

and
Λ𝜖((𝑐

leja
2,𝜈 )𝜈∈ℱ ) = {𝜈 ∈ ℱ : (𝑐leja2,𝜈 ) ≥ 𝜖}. (5.5b)

Next we employ Theorem 3.14 (v) to construct a second choice of indexsets. Simplifying (3.15) by choosing
𝜏1 = 𝜏2 = 1, we get

𝑎leja
2,𝜈 :=

∏︁
𝑗∈N

max
{︂

e,
𝜈𝑗

|𝜈|𝜃𝑗−𝑟

}︂−𝜈𝑗

where 𝜈𝑗 =

{︃
2 if 𝜈𝑗 = 1
𝜈𝑗 otherwise

(5.6a)

and
Λ𝜖((𝑎

leja
𝑘,𝜈 )𝜈∈ℱ ) = {𝜈 ∈ ℱ : 𝑎leja

2,𝜈 ≥ 𝜖}. (5.6b)

In this case Theorems 4.3 and 3.14 (v) imply the convergence rate 2𝑟− 1 for the Smolyak quadrature, provided
that 𝜃 is small enough depending on 𝑢 (and provided that the above choice of 𝜏1 = 𝜏2 = 1 was viable according
to Thm. 3.14 (v)).

5.1.2. Gauss-Legendre quadrature

For every 𝑛 ∈ N0 denote by (𝜒gauss
𝑛;𝑗 )𝑛𝑗=0 the 𝑛+ 1 unique roots of the 𝑛th Legendre polynomial in the interval

[−1, 1]. The one dimensional quadrature 𝑄𝑛 in (2.2) then integrates exactly all polynomials of degree 2𝑛+ 1 as
is well-known. With I = {2𝑗 −1 : 𝑗 ∈ N0} and I+ = {0}∪{2𝑗 : 𝑗 ∈ N0} (cp. Rem. 2.6 and note that I satisfies
Assumption 2.4), set

𝑐gauss
2,𝜈 :=

∏︁
𝑗∈N

(𝜃𝑗)−2𝑟⌊𝜈𝑗⌋I+ (5.7a)

and
Λ𝜖((𝑐

gauss
2,𝜈 )𝜈∈ℱ ) = {𝜈 ∈ ℱ : (𝑐gauss

2,𝜈 ) ≥ 𝜖}. (5.7b)

This definition deviates from the formula in (3.12): the factor 2 in the exponent in (5.7a) accounts for the fact
that 𝑄𝑛 integrates exactly polynomials of degree 2𝑛+1 (and not just 𝑛+1). The sets in (5.7) can be considered
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as a heuristic choice here, but we also refer to Section 5.1.1 from [37] which provides a justification for this
definition.

For the second choice of indexsets suggested by Theorem 3.14 (v), we similarly define

𝑎gauss
2,𝜈 :=

∏︁
𝑗∈N

max
{︂

e,
2⌊𝜈𝑗⌋I+

2|⌊𝜈⌋I+ |𝜃𝑗−𝑟

}︂−2⌊𝜈𝑗⌋I+

(5.8a)

and
Λ𝜖((𝑎

gauss
2,𝜈 )𝜈∈ℱ ) = {𝜈 ∈ ℱ : 𝑎gauss

2,𝜈 ≥ 𝜖}. (5.8b)

5.1.3. Decay of the Taylor GPC coefficients

Consider the two sequences (𝑐leja2,𝜈 )𝜈∈ℱ and (𝑎leja
2,𝜈 )𝜈∈ℱ from Section 5.1.1. By Lemma 3.12 and Remark 3.15

it holds (𝑐leja2,𝜈 )𝜈∈ℱ ∈ ℓ𝑝/2(ℱ) and (𝑎leja
2,𝜈 )𝜈∈ℱ ∈ ℓ𝑝/2(ℱ) for any 𝑝 > 1/𝑟. Denote by (𝑐*2,𝑗)𝑗∈N and (𝑎*2,𝑗)𝑗∈N two

monotonically decreasing rearrangements. By Lemma 3.13, for any 𝛿 > 0 there exists a constant 𝐶 such that
for all 𝑗 ∈ N

𝑐*2,𝑗 ≤ 𝐶𝑗−2𝑟+𝛿 and 𝑎*2,𝑗 ≤ 𝐶𝑗−2𝑟+𝛿. (5.9)

Figure 3 depicts the decay of these sequences for different values of 𝑟 and 𝜃. The rates in (5.9) are in general
not obtained in Figure 3, as there appears to be a large preasymptotic range for larger 𝜃. Decreasing 𝜃 improves
the situation in the plotted range of 𝑗. For very small 𝜃, the rates come close to the ones predicted by (5.9).

By Remark 5.4 and by definition of 𝑐leja2,𝜈 , it holds |𝑡𝜈 | = (𝑐leja2,𝜈 ) for all 𝜈 ∈ ℱ2 for the Taylor coefficient
𝜕𝜈

𝑦𝑢1(𝑦)|𝑦=0/𝜈! of the function 𝑢1 from Example 5.2. Similarly, by Theorem 3.14, it holds ‖𝑡𝜈‖𝑋 ≤ 𝐶𝑎leja
2,𝜈

for the Taylor gpc coefficients (𝑡𝜈)𝜈∈ℱ ⊆ 𝑋 of any (𝑏, 𝜀)-holomorphic function, provided that ‖𝑏‖ℓ1(N) is small
enough as stated in Theorem 3.14 (v). Figure 3 suggests that there is a preasymptotic range, where the norms of
the Taylor gpc coefficients decay slower than implied by Lemma 3.13 and the fact that (‖𝑡𝜈‖𝑋)𝜈∈ℱ𝑘

∈ ℓ𝑝/𝑘(ℱ𝑘)
as stated in Theorem 3.14 (iii). Since the proof of Theorem 4.3 heavily relies on this decay (for 𝑘 = 2), we
expect to have a range of preasymptotic convergence with subpar convergence of the Smolyak quadrature.

5.2. Quadrature algorithm

For the convenience of the reader we now briefly summarize our algorithm to approximate the integral of a
(𝑏, 𝜀)-holomorphic function 𝑢 : 𝑈 → 𝑋 (cp. Def. 3.1):

(i) Choose (univariate) quadrature points 𝜒 = ((𝜒𝑛,𝑗)𝑛𝑗=0)𝑛∈N0 ⊆ [−1, 1], such that the norms of the
corresponding univariate quadrature rules are polynomially bounded according to (2.3).

(ii) Choose a suitable set I ⊆ N0 of admissible indices. In case the quadrature points are nested (see
Def. 2.1), one can simply set I = N0 (cp. Thm. 4.3 (iii)). For non-nested quadrature points, I should
satisfy Assumption 2.4, we can choose for example I = {0}∪{2𝑗 : 𝑗 ∈ N0} (see Rem. 5.5 for more details).

(iii) Using I from (ii) and the sequence 𝑏 = (𝑏𝑖)𝑖∈N from Definition 3.1, define a sequence (𝑎2,𝜈)𝜈∈ℱ (or
(𝑐2,𝜈)𝜈∈ℱ ) via the formula provided in Theorem 3.14. For our numerical experiments we simply set the
unknown constants 𝑇 , 𝜏0, 𝜏1 and 𝜏2 in Theorem 3.14 to 1, see the formulas in Section 5.1.

(iv) Given 𝜖 > 0 determine Λ𝜖 = {𝜈 ∈ ℱ : 𝑎2,𝜈 ≥ 0} (or Λ𝜖 = {𝜈 ∈ ℱ : 𝑐2,𝜈 ≥ 0}). This can be achieved in
almost linear complexity as explained in Section. 3.1.3 of [37] (under certain assumptions including 𝑏 to
be monotonically decreasing).

(v) Determine all combination coefficients (𝜍Λ𝜖,𝜈)𝜈∈ℱ in (2.5).
(vi) Evaluate the integrand 𝑢 at all points in pts(Λ𝜖,𝜒), see (2.7).
(vii) Compute 𝑄Λ𝜖𝑢 using (2.4) and (2.5).
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Figure 3. Decay of monotonically decreasing rearrangements (𝑎*2,𝑗)𝑗∈N and (𝑐*2,𝑗)𝑗∈N of
(𝑎leja

2,𝜈 )𝜈∈ℱ and (𝑐leja2,𝜈 )𝜈∈ℱ in (5.6), (5.5). In all cases, the asymptotic algebraic decay rate is
2𝑟 − 𝛿 for any 𝛿 > 0 as stated in (5.9). (A) (𝑎leja

2,𝜈 )𝜈∈ℱ , 𝑟 = 2. (B) (𝑎leja
2,𝜈 )𝜈∈ℱ , 𝑟 = 3. (C)

(𝑐leja2,𝜈 )𝜈∈ℱ , 𝑟 = 2. (D) (𝑐leja2,𝜈 )𝜈∈ℱ , 𝑟 = 3.
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Remark 5.5. Theorem 4.3 provides error bounds either in terms of the number of quadrature points (i.e. the
number of required function evaluations) or in terms of the cost quantity defined in (2.20). The following table
summarizes which parts of Assumption 2.4 the set I needs to satisfy in order for our convergence theory to
hold:

Nested points Non-nested points

nr. of points Assumption 2.4 (i) Assumption 2.4 (i), (ii)

cost Assumption 2.4 (i), (ii) Assumption 2.4 (i), (ii)

That is, Assumption 2.4 (ii) is always required, except for the case where we have nested points and measure
the error in terms of the number of function evaluations. As mentioned before, a natural choice for I is I =
{0} ∪ {2𝑗 : 𝑗 ∈ N0} in case Assumption 2.4 (i), (ii) has to be satisfied, and I = N0 if only Assumption 2.4 (i)
has to be satisfied.

Remark 5.6. Above we assumed given quadrature points 𝜒 = ((𝜒𝑛,𝑗)𝑛𝑗=0)𝑛∈N0 . Some quadrature rules only
provide univariate quadrature points for certain but not all 𝑛 ∈ N0. For example, the Clenshaw-Curtis quadra-
ture is given through 𝜒0,0 = 0 and

𝜒2𝑘,𝑗 = cos
(︂
𝑗𝜋

2𝑘

)︂
, 𝑗 ∈ {0, . . . , 2𝑘}, 𝑘 ∈ N0.

Thus (𝜒𝑛,𝑗)𝑛𝑗=0 is only defined for 𝑛 ∈ {0} ∪ {2𝑘 : 𝑘 ∈ N0}. Such a quadrature rule still fits our setting, namely
by setting I := {0} ∪ {2𝑘 : 𝑘 ∈ N0} in the above algorithm: As explained in Section 2.3 (see in particular (2.5)
and Lem. 2.8), the algorithm then realizes a quadrature rule 𝑄Λ𝜖

=
∑︀
{𝜈∈Λ𝜖 : 𝜍Λ𝜖,𝜈 ̸=0} 𝜍Λ𝜖,𝜈𝑄𝜈 that is a linear

combination of tensorized quadrature rules 𝑄𝜈 =
⨂︀

𝑗∈N 𝑄𝜈𝑗 for multiindices 𝜈 with 𝜈𝑗 ∈ I for all 𝑗 ∈ N. All of
those tensorized quadrature rules 𝑄𝜈 are well-defined.

To formally satisfy the requirements of our results, one can simply “fill in” the missing quadrature points by
defining (𝜒𝑛,𝑗)𝑛𝑗=0 for instance as the Gauss points whenever 𝑛 ∈ N0∖I. This has no effect on 𝑄Λ𝜖

, since it does
not change 𝑄𝜈 for multiindices 𝜈 with 𝜈𝑗 ∈ I for all 𝑗 ∈ N.

5.3. Preasymptotic behaviour
In the range shown in Figure 3, for values of the scaling parameter 𝜃 ∈ (0, 1) close to 1, the observed

convergence rates appear to contradict the predicted asymptotic rates as noted in Section 5.1.3. To understand
this, we investigate in more detail the decay of the (modulus of the) Taylor gpc coefficients (

∏︀
𝑗∈N(𝜃𝑗−𝑟)𝜈𝑗 )𝜈∈ℱ

of the function in Example 5.2 for 𝑏𝑗 = 𝜃𝑗−𝑟 and some fixed values of 𝜃 and 𝑟 (cp. Rem. 5.4). This sequence
can be written as

(𝜃|𝜈|𝜌−𝑟𝜈)𝜈∈ℱ where 𝜌 = (𝑗)𝑗∈N. (5.10)

We partition ℱ𝑘, 𝑘 ∈ {1, 2}, into subsets of 𝑚-homogeneous multiindices

ℱ𝑚1 := {𝜈 ∈ ℱ1 : |𝜈| = 𝑚} and ℱ𝑚2 := {𝜈 ∈ ℱ2 : |𝜈| = 𝑚}. (5.11)

For 𝑘 ∈ {1, 2} denote

(𝑥𝑘;𝑗)𝑗∈N, a decreasing rearrangement of (𝜃|𝜈|𝜌−𝑟𝜈)𝜈∈ℱ𝑘
(5.12)

and for 𝑚 ∈ N
(𝑥𝑘;𝑚;𝑗)𝑗∈N, a decreasing rearrangement of (𝜃𝑚𝜌−𝑟𝜈)𝜈∈ℱ𝑚

𝑘
. (5.13)

The next lemma describes the asymptotic decay of these sequences.

Lemma 5.7. Fix 𝑘, 𝑚 ∈ N and 𝜃 ∈ (0, 1), 𝑟 > 0 in (5.13). For every 𝛿 > 0 exists 𝐶 > 0 (depending on 𝛿, 𝑘,
𝑚, 𝜃 and 𝑟) such that
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∀𝑗 ∈ N : 𝑥𝑘;𝑗 ≤ 𝐶𝑗−𝑘𝑟+𝛿 and 𝑥𝑘;𝑚;𝑗 ≤ 𝐶𝑗−𝑘𝑟+𝛿. (5.14)

Proof. By Lemma 3.10, ((𝜃𝜌−𝑟)𝜈)𝜈∈ℱ𝑘
∈ ℓ1/(𝑘𝑟)+𝛿(ℱ𝑘). Lemma 3.13 implies (5.14) for (𝑥𝑘;𝑗)𝑗∈N. Since

(𝑥𝑘;𝑚;𝑗)𝑗∈N is a subsequence of (𝑥𝑘;𝑗)𝑗∈N, also the second bound in (5.14) is satisfied. �

In Section 5.3.1 we will show that certain logarithmic factors are involved in the decay of (𝑥1;𝑚;𝑗)𝑗∈N, so that
the algebraic rate 𝑟 in (5.14) (for 𝑘 = 1) is observed only for large values of 𝑗. The case 𝑘 = 1 is more relevant
for stochastic collocation (i.e. interpolation rather than quadrature), but the analysis in Section 5.3.1 explains
to some extent the preasymptotic behaviour of these sequences. In Section 5.3.2, we establish a formula for a
lower bound of the sequence (𝑥2;𝑗)𝑗∈N (i.e. 𝑘 = 2). A plot of this lower bound (see Fig. 6) will show that (for
large 𝜃) the asymptotic regime is reached only for very large values of 𝑗.

5.3.1. Decay w.r.t. ℱ𝑚1
Throughout the following, log denotes the natural logarithm.

Lemma 5.8. Let 𝑟 > 0, 𝜌 = (𝑗)𝑗∈N and 𝑚 ∈ N. For 𝑅 ≥ 0 set

𝐴𝑚(𝑅) :=
∑︁

{𝜈∈ℱ𝑚
1 : 𝜌−𝑟𝜈≥𝑅−𝑟}

|𝜈|!
𝜈!
·

Then 𝐴𝑚(𝑅) = 0 if 𝑅 < 1 and with 𝑐0 := 1− log(2) ∈ (0, 1) for all 𝑅 ≥ 1

𝑐𝑚0 𝑅

𝑚−1∑︁
𝑖=0

(𝑐−1
0 log(𝑅))𝑖

𝑖!
≤ 𝐴𝑚(𝑅) ≤ 2𝑚−1𝑅

𝑚−1∑︁
𝑖=0

log(𝑅)𝑖

𝑖!
· (5.15)

Proof. For 𝑅 ∈ [0, 1) the sum is over the empty set, so let 𝑅 ≥ 1 in the following. Then

𝐴𝑚(𝑅) =
∑︁

{𝜈∈ℱ : |𝜈|=𝑚, 𝜌−𝑟𝜈≥𝑅−𝑟}

|𝜈|!
𝜈!

=

⃒⃒⃒⃒
⃒⃒
⎧⎨⎩(𝑖1, . . . , 𝑖𝑚) ∈ N𝑚 :

𝑚∏︁
𝑗=1

𝑖−𝑟𝑗 ≥ 𝑅−𝑟

⎫⎬⎭
⃒⃒⃒⃒
⃒⃒ ,

since for every 𝜈 ∈ ℱ with |𝜈| = 𝑚, there exist exactly |𝜈|!/𝜈! elements (𝑖1, . . . , 𝑖𝑚) of N𝑚 such that |{𝑗 ∈
{1, . . . ,𝑚} : 𝑖𝑗 = 𝑙}| = 𝜈𝑙 for all 𝑙 ∈ N. With 𝑁 := ⌊𝑅⌋ ∈ N we have

𝐴𝑚+1(𝑅) =
𝑁∑︁
𝑗=1

⃒⃒⃒⃒
⃒{(𝑖1, . . . , 𝑖𝑚) : 𝑗−𝑟

𝑚∏︁
𝑙=1

𝑖−𝑟𝑙 ≥ 𝑅−𝑟}

⃒⃒⃒⃒
⃒ =

𝑁∑︁
𝑗=1

⃒⃒⃒⃒
⃒{(𝑖1, . . . , 𝑖𝑚) :

𝑚∏︁
𝑙=1

𝑖−𝑟𝑙 ≥ (𝑅/𝑗)−𝑟}

⃒⃒⃒⃒
⃒ =

𝑁∑︁
𝑗=1

𝐴𝑚(𝑅/𝑗).

(5.16)
To prove the upper bound in (5.15), we proceed by induction over 𝑚. For 𝑚 = 1 it holds 𝑖−𝑟1 ≥ 𝑅−𝑟 iff

𝑖1 ≤ 𝑅, so that 𝐴1(𝑅) = ⌊𝑅⌋ and the estimate is satisfied. Next, employing (5.16) and the induction hypothesis

𝐴𝑚+1 ≤ 2𝑚−1
𝑁∑︁
𝑗=1

𝑅

𝑗

𝑚−1∑︁
𝑖=0

log(𝑅/𝑗)𝑖

𝑖!
= 2𝑚−1

𝑁∑︁
𝑗=1

𝑚−1∑︁
𝑖=0

1
𝑖!

log(𝑅/𝑗)𝑖

𝑗
·

For any 𝑖 ∈ N and all 𝑥 ∈ [1, 𝑅]

d
d𝑥

(︂
log(𝑅/𝑥)𝑖

𝑥

)︂
=
−𝑖 log(𝑅/𝑥)𝑖−1 − log(𝑅/𝑥)𝑖

𝑥2
≤ 0.

Therefore 𝑓(𝑥) := 2𝑚−1
∑︀𝑚−1
𝑖=0 log(𝑅/𝑥)𝑖/(𝑥 · 𝑖!) is monotonically decreasing for 𝑥 ∈ [1, 𝑅]. Thus

∑︀𝑁
𝑗=1 𝑓(𝑗) ≤

𝑓(1) +
∫︀ 𝑅
1
𝑓(𝑥) d𝑥, giving
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𝑁∑︁
𝑗=1

2𝑚−1
𝑚−1∑︁
𝑖=0

1
𝑖!

log(𝑅/𝑗)𝑖

𝑗
≤ 𝑓(1) +

∫︁ 𝑅

1

𝑚−1∑︁
𝑖=0

2𝑖

𝑖!
log(𝑅/𝑥)𝑖

𝑥
d𝑥 = 𝑓(1) + 2𝑚−1

𝑚−1∑︁
𝑖=0

1
𝑖!

∫︁ log(𝑅)

0

(log(𝑅)− 𝑦)𝑖 d𝑦

= 2𝑚−1
𝑚−1∑︁
𝑖=0

log(𝑅)𝑖

𝑖!
+ 2𝑚−1

𝑚−1∑︁
𝑖=0

1
𝑖!

log(𝑅)𝑖+1

𝑖+ 1
≤ 2𝑚

𝑚∑︁
𝑖=0

log(𝑅)𝑖

𝑖!
, (5.17)

which concludes the proof of the upper bound.
For the lower bound, the case 𝑚 = 1 follows by 𝑅𝑐0 ≤ ⌊𝑅⌋ = 𝐴1(𝑅) where 𝑐0 = (1 − log(2)) < 1/2. With

(5.16), due to the induction hypothesis

𝐴𝑚+1(𝑅) =
𝑁∑︁
𝑗=1

𝐴𝑚(𝑅/𝑗) ≥ 𝑅

𝑁∑︁
𝑗=1

𝑅

𝑗

𝑚−1∑︁
𝑖=0

𝑐𝑚−𝑖0 log(𝑅/𝑗)𝑖

𝑖!
·

Note that for ⌊𝑅⌋ = 𝑁 ≥ 1

𝑁∑︁
𝑗=1

1
𝑗
≥ 1 +

∫︁ 𝑁+1

2

1
𝑥

d𝑥 ≥ 1−
∫︁ 2

1

1
𝑥

d𝑥+
∫︁ 𝑅

1

1
𝑥

d𝑥 = 𝑐0 + log(𝑅).

Hence, using (as above) that 𝑓(𝑥) :=
∑︀𝑚−1
𝑖=0 𝑐𝑚−𝑖0 log(𝑅/𝑥)𝑖/𝑥 is monotonically decreasing for 𝑥 ∈ [1, 𝑅] so that∑︀𝑁

𝑗=1 𝑓(𝑗) ≥
∫︀ 𝑅
1
𝑓(𝑥) d𝑥, similar as in (5.17) we get

𝑁∑︁
𝑗=1

𝑚−1∑︁
𝑖=0

1
𝑖!
𝑐𝑚−𝑖0 log(𝑅/𝑗)𝑖

𝑗
=

𝑁∑︁
𝑗=1

𝑐𝑚0
𝑗

+
𝑁∑︁
𝑗=1

𝑚−1∑︁
𝑖=1

𝑐𝑚−𝑖0

𝑖!
log(𝑅/𝑗)𝑖

𝑗

≥ 𝑐𝑚+1
0 + 𝑐𝑚0 log(𝑅) +

𝑚−1∑︁
𝑖=1

∫︁ 𝑅

1

𝑐𝑚−𝑖0

𝑖!
log(𝑅/𝑥)𝑖

𝑥
d𝑥

=
𝑚∑︁
𝑖=0

𝑐𝑚+1−𝑖
0 log(𝑅)𝑖

𝑖!
,

which proves the lower bound in (5.15). �

With Lemma 5.8 and 𝑐0 := 1− log(2) ∈ (0, 1), we observe for 𝑅 ≥ 1

𝑓𝑚(𝑅) :=
𝑐𝑚0
𝑚!
𝑅

𝑚−1∑︁
𝑖=0

(𝑐−1
0 log(𝑅))𝑖

𝑖!
≤ |{𝜈 ∈ ℱ𝑚1 : 𝜌−𝑟𝜈 ≥ 𝑅−𝑟}| ≤ 2𝑚−1𝑅

𝑚−1∑︁
𝑖=0

log(𝑅)𝑖

𝑖!
=: 𝑔𝑚(𝑅), (5.18)

which immediately gives:

Lemma 5.9. For 𝑗 ∈ N let 𝑅𝑗 ≥ 1 and 𝑆𝑗 ≥ 1 be such that 𝑓𝑚(𝑅𝑗) = 𝑗 and 𝑔𝑚(𝑆𝑗) = 𝑗. Then with 𝑥1;𝑚;𝑗 as
in (5.13)

𝜃𝑚𝑅−𝑟𝑗 ≤ 𝑥1;𝑚;𝑗 ≤ 𝜃𝑚𝑆−𝑟𝑗 ∀𝑗 ∈ N. (5.19)

Lemma 5.9, gives the parametrized curves

(𝑓𝑚(𝑅), 𝜃𝑚𝑅−𝑟) and (𝑔𝑚(𝑅), 𝜃𝑚𝑅−𝑟) (5.20)

for 𝑅 ≥ 1, which are lower and upper bounds of (𝑥1;𝑚;𝑗) at every 𝑅𝑗 , 𝑆𝑗 where 𝑓𝑚(𝑅𝑗) = 𝑗 and 𝑔𝑚(𝑆𝑗) = 𝑗.
To estimate the local algebraic decay of the upper bound for 𝑚 in Lemma 5.9, we need to compute the slope

of the curve (log(𝑔𝑚(𝑅)), log(𝜃𝑚𝑅−𝑟)). At (log(𝑔𝑚(𝑅)), log(𝜃𝑚𝑅−𝑟)) it equals
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Figure 4. Decay of (𝑥1;2;𝑗)𝑗∈N in (5.13) (i.e. 𝑚 = 2 and 𝑘 = 1), for 𝑟 = 3, 𝜃 = 1. Additionally,
the lower and upper bounds of 𝑥1;2;𝑗 in (5.20) (cp. (5.19)) are depicted. For any 𝛿 > 0 there
exists 𝐶 > 0 such that 𝑥1;2;𝑗 ≤ 𝐶𝑗−3+𝛿 for all 𝑗 ∈ N. For small 𝑗, a worse, preasymptotic rate
is observed. (A) (𝑥1;2;𝑗)𝑗∈N and lower/upper bound. (B) (𝑥1;2;𝑗)𝑗∈N and lower/upper bound for
larger range of 𝑗.

𝑑
𝑑𝑅 log(𝜃𝑚𝑅−𝑟)
𝑑
𝑑𝑅 log(𝑔𝑚(𝑅))

= −
𝑟
∑︀𝑚−1
𝑖=0

log(𝑅)𝑖

𝑖!

𝑔′𝑚(𝑅)
= −

𝑟
∑︀𝑚−1
𝑖=0

log(𝑅)𝑖

𝑖!∑︀𝑚−1
𝑖=0

log(𝑅)𝑖

𝑖! +
∑︀𝑚−2
𝑖=0

log(𝑅)𝑖

𝑖!

= − 𝑟

1 +
∑︀𝑚−2

𝑖=0
log(𝑅)𝑖

𝑖!∑︀𝑚−1
𝑖=0

log(𝑅)𝑖

𝑖!

·

For example, if 𝑚 = 2, then the upper bound at position 𝑗 = 𝑔2(𝑆𝑗) = 𝑆𝑗(1 + log(𝑆𝑗)) locally decreases at the
algebraic rate

𝑟

1 + 1
1+log(𝑆𝑗)

· (5.21)

A similar deliberation for the lower bound in (5.19) gives the rate 𝑟/(1 + 𝑐−1
0 /(1 + 𝑐−1

0 log(𝑅𝑗))) at position
𝑗 = 𝑓2(𝑅𝑗) = 𝑅𝑗(𝑐0 +log(𝑅𝑗))𝑐0/2. The logarithmic term log(𝑆𝑗) in (5.21) explains why a rate close to 𝑟 is only
observed for large 𝑗. Due to the additional (higher order) logarithmic terms in (5.18), in a given, fixed range of
𝑗, the rate of decay becomes worse as 𝑚 grows.

Figure 4 shows the sequence (𝑥1;2;𝑗)𝑗∈N (i.e. 𝑚 = 2) for 𝑟 = 3 together with the lower and upper bounds in
(5.20). For small 𝑗, the behaviour of (𝑥1;𝑚;𝑗)𝑗∈N is far from 𝑗−𝑟. The plot of the bounds for larger values of 𝑗
shows that the rate will eventually approach 𝑟.

5.3.2. Decay w.r.t. ℱ2

For the convergence rate analysis of the Smolyak quadrature, we are mainly interested in the sequence 𝑥2;𝑗 in
(5.13), i.e. the decreasing rearrangement of (𝜃|𝜈|

∏︀
𝑗∈N(𝑗−𝑟𝜈𝑗 ))𝜈∈ℱ2 . Here and in the following, we fix 𝜃 ∈ (0, 1)

and 𝑟 > 0.
We first discuss the decay of (𝑥2;𝑚;𝑗)𝑗∈N (cp. (5.13)) for different 𝑚 ∈ N. Recall that by (5.14), for any 𝛿 > 0

there exists 𝐶 such that (𝑥2;𝑚;𝑗)𝑗∈N ≤ 𝐶𝑗−2𝑟 for all 𝑗 ∈ N.

– 𝑚 = 1: Since ℱ1
2 = {𝜈 ∈ ℱ2 : |𝜈| = 1} = ∅ this case is trivial.

– 𝑚 = 2: With e𝑗 = (𝛿𝑖𝑗)𝑖∈N we have ℱ2
2 = {2e𝑗 : 𝑗 ∈ N} and {𝜌−𝑟𝜈 : 𝜈 ∈ ℱ2

2} = {𝑗−2𝑟 : 𝑗 ∈ N} so that
𝑥2;2;𝑗 = 𝑗−2𝑟, and the decay predicted by (5.14) is apparent also for small 𝑗.
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Figure 5. Decay of (𝑥2;𝑚;𝑗)𝑗∈N in (5.13) for 𝑟 = 3 and different values of 𝜃. For any 𝛿 > 0
and all 𝑚 ≥ 2 there exists 𝐶 > 0 such that 𝑥2;𝑚;𝑗 ≤ 𝐶𝑗−6+𝛿 for all 𝑗 ∈ N. (A) 𝜃 = 0.25.
(B) 𝜃 = 0.005.

– 𝑚 = 3: It holds ℱ3
2 = {3e𝑗 : 𝑗 ∈ N} and thus {𝜌−𝑟𝜈 : 𝜈 ∈ ℱ3

2} = {𝑗−3𝑟 : 𝑗 ∈ N}. Hence 𝑚 = 3 can be
considered as a special case, since 𝑥2;3;𝑗 = 𝑗−3𝑟 and the decay is even faster than 𝑗−2𝑟, see Figure 5.

– 𝑚 = 4: We have⃒⃒
{𝜈 ∈ ℱ4

2 : 𝜌−𝑟𝜈 ≥ 𝑅−𝑟}
⃒⃒

=
⃒⃒
{𝜈 ∈ ℱ2

1 : 𝜌−𝑟2𝜈 ≥ 𝑅−𝑟}
⃒⃒

=
⃒⃒⃒
{𝜈 ∈ ℱ2

1 : 𝜌−𝑟𝜈 ≥ 𝑅−𝑟/2}
⃒⃒⃒

and thus with (5.18)
𝑓2(𝑅1/2) ≤

⃒⃒
{𝜈 ∈ ℱ4

2 : 𝜌−𝑟𝜈 ≥ 𝑅−𝑟}
⃒⃒
≤ 𝑔2(𝑅1/2).

Considering the parametrized curves (𝑓2(𝑅1/2), 𝜃4𝑅−𝑟), (𝑔2(𝑅1/2), 𝜃4𝑅−𝑟) for 𝑅 ≥ 1, a computation similar
to the one before (5.21) implies that the decay of (𝑥2;4;𝑗)𝑗∈N in the preasymptotic range is worse than what
(5.14) suggests, due to the logarithmic factors occurring in 𝑓2, 𝑔2.

– 𝑚 > 4: Similar arguments as in the case 𝑚 = 4 apply, and we expect the decay rate to further diminish
as 𝑚 grows. The precise behaviour depends on the number of possibilities to write 𝑚 as a sum of integers
in N∖{1}: for example {𝑥2;5;𝑗 : 𝑗 ∈ N} = {𝑘−2𝑙−3 : 𝑘 ̸= 𝑙 ∈ N} decreases faster than {𝑥2;4;𝑗 : 𝑗 ∈ N} =
{𝑘−2𝑙−2 : 𝑘 < 𝑙 ∈ N}, as Figure 5 right panel shows.

Implications for (𝑥2;𝑗)𝑗∈N are as follows. All terms belonging to ℱ𝑚2 , i.e.

(𝜃𝜌−𝑟)𝜈 = 𝜃𝑚𝜌−𝑟𝜈 ∀𝜈 ∈ ℱ𝑚2 , (5.22)

are scaled by the common factor 𝜃𝑚: the smaller 𝜃, the fewer multiindices of high total order 𝑚 (which, in
the preasymptotic range, decay slower than expected as we have noticed) will be among the 𝑁 largest ones.
This is depicted in Figure 5 which shows the sequences (𝑥2;𝑚;𝑗)𝑗∈N for 𝑚 ∈ {2, . . . , 8} and two different values
𝜃 ∈ {0.25, 0.005}.

If 0 < 𝜃 < 1 is small then, due to the factor 𝜃𝑚 in (5.22), only few multiindices of order 𝑚 ≥ 4 occur among
the largest, and essentially ((𝜃𝜌−𝑟)𝜈)𝜈∈ℱ2

2∪ℱ3
2

governs the decay of 𝑥𝑗 for small 𝑗, thus yielding the expected
rate 2𝑟− 𝛿. On the other hand, as 𝜃 draws closer to 1, more higher order multiindices contribute to the largest
𝑗 terms, resulting in a longer preasymptotic range with slower decay.
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To numerically verify these heuristic considerations, we determine a lower bound of 𝑥2;𝑗 . With 𝑓𝑚 as in (5.18),
for 𝑅 ≥ 1 there holds

𝑓𝑚(𝑅) ≤ |{𝜈 ∈ ℱ𝑚1 : 𝜌−𝑟2𝜈 ≥ 𝑅−2𝑟}| ≤ |{𝜈 ∈ ℱ2𝑚
2 : 𝜌−𝑟𝜈 ≥ 𝑅−2𝑟}|. (5.23)

We extend 𝑓𝑚 via 𝑓𝑚(𝑅) := 0 for all 𝑅 ∈ [0, 1), and (5.23) then remains true also for 𝑅 < 1. Then

𝐹 (𝑅) := 1 +
∑︁
𝑚∈N

𝑓𝑚(𝜃2𝑚/2𝑟𝑅) ≤ |{0}|+
∑︁
𝑚∈N

|{𝜈 ∈ ℱ2𝑚
2 : 𝜌−𝑟𝜈 ≥ (𝜃2𝑚/2𝑟𝑅)−2𝑟}|

= |{0}|+
∑︁
𝑚∈N

|{𝜈 ∈ ℱ2𝑚
2 : (𝜃𝜌−𝑟)𝜈 ≥ 𝑅−2𝑟}| ≤ |{𝜈 ∈ ℱ2 : (𝜃𝜌−𝑟)𝜈 ≥ 𝑅−2𝑟}|, (5.24)

which gives:

Lemma 5.10. For 𝑗 ∈ N let 𝑅𝑗 ≥ 1 be such that 𝐹 (𝑅𝑗) = 𝑗. For the sequence 𝑥2;𝑗 it holds 𝑅−2𝑟
𝑗 ≤ 𝑥2;𝑗.

Figure 6 depicts the decay of (𝑥2;𝑗)𝑗∈N as well as the lower bound in Lemma 5.10 for 𝑟 = 3 and 𝜃 = 0.25.
The measured rate of (𝑥2;𝑗)𝑗∈N in the observed range of 𝑗 is merely 4.96 and not close to 6 as suggested by
(5.14). For the plotted range of 𝑗 in Figure 6A up to about 𝑗 = 106, the lower bound from Lemma 5.10 seems
to capture well the preasymptotic behaviour of (𝑥2;𝑗)𝑗∈N. Plotting the lower bound for larger values of 𝑗 up to
about 𝑗 = 1055, we observe that its algebraic decay rate eventually increases to approach 2𝑟 = 6, however only
very slowly. This suggests, that if 𝜃 > 0 is not small enough, then the range where the Taylor gpc coefficients
of 𝑢1 from Example 5.2 will show the predicted algebraic decay only occurs for 𝑗 so large that it is not relevant
in practice.

Finally, for general (𝑏, 𝜀)-holomorphic functions, in the proof of Theorem 3.14 we derived estimates of the
norms of the Taylor gpc coefficients which were of the type 𝑏𝜈 |𝜈|!/𝜈! (also see Rem. 5.4). In this section we
have analysed in more detail a sequence of the type (𝑏𝜈)𝜈∈ℱ , which corresponds to the Taylor gpc coefficients
of 𝑢1 in Example 5.2. Due to the additional term |𝜈|!/𝜈!, it can be expected that the preasymptotic effect is
even stronger in the general case.

Remark 5.11. The case 𝑘 = 1 is relevant for stochastic collocation algorithms (i.e. interpolation instead
of quadrature). Similar as in (5.24), we can define 𝐺(𝑅) := 1 +

∑︀
𝑚∈N 𝑔𝑚(𝜃𝑚/𝑟𝑅) and deduce that the

curve (𝐺(𝑅), 𝑅−𝑟) provides an upper bound for the behaviour of (𝑥1;𝑗)𝑗∈N in (5.13). By Lemma 5.8 it holds
𝑔𝑚(𝜃𝑚/𝑟𝑅) ≤ 2𝑚−1𝜃2𝑚/𝑟𝑅2 ≤ (2𝜃2/𝑟)𝑚𝑅2 for all 𝑚 ∈ N, and therefore 𝐺(𝑅) ≤ 1 + (2𝜃2/𝑟)/(1 − 2𝜃2/𝑟)𝑅2.
For 𝑢1 in Example 5.2 (cp. Rem. 5.4), we conclude that as long as 𝜃 is small enough such that the constant
(2𝜃1/𝑟)/(1−2𝜃1/𝑟) is (moderately) bounded, the preasymptotic error convergence of the interpolation error can
be expected to be at worst half of the proven convergence rate, which is in this case (𝑟 − 1)/2.

This can be extended to general (𝑏, 𝜀)-holomorphic functions, by constructing indexsets based on the sequence
𝑐1;𝜈 as stated in Theorem 3.14 (iv) (for 𝑘 = 1): if I = N0 in (3.12), then 𝑐1;𝜈 is exactly of the type

∏︀
𝑗∈N 𝜚

−𝜈𝑗

𝑗

(i.e. like the sequence analysed in the current section).

5.4. Real valued model parametric integrand functions

We now test the convergence of the Smolyak quadrature for the functions 𝑢1, 𝑢2 in Examples 5.2 and 5.3. For
𝑢2 we also refer to [22] where computations for almost the same integrand were done with the method suggested
in their paper.

5.4.1. Model integrand 𝑢1

Let
𝑢1(𝑦) =

∏︁
𝑗∈N

1
1 + 𝑦𝑗𝜃𝑗−𝑟

𝑦 ∈ 𝑈 (5.25)
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Figure 6. Decay of (𝑥2;𝑗)𝑗∈N in (5.12) for 𝜃 = 0.25 and 𝑟 = 3. The lower bound is given in
Lemma 5.10. For any 𝛿 > 0 there exists 𝐶 > 0 such that 𝑥2;𝑗 ≤ 𝐶𝑗−2𝑟+𝛿 = 𝐶𝑗−6+𝛿 for all
𝑗 ∈ N. In the preasymptotic range a worse rate is observed. (A) (𝑥2;𝑗)𝑗∈N and lower bound. (B)
(𝑥2;𝑗)𝑗∈N and lower bound for larger range of 𝑗.

be as in (5.1) with 𝑏𝑗 := 𝜃𝑗−𝑟, 0 < 𝜃 < 1, 𝑟 > 1. As explained in Example 5.2, 𝑢1 is (𝑏, 𝜀)-holomorphic, and by
Theorem 4.3 the Smolyak quadrature can achieve the convergence rate 2𝑟 − 1 (cp. Rem. 5.1) in terms of the
number of quadrature points if optimal indexsets are chosen.

Figure 7 shows the absolute error |
∫︀
𝑈
𝑢1(𝑦) d𝜇(𝑦)−𝑄Λ𝜖

𝑢1| for different values of 𝑟 and 𝜃, and with Λ𝜖 as in
Sections 5.1.1 and 5.1.2. Note that (up to the guessing of constants and simplifications in Sects. 5.1.1 and 5.1.2),
Theorem 4.3 implies the convergence rates 2𝑟−1 for Λ𝜖((𝑎2,𝜈)𝜈∈ℱ ) as in (5.6) or (5.8) and 2𝑟−2 for Λ𝜖((𝑐2,𝜈)𝜈∈ℱ )
as in (5.5) or (5.7). The reference value for

∫︀
𝑈
𝑢1(𝑦) d𝜇(𝑦) was computed directly as

∫︀
𝑈
𝑢1(𝑦) d𝜇(𝑦) =∏︀

𝑗∈N log((1 + 𝑏𝑗)/(1− 𝑏𝑗))/(2𝑏𝑗).
Even though the Gauss-Legendre points are not nested, we observe that the Leja points and the Gauss-

Legendre points perform equally well in terms of the total number of function evaluations. Furthermore, the
index sets Λ𝜖((𝑐2,𝜈)𝜈∈ℱ ) deliver slightly better error convergence than Λ𝜖((𝑎2,𝜈)𝜈∈ℱ ). This is not surprising,
as (𝑐2;𝜈)𝜈∈ℱ is a sequence resembling the Taylor gpc coefficients of 𝑢1, see Remark 5.4 and also Figure 9. As
expected, the convergence rate (which asymptotically only depends on 𝑟), strongly depends on 𝜃. For large 𝜃 a
preasymptotic range of subpar convergence is observed. This can be explained by the preasymptotic behaviour
of the decay of the Taylor gpc coefficients which we analysed in Section 5.3. For very small 𝜃, we get close to
the proven convergence rate 2𝑟 − 1, e.g. for 𝑟 = 2 and 𝜃 = 0.005 we observe convergence rates of about 2.68
and 2.81 depending on the chosen index sets. The plots confirm that considerably faster convergence than the
previously proved rate 𝑟 − 1 is in principle attainable.

5.4.2. Model integrand 𝑢2

Let
𝑢2(𝑦) =

1
1 + 𝜃

∑︀
𝑗∈N 𝑦𝑗𝑗

−𝑟 (5.26)

be as in (5.2) with 𝑏𝑗 := 𝜃𝑗−𝑟, 𝑟 > 1 and 𝜃 > 0 small enough such that 𝜃
∑︀
𝑗∈N 𝑗

−𝑟 < 1. By Example 5.3,
𝑢2 is (𝑏, 𝜀)-holomorphic, and Theorem 4.3 implies that the Smolyak quadrature can achieve the convergence
rate 2𝑟 − 1 in terms of the number of quadrature points if optimal index sets are chosen. Figure 8 shows the
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Figure 7. Quadrature error |
∫︀
𝑈
𝑢1(𝑦) d𝜇(𝑦) − 𝑄Λ𝜖𝑢1| for 𝑢1 in (5.25), for different values

of 𝑟 and 𝜃. The plot shows the absolute error in terms of the number of quadrature points
|pts(Λ𝜖,𝜒)| (cp. (2.7)). (A) Λ𝜖((𝑎2,𝜈)𝜈∈ℱ ), 𝑟 = 2. (B) Λ𝜖((𝑎2,𝜈)𝜈∈ℱ ), 𝑟 = 3. (C) Λ𝜖((𝑐2,𝜈)𝜈∈ℱ ),
𝑟 = 2. (D) Λ𝜖((𝑐2,𝜈)𝜈∈ℱ ), 𝑟 = 3.
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convergence of the absolute error |
∫︀
𝑈
𝑢2(𝑦) d𝜇(𝑦) − 𝑄Λ𝜖

𝑢| for different values of 𝑟 and 𝜃. Again we compare
the convergence for either nested Leja quadrature points or non-nested Gauss-Legendre quadrature points, and
different a priori constructions of multiindices as explained in Sections 5.1.1 and 5.1.2. As before, (up to the
guessing of constants and simplifications in Sects. 5.1.1 and 5.1.2), Theorem 4.3 implies the convergence rates
2𝑟 − 1 for Λ𝜖((𝑎2,𝜈)𝜈∈ℱ ) as in (5.6) or (5.8) and 2𝑟 − 2 for Λ𝜖((𝑐2,𝜈)𝜈∈ℱ ) as in (5.5) or (5.7).

The reference value for
∫︀
𝑈
𝑢2(𝑦) d𝜇(𝑦) has been computed with a higher order quasi Monte Carlo rule

(a so-called high-order, Interlaced Polynomial Lattice rule adapted to the model integrand, with suitable digit
interlacing parameter, see [16] and the references there) utilizing 220 ∼ 106 quadrature points applied to the
function 𝑢 restricted to the first 1024 dimensions.

The observations are similar as for 𝑢1. The (preasymptotic) convergence rate strongly depends on the scaling
parameter 𝜃. Leja and Gauss-Legendre quadrature deliver almost the same error w.r.t. the number of function
evaluations, and the index sets Λ𝜖((𝑐2,𝜈)𝜈∈ℱ ) perform (slightly) better than Λ𝜖((𝑎2;𝜈)𝜈∈ℱ ). This is observed in
Figure 9 where we compare the error for both sequences directly.

5.4.3. Comparison with an adaptive method

We consider the model parametric integrand 𝑢2 defined in (5.2), with 𝑏𝑗 := 𝜃𝑗−𝑟 for 𝑟 = 2 and 𝜃 > 0. In the
following, our method is compared with a variant of the dimension adaptive algorithm described in [18] which
we outline briefly for completeness. For some finite, downward closed set of multiindices {0} ≠ Λ ⊆ ℱ , following
[9] we introduce the reduced set of neighbours

𝒩 (Λ) := {𝜈 ∈ ℱ : 𝜈 /∈ Λ, 𝜈 − e𝑗 ∈ Λ ∀𝑗 ∈ supp 𝜈, 𝜈𝑗 = 0 ∀𝑗 > max
𝜇∈Λ

max{𝑖 ∈ N : 𝜇𝑖 ̸= 0}+ 1},

with the special case 𝒩 ({0}) := {(1, 0, 0, . . . )}. Algorithm 1 shows the used adaptive method. Also recall, that
𝑄−1 := 0 and for notational convenience also 𝑄−2 := 0 in the following. As in (2.2), for 𝑛 ∈ N0, 𝑄𝑛 stands for
the one dimensional interpolatory quadrature employing the 𝑛+ 1 points (𝜒𝑗)𝑛𝑗=0 in [−1, 1]. In the following the
quadrature points for the adaptive method and for the a priori choice of index sets consist of the Leja points
introduced in Section 5.1.1.

Algorithm 1. AdaptiveSmolyak(integrand 𝑢 : [−1, 1]N → R, number of multiindices 𝑀 ∈ N).
Λact ← {0}
Λtot ← {0}
Δ0 ←

⨂︀
𝑗∈N 𝑄0𝑢

while |Λact| < 𝑀 do
Λnew ← 𝒩 (Λact)∖Λtot

Λtot ← Λtot ∪ Λnew

for 𝜈 ∈ Λnew do
Δ𝜈 ←

⨂︀
𝑗∈N(𝑄2𝜈𝑗 −𝑄2(𝜈𝑗−1))𝑢

end for
𝜇← argmax{|Δ𝜈 | : 𝜈 ∈ Λtot∖Λact}
Λact ← Λact ∪ {𝜇}

end while
𝑄Λact𝑢←

∑︀
𝜈∈Λact

Δ𝜈𝑢
𝑄Λtot𝑢←

∑︀
𝜈∈Λtot

Δ𝜈𝑢

Figure 10 shows a comparison of the error convergence for the adaptive Smolyak algorithm, and the Smolyak
algorithm with the a priori index sets Λ𝜖(((𝑐

leja
2;𝜈 ))𝜈∈ℱ ) from Section 5.1.1. The plots show the error vs. number

of quadrature points. In case of the adaptive algorithm, we plot the curve for the set of accepted indices Λact

and for the set of total indices Λtot, as computed by Algorithm 1.
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Figure 8. Quadrature error |
∫︀
𝑈
𝑢2(𝑦) d𝜇(𝑦) − 𝑄Λ𝜖𝑢2| for 𝑢2 in (5.25), for different values

of 𝑟 and 𝜃. The plot shows the absolute error in terms of the number of quadrature points
|pts(Λ𝜖,𝜒)| (cp. (2.7)). (A) Λ𝜖((𝑎2,𝜈)𝜈∈ℱ ), 𝑟 = 2. (B) Λ𝜖((𝑎2,𝜈)𝜈∈ℱ ), 𝑟 = 3. (C) Λ𝜖((𝑐2,𝜈)𝜈∈ℱ ),
𝑟 = 2. (D) Λ𝜖((𝑐2,𝜈)𝜈∈ℱ ), 𝑟 = 3.
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Figure 9. Quadrature error |
∫︀
𝑈
𝑢𝑗(𝑦) d𝜇(𝑦) − 𝑄Λ𝜖

𝑢𝑗 | for 𝑢𝑗 , 𝑗 ∈ {1, 2}, in (5.25) and (5.26)
for 𝜃 = 0.25, 𝑟 ∈ {2, 3} and using Gauss-Legendre quadrature points. The plot compares the
error convergence for two different quadrature rules based on multiindex sets built by either
using the sequence (𝑎gauss

2,𝜈 )𝜈∈ℱ or (𝑐gauss
2,𝜈 )𝜈∈ℱ , see Section 5.1. (A) 𝑢1. (B) 𝑢2.

Figure 10. Absolute quadrature error for 𝑢2 in (5.26), with 𝑟 = 2 and different values of 𝜃. We
compare convergence of the adaptive algorithm in Algorithm 1 with the Smolyak quadrature
based on our a priori choice of index sets. In both cases the same Leja quadrature points (see
Sect. 5.1.1) are used. (A) 𝜃 = 0.25. (B) 𝜃 = 0.005.



1300 J. ZECH AND C. SCHWAB

In order to find the set Λact, Algorithm 1 also requires to evaluate the integrand at quadrature points belonging
to the total set Λtot. Thus, the curve for the accepted multiindices Λact should be considered as a benchmark,
whereas the curve for the total set of indices Λtot can be seen as a practically obtainable computation in terms
of error vs. number of quadrature points (i.e. number of function evaluations). We observe, that our a priori
chosen quadrature points are as good, as the ones obtained by the adaptive method and denoted by Λact above.
This implies, that the a priori choice captures well the most important multiindices.

Comparing with Λtot, our method even outperforms the adaptive algorithm when 𝜃 becomes small. We
mention that it was already reported earlier that a priori choices of index sets can perform superior to adaptive
methods, see, e.g., [3]. We note that the convergence for the a priori choice (and for the adaptive algorithm in
terms of Λact) improves as 𝜃 decreases, while the convergence rate of the adaptive algorithm in terms of Λtot

does not increase as 𝜃 decreases. For 𝜃 = 0.005, the convergence rate of the adaptive algorithm w.r.t. Λtot, is
only about half the convergence rate obtained with the a priori chosen set. This is not a coincidence, and we
explain this with an example in more detail in Section 5.2.2 of [37] (see in particular [37], Example 5.2.2). We
point out that one of the main advantages of determining the quadrature rule a priori instead of adaptively, is
that it allows to compute all function values at the quadrature points in parallel, which is in general not possible
for the adaptive algorithm in [18].

6. Conclusions and generalizations

We have analysed convergence rates of Smolyak quadratures for classes of smooth, Banach space valued,
parametric functions with a suitable sparsity as stated in Definition 3.1. We proved that exploiting certain
cancellation properties implied by the combination coefficients and the symmetry of the marginal probability
measures allow for the dimension independent convergence rate 2/𝑝 − 1 for 𝑝-summable sequences of (norms
of) Taylor gpc coefficients of the parametric integrand functions. This is superior to previously known rates
established, for example, in [20, 21], of 𝑁 -term gpc approximation of the integrand obtained in [11], or for
Higher Order Quasi-Monte Carlo integration in [14], under analogous sparsity assumptions on the parametric
integrands. We also provided an a priori construction algorithm of integrand-adapted sparse grids whose com-
plexity (work and memory) scales near linearly with respect to the number quadrature points. Additionally,
all convergence rate bounds were shown w.r.t. the number of quadrature points, showing in particular that
essentially the same convergence rates can be obtained for both nested and non-nested univariate quadrature
points 𝜒. Numerical experiments showed that the dimension-independent convergence rates are achieved with
a moderate number of quadrature points provided that the scaling parameter 𝜃 > 0 was small enough. For the
considered test functions, this amounts to the integrand having small deviation from their ‘nominal’, average,
values. We explain, by a refined analysis of the error bounds for a class of model parametric integrands, that
the asymptotic range where the (dimension-independent) convergence rate 2/𝑝− 1 is visible could appear only
for a prohibitively large number of quadrature points.

Convergence rates which are superior to 𝑁 -term approximation bounds for the parametric integrands have
been reported in numerical experiments for example in [32]. Concrete a priori estimates on gpc coefficients that
may be exploited to a priori determine suitable index sets by e.g. greedy searches or by knapsack solvers were
also given in these references. The presently proposed variants of the Smolyak algorithm, in particular exploiting
multiindices containing a 1, appear to be new. As we prove and verify in numerical experiments, this results in
an algorithm that performs comparably to the currently best (heuristic) adaptive algorithms, from [17, 18] as
shown in in Figure 10.

The complexity of the Smolyak quadrature was investigated under 𝑝-summability of sequences of (𝑋-norms of)
Taylor gpc coefficients, as implied by (𝑏, 𝜀)-holomorphy. This condition is known to hold for broad classes of
holomorphic-parametric operator equations as shown in [12], and also for the corresponding Bayesian inverse
problems [32,34]. We emphasize that our key findings, notably the observation that all linear terms are integrated
exactly by any Smolyak quadrature, remain valid for other measures 𝜇, presuming that the one point rule in the
Smolyak construction integrates linear polynomials exactly (cp. Rem. 4.2). In particular, similar improvements
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as shown in this paper also hold in other contexts. For example, for linear, affine-parametric diffusion problems
with coefficient functions 𝜓𝑗(𝑥) that exhibit localized supports (as occur for example in a wavelet expansion),
improved summability of the Taylor gpc coefficients of the parametric solution was verified in Theorem 1.2 of
[1]. In Chapter 3 of [37] we show that this entails a corresponding improvement of the convergence rate for
Smolyak quadratures.

Another particular case in point are Gaussian measures 𝜇. Here, for certain PDEs bounds on Hermite Chaos
coefficients can be obtained by real-variable bootstrapping on the parametric PDE (see [19, 26, 29]), so that
similar conclusions for the corresponding Smolyak algorithms could be expected.

In many practical settings the evaluation of the integrand is presumed to be far more costly than performing
the quadrature itself. For integrands exhibiting low sparsity, using a large number of quadrature points becomes
inevitable. The near linear scaling of the cost in terms of the number of quadrature points makes the algorithm
feasible also for such problems.

In this paper we assumed the integrand to allow exact evaluation at each quadrature point. In general, for UQ
problems the integrand is given as the solution to some PDE, which needs to be approximated by a numerical
scheme. This is addressed in [38], where we perform a fully discrete error analysis taking into account the cost
of approximating the function values at the quadrature points.

Appendix A. Proof of Lemma 2.9

Proof of Lemma 2.9. The first inequality follows by the downward closedness of Λ so that∑︁
𝜈∈Λ

∏︁
𝑗∈supp 𝜈

(𝜈𝑗 + 1) =
∑︁
𝜈∈Λ

|{𝜇 ∈ Λ : 𝜇 ≤ 𝜈}| ≤
∑︁
𝜈∈Λ

|Λ| = |Λ|2.

We claim that if Γ ⊆ ℱ is finite and satisfies for some 𝑛 ∈ N and 𝐴 ⊆ N with |𝐴| = 𝑛 that

(supp 𝜈 = 𝐴 ∀𝜈 ∈ Γ) and ((𝜈 ∈ Γ, 𝜇 ≤ 𝜈, supp 𝜇 = 𝐴) ⇒ 𝜇 ∈ Γ) (A.1)

then ∑︁
𝜈∈Γ|I

∏︁
𝑗∈N

(1 + 𝜈𝑗) ≤ 𝐾𝑛
I |Γ|. (A.2)

Suppose that (A.2) is true. Partitioning Λ in {0} and finitely many disjoint sets Γ of the type (A.1), this
immediately implies the second inequality in (2.15).

We show (A.2) by induction. For 𝑛 = 1 assume w.l.o.g. that 𝐴 = {1}. Then by Assumption 2.4 (ii)∑︁
𝜈∈Γ|I

∏︁
𝑗∈N

(1 + 𝜈𝑗) =
∑︁

𝜈∈Γ|I

(1 + 𝜈1) ≤ 𝐾I|Γ|.

For the induction step assume that the statement is true for 𝑛−1 ≥ 1, and assume w.l.o.g. that 𝐴 = {1, . . . , 𝑛}.
For every 𝑖 ∈ N set Γ𝑖 := {𝜇 ∈ ℱ : (𝑖,𝜇) ∈ Γ}. Then each Γ𝑖 is of the type (A.1) for the set 𝐴 = {1, . . . , 𝑛− 1},
so that we can apply the induction hypothesis to it. Therefore∑︁

𝜈∈Γ|I

∏︁
𝑗∈N

(1 + 𝜈𝑗) =
∑︁

0<𝑖∈I

(1 + 𝑖)
∑︁

𝜇∈Γ𝑖|I

∏︁
𝑗∈N

(1 + 𝜇𝑗) ≤
∑︁

0<𝑖∈I

(1 + 𝑖)𝐾𝑛−1
I |Γ𝑖|

= 𝐾𝑛−1
I

∑︁
0<𝑖∈I

(1 + 𝑖)
∑︁
𝜇∈Γ𝑖

1 = 𝐾𝑛−1
I

∑︁
𝜇∈ℱ

∑︁
{0<𝑖∈I : (𝑖,𝜇)∈Γ}

(1 + 𝑖)

≤ 𝐾𝑛−1
I

∑︁
𝜇∈ℱ

𝐾I|{𝑖 ∈ N : (𝑖,𝜇) ∈ Γ}| = 𝐾𝑛
I |Γ|,

where we used again Assumption 2.4 (ii) for the last inequality. �
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Appendix B. Proof of Lemmas 3.10 and 3.11

Proof of Lemma 3.10. We start with 𝜗 = 0 and 𝑅 = 1 (i.e. 𝑤𝜈 = 1 for all 𝜈 ∈ ℱ). Fix 𝑘 ∈ N. Observe that
‖𝑏‖ℓ∞(N) < 1 and ‖𝑏‖ℓ𝑝(N) < ∞ are necessary in order for (𝑏𝜈)𝜈∈ℱ𝑘

∈ ℓ𝑝/𝑘(ℱ𝑘) to hold: For every fixed 𝑗 ∈ N
the sequence (𝑏𝑙𝑝/𝑘𝑗 )𝑙≥𝑘 is a subsequence of (𝑏𝜈𝑝/𝑘)𝜈∈ℱ𝑘

, which implies necessity of ‖𝑏‖ℓ∞(N) < 1. Furthermore
(𝑏𝑝𝑗 )𝑗∈N is a subsequence of (𝑏𝜈𝑝/𝑘)𝜈∈ℱ𝑘

so that ‖𝑏‖ℓ𝑝(N) <∞ is also a necessary condition.
On the other hand, since log(1 + 𝑥) ≤ 𝑥 for all 𝑥 ≥ 0 we have

‖(𝑏𝜈)𝜈∈ℱ𝑘
‖

𝑝
𝑘

ℓ
𝑝
𝑘 (ℱ𝑘)

=
∑︁

𝜈∈ℱ𝑘

(𝑏𝜈)
𝑝
𝑘 =

∏︁
𝑗∈N

⎛⎝1 +
∑︁

{𝑙∈N : 𝑙≥𝑘}

𝑏
𝑙𝑝
𝑘
𝑗

⎞⎠ =
∏︁
𝑗∈N

⎛⎝1 +
𝑏

𝑝𝑘
𝑘
𝑗

1− 𝑏
𝑝
𝑘
𝑗

⎞⎠
= exp

⎛⎝∑︁
𝑗∈N

log

⎛⎝1 +
𝑏𝑝𝑗

1− 𝑏
𝑝
𝑘
𝑗

⎞⎠⎞⎠ ≤ exp

⎛⎝∑︁
𝑗∈N

𝑏𝑝𝑗

1− 𝑏
𝑝
𝑘
𝑗

⎞⎠ ≤ exp

(︃
1

1− ‖𝑏‖
𝑝
𝑘

ℓ∞

‖𝑏‖𝑝ℓ𝑝(N)

)︃
. (B.1)

This proves the lemma for 𝜗 = 0 and 𝑅 = 1. To finish the proof it suffices to show that under the
assumptions ‖𝑏‖ℓ1(N) < ∞ and ‖𝑏‖ℓ∞(N) < 1 it holds for any 𝜗 > 0 that (𝑤𝜈𝑏

𝜈)𝜈∈ℱ𝑘
∈ ℓ𝑝/𝑘(ℱ𝑘) where

𝑤𝜈 = 𝑅| supp 𝜈|∏︀
𝑗∈N(1 + 𝜈𝑗)𝜗.

Fix 𝜗 > 0 and 𝑅 ≥ 1. Let 𝜗 > 𝜗 be so large that 2𝜗−𝜗 ≥ 𝑅. Then 𝑅| supp 𝜈|∏︀
𝑗∈N(1 + 𝜈𝑗)𝜗 ≤

∏︀
𝑗∈N(1 + 𝜈𝑗)𝜗.

Let 𝛿 > 1 be so large that (1 + 𝑛)𝜗 ≤ 𝛿𝑛 for all 𝑛 ∈ N, let 𝐽 ∈ N be so large that 𝑏𝑗 < 1/(2𝛿) for all 𝑗 > 𝐽 , and
let 𝜅 > 1 be so small that 𝑏𝑗𝜅 < 1 for all 𝑗 ≤ 𝐽 . Define 𝑏̃ ∈ ℓ𝑝(N) by 𝑏̃𝑗 := 𝜅𝑏𝑗 if 𝑗 ≤ 𝐽 and 𝑏̃𝑗 := 𝛿𝑏𝑗 otherwise.
Then ‖𝑏̃‖ℓ∞(N) < 1 and ‖𝑏̃‖ℓ𝑝(N) <∞. Moreover, with 𝐶0 := sup𝑛∈N(1 + 𝑛)𝜗/𝜅𝑛 <∞, for all 𝜈 ∈ ℱ

𝑤𝜈 =
∏︁
𝑗∈N

(1 + 𝜈𝑗)𝜗 ≤
𝐽∏︁
𝑗=1

𝐶0𝜅
𝜈𝑗

∏︁
𝑖>𝐽

𝛿𝜈𝑖 = 𝐶𝐽0

𝐽∏︁
𝑗=1

𝜅𝜈𝑗

∏︁
𝑖>𝐽

𝛿𝜈𝑖 .

Thus
∑︀

𝜈∈ℱ𝑘
(𝑤𝜈𝑏𝜈)𝑝/𝑘 ≤ 𝐶

𝐽𝑝/𝑘
0

∑︀
𝜈∈ℱ𝑘

(𝑏̃𝜈)𝑝/𝑘 which is finite by what we have shown above. �

Lemma B.1. Let 𝜌 > 1 and fix 𝑘 ∈ N. Then there exists a constant 𝐶𝑘,𝜌 depending on 𝜌, 𝑘, such that for all
𝜈 ∈ ℱ∖{0} the multiindex 𝑘𝜈 := (𝑘𝜈𝑗)𝑗∈N ∈ ℱ𝑘 ⊆ ℱ satisfies

(2𝜋)
1−𝑘
2

(︂
|𝜈|!
𝜈!

)︂𝑘
≤ |𝑘𝜈|!

(𝑘𝜈)!
≤ 𝐶

| supp 𝜈|
𝑘,𝜌 𝜌|𝜈|

(︂
|𝜈|!
𝜈!

)︂𝑘
· (B.2)

Proof. We begin with the lower bound. Recall that
√

2𝜋𝑛𝑛+ 1
2 e−𝑛 ≤ 𝑛! ≤ 𝑛𝑛+ 1

2 e−𝑛+1 for all 𝑛 ∈ N by Stirling’s
approximation, see for example [31]. Thus

|𝑘𝜈|!
(𝑘𝜈)!

≥
√

2𝜋(𝑘|𝜈|)𝑘|𝜈|+ 1
2 exp(−𝑘|𝜈|)∏︀

𝑗∈supp 𝜈(𝑘𝜈𝑗)𝑘𝜈𝑗+
1
2 exp(−𝑘𝜈𝑗 + 1)

=
√

2𝜋
exp(| supp 𝜈|)

𝑘𝑘|𝜈|+
1
2

𝑘𝑘|𝜈|+
| supp 𝜈|

2

|𝜈|𝑘|𝜈|+ 1
2 exp(−𝑘|𝜈|)∏︀

𝑗∈supp 𝜈 𝜈
𝑘𝜈𝑗+

1
2

𝑗 exp(−𝑘𝜈𝑗)

=
√

2𝜋𝑘
1−| supp 𝜈|

2

exp(| supp 𝜈|)

(2𝜋)−
𝑘
2 |𝜈| 1−𝑘

2

(︁√
2𝜋|𝜈||𝜈|+ 1

2 exp(−|𝜈|)
)︁𝑘

∏︀
𝑗∈supp 𝜈 exp(−𝑘)𝜈

1−𝑘
2

𝑗

(︁
𝜈
𝜈𝑗+

1
2

𝑗 exp(−𝜈𝑗 + 1)
)︁𝑘

≥ (2𝜋)
1−𝑘
2

(︂
exp(𝑘)
𝑘

1
2 e

)︂| supp 𝜈|(︂∏︀
𝑗∈supp 𝜈 𝜈𝑗

|𝜈|

)︂ 𝑘−1
2
(︂
|𝜈|!
𝜈!

)︂𝑘
. (B.3)
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We claim that

𝑓(𝜈) :=
(︂

exp(𝑘 − 1)
𝑘

1
2

)︂| supp 𝜈|(︂∏︀
𝑗∈supp 𝜈 𝜈𝑗

|𝜈|

)︂ 𝑘−1
2

≥ 1, (B.4)

for all 0 ̸= 𝜈 ∈ ℱ , which then gives the lower bound in (B.2). In order to see this we use induction on 𝑛 = |𝜈|.
The case 𝑛 = 1 is trivial because exp(𝑘 − 1)/𝑘1/2 ≥ 1 for all 𝑘 ∈ N and

∏︀
𝑗∈N 𝜈𝑗 = |𝜈| in this case. For the

induction step let e𝑖 = (𝛿𝑖𝑗)𝑗∈N, fix an integer 𝑛 > 1 and suppose that 𝑓(𝜈) ≥ 1 for all 𝜈 ∈ ℱ with |𝜈| = 𝑛.
First assume 𝑖 ∈ supp 𝜈 so that | supp 𝜈| = | supp(𝜈 + e𝑖)|. Then

𝑓(𝜈 + e𝑖) ≥ 𝑓(𝜈) ⇔
(𝜈𝑖 + 1)

∏︀
𝑗 ̸=𝑖 𝜈𝑗

|𝜈|+ 1
≥
∏︀
𝑗 𝜈𝑗

|𝜈|
⇔ 𝜈𝑖 + 1

|𝜈|+ 1
≥ 𝜈𝑖
|𝜈|

,

which is true so that 𝑓(𝜈 + e𝑖) ≥ 𝑓(𝜈) ≥ 1. Next let 𝑖 /∈ supp 𝜈. Then
∏︀
𝑗∈supp 𝜈 𝜈𝑗 =

∏︀
𝑗∈supp(𝜈+e𝑖)

(𝜈 + e𝑖)𝑗
and with 𝑛 = |𝜈|

𝑓(𝜈 + e𝑖)
𝑓(𝜈)

=
exp(𝑘 − 1)

𝑘
1
2

(︂
𝑛

𝑛+ 1

)︂ 𝑘−1
2

≥ exp(𝑘 − 1)
𝑘

1
2

(︂
1
2

)︂ 𝑘−1
2

:= 𝑛𝑔(𝑘). (B.5)

We have 𝑔(1) = 1. Moreover for 𝑘 ≥ 1

𝑔′(𝑘) =
2−

1+𝑘
2 exp(𝑘 − 1) ((2− log(2))𝑘 − 1)

𝑘
3
2

≥ 0,

which shows 𝑔(𝑘) ≥ 𝑔(1) ≥ 1 for all 𝑘 ∈ N and therefore 𝑓(𝜈 + e𝑖) ≥ 𝑓(𝜈) ≥ 1 by (B.5). This concludes the
proof of the claim (B.4) which further implies the lower bound in (B.2).

For the upper bound, we fix 0 ̸= 𝜈 ∈ ℱ and use again Stirling’s inequalities to obtain

|𝑘𝜈|!
(𝑘𝜈)!

≤ (𝑘|𝜈|)𝑘|𝜈|+ 1
2 exp(−𝑘|𝜈|+ 1)∏︀

𝑗∈supp 𝜈

√
2𝜋(𝑘𝜈𝑗)𝑘𝜈𝑗+

1
2 exp(−𝑘𝜈𝑗)

=
e(2𝜋)−

𝑘
2 |𝜈| 1−𝑘

2

(︁√
2𝜋|𝜈||𝜈|+ 1

2 exp(−|𝜈|)
)︁𝑘

∏︀
𝑗∈supp 𝜈

√
2𝜋 exp(−𝑘)𝜈

1−𝑘
2

𝑗

(︁
𝜈
𝜈𝑗+

1
2

𝑗 exp(−𝜈𝑗 + 1)
)︁𝑘 𝑘𝑘|𝜈|+

1
2

𝑘𝑘|𝜈|+
1
2 | supp 𝜈|

≤ e(2𝜋)−
𝑘
2 |𝜈| 1−𝑘

2(︀√
2𝜋 exp(−𝑘)

)︀| supp 𝜈|∏︀
𝑗∈supp 𝜈 𝜈

1−𝑘
2

𝑗

(︂
|𝜈|!
𝜈!

)︂𝑘

≤ e(2𝜋)−
𝑘
2

(︂
exp(𝑘)√

2𝜋

)︂| supp 𝜈| ∏︁
𝑗∈supp 𝜈

𝜈
𝑘−1
2

𝑗

(︂
|𝜈|!
𝜈!

)︂𝑘
· (B.6)

Since 𝜌 > 1, there exists a constant 𝐶𝜌 such that 𝑛(𝑘−1)/2 ≤ 𝐶𝜌𝜌
𝑛 for all 𝑛 ∈ N. Thus

∏︀
𝑗∈supp 𝜈 𝜈

(𝑘−1)/2
𝑗 ≤

𝐶
| supp 𝜈|
𝜌 𝜌|𝜈|. The upper bound in (B.2) then follows via (B.6), for instance with𝐶𝑘,𝜌 := 𝐶𝜌 exp(𝑘+ 1)(2𝜋)−

1
2 . �

Proof of Lemma 3.11. We start again with the case 𝜗 = 0. W.l.o.g. we assume throughout 𝑏𝑗 > 0 for all 𝑗 ∈ N.

Step 1. For 𝑘 = 1, 𝑝 = 1 we have

∑︁
𝜈∈ℱ

|𝜈|!
𝜈!

𝑏𝜈 =
∑︁
𝑙∈N0

⎛⎝∑︁
𝑗∈N

𝑏𝑗

⎞⎠𝑙

=
1

1− ‖𝑏‖ℓ1(N)
<∞, (B.7)

which, due to ℱ1 = ℱ , gives (𝑏𝜈)𝜈∈ℱ1 ∈ ℓ1(ℱ1) iff ‖𝑏‖ℓ1 < 1.
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Step 2. We show that for any 𝑝 ∈ (0, 1] and 𝑘 ∈ N the conditions ‖𝑏‖ℓ𝑝(N) <∞ and ‖𝑏‖ℓ1(N) < 1 are necessary
in order for (𝑏𝜈 |𝜈|!/𝜈!)𝜈∈ℱ𝑘

∈ ℓ𝑝/𝑘(ℱ𝑘) to hold. It is clear that ‖𝑏‖ℓ𝑝(N) <∞ must be satisfied, since (𝑏𝑝𝑗 )𝑗∈N is
a subsequence of ((𝑏𝜈 |𝜈|!/𝜈!)𝑝/𝑘)𝜈∈ℱ𝑘

. Next, it suffices to verify necessity of ‖𝑏‖ℓ1(N) < 1 for 𝑝 = 1. Let 𝑘 ∈ N.
With Lemma B.1 it holds

∑︁
𝜈∈ℱ𝑘

(︂
𝑏𝜈 |𝜈|!

𝜈!

)︂ 1
𝑘

≥
∑︁
𝜈∈ℱ

(︂
𝑏𝑘𝜈 |𝑘𝜈|!

𝑘𝜈!

)︂ 1
𝑘

≥ 𝐶
∑︁
𝜈∈ℱ

(︃
𝑏𝑘𝜈

(︂
|𝜈|!
𝜈!

)︂𝑘)︃ 1
𝑘

= 𝐶
∑︁
𝜈∈ℱ

𝑏𝜈 |𝜈|!
𝜈!
·

According to (B.7), the last sum is finite iff ‖𝑏‖ℓ1(N) < 1. This shows that for any value of 𝑝 ∈ (0, 1] and 𝑘 ∈ N,
the stated conditions are necessary.

Step 3. Fix an integer 𝑘 > 1. We claim that for every 𝜈 ∈ ℱ𝑘, there exists 𝜇 ∈ ℱ such that

(𝜇𝑗 ∈ {𝑘𝑖 : 𝑖 ∈ N0} and |𝜈𝑗 − 𝜇𝑗 | < 𝑘) ∀𝑗 ∈ N, 𝑏𝜈 |𝜈|!
𝜈!

≤ 𝑘𝑘| supp 𝜈|𝑏𝜇 |𝜇|!
𝜇!
· (B.8)

To show this claim fix 𝜈 ∈ ℱ𝑘 and assume for the moment that there exists 𝑗0 ∈ N such that 𝜈𝑗0 /∈ {𝑘𝑖 : 𝑖 ∈ N0}
and 𝜈𝑖 ∈ {𝑘𝑖 : 𝑖 ∈ N0} for all 𝑖 ̸= 𝑗0. By definition of ℱ𝑘, this implies 𝜈𝑗0 > 𝑘. Assume first that

𝑏−1
𝑗0

𝜈𝑗0
|𝜈|

≥ 1. (B.9)

Then for 𝑟 ∈ {1, . . . , 𝑘 − 1}

𝑏−1
𝑗0

𝜈𝑗0 − 𝑟

|𝜈| − 𝑟
= 𝑏−1

𝑗0

𝜈𝑗0
|𝜈|

|𝜈|
|𝜈| − 𝑟

𝜈𝑗0 − 𝑟

𝜈𝑗0
≥ 𝜈𝑗0 − 𝑟

𝜈𝑗0
≥ 1
𝑘
, (B.10)

because 𝜈𝑗0 > 𝑘 and 𝑟 < 𝑘. Define 𝜇 = (𝜇𝑗0)𝑗∈N ∈ ℱ by

𝜇𝑖 :=

{︃
𝜈𝑖 if 𝑖 ̸= 𝑗

max{𝑛𝑘 : 𝑛 ∈ N, 𝑛𝑘 ≤ 𝜈𝑗0} if 𝑖 = 𝑗

for all 𝑖 ∈ N. Then |𝜈𝑗0 − 𝜇𝑗0 | < 𝑘 and by (B.10)

𝑏𝜈 |𝜈|!
𝜈!

≤ 𝑏𝜈 |𝜈|!
𝜈!

𝑘𝜈𝑗0−𝜇𝑗0

𝜈𝑗0−𝜇𝑗0−1∏︁
𝑟=0

𝑏−1
𝑗0

𝜈𝑗0 − 𝑟

|𝜈| − 𝑟
= 𝑘𝜈𝑗0−𝜇𝑗0 𝑏𝜇 |𝜇|!

𝜇!
≤ 𝑘𝑘𝑏𝜇 |𝜇|!

𝜇!
,

which shows that 𝜇 satisfies (B.8).
Next, suppose that (B.9) does not hold. Then 𝑏𝑗0 |𝜈|/𝜈𝑗0 > 1 and therefore for 𝑟 ∈ {1, . . . , 𝑘 − 1}

𝑏𝑗0
|𝜈|+ 𝑟

𝜈𝑗0 + 𝑟
≥ 𝑏𝑗0

|𝜈|
𝜈𝑗0

|𝜈|+ 𝑟

|𝜈|
𝜈𝑗0

𝜈𝑗0 + 𝑟
≥ 𝜈𝑗0
𝜈𝑗0 + 𝑟

≥ 1
𝑘
·

With 𝜇 = (𝜇𝑗0)𝑗∈N ∈ ℱ defined by

𝜇𝑖 :=

{︃
𝜈𝑖 if 𝑖 ̸= 𝑗

min{𝑛𝑘 : 𝑛 ∈ N, 𝑛𝑘 ≥ 𝜈𝑗0} if 𝑖 = 𝑗

we then have |𝜇𝑗0 − 𝜈𝑗0 | < 𝑘 and similar as before

𝑏𝜈 |𝜈|!
𝜈!

≤ 𝑏𝜈 |𝜈|!
𝜈!

𝑘𝜇𝑗0−𝜈𝑗0

𝜇𝑗0−𝜈𝑗0−1∏︁
𝑟=0

𝑏𝑗0
|𝜈|+ 𝑟

𝜈𝑗0 + 𝑟
= 𝑘𝜇𝑗0−𝜈𝑗0 𝑏𝜇 |𝜇|!

𝜇!
≤ 𝑘𝑘𝑏𝜇 |𝜇|!

𝜇!
,
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which again shows that 𝜇 satisfies (B.8).
For the general case, where there might exist several indices 𝑗 with 𝜈𝑗 /∈ {𝑘𝑖 : 𝑖 ∈ N0}, we repeat the above

procedure for all such 𝑗 to find 𝜇 satisfying (B.8). This verifies the claim.

Step 4. In this step we prove that for 𝑝 = 1 and 1 < 𝑘 ∈ N, the conditions ‖𝑏‖ℓ𝑝(N) < ∞ and ‖𝑏‖ℓ1(N) < 1
imply (𝑏𝜈 |𝜈|!/𝜈!)𝜈∈ℱ𝑘

∈ ℓ𝑝/𝑘(ℱ𝑘).
If 𝜇 ∈ ℱ with 𝜇𝑗 ∈ {𝑘𝑖 : 𝑖 ∈ N0} for all 𝑗 ∈ N then

|{𝜈 ∈ ℱ𝑘 : |𝜈𝑗 − 𝜇𝑗 | < 𝑘, ∀ 𝑗 ∈ N}| ≤ (2𝑘 − 1)| supp 𝜇|. (B.11)

With 𝜇𝜈 denoting the multiindex constructed in Step 3 and satisfying (B.8), we get with (B.11)

∑︁
𝜈∈ℱ𝑘

(︂
𝑏𝜈 |𝜈|!

𝜈!

)︂ 1
𝑘

≤
∑︁

𝜈∈ℱ𝑘

𝑘| supp 𝜈|
(︂

𝑏𝜇𝜈
|𝜇𝜈 |!
𝜇𝜈 !

)︂ 1
𝑘

≤
∑︁
𝜈∈ℱ

(2𝑘 − 1)| supp 𝜈|𝑘| supp 𝜈|
(︂

𝑏𝑘𝜈 |𝑘𝜈|!
(𝑘𝜈)!

)︂ 1
𝑘

. (B.12)

Now let 𝜌 > 1 be so small that ‖𝜌1/𝑘𝑏‖ℓ1(N) < 1, which is possible because ‖𝑏‖ℓ1(N) < 1 by assumption. Then,
employing Lemma B.1, the right-hand side of (B.12) is bounded by∑︁

𝜈∈ℱ
(𝑘(2𝑘 − 1))| supp 𝜈|𝐶

| supp 𝜈|
𝑘

𝑘,𝜌

(︁
𝜌

1
𝑘 𝑏
)︁𝜈 |𝜈|!

𝜈!
≤
∑︁
𝜈∈ℱ

𝐶
| supp 𝜈|
𝑘,𝜌

(︁
𝜌

1
𝑘 𝑏
)︁𝜈 |𝜈|!

𝜈!
, (B.13)

where 𝐶𝑘,𝜌 := 𝑘(2𝑘 − 1)𝐶1/𝑘
𝑘,𝜌 . Now let 𝐽 ∈ N be so large that with 𝑏̃𝑗 := 𝜌

1
𝑘 𝑏𝑗 if 𝑗 ≤ 𝐽 and 𝑏̃𝑗 := 𝐶𝑘,𝜌𝜌

1
𝑘 𝑏𝑗 if

𝑗 > 𝐽 , it holds ‖𝑏̃‖ℓ1(N) < 1. With this choice, by (B.12) and (B.13) we arrive at

∑︁
𝜈∈ℱ𝑘

(︂
𝑏𝜈 |𝜈|!

𝜈!

)︂ 1
𝑘

≤ 𝐶𝐽−1
𝑘,𝜌

∑︁
𝜈∈ℱ

𝑏̃𝜈 |𝜈|!
𝜈!

<∞, (B.14)

where the last series is finite by (B.7) and because ‖𝑏̃‖ℓ1 < 1. This concludes the proof for 𝑘 > 1, 𝑝 = 1.

Step 5. It remains to show that ‖𝑏‖ℓ𝑝(N) < ∞ and ‖𝑏‖ℓ1(N) < 1 imply (𝑏𝜈 |𝜈|!/𝜈!)𝜈∈ℱ𝑘
∈ ℓ𝑝/𝑘(ℱ𝑘) for 𝑘 ≥ 1

and 𝑝 ∈ (0, 1). As shown in the proof of Theorem 7.2[10], with 𝑝′ := 𝑝/(1 − 𝑝) one can construct sequences
𝛾 = (𝛾𝑗)𝑗∈N, 𝛿 = (𝛿𝑗)𝑗∈N such that

‖𝛾‖ℓ1(N) < 1, ‖𝛿‖ℓ∞(N) < 1, ‖𝛿‖ℓ𝑝′ (N) <∞ and 𝑏𝑗 ≤ 𝛿𝑗𝛾𝑗 ∀ 𝑗 ∈ N (B.15)

(essentially 𝛾𝑗 ∼ 𝑏𝑝𝑗 and 𝛿𝑗 ∼ 𝑏1−𝑝𝑗 ). We get

∑︁
𝜈∈ℱ𝑘

(︂
𝑏𝜈 |𝜈|!

𝜈!

)︂ 𝑝
𝑘

≤
∑︁

𝜈∈ℱ𝑘

(︂
𝛾𝜈 |𝜈|!

𝜈!

)︂ 𝑝
𝑘

𝛿
𝑝
𝑘 ≤

(︃∑︁
𝜈∈ℱ𝑘

(︂
𝛾𝜈 |𝜈|!

𝜈!

)︂ 1
𝑘

)︃𝑝(︃∑︁
𝜈∈ℱ𝑘

𝛿𝜈 𝑝
𝑘(1−𝑝)

)︃1−𝑝

.

Using (B.15), the first sum is finite by the statement of the current Lemma for 𝑝 = 1 (already shown in Step 4),
and the second sum is finite since (𝛿𝜈)𝜈∈ℱ𝑘

∈ ℓ𝑝′/𝑘(ℱ𝑘) according to Lemma 3.10. This proves (𝑏𝜈 |𝜈|!/𝜈!)𝜈∈ℱ𝑘
∈

ℓ𝑝/𝑘(ℱ𝑘).

Step 6. We have shown the lemma for 𝜗 = 0. In order to finish the proof, it suffices to verify that under the
assumptions ‖𝑏‖ℓ𝑝(N) <∞ and ‖𝑏‖ℓ1(N) < 1, for any fixed 𝑘 ∈ N and 𝜗 > 0 with 𝑤𝜈 = 𝑅| supp 𝜈|∏︀

𝑗∈N(1 + 𝜈𝑗)𝜗

it holds (𝑤𝜈𝑏𝜈 |𝜈|!/𝜈!)𝜈∈ℱ ∈ ℓ𝑝/𝑘(ℱ𝑘). This can be shown by the same argument used at the end of the proof
of Lemma 3.10. �
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