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CONVERGENCE RATES OF HIGH DIMENSIONAL SMOLYAK QUADRATURE

JAKOB ZECHY" AND CHRISTOPH SCHWAB?

Abstract. We analyse convergence rates of Smolyak integration for parametric maps v : U — X
taking values in a Banach space X, defined on the parameter domain U = [—1, 1]N. For parametric maps
which are sparse, as quantified by summability of their Taylor polynomial chaos coefficients, dimension-
independent convergence rates superior to N-term approximation rates under the same sparsity are
achievable. We propose a concrete Smolyak algorithm to a priori identify integrand-adapted sets of
active multiindices (and thereby unisolvent sparse grids of quadrature points) via upper bounds for the
integrands’ Taylor gpc coefficients. For so-called “(b, €)-holomorphic” integrands u with b € ¢?(N) for
some p € (0,1), we prove the dimension-independent convergence rate 2/p — 1 in terms of the number
of quadrature points. The proposed Smolyak algorithm is proved to yield (essentially) the same rate
in terms of the total computational cost for both nested and non-nested univariate quadrature points.
Numerical experiments and a mathematical sparsity analysis accounting for cancellations in quadratures
and in the combination formula demonstrate that the asymptotic rate 2/p—1 is realized computationally
for a moderate number of quadrature points under certain circumstances. By a refined analysis of model
integrand classes we show that a generally large preasymptotic range otherwise precludes reaching the
asymptotic rate 2/p — 1 for practically relevant numbers of quadrature points.
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1. INTRODUCTION

Let X be a Banach space, set U = [—1,1]N and let z be the infinite product (probability) measure & jen A/2
on U, where A denotes the Lebesgue measure on [—1,1]. The efficient numerical approximation of formally
infinite-dimensional integrals

/ u(y) du(y), (1.1)
U

of strongly p-measurable, parametric maps v : U — X is a key problem in computational uncertainty quantifi-
cation (“UQ” for short). In computational UQ, the integrand function u in (1.1) is implicitly given as solution
of a so-called forward model, typically an operator equation parametrized by a sequence y € U. The parame-
ter sequences y can, for example, describe distributed uncertain constitutive relations or uncertain geometric
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shapes. Equation (1.1) then describes an “ensemble average” (with respect to p) of the parametric solution,
over all admissible realizations of the uncertainty.

The high (in this case infinite) dimension of the integration domain U demands the integrand to possess
appropriate sparsity properties in order to make a numerical computation feasible, and overcome the so-called
curse of dimensionality. For this reason, the integrand is typically assumed to be very smooth, e.g. to allow a
bounded holomorphic extension into certain cylindrical subsets of CN: here, as in [20], we consider paramet-
ric integrands which are holomorphic in cartesian products of discs with increasing radii. The rate at which
those radii increase is a measure of the sparsity of the function, and as was observed in [20, 22, 30] governs
the (dimension-independent) rate of convergence of the quadrature. These assumptions on the integrand are
condensed in the notion of (b, ¢)-holomorphy for a positive sequence b = (b;),en € ¢P(N) and some p € (0,1),
see Definition 3.1 and also c¢p. [10-12]. This function class comprises in particular functions of the following
type: Let Z and X be two complex Banach spaces and (¢;)jen C Z such that (||1j]|z)jen € ¢P(N). Assume
that u: Z — X is Fréchet differentiable (this can be weakened to Fréchet differentiability on a certain subset
of Z). Then, as we show in Lemma 3.3, the function

u(y) =u Zyjz/)j eX yeU (1.2)
jEN
is (b, €)-holomorphic with b; = [|1);]|z. Functions of this type arise in the context of parametrized partial differ-

ential equations (PDEs) for a large variety of linear and nonlinear equations see for example [12,13,23,25,27].
Our new results, which imply the convergence rate 2/p — 1 for the numerical approximation of (1.1), may
consequently be applied to all such models.

One possibility to numerically approximate the integral (1.1) is with a Monte Carlo method. Its advantage is
that the convergence rate does not depend on the dimension of the integration domain. Its main disadvantage is
the notoriously slow convergence rate of 1/2. For this reason, quasi Monte Carlo (QMC) methods exploiting the
integrands’ sparsity to attain higher order dimension-independent rates have been developed; we refer to [14,15],
to the surveys [15,28] and to the references there. QMC quadrature is free from the curse of dimensionality, and
additionally retains the Monte-Carlo feature of “embarrassingly parallel” integrand evaluation at the quadrature
points. For high numbers of computationally intensive function evaluations (as is the case for numerical PDE
solutions in the context of computational UQ) this becomes an important feature.

The present error analysis is based on so-called generalized polynomial chaos (“gpc” for short) expansions
of the parametric integrand function. Expansions of gpc type have proved a valuable tool in regularity and
sparsity analysis of countably-parametric functions taking values in a Banach space X; we refer to [10-12, 306]
and to the survey [33] and the references there. The idea is to expand the integrand in a polynomial basis, and
approximate the integral (1.1) with an interpolatory quadrature rule that is exact for the terms contributing
most in the expansion. Such reasoning gives best N-term results, but in practice the optimal set of quadrature
points is not known. The effectiveness of the method is due to the high smoothness of the integrand, which
is why polynomial approximations converge very fast. We refer to [4,17,35] for a general description of sparse
grid quadrature. For our proofs, as a basis we shall use the monomials, i.e. as in [11,12,36], we consider Taylor
gpc expansions around 0 = (0,0, ...) € U. Unconditional convergence of such Taylor gpc expansion stipulates
holomorphy of the integrand in polydiscs around 0. We choose the monomials for ease of presentation, but point
out that holomorphy assumptions can be weakened by considering expansions in orthogonal bases such as the
Legendre polynomials which merely require holomorphy on so-called Bernstein ellipses (¢p. [12]). This results in
more technical arguments, but also in weaker holomorphy assumptions, as shown in [37], see also Remark 2.17.
The question remains on how to choose the quadrature points such that possibly few function evaluations result
in a minimal error. In [18] an adaptive strategy has been proposed. The algorithm does not allow for parallel
function evaluations in general however. Nonetheless, it delivers good results and has also been applied for
parametrized PDEs, e.g. in [32]. In the case of a priori chosen quadrature points, the convergence for isotropic
and anisotropic sparse grids was investigated in [2,30], and more recently in [20,22]. The last two papers can be
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considered as the closest to ours. Numerical experiments in these works often revealed much better convergence
rates, than what the theoretical findings suggested, see in particular [22,32].

The first aim of the present paper is to establish new, dimension-independent convergence rate bounds.
These are stated in Theorem 4.3. This result will shed some new light on the previously observed discrepancy
between the observed convergence rates, and the proven ones. As a general idea, we use a priori knowledge
on size scaling of domains of holomorphic extension of the parametric integrand to estimate the norm of the
Taylor coefficients. Based on these estimates, a sparse grid is constructed a priori. The crucial observation,
allowing us to improve earlier estimates, is then the following: The linear term y +— y has integral 0 over [—1, 1],
and is integrated exactly by the midpoint rule (i.e. by an evaluation at y = 0 multiplied with the weight 1
corresponding to the probability measure A/2). As a consequence, any polynomial in the multivariate Taylor
expansion containing a linear term will always be integrated exactly by the Smolyak quadrature operator.
This implies higher, dimension-independent convergence rates since the sequence of the remaining Taylor gpc
coefficients has summability which is superior to the sequence of all Taylor gpc coefficients. Indeed, our new
results improve previously established, dimension-independent convergence rates, by more than a factor two;
see Remark 4.5 and Examples 5.2 and 5.3.

The second contribution concerns a novel a priori construction of gpc index sets which we prove to pro-
vide near optimal, dimension-independent convergence rates. Whereas many authors consider the number of
quadrature points as a measure for the work, in fact, due to its structure based on differences of tensor product
quadratures, the actual cost of the Smolyak algorithm does not in general behave linearly in the number of
quadrature points. The mentioned convergence rates are proven with respect to the total number of quadrature
points in case of nested point sets such as Leja points. In addition, we show that essentially the same rate can
be obtained also for non-nested point sets, such as the Gauss points. Finally, this rate is also proven in terms
of the total number of floating point operations. The precise statements are given in Theorem 2.16 and in a bit
more generality in Theorem 4.3. The proven rates are asymptotic, and might not always be observable in the
range of “small” numbers of quadrature points that are realizable in practice, as our numerical experiments and
further analysis of particular model parametric integrand families in Section 5 reveal.

Structure of the paper

In Section 2 we first set up notation and state a few assumptions used throughout. Subsequently the Smolyak
algorithm is recalled, and we present a short complexity analysis. This then provides sufficient preliminaries to
state our main result in Theorem 2.16.

In Section 3 we formalize the concept of (b, e)-holomorphic, parametric maps from the parameter domain U
into a complex Banach space X. Maps of this type admit unconditionally convergent Taylor gpc expansions, with
a specific decay of the Taylor gpc coefficients (¢, ),cx C X. In Section 3.3, we prove novel summability results
for certain subsequences of (¢, ),cx. These results quantify the effect of cancellations of Taylor gpc coefficients
due to symmetries in the Smolyak quadrature operators. As they are abstract sequence summation results, they
play a role also in more general gpc approximation results. The main result of the section is Theorem 3.14.

In Section 4, we prove a convergence result for the Smolyak algorithm in Theorem 4.3. The algebraic conver-
gence rate is stated in terms of the number of function evaluations for both nested and non-nested quadrature
points, and additionally in terms of the number of required floating point operations. Additionally, we provide
explicit constructions of suitable sets of multiindices, which allows to a priori devise a sparse-grid. This provides
an algorithm for which the integrand can be evaluated at all quadrature points in parallel.

Section 5 is devoted to numerical experiments. We give more details on the implementation in Section 5.1.
In Section 5.2 we provide a precise description of the proposed algorithm. As already mentioned above, a large
preasymptotic range is observed in certain situations. This is numerically investigated in Section 5.3, and we
give (heuristic) arguments why it occurs. Finally, in Section 5.4 the convergence of our algorithm is tested for
two exemplary real valued functions.
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2. SMOLYAK ALGORITHM AND MAIN RESULT

2.1. Notation

Throughout we let N = {1,2,...} and Ny := NU{0}. The symbol C will stand for a generic, positive constant
independent of any quantities determining the asymptotic behaviour of an estimate. It may change even within
the same formula.

Multiindices are denoted by v = (v;)jen € N}. The notation supp v stands for the support of the multiindex,
i.e. the set {j € N : v; # 0}. For the total order of a multiindex we write |v| := Y. v, and introduce the
countable sets

JEN

F={veN : |v| <o} and Fr={veF :v;>kVjesuppr} (2.1)

for all k € N. In particular F = F;. Note that F consists of all finitely supported multiindices in NY. For two
multiindices v, p € F, by p < v we mean mean p; < vy, for all j > 1. A subset A C F will be called downward
closed if for every v € Ait holds {p € F : p<v} CA.

For p > 0 we let £P(F}) be the space of R-valued sequences a = (ay)ucr, , satisfying

1/p
laller (7)== <Z Iay|p> < 0.

veFy

Similarly, ¢#(N) is defined for sequences indexed over N. By a decreasing rearrangement (a);en of a sequence
(av)ver,, we mean that there exists a bijection 7 : N — Fj, such that aj = ar(j) for all j € N, and additionally
aj > ajyy forall j €N

As a topology on CY we choose the product topology, and any subset such as -1, 1}N is equipped with the
subspace topology. For a ball of radius r > 0 in C we write B := {# € C : |z| < r} C C. Furthermore, if
p = (pj)jen C (0,00), then BS := Xen ng C CN. Moreover, the parameter set U = [—1,1]" endowed with
the Borel product sigma algebra and the uniform product probability measure p := ®jeN A/2 is a probability
space. Here, A denotes the Lebesgue measure on [—1,1]. With this topology, for a Banach space X we write
C°(U, X) for the space of (bounded) continuous functions mapping from U to X. Denoting the norm on X by
Il 1lx, we let

l[ullco@w,x) = sup [[u(y)]|x-
yeU

Similarly we define C°([—1,1], X), and in case X = R we simply write C°([-1,1]) := C°([-1,1],X) and
[

v € F, standard multivariate notations y* := [,y y;J and v! =[],y v;! will be employed.
For a complex Banach space (X, | - [x), z € X and € > 0, as above we write BX := {2 € X : ||2]|x <¢€}. A

function u mapping from an open subset of CY to X will be called separately holomorphic, if it is holomorphic
in each variable. For such a function we denote by

vl
8”“ :#U
y (Y) Dyl oy (y)

the partial derivatives of u w.r.t. the multiindex v € F where |v| < oco. We write X’ for the topological dual
space of X (i.e. the continuous linear functionals). The space of bounded linear maps between two Banach
spaces X and Y is denoted by L(X,Y).

Finally, for a set A we denote by |A| the cardinality of the set.
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2.2. Smolyak quadrature

Let in the following X be a Banach space and w : U — X a pointwise defined function. For n € Ny, let
(Xn:j)7=0 € [=1,1] be a sequence of pairwise distinct points in [~1,1]. The Smolyak algorithm is built on a
family of univariate quadrature rules @,, : C°([~1,1], X) — X that we assume to be interpolatory quadrature
rules with quadrature points (Xn.0; - - -, Xnin), and w.r.t. the probability measure A/2 on [—1, 1]. That is, for all
f € CO([fla 1]7X)

n 1 n
1 — X
Qnf= E S (Xnsj) oms where Qn;j = 5/ H Mdy, (2:2)
= =172 Xmsg = Xnsi
i#]

with an empty product denoting the constant unit function, i.e. ap,o = 1. We interpret @, in the following both
as an operator mapping from C%([—1,1], X) — X and C°([—1,1]) — R (recall that C°([-1,1]) = C°([-1,1],R)).
The definition of @Q,, implies @, w = f_ll w(y)dA(y)/2 for all polynomials w of degree at most n. Note that in
general the quadrature weights a,,; of @), can be negative. Throughout we assume that there exists ¥ € [0, c0)
such that the condition of the univariate quadratures @,, is polynomially bounded according to

Vn € Np : sup __@nfl < (n+1)". (2.3)

ozfeco((—1,1) Iflleo=1,1) ~

To introduce the Smolyak quadrature, first define Q_; := 0. For every v € F set @, := ®j€N Q.,, i.e. for
u:U— X

Quu = Z u((Xuj;#j )jGN) H Qujip; = Z u((XVJ;#J )jGN) H Qujipgo (2'4)

{peF : p<v} JEN {peF : v} jEsupp v

where an empty product equals 1 by convention. For a downward closed index set A C F of finite cardinality,
the Smolyak quadrature @, is defined by

Qa = Z ®(QVj - Quj—l)-

veA jEN

By induction over d = |supp v/|, it is easily verified that Q5 allows the representation

Qrn=) auQu  where = > (=1, (2.5)

veEA {e€{0,1}N:v+ecA}

We also refer to (sa,)ven as the “combination coefficients”. The latter representation of Q4 in (2.5) is preferred
in implementations, since it skips evaluations of @, for all v € A with g5 , = 0.

2.3. Number of function evaluations

2.3.1. Quadrature points

Denote in the following the array of univariate sampling points

X = ((Xni)j=0)nen,- (2.6)
By (2.4) and (2.5) the computation of Qau requires to evaluate u at all points in
ptS(A,X) = {(XVj;Mj)jEN tvEA, SAv #0, p < V} cu. (27)

Definition 2.1. The univariate points X = ((Xn;j)7=0)nen, C [—1,1] are called nested if there exists a sequence
(Xj)jen, such that x,,; = x; for every j € {0,...,n} and every n € Ny. Otherwise, x are called non-nested.
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Lemma 2.2. Let A C F be finite and downward closed. For nested points x holds |pts(A, x)| = |A].

Lemma 2.2 for nested points is easily verified. In the general case (of possibly non-nested points), due to
{peF : p<vi =Tyl +v)), it follows immediately from (2.7) that

pts(A, )1 < >0 [ +w). (2.8)
{veA:qp,,#0} jEN
Note that we have an equality in (2.8) in case

{Xnj :0<i<n}nN{xm,; : 0<j<m}=0 VYn#m. (2.9)

To obtain good bounds on |pts(A, x)| for non-nested points x, we will devise multiindex sets A for which certain
combination coefficients vanish, 4.e. g5, = 0 for certain v € A. This is exploited in the next example, which
demonstrates that the right-hand side of (2.8) can be smaller for larger multiindex sets.

Example 2.3. For n € N consider the two sets of (two dimensional) multiindices
Aq(n) :={(vi,1) €NZ : vy + 11 < 2n}, As(n) :=A(n)U{(2j—1,2(n—j)+1): j=1,...,n},

and we also use the shortcuts A; = Aj(n) in the following. For n = 3 these sets are shown in Figure 1. One
checks that (with ¢y, defined in (2.5))

1 if ri+wrm=2n—-1 1 if (v + vy =2n)A (v1,vs are odd)
Shap=14—1 if vy4+vy=2n-2 Shpw =4 —1 if (v1 +v9=2n—2)A (v1,vs are odd) (2.10)
0 otherwise, 0 otherwise.

Therefore with

N
. . N3
A(N) := > V1V2=ZJ(N+1—J):?+O(N2)
{veN2:v;+vs=N+1} j=1
it holds
2 16
> [[+v)=A@n) + A@n-1) = Fn3+0(n?)
{veAL:ca, v #0} j=1

whereas

S [[a+wm=1 S [IEEYZ a4 +44m-1) = %n?’—i-O(nQ).

. ! 2
{UEAz :§A2,u7’50} Jj=1 {V€A22<A2,V¢O}J:1

Hence, even though A; C As, in case of non-nested quadrature points, the number of function evaluations
required to compute Q,, is about twice the number of function evaluations required to compute Qa, (cp. (2.7)
and recall that there holds an equality in (2.8) if (2.9) is satisfied). This is a consequence of the specific structure
of Ay which implies (in particular) ga, ., = 0 whenever v; is an even number for at least one j € {1,2}. Let us

also stress that in this specific example, for Az := {(v1,12) € N3 : max{v1,v2} < 2n} we even have

2
> [[a+v)=0+2n-1)(1+2n-1) =0,

{veAs:cay,#0} j=1

since v = (2n — 1,2n — 1) is the only multiindex in Ag for which ¢a,,, # 0.
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5[ 1 5 1 5 1
al—1] 1 4 4
3 —1] 1 3 =l 1 3
2 —1] 1 2 2
1 -1 1 1 —1 1 1
0 —1| 1 0 0
o 1 2 3 4 5 o 1 2 3 4 5 o 1 2 3 4 5

- 2( ) € A3(3) from Example 2.3. The numbers in the

FIGURE 1. The multiindex sets A1 (3)
(2.5) for each v € A;j with ¢a;,, # 0. (A) Ay, (B) As. (C)

squares show the values of ¢j; ., in
As.

2.3.2. Admissible indices

To formalize the observation that the structure of A can imply 5, = 0 for certain v € A, we will work with
aset J={i; : j € No} C Ny of the so-called admissible indices. The interpretation of J is as follows: We shall
build Smolyak quadrature rules based on (2.5). They will have the property that ¢y, = 0 for all v € A for
which there exists at least one j € N such that v; ¢ J. In other words, Q4 in (2.5) will be a linear combination
of tensorized quadrature rules @, for multiindices v satisfying v; € J for all j € N, i.e. each v; must be an
admissible index. This allows to control the number of function evaluations required for the computation of Q4
as we show subsequently. In order to do so, in certain cases (see Rem. 5.5 ahead) it will be crucial that the set of
admissible indices consists of an exponentially increasing sequence, as stated in the following assumption on J.

Assumption 2.4 (Admissible indices). The set T = {i; : j € No} C Ny consists of the set of the strictly
monotonically increasing, nonnegative sequence (i;)jen, where ig = 0. There exists a constant K3 > 1 such that

(i) i1 +1< Kj(ij + 1) for all j € N,
(i) 3275, (i +1) < Kyiy, for all m € N.

Remark 2.5. The concrete choice of J will only influence constants (but not the convergence rates) of the
convergence results presented in the following. A natural choice satisfying Assumption 2.4 is ij41 = 27 for
J € Np, i.e. T = {0} @] {2] NS No}

For > 0 denote in the following
|z]5 :=max{a €T : a <z} and []5 :=min{a €T : a > x}. (2.11)
Application of these rounding operators to sequences is understood componentwise.
Remark 2.6. With 3= {i; : j € No} as in Assumption 2.4, define
+={0}U{i; +1:j €Ny} (2.12)

For k, n € Ny it holds [k]y = [n]; iff either k£ = n = 0 or there exists j € Ny such that k, n € (ij,i;41] N N.
The latter is equivalent to k, n € [i; +1,i;41 + 1) N N. Hence, for any v, p € F

vls=Tlpls & (v]o, = lpla,.
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© -1 1

FIGURE 2. The sketch shows a set A C N2 of multiindices corresponding to the grey squares.
Equation (2.13) is satisfied for some set J = {0,2,5,9,...}. By Lemma 2.8, ¢5 ,, # 0 can only
be true if v; € J for all j € N. The numbers in the squares show the values of g5, for each
v e A with gy, #0.

Remark 2.7. From Assumption 2.4 (i) we infer that for every n € Ny and with J, as in (2.12)
n < Ky[n]s, and ]y, < Kyn.
We will consider sets of multiindices satisfying

(veA and [p]s=[v]s) = peA (2.13)

The following lemma in conjunction with (2.7) elucidate the significance of this property. The statement of the
lemma is visualized in Figure 2. In the following we write

A ={reA:v,edVjeN}L

Lemma 2.8. Let J C Ny. Let A be finite and downward closed with the property (2.13). Then for allv € A\Al|5

SA,v = Z (—l)lel =0.

{e€{0,1}V: v+ecA}

Proof. Fix v € A\(Aly). Since v ¢ Aly, there exists j € N with v; ¢ J. Set A; := {e = (e;)ien € {0, 1} :
v+ecA, e; =0}, and let e € A; arbitrary. By (2.13) it holds [v + e]y € A since v + e € A. Furthermore,
with e; = (0;5)ien We get [V +e+ej|y = [V +e]5 since v; ¢ J, and thus

AjU{e+ej : eEAj} g{ee {0,1}N : V+e€A}.

On the other hand, if § = (4;);en € {€ € {0,1} : v+ e € A} and §; = 1, then due to the downward closedness
of A also v 4§ — e; € A which implies § — e; € A; and consequently

Aju{ete; secAj}D{ec{0,1}N : vt+ecA}
Thus

Z (=1)lel = Z (=1)lel ¢ Z (=1)letel = Z (=1)lel — Z (=1)lel = 0.

{e€{0,1}N: vt+ecA} ecA; ecA; ecA; ecA;
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For a finite set A C F of multi-indices, the effective dimension d(A) is defined as

d(A) := sup | supp v|. (2.14)
vEA

The proof of the following lemma is given in Appendix A.

Lemma 2.9. Let J C Ny satisfy Assumption 2.4. Let A C F be finite and downward closed. Then

STw+1) <IAP and S TTws +1) < K5™|AL (2.15)

veA jeN veA|; jeEN

A key element of the present paper is the a priori construction of (sequences of) finite index sets A C F which
capture provably the dominating part of gpc expansions of (b, €)-holomorphic maps. The index sets constructed
in the following will satisfy

d(A) = o(log(|A])) as |[A| — co. (2.16)

In this case, the number of quadrature points (also for non-nested points x in the sense of Def. 2.1) grows only
slightly faster than linear in terms of the cardinality of the multiindex sets as the next lemma shows. Thus the
properties (2.13) and (2.16) allow us to obtain good bounds on the number of required function evaluations also
for non-nested quadrature points.

Lemma 2.10. Fiz é > 0. Let J satisfy Assumption 2.4. Let (A¢)eso be a family of finite downward closed index
sets satisfying (2.13) and (2.16). Let the quadrature points x be non-nested. Then

Ipts(Ae, x)| < Z H(l +vj) = O(‘A6|1+5) as |Ae| — oo.

veA|; jEN

Proof. W.l.o.g. we assume |A.| > 1 for all ¢ > 0 in the following, since the statement of the lemma only concerns
the limit |[A.| — oco. Equation (2.16) is equivalently stated as: there exists a constant C' > 0 and numbers
¢ja.| > 0 such that for all € >0

d(Ae) < Clog(|Ac[)eja,

and cjp.| — 0 as [A¢| — oo. We conclude

K(ji(/\e) < K?log(‘AFUC\AE\ — eClog(Kg)log(|A‘\)C|A5| — |A6‘C10g(K3)C|A€‘.

Due to ¢|,| — 0, for any § > 0 the last term behaves like O(|A¢|°) as |A¢| — co. The statement of the lemma
now follows by (2.8), Lemmas 2.8 and 2.9. O

Remark 2.11. The bounds (2.15) are sharp in the following sense: Let A = {v € F : suppr C {1,....d}, v; <
N Vj} and set J:= {0} U {27 : j € Ng}. Then, with N = 2™ for some m € N, we have |A| = (N + 1) and

d N+1
ST +1 =11 i i— ((N“)Q(N“))d > 27 d((N +1)%)2 = 279 AP2, (2.17)
vEA jEN j=1 i=1

as well as

d m d
S [[wi+v= <1+Z(2i+1)> >[Ja+2m™ —14m+1) > (22" +1)* > 24N + 1)? = 2¢|A].

veA|; jEN Jj=1
(2.18)
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Letting N — oo in (2.17) and d — oo in (2.18), a better asymptotic behaviour than quadratic in |A] in the first
case, and linear in |A| with a constant depending exponentially on d(A) in the second case cannot be expected
in general.

However, these estimates may not accurately measure the actual number of function evaluations required in
(2.5), since they do not take into account the fact that some (further) combination coefficients in (2.5) might
vanish. Indeed, for the above example Q4 is the tensor product quadrature @, with v; = Nif j <dand v; =0
otherwise. The number of function evaluations is then equal to |A| = (N + 1)

2.4. Computational cost

In the following let v : U — X be a pointwise defined function and let A C F be a finite downward closed
index set. While the number of function evaluations is in practice a good indicator of the computational cost (in
particular for PDEs where evaluating u is computationally intensive), we also analyse the error of the Smolyak
quadrature in terms of the number of floating point operations required to compute Qau.

Remark 2.12. We stress that the term “computational cost” in the following merely refers to the computa-
tional complexity of evaluating Qau in (2.5), essentially under the assumption that each evaluation of u at a
point y € U has computational complexity O(1) (this will be slightly relaxed in Assumption 2.13). In particular,
our present analysis does not take into account the cost of approximating the integrand u(y), in case u(y) cannot
be evaluated exactly. For UQ problems, this is usually the case however, as u(y) typically denotes the solution
to a PDE whose coefficients depend on y € U (cp. Example 2.18). While such a discussion is outside the scope
of this manuscript, in [37,38] we provide an analysis of the full computational complexity (taking into account
the error and the computational work stemming from the approximation of u(y)) of a multilevel version of the
here analysed Smolyak algorithm.

We now make an assumption regarding the computational complexity of evaluating u.

Assumption 2.13. There exists a constant C > 0 such that for every v € F, u can be evaluated at each
(Xvji;)jen for p < v with a number of floating point operations that is bounded by C|suppv|.

Remark 2.14. Consider a function u(y) = u(3_,cny;¥;) as in (1.2) where u : C — C. If xo,0 = 0, then the
computation of ZjeN Xvsiu; W5 = ZjESuppu Xv;:u; 5 Tequires | supp v| multiplications and | supp v|—1 additions.
If u can be evaluated with O(1) floating point operations, then Assumption 2.13 is satisfied.

Less generally, if u(y) can be evaluated with complexity O(1) at every y € U, then clearly Assumption 2.13
is also fulfilled.

We point out again, that for parametric PDEs, i.e. where u(y) € X denotes the solution of a PDE in
a Sobolev space X, Assumption 2.13 is usually not satisfied. This is because u(y) is typically unknown and
has to be approzimated by a numerical method such as the finite element method. The cost of evaluating an
approximation of u is then linked to the discretization in space of the numerical PDE solver.

Additional to the effective dimension d(A) in (2.14), the mazimal total order

A) = 2.19
m(A) = max v (219)
has a certain significance when analysing the computational complexity.

To bound the cost of evaluating the Smolyak quadrature Qau, we use the representations (2.4) and (2.5).

— The coefficients (o, )per = Z{eG{O,l}Nzu+e€A}(_1)|e| can be computed with a number of floating point
operations bounded by C'd(A)|A|24Y): this is achieved by looping over all v € A, and updating the coefficient
of all (at most 2%(N)) neighbours in A of the type v — e for some e € {0, 1} (this implies suppe C suppv).

The computation of |e| = > ... o1 requires at most [suppr|—1 < d(A) additions.
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— Evaluating Q,u in (2.4) requires knowledge of the quadrature weights (a,;;) for j =0,...,n all 0 < n <
max,ea v; < m(A). These weights can be computed by solving a linear system of dimension n x n. Hence
this part contributes at most C' 32" 8) ¥ < C'm(A)* floating point operations.

— To compute Q,u in (2.4) we need to evaluate u at all points in {(x,,:s;)jen : # < v}. Under Assumption 2.13
this requires at most Cd(A) [ ];cy(1+v;) floating point operations, since [{p € F : p < wv}| = [[en(1+v;).
The computation of the quadrature weight [[,c .., @, for all p < v requires at most d(A) [[;en(1+v;)
floating point operations. The summation over all p < v is again of complexity []; (1 + ;).

In all, we introduce

cost(A) = m(A)* + A2 AL+ Y d) [+, (2.20)
{veEA G, L#0} JEN
comp. of ((an,j);‘zo)::(g) comp. of (sa,u)vea s

evaluation of Q, u

as a measure for the cost of evaluating the Smolyak quadrature Qau. As a consequence of Lemma 2.10 we
obtain an asymptotic bound on the cost term defined in (2.20).

Lemma 2.15. Fiz § > 0. Let J satisfy Assumption 2.4. Let (A¢)eso be a family of finite, downward closed
index sets satisfying (2.13). Let further

d(Ae) = o(log |Ac]) and m(Ae) = O(log |Acl) as [A¢| — oo. (2.21)
Then with cost(A¢) as in (2.20)
cost(Ao) = O(|A|' ) as |A¢| — oo.

2.5. Main result

Let Z and X be two complex Banach spaces. Recall that BZ = {¢ € Z : ||¢||z < r}. A function u: BZ — X
is called holomorphic, if it is Fréchet differentiable. The following theorem is our main result. In the subsequent
sections, we prove a slight generalization of this statement, and also provide details on the explicit construction
of the index sets (see Thm. 4.3). The cost term in the formulation of the theorem was defined in (2.20), and
we mention again that it can be interpreted as a measure of the computational cost of evaluating (2.5) under
Assumption 2.13, also c¢p. Remark 2.12.

Theorem 2.16. Let (¢j)jen € Z, 7> 0 and p € (0,1). Fiz 6 > 0 arbitrarily small. Assume that

(i) ZjenllUjllz <7 and ([¢;2)jen € P(N) — ¢1(N),
(ii) w: BZ — X is holomorphic and bounded,
(iti) the quadrature points x (either nested or non-nested) satisfy (2.3).

Fory e U = [-1,1]N set u(y) := u(d_ enyity). Then, there exists a constant C > 0 such that for every e >0
there exists a finite downward closed multiindex set Ae C F with |Ae] — 00 as € — 0 and such that

< Clpts(Ae, x)| 77 1, (2.22a)
X

/ u(y) du(y) — Qa,u
U

and additionally
< Ceost(A.) s H1H9, (2.22b)

/ u(y) du(y) — Qa,u
U

X

Remark 2.17. More generally, in [37] we prove the following variant of Theorem 2.16, which merely assumes
u to be holomorphic on some open set containing all inputs rather than a ball (see (ii) below):
Let (¢j)jen € Z, 7 >0 and p € (0,1). Fix 6 > 0 arbitrarily small. Assume that
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(i) (I1¥5llz)jen € P(N) — £1(N),
(ii) there is an open set O C Z such that {3 ;yy;¥; : y € U} € O and u: O — X is holomorphic and
bounded,
(iii) the quadrature points x (either nested or non-nested) satisfy (2.3).

For y € U = [-1,1]V set u(y) := u(djen Yj¥;)- Then, there exists C' > 0 such that for every e > 0 exists a
finite downward closed multiindex set A, C F such that |[A.] — oo as € — 0 and (2.22) holds.

The proof in [37] also covers general Jacobi (probability) measures whose density on [—1,1] is given by
(1 —2)*(1 +2)PC, 3 where a, B > —1 and Cp 3 = ['(a + B+ 2)/(2°TFF T (a + 1)T(B + 1)). For brevity, we
provide here a proof of Theorem 2.16 corresponding to @ = 3 = 0, under stronger assumptions on the domain
of holomorphy of u. This allows to avoid certain technicalities.

In view of Lemmas 2.10 and 2.15, it suffices to prove the asymptotic bounds (2.22) in terms of the cardinality
|Ae| of the multiindex sets, and to verify that A. complies with the assumptions of Lemmas 2.10 and 2.15.
Furthermore we shall see that in case of nested points (2.22a) also holds with 6 = 0 (as a consequence of
Lem. 2.2). We now give an example of a holomorphic function u as in Theorem 2.16.

Example 2.18. Let d € N. Let D C R? be a bounded (nonempty) Lipschitz domain and set X := Hg(D;C)
so that X’ = H=}(D;C). For ¢ € Z := L>°(D;C) define the bounded linear operator A(¢)) € L(X, X’) by

(A()u, v) = /D WV Vo da.

Then A € L(Z, L(X, X)), and with the norm [[ul|% := [, Vu" Vudz on X (here Vu is the complex conjugate)
it holds

”A”L(Z,L(X,X’)): sup sup sup |<A(¢)U7U>|:1-
[Yllz=1 llullx=1|lv][x=1

Suppose that 1y € L>°(D;R) satisfies 0 < o < 1yo(z) a.e. in D. Then by the (complex) Lax—Milgram Lemma,
A(tg) : X — X’ is an isomorphism and || A(vo) | r(x/,x) < 0~ *. For any ¢ € Z it holds
[A() = A(o)llLcx,xy = [A®W — Yo)llLx,x) < v — ol 2.

Using a Neumann series, if || — ¢z < ||A(¢0)_1HZ(1X, x)» then A(y) : X — X' is also an isomorphism and

A() ™ = (Alvo) — Ao — )" = (I — A(vho) " Alvho — 1)) A(wo) ™ = D (A(o) Ao — )" Atho) "

n€Np

Since (A(o) "tA(h))" A1)~ € L(X, X) can be interpreted as an n-linear function of h™ € Z™, this constitutes
a power series expansion (in Banach spaces) of ¢ +— A(1))~! € L(X’, X) around . Due to

1(A (o) AR)) " A(o) ™l Lixr,x) < ClIAIZIIA®O) T T x x)

the power series converges to a uniformly bounded function for all elements of {h € Z : ||h — tollz <
HA(@ZJO)*IHZ(lX, X)}, and it is Fréchet differentiable (i.e. holomorphic) as a function of ¢» € Z there, which

is classical (see e.g. [7], 14.13).
Fix FF € X’. We showed that the solution operator u mapping a diffusion coefficient 1) € Z to the unique
solution u(¢y) € X of

/D?/)Vu(w)TVv dz = F(v)

is locally a well-defined holomorphic map around 1y € Z, since it is given by u(z)) = A(¢)) "' F and ¢ + A(y) 7!
is holomorphic (for more details see [37], Chap. 1).
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Assume that (¢;)jen € Z and p € (0, 1) are such that

Yoz <A@ Mt xy  and  ([sllz)jen € P(N).

JEN

By Theorem 2.16, the Smolyak quadrature allows to approximate the Bochner integral fU u(ty +
> jenYit;) du(y) € X with (essentially) the convergence rate 2/p — 1.

The argument in the above example was completely independent of the concrete differential operator. The
same calculation holds for any linear (differential) operator A(vy) € L(X,X’) which is an isomorphism and
depends linearly on the data 1y in some Banach space Z.

3. SUMMABILITY OF TAYLOR GPC COEFFICIENTS

With U := [~1,1]Y, consider u : U — X, for some fixed Banach space X over C. In this section we are
concerned with the Taylor expansion

u(y) =Y ty” (3.1)

veF

of u and the summability properties of the Taylor gpe coefficients (||tu || x)ver.

3.1. (b, e)-holomorphy and GPC expansions

In the following Z and X are two complex Banach spaces. We now characterize the functions in Theorem 2.16
in terms of their domains of holomorphic extension. We show that they satisfy the conditions summarized in
the notion of (b, €)-holomorphy, which is introduced next. This definition has similarly been used for example
in [12,13,25].

Definition 3.1. Let ¢ > 0, p € (0,1) and M, > 0. For a given sequence b = (b;)jen C (0,00), we say that
u:U — X is (b, e)-holomorphic, if

(i) w: U — X is continuous,
(ii) for every sequence p = (p;)jen C (1,00) which is (b, €)-admissible, i.e. satisfies

D bilpi 1) <e, (3-2)

JjEN

u allows a separately holomorphic extension onto the polydisc BS = Xj N ij (this extension is denoted
by the same symbol u in the following),
(iii) for every (b,e)-admissible sequence the extension from (ii) satisfies

sup [Ju(z)llx < My < oo, (3.3)
z€BS

and for two (b, £)-admissible sequences p; and ps the extensions from (ii) coincide on Bgl N Bgz.

We start with a statement about continuity, and recall that any subset of S C CN (such as U = [—1,1]V) is
considered with the product topology. Hence

N
{Sﬂ(XOjX XC):NGN, 0; CC isopen Vje{l,...,N}}

Jj=1 J>N

is a basis of the topology on S.
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Lemma 3.2. Let (¢;)jen C Z satisfy (||¢]l2)jen € £1(N). Then y — > jenYi¥; is continuous from U to Z.

Proof. Fix e > 0 and y € U. We need to find an open set O C U (open w.r.t. the topology on U) such that

122 en¥its — 2 jen#i¥illz < e for all z = (zj)jen € O. Let J € N be so large that >, ; [|¢;]z < €/4. Let
J

§ :=¢/(2J). Then for every z € O := X _{z € [-1,1] : |z —y;| <6} x X ;[-1,1]

Zijj—szw] < ZMZzH%HZ <= +f =

jeN JEN i>J
O

Lemma 3.3. Lete >0, p € (0,1) and M, > 0. For a sequence (j)jen C Z and a sequence b = (b;)jen assume
that ||¢;]lz < b; for all j € N, and b = (b;)jen € (P(N). With r := ||bllaqy) + € assume that w : B — X s
holomorphic (i.e. Fréchet differentiable) and supyepz |[u(¢)||x < My. Fory € U define u(y) = w(}_ ey ¥i¥5)-
Then u is (b, e)-holomorphic.

Proof. The map u : U — X defined as u(y) = u(>_,cyy;¢;) is continuous, since u : BZ — X is continuous
even holomorphic) and y — ) . _¥;¥; is continuous from U to Z by Lemma 3.2.
jeEN JI Y]

Let p = (pj)jen C (1,00) be (b, )-admissible, i.e. p satisfies (3.2). Fix z € BS C CN. Then

DIzl <D0 Iilz + D (e = Dz < Db+ (05 = 1)by < [bllagy +e < (3.4)

jEN JEN JEN jEN JEN

Therefore ; y 2j1; € Z is well-defined. Moreover, 3y z;; € BZ.

Now fix j € N and (2;)i2; € Xz Bgi. Then z; — 37,y 24, is an affine bounded (and thus holomorphic)
map from ij — BZ C Z. Due to the holomorphy of u : B — X, we obtain that u(z) = u(djen 2iYy) is
holomorphic as a function of z; € B(C which shows (ii).

For two (b, €)-admissible sequences p; and po, by definition their corresponding extensions agree on BC ﬂBC

Finally, (3.3) follows by {3~y z¢; : 2 € B5} € BY C Z whenever p is (b, ¢)-holomorphic, and the aSSumptlon
supgepz [W(e)|x < M. .

Next, we recall bounds on the norms of the Taylor coefficients.
The next lemma is essentially a consequence of the Cauchy integral theorem ([24], Thm. 2.1.2), see the proof
of Lemma 2.4 from [10].

Lemma 3.4. Let p = (p;)jen C (1,00) and assume that u : BS — X is separately holomorphic (i.e. holomor-
phic in each variable), such that supy¢ pe ||u(y)||x < My < oo. Then for every v € F the Taylor gpc coefficient
P

Oy u(y)
t, = y’/! ly=0 € X (3.5)
satisfies the bound
[tulx < Myp™. (3.6)

In Section 3.3 we will show that (||t,||x)ver € £*(F) for (b,e)-holomorphic functions. This implies that the
series ), t,y¥ € X is pointwise well-defined for every y € U. In this case the expansion converges to u(y),
as recalled in the next Lemma. For a proof see, e.g., Proposition 2.1.4 of [37]. Absolute convergence of a series
>_jen Zj in a Banach space X means ).y [|z;]|x < oc.

Lemma 3.5. Let p € (0,1), ¢ > 0 and b = (b;)jen € P(N). Let u: U — X be (b,e)-holomorphic and assume
that (||tu|| x)ver € (1(F). Then u(y) =3, cr tuy” with uniform and absolute convergence for ally € U.
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3.2. Multiindex sets

Lemma 3.5 states that (b,e)-holomorphic functions u : U — X allow representations as Taylor expansions
u(y) = > ,cr vy in infinitely many variables. For a finite subset A C F, the function a(y) := >, ca tuy”
defines an approximation to w, and for every y € U the error can be bounded by |u(y) — 4(y)||lx <
> vera lltvllx - This line of argument leads to best N-term rates, and determining suitable index sets A (pos-
sibly minimizing -, ¢ x4 [ltw]lx) is typically the first step required to prove convergence rates for numerical
algorithms. In order to obtain good bounds of the computational complexity, we aim to devise A in such a way
that the asymptotics (2.21) as well as (2.13) are satisfied. This is the topic of the current subsection.

Definition 3.6. We say that (a,)uecr C [0,00) is a monotonically decreasing sequence if v < p implies a,, > a,,
forallv, pe F.

The following assumption gathers all properties required of (a, )yecr, such that the set
A((ap)per) ={veF : a, > €}
satisfies the assumptions of Lemmas 2.10 and 2.15. This is shown subsequently.

Assumption 3.7. There exist constants Co > 0, C,, > 0, 3 > 0, § > 1, a sequence (fq)aen C (0,00) with
fa— 00 as d — oo and a set T C Ny satisfying Assumption 2.4 (i), such that the sequence (ay)yer C [0,00)
satisfies

(i) (ay)ver is monotonically decreasing (see Def. 3.6),
(ii) (ay)ver has the property
[V—Ij = ’7“13 = Gy = Gy, (37)

(iii) with a decreasing rearrangement (a})jen of (av)ver it holds

a; > C,j™” VjEN,

sup  a, <Cod™?  VdeN,
(weF: vz} (3.8)

sup ay < Cpe ¥ vdeN.
{veF :|suppr|>d}

Lemma 3.8. Let (ay)ver C [0,00) satisfy Assumption 3.7 and assume that (ay)yer € L1(F) for some q¢ > 0.
Then, for every e > 0 the set A = Ac((ay)ver) :={v € F : ay, > €} satisfies

(i) Ac is finite and downward closed,
(i) it holds
(vedAe and [plz=[vls) = peAi,
(i) it holds
d(Ae) = o(log(|Ac])) and m(Ae) = O(log(|Ae|)) as e — 0. (3.9)

Proof. Fix € > 0. Assume that v < p and p € A.. Then a, > ¢ and due to monotonicity a, > a, > € so that
v € A.. This and the fact that > ad, < oo show (i). Item (ii) is an immediate consequence of (3.7) and the
definition of A..

To show the first statement in (3.9), note that with » and C,, as in Assumption 3.7 (iii), for any dy € N and
any € > 0 (such that |A¢| > 0) it holds

veF

d(Ae) >dy = sup a, > min a, > C,|A |77,
{veF :|suppr|>do} veA.
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Moreover, we may write SUP{,cr .| suppw|>do} v < Coexp(—dofa,) for the sequence (fi)aen and Cp > 0 as in
Assumption 3.7 (i.e. fg — 00 as d — o0). Hence

d(Ae) = max{dy € N : d(A) > dp}
<max{dy € N : Cyexp(—dofa,) > Ci|Ac| >}
=max{dy € N : dofg, < —1og(C,./Co) + rlog(|Ac|)}.

For z > infyen dfy set g(z) := max{dy € N : dofq, < x}. We claim that g(z) = o(z) as £ — co. Assume on
the contrary that limsup,_, . g(z)/x # 0. Then there exists a sequence (z;),en with 2; — oo and a positive
constant C' such that g(x;) > Cz; for all j € N. For every j € N, let d; := g(z;). Then

Cxjfa; < g(wj)fa;, =djfa, <x;  VjEN,

which is a contradiction since fy, — oo as d; — oo. Hence g(x) = o(x) as  — oo. This shows d(A¢) = o(log(|Acl))
as |A¢| — oo or equivalently as € — 0.
For m(A¢) we proceed similarly. It holds for any dy € N

m(Ae) >dy = sup a, > min a, > C, |A]™”.
{veF :|v|>do} veh.

By assumption supg,cz.|y>do} Gv < Cod~% for some § > 1 and some C > 0. Hence

—log(C,./Cy) + »log(|A.|)
log(0)

which concludes the proof. (I

m(Ae) < max{dy € N : Co6~% > C.[A| ™} <

= O(log(|Ac]),

The next lemma facilitates the construction of sequences satisfying (3.7) (while leaving the asymptotic decay
properties of the sequence unchanged). For its formulation recall the set 31 = {0}U{i;+1 : j € Ny} introduced
in Remark 2.6.

Lemma 3.9. Let k € N and s > 0, let T satisfy Assumption 2.4 (i) and let T4 be as in (2.12). Let (ay)ver, C
[0,00). Define

U= (¥)jen where U

_ k if 1< I_l/ijJr <k (3 10)
|vj]3, otherwise. ’

Then there exists Ck, , > 0 depending on k and K5 such that with a, = ap for all v € F,
Shay < Y a2 T (4. (3.11)
veF veFy JEsupp v
Proof. First note that o € Fy for every v € F (cp. (2.1)). By Remark 2.7 it holds [1 +n]y, < K5(1+n) for
all n € Ngy. Fix p € F. Then for any v € F
R R 1/36{17,mln{1J—|—11J+1>k}—1} if ﬂj:k
Hj = Vj <~ R R .
i < v <1+ fjla, otherwise.
Therefore, there exists a constant C', 1, such that for every pu € Fy,
{veF:o=pl< [ Cxn(l+v).
JEsupp v

This implies the lemma. O
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The next two lemmata will be crucial to prove summability of the Taylor gpc coefficients in Section 3.3.
They are a generalization of Lemma 7.1 from [10] and Theorem 7.2 from [10], in that they consider (improved)
summability over Fj, for general k € N instead of just F;. The proofs are provided in Appendix B.

Lemma 3.10. Let b = (b;)jen € (0,00), ¥ > 0 and R > 1. Set w, := R/srVl [Tien(1+ v;)?. Let p € (0,00)
and k € N. The sequence (w,b"),cx, belongs to (P/*(Fy), iff 16]] ¢ vy < 00 and [|b]|goe vy < 1.

Lemma 3.11. Let b = (b;)jen € (0,00), ¥ > 0 and R > 1. Set w,, := RIswr¥l [Tjen(1+ v;)?. Let p € (0,1]
and k € N. The sequence (w,b”|v[!/V),cx, belongs to (P/*(Fy) iff [|bller vy < 00 and |[bl|er ) < 1.

We now provide an example of a sequence satisfying Assumption 3.7.

Lemma 3.12. Fiz k € N, let J satisfy Assumption 2.4 and let I be as in (2.12). Let o = (9j)jen C (1,00) be
such that (gj_l)jeN € (1(N) for some ¢ > 0 and additionally o; < C,.j* for some fized constants » >0, C,. >0
and all j € N. For allv € F define

k it 1< |y, <k

3.12
|vjls, otherwise. ( )

Chy =0 " where U= {

Then (cku)ver € L9%(F) and the sequence satisfies Assumption 3.7.

Proof. First we show (¢, , )ver € (4/k(F). By Lemma 3.9

PIL LD DRI LES SIS LIl | (L)

veF veF veFy JjEN

Since (Q;l)jeN C (0,1) and (ijl)jeN € ¢1(N), Lemma 3.10 implies (¢, ,,)ver € 0k (F).

Next we check Assumption 3.7. Items (i) and (ii) are immediate consequences of Remark 2.6 and (3.12). To
verify (iii) we first note that (g;k)jeN is a subsequence of (¢; ,)ver and g;k > CZFj=*F for all j € N, which
shows the first inequality in (3.8). For the third inequality in (3.8), we use Lemma 3.13 to obtain a constant Cy
such that gj_l < Coj~ 4. If v € F then U; =0 or 0; > k for all j € N. Therefore

sup Chy = HQV’<HCO ~i = Cdd) e < Cle dm

{veF :|suppv|>d} {veF: |Suppu\>d}j€N

due to d! > e~%d?. This implies that there exists a sequence (fy)qen as stated in Assumption 3.7. Finally, for
the second inequality in (3.8) we use that for all n € Ny it holds |n]y, > n/K5 by Remark 2.7. Thus with
0= infjeN 05 > 1

sup Chp = sup H 0; i< sup H Q;Lyjb* < sup H 5_1(7]5,
{veF:|v|>d} {veF: |u\>d}J€N {veF: |V|>d}]€N {veF:|v|>d} jesupp v
which equals (§'/53)=¢, This verifies (3.8) and Assumption 3.7. O

3.3. fP-summability of Taylor GPC coefficients

We now show that for (b, €)-holomorphic functions with a sequence b € ¢(N) for some 0 < p < 1, the norms
of the Taylor gpc coefficients of u belong to £7/*(Fy,) for every k € N, with Fj, defined in (2.1). This summability
is the essential property in order to verify the improved, dimension-independent algebraic convergence rate for
suitably adapted Smolyak quadratures, see Section 4. N-term approximation rate bounds for Taylor and other
gpc expansions have previously been established by several authors, we only mention [10-12] and the references
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therein. Our new contribution here is twofold: first, instead of F we consider the smaller sets Fj and in particular
Fo. As we shall see in Section 4, the set F5 is better suited for analyzing Smolyak-style quadrature algorithms,
as it quantifies increased sparsity due to cancellation by symmetry (in the Smolyak quadratures). Our second
contribution concerns a computable estimator bounding the norm of the Taylor gpc coefficients. We show that,
without loss of convergence order, it can be chosen constant on certain subsets of F. This is to be contrasted
with greedy computational schemes based on numerical solutions of knapsack problems as, for example, in [3,4].
Our new, a priori construction allows to localize the multiindex set for the Smolyak quadrature in near linear
complexity (work and memory), as explained in Section 3.1.3 of [37]. Before presenting the result we state three
lemmata required in the proof.

Lemma 3.13. Letp € (0,00) and let (t;)en be nonnegative and monotonically decreasing. Then, for all N € N

1
P

N
tv < [ S N~5.
j=1

N 2 which implies the lemma. O

Proof. Due to the monotonicity of (¢7);en it holds t3, < N=' 377, #F

The following theorem is an extension of results in [10,12], in particular of Theorem 1.3 from [10], Theorem 2.2
from [12]. Items four and five will provide explicit constructions of multiindex sets.

Theorem 3.14. Let k € N, 0 < J < oo, p € (0,1) and let the set of admissible indices I C Ny satisfy
Assumption 2.4 (i). Let u: U — X be (b, e)-holomorphic for some b € {P(N) (see Def. 3.1). For v € F define

wy = [Lien(1 +75)7.
v jEN J
Then there exists C > 0, Cy > 0 and a sequence (ay)ver solely depending on 3, b, € and ¥ such that

(i) (agp)ver satisfies Assumption 3.7 (with the set of admissible indices J),
(i) (arw)ver € C/F(F),
(iii) the Taylor gpc coefficients t, of u in (3.5) satisfy

w,,||t,,||X < CMu(lk7V Yv € Fp (313)
so that in particular (||t,||x)ver, € P/*(F).

Moreover

(iv) there exist T > 1 and 19 > 0 such that with

) . 1 . _ R k if 1<I_Z/'Jj <k
— o ¥ = T poL j2/P1yi-p = = I 3.14
chw =07, 05 :=max{T,romin{b; !, j¥PI'P o vi]s,  otherwise (3.14)
it holds (ak,,,c,;i),,ef € (Y(F) and (¢}, )ver € ep/CA=P)(F),
(v) in case ||bl|xpvy < Co, there exist 1, T2 > 0 such that we have the explicit representation
. 2] : < .
g = H max {e, - T2V — } , Uj = k it 1 = Wila, <k (3.15)
JEN |D| max{b;, 715~ /r} |vjls, otherwise.

Proof. We proceed in four steps. In the first two steps a,,, as stated in the theorem is constructed. In the third
step item (i) is shown, and finally we show (iv) in Step 4. For a constant 7 € (0, 1] (chosen subsequently in
Step 1) throughout this proof set

bj := max{b;, 715/} (3.16)



CONVERGENCE RATES OF HIGH DIMENSIONAL SMOLYAK QUADRATURE 1277

and b = (bj)jen. Then b; > b; for each j € N, and thus the (b,e)-holomorphic function u is also (b, )-
holomorphic (¢p. Def. 3.1). Furthermore, w.l.o.g. we assume M,, > 0 in Definition 3.1 (if M, = 0 then u =0, in
which case (iii) becomes trivial).

Step 1. We introduce (ay.)yer and show that the sequence is monotonically decreasing (cp. Def. 3.6) and
that it holds (3.13). Let the constant Ck, > 0 be as in Lemma 3.9. Observe that with b as in (3.16) (where
71 is to be chosen), it is possible to find constants 71 € (0,1], kg > 1, Cy > 1 and J € N with the properties

(1+n)? <Cyrll  V¥YneN, (3.17a)
and with § :=¢/3
S S ol A Shi<——m—— YW h<ivizy
=1 > > CﬁCKka:O e =7 CﬁCKJ’kK/O e 2

where e = exp(1) and
k1 := Cykge.

In the general case they are obtained as follows: first set 7y = 1. Employing ||b|| vy < 0o we choose kg > 1
with (k3 — 1) > jen b; < & — 20 where § := /3, then choose Cy such that (1 +n)? < Cywfl for all n € N, and

afterwards choose J € N large enough such that x1 ) > Ej < ¢ and the last three conditions in (3.17b) hold.
At this point we note that if -

2% b 5 r
bl|gp(vy < min ¢ —, , , : Co, 3.18
5l {3 T (Ges) 2} : (318)

then we may choose J = 1 and fix 7, > 0 so small that with b; = max{b;, 7152/} it also holds ||I~)||gp(N) < Cp.
In this case the conditions in (3.17b) are satisfied with J = 1. We will use this below to show (v).

For v € F, in the following v denotes the multiindex which coincides with v in the first J components and
is zero otherwise, and vg := v — vg. Set

K3 it j<J,
Puvsj = Sv; . .
max 4 K1, . it j>J
lvr|b;
Here and in the following we adhere to the notational convention v;/|vr| = 0 in case |[vg| = 0. Then, with
(3.17),
S 0wy = Db < (B2 =13 b+ Y puiihs —1Zb +r1 Y b +5Z—<s
JEN j=1 §>J i>J ]>J

Therefore p, = (pu.j)jen is (b, €)-admissible (in the sense of Def. 3.1). Hence, with M,, as in Definition 3.1 and
Cy as in (3.17a), we obtain from (3.6)

|| x H(l‘f‘Vj)ﬂ < M, Cl|9suppu| H pru]

jeN JjEsupp v jeN

supp v v —2v 5 o
<MC| ppvl ‘Hn 2Jl_[maux{m, ij}

j=1 3>J
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<M, Cy ! H Ko o H max{ ov; } . (3.19)

s Cyko Cﬁ/i()|l/p|b

=:fu

We point out that x1/(Cyko) = e by definition of .
We now prove that f, is monotonically decreasing in v. For j < J and with e; := (J;;)ien, since kg > 1 we
have fy e, < malfy < fu. Next, fix j > J. Note that

max Q’L = max < e, = 0v; (3.20)
Cyorolvr|bj Cokobj (v + Dgisg.ingy Vi)

is monotonically increasing as a function of v;, and is always larger or equal to e. Therefore

-1 __ Swi B v
o0, ) } max {e, Cﬁ,{gwﬂbi} <o ( 1 )I Fl .

@ < max\ e, = o < 1+ —
fl’ OﬂHO(|VF|+1 bJ i>J max{e,¢~}

vr|
Coro(lvr|+1)b;
For all v € F define ay,, := fy with © as in (3.15). Note that & < v for all v € Fj. Due to the monotonicity
of (fu)ver it thus holds ay, > f, for all v € F,. Together with (3.19) this shows (3.13).
Finally we point out that if [|b]|¢» ) < Co, then as explained after (3.18), we can choose J = 1 so that

o0 oY
—f, = 3.21
f gmax{ " CykolD| max{b;, 115~ 2/1)}} (3.21)

is of the type described in (v).
Step 2. We now show (ax . )uer € P/F(F). By Lemma 3.9 it holds

doaly =31t < 3 e T+,

veF veF veFy jeN

In the following we use that by Stirling’s inequalities n™ < €™ n! and thus

lv| |
W gy,

Vl/
Set Fg :={vg : v € F}, G € {E,F}. Employing the definition of f, in (3.19), d; := C’f(/ﬁkCg/ierj/(S and

dj =4 J-1, 7 € N, we get

ST are < Y cgmerelezmerel gk T (1 + vy)

veFy veFy jeN
J—1 ~lvFl pp/k ]
< Y O ORI [T +v)
veF jeN
J—1 lv|
Jo1 ~luslp/k V|
<Cion 2. ko [Ta+wmy) > |5 11
REFENF i=1 veEFrNFi JjEsupp v

p/k

Cil? Corobs \

JjzJ
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J-1 ! p/k
<oyl Y /-;O'”"’/’“<H(1+ui)> > (V. d”) [T+

REFENF =1 veEFrNFi j=>J

J—1 |I/|' ~ p/k
= Ok S wg Pt <H(1+ui)> > (V!'d"> [Ta+v)]. (3.22)

rREFE i=1 vEFi JeN

We have [|(d;)jenllerny < C|[b]ler(v) < 00. Furthermore, due to (3.17b) it holds

> bi<L

j>J

- cr/r Cg&oe
1(dj)jenller ey = —22k 2

Therefore, both sums on the right-hand side of (3.22) are finite according to Lemmas 3.10 and 3.11.

Step 3. We prove that (aj,.)vcr satisfies Assumption 3.7.

Since (fy)ver is monotonically decreasing, and since v < g implies ¥ < i (¢p. (3.10)), also (ak,p)ver is
monotonically decreasing.

To see (3.7) assume that [v]5 = [p]5. By Remark 2.6 we then have [v]5, = [p]5, . By definition of &, this
implies ¥ = fi and therefore ar, = fo = fo = arp-

It remains to show Assumption 3.7 (iii). Denote e; = (0;;)ien. The sequence (ag.e,);j>s is a subsequence of
(akw)wer- By (3.19) and (3.16), it holds (since b; — 0 as j — 00)

—k
0 > Cbl > P,
Cﬁliobj

ake; = fo; = fre; = max {e,

This shows the first inequality in (3.8) with » = 2k/p > 0. ~
For the third property in (3.8) we use b € ¢7(N), so that by Lemma 3.13 we have b; < C3j~!/? for some
Cj < 00. Then for d > J with (3.19) and due to the monotonicity of (f,),cr

sup app < sup fu
{veF :|suppr|>d} {veF :|supprv|>d}

< jﬁ] <(’W) by < ﬁ (Cﬁ(dé— J)) i/

C-Coornld — J)\ &7+ d
< <b’9“0§()) 44 H jTUP < ((J — 1)!>1/p0ddd(d!)—1/p,

where C = (C;Cy)/d. By Stirling’s inequality, d! > d? e~ for all d € N. Therefore, there exists a constant C' > 0
such that for every d € N holds with c=1/p—1>0

sup app < cdq—el,
{veF :|suppv|>d}
This shows the third property in (3.8).
Finally, we show the second property in (3.8). By Remark 2.7 it holds |n]y, > n/Kj5 for all n € Ny. Using
that © > |v|5, and that (f,),er, is monotonically decreasing we get

Sup g, = sup  fp < sup  fly),, < H o [[e /%
{veF:|v|>d} {veF:|v|>d} {veF:|v|>d} I €.7-' |u\>d} Sy

< (min{ﬁo, e}l/Kj) -
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which shows the second property in (3.8).
Step 4. We show (iv). By definition ay , = fz and ¢, = 0~” where

0; = max{T, 7y min{bjflajwp}}lip

and the constants T' > 1, 79 > 0 are still at our disposal. Lemma 3.9 gives

D okt < 3 e O L0+ )),

veF veFy jEN

FixT € (1,min{ﬁé/(1_p),2}). Let 79 € (0,1] be so small that max{T, 7'05]._1} < T for all j < J. By (3.17b) we
have l~)j = max{b;, 7 ?/P} < 1/2 and thus l;j_l >2>T for all j > J. Due to 79, 71 € (0, 1] we get

0; = max{T, 1o min{b;l,jwp}}lfp < min{b;l,Tfljwp}l*p = l~)§'71 Vi > J.

Then by definition of f,, in (3.19)

supp v Il T1-pP\ "7 C, O\ Y
Suwibe Y ol ( T1 e HM) I (S5 2l)

veF veFy 1€Esupp v j=1 j>J

Using once more n! > n" e~ ", similar as before we get with d; := (Cyrg e /0)b" %y for j € Nand d = (d;) jen

J=1 g o v v
Sower < X [ T1 v ! H(Tmf) I (“557)

veF vEF i€supp v e j=1 §>J

\suppul 77\ M |l 0 Al supp ]
<| Y g H1+uj - > AR (1+v)|. (323

peNy ! vEF), jeN

By (3.17b) we have

YIUIED PR

JeN JjzJ
Therefore both sums in (3.23) are finite by Lemmas 3.10 and 3.11.
Finally, since (b;);jen € P(N), with g;l = max{T, 1 min{b;l,jQ/p}}l_p, we have (g;l)jeN € »/(1=P)(N) and
infjen 0j > 1. Therefore (¢ ,)ver € ¢p/(A=P)(F) by Lemma 3.12. O

Remark 3.15. Whenever b € ¢?(N) is a positive sequence, and 71, 72 > 0, then the sequence (ay, , )ver defined
in (3.15) belongs to £7/%(F). This follows by similar arguments as used in the proof of Theorem 3.14.

4. SMOLYAK CONVERGENCE RATES

Hereafter the main results of this paper are established. First, we show some elementary properties of the
Smolyak quadrature operator. In particular it will be verified that any multivariate monomial y* with v € F\F;
is integrated exactly. Subsequently the dimension-independent convergence rate of 2/p — 1 for the Smolyak
quadrature with nested quadrature rules in terms of number of number of quadrature points is given for (b, ¢)-
holomorphic functions with b € ¢?(N) for some 0 < p < 1. For non-nested quadrature points, nearly the same
convergence rate is obtained. Similarly, we obtain the same algebraic convergence in terms of the cost measure
(which counts the number of required floating operations) introduced in Section 2.4.
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4.1. Properties of the Smolyak quadrature
Lemma 4.1. Let A C F be finite and downward closed. Then

(i) forv e F it hOldS QAy = Quer:u<r¥”,

(i) QaP = [, P( (y) for all P € span{y” : v € A},
(iii) if x0,0 = 0, then QAP Jy P(y)du(y) =0 for all P € span{y” : v € F\Fa},
(iv) if (2.3) holds for some ¥ > 1, then forallv e F

Qay”| < T +wy)"*.
JEN

Proof. Fix v € F. Due to Q,y* = f_ll y* dy/2 for all n > k we have (&®,en(Qpu; — Qu; 1)) (y”) = 0 whenever
there exists j € N such that ;1; > v;. Thus

QuryY = Z ®(QM - Qﬂj—1) Yy’ = Z ®(Q#j - Q#_;’—l) Yy,

neA \ jeN {pneA: p<v} \jeN

which shows (i). Next observe that due to the convention @_1 =0

> (®@n -] -®Y @ -en-Qa -

{pneF : p<v} \JjeN j€EN i=0 jEN

Therefore, if v € A then by (i) it holds Qay” = Quy” H]EN Qu, yj”f = [, y” du(y).
For (111) consider the univariate quadrature operator @,, : Co([—1,1]) — R, employing n+1 distinct quadrature

points in [—1,1]. The monomial y — y satisfies Q,y = f71 ydy/2 = 0 for all n € Ny: this is true for n > 1, as
stated at the beginning of the proof. It is true for n = 0, because Qoy = x0,0 = 0. For v € F and p € F\F;
arbitrary there exists j with p; = 1 and thus

Quy“ = ®QVj y“ = H QV] 1= /Uy“ dﬂ(y),

JEN JEN

which by (2.5) gives Qay* = 0 = [, y” du(y) for all p € F\Fo.
For item (iv), fix v € F. By (i) and (2.3) we can bound |Qay”| by

Vi

S TL@u, — Qu-0)y| < ST +m)” +12) =TT (140 +47) .

p<v jeN p<v jeN 7J€EN =0

So we need to show Y i ((1+14)? 4+i”) < (1+m)Y*L. The statement is true for m = 0. For the induction step
we get Zm+1(( +4)7 +4i%) < (1 4+m)? L+ (24+m)? + (1 +m)?. Tt suffices to show that ((1+m)?*! + (2 +
m)? + (1 +m)?)/(24+m)? < 2+ m. The latter is equivalent to ((1 4+ m)/(2 +m))?(2 +m) < 1 + m. This is
satisfied because ¥ > 1. O

Remark 4.2. Let —o0o < a < b < 0o and let  be a probability measure on (a,b) equipped with the Borel
o-Algebra. The idea of Lemma 4.1 (iii) is generalized as follows. Set x¢,0 := ffydn(y). Then the one point
quadrature rule Qo : f — f(xo0,0) W.r.t. the measure 7 is exact on span{1l,y}: it holds Qpl =1 = ff 1dn(y) and

b
Qoy = x0,0 = [, ydn(y).
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4.2. Convergence rates

We now turn to the proof of Theorem 2.16. Due to Lemma 3.3, Theorem 2.16 is implied by the following,
stronger statement.

Theorem 4.3. Let X be a Banach space, U = [—1,1]N and let u: U — X be (b, €)-holomorphic (see Def. 3.1)
for a sequence b = (b;)jen € P(N) and some p € (0,1). Let the quadrature points x in (2.6) satisfy the bound
(2.3) for some ¥ > 0, and let the set of admissible indices I C Ny satisfy Assumption 2.4.

Then for any § > 0 there exists a constant C' such that

(i) with (ag,)ver as in Theorem 3.14 for ¥ =¥ + 1, for every e > 0 the set A, := {v € F : ay,, > €} is
finite and downward closed and (cp. (2.7))

< Clpts(A,, x)|" (G0 (4.1)
X

/ ul(y) du(y) — Qa.u
U

(it) with (ca.u)ver as in Theorem 3.14 for 0 := 9 + 1, for every € > 0 the set A, := {v € F : Co, > €} s
finite and downward closed, and (cp. (2.7))

as well (cp. (2.20))

< Ceost(A)~(F=1)+0, (4.2)
X

/ u(y) du(y) — Qa.u
U

< Clpts(Ae, x)|~(G-2)+ (4.3)
X

/ u(y) du(y) — Qa, v
U

(i) if the points x are nested, then (4.1) and (4.3) remain true for § = 0, and Assumption 2.4 (ii) (exponential
increase of the admissible indices) on J can be dropped.

as well (cp. (2.20))

< Ccost(A€)7<%72)+5, (4.4)
b's

/ u(y) du(y) — Qa.u
U

We refer to Remark 5.5 for more details on the concrete choice of the set J.

Remark 4.4. The convergence rate for Ac((cy, )ver) in Theorem 4.3 (ii) is off by a factor 1 compared to the
index sets Ac((az,)ver) in Theorem 4.3 (i). In Lemma 1.4.19 of [37] we give an example which shows that this
is not due to a rough estimate, but the index sets Ac((cy, )uer) are in fact suboptimal in general. However,
in our numerical experiments we shall see that the index sets Ac((cy,)uer) seem to perform better in practice
than Ac((a2,.)ver), see Figure 9.

Proof of Theorem 4.5. We start with (i) and let Ac = Ac((a2,0)ver), where (az,)ver is as in Theorem 3.14

By Theorem 3.14 (iii), the Taylor gpc coefficients (t,),er C X of u satisfy (||ty|x)ver € P(F) — (1(F).
By Lemma 3.5, u(y) = Y,z tuy” converges absolutely in C°(U, X). Fix ¢ > 0. As Qa, : C°(U) — X is a
bounded linear operator, by Lemma 4.1 (ii) and (iii)

Qrnu=Qn Y by’ = tQry" = /U >ohyYduly)+ Y 6QaYY, (4.5)

veF vEF veEA, veFa\Ae

where the latter sum is absolutely convergent in X. Lemma 4.1 (iii) also implies [, u(y)du(y) =
Jo Zover, tvy” du(y). Using Theorem 3.14 (iii) and Lemma 4.1 (iv) we get that there exists a constant C' > 0
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such that for every € > 0

’ / u(y) du(y) — Qa,ul| < / Sotyrduw)| + > tlxI@Qay”]
v X U ver\A. ¥ VEF\A
< 0 tlixlyleows | 1+ [[ (v + 1)
veFa\Ae jEN
<SC > an<C ) ag.. (4.6)

veFa\Ac {VvEF a2, <e}

Exploiting (az.)ver € £/%(F) allows to bound the last sum by C|A.|'~2/P. This follows by rearranging the
sequence (az,,)veF as a monotonically decreasing sequence (aj);en, so that Lemma 3.13 gives a} < Cj —2/P and
consequently Y.y aj < C [y a ?/Pde < ON'2/p,

In case the points are nested we have |pts(A¢, x)| = |A¢| by Lemma 2.2, which shows (4.1) for 6 = 0, and
thus the statement in (iii) in this case. If the points are non-nested, then we use that for any § > 0 it holds
Ipts(Ae, x)| = O(|Ac|*+9) as € — 0. This is an immediate consequence of Theorem 3.14 (i), Lemmas 3.8 and 2.10.
This shows (4.1) also for non-nested points.

For (4.2) we argue similarly by invoking Theorem 3.14 (i), Lemmas 3.8 and 2.10.

Next we prove (ii), i.e. in the following Ac = Ac((co,)ver) = {v € F @ ¢y, > €}, where (c2,)ver is as in
Theorem 3.14 (iv). As in (4.6) we obtain

Since (2, )ver € ¢p/CA=P)(F) and (GQJ/CQ_,'I/)Vef € (1(F) by Theorem 3.14 (iv), Lemma 3.13 implies

For nested points, Lemma 2.2 then implies (4.3), which also shows (iii) in this case. In order to prove (4.4)
as well as the estimate (4.3) for non-nested points, we use the fact that (cy, ),er satisfies Assumption 3.7 by
Lemma 3.12, so that we can employ Lemmas 3.8, 2.10 and 2.15 as above. O

/ u(y) du(y) — Qa, v
U

—1
<Cc > a27u§0< sup 02,u> > asucs,

X vEF\A. vEF\Ae HEF2\A.

<C sup cy, < CAJ7HP72
X veF\Ac

/ u(y) du(y) — Qa, v
U

Remark 4.5. In the papers [20, 22], rather than (b, )-holomorphy, a requirement of the following type is
presumed:
u is separately holomorphic and uniformly bounded on some polydisc A7
BS C CN, where p; > 1 for all j € N and (p}l)jeN € ?(N), pe (0,1). (4.7)

In these references, under assumptions similar to (4.7), dimension-independent convergence rates (1/p — 1) and
(1/p — 1)/2, respectively, are established (see [20], Cor. 5.9, [22], Assumption 4.2, Thm. 5.5 for the precise
assumptions and statements).

Let u be (b,e)-holomorphic for some b € ¢P(N) and some p € (0,1), € > 0. Let x > 1 be so small and
J € N be so large that (k —1)>°;cyb; + ;5 ;b < e. This is possible because [[b]|s1(w), [|bllerv) < 00. Set
p; =k for j < J and p; := max{ﬁ7b§71} for j > J. Then > cnbj(p; —1) < 3 ion(h — Db + >0, ;0 < e.
Thus (b, €)-holomorphy implies (4.7) with this p. Note that (pjfl)jeN € ¢¢/(=P)(N) and p/(1 — p) > p. On the
other hand, (4.7) implies (b, 1)-holomorphy, with b; := (p; — 1)~" and (b;);en € P(N): if p is arbitrary with
> jeN b;(p; — 1) < 1, then b;(p; — 1) < 1, and thus (p; —1)/(p; — 1) < 1 implying p; < p; for each j € N. Since
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u allows a bounded holomorphic extension to BS by (4.7), it also allows a bounded holomorphic extension to
Bg C BS. Hence (b, €)-holomorphy is more general than (4.7).

In summary, Theorem 4.3 improves the dimension-independent convergence rates 1/p—1, (1/p—1)/2 for the
anisotropic Smolyak quadrature proved in [20,22] to 2/p—1, i.e. by more than a factor 2 and 4, respectively, and
under weaker assumptions regarding the domain of holomorphy (namely (b, )-holomorphy rather than (4.7)).
We explain this in more detail in Examples 5.2 and 5.3 ahead.

5. NUMERICAL EXPERIMENTS

This section reports on the numerical testing, which we have performed for the presented algorithm. More
details on the construction of the index sets will be given in Section 5.1. We shall see, that there is a large
preasymptotic range, which is addressed in Section 5.3. Afterwards, in Section 5.4 we consider the integration
of two real valued test functions.

We now introduce the two test integrands and discuss the proven convergence rate of the Smolyak quadrature
implied by Theorem 4.3. Additionally, we compare it with the results of [20,22].

Remark 5.1. Some of the convergence rates presented in Theorem 4.3 only hold up to some (arbitrarily small)
0 > 0. Throughout what follows, the mentioned convergence rates are usually understood up to § > 0. We omit
to state this at every instance.

Example 5.2. Let p € (0,1) and assume that b = (b;)jen C (0, 00) satisfies ||b[|gc vy < 1 and |[|b| ) < 00.
Define

ui(y) = [[Q+buy)™" yel. (5.1)
JjeN
(i) Fix € € (0,1 — [[bllg=w)) and let p = (pj)jen C (1,00) be (b,e)-admissible, i.e. >0, ybi(p; — 1) < e
(cp. Def. 3.1). Fix z € B C CN and set 6 := & + [|b||gqv) < 1. We can find a constant Cs such that for
0 <z <¢ it holds log(1/(1 — z)) < Csx. Since bjp; =bj(p; —1) +b; < < 1, we get

lur(2)] = |J] A+ bz) 7 | < [ (= bjpy) ™ <exp [ Cs > bjp;
jEN JEN JEN
The last term is finite (independent of p) because >y bjp; = > ey bj(pj—1)+2_en by < e+l < o0
Therefore u allows a well-defined uniformly bounded extension to Bg. Clearly u(z) is holomorphic in each
zj € B;)Cj. Continuity of U 3 y — w1 (y) is easily checked, and thus w is (b, €)-holomorphic. By Theorem 4.3,
the asymptotic convergence rate of the Smolyak quadrature is at least 2/p — 1.

(ii) Consider now assumption (4.7), i.e. the requirement which was similarly presumed in [20,22]. We wish to
find p = (p;);en such that u allows a uniformly bounded holomorphic extension onto the polydisc BS. In
view of Remark 4.5, the sequence p should be chosen such that (pj_l)jeN € P(N) for some possibly small
p > 0.

For 0 <z <1 we have 1/(1 —z) > 1+ z and furthermore log(1+ ) > x/2, which gives —log(1 —z) > z/2.
Thus for z := (—p;/2)jen € BS

ur(2)] = [T (1 = bjp;/2) ™" = exp | = log(1 —b;p;/2) | > exp %ijm

jeN jEN jEN
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Hence p must satisfy ZjeN p;b;j < oo. This implies p}l = b;/c; for some sequence (c;);en € ¢*(N). Suppose
that (p{l)jeN € (P(N) for some 0 < p < 1. Then with p:=p/(1+p) < 1

1—

sy () as (2 ()" (2 - > (Y

jEN jEN jEN jEN jEN

1—

D¢

jeN

and we obtain b € (?(N). Assuming that p > 0 was an optimal choice, in the sense that b € ¢?(N) but
b ¢ ¢4(N) with ¢ < p, it must hold p = p/(1 + p) > p, and therefore p > p/(1 — p). Hence (pj_l)jeN,
can at best be in ¢#/(1=P)(N). One possible choice achieving this is p; := max{/f,b?_l}, with £ > 1
fulfilling £[|b]| g~y < 1. One checks that u then allows a uniformly bounded extension onto BS and it holds
(pj_l) € (P(N) with p := p/(1—p). The statements in Corollary 5.9 of [20] and Assumption 4.2, Theorem 5.5
of [22], then essentially give the convergence rates s; :=p~!—1=1/p—2and 55 := (p~1—1)/2 =1/(2p)—1.
In comparison, Theorem 4.3 gives the convergence rate 2/p — 1 = 2s1 + 3 = 4s5 + 3.

Example 5.3. Let b= (b;);jen C (0,00) satisfy ||b[[s ) < 1, and define

-1

us(y) = [ 1+ ijyj yeU. (5.2)
JEN

With u(z) := 1/(1 + 2) we have ua(y) = u(}_;cyy;b;)- Hence, Lemma 3.3 implies u to be (b, e)-holomorphic
for any fixed e € (0,1 — [|b][ 1 (w))-

Similar as in Example 5.2, the corresponding results in Corollary 5.9 of [20], Assumption 4.2, Theorem 5.5
of [22] give the convergence rates s; = 1/p — 2 and s3 = 1/(2p) — 1, while Theorem 4.3 implies the convergence
rate 2/p — 1 = 2s1 + 3 = 4s5 + 3 in terms of the number of quadrature points.

Remark 5.4. Differentiating u1, ug in (5.1), (5.2) for some v € F we find

;!ayu1(y)|y=0 = (—1)| b and Jayuz(y)b:o = (—1)| ‘7b .
Thus the modulus of the Taylor gpc coefficients of uy, us agree with the sequences in Lemmas 3.10 and 3.11
(for 9 =0 and R =1).

5.1. A priori construction of quadrature rules

We consider two different types of quadrature points: sections of a Leja sequence serve as an example of
nested quadrature points, and the Gauss-Legendre points will be used as an example of non-nested quadrature
points. To construct a quadrature rule for (b, e)-holomorphic functions, throughout Section 5.1 the sequence
b = (bj) en in Definition 3.1 is assumed to satisfy

bj=0j""  VjeN, (5.3)

for some fixed values of 6 € (0,1), 7 > 1 and a constant C'. Then b = (057") en € ¢P(N) for any p > 1/r.

5.1.1. Leja quadrature

So called Leja sequences provide nested quadrature points which possess polynomial bounds on the growth
of the Lebesgue constant. We use the following construction given in Section 3 of [8]. Set ¢y := 0, 1 = T,
o := /2 and

o QOnJrl

Pant1 = 5 P42 = Qo1 + T Vn > 1.
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Now let x,, := cos(¢,) for all n € Ny. For every n € Ny and j € {0,...,n} we define XleJa =0, XleJa =1,

ijza = —1 and Xlejja := Xp for j > 3. As shown in Theorem 3.1 of [8] there holds a bound of the type (2.3),
also see [5,6]. This yields nested one dimensional quadrature points (cp. Def. 2.1).

Theorem 4.3 proposes two strategies to determine sets of multiindices A, providing proven asymptotic con-
vergence of the Smolyak quadrature. First, let (¢2,)uecx be as in (3.12) with ¢; = max{T, 79 min{bj_l,jwp}}l*p
as in Theorem 3.14 (iv). Here the constants T > 1 and 79 > 0 are in practice unknown. We simplify this by
setting o; = b%~". With J = Ny in (3.12) and with (5.3) we arrive at

. 2 if vi=1
5 9i—)(1=P)7; h D = J 5.4
C2v g( i) where Vi v; otherwise. (54

Note that J = Ny satisfies Assumption 2.4 (i), but not Assumption 2.4 (ii). Due to the nestedness of the univariate
points x, Theorem 4.3, item (iii) is applicable. With A.((&; ,)ver) ={v € F : &, > €}, Theorem 4.3 suggests
the convergence rate 2r — 2 for (b, £)-holomorphic functlons where b is as in ( ) Due to

{VE]'-Z62#26}:{1/6.7:25;’”263}

for any s > 0, the choice of exponent 1 — p in (5.4) is irrelevant for the definition of the index sets A.. Thus we
set

_ 2 if vi=1
leJa — Qi) h 0. — J 5.5
Cov g]( i) where Yi {Vj otherwise (5-52)

and
A((53)er) ={v € F i (c53) > e} (5.5b)

Next we employ Theorem 3.14 (v) to construct a second choice of indexsets. Simplifying (3.15) by choosing
1 =T2 =1, we get

—0; 2 if v;=1
16_]3. . h S ! 56
: Jll{max{ BT _T} where Vj {Z,j otherwise (5.62)

and
Ac((@)ver) ={v € F : agl > e}, (5.6b)

In this case Theorems 4.3 and 3.14 (v) imply the convergence rate 2r — 1 for the Smolyak quadrature, provided
that 6 is small enough depending on u (and provided that the above choice of 71 = 75 = 1 was viable according
to Thm. 3.14 (v)).

5.1.2. Gauss-Legendre quadrature

For every n € Ny denote by (x57;"")—, the n+ 1 unique roots of the nth Legendre polynomial in the interval

[—1,1]. The one dimensional quadrature @Q,, in (2.2) then integrates exactly all polynomials of degree 2n + 1 as
is well-known. With 3= {29 —1 : j € Ng} and 3, = {0} U{27 : j € Ng} (¢p. Rem. 2.6 and note that J satisfies
Assumption 2.4), set

gauss — H 9] 2r[u7j3+ (57&)
JjEN
and
Ac((B T ver) ={v € F 1 (5,7) = €} (5.7b)

This definition deviates from the formula in (3.12): the factor 2 in the exponent in (5.7a) accounts for the fact
that @, integrates exactly polynomials of degree 2n+1 (and not just n+1). The sets in (5.7) can be considered



CONVERGENCE RATES OF HIGH DIMENSIONAL SMOLYAK QUADRATURE 1287

as a heuristic choice here, but we also refer to Section 5.1.1 from [37] which provides a justification for this
definition.
For the second choice of indexsets suggested by Theorem 3.14 (v), we similarly define

suss 20vla. T
a5%> = H max {e, 2|LJ+T} (5.8a)

jEN v]s, 105~

and
Ae((agifss)uef) ={veF: a%ifss > €} (5.8b)

5.1.3. Decay of the Taylor GPC' coefficients

Consider the two sequences (clzjl,a)yef and (aéﬂf)ue; from Section 5.1.1. By Lemma 3.12 and Remark 3.15
it holds (clzjf)uef € (P/2(F) and (alfl,a)yef € (P/2(F) for any p > 1/r. Denote by (c5 ;)jen and (a3 ;)jen two
monotonically decreasing rearrangements. By Lemma 3.13, for any § > 0 there exists a constant C' such that
for all j e N

3 < Ccj=2rte and as ; < Cj=2r+e, (5.9)

Figure 3 depicts the decay of these sequences for different values of r and 6. The rates in (5.9) are in general
not obtained in Figure 3, as there appears to be a large preasymptotic range for larger 6. Decreasing 6 improves
the situation in the plotted range of j. For very small , the rates come close to the ones predicted by (5.9).

By Remark 5.4 and by definition of clfua , it holds [t,| = (cg’f) for all v € F, for the Taylor coefficient
Oyu1(y)|y=o/v! of the function u; from Example 5.2. Similarly, by Theorem 3.14, it holds ||, [|x < C’ag?f
for the Taylor gpc coefficients (t,),c7x C X of any (b, e)-holomorphic function, provided that ||b|| ) is small
enough as stated in Theorem 3.14 (v). Figure 3 suggests that there is a preasymptotic range, where the norms of
the Taylor gpc coefficients decay slower than implied by Lemma 3.13 and the fact that (||t, || x)ver, € P/%(Fp)
as stated in Theorem 3.14 (iii). Since the proof of Theorem 4.3 heavily relies on this decay (for k& = 2), we

expect to have a range of preasymptotic convergence with subpar convergence of the Smolyak quadrature.

5.2. Quadrature algorithm

For the convenience of the reader we now briefly summarize our algorithm to approximate the integral of a
(b, £)-holomorphic function w : U — X (¢p. Def. 3.1):

(i) Choose (univariate) quadrature points x = ((xn;)j—o)nen, € [~1,1], such that the norms of the
corresponding univariate quadrature rules are polynomially bounded according to (2.3).

(ii) Choose a suitable set 3 C Ny of admissible indices. In case the quadrature points are nested (see
Def. 2.1), one can simply set J = Ny (¢p. Thm. 4.3 (iii)). For non-nested quadrature points, J should
satisfy Assumption 2.4, we can choose for example J = {0} U{27 : j € Ny} (see Rem. 5.5 for more details).

(iii) Using J from (ii) and the sequence b = (b;);en from Definition 3.1, define a sequence (a2, )ver (or
(c2,0)ver) via the formula provided in Theorem 3.14. For our numerical experiments we simply set the
unknown constants T', 79, 71 and 75 in Theorem 3.14 to 1, see the formulas in Section 5.1.

(iv) Given € > 0 determine A, = {v € F : az, > 0} (or Ac = {v € F : ¢z, > 0}). This can be achieved in
almost linear complexity as explained in Section. 3.1.3 of [37] (under certain assumptions including b to
be monotonically decreasing).

(v) Determine all combination coefficients (cz_ . )ver in (2.5).

(vi) Evaluate the integrand u at all points in pts(Ae, x), see (2.7).

(vii)) Compute Qa u using (2.4) and (2.5).
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FIGURE 3. Decay of monotonically decreasing rearrangements (a3 ;)jen and (c3;)jen of
(alﬂf),,e}- and (cl;jj),,e}- in (5.6), (5.5). In all cases, the asymptotic algebraic decay rate is
2r — § for any § > 0 as stated in (5.9). (A) (algf),,e]; r = 2. (B) (alzjf),,ey; r=3.(C)

leja leja
(ca)wer, v =2. (D) (e33,)ver, r =3.
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Remark 5.5. Theorem 4.3 provides error bounds either in terms of the number of quadrature points (i.e. the
number of required function evaluations) or in terms of the cost quantity defined in (2.20). The following table
summarizes which parts of Assumption 2.4 the set J needs to satisfy in order for our convergence theory to
hold:

Nested points Non-nested points

nr. of points Assumption 2.4 (i) Assumption 2.4 (i), (i)

cost Assumption 2.4 (i), (ii) | Assumption 2.4 (i), (ii)

That is, Assumption 2.4 (ii) is always required, except for the case where we have nested points and measure
the error in terms of the number of function evaluations. As mentioned before, a natural choice for J is J =
{0} U {2’ : j € Ng} in case Assumption 2.4 (i), (ii) has to be satisfied, and J = Ny if only Assumption 2.4 (i)
has to be satisfied.

Remark 5.6. Above we assumed given quadrature points x = ((X’ﬂ,j)?:O)TLGNo' Some quadrature rules only
provide univariate quadrature points for certain but not all n € Ny. For example, the Clenshaw-Curtis quadra-
ture is given through xo,0 = 0 and
Jm , :
X2k, j = COS <2k> s RS {0,...,2k}, ]feNO

Thus (Xn,;)}—o is only defined for n € {0} U{2* : k € Ng}. Such a quadrature rule still fits our setting, namely
by setting J := {0} U{2* : k € Ny} in the above algorithm: As explained in Section 2.3 (see in particular (2.5)
and Lem. 2.8), the algorithm then realizes a quadrature rule Qx, = Z{ueAe a0 A0} SA.»Qu that is a linear
combination of tensorized quadrature rules @, = &) jen @u; for multiindices v with v; € J for all j € N. All of
those tensorized quadrature rules ), are well-defined.

To formally satisfy the requirements of our results, one can simply “fill in” the missing quadrature points by

defining (Xn,j)?:o for instance as the Gauss points whenever n € Ng\J. This has no effect on @4, since it does
not change (), for multiindices v with v; € J for all j € N.

5.3. Preasymptotic behaviour

In the range shown in Figure 3, for values of the scaling parameter 6 € (0,1) close to 1, the observed
convergence rates appear to contradict the predicted asymptotic rates as noted in Section 5.1.3. To understand
this, we investigate in more detail the decay of the (modulus of the) Taylor gpc coefficients ([[;cn(057")" Jver
of the function in Example 5.2 for b; = 057"
can be written as

and some fixed values of § and r (¢p. Rem. 5.4). This sequence
0"~ )ver  where  p=(j)jen. (5.10)
We partition Fy, k € {1,2}, into subsets of m-homogeneous multiindices
Fr={veF : |v|=m} and Fr={veF : |lv|=m} (5.11)
For k € {1,2} denote
(Z1:j)jen, a decreasing rearrangement of (8! p=""),cr, (5.12)

and for m € N
(Tk;msj)jen, a decreasing rearrangement of (0™ p™ ") cxm. (5.13)

The next lemma describes the asymptotic decay of these sequences.

Lemma 5.7. Fiz k, m € N and 6 € (0,1), » > 0 in (5.13). For every 6 > 0 exists C > 0 (depending on ¢, k,
m, 0 and r) such that
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VieN: 2, <Cji M and  apy < CjRT (5.14)

Proof. By Lemma 3.10, ((0p™")")yer, € (Y/*)F(F). Lemma 3.13 implies (5.14) for (w,;)jen. Since
(Tk;msj)jen s a subsequence of (xy.;) en, also the second bound in (5.14) is satisfied. O

In Section 5.3.1 we will show that certain logarithmic factors are involved in the decay of (€1.m.;);jen, so that
the algebraic rate r in (5.14) (for k = 1) is observed only for large values of j. The case k = 1 is more relevant
for stochastic collocation (i.e. interpolation rather than quadrature), but the analysis in Section 5.3.1 explains
to some extent the preasymptotic behaviour of these sequences. In Section 5.3.2, we establish a formula for a
lower bound of the sequence (z2.;)jen (i-e. k = 2). A plot of this lower bound (see Fig. 6) will show that (for
large ) the asymptotic regime is reached only for very large values of j.

5.8.1. Decay w.r.t. FI*
Throughout the following, log denotes the natural logarithm.

Lemma 5.8. Letr >0, p = (j)jen and m € N. For R > 0 set
|
A= >
{veF™:p~"v>R-"} ’

Then Ap(R) =0 if R <1 and with ¢o :=1—1og(2) € (0,1) for all R > 1

i m—1 .
] 1 ¢
7.
=0

Proof. For R € [0,1) the sum is over the empty set, so let R > 1 in the following. Then

v|! . ) T -
Apn(R) = Z %: (zl,...,@m)ENm:HleZRT ,
{veF:|v|=m, p~v>R-T} j=1
since for every v € F with |v| = m, there exist exactly |v|!/v! elements (i1,...,4,) of N™ such that |{j €

{1,...,m} 1 i; =1} =y for all | € N. With N := |R]| € N we have

N

-3

j=1

N m
Apar(R) = (i, vim) : 5[5 = R}
j=1 =1

{(i1y-yim H "> (R/j)” ZA (R/34).

(5.16)
To prove the upper bound in (5.15), we proceed by induction over m. For m = 1 it holds i7" > R™" iff
i1 < R, so that A1(R) = |R] and the estimate is satisfied. Next, employing (5.16) and the induction hypothesis

N m—1 . N m-—1
- R log(R/J> 1 Z Z 1 log R/J
Am 1 < 9om 1 § = E ! — om=—
i j=1 J i=0 i! j=1 i=0 !

For any ¢ € N and all z € [1, R]
d (log(R/x)i) _ —ilog(R/x)"! —log(R/x)" <

dz T 2

Therefore f(z) :=2m~15"" "log(R/z)"/(x - i!) is monotonically decreasing for z € [1, R]. Thus Zjvzl ) <
1)+ flR f(z) dz, giving
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m—1 Rm—1 4; 1 lo (R)
1 log(R/j)" 2' log(R/z) ¢ '
m—1 m—1 [
22 > <y [5G e = )+ z / (o8() )" dy
=0 =0
m—1 m—1
_ log(R)* 1 log R)H! log
=om~t 4 2m—1 <om 5.17
R L

which concludes the proof of the upper bound.
For the lower bound, the case m = 1 follows by Rcy < |[R| = A;(R) where ¢o = (1 —log(2)) < 1/2. With
(5.16), due to the induction hypothesis

N N m—1
Auir(R) =Y Au(R)j) 2 R 2 M

Jj=1 Jj=

Note that for |[R] =N >1

N N+ 29 R
Zf,zu/ fdle—/ —der/ —dz = ¢y + log(R).
= 2 T 1 1 T

T
Hence, using (as above) that f(x) := Z:ngl ¢ log(R/x)"/x is monotonically decreasing for = € [1, R] so that
ZJ LfG) > fl x) dz, similar as in (5.17) we get

N m —3 N N N m-—1 —3 N
1 cg'"log(R/j)" & g " log(1/4)
> UL 3D :

7!
J j=1 i=1

j=1 i=0 j=1
m ’1 R
> 7n+1_|_66n log _|_ Z/ Og /1?) dz

et T log(R)!

1! ’

=0
which proves the lower bound in (5.15). O

With Lemma 5.8 and ¢o := 1 —log(2) € (0,1), we observe for R > 1

m m—1 i
. CO IOg . —rv — m—1 IOg(R) .
JnlR) : R}j L clwermp oy <o R (R, (18)
i=

which immediately gives:

Lemma 5.9. For j € Nlet R; > 1 and S; > 1 be such that fm(R;) = j and gm(S;) = j. Then with 1,m;; as
n (5.13)
0" Ry < @iy <OTS;T VjEN (5.19)

Lemma 5.9, gives the parametrized curves
(fm(R),0™R™") and (gm(R),0™R™T) (5.20)

for R > 1, which are lower and upper bounds of (z1,,;) at every R;, S; where f,,(R;) = j and ¢.,,(S;) = J.
To estimate the local algebraic decay of the upper bound for m in Lemma .9, we need to compute the slope
of the curve (log(gm(R)),log(6™R~")). At (log(gm(R)),log(™R™")) it equals
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FIGURE 4. Decay of (21;2,j)jen in (5.13) (i.e. m =2 and k = 1), for r = 3, § = 1. Additionally,
the lower and upper bounds of z1,2,; in (5.20) (¢p. (5.19)) are depicted. For any ¢ > 0 there
exists C' > 0 such that zq,9;; < C§~3%° for all j € N. For small j, a worse, preasymptotic rate
is observed. (A) (z1;2;;)jen and lower/upper bound. (B) (x1,2,;) jen and lower/upper bound for
larger range of j.

% log(@"ﬂ%") _ rzm 1 10g(|R)L _ rzm 1 Iog(R)‘ _ r .
ar log(gm (R)) 9 (R) [ Z’” 2 log(R | T (et
E':nol log(R)1

For example, if m = 2, then the upper bound at position j = g2(S;) = S;(1 + log(S;)) locally decreases at the

algebraic rate

d (5.21)

—
L+ ey

A similar deliberation for the lower bound in (5.19) gives the rate /(1 + c5 ' /(1 + ¢, ' log(R;))) at position
Jj = f2(R;) = Rj(co+1log(R;))co/2. The logarithmic term log(S;) in (5.21) explains why a rate close to r is only
observed for large j. Due to the additional (higher order) logarithmic terms in (5.18), in a given, fixed range of
j, the rate of decay becomes worse as m grows.

Figure 4 shows the sequence (z12,;)jen (i.e. m = 2) for r = 3 together with the lower and upper bounds in
(5.20). For small j, the behaviour of (21,y.;) en is far from j~7. The plot of the bounds for larger values of j
shows that the rate will eventually approach r.

5.3.2. Decay w.r.t. Fo

For the convergence rate analysis of the Smolyak quadrature, we are mainly interested in the sequence x5, in
(5.13), i.e. the decreasing rearrangement of (/¥ [T;en(G7""))ver,. Here and in the following, we fix 6 € (0,1)
and r > 0.

We first discuss the decay of (z2,m;;)jen (cp. (5.13)) for different m € N. Recall that by (5.14), for any § > 0
there exists C such that (22;m;j)jen < Cj~2" for all j € N.

— m = 1: Since F3 = {v € Fp : |[v| = 1} = () this case is trivial.
—~ m = 2: With e; = (6;j);en we have F5 = {2e; : j € N} and {p™ : v € F3} = {j 2" : j € N} so that

T2 = j 2", and the decay predicted by (5.14) is apparent also for small j.
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FIGURE 5. Decay of (z2.m:j)jen in (5.13) for r = 3 and different values of §. For any ¢ > 0
and all m > 2 there exists C' > 0 such that xo.n,; < Cj_6+5 for all j € N. (A) 6 = 0.25.
(B) 6 = 0.005.

—~ m = 3: It holds Fj = {3e; : j € N} and thus {p™" : v € F3} = {73 : j € N}. Hence m = 3 can be
considered as a special case, since x;3.; = 73" and the decay is even faster than j~2", see Figure 5.

— m = 4: We have
fveF :p™ >R} ={veFf :p™ >R "} = ‘{V €eFr.p ™ >RT?)

and thus with (5.18)
fg(R1/2) < ’{V € .7-'51 cp V> R_r}’ < gg(Rl/Q).

Considering the parametrized curves (fo(R'/2),0*R™"), (g2(R'/?),60*R™") for R > 1, a computation similar
to the one before (5.21) implies that the decay of (x2.4;;)jen in the preasymptotic range is worse than what
(5.14) suggests, due to the logarithmic factors occurring in fo, go.

— m > 4: Similar arguments as in the case m = 4 apply, and we expect the decay rate to further diminish
as m grows. The precise behaviour depends on the number of possibilities to write m as a sum of integers
in N\{1}: for example {wa;5; : j € N} = {k72173 : k # | € N} decreases faster than {z24,; : j € N} =
{k=2172 : k <1 € N}, as Figure 5 right panel shows.

Implications for (z2,;)en are as follows. All terms belonging to F3*, i.e.
(@p™" ) =0mp™"™ Yv e Fy, (5.22)

are scaled by the common factor 0™: the smaller 0, the fewer multiindices of high total order m (which, in
the preasymptotic range, decay slower than expected as we have noticed) will be among the N largest ones.
This is depicted in Figure 5 which shows the sequences (z2.m;;);jen for m € {2,...,8} and two different values
0 € {0.25,0.005}.

If 0 < 6 < 1 is small then, due to the factor 6™ in (5.22), only few multiindices of order m > 4 occur among
the largest, and essentially ((0p~")"),¢ FzuFg governs the decay of z; for small j, thus yielding the expected
rate 2r — §. On the other hand, as 6 draws closer to 1, more higher order multiindices contribute to the largest
j terms, resulting in a longer preasymptotic range with slower decay.
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To numerically verify these heuristic considerations, we determine a lower bound of z.;. With f,, asin (5.18),
for R > 1 there holds

fmR) < v eF" : p7 2 R <[y e Fy™ . p7™Y 2 R77Y|. (5.23)
We extend f,, via f,(R) :=0 for all R € [0,1), and (5.23) then remains true also for R < 1. Then

F(R):=1+ > fu(@®/* R)<[{0}|+ > HveFm:p ™ > 0>/ R}

meN meN
=H{O}+ > HrveF™ : Op ") 2R 7H<{reF: (p ") >R}, (5.24)
meN

which gives:
Lemma 5.10. For j € N let R; > 1 be such that F(R;) = j. For the sequence xo; it holds R;zr < zgy5.

Figure 6 depicts the decay of (z2,;);en as well as the lower bound in Lemma 5.10 for » = 3 and 6 = 0.25.
The measured rate of (22;;)jen in the observed range of j is merely 4.96 and not close to 6 as suggested by
(5.14). For the plotted range of j in Figure 6A up to about j = 10°, the lower bound from Lemma 5.10 seems
to capture well the preasymptotic behaviour of (z2,;);en. Plotting the lower bound for larger values of j up to
about j = 10°°, we observe that its algebraic decay rate eventually increases to approach 2r = 6, however only
very slowly. This suggests, that if & > 0 is not small enough, then the range where the Taylor gpc coefficients
of u; from Example 5.2 will show the predicted algebraic decay only occurs for j so large that it is not relevant
in practice.

Finally, for general (b, e)-holomorphic functions, in the proof of Theorem 3.14 we derived estimates of the
norms of the Taylor gpc coefficients which were of the type b”|v|!/v! (also see Rem. 5.4). In this section we
have analysed in more detail a sequence of the type (b¥),cx, which corresponds to the Taylor gpc coefficients
of u; in Example 5.2. Due to the additional term |v|!/v!, it can be expected that the preasymptotic effect is
even stronger in the general case.

Remark 5.11. The case k = 1 is relevant for stochastic collocation algorithms (i.e. interpolation instead
of quadrature). Similar as in (5.24), we can define G(R) = 1+ ) gm(0™/"R) and deduce that the
curve (G(R), R™") provides an upper bound for the behaviour of (z1,;);en in (5.13). By Lemma 5.8 it holds
gm (0™ R) < 2m=192m/TR2 < (202/7)™R? for all m € N, and therefore G(R) < 1+ (26%/7)/(1 — 26*/")R?.
For w; in Example 5.2 (¢p. Rem. 5.4), we conclude that as long as 6 is small enough such that the constant
(20/7) /(1 —26'/7) is (moderately) bounded, the preasymptotic error convergence of the interpolation error can
be expected to be at worst half of the proven convergence rate, which is in this case (r — 1)/2.

This can be extended to general (b, £)-holomorphic functions, by constructing indexsets based on the sequence
c1, as stated in Theorem 3.14 (iv) (for k = 1): if T = Np in (3.12), then c1;,, is exactly of the type [,y gj_yj
(i.e. like the sequence analysed in the current section).

5.4. Real valued model parametric integrand functions

We now test the convergence of the Smolyak quadrature for the functions w1, us in Examples 5.2 and 5.3. For
ug we also refer to [22] where computations for almost the same integrand were done with the method suggested
in their paper.

5.4.1. Model integrand uq

Let

1
w@) =]+—%= wveU (5.25)
jeN 1 —|—yj0j
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FIGURE 6. Decay of (z2.) en in (5.12) for # = 0.25 and r = 3. The lower bound is given in
Lemma 5.10. For any § > 0 there exists C > 0 such that zq,; < Cj=2"+% = C;j=6+° for all
j € N. In the preasymptotic range a worse rate is observed. (A) (x2.;)jen and lower bound. (B)
(22;5)jen and lower bound for larger range of j.

be as in (5.1) with b; := 67", 0 < 6 <1, r > 1. As explained in Example 5.2, u; is (b, ¢)-holomorphic, and by
Theorem 4.3 the Smolyak quadrature can achieve the convergence rate 2r — 1 (¢p. Rem. 5.1) in terms of the
number of quadrature points if optimal indexsets are chosen.

Figure 7 shows the absolute error | [;; u1(y) du(y) — Qa, w1 | for different values of 7 and 6, and with A, as in
Sections 5.1.1 and 5.1.2. Note that (up to the guessing of constants and simplifications in Sects. 5.1.1 and 5.1.2),
Theorem 4.3 implies the convergence rates 2r—1 for Ac((az)ver) asin (5.6) or (5.8) and 2r—2 for Ac((cp,, )ver)
as in (5.5) or (5.7). The reference value for [, ui(y)du(y) was computed directly as [, ui(y)du(y) =
Tl enlog((1 + b,)/(1 — b;))/(2b,):

Even though the Gauss-Legendre points are not nested, we observe that the Leja points and the Gauss-
Legendre points perform equally well in terms of the total number of function evaluations. Furthermore, the
index sets Ac((cy,)ver) deliver slightly better error convergence than Ac((az,u)ver). This is not surprising,
as (¢y,,)ver is a sequence resembling the Taylor gpc coefficients of u, see Remark 5.4 and also Figure 9. As
expected, the convergence rate (which asymptotically only depends on r), strongly depends on 6. For large 6 a
preasymptotic range of subpar convergence is observed. This can be explained by the preasymptotic behaviour
of the decay of the Taylor gpc coefficients which we analysed in Section 5.3. For very small 6, we get close to
the proven convergence rate 2r — 1, e.g. for r = 2 and 6 = 0.005 we observe convergence rates of about 2.68
and 2.81 depending on the chosen index sets. The plots confirm that considerably faster convergence than the
previously proved rate r — 1 is in principle attainable.

5.4.2. Model integrand ugy

Let
1

1+ 923‘61\1 Yy~ "
be as in (5.2) with b; := 657", r > 1 and 6 > 0 small enough such that 63, j~" < 1. By Example 5.3,

ug is (b, €)-holomorphic, and Theorem 4.3 implies that the Smolyak quadrature can achieve the convergence
rate 2r — 1 in terms of the number of quadrature points if optimal index sets are chosen. Figure 8 shows the

uz(y) (5.26)
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FIGURE 7. Quadrature error | [;; u1(y) du(y) — Qa, u1| for uy in (5.25), for different values
of r and 6. The plot shows the absolute error in terms of the number of quadrature points

Ipts(Ae, x)| (ep. (2.7)). (A) Ac((a2p)ver), 7 =2. (B) Ac((azp)ver), = 3. (C) Ac((czp)ver),
r=2.(D) AE((CQ’V),JEJT), r=3.
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convergence of the absolute error | [;; uz(y) du(y) — Qa,u| for different values of r and 6. Again we compare
the convergence for either nested Leja quadrature points or non-nested Gauss-Legendre quadrature points, and
different a priori constructions of multiindices as explained in Sections 5.1.1 and 5.1.2. As before, (up to the
guessing of constants and simplifications in Sects. 5.1.1 and 5.1.2), Theorem 4.3 implies the convergence rates
2r — 1 for Ac((az)ver) as in (5.6) or (5.8) and 2r — 2 for A ((cy, )ver) as in (5.5) or (5.7).

The reference value for fU us(y)dp(y) has been computed with a higher order quasi Monte Carlo rule
(a so-called high-order, Interlaced Polynomial Lattice rule adapted to the model integrand, with suitable digit
interlacing parameter, see [16] and the references there) utilizing 22° ~ 106 quadrature points applied to the
function u restricted to the first 1024 dimensions.

The observations are similar as for u;. The (preasymptotic) convergence rate strongly depends on the scaling
parameter 0. Leja and Gauss-Legendre quadrature deliver almost the same error w.r.t. the number of function
evaluations, and the index sets Ac((cy, )uer) perform (slightly) better than Ac((az;,,)ver). This is observed in
Figure 9 where we compare the error for both sequences directly.

5.4.8. Comparison with an adaptive method

We consider the model parametric integrand us defined in (5.2), with b; := 05" for r =2 and 6 > 0. In the
following, our method is compared with a variant of the dimension adaptive algorithm described in [18] which
we outline briefly for completeness. For some finite, downward closed set of multiindices {0} # A C F, following
[9] we introduce the reduced set of neighbours

NA)={veF :v¢A v—e; € AVjEsuppvr, Vj:OVj>m€a/)\(max{i€N sy # 0+ 1}
n

with the special case N'({0}) := {(1,0,0,...)}. Algorithm 1 shows the used adaptive method. Also recall, that
-1 := 0 and for notational convenience also @_2 := 0 in the following. As in (2.2), for n € Ny, @,, stands for
the one dimensional interpolatory quadrature employing the n +1 points (x;)}—, in [~1,1]. In the following the
quadrature points for the adaptive method and for the a priori choice of index sets consist of the Leja points
introduced in Section 5.1.1.

Algorithm 1. AdaptiveSmolyak(integrand u : [—~1,1]Y — R, number of multiindices M € N).
Aact — {0}
Agot — {0}
Ao — ®j€N qu
while |Aact| < M do
Anew — N(Aact)\Atot
Atot — Atot U Anew
for v € Apew do
Ay — Qjen(Q2v; — Q20v;—1))u
end for
p — argmax{|A,| : ¥ € Atot\Aact }
Aact — Aact U {/.L}
end while

QAactu — ZueA Auu

act

QAo — ZUEAtot v U

Figure 10 shows a comparison of the error convergence for the adaptive Smolyak algorithm, and the Smolyak
algorithm with the a priori index sets AE(((clff)),,e;c) from Section 5.1.1. The plots show the error vs. number
of quadrature points. In case of the adaptive algorithm, we plot the curve for the set of accepted indices Aact

and for the set of total indices Ao, as computed by Algorithm 1.
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FIGURE 8. Quadrature error | [, uz(y) du(y) — Qa us| for up in (5.25), for different values
of r and 6. The plot shows the absolute error in terms of the number of quadrature points

Ipts(Ae, x)| (ep. (2.7)). (A) Ac((a2p)ver), 7 =2. (B) Ac((azp)ver), = 3. (C) Ac((czp)ver),
r=2.(D) AE((CQ’V),JEJT), r=3.




CONVERGENCE RATES OF HIGH DIMENSIONAL SMOLYAK QUADRATURE

6 = 0.25, Points: gauss 0 = 0.25, Points: gauss
107"
10—2 N
10
< < —4 |
10
&7 e e
I 1077 |
s 10 s
£ CR.
5 107 S
=) )
— —
- 10711 B - 10—10 |
1
T T
10° 10t 102 103 104 10° 10° 10t 102 103 104
nr. of points nr. of points
——r = 27 agfx]\jss T 37 C%all’lss —— = 27 aga]\;ss T 37 cgallllss
——r =20 ----162 -1 =250 ----154
—— =3 a%i‘jss c-- =317 ——r =3, a%ifss sme= =278
(4) (B)

FIGURE 9. Quadrature error | [, u;(y) du(y) — Qa,u | for uj, j € {1,2}, in (5.25) and (5.26)
for § = 0.25, r € {2,3} and using Gauss-Legendre quadrature points. The plot compares the
error convergence for two different quadrature rules based on multiindex sets built by either
using the sequence (a5, )ver or (c5,,”)uer, see Section 5.1. (A) uy. (B) us.

r=2,60=0.25 r=2,0=0.005
1 1075 4
1072 E
5 ] 5 |
g 107° = 107 o
(5] E| %) B
£ 107 2 ]
E -7 4
A R
T 107 E 1
& 19-6 | & 1078 4
£ E ]
é 10 E é 107° E
TR ® 1
. 10-10 | .
107? e T — T e
10° 10t 102 103 104 10° 10t 102 103
nr. of points nr. of points
—e— Adaptive act  --- —1.38 —e— Adaptive act  --- —1.39
—m— Adaptive tot ~ -=--—1.82 —— Adaptive tot == —2.71
—%— Apriori —%— Apriori
(2) (B)

FIGURE 10. Absolute quadrature error for us in (5.26), with r = 2 and different values of §. We
compare convergence of the adaptive algorithm in Algorithm 1 with the Smolyak quadrature
based on our a priori choice of index sets. In both cases the same Leja quadrature points (see
Sect. 5.1.1) are used. (A) § = 0.25. (B) 6 = 0.005.
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In order to find the set A, Algorithm 1 also requires to evaluate the integrand at quadrature points belonging
to the total set Atot. Thus, the curve for the accepted multiindices A, should be considered as a benchmark,
whereas the curve for the total set of indices Aot can be seen as a practically obtainable computation in terms
of error vs. number of quadrature points (i.e. number of function evaluations). We observe, that our a priori
chosen quadrature points are as good, as the ones obtained by the adaptive method and denoted by A, above.
This implies, that the a priori choice captures well the most important multiindices.

Comparing with Ao, our method even outperforms the adaptive algorithm when 6 becomes small. We
mention that it was already reported earlier that a priori choices of index sets can perform superior to adaptive
methods, see, e.g., [3]. We note that the convergence for the a priori choice (and for the adaptive algorithm in
terms of A,.¢) improves as 6 decreases, while the convergence rate of the adaptive algorithm in terms of Aot
does not increase as 6 decreases. For 6§ = 0.005, the convergence rate of the adaptive algorithm w.r.t. Ay, is
only about half the convergence rate obtained with the a priori chosen set. This is not a coincidence, and we
explain this with an example in more detail in Section 5.2.2 of [37] (see in particular [37], Example 5.2.2). We
point out that one of the main advantages of determining the quadrature rule a priori instead of adaptively, is
that it allows to compute all function values at the quadrature points in parallel, which is in general not possible
for the adaptive algorithm in [18].

6. CONCLUSIONS AND GENERALIZATIONS

We have analysed convergence rates of Smolyak quadratures for classes of smooth, Banach space valued,
parametric functions with a suitable sparsity as stated in Definition 3.1. We proved that exploiting certain
cancellation properties implied by the combination coefficients and the symmetry of the marginal probability
measures allow for the dimension independent convergence rate 2/p — 1 for p-summable sequences of (norms
of) Taylor gpc coefficients of the parametric integrand functions. This is superior to previously known rates
established, for example, in [20, 21], of N-term gpc approximation of the integrand obtained in [11], or for
Higher Order Quasi-Monte Carlo integration in [14], under analogous sparsity assumptions on the parametric
integrands. We also provided an a priori construction algorithm of integrand-adapted sparse grids whose com-
plexity (work and memory) scales near linearly with respect to the number quadrature points. Additionally,
all convergence rate bounds were shown w.r.t. the number of quadrature points, showing in particular that
essentially the same convergence rates can be obtained for both nested and non-nested univariate quadrature
points x. Numerical experiments showed that the dimension-independent convergence rates are achieved with
a moderate number of quadrature points provided that the scaling parameter § > 0 was small enough. For the
considered test functions, this amounts to the integrand having small deviation from their ‘nominal’, average,
values. We explain, by a refined analysis of the error bounds for a class of model parametric integrands, that
the asymptotic range where the (dimension-independent) convergence rate 2/p — 1 is visible could appear only
for a prohibitively large number of quadrature points.

Convergence rates which are superior to N-term approximation bounds for the parametric integrands have
been reported in numerical experiments for example in [32]. Concrete a priori estimates on gpc coefficients that
may be exploited to a priori determine suitable index sets by e.g. greedy searches or by knapsack solvers were
also given in these references. The presently proposed variants of the Smolyak algorithm, in particular exploiting
multiindices containing a 1, appear to be new. As we prove and verify in numerical experiments, this results in
an algorithm that performs comparably to the currently best (heuristic) adaptive algorithms, from [17,18] as
shown in in Figure 10.

The complexity of the Smolyak quadrature was investigated under p-summability of sequences of (X-norms of)
Taylor gpc coefficients, as implied by (b, e)-holomorphy. This condition is known to hold for broad classes of
holomorphic-parametric operator equations as shown in [12], and also for the corresponding Bayesian inverse
problems [32,34]. We emphasize that our key findings, notably the observation that all linear terms are integrated
exactly by any Smolyak quadrature, remain valid for other measures p, presuming that the one point rule in the
Smolyak construction integrates linear polynomials exactly (¢p. Rem. 4.2). In particular, similar improvements
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as shown in this paper also hold in other contexts. For example, for linear, affine-parametric diffusion problems
with coefficient functions v, (x) that exhibit localized supports (as occur for example in a wavelet expansion),
improved summability of the Taylor gpc coefficients of the parametric solution was verified in Theorem 1.2 of
[1]. In Chapter 3 of [37] we show that this entails a corresponding improvement of the convergence rate for
Smolyak quadratures.

Another particular case in point are Gaussian measures p. Here, for certain PDEs bounds on Hermite Chaos
coefficients can be obtained by real-variable bootstrapping on the parametric PDE (see [19,26,29]), so that
similar conclusions for the corresponding Smolyak algorithms could be expected.

In many practical settings the evaluation of the integrand is presumed to be far more costly than performing
the quadrature itself. For integrands exhibiting low sparsity, using a large number of quadrature points becomes
inevitable. The near linear scaling of the cost in terms of the number of quadrature points makes the algorithm
feasible also for such problems.

In this paper we assumed the integrand to allow exact evaluation at each quadrature point. In general, for UQ
problems the integrand is given as the solution to some PDE, which needs to be approximated by a numerical
scheme. This is addressed in [38], where we perform a fully discrete error analysis taking into account the cost
of approximating the function values at the quadrature points.

APPENDIX A. PROOF OF LEMMA 2.9

Proof of Lemma 2.9. The first inequality follows by the downward closedness of A so that

Z H (Vj"_l):ZH“EA:NSV}|§Z|A|:|A\2,

vEA jEsupp v veA veA
We claim that if I' C F is finite and satisfies for some n € N and A C N with |A| = n that
(suppr=A VYrel) and (wel, p<v,suppp=A4) = pel) (A1)

then

ST +v) < K3 (A.2)

vel|; jeN

Suppose that (A.2) is true. Partitioning A in {0} and finitely many disjoint sets I' of the type (A.1), this
immediately implies the second inequality in (2.15).
We show (A.2) by induction. For n = 1 assume w.l.o.g. that A = {1}. Then by Assumption 2.4 (ii)

S JIa+v) = > a+wn) <K
vel |y jEN vel|;

For the induction step assume that the statement is true for n—1 > 1, and assume w.l.o.g. that A={1,...,n}.
For every i € Nset I'; := {p € F : (i, ) € T'}. Then each T'; is of the type (A.1) for the set A ={1,...,n—1},
so that we can apply the induction hypothesis to it. Therefore

SoI[a+v)= > a+i) > J[a+m)< D> Q+)E; T

vel|; jeEN 0<i€T nel;|y jeEN 0<i€d
=K3' Y (1+d) Y 1=K5N Y S (1+i)
0<ied pel; pneF {0<i€T: (4,u)€l}
<K}' Y Ks[{i €N (i,p) €T} = K3T),
nEF

where we used again Assumption 2.4 (ii) for the last inequality. O
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APPENDIX B. PROOF OoF LEMMAS 3.10 AND 3.11

Proof of Lemma 3.10. We start with ¥ = 0 and R =1 (i.e. w, = 1 for all v € F). Fix k € N. Observe that
B[] xv) < 1 and Hb”[p(N < oo are necessary in order for (b¥),cx, € £7/*(Fy) to hold: For every fixed j € N
the sequence (bjp )i>k is a subsequence of (b*P/%), ¢, , which implies necessity of ||b|s(y) < 1. Furthermore

(b%)jen is a subsequence of (bP/%) e 7, so that [|b]|e ) < 0o is also a necessary condition.
On the other hand, since log(1 + z) < z for all > 0 we have

ok
vy 2 o bjk
0 )enlly = X @E =TT 1+ 3 0f ) =TT (14—
vEFy JjEN {leN: >k} JjEN 5
P b
= exp Zlog 1+ < exp Z J 7 <exp| —Ib ”ZP(N) (B.1)
jEN —b; jen 1 —b; - ||bH@oo

This proves the lemma for ¥ = 0 and R = 1. To finish the proof it suffices to show that under the
assumptions |[bl|n ) < oo and ||bllpeqyy < 1 it holds for any ¥ > 0 that (w,b”)uer, € P/%(F}) where
wy = RIo# [ (14 )7,

Fix ¥ > 0 and R > 1. Let 9 > o be so large that 2°~Y > R. Then Rlsuwpv| [Lien(+ v;)? < [Tjen(1+ 1/])15.

Let § > 1 be so large that (1+n)” < 6" for all n € N, let J € N be so large that bj < 1/(26) for all j > J, and
let £ > 1 be so small that b;jx < 1 for all j < J. Define b € (?(N) by bj = kb; if j < J and b; := b; otherwise.

Then ||b||£oo(N) <1 and ||bH£p(N) < 00. Moreover, with Cy := sup,,cn(1 + n)ﬂ//@" < oo, forallv e F
g
w,, = Hl—i_y]ﬁSH OKVjH(SVi:C HHV]H(SV’L
JEN 7j=1 i>J i>J

Thus Y, c 5, (w,b”)P/* < cJe/* > ver, (BY)P/* which is finite by what we have shown above. O

Lemma B.1. Let p > 1 and fix k € N. Then there exists a constant Cy , depending on p, k, such that for all
v € F\{0} the multiindex kv := (kv;)jen € Fi C F satisfies

(o) 5* ('Z") Ut < el (lf;j')’“ 52)

Proof. We begin with the lower bound. Recall that v27n"2 e™™ < n! < n"*2 e+ for all n € N by Stirling’s
approximation, see for example [31]. Thus

AL V2 (k|y)FVF S exp(—k|v|)

(B)! ™ TT canppo (k1) 95 exp(—ky; + 1)

Y B e T,
= [ supp V] L
exp(| supp v|) ghlv|+ =g [Licouppr V;.W"+2 exp(—kv;)

VIR (2m) E (VR esp(-lv)))

- 1k 41 k
exp{| supp v [T coupp v XP(—F)v; (V;]+2 exp(—v; + 1))

> (om) (exr:(@)suppul (W>’”zl <|”“>k_ (B.3)

k2 e lv| v!
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We claim that

o o= (SREZI) T (et T (3.4)

v
for all 0 # v € F, which then gives the lower bound in (B.2). In order to see this we use induction on n = |v|.
The case n = 1 is trivial because exp(k — 1)/k*/? > 1 for all k € N and [Ijenv; = |v| in this case. For the
induction step let e; = (d;;);en, fix an integer n > 1 and suppose that f(v) > 1 for all v € F with |v| = n.
First assume 4 € supp v so that |suppv| = |supp(v + €;)|. Then

(vi + D) I v S 11, v vi +1 S Vi

fwte) 2 i) et o T A

which is true so that f(v +e;) > f(v) = 1. Next let i ¢ suppr. Then [];cqupp0 Vi = [jesuppuren (¥ + €i);
and with n = |v|

flvte) _ exp(k—1) ( n )kl > eplk—1) (1)]“ — ng(k). (B.5)

fv)y k2 n+1 k= 2

We have g(1) = 1. Moreover for k > 1

275" exp(k — 1) (2 — log(2))k — 1)
k3
which shows g(k) > g(1) > 1 for all k¥ € N and therefore f(v + e;) > f(v) > 1 by (B.5). This concludes the

proof of the claim (B.4) which further implies the lower bound in (B.2).
For the upper bound, we fix 0 # v € F and use again Stirling’s inequalities to obtain

g'(k) =

9

kvl! _ (KwD)ME exp(—kfv| + 1)
(kv)! = [icouppr V2 (kvj)Fvits exp(—kvj)

_ k
e(2m) " F | T (V2w |1t E exp(~ ) okl 4

= [T R LK+ [ supp ]
[jcouppr V2mexp(—k)y; 2 (V;‘7+2 exp(—v; + 1)) k ’

- e(2m) " 5|y <,,|')k

1—k

(mexp(_k))\supp'/l Hjesuppu L2 v!
< of2m)-} <exp(k))suppu | I Vj’”%l (“")k (B.6)

/ ]
27T JEsupp v v
. . ~ _ 5 n k—1)/2
Since p > 1, there exists a constant C, such that nk=1/2 < Cpp" for all n € N. Thus Hjesuppu I/j( )/

<
é’},suPp ¥ IV The upper bound in (B.2) then follows via (B.6), for instance with Cy, , := C,, exp(k + D@2~z O
N.

Proof of Lemma 3.11. We start again with the case ¥ = 0. W.l.o.g. we assume throughout b; > 0 for all j €
Step 1. For £k =1, p =1 we have

! 1
lLdirh bi| = — <o, B.7
2 =2 ) = (B.7)

veF 1eNg \jeN

which, due to F; = F, gives (b”),er, € 01 (F1) iff |b]|p < 1.
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Step 2. We show that for any p € (0,1] and k € N the conditions ||b||¢» ) < 0o and ||b]|, ) < 1 are necessary
in order for (b¥[v|!/v)yer, € (P/¥(F) to hold. It is clear that ||b||e ) < 0o must be satisfied, since (0%)jen is
a subsequence of ((b”|v|!/v1)P/*),cx, . Next, it suffices to verify necessity of ||bl|p ) < 1 for p = 1. Let k € N.

With Lemma B.1 it holds
kv M " =C Z buw.
v! - v!

1 1

v |V" F kv |I€V|' F

> () 2y () 2o X
veFy veF veF

According to (B.7), the last sum is finite iff ||b||, vy < 1. This shows that for any value of p € (0,1] and k € N,

the stated conditions are necessary.

Step 3. Fix an integer k£ > 1. We claim that for every v € Fy, there exists pu € F such that
s . V|V“ k| supp v| y,|ll’|'
(uj €{ki : i e No} and |v; —pj| <k) VjeN, b T <k b ur (B.8)

To show this claim fix v € Fj, and assume for the moment that there exists jo € N such that v, ¢ {ki : i € Ng}
and v; € {ki : i € No} for all i # jo. By definition of Fy, this implies v;, > k. Assume first that

U
bt >, B.9
Jo |l/| - ( )
Then for r € {1,...,k — 1}
eyt W mer vy 1 (510
Jo |V| —r Jo |l/| |V| —7r Vj() - VjO - k7 .

because v;, > k and r < k. Define p = (115,) jen € F by
vi it i
i = . e
max{nk : neN, nk<v; } if i=j

for all i € N. Then |v;, — uj,| < k and by (B.10)

| R ! !
pv 28 < pr I pvio — 1o H p1250 — kYo —Hio buL < kkbui
vl = ! co O vl=r 71 u’

which shows that p satisfies (B.8).
Next, suppose that (B.9) does not hold. Then b, |v|/v;, > 1 and therefore for r € {1,...,k —1}

[+
Jo

Ly W v v,

b
Vjo +T1 Vjo |V| Vjo + 1 Vjo +T

1
> .
~k
With p = (uj,)jen € F defined by

Vi if i
m:_{ #J

min{nk : neN, nk>v; } if i=j
we then have |pj, — vj,| < k and similar as before
Hjg—Vjg—1

! ! ! !
buﬁ < buﬁkﬂjo_l’jo H b, v+ — kwo—wobuﬂ < kkbuﬂ,
v! v! st Vjy + 1 ! !
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which again shows that p satisfies (B.8).
For the general case, where there might exist several indices j with v; ¢ {ki : i € Ny}, we repeat the above
procedure for all such j to find p satisfying (B.8). This verifies the claim.

Step 4. In this step we prove that for p = 1 and 1 < k € N, the conditions ||b[|s») < oo and [|b][p ) < 1
imply (8% |v|!/v)er, € P/F(Fp).
If p € F with p; € {ki : i € No} for all j € N then

Hv € Fr: vy — il <k, VjeN} < (2k—1)lsuerel (B.11)

With p, denoting the multiindex constructed in Step 3 and satisfying (B.8), we get with (B.11)

u|y|' ® | supp v| l,|l’l’l/| ® | supp v| 1.| supp v| kv |k‘lj|' g
Z(bV! < > Klsweerl (pe <) (2k — 1)lswwpviglsueerl ) (B.12)

veEF veEFi veF

Now let p > 1 be so small that \|p1/kb|\e1(N) < 1, which is possible because [|b||s1y) < 1 by assumption. Then,
employing Lemma B.1, the right-hand side of (B.12) is bounded by

S (k(2k — 1)) e o, (p%b) vt - S e ( ) vt (B.13)

v’
veF veF

where Cj, o= k(2k - l)Cl/k Now let J € N be so large that with b = p%b]- if j < J and Ej = C’k,pp%bj if

Jj > J, it holds ||b||£1(N < 1. With this choice, by (B.12) and (B.13) we arrive at

Z(b“l |>k<chzb"| (B.14)

veF veF

where the last series is finite by (B.7) and because ||b||;x < 1. This concludes the proof for k > 1, p = 1.

Step 5. It remains to show that [|b|leyy < 0o and [|b]lpyy < 1 imply (0%|v|!/v)yer, € P/F(Fy) for k > 1
and p € (0,1). As shown in the proof of Theorem 7.2[10], with p’ := p/(1 — p) one can construct sequences
¥ = (13)jex 8 = (3})jen such that

[Vl <1, 1] eoe vy < 1, [6llppryy <00 and  b; <d;y; Vj€EN (B.15)

(essentially v; ~ b7 and d; ~ b}_p ). We get

) b 1-p
lI|V|! » u|’/“ Foep I/‘V| 7
Z(b,,! <2 \ur) s 2 ZM’” :
veF, veEF veEFg veF

Using (B.15), the first sum is finite by the statement of the current Lemma for p = 1 (already shown in Step 4),
and the second sum is finite since (6*),cz, € €7 /*(F;) according to Lemma 3.10. This proves (b”|v|!/v), e, €
PR (Fy).

Step 6. We have shown the lemma for 1 = 0. In order to finish the proof, it suffices to verify that under the
assumptions |[b|¢» () < 00 and [|b]|¢rwy < 1, for any fixed k € N and ¢ > 0 with w, = RIsuwp [Tjen(1+ v;)?
it holds (w,b”|v|!/v!),er € P/%(Fy). This can be shown by the same argument used at the end of the proof
of Lemma 3.10. ]
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