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FINITE ELEMENT APPROXIMATION OF ELLIPTIC HOMOGENIZATION
PROBLEMS IN NONDIVERGENCE-FORM

YvVES CAPDEBOSCQ!, TIMO SPREKELER?* AND ENDRE SULI?

Abstract. We use uniform W?? estimates to obtain corrector results for periodic homogenization
problems of the form A(z/¢) : D?*u. = f subject to a homogeneous Dirichlet boundary condition. We
propose and rigorously analyze a numerical scheme based on finite element approximations for such
nondivergence-form homogenization problems. The second part of the paper focuses on the approxima-
tion of the corrector and numerical homogenization for the case of nonuniformly oscillating coefficients.
Numerical experiments demonstrate the performance of the scheme.
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1. INTRODUCTION

In this work we consider second-order elliptic equations of nondivergence structure, involving rapidly oscil-
lating coefficients, of the form

n

A (g) : D%, = MZ:1 aij (g) af.ug =f in Q, (1.1)

subject to the homogeneous Dirichlet boundary condition
u: =0 on 0. (1.2)

Here we assume that @ C R™ is a sufficiently regular bounded domain, ¢ > 0 is small, and that A = (a;;) :
R™ — R™ ™ ig a symmetric, uniformly elliptic and (0, 1)"-periodic matrix-valued function such that

AeWh(Y) forsome ¢q>n,

where Y := (0,1)" denotes the unit cell; see Section 2.1. The main goal of this paper is to propose and analyze
a numerical homogenization scheme for (1.1), (1.2) that is based on finite element approximations.

The theory of periodic homogenization is concerned with the limiting behavior of the solutions as the oscil-
lation parameter ¢ tends to zero. For the problem (1.1), (1.2) under consideration a classical homogenization
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theorem (see [14], Sect. 3, Thm. 5.2) states that the solution sequence (u.).~¢ converges in an appropriate
Sobolev space to the solution uy to the problem

A D%y = f in §,
ug =0 on 0f).

Here A € R"*" is the constant matrix given by

A® = / Am, (1.4)
Y
and m : R™ — R is the invariant measure, i.e., the solution to the problem

D?:(Am)=0 in Y,
m is Y-periodic, [, m = 1;

see Section 2 for further details. The task of numerical homogenization is the numerical approximation of the
matrix A° and the solution ug to the homogenized problem (1.3). As it turns out, ug provides a good approxi-
mation to u. in H'(£2), and by adding corrector terms it is possible to obtain an H?()-norm approximation.
Note that the approximation of (1.1), (1.2) by a standard H?(Q2)-conforming finite element method does not
yield error bounds independent of ¢, since for s > 0 one has that

[ue|| g2te(a) = O (€7°) .

The motivation for investigating second-order elliptic problems in nondivergence-form comes from physics,
engineering, as well as mathematical areas such as stochastic analysis. A notable example of a nonlinear PDE
of nondivergence structure is the Hamilton-Jacobi-Bellman equation, which arises in stochastic control the-
ory. The asymptotic behavior of PDEs with rapidly oscillating coefficients is also of importance when micro-
inhomogeneous media are investigated.

Over the past decades significant work has been done on periodic homogenization of elliptic problems in
divergence-form; numerical homogenization for nondivergence-form problems is however less developed.

The theory of homogenization of divergence-form problems such as

v (4 (g) Vu.) +b (g) Vu.=f inQ (1.5)

with periodic and sufficiently regular A : R” — R™*™ and b : R™ — R" is extensively covered in the books
[6, 14, 18, 37]. For divergence-form problems, various multiscale finite element methods (MsFEM) have been
developed, which have the advantage over classical finite element methods of providing accurate approximations
for very small values of € even for moderate values of the grid size. The book [19] by Efendiev and Hou contains
a detailed overview of these methods.

It is important to note that although, if A is sufficiently smooth, equation (1.1) can be rewritten in divergence-
form,

v (a(2) ve.) - é (@iva) (2) - Vuc = f o, (1.6)

this equation does not fit into the framework of divergence-form homogenization problems such as (1.5), because
of the e 7! term in front of the first-order term in (1.6). Such diffusion models with large drift have been considered
by various authors [7,8,17, 20, 30, 31]; they require either specific assumptions or the resolution of additional
computationally onerous spectral problems.

For the theory of homogenization of nondivergence-form problems such as (1.1) we refer to the monograph
[14] by Bensoussan et al., to the paper [10] by Avellaneda and Lin, and the references therein. In [13], Bensoussan
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et al. study the more general problem involving a Hamiltonian with quadratic growth. Numerical homogenization
for nondivergence-form problems using finite difference schemes has been considered in [22] by Froese and
Oberman.

The numerical method presented in this paper has resemblances with the finite element heterogeneous mul-
tiscale method (HMM). The HMM has been introduced in [38] by E and Engquist and has been successfully
applied to many multiscale problems. For an overview of the field of finite element HMM, we refer to the articles
[2-5] by Abdulle and co-authors, and the references therein. An a priori error analysis for the fully discrete finite
element HMM for elliptic homogenization problems in divergence-form can be found in the work [1] by Abdulle.
Concerning nondivergence-form problems, a finite difference HMM has recently been used for the numerical
homogenization of second-order hyperbolic nondivergence-form problems by Arjmand and Kreiss [9].

The first step in the development of the proposed numerical homogenization scheme is the construction of
a finite element method to obtain approximations (mp)ns0 C HJ,(Y) to the invariant measure with optimal
order convergence rate

lm = mallL2¢vy + hllm = mallgr vy Shinf flm = (0n + )| m2v)s
Vp €EMp
where M, denotes the finite-dimensional subspace of H;er(Y) consisting of continuous Y-periodic piecewise
linear functions on the triangulation with zero mean over Y'; see Theorem 3.1.

Throughout this work, we use the notation a < b for a,b € R to denote that a < Cb for some constant C' > 0
that does not depend on ¢ and the discretization parameters.

The second step is to obtain approximations (A?L)h>0 C R™™ to the constant matrix A%; see Lemma 3.3.
To this end, the integrand in (1.4) is replaced by its continuous piecewise linear interpolant and the invariant
measure m is replaced by the approximation my, i.e.,

AO ::/Ih(Amh),
Y

which can be computed exactly using an appropriate quadrature rule.
The third step is to perform an H*(Q)-conforming (s € {1,2}) finite element approximation for the problem

A%:D2ug =f inQ,
ul =0 on 99,

on a family of triangulations of the computational domain €2, parametrized by a discretization parameter H > 0,
measuring the granularity of the triangulation, to obtain (uf™)n g0 € H*(Q) N HL(Q) with

S HI fllze-1(0),

where the constant is independent of h; see Lemma 3.6. Note that for the sake of approximating ug, an H?'(£2)-
conforming finite element method is sufficient.
The approximation (ug’H)h7H>o C H*(Q) N H}(Q) obtained by this procedure approximates ug, i.e., the
solution to (1.3), with convergence rate
h,H
Uy — Uy’ <(h+H a—1(Q)5
[0 ™|, o = 0+ Sl
which can be improved to O(h? + H) for more regular A; see Theorems 3.5, 3.9 and Remark 3.10.
Concerning the approximation of u., i.e., the solution to (1.1), (1.2), we show in Section 2 that under certain
assumptions on the domain and the right-hand side, one has that

n
e —ug — & Z Xij (g) 87;2ju0 S \E”UOHWQ’“’(Q) + elluoll ()
nI=t H2(Q)
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where the corrector functions x;; : R — R, 7,5 =1,...,n, are defined as the solutions to

A:D?*x;; = a?j —a;; inY,
Xij is Y-periodic, [y xi; = 0.

This provides us with the estimate

n n
[ue = wollmr@) + Y ||0Fue — | OFwo + Y (9Rixis) (g) 9Zyuo = 0(Ve),
k=1 i,j=1 L2(Q)

which shows that g is a good H'(£2)-norm approximation to u. for small €, and we show in Sections 3.2 and 3.3
how the above estimate can be used to obtain approximations to D?u.. Note that in order to approximate u. in
the H'(Q)-norm, it is sufficient to approximate ug in the H'(€)-norm. However, for an approximation of D?u,
based on the above corrector estimate, we need to approximate ug in the H?()-norm.

In Section 3.4, we extend our results to the case of nonuniformly oscillating coefficients, i.e., to problems of
the form

A<~,é) :D*u. = f in Q,
us =0 on 0,

(1.7)

where A = A(z,y) : @ xR"™ — R"*" is a symmetric, uniformly elliptic matrix-valued function that is Y-periodic
in y for fixed = € 2, and such that

AcW?>(Q;Wh4(Y)) for some ¢ > n.

We prove the corrector estimate

n
U —ug — 2 Z Xij (', g) @zjuo S \/5||Uo||w2m(ﬂ) + elluo |l gy,
nI=t H2()

where ug is the solution to the homogenized problem corresponding to (1.7) and x;; are certain corrector
functions. We then discuss the numerical approximation of u. based on this corrector estimate; see Section 3.4.

In Section 4, we present numerical experiments for problems with periodic and nonuniformly oscillating
coefficients, demonstrating the theoretical results.

Finally, in Section 5, we collect the proofs of the results contained in this work.

2. HOMOGENIZATION OF ELLIPTIC PROBLEMS IN NONDIVERGENCE-FORM

In this section, we study the homogenization of elliptic problems in nondivergence-form with periodic coeffi-
cients. The outline of this section is as follows.

We provide the statement of the problem in Section 2.1, i.e., we define sets of assumptions for the domain,
the coefficients and the right-hand side, ensuring well-posedness of the problem. In Section 2.2, we introduce
the invariant measure and describe a well-known procedure for transforming the original nondivergence-form
problem into a divergence-form problem. This is used in Section 2.3 in combination with uniform W?2P esti-
mates to carry out the homogenization for the problem under consideration. Finally, we introduce correctors in
Section 2.4 and derive W?2P homogenization results.
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2.1. Framework
We denote the unit cell in R™ by
Y :=(0,1)",
and consider a symmetric matrix-valued function
A=AT . R" - R™"
with the properties

A € WH(Y) for some q € (n, oq],
A is Y-periodic, (2.1)
INA>0: AEP? < Ay)E - < AP YEyeR™

By Sobolev embedding, we then have that
Aec COR") forsome 0<a<l.

For € > 0, we are concerned with the problem

A (E) :D*u. = f in Q,
u: =0 on 01,

where the triple (€, A, f) satisfies one of the following sets of assumptions.

Definition 2.1 (Sets of assumptions G™?, H™). For m € Ny and p € (1, 00), we define the set of assumptions
G™P as
Q C R™ is a bounded C*? domain,y € (0, 1),
(DA f)egm? — A= AT R" — R™" satisfies (2.1),
fewm™P(Q),

and the set of assumptions H™ as

Q C R™ is a bounded convex domain,
A= AT R" — R™" gsatisfies (2.1),
(LA fleH" <— |AJ?
3 1] : <
0€ (1] (trA)2 " n—1+494
feH™Q).

in R™,

Remark 2.2. For n = 2, the Cordes condition, i.e., that there exists a é € (0, 1] such that

|A(y)?
@ AW))? S n-1+45

Vy e R, (2.3)

is a consequence of the uniform ellipticity condition. Indeed, for A = AT : R? — R2*2 gatisfying (2.1), we have
that
22 1

)
< _—— = — n
wAmF 1w 115 TYER

|A(y)|? _ 2detA(
(trA(y))? (trA(y))
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with § = ﬁ € (0,1]. Therefore, when n = 2, the set H™ can be simplified to

Q C R" is a bounded convex domain,
(LA fHeH” <— A= AT R" — R™" satisfies (2.1),
feH™Q).

The following theorem asserts well-posedness of the problem (2.2); see Theorem 9.15 of [25] and Theorem 3
of [35].

Theorem 2.3 (Existence and uniqueness of strong solutions). Assume either that (Q, A, f) € GOP for some
p € (1,00), or that (2, A, f) € H° and p = 2. Then, for any € > 0, the problem (2.2) admits a unique solution
ue € W2P(Q) N W, P(Q).

2.2. Transformation into divergence-form

We recall a well-known procedure to transform the problem (2.2) into divergence-form; see [10,14]. We use
the notation

Wper (V) := {u €H,..(Y): /Yu = 0} .

Let us start by introducing the notion of invariant measure; see [14].

Lemma 2.4 (Invariant measure and solvability condition). Let A = AT : R — R"*" satisfy (2.1). Then, there
exists a unique solution m : R™ — R to the problem

D?:(Am)=0 inY,
m is Y-periodic, [, m =1.

The function m is called the invariant measure. We have that m € Wh4(Y), see [15, 16], and there emist
constants m, M > 0 such that

O<m<m(y) <M Vy e R"™ (2.4)
Moreover, for a Y -periodic function g € L*(R™), the adjoint problem
{A :D?*u=g inY,
u is Y-periodic, [, u =0,
admits a (unique) solution u € Wy (Y') if and only if
{g:m)r2(v) = 0. (2.5)

We note that the function m is only in W14(Y') in general, and in particular it does not belong to H2(Y), as
can be seen from the example chosen in Section 4.1. With the invariant measure m at hand, we can easily convert
the problem into divergence-form as follows. We define a matrix-valued function B = (b;;)1<i j<n : R — R™*"
by

bij = aﬂ}j — 8j’07;, (]. S Z7j S TL)7
with v; € Wper(Y') denoting the solution to

—Avy; =div(Am)-e¢; inY,
vy is Y-periodic, [, v; =0,
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for 1 <1< n. Since A € WH4(Y) and m € WH4(Y), by elliptic regularity one has that v; € W24(Y) for any
1 <[ < n. Hence, we have that

Bewhi(Y).
Further, we observe that B is skew-symmetric, Y-periodic with zero mean over Y, and that
div(B) = —div(Am) a.e. on R"™.
Now we let
AW = Am 4+ B € WH(Y).
Then, since
div(A1Y) =0,

and using the fact that B is skew-symmetric, we obtain
V. (Adiv (g) Vue) = Adv (E) : D*u, = (Am) (7) : D%y,
that is, we have converted (2.2) into divergence-form:
v (4t (g) Vu.) = fm (g) in Q, 20
ue =0 on 012,
and it is straightforward to check that A4V is Y-periodic, Hélder continuous on R and uniformly elliptic.

2.3. Uniform W?P estimates and homogenization theorem

The transformation described in the previous section can be used to obtain uniform W?2?(Q2) a priori estimates
for the solution of (2.2), which are crucial in deriving homogenization results.

Theorem 2.5 (Uniform W?2P q priori estimates). Assume either that (Q, A, f) € G%P for some p € (1,00),
or that (0, A, f) € H® and p = 2. Then, for ¢ € (0,1], the solution u. € W*P(Q) N WP (Q) to (2.2), whose
existence and uniqueness are guaranteed by Theorem 2.3, satisfies

||u6||W2~P(S2) < ||fHLp(sz)
with the constant absorbed into the notation < being independent of €.

This leads to a simple proof of the homogenization theorem for problem (2.2), using the compactness of the
embedding W2P(Q) — W1P(Q) and the fact that we can rewrite the problem as (2.6).

Theorem 2.6 (Homogenization theorem for nondivergence-form problems). Assume either that (2, A, f) € GO
for some p € (1,00), or that (2, A, f) € H and p = 2. Then the solution u. € W2P(Q) N W, () to (2.2)
converges weakly in W*P() to the solution ug € WP (Q) N W, P(Q) of the homogenized problem

(2.7)

A% D%y = f in Q,
ug =0 on 09,

with A® = (a;)1<i.j<n € R™*" being the constant matriz whose entries are given by

a?j = / a;;m (1<i,5<n),
Y

where m is the invariant measure, as defined in Lemma 2.4.
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2.4. Correctors

We show next that by adding corrector terms to the solution ug of the homogenized problem we obtain a
W?2P convergence result.

Theorem 2.7 (Corrector estimate I). Assume either that (Q, A, f) € G*P for some p € (1,00), or that
(Q,A f)eH? and p=2. Let ¢ € (0,1] and assume that

ug € WHP(Q).

Introducing the corrector function x;j, 1 < 1,5 < n, as the solution to

A DQX?,] :. a?] — Qij in Y, (28)

Xij is Y-periodic, [y xi; =0,
and a boundary corrector 0., as the solution to

A (7) . D20, = 0 in Q,
€
0, = — Z Xij (g) 02-2ju0 on 01,
i,j=1
the following bound holds:
ue—uo =& | D7 xiy (£) Ouo + 0. < ellwollwsn o). (2.9)

=1 W2r(Q)

The following theorem shows that if ug € W4P(Q) N W2°°(Q2), then we can absorb the term involving the
boundary corrector into the right-hand side at the cost of powers of ¢.

Theorem 2.8 (Corrector estimate II). Assume either that (2, A, f) € G%P for some p € (1,00), or that
(A, f) € H? and p=2. Let € € (0,1] and assume that

ug € WHP(Q) N W2>(Q). (2.10)
Then,
ue —ug — €% Y Xij (g) 8%u0 < £7 |[uollwe.=(a) + €llwollwan -
W w2 (@)

Let us remark that W4P(Q) — W?2°(Q) for p > %, i.e., assumption (2.10) is for p > & a consequence
of ug € W4P(Q); in particular, for dimensions n € {2,3} and p = 2, one can replace condition (2.10) by the
sufficient condition ug € H*().

Let us recall that ug is the solution to the elliptic constant-coefficient problem (2.7). For bounded convex
polygonal domains (n = 2), ug € H*(Q) can be ensured by assuming that f € H?({2) satisfies certain compati-
bility conditions at the corners of the domain. In the case of Poisson’s equation on £ = (0, 1)2, a necessary and
sufficient condition for ug € H*(Q) N HE () is that f € H2(Q) and f = 0 at the corners of (2; see [28]. We note
that these conditions are satisfied for functions f € H?(Q) such that supp(f) € Q; see [26].
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3. THE NUMERICAL SCHEME

In this section, we present and rigorously analyze the proposed numerical scheme. The outline of this section
is as follows.

Section 3.1 is divided into three parts and discusses the numerical homogenization. In the first part, we
approximate the invariant measure by a finite element method and provide a convergence result for the approx-
imation. This is then used in the second part to obtain an approximation to the effective coefficients, i.e., to the
constant matrix A°. In the third part, we use a finite element method to discretize the homogenized problem
and show convergence results for the approximation of the homogenized solution in H'(Q) and H?(Q), using
the approximated effective coefficients, a comparison result, and two technical lemmata. Improvements to the
convergence rates are given, provided more regularity on the coefficients is assumed.

In Section 3.2, we address the approximation of the corrector functions, presenting a method of successively
approximating higher derivatives. We then use the homogenization results obtained in Section 2 and the approx-
imations of the homogenized solution and the corrector functions from the previous subsections to approximate
the original solution u. in Section 3.3.

Finally, we study the case of nonuniformly oscillating coefficients in Section 3.4, derive homogenization results
similar to the case of periodic coefficients and discuss the numerical homogenization for this case.

3.1. Numerical homogenization scheme
The first step is to approximate the invariant measure.

3.1.1. Approximation of m

For the approximation of the invariant measure m, we consider a shape-regular triangulation of Y into
triangles with longest edge h > 0 and let

My, C Wyer(Y) = {v € H. (Y): /Yv = 0}

be the finite-dimensional subspace of Wpe,(Y") consisting of continuous Y-periodic piecewise linear functions on
the triangulation with zero mean over Y. We assume that

Wper(Y) = ) M.
h>0

Then we have the following approximation result for m.

Theorem 3.1 (Approximation of the invariant measure). Let A = AT D R™ — R satisfy (2.1). Then, for
h > 0 sufficiently small, there exists a unique my € My, such that

/ (Avmh + mp, diVA) -Vop, = —/ (diVA) -Vop Yon € M}“ (3.1)
Y Y
and writing
mp = mp + 1,
we have that

lm = map|[r2v) + hllm = mpl[ vy Sh it flm = (On + )]y,
op €My,

where m is the invariant measure, as defined in Lemma 2.4.
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Remark 3.2. In particular, since

inf [lm — (5 + Dllm vy = o(1),
Vp €Mp

we have that
my —m in H(Y)
as h tends to zero.

3.1.2. Approzimation of A°

We use this finite element approximation of the invariant measure to obtain an approximation to the constant

matrix
A’ = / Am.
Y

To this end, we first replace the invariant measure m by the approximation my from Theorem 3.1, and then
replace the integrand by its piecewise linear interpolant,

AO ::/}/Ih(Amh).

This integral can be computed exactly using an appropriate quadrature rule. The following lemma gives an
error estimate for this approximation.

Lemma 3.3 (Approximation of A%). Let A = AT : R™ — R™ " satisfy (2.1). Further, let A° = (a2;) € R"™*"
be the constant matriz given by Theorem 2.6, let my, be the approximation to the invariant measure given by
Theorem 3.1, and let A9 = (a?j’h) € R™ ™ be the matriz given by

a?m = /YIh(aijmh), 1<4,j5<n.

Then, for h > 0 sufficiently small, AS is elliptic and

max }ao a?j,h| < h.

1<ig<n |9
3.1.8. Approximation of ug

For the approximation of the solution ug to the homogenized problem, we use the following comparison result
for the error committed when replacing A° by A9.

Lemma 3.4 (Comparison result). Assume either that (Q, A, f) € G2 or that (Q, A, f) € H°. Let A) € R™*"
be the approzimation to A° as in Lemma 3.3. Then, for h > 0 sufficiently small, we have that

luo = ugllz2() < hllfllz2 )
where ul € H?(Q) N H(Q) is the solution to the problem

AY D%l =f inQ,
uh =0 on 09Q,

and ug € H2(2) N HY(Q) is the solution to the homogenized problem (2.7).
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Finally, we can use an H{(Q2)-conforming finite element approximation uh H

satisfying the error bound

to the solution uf of (3.2),

h_ uh,HH

s |20 < HI| 220

H1<Q>

with constants independent of h. By the triangle inequality and the results obtained in this section, we have
the following approximation result for ug.

Theorem 3.5 (H'-norm approximation of ug). Assume either that (2, A, f) € G%2, or that (Q, A, f) € H°.
Then, the approximation ug’H obtained by the procedure described above satisfies

o =], ) S B DA 200

Let us now assume either that (2, A, f) € 91’2 or that (Q, 4, f) € H!. Further, assume that for h > 0
sufficiently small, we have that u} € H?(2) with

HUOHH?,(Q ~ Hf”Hl(Q (33)
where the constant is independent of h. The following lemma provides two situations where this is satisfied.

Lemma 3.6. Let (Q, A, f) be such that

(i) (Q,4,f) € GH2 with 90 € C3, or
(i) (9, A, f) € H! with Q C R? being a polygon and f € H} ().

Then, for h > 0 sufficiently small, (3.3) holds.

In the proof of Lemma 3.6, we use the following result on the regularity of solutions to Poisson’s problem on
convex polygons; see also [26,28,29,32].

Lemma 3.7. Let Q C R? be a convez polygonal domain and f € H} (). Then the solution u € H} () to the
problem

Au=f in Q,
u=0 on 0,
satisfies the bound
lull g3y S I flla ) (3.4)

Remark 3.8. The assumption f € H () in Lemma 3.7 can be weakened provided f satisfies certain compat-
ibility conditions; see Theorem 5.1.2.4 from [26].

Then an H?(Q) N HE(Q)-conforming finite element approximation ug’H

satisfies the error bound

to the solution ul! of (3.2), that

Uy — Uo SH HU HH3(Q) SH ||fHH1(Q)> (3.5)

[t = ]
H2(Q)

provides by Lemma 3.4 and the triangle inequality an approximation to ug.

Theorem 3.9 (H?-norm approximation of ug). Assume either that (Q, A, f) € GY2 or that (Q, A, f) € H!, and

assume (3.3). Then, the approzimation ug’H obtained by the procedure described above satisfies

[0 =], oy £ Bt DI r
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Remark 3.10 (Improvements). We note that if we assume that A € W%°(Y), then we have the following
improved results.

(i) Approximation of m: In this case, m € H?(Y) and we have that

inf |m — (0n +1)|lgr(v) < Hm —Ipm — / (m Ihm)H S hlm| g2 vys
€My, Y HY(Y)

by choosing v, = Zpm — fY Zym, and using an interpolation error bound. Therefore, Theorem 3.1 yields
lm = mpl| vy + Bllm = ma| g vy S B2 Iml 2 v)-
(ii) Approximation of A%: By an interpolation error bound and the fact that my, is piecewise linear, one has
laigmn — Tn(aiymn)l|ovy S B2[laijlwzoe vy lmal vy
Therefore, the proof of Lemma 3.3 yields

max |af; — al; | < h2|Allwze oy Imllm2ery S B2 Al vy

1<igj<n |9
(iii) Approximation of ug: It follows that the results of Lemma 3.4, Theorems 3.5 and 3.9 can be improved to
second-order convergence in h, i.e.,

< (hQHAHW?vw(Y) + )| fllas—1) = O(h* + H),

for s = 1,2, respectively.

We note that second-order convergence with respect to h could not have been obtained by using a piece-
wise constant approximation of a;;m) instead of the piecewise linear approximation considered here. For the
approximation of derivatives of ug of higher than second order, the post-processing method of Babuska [12] can
be used to obtain error bounds in norms involving derivatives of higher order than the energy norm (the norm
natural to the problem).

For bounded convex polygonal domains 2 C R?, an H?2-conforming approximation to the solution of (3.2)
can be obtained as follows. Assume that f € H}(Q) so that (3.3) holds. Consider a shape-regular triangulation
of 2 into triangles with longest edge H > 0, and let

Vi € H*(Q) N Hy(Q)

be an appropriate finite element space. In practice, the Hsieh—Clough—Tocher element and the Argyris element
can be used as H2-conforming elements. Then, for > 0 sufficiently small, standard finite element analysis can
be used to show that there is a unique function ug’H € Vg such that

/(A?L:D%Q’H) (49 : D2y :/f(AQ:D2<pH) Vou € Vi, (3.6)
Q Q

and that the error bound (3.5) holds.

Further finite element approaches for approximating the solution of nondivergence-form problems include
the conforming method [33] that makes use of a finite element Hessian, the discontinuous hp-Galerkin method
[35,36], the primal method [21] similar to an interior penalty discontinuous Galerkin method, the mixed finite
element method [24], and the variational formulations presented in [23].
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3.2. Approximation of the corrector

We now address problem (2.8) and present a method for A € W%°(Y). To simplify the notation and the
arguments, we assume that we know the invariant measure m and the matrix A° = (af;)1<i j<n exactly instead
of working with our approximation A(,)L.

For a given Y-periodic right-hand side g € W2°°(Y'), we consider the problem

-V - (AVyx) + (divA) - Vx =—g inY,
x is Y-periodic, [, x = 0.

Obtaining an approximation for second-order derivatives wia finite elements is not straightforward since the
natural solution space is Wyer(Y'). We present a method of successively approximating higher derivatives.
Let x5, be a Wye (Y)-conforming finite element approximation to y, i.e.,

Xn € Va, /AVXh~Vg0+/
Y

Sa(diVA)'VXh:*/QSD Vo eV,
Y Y

with Vj, C Wpe(Y) finite-dimensional, and satisfying the error estimate
Ixn — xllar vy S he
Let r € {1,...,n} and write &, := 9, x. Then, using the equation
-V - (AVy) + (divA) - Vx =—g inY,
we find that in a weak sense, one has
—V - (AVE,) + (divA) - V€, = —0,g + V - (0,AVx) — (div(d,A)) - Vx inY.

Further, we claim that £, € Wye,(Y). Indeed, this follows from the regularity and periodicity of x and

/&X:/ xV - e. =0.
Y Y

-V - (AVE) 4 (divA) - V& = —0,g+ V - (0,AVX) — (div(9,4)) - Vx inY,
& is Y-periodic, [, & =0.

Therefore, &, € Wyer(Y) satisfies

Now we use our H'-conforming approximation for x for the right-hand side and use a Wy (Y')-conforming
finite element method for approximating the solution v € Wye (Y") to the following problem:

{—v (AVY) + (divA) - Vo = 3,9 + V - (0, AVxp) — (div(9,A)) - Vxn — ¢ in Y, 57

v is Y-periodic, [, v =0,

where ¢ is such that this problem admits a unique solution (such that the solvability condition (2.5) is satisfied).
By looking at the problem for v — &, one obtains the comparison result

[v =& llmryy SNV - (0rAV (X = X)) [ Wper vy + 1(div(0r-A)) - VXh = X) IWper (v
S HAHW?’OO(Y)HXh - XHHI(Y)
< hl|Allw2.0 vy = O(h).
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Let v;, be a Wper(Y)-conforming finite element approximation to the solution v of (3.7) satisfying
lon = vl (v) < Ch

for some constant C' = C([|Alw=2.(y)) > 0. Then, using the triangle inequality, we obtain
llon = &l vy < Ch

for some constant C' = C(||Alw2.(y)) > 0. Using this procedure for 7 = 1,...,n, we eventually obtain
approximations to derivatives of order up to two of .

3.3. Approximation of u.
We assume either that (Q, 4, f) € G*2 or that (Q, A, f) € H?. Let n € {2,3}, ¢ € (0, 1], and assume that
Up € H4(Q)

Then we know that (2.10) is satisfied, and by Theorem 2.8 we have that

n
ue—uo =< 3 i () OBl S VE luollwese) + elluallico, (3.8)
vt H2(9)

where ug is the solution to the homogenized problem, and x;; are the corrector functions given as the solutions
to (2.8). This result can be used to construct an approximation of ue, i.e., to the solution of problem (2.2) for
small e. We note that (3.8) implies that

n n
ue = uollmey + Y ||Ohue — | Ofuo + > (9Rixis) (g) 9 ug < Ve lluollwz< (o) + elluoll )
k=1 =1 L2@)
(3.9)

This leads to the following approximation result for u..

Theorem 3.11 (Approximation of u.). In the situation described above, let (ug p)n>o0 C H2(Q) be a family of
H?-conforming approzimations for ug satisfying the error bound

luo — uonll a2y S PIflla (@),

and for 1 < i,7,k,l < n, let (zfj{h)hw C L2, (Y) be a family of L* approzimations for 8,x:; satisfying the
error bound

2 kl
19k xi5 — Zij,h||L2(Y) Sh
Then, by writing
n
kil ._ 92 k() 52
ugy = Ouon + Z Zij,h (g) 0;u0,hs
4,j=1
we have that

lue — UO,hHHl(Q) + Z Hazgzus - U’:,thLl(Q) < (\@‘F h) ||U0||W2»°o(s2) + 5||U0HH4(Q) + h||f||H1(Q)~
k=1
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In connection with the previously described approximation of the homogenized solution ug and the corrector
functions y;;, note that Theorem 3.9 provides an H?(Q)-conforming approximation to uy and the method
presented in Section 3.2 provides Lger(Y) approximations for the second-order partial derivatives of x;;, as
required for the setting of Theorem 3.11.

Let us conclude this section by remarking that if the second derivatives of the corrector functions are approxi-
mated in the space L>(Y) or if the solution to the homogenized problem is approximated in the space W2 (),

then one obtains by a similar proof an approximation result for the second derivatives of u. in L?(€2).
Remark 3.12. If (zfjlh) h>0 C L2, (Y) is a family of L approximations for 97, x; satisfying the error bound
ki
||3131Xij - Zij,hHLoc(Y) = O(h),
and (uo,5)n>0 is as in Theorem 3.11, then we have that
n
ki
lue = wonllme) + Y ||Ofue — U oy = O(We +h).
k=1

The same holds true when (uo n)n>0 C W?2:°°(0Q) is a family of W2>°-conforming approximations for uq satisfying
the error bound

lluo — wo,n|lw2. () = O(h),

and (ijl,h)h>0 is as in Theorem 3.11.
3.4. Nonuniformly oscillating coefficients

In this section, we discuss the case of nonuniformly oscillating coefficients, i.e., coefficients depending on =z
and Z. We consider the problem

A<~,é) D%, = f in Q,
u: =0 on 01,

(3.10)

where the triple (€, A, f) satisfies one of the following sets of assumptions.

Definition 3.13 (Sets of assumptions G, H). We write

(i) (2,4, f) € G if and only if O C R" is a bounded C*7 domain, f € L*(Q2), and A = AT : Q x R" — R"*"
satisfies

A= A(z,y) € W2>(Q; WH4(Y)) for some q € (n, o0,

A(z,-) is Y-periodic, (3.11)
INA> 00 AP < A, p)E € < A2 VEyERY, z e Q.

(i) (9, A, f) € H if and only if Q C R™ is a bounded convex domain, f € L%(Q), and A = AT : Q x R® — R"*"»
satisfies (3.11) and

Ayl _ 1
(trA(z,y))2 " n—1+49§

In view of Remark 2.2, we see that the Cordes condition (3.12) is always satisfied when n = 2. Well-posedness
of the problem (3.10) is guaranteed by the following theorem; see Theorem 9.15 of [25] and Theorem 3 of [35].

36 € (0,1] :

V(z,y) € 2 xR" (3.12)
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Theorem 3.14 (Existence and uniqueness of strong solutions). Assume either that (2, A, f) € G, or that
(Q, A, f) € H. Then, for any € > 0, the problem (3.10) admits a unique solution u. € H?(Q) N HL(Q).

As in Section 2, uniform a priori estimates for the solution to (3.10) allow passage to the limit in equation
(3.10); see [13,14]. The coefficient matrix of the homogenized problem now depends on the slow variable z, and
is obtained by integrating against an invariant measure. Corrector results can then be shown as before.

Theorem 3.15 (Nonuniformly oscillating coefficients). Assume that ¢ € (0,1] and that either (0, A, f) € G or
(Q, A, f) € H. Then, the following assertions hold:

(i) Uniform a priori estimate: The solution u. € H?(2) N HL(Q) to (3.10) satisfies

Hu€||H2(Q) S ||f||L2(Q)~

(i) Homogenization: The solution u. € H?(Q2) N H(Q) to (3.10) converges weakly in H?(Q) to the solution
up € H2(2) N HE(Q) of the homogenized problem

(3.13)

A% D%y = f in Q,
ug =0 on 012,

with A : Q — R™™ given by
A= [ A ym(a,)
Y

where m = m(z,y) is the unique function m : Q@ x R® — R with m € C(Q x R"), 0 <m < m < M for
some constants m, M > 0, such that

D%: (A(z,)m(z,")) =0 in Y,
m(z,-) is Y-periodic, [, m(z,-) =1,

for any fixed x € Q. The function m is called the invariant measure.
(iii) Corrector estimate: Assume that f € H?(Q) and ug € H*(Q)NW?2°°(Q). Introducing the corrector function
Xij» 1 < 4,5 < n, as the solution to

A( ) DQX'L]('T y) (‘T) - aij(xvy)7 (I,y) €0 x }/a
Xij(z, ) is Y-periodic, fY Xij(@, ) =0,

we have that

n
ue—uo =2 Y xij (+2) OBuol| S VE luollwaee) +elluollsco.
=t H2(2)

Let us explain how the numerical scheme from Section 3.1 can be used for the numerical homogenization of
(3.10).

First, we consider a shape-regular triangulation 7z on € consisting of nodes {;};c; with grid size H > 0,
and a shape-regular triangulation 75 on Y with grid size h > 0. Then, for any ¢ € I, we can use the scheme
from Section 3.1 (see Thm. 3.1) to obtain an approximation mi, € H'(Y) to m,, = m(z;,-) such that

[ma, —millL2(v) + Bllmae, —millg vy Shoinf  |lmae, — (00 + 1)lgr v
R €My,
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Further, we obtain that
A%i = / I (A(l‘,, ) mZ)
Y
is an approximation to A%(z;) (see Lem. 3.3),

‘AO(%‘) - Ay

< h. (3.14)
Now we define A(,)L) y to be a continuous piecewise linear function on the triangulation 7x such that
A%,H(fi) = A%i
for all ¢ € I. Then, using (3.14) and denoting the continuous piecewise linear interpolant of a function ¢ on the
triangulation 7y by Zg¢, we have
[A° = Ah mllL= (@) < [1A° = Zu A% L= (@) + 1Z0A° — AR gl =)

3.15
<J1A° — Ty A ey + . (315

We observe that, similarly to the proof of Lemma 3.4, we obtain that the solution ug’H € H2(Q)N H(Q) to

A9 o D2l = in Q,
{ i 0" =/ (3.16)

up™ =0 on 02,
satisfies, for h, H > 0 sufficiently small,
luo — ug M2y S I1A° — A gl oo ) 1f 1|20

and in view of (3.15),

luo = ug ™Iy < (14° = T Al e(y + 1) [ £l 22 = O(H® + ),
where ug is the solution to the homogenized problem (3.13). Here we have used the interpolation estimate

A% = Ty A%|| oo () S H? [ A%l w.e )

which follows from A° € W%°°(Q) and standard interpolation theory.

Remark 3.16. For problems in divergence-form, similar results have been derived previously using heteroge-
neous multiscale methods; see e.g., [1].

At this point, let us note that in contrast with our procedure of approximating the effective coefficient A°
at the nodes of the coarse triangulation 75 and interpolating linearly, in the framework of the finite element
heterogeneous multiscale method A is typically approximated at the coarse integration nodes; see e.g., [1,2].
The use of piecewise linear interpolation allows us to obtain second-order convergence. Assuming more regularity
on the coefficient A(z,y) in y, as in Remark 3.10, the error in the approximation of the homogenized solution
ugp can be improved to order O(H? + h?). Finally, the solution to (3.16) can be approximated by a standard
finite element method on the triangulation 7z, which yields an approximation ug 5 g € H?(2) N Hg(Q) to ug
in the H?(Q)-norm.

The approximation of u. can be obtained based on the corrector estimate from Theorem 3.15 analogously as
in Section 3.3.
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4. NUMERICAL EXPERIMENTS

In this section, we illustrate the theoretical results through numerical experiments. We provide an example
for the case of periodic coefficients in Section 4.1, and one for the case of nonuniformly oscillating coefficients
in Section 4.2. In both cases, we provide not only an example with an unknown ug, but also a set-up with a
known ug in order to test the approximation scheme for the homogenized solution.

The experiments demonstrate the performance of the scheme for the approximation of the invariant measure
m, the effective coefficients A°, the homogenized solution ug, as well as the approximation of the solution . to
the original problem for a fixed value of e.

4.1. Periodic coefficients
We consider the homogenization problem
A (g) :D*u. = f in Q,
u: =0 on 01,

(4.1)

on the domain
Q:=Y =(0,1)2
with the matrix-valued map

2 9% {1+ arcsin (sin2 (7Ty1)) sin(7yy) cos(myy)
A:R* =R Ay, y2) == ( sin(my1 ) cos(my1) 2+ cos?(my1)
and the right-hand side f : 2 — R to be specified below. We observe that the matrix-valued function A satisfies
(2.1) with ¢ = co. Further, note that
A(y) = (aij(y1))1<ij<2

depends only on the first coordinate of y = (y1,y2) € R?; see Figure 1.
In this case we know that the homogenized problem is given by

A% D%ug = f in , (4.2)
ug =0 on 012, ’

where A% € R?*2 denotes the constant matrix

with m being the invariant measure

AO:/ Am
Y
1

1
dt 1
m:R2 =R, m(y, = / ) ;
(v1.92) ( o a1(t) a1 (y1)

see [22]. Explicit computation yields that
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FIGURE 1. The functions a;;(y1) plotted on the interval (0,1).

We also note that for the corrector functions x;; (1 <4,j < 2), i.e., the solutions to

A: Dy =ajy—ayj in Y,
Xij is Y-periodic, fy Xij = 0,

we have that

aQ- — Qjj
2 e i) if k=1=1,
O Xij (Y1,92) = a1 (y1)
0 otherwise.

Figure 2 shows the error in the approximation of m and A° by the scheme presented in Section 3.1.
For the approximation of the invariant measure we observe convergence of order

3
||m—thL2(y) = O(h2), (43)

and superconvergence of order O(h?) for h > 0 when grid points fall on the line {y; = %}, which is the set along
which 9;m possesses a jump. The observed rate of convergence (4.3) is consistent with Theorem 3.1. Indeed,
we have m € H%*‘g(Y) for any & > 0, and Theorem 3.1 yields

[m = mnllL2evy + hllm —mullmoy Sh inf [m = (On + Dl (v)
Vh h

<h

m—Ihm—/(m—Ihm)H
Y

Il

HY(Y)
%

Sk ml

H%fg(Yy

by making the choice v, = Zym — fY Irm, and using an interpolation error bound. In connection with the
superconvergence we note that m|q 1), o,1) € H?((0,%) x (0,1)) and M1 1)x0,1) € H?((3,1) x (0,1)). For
the approximation of the matrix A, we observe second-order convergence.
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10! 1072
< lmemy ] 2 . max, [a%-al |
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10°2 e 103

104
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107 1.9942

10t 103 102 10t
h h

FIGURE 2. Approximation error for the invariant measure m (left) and the matrix A° (right).
Two curves are observed, corresponding to whether or not grid points fall on the line {y; = %},
i.e., the set along which 0;m exhibits a jump.

4.1.1. Problem with a known ug

We consider the right-hand side given by
Q=R flx,22):= ad9ri(z; — 1) +al ze(xe — 1).

Then it is straightforward to check that the exact solution ug € H2(Q) N Hg () to the homogenized problem
(4.2) is given by

1
ug: Q— R, ug(z1,z2) = ixl(xl — Dzo(zo —1).

Note that we are in the situation (Q, 4, f) € H?, that f = 0 at the corners of  and that uy € H*(Q).

We use the scheme presented in Section 3.1 to approximate the homogenized solution ug, where we use the
same mesh for approximating m and ug. The Hsieh-Clough-Tocher (HCT) element in FreeFem++ is used in
the formulation (3.6) for the H? approximation of ug; see [27]. The gradient on the boundary is set to be the
gradient of an H' approximation by P, elements on a fine mesh.

Concerning the approximation of u., from Sections 2 and 3.3 we obtain that

2

2 2
EE = ||u€ — UOH?JI(Q) + Z 8;%[’[145 — 31311‘0 + Z (8;%[)(1']‘) (g) afuo = 0(8)
k,l=1

1,j=1 L2(Q)

For the numerical approximation, we replace u. by an H2-conforming finite element approximation on a fine
mesh, based on the formulation

' rAé . ) rAé
Find u. € V: LMA(S):DUEAUA}M

where V := H?(Q) N H}(Q). To this end, we use again the HCT element and set the gradient on the boundary
to be the gradient of an H' approximation by Py elements on a fine mesh.

Figure 3 shows the error in the approximation of uy and we observe second-order convergence. Further, with
the exact ug being available, we can compute the error F. for different values of ¢; see Figure 3. We observe
first-order convergence as ¢ tends to zero, as expected.

fAv YvevV,
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FIGURE 3. Approximation error for ug (left) and the error E. in the approximation of u. for
different values of € (right).

4.1.2. Problem with an unknown ugy

Next, let us consider the problem (4.1) with the same domain © and matrix-valued function A as before, but
with the right-hand side given by

Q=R f(x1,22) :=exp (— 2 1)2>~

I T P
Note that now we are in the situation (2, A4, f) € H2. Further, since the right-hand side f € H?(Q) of the
homogenized problem (4.2) satisfies f = 0 at the corners of Q, the solution ug to (4.2) belongs to the class
H*(Q); see Proposition 2.6 of [29].
As before, we use the scheme presented in Section 3.1 to approximate m, A° and ug. Using the second-order
H?(£2)-conforming approximation ug 5, to ug obtained as previously described,

w0 = uo,nll g2y = O(h?),

we have that

2
2

2
B = e = wo sy + 3 (|08 — | GRwon+ Y (BBovis) (2) BBuon || = O+ n),
k=1 4,5=1 L2(Q)
Figure 4 shows the error El; of the approximation of u. for different grid sizes and e = ﬁ fixed. We observe
fourth-order convergence in h for the error as expected.
4.2. Nonuniformly oscillating coefficients
We consider the homogenization problem
A(-,;) :D*u. = f in Q,
€
us =0 on 01,

on the domain

Q:=Y =(0,1)2
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FIGURE 4. The error El; in the approximation of u. for a fixed value, &€ = 100, (left) and the

error after subtraction of 6.0657 x 10~ (right), which is approximately the limit of EZ ; in the
figure on the left for this fixed value of € as h tends to zero.

with the matrix-valued map A : Q x R? — R2x2

_ €172 + 17| arcsin (sin®(ry;)) 0
(z,y) = ((x1,22), (41, 42)) = ( 0 2+ zocos(2mys + 1) )’

and the right-hand side f : 2 — R to be specified below. We observe that the matrix-valued function A satisfies
(3.11) with ¢ = co. Further, note that it is of the form

A(z,y) = diag (a11(, y1), az2(z, y2)) -
In this case we know that the homogenized problem is given by

A% D%y = f in Q,
ug =0 on 012,

where A" : Q — R2*2 is given by

- [ A yma.).

with m being the invariant measure

1
m:QAxR> =R, m(z,y) (// ds df ) L ;
ai1(x, s) aza(x,t) ar1(x,y1) aze(z, y2)

see [22]. Therefore, we have

ao(x)—(s--</1dt>_1 1<4,5<2
K Y \Jo aii(z,t)) T T T

We also note that for the corrector functions x;; (1 <14,j < 2), i.e., the solutions to

Az, y) : Dyxij(z,y) = af;(x) — aij(z,y), (2,9) € QAxY,
Xij(x, ) is Y-periodic, [, xij(z,-) =0,
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we have that

aly(x) — arr(z,y1) i

) 0 a/ll(xa yl)
Oy is(2,y) = § 2(@) —a22(@92) 5 oy
@22($, Z/2)
0 otherwise.

4.2.1. Problem with a known ugy

We consider the right-hand side given by
FrQ=R, z=(21,22) = f(2) = agy(e) 21 (21 — 1) + agy (2) 22(z2 — 1).

Then it is straightforward to check that the exact solution uy € H2(2) N H}(Q) to the homogenized problem
(4.5) is given by

1
up: Q= R, wg(zy,22) = §m1(x1 — Daa(ze —1).

Note that the assumptions of Theorem 3.15 (iii) are satisfied.
For H > 0 such that % € N, we take a triangulation 7z on Q consisting of nodes {(sH, rH)} r=o,..1/m, and
a triangulation 7 on Y with grid size h = %. We use the scheme presented in Section 3.4 to approximate A°
and ug, and we observe second-order convergence; see Figure 5.
For the approximation of u., Theorem 3.15 yields
2

2 2
Ee o= |lue — uoll3n gy + D |[ORue — | Ohmo + Y (95, Xi5) (g) 02 ug = 0(e).
k=1 i,j=1 L2()

For the numerical approximation, we replace u. by an H2-conforming finite element method on a fine mesh,
based on the formulation

. trA (-,i) . 9 trA (~7i)
Find u. € V : /7,62/1(-,7) 1)) uEAv:/ T fAu VeV,
olA ('ag)| € olA ('a g)|
where V := H?(Q) N H}(Q). To this end, we use again the HCT element and set the gradient on the boundary
to be the gradient of an H'-conforming approximation by P, elements on a fine mesh.
4.2.2. Problem with an unknown ug

Finally, let us consider the problem (4.4) with the same domain  and matrix-valued function A as before,
but with the right-hand side given by

1
f:Q_)Ra f(xlwrQ) ‘= exp <_ 2 2)'
1 1 1
3 (21-3) = (22— 3)
Note that we are in the situation (£2, 4, f) € H. Using the second-order H2-conforming approximation ug g to
ug obtained as previously described (again with h = %),

||U0 - UO,H”Hz(Q) = O(H2)7

we have that

2
2

2
B = lue —uoullipe) + Y ||Ofiue — | Owon + Y (8),,xi5) ('v E) 0} uo =O(e + HY).

k=1 i,j=1 L2(Q)

Figure 6 shows the error Efl, of the approximation of u. for different grid sizes and e = % fixed. We observe
fourth-order convergence in H for the error as expected.
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FIGURE 5. Approximation error for A° and ug for different values of H, using h = %, (left)
and the error E. in the approximation of u. for different values of € (right).
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FIGURE 6. The error Efl), in the approximation of u. for a fixed value, € = %, (left) and the
error after subtraction of 2.2653 x 10~ (right), which is approximately the limit of Ef, in the

figure on the left for this fixed value of ¢ as H tends to zero.

5. COLLECTION OF PROOFS

In this section, we provide the proofs to the results presented in this paper. This section is divided into a part
containing the proofs of the homogenization results from Section 2 as well as the proof of Theorem 3.15, and
a second part containing the proofs of numerical results from Section 3, except for the technical Lemmata 3.6
and 3.7, which can be found in the last part of this section.

5.1. Proofs of the homogenization results

Proof of Theorem 2.5. Let us first assume that (Q, A, f) € G%P for some p € (1,00). We showed in the previous
section that we can transform problem (2.2) into the divergence-form problem (2.6), where A4V : R — RX"
is a Y-periodic, Holder continuous, and uniformly elliptic matrix-valued function satisfying

div(A%Y) = 0.
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Therefore, we can apply Theorem D from [11] to problem (2.6) to obtain

l|uellwzr @) S Hfm( ) S llze

e HLp(Q)

with constants independent of €, where we have used the property (2.4) of the invariant measure in the second
inequality.

Let us now assume that (Q, A, f) € H°. Noting that (2.3) implies the Cordes condition for A (£) with the
same constant 6 € (0, 1] for any € > 0, the proof of Theorem 3 from [35] yields the estimate

C(n,diam(Q)) H ()H
< 7 - , 5.1
luellaey < —— =5 G e [f1lL2(0) (5.1)
where 7 is the function given by

_ trA(y)
[Aly)I?

We observe that by (2.1), there exist constants 4,I' > 0 such that

7:R" =R, A(y):

0<7<~v(y) <T VyeR"
Therefore, we obtain from (5.1) the bound
||UEHH2(Q) S ||fHL2(Q)

with a constant that is independent of ¢. (I

Proof of Theorem 2.6. By Theorem 2.5, the reflexivity of W2P(Q2) for p € (1,00), the compactness of the
embedding W2?(Q) < W1?(Q), and the properties of the trace operator, there exists a ug € W2?(Q)NW, ?(Q)
such that (for a subsequence, not indicated,)

ue — ug weakly in W*P(Q), and

u. — ug  strongly in WhP(Q).
We can transform (2.2) as in Section 2.2 into the divergence-form problem (2.6) with
AW = Am + B

being Y-periodic, Holder continuous and uniformly elliptic on R™. Recalling that B is of mean zero over Y, we
have

Adv (7) N / Am = A weakly-* in L>(9).
€ Y
Since we have that
Vu. — Vug strongly in LP(Q),

we can pass to the limit in the weak formulation of (2.6) to obtain that ug € W2P(Q) N W, *(2) solves (2.7).
We conclude the proof by noting that (2.7) admits a unique strong solution in W22 (Q) N W, (). O
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Proof of Theorem 2.7. First, we note that since A € C%*(R"™), we have y;; € C*%(R") for any 1 <i,j <n by
elliptic regularity theory. A direct computation shows that the function

n
=t et 3 s (2) O

Q=1
solves the problem
A (7) . D%, = f +eF. in Q,
€
n .
=<3 x (7) O2ug o 09,
ij=1 <
where
n . . .
F. = aij (g) (2 i Xkt (g) Friuo + € Xkt (g) 3?%1"0) .

0,5,k 1=1
Note that since ug € W4P(Q), one has that
Il zr o) S luollwar (),
with the constant being independent of €. We then have that d. := u. — u. satisfies
A (g) . D2d. = eF. in Q,
d. =¢&* z”: Xij (g) 3i2ju0 on 0f).
i,j=1
Therefore, by the definition of the boundary corrector,
A (g) - D? (dE + 5295) =¢eF; in €,
d. +¢e%0. =0 on 9.
We conclude using the estimate from Theorem 2.5 that
e + &20cllw2r () S ellFelloe) S elluollwaray,
and (2.9) holds. O

Proof of Theorem 2.8. Let n € C2°(R™) be a cut-off function with 0 <n <1,

L o €
n=1 in {er.dlst(x,39)<2},

n=0 in {ze€Q:dist(z,00) > ¢},

and let 7 satisfy
1

|Vn| 4 €| D?n| < - in Q.
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We introduce the function
0. :=0-+1 Z Xij (E) w0,
ij=1
and verify that
. - n . . 1 1
A(2) D= 30 e () 95 (mxw (2) Ofwo) = 581+ 252+ S5,
i,7,k,l1=1
where S7, 52 and S3 are given by

S1i= Zn: ajj (g) 195Xkt (g) Dpruo,

i,5,k, =1

2 | z”: aij (g) (@n 0 Xki (g) 5’;35“0 + 1 0iXki (g) 8?klu0) )

i,5,k,l=1

SQI

n
S3 = _ Z ai; (g) (31-2]-77 Xkl (g) Ao + 2 0;m X (g) 35%1“0 + 7 Xk (g) 8z4jklU0> .
Therefore, 0. satisfies

. ~ 1 1
A (7) D%, = =85, +-5y+55 inQ,
€ g2 €

és =0 on 0f).

Since ug € W*P(Q)NW2>°(Q) by assumption, the right-hand side belongs to L?(£), and we have by Theorem 2.5
that

We look at the terms on the right-hand side separately and start with S7. Using the boundedness of A and the
fact that x;; € W% (R"™), we have

0-

1 1
< —|IS1ll e —|1S2|| .» S3ll e
—_— 62|| 1lle() + 6|| ollzr (@) + 193]l Lr (o)

1Sllzey = || D ai (g) 107 X (g) Fiyuo
0,4k, l=1 Lr()
S luollwz @) 0l e @)
< {z € Q- dist(z,00) < }|7 [luollwa~ (o)
1
5 €pHu0HW2,oo(Q).

For S5, we obtain similarly that

2 3 (2) (v (2) o+ n0ove () )

i4k,l=1

152l L (02)
Lr(Q)

A

V0l Lo luollwz.o @) + 17l Lo (@) luolwar o)

A

1 . 1
- Hx € Q:dist(z,09) < e}|7 |luollw2 ) + [uollwar ()

1
— lwollwze () + lluollwar(o)-
e T p

A
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Finally, for S5, we have that

n

53] r () = Z Qjj (g) (31'2]'77 Xkl (g) 3131“0 +20in XK (g) 5]31«1“0 + N Xkt (g) 3?%1“0)

i4,kl=1

S ||D277||LP(Q)HUOHWQvOO(Q) + (HVWHLOO(Q) + ||TI||Loo(Q)) |lwollwar o)
1 . 1 1

,S 672 |{l‘ cN: dlSt(l‘,aQ) < E}|P ||U0||W2oc(Q) + g”uo”wzl,p(ﬂ)

< 1 1

S oI luollw=() + Zlluollwer (-

Altogether, we have shown that

P _ (e 1 1 11
H EHWQTP(Q) S~z + g + 27 l[wo w20 () + z + z [[uol[war(a)

1 1
S 57 lluollw2= o) + —lluollwar(e)-
g5 €

By direct computation, using the bounds

1

1
27

1 1
Inlle) S €7, NVallee) S 4= 1D*n|l o) S
e p

we can show that

n
. 1 1
n > i () duo S g ol + ol
=1 W2:2(Q)

Therefore, using the triangle inequality, we obtain that
8. w2y S 5t luollwaos (@) + ~l[uo s
e“r €
We conclude that
€20 |l w2p(0) S e |wollw2.0 () + €lluollwar (-
The claim now follows from (2.9).

5.2. Proofs of the numerical results

Proof of Theorem 3.1. We observe that m = m + 1, where m is the unique solution to the problem

3

-V - (AVm +mdivA) =V - (divAd) inY,
m is Y-periodic, [, m =0,

that is,

m e Woer(Y), a(im, o) = —/ (divA) - Vo Vo € Wher(Y),
Y

L ()
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where
a: Wper(Y) X Wper(Y) — R, a(u,v) := / AVu - Vv +/ u(divA) - V.
Y Y
We further observe that (3.1) is equivalent to
mp € My, a(mn, on) = — /Y(divA) Ven  Veone M, (5.2)

We start by showing boundedness of a and a Garding-type inequality. We claim that there exist constants
Cy, Cy > 0 such that

la(u,v)| < Cb||UHH1(Y)HU||H1(Y) Vu,v e Wper(Y)ﬂ (5.3)
and
A
a(u,u) > §||u||%11(y) = Cyllulliepy  Vu e Wpa(Y). (5.4)

Let us first show (5.3). For u,v € Wpe(Y), by Holder’s inequality and Sobolev embeddings (note that,
according to (2.1), ¢ > n), we have that

/Yu(divA) -V

< ”diVAHLQ(Y)||UHL%(Y)”VUHL2(Y) S lullar oy lloll aryy-

Using the fact that A € W4(Y) — L*°(Y) since ¢ > n, we obtain the bound

/ AVu - Vo
Y

for any u,v € Wy (Y), d.e., (5.3) holds.
Let us now show the estimate (5.4). For u € Wy (Y'), by ellipticity and Hélder’s inequality, we have

la(u, v)| < +

/Y u(divA) - Vo

S ||u||H1(Y)||U||H1(Y)

a(u,u) = / AVu - Vu —|—/ u(divA) - Vu
Y Y
2 .
> AMVaul[z2¢vy — ”leA”LQ(Y)”UHL%(Y)”VUHL%Yy
For the second term we use the Gagliardo—Nirenberg inequality and Young’s inequality to obtain
: : 1-2 142
v Al oyl 2, o 190l < Clasm) v All syl IVl
A .
< §||VU||2Lz(Y) + C(g,n, A, |divA o)) [l 22 v

Therefore, we have

A .
a(u,u) > §||VU||%2(Y) —C(g,n, A, ||d1VA||L‘1(Y))||uH%2(Y)

Ay 9 A . 2
= §||“||H1(y) ) +C(g:n, A, [|[divA| Lagyy) ||UHL2(Y)
for any u € Wye,(Y), i.e., (5.4) holds with

A .
Cyi= 5+ Clg,n A\ [divA oy,
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We use Schatz’s method to derive an a priori estimate; see [34]. The proof of the uniqueness of 7y, € Mj, (which

implies its existence) proceeds analogously and is therefore omitted.
From our Garding-type inequality (5.4) we see that (note that m — my € Wpe(Y))

2C, M —1mnlZz2y)

By I — mnll g vy (5.5)

- 2C,, .
=g vy — TgHm — mallL2y)

IN

[ — | vy —

2 a(m—mh,m—’l’hh)

A= mnlE oy

By Galerkin-orthogonality and boundedness, we have for any v, € M, that

alin = mitn,m — 1) _ alit =i =) o g,
_ < )

[ — || g vy I — || g vy

and taking the infimum over all @), € M), we find that

a ﬁl*ﬁlh ﬁl*ﬁlh . ~ ~
( 7 ) < Cp inf |[m —nllg(y)-
Hm_thHl(Y) Vp EMp

Combining this estimate with (5.5) yields

2C 20y

[ — mnll g vy — TgHm—ﬁthL?(Y) < (5.6)

A
E.
h
El
|
<
=
T
=

Next, we use an Aubin—Nitsche-type duality argument.
Let ¢ € Wyer(Y') be the unique solution to

—V - (AV¢) + (divA) - V¢ = =n i Y, (5.7)
¢ is Y-periodic, fY ¢ =0. '

We note that the solvability condition (2.5) is satisfied:

/Y%m:/y(m—mh):o.

We have, using the bounds on the invariant measure (2.4), the weak formulation of (5.7) and the symmetry of
A, that

m

= [ A6Vl — i)+ [ (@A) - 96 (2 — i)
Y Y

1 m— myp
L i — 2 s/ =y i)
i Ly S |

= [ AVGa— ) Vo-+ [ (= i) (diva) - V0.

Next, we use Galerkin orthogonality, the boundedness (5.3) and an interpolation inequality to obtain

1 . - - ~
MHm — 1|32y < alii — mn, )

= a(m —mp, d — Ipo)
Sl —mnll vyl — Zndll vy

S Bl =l g o) [0l a2 vy,
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where Z;,¢ denotes the continuous piecewise linear interpolant (for n < 3 and quasi-interpolant for n > 4) of ¢
on the triangulation. Finally, by a regularity estimate for ¢ and the bounds on the invariant measure (2.4), we
arrive at the bound

m — mp ~ ~
I8l H < [l = o

L2(Y)

which provides us with the estimate
[ — M| L2y < Cohllm — mnllmv)

for some Cy > 0. Combining this with (5.6) we have

2C,C . . 2C, . .
(1= 2500 = v < = v = 25200 = 2
2C),
< inf im—o :
- A f)hléth Hm vh”Hl(Y)

Therefore, for h sufficiently small, we arrive at the bounds

[ —mnllgyy S inf |l — On g vy,
Up €My,

and

|l — thLz(y) < Cohllm — ﬁ’LhHHl(y) <h i inf |jm— ﬁhHHl(y).
Vh EMp

We have thus established the a priori estimate

|7 — ThhHLz(y) + h|jm — thHl(y) <hoinf | — 6h||H1(Y)~
Up €My,

Finally, using that m = m + 1 and m;, = mj;, + 1, we conclude that

lm = mn|[2¢v) + hllm = mn |y Sh inf lm = (On + Dy
Uh h

Proof of Lemma 3.3. Fix 1 <4, j < n. Using the definition of A° = (a?j), i.e.,
a?j = / aijm,
Y
0

lad; — ad; | < llaij(m —mp)||Lr vy + llagyma — Zn(aizmn)ll i v)-

we obtain the estimate

For the first term, we have
llaij(m —mp)llL vy S llm—mnlleryy S lIm—mallzeeyv).-
For the second term, let us first note that using a;; € WH4(Y) with ¢ > n and Sobolev embeddings, we have
laijmn|miyy < Hvaij”Lq(Y)HthL%(Y) + llaij | Lo vy VMl 2 vy

< llasjllwra vy llmall g vy
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Therefore, using a standard interpolation error bound, we obtain

llaiymn — Zn(aiymn)l| o vy S llaiymn — Zn(aiyma)ll L2y
< hlaigmn|my)

S hllaigllw ooy llmnll e v
By Theorem 3.1, for h > 0 sufficiently small, we have that

lad; — ad; | S llm — mallL2evy + hllmal gy

S llm —mallL2(vy + hllm — mapl|gi vy + blml gy
Shoinf [Im— (0n + Dl vy + Rlmll o)

VpE
S hllm =1z vy + Rl vy
< h.
Finally, we note that this implies that for A > 0 sufficiently small, A9 is elliptic. (]

Proof of Lemma 3.4. We let wy, 1= ug — ul € H2(Q) N H () and note that wy, is the unique solution to the
boundary-value problem

A D%y, = (AY — A%) . Dl in Q,
wp =0 on Of).

We recall that A% € R™"*" is an elliptic constant matrix. For h > 0 sufficiently small, by an H? a priori estimate,
the Cauchy—Schwarz inequality and Lemma 3.3,

lwnll 2 () S (A7 = A°) : D*uglz2(q)

1
2 2
n
S /Z(a?j,h_a?j)aigjug
Q=1
1
n n 2
S| Xt et | | 3 10zt

i,5=1 =1
< hlug|az )
Finally, we show that for h > 0 sufficiently small, we have
lug |22y S 11f 1|2 (5.8)
with the constant being independent of h. This can be seen by rewriting (3.2) as
A% Db = f+(A° - AD): D2 in Q,
uh =0 on 0fL.

Then, again by an H? a priori estimate and Lemma 3.3,

lug 20y S 1+ (A° = A7) = D?ug 2 () S Iflle2c) + hllug | a2

with constants independent of h, i.e., for h > 0 sufficiently small, (5.8) holds with the constant being independent
of h. 0
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Proof of Theorem 3.11. We use (3.9) and the triangle inequality to obtain

lue —vonll () < llue — uoll g1 () + lluo — wonllm1(0)
< Ve lluollwzo ) + €lluoll a2y + hll fll 1),

and for 1 < k,l < n,

Hf?izua - U];,thLl(Q) N \/5||U0||W2=w(9) + €||UOHH4(Q) + h||f||H1(Q)
- 52 i) (2) 4 ()
i,j=1

It remains to study the last term on the right-hand side of the above inequality. For fixed 1 < 4,j < n, we use
again the triangle inequality to obtain

i) (2) 0 (2)

L1(©)

L)
kl i 2 2 2 kl ) 2
< et () @0~ o], o, + s =0 ) o],
kl i 2 kl )
(Dl s = s ) ()] el

D(EAGI

In the last step, we used that by the transformation formula and periodicity (cover /e by O(e~") many cells
of unit length), there holds

iy @ + ||uo||wz,x(m) |

| @t =) (7))

3

£2(9) 5 Halglxlj - Z’Z{h”[ﬁ(y) 5 h. (510)

4 (2)

Indeed, we use the triangle inequality, (5.10) and the fact that x;; € W2>°(Y) to obtain

2 (E)’ @ = ”(%Xij — 2ijn) (7)’

3

We claim that

<h+1.
12(@)

) + ||8,§lx,-jf|Lw(Y) ,S h + 1.

L2 L2(Q

O

Proof of Theorem 8.15. (i) For (2, A, f) € H, one shows similarly to the proof of Theorem 3 from [35] and
Theorem 2.5 that

A ()

A (21

For (Q, A, f) € G, the claim follows from the method of freezing coefficients, using the uniform estimate
from Theorem 2.5 for the operators L,, := A (xo, E) : D? for fixed zy € Q.

(ii) The uniform estimate from (i) yields weak convergence in H?(Q2) and strong convergence in H*(2) for a
subsequence of (uz)e>o to some limit function ug € H2(2) N H}(2). We multiply (3.10) by m (-, £) and
follow the transformation performed in [13] to find that the equality

1222 S 1122 @)
L (Q)

luellm20) S

mf=2V- (AEVUE + [divwzzl]s uE) -2 [divm;lr -Vu, — {Di : flr ue — D? (/Nleue)



1254 Y. CAPDEBOSCQ ET AL.

holds weakly, where A := Am and v° denotes v (-, g) Passing to the limit, we obtain that ug is a weak
solution of (3.13). We conclude the proof by noting that (3.13) admits a unique strong solution, since A°
is uniformly elliptic and Lipschitz continuous on ; see [25, 26].

(iii) This can be proved similarly to Theorems 2.7 and 2.8, using that, by the assumptions made on A and
elliptic regularity, we have

Xits 10w xma] ™ [0y xm]” [3§iijkzr7 [821_%)(;@1}8 € L>(Q)

for any 1 <14,5,k,1 <n.

5.3. Proofs of technical lemmata

Proof of Lemma 3.6. We start with the case (i). To this end, let (2, 4, f) € G52 with 9Q € C3. Then, by elliptic
regularity theory, we have u? € H3(Q). Using elliptic regularity for problem (5.9) yields

lugllz) S IF+ (A° = AD) : D*ufllmr ) S o) + hllugllae o

with constants independent of A, i.e., for h > 0 sufficiently small, (3.3) holds with the constant being independent
of h.

Let us now show the claim for the case (ii). To this end, let (2, A, f) € H! with Q C R? being a polygon and
f € HY(D). Since

A) = A% 4 (A) — A%) = A° + B,
is symmetric and elliptic for h > 0 sufficiently small, there exists an orthogonal matrix Q; € R?*? with
QrQY = QFQp = I such that
Qn (A° + By) QF = diag(\F, \,) =: Au,

where )\f > ( are given by

-

20 = tr (A° + By) & ((br (A% + By))” — ddet (4° + By)) "

We note that, by Lemma 3.3, the entries of By, = (b%)1§i7j§2 satisfy b?j < h, and therefore, for h > 0 sufficiently
small, we have 0 < Aif + (A\f)"2 < 1.
The problem (3.2) in the new coordinates reads

{AUh:Fh in Ph,

5.11
U,=0 on 0P, ( )

1 1 _1
where Uy, = ull (Q}:Aﬁ ~), F, = f (QEA; -), and P, := A, Q. Note that P, is still a bounded convex
polygonal domain and that Fy, € Hg(Py). By the change of variables formula and the orthogonality of Q,

e = [ (£ 194) = det ] /P (\f( af )|+ v ( EAE-)\Z)

1 1 2
:detA,f/ (|Fh|2+’Ah2VFh’ >
Py

2 2 2
2 | (1BE+I9EE) = 1Rl e,
h
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Using Lemma 3.7, we have that, for h > 0 sufficiently small, the solution to (5.11) satisfies
1Urll2 ) S W Erllgrp,y S Il )
with constants independent of h. It remains to show the bound
lugll s S Ul asp,)- (5.12)

By the change of variables formula and the orthogonality of @}, we obtain similarly as before,

2
ol = [ (1l + 19 + D7) + S [ D0t
=1

1 _1 2 _1 _1 2
:detAg/ <|Uh|2+‘QEAh2VUh] +‘Q2Ah2D2UhAh2Qh)>
Py
2

2 1 Q 1 1
+ detAg/ @i g a—4 2,0, A2 Q)
; P ; Vv (An)jj

1 _1 2 1 _1
— det A’ <|Uh|2+ (A, VU[ |8, D20 A,
Py

2 2 detA,% R 12
)*Z(Am/ Ay * D20Un Ay

2
2 2
< [, (O + w0F+0f) + 3 [ D00 = 10l
Ph i=1 Ph

i.e., we have established the bound (5.12). We conclude that, for h > 0 sufficiently small, we have (3.3), i.e

h
luollms ) S 1 llar @)
where the constant is independent of h. (I

Proof of Lemma 3.7. First, note that since Q C R? is a convex polygonal domain, we have u € H2(2) N H} ()
with [|ul|g2(0) S 1f]l22(0): see [26]. Since f € Hj(R), there exists a sequence of smooth functions with compact
support (fm)m C C°(Q) such that f,, — f in HY(Q). Let (um)m C HE(Q) be the sequence of solutions
in H}(Q) to Auy, = fm in Q, and note that (), C C*(Q) since the functions f,, satisfy compatibility
conditions of any order; see Section 5.1 of [26]. Again we use the H?-regularity result for solutions of Poisson’s
problem on convex polygons to obtain

lwm = ullg2) S 1 fm — fllz2@) — 0,

i.e., Uy — u in H(Q).
Next, we shall use the fact that

|’U|H3(Q) = HV(AU)HLz(Q) Vv e {w € H&(Q) cAw € H&(Q)} N COO<Q); (5.13)
see [32]. We apply (5.13) to the difference of two elements of the sequence (), to find that (uy, ), is a Cauchy

sequence in H3(R), using that f,, — f in HY(Q). Thus, u,, — u in H3(2) and passing to the limit in (5.13)
applied to the functions u,, yields

[ul 3 () = IV fllz2(0)-

Since ||ul|g2() < [1flL2(q), we conclude the bound (3.4). O
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6. CONCLUSION

In this paper we introduced a scheme for the numerical approximation of elliptic problems in nondivergence-
form with rapidly oscillating coefficients on C%7 and polygonal domains, which is based on a WP corrector
estimate for such problems derived in the first part of this work.

We proved an optimal-order error bound for a finite element approximation of the corresponding invariant
measure using continuous Y-periodic piecewise linear basis functions on a shape-regular triangulation of the
unit cell Y under weak regularity assumptions on the coefficients. The coefficients are integrated against the so
obtained approximation of the invariant measure after piecewise linear interpolation on the mesh to obtain an
approximation of the constant coefficient-matrix of the homogenized problem. Using an H? comparison result
for the solution of this perturbed problem, we eventually obtained an approximation of the solution ug to the
homogenized problem in the H2Z-norm. In the case of a polygonal domain in two space dimensions, we made
use of compatibility conditions for the source term to ensure sufficiently high Sobolev-regularity of u.

We obtained an approximation to the solution u. of the original problem, i.e., the problem with oscillating
coefficients, by making use of the H? approximation of uy, finite element approximations to second-order deriva-
tives of the corrector functions, as well as an H? corrector result. A method of successively approximating higher
derivatives for the approximation of corrector functions was provided and analyzed. The corrector functions are
necessary in order to obtain an approximation of D?u. whereas the task of approximating u. in the H'-norm
can be achieved using only an H' approximation of wg.

Furthermore, we generalized our results to the case of nonuniformly oscillating coefficients, i.e., we derived
an analogous corrector result and studied the approximation of the solution ug to the homogenized problem
and the solution u. of the e-dependent problem in this case.

In the final part of the paper, we presented numerical experiments matching the theoretical results for
problems with both known and unknown ug, as well as problems with nonuniformly oscillating coefficients. We
illustrated the performance of the scheme for the approximation of the invariant measure, the solution ug to
the homogenized problem and the solution u. to the problem involving oscillating coefficients for a fixed value
of e.

Future work will focus on weakening of the regularity assumptions on the coeflicients and the approximation of
fully nonlinear nondivergence-form problems with oscillating coefficients such as the Hamilton-Jacobi-Bellman
equation.
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