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FINITE ELEMENT APPROXIMATION OF ELLIPTIC HOMOGENIZATION
PROBLEMS IN NONDIVERGENCE-FORM

Yves Capdeboscq1, Timo Sprekeler2,* and Endre Süli2

Abstract. We use uniform 𝑊 2,𝑝 estimates to obtain corrector results for periodic homogenization
problems of the form 𝐴(𝑥/𝜀) : 𝐷2𝑢𝜀 = 𝑓 subject to a homogeneous Dirichlet boundary condition. We
propose and rigorously analyze a numerical scheme based on finite element approximations for such
nondivergence-form homogenization problems. The second part of the paper focuses on the approxima-
tion of the corrector and numerical homogenization for the case of nonuniformly oscillating coefficients.
Numerical experiments demonstrate the performance of the scheme.
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1. Introduction

In this work we consider second-order elliptic equations of nondivergence structure, involving rapidly oscil-
lating coefficients, of the form

𝐴
(︁ ·

𝜀

)︁
: 𝐷2𝑢𝜀 :=

𝑛∑︁
𝑖,𝑗=1

𝑎𝑖𝑗

(︁ ·
𝜀

)︁
𝜕2

𝑖𝑗𝑢𝜀 = 𝑓 in Ω, (1.1)

subject to the homogeneous Dirichlet boundary condition

𝑢𝜀 = 0 on 𝜕Ω. (1.2)

Here we assume that Ω ⊂ R𝑛 is a sufficiently regular bounded domain, 𝜀 > 0 is small, and that 𝐴 = (𝑎𝑖𝑗) :
R𝑛 → R𝑛×𝑛 is a symmetric, uniformly elliptic and (0, 1)𝑛-periodic matrix-valued function such that

𝐴 ∈ 𝑊 1,𝑞(𝑌 ) for some 𝑞 > 𝑛,

where 𝑌 := (0, 1)𝑛 denotes the unit cell; see Section 2.1. The main goal of this paper is to propose and analyze
a numerical homogenization scheme for (1.1), (1.2) that is based on finite element approximations.

The theory of periodic homogenization is concerned with the limiting behavior of the solutions as the oscil-
lation parameter 𝜀 tends to zero. For the problem (1.1), (1.2) under consideration a classical homogenization

Keywords and phrases. Homogenization, nondivergence-form elliptic PDE, finite element methods.
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theorem (see [14], Sect. 3, Thm. 5.2) states that the solution sequence (𝑢𝜀)𝜀>0 converges in an appropriate
Sobolev space to the solution 𝑢0 to the problem{︃

𝐴0 : 𝐷2𝑢0 = 𝑓 in Ω,

𝑢0 = 0 on 𝜕Ω.
(1.3)

Here 𝐴0 ∈ R𝑛×𝑛 is the constant matrix given by

𝐴0 =
∫︁

𝑌

𝐴𝑚, (1.4)

and 𝑚 : R𝑛 → R is the invariant measure, i.e., the solution to the problem{︃
𝐷2 : (𝐴𝑚) = 0 in 𝑌,

𝑚 is 𝑌 -periodic,
∫︀

𝑌
𝑚 = 1;

see Section 2 for further details. The task of numerical homogenization is the numerical approximation of the
matrix 𝐴0 and the solution 𝑢0 to the homogenized problem (1.3). As it turns out, 𝑢0 provides a good approxi-
mation to 𝑢𝜀 in 𝐻1(Ω), and by adding corrector terms it is possible to obtain an 𝐻2(Ω)-norm approximation.
Note that the approximation of (1.1), (1.2) by a standard 𝐻2(Ω)-conforming finite element method does not
yield error bounds independent of 𝜀, since for 𝑠 > 0 one has that

‖𝑢𝜀‖𝐻2+𝑠(Ω) = 𝒪
(︀
𝜀−𝑠
)︀
.

The motivation for investigating second-order elliptic problems in nondivergence-form comes from physics,
engineering, as well as mathematical areas such as stochastic analysis. A notable example of a nonlinear PDE
of nondivergence structure is the Hamilton–Jacobi–Bellman equation, which arises in stochastic control the-
ory. The asymptotic behavior of PDEs with rapidly oscillating coefficients is also of importance when micro-
inhomogeneous media are investigated.

Over the past decades significant work has been done on periodic homogenization of elliptic problems in
divergence-form; numerical homogenization for nondivergence-form problems is however less developed.

The theory of homogenization of divergence-form problems such as

∇ ·
(︁
𝐴
(︁ ·

𝜀

)︁
∇𝑢𝜀

)︁
+ 𝑏

(︁ ·
𝜀

)︁
· ∇𝑢𝜀 = 𝑓 in Ω (1.5)

with periodic and sufficiently regular 𝐴 : R𝑛 → R𝑛×𝑛 and 𝑏 : R𝑛 → R𝑛 is extensively covered in the books
[6, 14, 18, 37]. For divergence-form problems, various multiscale finite element methods (MsFEM) have been
developed, which have the advantage over classical finite element methods of providing accurate approximations
for very small values of 𝜀 even for moderate values of the grid size. The book [19] by Efendiev and Hou contains
a detailed overview of these methods.

It is important to note that although, if 𝐴 is sufficiently smooth, equation (1.1) can be rewritten in divergence-
form,

∇ ·
(︁
𝐴
(︁ ·

𝜀

)︁
∇𝑢𝜀

)︁
− 1

𝜀
(div𝐴)

(︁ ·
𝜀

)︁
· ∇𝑢𝜀 = 𝑓 in Ω, (1.6)

this equation does not fit into the framework of divergence-form homogenization problems such as (1.5), because
of the 𝜀−1 term in front of the first-order term in (1.6). Such diffusion models with large drift have been considered
by various authors [7, 8, 17, 20, 30, 31]; they require either specific assumptions or the resolution of additional
computationally onerous spectral problems.

For the theory of homogenization of nondivergence-form problems such as (1.1) we refer to the monograph
[14] by Bensoussan et al., to the paper [10] by Avellaneda and Lin, and the references therein. In [13], Bensoussan
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et al. study the more general problem involving a Hamiltonian with quadratic growth. Numerical homogenization
for nondivergence-form problems using finite difference schemes has been considered in [22] by Froese and
Oberman.

The numerical method presented in this paper has resemblances with the finite element heterogeneous mul-
tiscale method (HMM). The HMM has been introduced in [38] by E and Engquist and has been successfully
applied to many multiscale problems. For an overview of the field of finite element HMM, we refer to the articles
[2–5] by Abdulle and co-authors, and the references therein. An a priori error analysis for the fully discrete finite
element HMM for elliptic homogenization problems in divergence-form can be found in the work [1] by Abdulle.
Concerning nondivergence-form problems, a finite difference HMM has recently been used for the numerical
homogenization of second-order hyperbolic nondivergence-form problems by Arjmand and Kreiss [9].

The first step in the development of the proposed numerical homogenization scheme is the construction of
a finite element method to obtain approximations (𝑚ℎ)ℎ>0 ⊂ 𝐻1

per(𝑌 ) to the invariant measure with optimal
order convergence rate

‖𝑚−𝑚ℎ‖𝐿2(𝑌 ) + ℎ‖𝑚−𝑚ℎ‖𝐻1(𝑌 ) . ℎ inf
𝑣ℎ∈𝑀̃ℎ

‖𝑚− (𝑣ℎ + 1)‖𝐻1(𝑌 ),

where 𝑀̃ℎ denotes the finite-dimensional subspace of 𝐻1
per(𝑌 ) consisting of continuous 𝑌 -periodic piecewise

linear functions on the triangulation with zero mean over 𝑌 ; see Theorem 3.1.
Throughout this work, we use the notation 𝑎 . 𝑏 for 𝑎, 𝑏 ∈ R to denote that 𝑎 ≤ 𝐶𝑏 for some constant 𝐶 > 0

that does not depend on 𝜀 and the discretization parameters.
The second step is to obtain approximations (𝐴0

ℎ)ℎ>0 ⊂ R𝑛×𝑛 to the constant matrix 𝐴0; see Lemma 3.3.
To this end, the integrand in (1.4) is replaced by its continuous piecewise linear interpolant and the invariant
measure 𝑚 is replaced by the approximation 𝑚ℎ, i.e.,

𝐴0
ℎ :=

∫︁
𝑌

ℐℎ(𝐴𝑚ℎ),

which can be computed exactly using an appropriate quadrature rule.
The third step is to perform an 𝐻𝑠(Ω)-conforming (𝑠 ∈ {1, 2}) finite element approximation for the problem{︃

𝐴0
ℎ : 𝐷2𝑢ℎ

0 = 𝑓 in Ω,

𝑢ℎ
0 = 0 on 𝜕Ω,

on a family of triangulations of the computational domain Ω̄, parametrized by a discretization parameter 𝐻 > 0,
measuring the granularity of the triangulation, to obtain (𝑢ℎ,𝐻

0 )ℎ,𝐻>0 ⊂ 𝐻𝑠(Ω) ∩𝐻1
0 (Ω) with⃦⃦⃦

𝑢ℎ
0 − 𝑢ℎ,𝐻

0

⃦⃦⃦
𝐻𝑠(Ω)

. 𝐻‖𝑓‖𝐻𝑠−1(Ω),

where the constant is independent of ℎ; see Lemma 3.6. Note that for the sake of approximating 𝑢0, an 𝐻1(Ω)-
conforming finite element method is sufficient.

The approximation (𝑢ℎ,𝐻
0 )ℎ,𝐻>0 ⊂ 𝐻𝑠(Ω) ∩ 𝐻1

0 (Ω) obtained by this procedure approximates 𝑢0, i.e., the
solution to (1.3), with convergence rate⃦⃦⃦

𝑢0 − 𝑢ℎ,𝐻
0

⃦⃦⃦
𝐻𝑠(Ω)

. (ℎ + 𝐻)‖𝑓‖𝐻𝑠−1(Ω),

which can be improved to 𝒪(ℎ2 + 𝐻) for more regular 𝐴; see Theorems 3.5, 3.9 and Remark 3.10.
Concerning the approximation of 𝑢𝜀, i.e., the solution to (1.1), (1.2), we show in Section 2 that under certain

assumptions on the domain and the right-hand side, one has that⃦⃦⃦⃦
⃦⃦𝑢𝜀 − 𝑢0 − 𝜀2

𝑛∑︁
𝑖,𝑗=1

𝜒𝑖𝑗

(︁ ·
𝜀

)︁
𝜕2

𝑖𝑗𝑢0

⃦⃦⃦⃦
⃦⃦

𝐻2(Ω)

.
√

𝜀 ‖𝑢0‖𝑊 2,∞(Ω) + 𝜀‖𝑢0‖𝐻4(Ω),
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where the corrector functions 𝜒𝑖𝑗 : R𝑛 → R, 𝑖, 𝑗 = 1, . . . , 𝑛, are defined as the solutions to{︃
𝐴 : 𝐷2𝜒𝑖𝑗 = 𝑎0

𝑖𝑗 − 𝑎𝑖𝑗 in 𝑌,

𝜒𝑖𝑗 is 𝑌 -periodic,
∫︀

𝑌
𝜒𝑖𝑗 = 0.

This provides us with the estimate

‖𝑢𝜀 − 𝑢0‖𝐻1(Ω) +
𝑛∑︁

𝑘,𝑙=1

⃦⃦⃦⃦
⃦⃦𝜕2

𝑘𝑙𝑢𝜀 −

⎛⎝𝜕2
𝑘𝑙𝑢0 +

𝑛∑︁
𝑖,𝑗=1

(︀
𝜕2

𝑘𝑙𝜒𝑖𝑗

)︀ (︁ ·
𝜀

)︁
𝜕2

𝑖𝑗𝑢0

⎞⎠⃦⃦⃦⃦⃦⃦
𝐿2(Ω)

= 𝒪(
√

𝜀),

which shows that 𝑢0 is a good 𝐻1(Ω)-norm approximation to 𝑢𝜀 for small 𝜀, and we show in Sections 3.2 and 3.3
how the above estimate can be used to obtain approximations to 𝐷2𝑢𝜀. Note that in order to approximate 𝑢𝜀 in
the 𝐻1(Ω)-norm, it is sufficient to approximate 𝑢0 in the 𝐻1(Ω)-norm. However, for an approximation of 𝐷2𝑢𝜀

based on the above corrector estimate, we need to approximate 𝑢0 in the 𝐻2(Ω)-norm.
In Section 3.4, we extend our results to the case of nonuniformly oscillating coefficients, i.e., to problems of

the form ⎧⎨⎩𝐴
(︁
·, ·

𝜀

)︁
: 𝐷2𝑢𝜀 = 𝑓 in Ω,

𝑢𝜀 = 0 on 𝜕Ω,
(1.7)

where 𝐴 = 𝐴(𝑥, 𝑦) : Ω×R𝑛 → R𝑛×𝑛 is a symmetric, uniformly elliptic matrix-valued function that is 𝑌 -periodic
in 𝑦 for fixed 𝑥 ∈ Ω, and such that

𝐴 ∈ 𝑊 2,∞(Ω; 𝑊 1,𝑞(𝑌 )) for some 𝑞 > 𝑛.

We prove the corrector estimate⃦⃦⃦⃦
⃦⃦𝑢𝜀 − 𝑢0 − 𝜀2

𝑛∑︁
𝑖,𝑗=1

𝜒𝑖𝑗

(︁
·, ·

𝜀

)︁
𝜕2

𝑖𝑗𝑢0

⃦⃦⃦⃦
⃦⃦

𝐻2(Ω)

.
√

𝜀 ‖𝑢0‖𝑊 2,∞(Ω) + 𝜀‖𝑢0‖𝐻4(Ω),

where 𝑢0 is the solution to the homogenized problem corresponding to (1.7) and 𝜒𝑖𝑗 are certain corrector
functions. We then discuss the numerical approximation of 𝑢𝜀 based on this corrector estimate; see Section 3.4.

In Section 4, we present numerical experiments for problems with periodic and nonuniformly oscillating
coefficients, demonstrating the theoretical results.

Finally, in Section 5, we collect the proofs of the results contained in this work.

2. Homogenization of elliptic problems in nondivergence-form

In this section, we study the homogenization of elliptic problems in nondivergence-form with periodic coeffi-
cients. The outline of this section is as follows.

We provide the statement of the problem in Section 2.1, i.e., we define sets of assumptions for the domain,
the coefficients and the right-hand side, ensuring well-posedness of the problem. In Section 2.2, we introduce
the invariant measure and describe a well-known procedure for transforming the original nondivergence-form
problem into a divergence-form problem. This is used in Section 2.3 in combination with uniform 𝑊 2,𝑝 esti-
mates to carry out the homogenization for the problem under consideration. Finally, we introduce correctors in
Section 2.4 and derive 𝑊 2,𝑝 homogenization results.
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2.1. Framework

We denote the unit cell in R𝑛 by

𝑌 := (0, 1)𝑛,

and consider a symmetric matrix-valued function

𝐴 = 𝐴T : R𝑛 → R𝑛×𝑛

with the properties ⎧⎪⎨⎪⎩
𝐴 ∈ 𝑊 1,𝑞(𝑌 ) for some 𝑞 ∈ (𝑛,∞],
𝐴 is 𝑌 -periodic,
∃𝜆, Λ > 0 : 𝜆|𝜉|2 ≤ 𝐴(𝑦)𝜉 · 𝜉 ≤ Λ|𝜉|2 ∀ 𝜉, 𝑦 ∈ R𝑛.

(2.1)

By Sobolev embedding, we then have that

𝐴 ∈ 𝐶0,𝛼(R𝑛) for some 0 < 𝛼 ≤ 1.

For 𝜀 > 0, we are concerned with the problem⎧⎨⎩𝐴
(︁ ·

𝜀

)︁
: 𝐷2𝑢𝜀 = 𝑓 in Ω,

𝑢𝜀 = 0 on 𝜕Ω,
(2.2)

where the triple (Ω, 𝐴, 𝑓) satisfies one of the following sets of assumptions.

Definition 2.1 (Sets of assumptions 𝒢𝑚,𝑝, ℋ𝑚). For 𝑚 ∈ N0 and 𝑝 ∈ (1,∞), we define the set of assumptions
𝒢𝑚,𝑝 as

(Ω, 𝐴, 𝑓) ∈ 𝒢𝑚,𝑝 ⇐⇒

⎧⎪⎨⎪⎩
Ω ⊂ R𝑛 is a bounded 𝐶2,𝛾 domain, 𝛾 ∈ (0, 1),

𝐴 = 𝐴T : R𝑛 → R𝑛×𝑛 satisfies (2.1),
𝑓 ∈ 𝑊𝑚,𝑝(Ω),

and the set of assumptions ℋ𝑚 as

(Ω, 𝐴, 𝑓) ∈ ℋ𝑚 ⇐⇒

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Ω ⊂ R𝑛 is a bounded convex domain,

𝐴 = 𝐴T : R𝑛 → R𝑛×𝑛 satisfies (2.1),

∃ 𝛿 ∈ (0, 1] :
|𝐴|2

(tr𝐴)2
≤ 1

𝑛− 1 + 𝛿
in R𝑛,

𝑓 ∈ 𝐻𝑚(Ω).

Remark 2.2. For 𝑛 = 2, the Cordes condition, i.e., that there exists a 𝛿 ∈ (0, 1] such that

|𝐴(𝑦)|2

(tr𝐴(𝑦))2
≤ 1

𝑛− 1 + 𝛿
∀ 𝑦 ∈ R𝑛, (2.3)

is a consequence of the uniform ellipticity condition. Indeed, for 𝐴 = 𝐴T : R2 → R2×2 satisfying (2.1), we have
that

|𝐴(𝑦)|2

(tr𝐴(𝑦))2
= 1− 2 det 𝐴(𝑦)

(tr𝐴(𝑦))2
≤ 1− 2𝜆2

4Λ2
=

1
1 + 𝛿

∀ 𝑦 ∈ R𝑛
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with 𝛿 = 𝜆2

2Λ2−𝜆2 ∈ (0, 1]. Therefore, when 𝑛 = 2, the set ℋ𝑚 can be simplified to

(Ω, 𝐴, 𝑓) ∈ ℋ𝑚 ⇐⇒

⎧⎪⎨⎪⎩
Ω ⊂ R𝑛 is a bounded convex domain,

𝐴 = 𝐴T : R𝑛 → R𝑛×𝑛 satisfies (2.1),
𝑓 ∈ 𝐻𝑚(Ω).

The following theorem asserts well-posedness of the problem (2.2); see Theorem 9.15 of [25] and Theorem 3
of [35].

Theorem 2.3 (Existence and uniqueness of strong solutions). Assume either that (Ω, 𝐴, 𝑓) ∈ 𝒢0,𝑝 for some
𝑝 ∈ (1,∞), or that (Ω, 𝐴, 𝑓) ∈ ℋ0 and 𝑝 = 2. Then, for any 𝜀 > 0, the problem (2.2) admits a unique solution
𝑢𝜀 ∈ 𝑊 2,𝑝(Ω) ∩𝑊 1,𝑝

0 (Ω).

2.2. Transformation into divergence-form

We recall a well-known procedure to transform the problem (2.2) into divergence-form; see [10, 14]. We use
the notation

𝑊per(𝑌 ) :=
{︂

𝑢 ∈ 𝐻1
per(𝑌 ) :

∫︁
𝑌

𝑢 = 0
}︂

.

Let us start by introducing the notion of invariant measure; see [14].

Lemma 2.4 (Invariant measure and solvability condition). Let 𝐴 = 𝐴T : R𝑛 → R𝑛×𝑛 satisfy (2.1). Then, there
exists a unique solution 𝑚 : R𝑛 → R to the problem{︃

𝐷2 : (𝐴𝑚) = 0 in 𝑌,

𝑚 is 𝑌 -periodic,
∫︀

𝑌
𝑚 = 1.

The function 𝑚 is called the invariant measure. We have that 𝑚 ∈ 𝑊 1,𝑞(𝑌 ), see [15, 16], and there exist
constants 𝑚̄, 𝑀 > 0 such that

0 < 𝑚̄ ≤ 𝑚(𝑦) ≤ 𝑀 ∀ 𝑦 ∈ R𝑛. (2.4)

Moreover, for a 𝑌 -periodic function 𝑔 ∈ 𝐿2(R𝑛), the adjoint problem{︃
𝐴 : 𝐷2𝑢 = 𝑔 in 𝑌,

𝑢 is 𝑌 -periodic,
∫︀

𝑌
𝑢 = 0,

admits a (unique) solution 𝑢 ∈ 𝑊per(𝑌 ) if and only if

⟨𝑔,𝑚⟩𝐿2(𝑌 ) = 0. (2.5)

We note that the function 𝑚 is only in 𝑊 1,𝑞(𝑌 ) in general, and in particular it does not belong to 𝐻2(𝑌 ), as
can be seen from the example chosen in Section 4.1. With the invariant measure 𝑚 at hand, we can easily convert
the problem into divergence-form as follows. We define a matrix-valued function 𝐵 = (𝑏𝑖𝑗)1≤𝑖,𝑗≤𝑛 : R𝑛 → R𝑛×𝑛

by

𝑏𝑖𝑗 := 𝜕𝑖𝑣𝑗 − 𝜕𝑗𝑣𝑖, (1 ≤ 𝑖, 𝑗 ≤ 𝑛),

with 𝑣𝑙 ∈ 𝑊per(𝑌 ) denoting the solution to{︃
−∆𝑣𝑙 = div(𝐴𝑚) · 𝑒𝑙 in 𝑌,

𝑣𝑙 is 𝑌 -periodic,
∫︀

𝑌
𝑣𝑙 = 0,
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for 1 ≤ 𝑙 ≤ 𝑛. Since 𝐴 ∈ 𝑊 1,𝑞(𝑌 ) and 𝑚 ∈ 𝑊 1,𝑞(𝑌 ), by elliptic regularity one has that 𝑣𝑙 ∈ 𝑊 2,𝑞(𝑌 ) for any
1 ≤ 𝑙 ≤ 𝑛. Hence, we have that

𝐵 ∈ 𝑊 1,𝑞(𝑌 ).

Further, we observe that 𝐵 is skew-symmetric, 𝑌 -periodic with zero mean over 𝑌 , and that

div(𝐵) = −div(𝐴𝑚) a.e. on R𝑛.

Now we let

𝐴div := 𝐴𝑚 + 𝐵 ∈ 𝑊 1,𝑞(𝑌 ).

Then, since

div(𝐴div) = 0,

and using the fact that 𝐵 is skew-symmetric, we obtain

∇ ·
(︁
𝐴div

(︁ ·
𝜀

)︁
∇𝑢𝜀

)︁
= 𝐴div

(︁ ·
𝜀

)︁
: 𝐷2𝑢𝜀 = (𝐴𝑚)

(︁ ·
𝜀

)︁
: 𝐷2𝑢𝜀,

that is, we have converted (2.2) into divergence-form:⎧⎨⎩∇ ·
(︁
𝐴div

(︁ ·
𝜀

)︁
∇𝑢𝜀

)︁
= 𝑓 𝑚

(︁ ·
𝜀

)︁
in Ω,

𝑢𝜀 = 0 on 𝜕Ω,
(2.6)

and it is straightforward to check that 𝐴div is 𝑌 -periodic, Hölder continuous on R𝑛 and uniformly elliptic.

2.3. Uniform 𝑊 2,𝑝 estimates and homogenization theorem

The transformation described in the previous section can be used to obtain uniform 𝑊 2,𝑝(Ω) a priori estimates
for the solution of (2.2), which are crucial in deriving homogenization results.

Theorem 2.5 (Uniform 𝑊 2,𝑝 a priori estimates). Assume either that (Ω, 𝐴, 𝑓) ∈ 𝒢0,𝑝 for some 𝑝 ∈ (1,∞),
or that (Ω, 𝐴, 𝑓) ∈ ℋ0 and 𝑝 = 2. Then, for 𝜀 ∈ (0, 1], the solution 𝑢𝜀 ∈ 𝑊 2,𝑝(Ω) ∩𝑊 1,𝑝

0 (Ω) to (2.2), whose
existence and uniqueness are guaranteed by Theorem 2.3, satisfies

‖𝑢𝜀‖𝑊 2,𝑝(Ω) . ‖𝑓‖𝐿𝑝(Ω)

with the constant absorbed into the notation . being independent of 𝜀.

This leads to a simple proof of the homogenization theorem for problem (2.2), using the compactness of the
embedding 𝑊 2,𝑝(Ω) →˓ 𝑊 1,𝑝(Ω) and the fact that we can rewrite the problem as (2.6).

Theorem 2.6 (Homogenization theorem for nondivergence-form problems). Assume either that (Ω, 𝐴, 𝑓) ∈ 𝒢0,𝑝

for some 𝑝 ∈ (1,∞), or that (Ω, 𝐴, 𝑓) ∈ ℋ0 and 𝑝 = 2. Then the solution 𝑢𝜀 ∈ 𝑊 2,𝑝(Ω) ∩ 𝑊 1,𝑝
0 (Ω) to (2.2)

converges weakly in 𝑊 2,𝑝(Ω) to the solution 𝑢0 ∈ 𝑊 2,𝑝(Ω) ∩𝑊 1,𝑝
0 (Ω) of the homogenized problem{︃

𝐴0 : 𝐷2𝑢0 = 𝑓 in Ω,

𝑢0 = 0 on 𝜕Ω,
(2.7)

with 𝐴0 = (𝑎0
𝑖𝑗)1≤𝑖,𝑗≤𝑛 ∈ R𝑛×𝑛 being the constant matrix whose entries are given by

𝑎0
𝑖𝑗 :=

∫︁
𝑌

𝑎𝑖𝑗𝑚 (1 ≤ 𝑖, 𝑗 ≤ 𝑛),

where 𝑚 is the invariant measure, as defined in Lemma 2.4.
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2.4. Correctors

We show next that by adding corrector terms to the solution 𝑢0 of the homogenized problem we obtain a
𝑊 2,𝑝 convergence result.

Theorem 2.7 (Corrector estimate I). Assume either that (Ω, 𝐴, 𝑓) ∈ 𝒢2,𝑝 for some 𝑝 ∈ (1,∞), or that
(Ω, 𝐴, 𝑓) ∈ ℋ2 and 𝑝 = 2. Let 𝜀 ∈ (0, 1] and assume that

𝑢0 ∈ 𝑊 4,𝑝(Ω).

Introducing the corrector function 𝜒𝑖𝑗, 1 ≤ 𝑖, 𝑗 ≤ 𝑛, as the solution to{︃
𝐴 : 𝐷2𝜒𝑖𝑗 = 𝑎0

𝑖𝑗 − 𝑎𝑖𝑗 in 𝑌,

𝜒𝑖𝑗 is 𝑌 -periodic,
∫︀

𝑌
𝜒𝑖𝑗 = 0,

(2.8)

and a boundary corrector 𝜃𝜀, as the solution to⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝐴
(︁ ·

𝜀

)︁
: 𝐷2𝜃𝜀 = 0 in Ω,

𝜃𝜀 = −
𝑛∑︁

𝑖,𝑗=1

𝜒𝑖𝑗

(︁ ·
𝜀

)︁
𝜕2

𝑖𝑗𝑢0 on 𝜕Ω,

the following bound holds:⃦⃦⃦⃦
⃦⃦𝑢𝜀 − 𝑢0 − 𝜀2

⎛⎝ 𝑛∑︁
𝑖,𝑗=1

𝜒𝑖𝑗

(︁ ·
𝜀

)︁
𝜕2

𝑖𝑗𝑢0 + 𝜃𝜀

⎞⎠⃦⃦⃦⃦⃦⃦
𝑊 2,𝑝(Ω)

. 𝜀‖𝑢0‖𝑊 4,𝑝(Ω). (2.9)

The following theorem shows that if 𝑢0 ∈ 𝑊 4,𝑝(Ω) ∩𝑊 2,∞(Ω), then we can absorb the term involving the
boundary corrector into the right-hand side at the cost of powers of 𝜀.

Theorem 2.8 (Corrector estimate II). Assume either that (Ω, 𝐴, 𝑓) ∈ 𝒢2,𝑝 for some 𝑝 ∈ (1,∞), or that
(Ω, 𝐴, 𝑓) ∈ ℋ2 and 𝑝 = 2. Let 𝜀 ∈ (0, 1] and assume that

𝑢0 ∈ 𝑊 4,𝑝(Ω) ∩𝑊 2,∞(Ω). (2.10)

Then, ⃦⃦⃦⃦
⃦⃦𝑢𝜀 − 𝑢0 − 𝜀2

𝑛∑︁
𝑖,𝑗=1

𝜒𝑖𝑗

(︁ ·
𝜀

)︁
𝜕2

𝑖𝑗𝑢0

⃦⃦⃦⃦
⃦⃦

𝑊 2,𝑝(Ω)

. 𝜀
1
𝑝 ‖𝑢0‖𝑊 2,∞(Ω) + 𝜀‖𝑢0‖𝑊 4,𝑝(Ω).

Let us remark that 𝑊 4,𝑝(Ω) →˓ 𝑊 2,∞(Ω) for 𝑝 > 𝑛
2 , i.e., assumption (2.10) is for 𝑝 > 𝑛

2 a consequence
of 𝑢0 ∈ 𝑊 4,𝑝(Ω); in particular, for dimensions 𝑛 ∈ {2, 3} and 𝑝 = 2, one can replace condition (2.10) by the
sufficient condition 𝑢0 ∈ 𝐻4(Ω).

Let us recall that 𝑢0 is the solution to the elliptic constant-coefficient problem (2.7). For bounded convex
polygonal domains (𝑛 = 2), 𝑢0 ∈ 𝐻4(Ω) can be ensured by assuming that 𝑓 ∈ 𝐻2(Ω) satisfies certain compati-
bility conditions at the corners of the domain. In the case of Poisson’s equation on Ω = (0, 1)2, a necessary and
sufficient condition for 𝑢0 ∈ 𝐻4(Ω)∩𝐻1

0 (Ω) is that 𝑓 ∈ 𝐻2(Ω) and 𝑓 = 0 at the corners of Ω; see [28]. We note
that these conditions are satisfied for functions 𝑓 ∈ 𝐻2(Ω) such that supp(𝑓) b Ω; see [26].
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3. The numerical scheme

In this section, we present and rigorously analyze the proposed numerical scheme. The outline of this section
is as follows.

Section 3.1 is divided into three parts and discusses the numerical homogenization. In the first part, we
approximate the invariant measure by a finite element method and provide a convergence result for the approx-
imation. This is then used in the second part to obtain an approximation to the effective coefficients, i.e., to the
constant matrix 𝐴0. In the third part, we use a finite element method to discretize the homogenized problem
and show convergence results for the approximation of the homogenized solution in 𝐻1(Ω) and 𝐻2(Ω), using
the approximated effective coefficients, a comparison result, and two technical lemmata. Improvements to the
convergence rates are given, provided more regularity on the coefficients is assumed.

In Section 3.2, we address the approximation of the corrector functions, presenting a method of successively
approximating higher derivatives. We then use the homogenization results obtained in Section 2 and the approx-
imations of the homogenized solution and the corrector functions from the previous subsections to approximate
the original solution 𝑢𝜀 in Section 3.3.

Finally, we study the case of nonuniformly oscillating coefficients in Section 3.4, derive homogenization results
similar to the case of periodic coefficients and discuss the numerical homogenization for this case.

3.1. Numerical homogenization scheme

The first step is to approximate the invariant measure.

3.1.1. Approximation of 𝑚

For the approximation of the invariant measure 𝑚, we consider a shape-regular triangulation of 𝑌 into
triangles with longest edge ℎ > 0 and let

𝑀̃ℎ ⊂ 𝑊per(𝑌 ) =
{︂

𝑣 ∈ 𝐻1
per(𝑌 ) :

∫︁
𝑌

𝑣 = 0
}︂

be the finite-dimensional subspace of 𝑊per(𝑌 ) consisting of continuous 𝑌 -periodic piecewise linear functions on
the triangulation with zero mean over 𝑌 . We assume that

𝑊per(𝑌 ) =
⋃︁
ℎ>0

𝑀̃ℎ.

Then we have the following approximation result for 𝑚.

Theorem 3.1 (Approximation of the invariant measure). Let 𝐴 = 𝐴T : R𝑛 → R𝑛×𝑛 satisfy (2.1). Then, for
ℎ > 0 sufficiently small, there exists a unique 𝑚̃ℎ ∈ 𝑀̃ℎ such that∫︁

𝑌

(𝐴∇𝑚̃ℎ + 𝑚̃ℎ div𝐴) · ∇𝜙ℎ = −
∫︁

𝑌

(div𝐴) · ∇𝜙ℎ ∀𝜙ℎ ∈ 𝑀̃ℎ, (3.1)

and writing

𝑚ℎ := 𝑚̃ℎ + 1,

we have that

‖𝑚−𝑚ℎ‖𝐿2(𝑌 ) + ℎ‖𝑚−𝑚ℎ‖𝐻1(𝑌 ) . ℎ inf
𝑣ℎ∈𝑀̃ℎ

‖𝑚− (𝑣ℎ + 1)‖𝐻1(𝑌 ),

where 𝑚 is the invariant measure, as defined in Lemma 2.4.



1230 Y. CAPDEBOSCQ ET AL.

Remark 3.2. In particular, since

inf
𝑣ℎ∈𝑀̃ℎ

‖𝑚− (𝑣ℎ + 1)‖𝐻1(𝑌 ) = 𝑜(1),

we have that

𝑚ℎ → 𝑚 in 𝐻1(𝑌 )

as ℎ tends to zero.

3.1.2. Approximation of 𝐴0

We use this finite element approximation of the invariant measure to obtain an approximation to the constant
matrix

𝐴0 =
∫︁

𝑌

𝐴𝑚.

To this end, we first replace the invariant measure 𝑚 by the approximation 𝑚ℎ from Theorem 3.1, and then
replace the integrand by its piecewise linear interpolant,

𝐴0
ℎ :=

∫︁
𝑌

ℐℎ(𝐴𝑚ℎ).

This integral can be computed exactly using an appropriate quadrature rule. The following lemma gives an
error estimate for this approximation.

Lemma 3.3 (Approximation of 𝐴0). Let 𝐴 = 𝐴T : R𝑛 → R𝑛×𝑛 satisfy (2.1). Further, let 𝐴0 = (𝑎0
𝑖𝑗) ∈ R𝑛×𝑛

be the constant matrix given by Theorem 2.6, let 𝑚ℎ be the approximation to the invariant measure given by
Theorem 3.1, and let 𝐴0

ℎ = (𝑎0
𝑖𝑗,ℎ) ∈ R𝑛×𝑛 be the matrix given by

𝑎0
𝑖𝑗,ℎ :=

∫︁
𝑌

ℐℎ(𝑎𝑖𝑗𝑚ℎ), 1 ≤ 𝑖, 𝑗 ≤ 𝑛.

Then, for ℎ > 0 sufficiently small, 𝐴0
ℎ is elliptic and

max
1≤𝑖,𝑗≤𝑛

⃒⃒
𝑎0

𝑖𝑗 − 𝑎0
𝑖𝑗,ℎ

⃒⃒
. ℎ.

3.1.3. Approximation of 𝑢0

For the approximation of the solution 𝑢0 to the homogenized problem, we use the following comparison result
for the error committed when replacing 𝐴0 by 𝐴0

ℎ.

Lemma 3.4 (Comparison result). Assume either that (Ω, 𝐴, 𝑓) ∈ 𝒢0,2 or that (Ω, 𝐴, 𝑓) ∈ ℋ0. Let 𝐴0
ℎ ∈ R𝑛×𝑛

be the approximation to 𝐴0 as in Lemma 3.3. Then, for ℎ > 0 sufficiently small, we have that

‖𝑢0 − 𝑢ℎ
0‖𝐻2(Ω) . ℎ‖𝑓‖𝐿2(Ω),

where 𝑢ℎ
0 ∈ 𝐻2(Ω) ∩𝐻1

0 (Ω) is the solution to the problem{︃
𝐴0

ℎ : 𝐷2𝑢ℎ
0 = 𝑓 in Ω,

𝑢ℎ
0 = 0 on 𝜕Ω,

(3.2)

and 𝑢0 ∈ 𝐻2(Ω) ∩𝐻1
0 (Ω) is the solution to the homogenized problem (2.7).
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Finally, we can use an 𝐻1
0 (Ω)-conforming finite element approximation 𝑢ℎ,𝐻

0 to the solution 𝑢ℎ
0 of (3.2),

satisfying the error bound ⃦⃦⃦
𝑢ℎ

0 − 𝑢ℎ,𝐻
0

⃦⃦⃦
𝐻1(Ω)

. 𝐻‖𝑢ℎ
0‖𝐻2(Ω) . 𝐻‖𝑓‖𝐿2(Ω)

with constants independent of ℎ. By the triangle inequality and the results obtained in this section, we have
the following approximation result for 𝑢0.

Theorem 3.5 (𝐻1-norm approximation of 𝑢0). Assume either that (Ω, 𝐴, 𝑓) ∈ 𝒢0,2, or that (Ω, 𝐴, 𝑓) ∈ ℋ0.
Then, the approximation 𝑢ℎ,𝐻

0 obtained by the procedure described above satisfies⃦⃦⃦
𝑢0 − 𝑢ℎ,𝐻

0

⃦⃦⃦
𝐻1(Ω)

. (ℎ + 𝐻)‖𝑓‖𝐿2(Ω).

Let us now assume either that (Ω, 𝐴, 𝑓) ∈ 𝒢1,2 or that (Ω, 𝐴, 𝑓) ∈ ℋ1. Further, assume that for ℎ > 0
sufficiently small, we have that 𝑢ℎ

0 ∈ 𝐻3(Ω) with⃦⃦
𝑢ℎ

0

⃦⃦
𝐻3(Ω)

. ‖𝑓‖𝐻1(Ω) , (3.3)

where the constant is independent of ℎ. The following lemma provides two situations where this is satisfied.

Lemma 3.6. Let (Ω, 𝐴, 𝑓) be such that

(i) (Ω, 𝐴, 𝑓) ∈ 𝒢1,2 with 𝜕Ω ∈ 𝐶3, or
(ii) (Ω, 𝐴, 𝑓) ∈ ℋ1 with Ω ⊂ R2 being a polygon and 𝑓 ∈ 𝐻1

0 (Ω).

Then, for ℎ > 0 sufficiently small, (3.3) holds.

In the proof of Lemma 3.6, we use the following result on the regularity of solutions to Poisson’s problem on
convex polygons; see also [26,28,29,32].

Lemma 3.7. Let Ω ⊂ R2 be a convex polygonal domain and 𝑓 ∈ 𝐻1
0 (Ω). Then the solution 𝑢 ∈ 𝐻1

0 (Ω) to the
problem {︂

∆𝑢 = 𝑓 in Ω,

𝑢 = 0 on 𝜕Ω,

satisfies the bound

‖𝑢‖𝐻3(Ω) . ‖𝑓‖𝐻1(Ω). (3.4)

Remark 3.8. The assumption 𝑓 ∈ 𝐻1
0 (Ω) in Lemma 3.7 can be weakened provided 𝑓 satisfies certain compat-

ibility conditions; see Theorem 5.1.2.4 from [26].

Then an 𝐻2(Ω) ∩ 𝐻1
0 (Ω)-conforming finite element approximation 𝑢ℎ,𝐻

0 to the solution 𝑢ℎ
0 of (3.2), that

satisfies the error bound ⃦⃦⃦
𝑢ℎ

0 − 𝑢ℎ,𝐻
0

⃦⃦⃦
𝐻2(Ω)

. 𝐻
⃦⃦
𝑢ℎ

0

⃦⃦
𝐻3(Ω)

. 𝐻 ‖𝑓‖𝐻1(Ω) , (3.5)

provides by Lemma 3.4 and the triangle inequality an approximation to 𝑢0.

Theorem 3.9 (𝐻2-norm approximation of 𝑢0). Assume either that (Ω, 𝐴, 𝑓) ∈ 𝒢1,2 or that (Ω, 𝐴, 𝑓) ∈ ℋ1, and
assume (3.3). Then, the approximation 𝑢ℎ,𝐻

0 obtained by the procedure described above satisfies⃦⃦⃦
𝑢0 − 𝑢ℎ,𝐻

0

⃦⃦⃦
𝐻2(Ω)

. (ℎ + 𝐻)‖𝑓‖𝐻1(Ω).
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Remark 3.10 (Improvements). We note that if we assume that 𝐴 ∈ 𝑊 2,∞(𝑌 ), then we have the following
improved results.

(i) Approximation of 𝑚: In this case, 𝑚 ∈ 𝐻2(𝑌 ) and we have that

inf
𝑣ℎ∈𝑀̃ℎ

‖𝑚− (𝑣ℎ + 1)‖𝐻1(𝑌 ) ≤
⃦⃦⃦⃦
𝑚− ℐℎ𝑚−

∫︁
𝑌

(𝑚− ℐℎ𝑚)
⃦⃦⃦⃦

𝐻1(𝑌 )

. ℎ‖𝑚‖𝐻2(𝑌 ),

by choosing 𝑣ℎ = ℐℎ𝑚−
∫︀

𝑌
ℐℎ𝑚, and using an interpolation error bound. Therefore, Theorem 3.1 yields

‖𝑚−𝑚ℎ‖𝐿2(𝑌 ) + ℎ‖𝑚−𝑚ℎ‖𝐻1(𝑌 ) . ℎ2‖𝑚‖𝐻2(𝑌 ).

(ii) Approximation of 𝐴0: By an interpolation error bound and the fact that 𝑚ℎ is piecewise linear, one has

‖𝑎𝑖𝑗𝑚ℎ − ℐℎ(𝑎𝑖𝑗𝑚ℎ)‖𝐿1(𝑌 ) . ℎ2‖𝑎𝑖𝑗‖𝑊 2,∞(𝑌 )‖𝑚ℎ‖𝐻1(𝑌 ).

Therefore, the proof of Lemma 3.3 yields

max
1≤𝑖,𝑗≤𝑛

⃒⃒
𝑎0

𝑖𝑗 − 𝑎0
𝑖𝑗,ℎ

⃒⃒
. ℎ2‖𝐴‖𝑊 2,∞(𝑌 )‖𝑚‖𝐻2(𝑌 ) . ℎ2‖𝐴‖𝑊 2,∞(𝑌 ).

(iii) Approximation of 𝑢0: It follows that the results of Lemma 3.4, Theorems 3.5 and 3.9 can be improved to
second-order convergence in ℎ, i.e.,⃦⃦⃦

𝑢0 − 𝑢ℎ,𝐻
0

⃦⃦⃦
𝐻𝑠(Ω)

. (ℎ2‖𝐴‖𝑊 2,∞(𝑌 ) + 𝐻)‖𝑓‖𝐻𝑠−1(Ω) = 𝒪(ℎ2 + 𝐻),

for 𝑠 = 1, 2, respectively.

We note that second-order convergence with respect to ℎ could not have been obtained by using a piece-
wise constant approximation of 𝑎𝑖𝑗𝑚ℎ instead of the piecewise linear approximation considered here. For the
approximation of derivatives of 𝑢0 of higher than second order, the post-processing method of Babuška [12] can
be used to obtain error bounds in norms involving derivatives of higher order than the energy norm (the norm
natural to the problem).

For bounded convex polygonal domains Ω ⊂ R2, an 𝐻2-conforming approximation to the solution of (3.2)
can be obtained as follows. Assume that 𝑓 ∈ 𝐻1

0 (Ω) so that (3.3) holds. Consider a shape-regular triangulation
of Ω into triangles with longest edge 𝐻 > 0, and let

𝑉𝐻 ⊂ 𝐻2(Ω) ∩𝐻1
0 (Ω)

be an appropriate finite element space. In practice, the Hsieh–Clough–Tocher element and the Argyris element
can be used as 𝐻2-conforming elements. Then, for ℎ > 0 sufficiently small, standard finite element analysis can
be used to show that there is a unique function 𝑢ℎ,𝐻

0 ∈ 𝑉𝐻 such that∫︁
Ω

(︁
𝐴0

ℎ : 𝐷2𝑢ℎ,𝐻
0

)︁ (︀
𝐴0

ℎ : 𝐷2𝜙𝐻

)︀
=
∫︁

Ω

𝑓
(︀
𝐴0

ℎ : 𝐷2𝜙𝐻

)︀
∀𝜙𝐻 ∈ 𝑉𝐻 , (3.6)

and that the error bound (3.5) holds.
Further finite element approaches for approximating the solution of nondivergence-form problems include

the conforming method [33] that makes use of a finite element Hessian, the discontinuous ℎ𝑝-Galerkin method
[35, 36], the primal method [21] similar to an interior penalty discontinuous Galerkin method, the mixed finite
element method [24], and the variational formulations presented in [23].
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3.2. Approximation of the corrector

We now address problem (2.8) and present a method for 𝐴 ∈ 𝑊 2,∞(𝑌 ). To simplify the notation and the
arguments, we assume that we know the invariant measure 𝑚 and the matrix 𝐴0 = (𝑎0

𝑖𝑗)1≤𝑖,𝑗≤𝑛 exactly instead
of working with our approximation 𝐴0

ℎ.
For a given 𝑌 -periodic right-hand side 𝑔 ∈ 𝑊 2,∞(𝑌 ), we consider the problem{︃

−∇ · (𝐴∇𝜒) + (div𝐴) · ∇𝜒 = −𝑔 in 𝑌,

𝜒 is 𝑌 -periodic,
∫︀

𝑌
𝜒 = 0.

Obtaining an approximation for second-order derivatives via finite elements is not straightforward since the
natural solution space is 𝑊per(𝑌 ). We present a method of successively approximating higher derivatives.

Let 𝜒ℎ be a 𝑊per(𝑌 )-conforming finite element approximation to 𝜒, i.e.,

𝜒ℎ ∈ 𝑉ℎ,

∫︁
𝑌

𝐴∇𝜒ℎ · ∇𝜙 +
∫︁

𝑌

𝜙 (div𝐴) · ∇𝜒ℎ = −
∫︁

𝑌

𝑔𝜙 ∀𝜙 ∈ 𝑉ℎ,

with 𝑉ℎ ⊂ 𝑊per(𝑌 ) finite-dimensional, and satisfying the error estimate

‖𝜒ℎ − 𝜒‖𝐻1(𝑌 ) . ℎ.

Let 𝑟 ∈ {1, . . . , 𝑛} and write 𝜉𝑟 := 𝜕𝑟𝜒. Then, using the equation

−∇ · (𝐴∇𝜒) + (div𝐴) · ∇𝜒 = −𝑔 in 𝑌,

we find that in a weak sense, one has

−∇ · (𝐴∇𝜉𝑟) + (div𝐴) · ∇𝜉𝑟 = −𝜕𝑟𝑔 +∇ · (𝜕𝑟𝐴∇𝜒)− (div(𝜕𝑟𝐴)) · ∇𝜒 in 𝑌.

Further, we claim that 𝜉𝑟 ∈ 𝑊per(𝑌 ). Indeed, this follows from the regularity and periodicity of 𝜒 and∫︁
𝑌

𝜕𝑟𝜒 =
∫︁

𝜕𝑌

𝜒𝜈 · 𝑒𝑟 = 0.

Therefore, 𝜉𝑟 ∈ 𝑊per(𝑌 ) satisfies{︃
−∇ · (𝐴∇𝜉𝑟) + (div𝐴) · ∇𝜉𝑟 = −𝜕𝑟𝑔 +∇ · (𝜕𝑟𝐴∇𝜒)− (div(𝜕𝑟𝐴)) · ∇𝜒 in 𝑌,

𝜉𝑟 is 𝑌 -periodic,
∫︀

𝑌
𝜉𝑟 = 0.

Now we use our 𝐻1-conforming approximation for 𝜒 for the right-hand side and use a 𝑊per(𝑌 )-conforming
finite element method for approximating the solution 𝑣 ∈ 𝑊per(𝑌 ) to the following problem:{︃

−∇ · (𝐴∇𝑣) + (div𝐴) · ∇𝑣 = −𝜕𝑟𝑔 +∇ · (𝜕𝑟𝐴∇𝜒ℎ)− (div(𝜕𝑟𝐴)) · ∇𝜒ℎ − 𝑐 in 𝑌,

𝑣 is 𝑌 -periodic,
∫︀

𝑌
𝑣 = 0,

(3.7)

where 𝑐 is such that this problem admits a unique solution (such that the solvability condition (2.5) is satisfied).
By looking at the problem for 𝑣 − 𝜉𝑟, one obtains the comparison result

‖𝑣 − 𝜉𝑟‖𝐻1(𝑌 ) . ‖∇ · (𝜕𝑟𝐴∇(𝜒ℎ − 𝜒))‖𝑊per(𝑌 )′ + ‖ (div(𝜕𝑟𝐴)) · ∇(𝜒ℎ − 𝜒)‖𝑊per(𝑌 )′

. ‖𝐴‖𝑊 2,∞(𝑌 )‖𝜒ℎ − 𝜒‖𝐻1(𝑌 )

. ℎ‖𝐴‖𝑊 2,∞(𝑌 ) = 𝒪(ℎ).
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Let 𝑣ℎ be a 𝑊per(𝑌 )-conforming finite element approximation to the solution 𝑣 of (3.7) satisfying

‖𝑣ℎ − 𝑣‖𝐻1(𝑌 ) ≤ 𝐶ℎ

for some constant 𝐶 = 𝐶(‖𝐴‖𝑊 2,∞(𝑌 )) > 0. Then, using the triangle inequality, we obtain

‖𝑣ℎ − 𝜉𝑟‖𝐻1(𝑌 ) ≤ 𝐶ℎ

for some constant 𝐶 = 𝐶(‖𝐴‖𝑊 2,∞(𝑌 )) > 0. Using this procedure for 𝑟 = 1, . . . , 𝑛, we eventually obtain
approximations to derivatives of order up to two of 𝜒.

3.3. Approximation of 𝑢𝜀

We assume either that (Ω, 𝐴, 𝑓) ∈ 𝒢2,2 or that (Ω, 𝐴, 𝑓) ∈ ℋ2. Let 𝑛 ∈ {2, 3}, 𝜀 ∈ (0, 1], and assume that

𝑢0 ∈ 𝐻4(Ω).

Then we know that (2.10) is satisfied, and by Theorem 2.8 we have that⃦⃦⃦⃦
⃦⃦𝑢𝜀 − 𝑢0 − 𝜀2

𝑛∑︁
𝑖,𝑗=1

𝜒𝑖𝑗

(︁ ·
𝜀

)︁
𝜕2

𝑖𝑗𝑢0

⃦⃦⃦⃦
⃦⃦

𝐻2(Ω)

.
√

𝜀 ‖𝑢0‖𝑊 2,∞(Ω) + 𝜀‖𝑢0‖𝐻4(Ω), (3.8)

where 𝑢0 is the solution to the homogenized problem, and 𝜒𝑖𝑗 are the corrector functions given as the solutions
to (2.8). This result can be used to construct an approximation of 𝑢𝜀, i.e., to the solution of problem (2.2) for
small 𝜀. We note that (3.8) implies that

‖𝑢𝜀 − 𝑢0‖𝐻1(Ω) +
𝑛∑︁

𝑘,𝑙=1

⃦⃦⃦⃦
⃦⃦𝜕2

𝑘𝑙𝑢𝜀 −

⎛⎝𝜕2
𝑘𝑙𝑢0 +

𝑛∑︁
𝑖,𝑗=1

(︀
𝜕2

𝑘𝑙𝜒𝑖𝑗

)︀ (︁ ·
𝜀

)︁
𝜕2

𝑖𝑗𝑢0

⎞⎠⃦⃦⃦⃦⃦⃦
𝐿2(Ω)

.
√

𝜀 ‖𝑢0‖𝑊 2,∞(Ω) + 𝜀‖𝑢0‖𝐻4(Ω).

(3.9)

This leads to the following approximation result for 𝑢𝜀.

Theorem 3.11 (Approximation of 𝑢𝜀). In the situation described above, let (𝑢0,ℎ)ℎ>0 ⊂ 𝐻2(Ω) be a family of
𝐻2-conforming approximations for 𝑢0 satisfying the error bound

‖𝑢0 − 𝑢0,ℎ‖𝐻2(Ω) . ℎ‖𝑓‖𝐻1(Ω),

and for 1 ≤ 𝑖, 𝑗, 𝑘, 𝑙 ≤ 𝑛, let (𝑧𝑘𝑙
𝑖𝑗,ℎ)ℎ>0 ⊂ 𝐿2

per(𝑌 ) be a family of 𝐿2 approximations for 𝜕2
𝑘𝑙𝜒𝑖𝑗 satisfying the

error bound

‖𝜕2
𝑘𝑙𝜒𝑖𝑗 − 𝑧𝑘𝑙

𝑖𝑗,ℎ‖𝐿2(𝑌 ) . ℎ.

Then, by writing

𝑢𝑘𝑙
𝜀,ℎ := 𝜕2

𝑘𝑙𝑢0,ℎ +
𝑛∑︁

𝑖,𝑗=1

𝑧𝑘𝑙
𝑖𝑗,ℎ

(︁ ·
𝜀

)︁
𝜕2

𝑖𝑗𝑢0,ℎ,

we have that

‖𝑢𝜀 − 𝑢0,ℎ‖𝐻1(Ω) +
𝑛∑︁

𝑘,𝑙=1

⃦⃦
𝜕2

𝑘𝑙𝑢𝜀 − 𝑢𝑘𝑙
𝜀,ℎ

⃦⃦
𝐿1(Ω)

.
(︀√

𝜀 + ℎ
)︀
‖𝑢0‖𝑊 2,∞(Ω) + 𝜀‖𝑢0‖𝐻4(Ω) + ℎ‖𝑓‖𝐻1(Ω).
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In connection with the previously described approximation of the homogenized solution 𝑢0 and the corrector
functions 𝜒𝑖𝑗 , note that Theorem 3.9 provides an 𝐻2(Ω)-conforming approximation to 𝑢0 and the method
presented in Section 3.2 provides 𝐿2

per(𝑌 ) approximations for the second-order partial derivatives of 𝜒𝑖𝑗 , as
required for the setting of Theorem 3.11.

Let us conclude this section by remarking that if the second derivatives of the corrector functions are approxi-
mated in the space 𝐿∞(𝑌 ) or if the solution to the homogenized problem is approximated in the space 𝑊 2,∞(Ω),
then one obtains by a similar proof an approximation result for the second derivatives of 𝑢𝜀 in 𝐿2(Ω).

Remark 3.12. If (𝑧𝑘𝑙
𝑖𝑗,ℎ)ℎ>0 ⊂ 𝐿∞per(𝑌 ) is a family of 𝐿∞ approximations for 𝜕2

𝑘𝑙𝜒𝑖𝑗 satisfying the error bound

‖𝜕2
𝑘𝑙𝜒𝑖𝑗 − 𝑧𝑘𝑙

𝑖𝑗,ℎ‖𝐿∞(𝑌 ) = 𝒪(ℎ),

and (𝑢0,ℎ)ℎ>0 is as in Theorem 3.11, then we have that

‖𝑢𝜀 − 𝑢0,ℎ‖𝐻1(Ω) +
𝑛∑︁

𝑘,𝑙=1

⃦⃦
𝜕2

𝑘𝑙𝑢𝜀 − 𝑢𝑘𝑙
𝜀,ℎ

⃦⃦
𝐿2(Ω)

= 𝒪(
√

𝜀 + ℎ).

The same holds true when (𝑢0,ℎ)ℎ>0 ⊂ 𝑊 2,∞(Ω) is a family of 𝑊 2,∞-conforming approximations for 𝑢0 satisfying
the error bound

‖𝑢0 − 𝑢0,ℎ‖𝑊 2,∞(Ω) = 𝒪(ℎ),

and (𝑧𝑘𝑙
𝑖𝑗,ℎ)ℎ>0 is as in Theorem 3.11.

3.4. Nonuniformly oscillating coefficients

In this section, we discuss the case of nonuniformly oscillating coefficients, i.e., coefficients depending on 𝑥
and 𝑥

𝜀 . We consider the problem ⎧⎨⎩𝐴
(︁
·, ·

𝜀

)︁
: 𝐷2𝑢𝜀 = 𝑓 in Ω,

𝑢𝜀 = 0 on 𝜕Ω,
(3.10)

where the triple (Ω, 𝐴, 𝑓) satisfies one of the following sets of assumptions.

Definition 3.13 (Sets of assumptions 𝒢,ℋ). We write

(i) (Ω, 𝐴, 𝑓) ∈ 𝒢 if and only if Ω ⊂ R𝑛 is a bounded 𝐶2,𝛾 domain, 𝑓 ∈ 𝐿2(Ω), and 𝐴 = 𝐴T : Ω × R𝑛 → R𝑛×𝑛

satisfies ⎧⎪⎨⎪⎩
𝐴 = 𝐴(𝑥, 𝑦) ∈ 𝑊 2,∞(Ω; 𝑊 1,𝑞(𝑌 )) for some 𝑞 ∈ (𝑛,∞],
𝐴(𝑥, ·) is 𝑌 -periodic,
∃𝜆, Λ > 0 : 𝜆|𝜉|2 ≤ 𝐴(𝑥, 𝑦)𝜉 · 𝜉 ≤ Λ|𝜉|2 ∀ 𝜉, 𝑦 ∈ R𝑛, 𝑥 ∈ Ω.

(3.11)

(ii) (Ω, 𝐴, 𝑓) ∈ ℋ if and only if Ω ⊂ R𝑛 is a bounded convex domain, 𝑓 ∈ 𝐿2(Ω), and 𝐴 = 𝐴T : Ω×R𝑛 → R𝑛×𝑛

satisfies (3.11) and

∃ 𝛿 ∈ (0, 1] :
|𝐴(𝑥, 𝑦)|2

(tr𝐴(𝑥, 𝑦))2
≤ 1

𝑛− 1 + 𝛿
∀ (𝑥, 𝑦) ∈ Ω× R𝑛. (3.12)

In view of Remark 2.2, we see that the Cordes condition (3.12) is always satisfied when 𝑛 = 2. Well-posedness
of the problem (3.10) is guaranteed by the following theorem; see Theorem 9.15 of [25] and Theorem 3 of [35].
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Theorem 3.14 (Existence and uniqueness of strong solutions). Assume either that (Ω, 𝐴, 𝑓) ∈ 𝒢, or that
(Ω, 𝐴, 𝑓) ∈ ℋ. Then, for any 𝜀 > 0, the problem (3.10) admits a unique solution 𝑢𝜀 ∈ 𝐻2(Ω) ∩𝐻1

0 (Ω).

As in Section 2, uniform a priori estimates for the solution to (3.10) allow passage to the limit in equation
(3.10); see [13,14]. The coefficient matrix of the homogenized problem now depends on the slow variable 𝑥, and
is obtained by integrating against an invariant measure. Corrector results can then be shown as before.

Theorem 3.15 (Nonuniformly oscillating coefficients). Assume that 𝜀 ∈ (0, 1] and that either (Ω, 𝐴, 𝑓) ∈ 𝒢 or
(Ω, 𝐴, 𝑓) ∈ ℋ. Then, the following assertions hold:

(i) Uniform a priori estimate: The solution 𝑢𝜀 ∈ 𝐻2(Ω) ∩𝐻1
0 (Ω) to (3.10) satisfies

‖𝑢𝜀‖𝐻2(Ω) . ‖𝑓‖𝐿2(Ω).

(ii) Homogenization: The solution 𝑢𝜀 ∈ 𝐻2(Ω) ∩ 𝐻1
0 (Ω) to (3.10) converges weakly in 𝐻2(Ω) to the solution

𝑢0 ∈ 𝐻2(Ω) ∩𝐻1
0 (Ω) of the homogenized problem{︃

𝐴0 : 𝐷2𝑢0 = 𝑓 in Ω,

𝑢0 = 0 on 𝜕Ω,
(3.13)

with 𝐴0 : Ω → R𝑛×𝑛 given by

𝐴0(𝑥) :=
∫︁

𝑌

𝐴(𝑥, ·) 𝑚(𝑥, ·),

where 𝑚 = 𝑚(𝑥, 𝑦) is the unique function 𝑚 : Ω × R𝑛 → R with 𝑚 ∈ 𝐶(Ω̄ × R𝑛), 0 < 𝑚̄ ≤ 𝑚 ≤ 𝑀 for
some constants 𝑚̄, 𝑀 > 0, such that{︃

𝐷2 : (𝐴(𝑥, ·) 𝑚(𝑥, ·)) = 0 in 𝑌,

𝑚(𝑥, ·) is 𝑌 -periodic,
∫︀

𝑌
𝑚(𝑥, ·) = 1,

for any fixed 𝑥 ∈ Ω. The function 𝑚 is called the invariant measure.
(iii) Corrector estimate: Assume that 𝑓 ∈ 𝐻2(Ω) and 𝑢0 ∈ 𝐻4(Ω)∩𝑊 2,∞(Ω). Introducing the corrector function

𝜒𝑖𝑗, 1 ≤ 𝑖, 𝑗 ≤ 𝑛, as the solution to{︃
𝐴(𝑥, 𝑦) : 𝐷2

𝑦𝜒𝑖𝑗(𝑥, 𝑦) = 𝑎0
𝑖𝑗(𝑥)− 𝑎𝑖𝑗(𝑥, 𝑦), (𝑥, 𝑦) ∈ Ω× 𝑌,

𝜒𝑖𝑗(𝑥, ·) is 𝑌 -periodic,
∫︀

𝑌
𝜒𝑖𝑗(𝑥, ·) = 0,

we have that ⃦⃦⃦⃦
⃦⃦𝑢𝜀 − 𝑢0 − 𝜀2

𝑛∑︁
𝑖,𝑗=1

𝜒𝑖𝑗

(︁
·, ·

𝜀

)︁
𝜕2

𝑖𝑗𝑢0

⃦⃦⃦⃦
⃦⃦

𝐻2(Ω)

.
√

𝜀 ‖𝑢0‖𝑊 2,∞(Ω) + 𝜀‖𝑢0‖𝐻4(Ω).

Let us explain how the numerical scheme from Section 3.1 can be used for the numerical homogenization of
(3.10).

First, we consider a shape-regular triangulation 𝒯𝐻 on Ω̄ consisting of nodes {𝑥𝑖}𝑖∈𝐼 with grid size 𝐻 > 0,
and a shape-regular triangulation 𝒯ℎ on 𝑌 with grid size ℎ > 0. Then, for any 𝑖 ∈ 𝐼, we can use the scheme
from Section 3.1 (see Thm. 3.1) to obtain an approximation 𝑚𝑖

ℎ ∈ 𝐻1(𝑌 ) to 𝑚𝑥𝑖
= 𝑚(𝑥𝑖, ·) such that

‖𝑚𝑥𝑖
−𝑚𝑖

ℎ‖𝐿2(𝑌 ) + ℎ‖𝑚𝑥𝑖
−𝑚𝑖

ℎ‖𝐻1(𝑌 ) . ℎ inf
𝑣ℎ∈𝑀̃ℎ

‖𝑚𝑥𝑖
− (𝑣ℎ + 1)‖𝐻1(𝑌 ).
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Further, we obtain that

𝐴0,𝑖
ℎ :=

∫︁
𝑌

ℐℎ

(︀
𝐴(𝑥𝑖, ·) 𝑚𝑖

ℎ

)︀
is an approximation to 𝐴0(𝑥𝑖) (see Lem. 3.3),⃒⃒⃒

𝐴0(𝑥𝑖)−𝐴0,𝑖
ℎ

⃒⃒⃒
. ℎ. (3.14)

Now we define 𝐴0
ℎ,𝐻 to be a continuous piecewise linear function on the triangulation 𝒯𝐻 such that

𝐴0
ℎ,𝐻(𝑥𝑖) = 𝐴0,𝑖

ℎ

for all 𝑖 ∈ 𝐼. Then, using (3.14) and denoting the continuous piecewise linear interpolant of a function 𝜑 on the
triangulation 𝒯𝐻 by ℐ𝐻𝜑, we have

‖𝐴0 −𝐴0
ℎ,𝐻‖𝐿∞(Ω) ≤ ‖𝐴0 − ℐ𝐻𝐴0‖𝐿∞(Ω) + ‖ℐ𝐻𝐴0 −𝐴0

ℎ,𝐻‖𝐿∞(Ω)

. ‖𝐴0 − ℐ𝐻𝐴0‖𝐿∞(Ω) + ℎ.
(3.15)

We observe that, similarly to the proof of Lemma 3.4, we obtain that the solution 𝑢ℎ,𝐻
0 ∈ 𝐻2(Ω) ∩𝐻1

0 (Ω) to{︃
𝐴0

ℎ,𝐻 : 𝐷2𝑢ℎ,𝐻
0 = 𝑓 in Ω,

𝑢ℎ,𝐻
0 = 0 on 𝜕Ω,

(3.16)

satisfies, for ℎ, 𝐻 > 0 sufficiently small,

‖𝑢0 − 𝑢ℎ,𝐻
0 ‖𝐻2(Ω) . ‖𝐴0 −𝐴0

ℎ,𝐻‖𝐿∞(Ω)‖𝑓‖𝐿2(Ω),

and in view of (3.15),

‖𝑢0 − 𝑢ℎ,𝐻
0 ‖𝐻2(Ω) .

(︀
‖𝐴0 − ℐ𝐻𝐴0‖𝐿∞(Ω) + ℎ

)︀
‖𝑓‖𝐿2(Ω) = 𝒪(𝐻2 + ℎ),

where 𝑢0 is the solution to the homogenized problem (3.13). Here we have used the interpolation estimate

‖𝐴0 − ℐ𝐻𝐴0‖𝐿∞(Ω) . 𝐻2‖𝐴0‖𝑊 2,∞(Ω),

which follows from 𝐴0 ∈ 𝑊 2,∞(Ω) and standard interpolation theory.

Remark 3.16. For problems in divergence-form, similar results have been derived previously using heteroge-
neous multiscale methods; see e.g., [1].

At this point, let us note that in contrast with our procedure of approximating the effective coefficient 𝐴0

at the nodes of the coarse triangulation 𝒯𝐻 and interpolating linearly, in the framework of the finite element
heterogeneous multiscale method 𝐴0 is typically approximated at the coarse integration nodes; see e.g., [1, 2].
The use of piecewise linear interpolation allows us to obtain second-order convergence. Assuming more regularity
on the coefficient 𝐴(𝑥, 𝑦) in 𝑦, as in Remark 3.10, the error in the approximation of the homogenized solution
𝑢0 can be improved to order 𝒪(𝐻2 + ℎ2). Finally, the solution to (3.16) can be approximated by a standard
finite element method on the triangulation 𝒯𝐻 , which yields an approximation 𝑢0,ℎ,𝐻 ∈ 𝐻2(Ω) ∩𝐻1

0 (Ω) to 𝑢0

in the 𝐻2(Ω)-norm.
The approximation of 𝑢𝜀 can be obtained based on the corrector estimate from Theorem 3.15 analogously as

in Section 3.3.
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4. Numerical experiments

In this section, we illustrate the theoretical results through numerical experiments. We provide an example
for the case of periodic coefficients in Section 4.1, and one for the case of nonuniformly oscillating coefficients
in Section 4.2. In both cases, we provide not only an example with an unknown 𝑢0, but also a set-up with a
known 𝑢0 in order to test the approximation scheme for the homogenized solution.

The experiments demonstrate the performance of the scheme for the approximation of the invariant measure
𝑚, the effective coefficients 𝐴0, the homogenized solution 𝑢0, as well as the approximation of the solution 𝑢𝜀 to
the original problem for a fixed value of 𝜀.

4.1. Periodic coefficients

We consider the homogenization problem⎧⎨⎩𝐴
(︁ ·

𝜀

)︁
: 𝐷2𝑢𝜀 = 𝑓 in Ω,

𝑢𝜀 = 0 on 𝜕Ω,
(4.1)

on the domain

Ω := 𝑌 = (0, 1)2,

with the matrix-valued map

𝐴 : R2 → R2×2, 𝐴(𝑦1, 𝑦2) :=
(︂

1 + arcsin
(︀
sin2(𝜋𝑦1)

)︀
sin(𝜋𝑦1) cos(𝜋𝑦1)

sin(𝜋𝑦1) cos(𝜋𝑦1) 2 + cos2(𝜋𝑦1)

)︂
,

and the right-hand side 𝑓 : Ω → R to be specified below. We observe that the matrix-valued function 𝐴 satisfies
(2.1) with 𝑞 = ∞. Further, note that

𝐴(𝑦) = (𝑎𝑖𝑗(𝑦1))1≤𝑖,𝑗≤2

depends only on the first coordinate of 𝑦 = (𝑦1, 𝑦2) ∈ R2; see Figure 1.
In this case we know that the homogenized problem is given by{︃

𝐴0 : 𝐷2𝑢0 = 𝑓 in Ω,

𝑢0 = 0 on 𝜕Ω,
(4.2)

where 𝐴0 ∈ R2×2 denotes the constant matrix

𝐴0 =
∫︁

𝑌

𝐴𝑚

with 𝑚 being the invariant measure

𝑚 : R2 → R, 𝑚(𝑦1, 𝑦2) =
(︂∫︁ 1

0

d𝑡

𝑎11(𝑡)

)︂−1
1

𝑎11(𝑦1)
;

see [22]. Explicit computation yields that

𝑎0
11 =

(︂∫︁ 1

0

d𝑡

𝑎11(𝑡)

)︂−1

≈ 1.4684,

𝑎0
12 =

(︂∫︁ 1

0

d𝑡

𝑎11(𝑡)

)︂−1 ∫︁ 1

0

𝑎12(𝑡)
𝑎11(𝑡)

d𝑡 = 0,

𝑎0
22 =

(︂∫︁ 1

0

d𝑡

𝑎11(𝑡)

)︂−1 ∫︁ 1

0

𝑎22(𝑡)
𝑎11(𝑡)

d𝑡 ≈ 2.6037.
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Figure 1. The functions 𝑎𝑖𝑗(𝑦1) plotted on the interval (0, 1).

We also note that for the corrector functions 𝜒𝑖𝑗 (1 ≤ 𝑖, 𝑗 ≤ 2), i.e., the solutions to{︃
𝐴 : 𝐷2𝜒𝑖𝑗 = 𝑎0

𝑖𝑗 − 𝑎𝑖𝑗 in 𝑌,

𝜒𝑖𝑗 is 𝑌 -periodic,
∫︀

𝑌
𝜒𝑖𝑗 = 0,

we have that

𝜕2
𝑘𝑙𝜒𝑖𝑗(𝑦1, 𝑦2) =

⎧⎨⎩
𝑎0

𝑖𝑗 − 𝑎𝑖𝑗(𝑦1)
𝑎11(𝑦1)

if 𝑘 = 𝑙 = 1,

0 otherwise.

Figure 2 shows the error in the approximation of 𝑚 and 𝐴0 by the scheme presented in Section 3.1.
For the approximation of the invariant measure we observe convergence of order

‖𝑚−𝑚ℎ‖𝐿2(𝑌 ) = 𝒪(ℎ
3
2 ), (4.3)

and superconvergence of order 𝒪(ℎ2) for ℎ > 0 when grid points fall on the line {𝑦1 = 1
2}, which is the set along

which 𝜕1𝑚 possesses a jump. The observed rate of convergence (4.3) is consistent with Theorem 3.1. Indeed,
we have 𝑚 ∈ 𝐻

3
2−𝜀(𝑌 ) for any 𝜀 > 0, and Theorem 3.1 yields

‖𝑚−𝑚ℎ‖𝐿2(𝑌 ) + ℎ‖𝑚−𝑚ℎ‖𝐻1(𝑌 ) . ℎ inf
𝑣ℎ∈𝑀̃ℎ

‖𝑚− (𝑣ℎ + 1)‖𝐻1(𝑌 )

. ℎ

⃦⃦⃦⃦
𝑚− ℐℎ𝑚−

∫︁
𝑌

(𝑚− ℐℎ𝑚)
⃦⃦⃦⃦

𝐻1(𝑌 )

. ℎ
3
2−𝜀‖𝑚‖

𝐻
3
2−𝜀(𝑌 )

,

by making the choice 𝑣ℎ = ℐℎ𝑚 −
∫︀

𝑌
ℐℎ𝑚, and using an interpolation error bound. In connection with the

superconvergence we note that 𝑚|(0, 1
2 )×(0,1) ∈ 𝐻2((0, 1

2 ) × (0, 1)) and 𝑚|( 1
2 ,1)×(0,1) ∈ 𝐻2(( 1

2 , 1) × (0, 1)). For
the approximation of the matrix 𝐴0, we observe second-order convergence.
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Figure 2. Approximation error for the invariant measure 𝑚 (left) and the matrix 𝐴0 (right).
Two curves are observed, corresponding to whether or not grid points fall on the line {𝑦1 = 1

2},
i.e., the set along which 𝜕1𝑚 exhibits a jump.

4.1.1. Problem with a known 𝑢0

We consider the right-hand side given by

𝑓 : Ω → R, 𝑓(𝑥1, 𝑥2) := 𝑎0
22𝑥1(𝑥1 − 1) + 𝑎0

11𝑥2(𝑥2 − 1).

Then it is straightforward to check that the exact solution 𝑢0 ∈ 𝐻2(Ω) ∩𝐻1
0 (Ω) to the homogenized problem

(4.2) is given by

𝑢0 : Ω → R, 𝑢0(𝑥1, 𝑥2) =
1
2
𝑥1(𝑥1 − 1)𝑥2(𝑥2 − 1).

Note that we are in the situation (Ω, 𝐴, 𝑓) ∈ ℋ2, that 𝑓 = 0 at the corners of Ω and that 𝑢0 ∈ 𝐻4(Ω).
We use the scheme presented in Section 3.1 to approximate the homogenized solution 𝑢0, where we use the

same mesh for approximating 𝑚 and 𝑢0. The Hsieh–Clough–Tocher (HCT) element in FreeFem++ is used in
the formulation (3.6) for the 𝐻2 approximation of 𝑢0; see [27]. The gradient on the boundary is set to be the
gradient of an 𝐻1 approximation by P2 elements on a fine mesh.

Concerning the approximation of 𝑢𝜀, from Sections 2 and 3.3 we obtain that

𝐸𝜀 := ‖𝑢𝜀 − 𝑢0‖2𝐻1(Ω) +
2∑︁

𝑘,𝑙=1

⃦⃦⃦⃦
⃦⃦𝜕2

𝑘𝑙𝑢𝜀 −

⎛⎝𝜕2
𝑘𝑙𝑢0 +

2∑︁
𝑖,𝑗=1

(︀
𝜕2

𝑘𝑙𝜒𝑖𝑗

)︀ (︁ ·
𝜀

)︁
𝜕2

𝑖𝑗𝑢0

⎞⎠⃦⃦⃦⃦⃦⃦
2

𝐿2(Ω)

= 𝒪(𝜀).

For the numerical approximation, we replace 𝑢𝜀 by an 𝐻2-conforming finite element approximation on a fine
mesh, based on the formulation

Find 𝑢𝜀 ∈ 𝑉 :
∫︁

Ω

tr𝐴
(︀ ·

𝜀

)︀
|𝐴
(︀ ·

𝜀

)︀
|2

𝐴
(︁ ·

𝜀

)︁
: 𝐷2𝑢𝜀 ∆𝑣 =

∫︁
Ω

tr𝐴
(︀ ·

𝜀

)︀
|𝐴
(︀ ·

𝜀

)︀
|2

𝑓∆𝑣 ∀ 𝑣 ∈ 𝑉,

where 𝑉 := 𝐻2(Ω) ∩𝐻1
0 (Ω). To this end, we use again the HCT element and set the gradient on the boundary

to be the gradient of an 𝐻1 approximation by P2 elements on a fine mesh.
Figure 3 shows the error in the approximation of 𝑢0 and we observe second-order convergence. Further, with

the exact 𝑢0 being available, we can compute the error 𝐸𝜀 for different values of 𝜀; see Figure 3. We observe
first-order convergence as 𝜀 tends to zero, as expected.
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Figure 3. Approximation error for 𝑢0 (left) and the error 𝐸𝜀 in the approximation of 𝑢𝜀 for
different values of 𝜀 (right).

4.1.2. Problem with an unknown 𝑢0

Next, let us consider the problem (4.1) with the same domain Ω and matrix-valued function 𝐴 as before, but
with the right-hand side given by

𝑓 : Ω → R, 𝑓(𝑥1, 𝑥2) := exp

(︃
− 1

1
2 −

(︀
𝑥1 − 1

2

)︀2 − (︀𝑥2 − 1
2

)︀2
)︃
·

Note that now we are in the situation (Ω, 𝐴, 𝑓) ∈ ℋ2. Further, since the right-hand side 𝑓 ∈ 𝐻2(Ω) of the
homogenized problem (4.2) satisfies 𝑓 = 0 at the corners of Ω, the solution 𝑢0 to (4.2) belongs to the class
𝐻4(Ω); see Proposition 2.6 of [29].

As before, we use the scheme presented in Section 3.1 to approximate 𝑚, 𝐴0 and 𝑢0. Using the second-order
𝐻2(Ω)-conforming approximation 𝑢0,ℎ to 𝑢0 obtained as previously described,

‖𝑢0 − 𝑢0,ℎ‖𝐻2(Ω) = 𝒪(ℎ2),

we have that

𝐸ℎ
𝜀 := ‖𝑢𝜀 − 𝑢0,ℎ‖2𝐻1(Ω) +

2∑︁
𝑘,𝑙=1

⃦⃦⃦⃦
⃦⃦𝜕2

𝑘𝑙𝑢𝜀 −

⎛⎝𝜕2
𝑘𝑙𝑢0,ℎ +

2∑︁
𝑖,𝑗=1

(︀
𝜕2

𝑘𝑙𝜒𝑖𝑗

)︀ (︁ ·
𝜀

)︁
𝜕2

𝑖𝑗𝑢0,ℎ

⎞⎠⃦⃦⃦⃦⃦⃦
2

𝐿2(Ω)

= 𝒪(𝜀 + ℎ4).

Figure 4 shows the error 𝐸ℎ
0.01 of the approximation of 𝑢𝜀 for different grid sizes and 𝜀 = 1

100 fixed. We observe
fourth-order convergence in ℎ for the error as expected.

4.2. Nonuniformly oscillating coefficients

We consider the homogenization problem⎧⎨⎩𝐴
(︁
·, ·

𝜀

)︁
: 𝐷2𝑢𝜀 = 𝑓 in Ω,

𝑢𝜀 = 0 on 𝜕Ω,
(4.4)

on the domain

Ω := 𝑌 = (0, 1)2,
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Figure 4. The error 𝐸ℎ
0.01 in the approximation of 𝑢𝜀 for a fixed value, 𝜀 = 1

100 , (left) and the
error after subtraction of 6.0657×10−7 (right), which is approximately the limit of 𝐸ℎ

0.01 in the
figure on the left for this fixed value of 𝜀 as ℎ tends to zero.

with the matrix-valued map 𝐴 : Ω× R2 → R2×2,

(𝑥, 𝑦) = ((𝑥1, 𝑥2), (𝑦1, 𝑦2)) ↦→
(︂

e𝑥1𝑥2 + 1
4 |𝑥|

2 arcsin
(︀
sin2(𝜋𝑦1)

)︀
0

0 2 + 𝑥2 cos(2𝜋𝑦2 + 𝑥1)

)︂
,

and the right-hand side 𝑓 : Ω → R to be specified below. We observe that the matrix-valued function 𝐴 satisfies
(3.11) with 𝑞 = ∞. Further, note that it is of the form

𝐴(𝑥, 𝑦) = diag (𝑎11(𝑥, 𝑦1), 𝑎22(𝑥, 𝑦2)) .

In this case we know that the homogenized problem is given by{︃
𝐴0 : 𝐷2𝑢0 = 𝑓 in Ω,

𝑢0 = 0 on 𝜕Ω,
(4.5)

where 𝐴0 : Ω → R2×2 is given by

𝐴0(𝑥) =
∫︁

𝑌

𝐴(𝑥, ·) 𝑚(𝑥, ·),

with 𝑚 being the invariant measure

𝑚 : Ω× R2 → R, 𝑚(𝑥, 𝑦) =
(︂∫︁ 1

0

∫︁ 1

0

d𝑠 d𝑡

𝑎11(𝑥, 𝑠) 𝑎22(𝑥, 𝑡)

)︂−1
1

𝑎11(𝑥, 𝑦1) 𝑎22(𝑥, 𝑦2)
;

see [22]. Therefore, we have

𝑎0
𝑖𝑗(𝑥) = 𝛿𝑖𝑗

(︂∫︁ 1

0

d𝑡

𝑎𝑖𝑗(𝑥, 𝑡)

)︂−1

, 1 ≤ 𝑖, 𝑗 ≤ 2.

We also note that for the corrector functions 𝜒𝑖𝑗 (1 ≤ 𝑖, 𝑗 ≤ 2), i.e., the solutions to{︃
𝐴(𝑥, 𝑦) : 𝐷2

𝑦𝜒𝑖𝑗(𝑥, 𝑦) = 𝑎0
𝑖𝑗(𝑥)− 𝑎𝑖𝑗(𝑥, 𝑦), (𝑥, 𝑦) ∈ Ω× 𝑌,

𝜒𝑖𝑗(𝑥, ·) is 𝑌 -periodic,
∫︀

𝑌
𝜒𝑖𝑗(𝑥, ·) = 0,
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we have that

𝜕2
𝑦𝑘𝑦𝑙

𝜒𝑖𝑗(𝑥, 𝑦) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑎0
11(𝑥)− 𝑎11(𝑥, 𝑦1)

𝑎11(𝑥, 𝑦1)
if 𝑖 = 𝑗 = 𝑘 = 𝑙 = 1,

𝑎0
22(𝑥)− 𝑎22(𝑥, 𝑦2)

𝑎22(𝑥, 𝑦2)
if 𝑖 = 𝑗 = 𝑘 = 𝑙 = 2,

0 otherwise.

4.2.1. Problem with a known 𝑢0

We consider the right-hand side given by

𝑓 : Ω → R, 𝑥 = (𝑥1, 𝑥2) ↦→ 𝑓(𝑥) := 𝑎0
22(𝑥) 𝑥1(𝑥1 − 1) + 𝑎0

11(𝑥) 𝑥2(𝑥2 − 1).

Then it is straightforward to check that the exact solution 𝑢0 ∈ 𝐻2(Ω) ∩𝐻1
0 (Ω) to the homogenized problem

(4.5) is given by

𝑢0 : Ω → R, 𝑢0(𝑥1, 𝑥2) =
1
2
𝑥1(𝑥1 − 1)𝑥2(𝑥2 − 1).

Note that the assumptions of Theorem 3.15 (iii) are satisfied.
For 𝐻 > 0 such that 1

𝐻 ∈ N, we take a triangulation 𝒯𝐻 on Ω̄ consisting of nodes {(𝑠𝐻, 𝑟𝐻)}𝑠,𝑟=0,...,1/𝐻 , and
a triangulation 𝒯ℎ on 𝑌 with grid size ℎ = 𝐻

4 . We use the scheme presented in Section 3.4 to approximate 𝐴0

and 𝑢0, and we observe second-order convergence; see Figure 5.
For the approximation of 𝑢𝜀, Theorem 3.15 yields

𝐸𝜀 := ‖𝑢𝜀 − 𝑢0‖2𝐻1(Ω) +
2∑︁

𝑘,𝑙=1

⃦⃦⃦⃦
⃦⃦𝜕2

𝑘𝑙𝑢𝜀 −

⎛⎝𝜕2
𝑘𝑙𝑢0 +

2∑︁
𝑖,𝑗=1

(︀
𝜕2

𝑦𝑘𝑦𝑙
𝜒𝑖𝑗

)︀ (︁
·, ·

𝜀

)︁
𝜕2

𝑖𝑗𝑢0

⎞⎠⃦⃦⃦⃦⃦⃦
2

𝐿2(Ω)

= 𝒪(𝜀).

For the numerical approximation, we replace 𝑢𝜀 by an 𝐻2-conforming finite element method on a fine mesh,
based on the formulation

Find 𝑢𝜀 ∈ 𝑉 :
∫︁

Ω

tr𝐴
(︀
·, ·𝜀
)︀

|𝐴
(︀
·, ·𝜀
)︀
|2

𝐴
(︁
·, ·

𝜀

)︁
: 𝐷2𝑢𝜀 ∆𝑣 =

∫︁
Ω

tr𝐴
(︀
·, ·𝜀
)︀

|𝐴
(︀
·, ·𝜀
)︀
|2

𝑓∆𝑣 ∀ 𝑣 ∈ 𝑉,

where 𝑉 := 𝐻2(Ω) ∩𝐻1
0 (Ω). To this end, we use again the HCT element and set the gradient on the boundary

to be the gradient of an 𝐻1-conforming approximation by P2 elements on a fine mesh.

4.2.2. Problem with an unknown 𝑢0

Finally, let us consider the problem (4.4) with the same domain Ω and matrix-valued function 𝐴 as before,
but with the right-hand side given by

𝑓 : Ω → R, 𝑓(𝑥1, 𝑥2) := exp

(︃
− 1

1
2 −

(︀
𝑥1 − 1

2

)︀2 − (︀𝑥2 − 1
2

)︀2
)︃
·

Note that we are in the situation (Ω, 𝐴, 𝑓) ∈ ℋ. Using the second-order 𝐻2-conforming approximation 𝑢0,𝐻 to
𝑢0 obtained as previously described (again with ℎ = 𝐻

4 ),

‖𝑢0 − 𝑢0,𝐻‖𝐻2(Ω) = 𝒪(𝐻2),

we have that

𝐸𝐻
𝜀 := ‖𝑢𝜀 − 𝑢0,𝐻‖2𝐻1(Ω) +

2∑︁
𝑘,𝑙=1

⃦⃦⃦⃦
⃦⃦𝜕2

𝑘𝑙𝑢𝜀 −

⎛⎝𝜕2
𝑘𝑙𝑢0,𝐻 +

2∑︁
𝑖,𝑗=1

(︀
𝜕2

𝑦𝑘𝑦𝑙
𝜒𝑖𝑗

)︀ (︁
·, ·

𝜀

)︁
𝜕2

𝑖𝑗𝑢0,𝐻

⎞⎠⃦⃦⃦⃦⃦⃦
2

𝐿2(Ω)

= 𝒪(𝜀 + 𝐻4).

Figure 6 shows the error 𝐸𝐻
0.02 of the approximation of 𝑢𝜀 for different grid sizes and 𝜀 = 1

50 fixed. We observe
fourth-order convergence in 𝐻 for the error as expected.
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Figure 5. Approximation error for 𝐴0 and 𝑢0 for different values of 𝐻, using ℎ = 𝐻
4 , (left)

and the error 𝐸𝜀 in the approximation of 𝑢𝜀 for different values of 𝜀 (right).

Figure 6. The error 𝐸𝐻
0.02 in the approximation of 𝑢𝜀 for a fixed value, 𝜀 = 1

50 , (left) and the
error after subtraction of 2.2653×10−9 (right), which is approximately the limit of 𝐸𝐻

0.02 in the
figure on the left for this fixed value of 𝜀 as 𝐻 tends to zero.

5. Collection of proofs

In this section, we provide the proofs to the results presented in this paper. This section is divided into a part
containing the proofs of the homogenization results from Section 2 as well as the proof of Theorem 3.15, and
a second part containing the proofs of numerical results from Section 3, except for the technical Lemmata 3.6
and 3.7, which can be found in the last part of this section.

5.1. Proofs of the homogenization results

Proof of Theorem 2.5. Let us first assume that (Ω, 𝐴, 𝑓) ∈ 𝒢0,𝑝 for some 𝑝 ∈ (1,∞). We showed in the previous
section that we can transform problem (2.2) into the divergence-form problem (2.6), where 𝐴div : R𝑛 → R𝑛×𝑛

is a 𝑌 -periodic, Hölder continuous, and uniformly elliptic matrix-valued function satisfying

div(𝐴div) = 0.
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Therefore, we can apply Theorem D from [11] to problem (2.6) to obtain

‖𝑢𝜀‖𝑊 2,𝑝(Ω) .
⃦⃦⃦
𝑓 𝑚

(︁ ·
𝜀

)︁⃦⃦⃦
𝐿𝑝(Ω)

. ‖𝑓‖𝐿𝑝(Ω)

with constants independent of 𝜀, where we have used the property (2.4) of the invariant measure in the second
inequality.

Let us now assume that (Ω, 𝐴, 𝑓) ∈ ℋ0. Noting that (2.3) implies the Cordes condition for 𝐴
(︀ ·

𝜀

)︀
with the

same constant 𝛿 ∈ (0, 1] for any 𝜀 > 0, the proof of Theorem 3 from [35] yields the estimate

‖𝑢𝜀‖𝐻2(Ω) ≤
𝐶(𝑛, diam(Ω))

1−
√

1− 𝛿

⃦⃦⃦
𝛾
(︁ ·

𝜀

)︁⃦⃦⃦
𝐿∞(R𝑛)

‖𝑓‖𝐿2(Ω), (5.1)

where 𝛾 is the function given by

𝛾 : R𝑛 → R, 𝛾(𝑦) :=
tr𝐴(𝑦)
|𝐴(𝑦)|2

·

We observe that by (2.1), there exist constants 𝛾, Γ > 0 such that

0 < 𝛾 ≤ 𝛾(𝑦) ≤ Γ ∀ 𝑦 ∈ R𝑛.

Therefore, we obtain from (5.1) the bound

‖𝑢𝜀‖𝐻2(Ω) . ‖𝑓‖𝐿2(Ω)

with a constant that is independent of 𝜀. �

Proof of Theorem 2.6. By Theorem 2.5, the reflexivity of 𝑊 2,𝑝(Ω) for 𝑝 ∈ (1,∞), the compactness of the
embedding 𝑊 2,𝑝(Ω) →˓ 𝑊 1,𝑝(Ω), and the properties of the trace operator, there exists a 𝑢0 ∈ 𝑊 2,𝑝(Ω)∩𝑊 1,𝑝

0 (Ω)
such that (for a subsequence, not indicated,)

𝑢𝜀 ⇀ 𝑢0 weakly in 𝑊 2,𝑝(Ω), and
𝑢𝜀 → 𝑢0 strongly in 𝑊 1,𝑝(Ω).

We can transform (2.2) as in Section 2.2 into the divergence-form problem (2.6) with

𝐴div = 𝐴𝑚 + 𝐵

being 𝑌 -periodic, Hölder continuous and uniformly elliptic on R𝑛. Recalling that 𝐵 is of mean zero over 𝑌 , we
have

𝐴div
(︁ ·

𝜀

)︁
*
⇀

∫︁
𝑌

𝐴𝑚 = 𝐴0 weakly-* in 𝐿∞(Ω).

Since we have that

∇𝑢𝜀 → ∇𝑢0 strongly in 𝐿𝑝(Ω),

we can pass to the limit in the weak formulation of (2.6) to obtain that 𝑢0 ∈ 𝑊 2,𝑝(Ω) ∩𝑊 1,𝑝
0 (Ω) solves (2.7).

We conclude the proof by noting that (2.7) admits a unique strong solution in 𝑊 2,𝑝(Ω) ∩𝑊 1,𝑝
0 (Ω). �
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Proof of Theorem 2.7. First, we note that since 𝐴 ∈ 𝐶0,𝛼(R𝑛), we have 𝜒𝑖𝑗 ∈ 𝐶2,𝛼(R𝑛) for any 1 ≤ 𝑖, 𝑗 ≤ 𝑛 by
elliptic regularity theory. A direct computation shows that the function

𝑢̃𝜀 := 𝑢0 + 𝜀2
𝑛∑︁

𝑖,𝑗=1

𝜒𝑖𝑗

(︁ ·
𝜀

)︁
𝜕2

𝑖𝑗𝑢0

solves the problem ⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝐴
(︁ ·

𝜀

)︁
: 𝐷2𝑢̃𝜀 = 𝑓 + 𝜀𝐹𝜀 in Ω,

𝑢̃𝜀 = 𝜀2
𝑛∑︁

𝑖,𝑗=1

𝜒𝑖𝑗

(︁ ·
𝜀

)︁
𝜕2

𝑖𝑗𝑢0 on 𝜕Ω,

where

𝐹𝜀 :=
𝑛∑︁

𝑖,𝑗,𝑘,𝑙=1

𝑎𝑖𝑗

(︁ ·
𝜀

)︁(︁
2 𝜕𝑖𝜒𝑘𝑙

(︁ ·
𝜀

)︁
𝜕3

𝑗𝑘𝑙𝑢0 + 𝜀 𝜒𝑘𝑙

(︁ ·
𝜀

)︁
𝜕4

𝑖𝑗𝑘𝑙𝑢0

)︁
.

Note that since 𝑢0 ∈ 𝑊 4,𝑝(Ω), one has that

‖𝐹𝜀‖𝐿𝑝(Ω) . ‖𝑢0‖𝑊 4,𝑝(Ω),

with the constant being independent of 𝜀. We then have that 𝑑𝜀 := 𝑢̃𝜀 − 𝑢𝜀 satisfies⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝐴
(︁ ·

𝜀

)︁
: 𝐷2𝑑𝜀 = 𝜀𝐹𝜀 in Ω,

𝑑𝜀 = 𝜀2
𝑛∑︁

𝑖,𝑗=1

𝜒𝑖𝑗

(︁ ·
𝜀

)︁
𝜕2

𝑖𝑗𝑢0 on 𝜕Ω.

Therefore, by the definition of the boundary corrector,⎧⎨⎩𝐴
(︁ ·

𝜀

)︁
: 𝐷2

(︀
𝑑𝜀 + 𝜀2𝜃𝜀

)︀
= 𝜀𝐹𝜀 in Ω,

𝑑𝜀 + 𝜀2𝜃𝜀 = 0 on 𝜕Ω.

We conclude using the estimate from Theorem 2.5 that

‖𝑑𝜀 + 𝜀2𝜃𝜀‖𝑊 2,𝑝(Ω) . 𝜀‖𝐹𝜀‖𝐿𝑝(Ω) . 𝜀‖𝑢0‖𝑊 4,𝑝(Ω),

and (2.9) holds. �

Proof of Theorem 2.8. Let 𝜂 ∈ 𝐶∞𝑐 (R𝑛) be a cut-off function with 0 ≤ 𝜂 ≤ 1,

𝜂 ≡ 1 in
{︁

𝑥 ∈ Ω : dist(𝑥, 𝜕Ω) <
𝜀

2

}︁
,

𝜂 ≡ 0 in {𝑥 ∈ Ω : dist(𝑥, 𝜕Ω) ≥ 𝜀} ,

and let 𝜂 satisfy

|∇𝜂|+ 𝜀|𝐷2𝜂| . 1
𝜀

in Ω.
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We introduce the function

𝜃𝜀 := 𝜃𝜀 + 𝜂

𝑛∑︁
𝑖,𝑗=1

𝜒𝑖𝑗

(︁ ·
𝜀

)︁
𝜕2

𝑖𝑗𝑢0,

and verify that

𝐴
(︁ ·

𝜀

)︁
: 𝐷2𝜃𝜀 =

𝑛∑︁
𝑖,𝑗,𝑘,𝑙=1

𝑎𝑖𝑗

(︁ ·
𝜀

)︁
𝜕2

𝑖𝑗

(︁
𝜂 𝜒𝑘𝑙

(︁ ·
𝜀

)︁
𝜕2

𝑘𝑙𝑢0

)︁
=

1
𝜀2

𝑆1 +
1
𝜀
𝑆2 + 𝑆3,

where 𝑆1, 𝑆2 and 𝑆3 are given by

𝑆1 :=
𝑛∑︁

𝑖,𝑗,𝑘,𝑙=1

𝑎𝑖𝑗

(︁ ·
𝜀

)︁
𝜂 𝜕2

𝑖𝑗𝜒𝑘𝑙

(︁ ·
𝜀

)︁
𝜕2

𝑘𝑙𝑢0,

𝑆2 := 2
𝑛∑︁

𝑖,𝑗,𝑘,𝑙=1

𝑎𝑖𝑗

(︁ ·
𝜀

)︁(︁
𝜕𝑖𝜂 𝜕𝑗𝜒𝑘𝑙

(︁ ·
𝜀

)︁
𝜕2

𝑘𝑙𝑢0 + 𝜂 𝜕𝑖𝜒𝑘𝑙

(︁ ·
𝜀

)︁
𝜕3

𝑗𝑘𝑙𝑢0

)︁
,

𝑆3 :=
𝑛∑︁

𝑖,𝑗,𝑘,𝑙=1

𝑎𝑖𝑗

(︁ ·
𝜀

)︁(︁
𝜕2

𝑖𝑗𝜂 𝜒𝑘𝑙

(︁ ·
𝜀

)︁
𝜕2

𝑘𝑙𝑢0 + 2 𝜕𝑖𝜂 𝜒𝑘𝑙

(︁ ·
𝜀

)︁
𝜕3

𝑗𝑘𝑙𝑢0 + 𝜂 𝜒𝑘𝑙

(︁ ·
𝜀

)︁
𝜕4

𝑖𝑗𝑘𝑙𝑢0

)︁
.

Therefore, 𝜃𝜀 satisfies ⎧⎨⎩𝐴
(︁ ·

𝜀

)︁
: 𝐷2𝜃𝜀 =

1
𝜀2

𝑆1 +
1
𝜀
𝑆2 + 𝑆3 in Ω,

𝜃𝜀 = 0 on 𝜕Ω.

Since 𝑢0 ∈ 𝑊 4,𝑝(Ω)∩𝑊 2,∞(Ω) by assumption, the right-hand side belongs to 𝐿𝑝(Ω), and we have by Theorem 2.5
that ⃦⃦⃦

𝜃𝜀

⃦⃦⃦
𝑊 2,𝑝(Ω)

.
1
𝜀2
‖𝑆1‖𝐿𝑝(Ω) +

1
𝜀
‖𝑆2‖𝐿𝑝(Ω) + ‖𝑆3‖𝐿𝑝(Ω).

We look at the terms on the right-hand side separately and start with 𝑆1. Using the boundedness of 𝐴 and the
fact that 𝜒𝑖𝑗 ∈ 𝑊 2,∞(R𝑛), we have

‖𝑆1‖𝐿𝑝(Ω) =

⃦⃦⃦⃦
⃦⃦ 𝑛∑︁

𝑖,𝑗,𝑘,𝑙=1

𝑎𝑖𝑗

(︁ ·
𝜀

)︁
𝜂 𝜕2

𝑖𝑗𝜒𝑘𝑙

(︁ ·
𝜀

)︁
𝜕2

𝑘𝑙𝑢0

⃦⃦⃦⃦
⃦⃦

𝐿𝑝(Ω)

. ‖𝑢0‖𝑊 2,∞(Ω)‖𝜂‖𝐿𝑝(Ω)

. |{𝑥 ∈ Ω : dist(𝑥, 𝜕Ω) < 𝜀}|
1
𝑝 ‖𝑢0‖𝑊 2,∞(Ω)

. 𝜀
1
𝑝 ‖𝑢0‖𝑊 2,∞(Ω).

For 𝑆2, we obtain similarly that

‖𝑆2‖𝐿𝑝(Ω) =

⃦⃦⃦⃦
⃦⃦2

𝑛∑︁
𝑖,𝑗,𝑘,𝑙=1

𝑎𝑖𝑗

(︁ ·
𝜀

)︁(︁
𝜕𝑖𝜂 𝜕𝑗𝜒𝑘𝑙

(︁ ·
𝜀

)︁
𝜕2

𝑘𝑙𝑢0 + 𝜂 𝜕𝑖𝜒𝑘𝑙

(︁ ·
𝜀

)︁
𝜕3

𝑗𝑘𝑙𝑢0

)︁⃦⃦⃦⃦⃦⃦
𝐿𝑝(Ω)

. ‖∇𝜂‖𝐿𝑝(Ω)‖𝑢0‖𝑊 2,∞(Ω) + ‖𝜂‖𝐿∞(Ω)‖𝑢0‖𝑊 4,𝑝(Ω)

.
1
𝜀
|{𝑥 ∈ Ω : dist(𝑥, 𝜕Ω) < 𝜀}|

1
𝑝 ‖𝑢0‖𝑊 2,∞(Ω) + ‖𝑢0‖𝑊 4,𝑝(Ω)

.
1

𝜀1− 1
𝑝

‖𝑢0‖𝑊 2,∞(Ω) + ‖𝑢0‖𝑊 4,𝑝(Ω).
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Finally, for 𝑆3, we have that

‖𝑆3‖𝐿𝑝(Ω) =

⃦⃦⃦⃦
⃦⃦ 𝑛∑︁

𝑖,𝑗,𝑘,𝑙=1

𝑎𝑖𝑗

(︁ ·
𝜀

)︁(︁
𝜕2

𝑖𝑗𝜂 𝜒𝑘𝑙

(︁ ·
𝜀

)︁
𝜕2

𝑘𝑙𝑢0 + 2 𝜕𝑖𝜂 𝜒𝑘𝑙

(︁ ·
𝜀

)︁
𝜕3

𝑗𝑘𝑙𝑢0 + 𝜂 𝜒𝑘𝑙

(︁ ·
𝜀

)︁
𝜕4

𝑖𝑗𝑘𝑙𝑢0

)︁⃦⃦⃦⃦⃦⃦
𝐿𝑝(Ω)

. ‖𝐷2𝜂‖𝐿𝑝(Ω)‖𝑢0‖𝑊 2,∞(Ω) +
(︀
‖∇𝜂‖𝐿∞(Ω) + ‖𝜂‖𝐿∞(Ω)

)︀
‖𝑢0‖𝑊 4,𝑝(Ω)

.
1
𝜀2
|{𝑥 ∈ Ω : dist(𝑥, 𝜕Ω) < 𝜀}|

1
𝑝 ‖𝑢0‖𝑊 2,∞(Ω) +

1
𝜀
‖𝑢0‖𝑊 4,𝑝(Ω)

.
1

𝜀2− 1
𝑝

‖𝑢0‖𝑊 2,∞(Ω) +
1
𝜀
‖𝑢0‖𝑊 4,𝑝(Ω).

Altogether, we have shown that

⃦⃦⃦
𝜃𝜀

⃦⃦⃦
𝑊 2,𝑝(Ω)

.

(︃
𝜀

1
𝑝

𝜀2
+

1

𝜀 · 𝜀1− 1
𝑝

+
1

𝜀2− 1
𝑝

)︃
‖𝑢0‖𝑊 2,∞(Ω) +

(︂
1
𝜀

+
1
𝜀

)︂
‖𝑢0‖𝑊 4,𝑝(Ω)

.
1

𝜀2− 1
𝑝

‖𝑢0‖𝑊 2,∞(Ω) +
1
𝜀
‖𝑢0‖𝑊 4,𝑝(Ω).

By direct computation, using the bounds

‖𝜂‖𝐿𝑝(Ω) . 𝜀
1
𝑝 , ‖∇𝜂‖𝐿𝑝(Ω) .

1

𝜀1− 1
𝑝

, ‖𝐷2𝜂‖𝐿𝑝(Ω) .
1

𝜀2− 1
𝑝

,

we can show that ⃦⃦⃦⃦
⃦⃦𝜂 𝑛∑︁

𝑖,𝑗=1

𝜒𝑖𝑗

(︁ ·
𝜀

)︁
𝜕2

𝑖𝑗𝑢0

⃦⃦⃦⃦
⃦⃦

𝑊 2,𝑝(Ω)

.
1

𝜀2− 1
𝑝

‖𝑢0‖𝑊 2,∞(Ω) +
1
𝜀
‖𝑢0‖𝑊 4,𝑝(Ω).

Therefore, using the triangle inequality, we obtain that

‖𝜃𝜀‖𝑊 2,𝑝(Ω) .
1

𝜀2− 1
𝑝

‖𝑢0‖𝑊 2,∞(Ω) +
1
𝜀
‖𝑢0‖𝑊 4,𝑝(Ω).

We conclude that

‖𝜀2𝜃𝜀‖𝑊 2,𝑝(Ω) . 𝜀
1
𝑝 ‖𝑢0‖𝑊 2,∞(Ω) + 𝜀‖𝑢0‖𝑊 4,𝑝(Ω).

The claim now follows from (2.9). �

5.2. Proofs of the numerical results

Proof of Theorem 3.1. We observe that 𝑚 = 𝑚̃ + 1, where 𝑚̃ is the unique solution to the problem{︃
−∇ · (𝐴∇𝑚̃ + 𝑚̃ div𝐴) = ∇ · (div𝐴) in 𝑌,

𝑚̃ is 𝑌 -periodic,
∫︀

𝑌
𝑚̃ = 0,

that is,

𝑚̃ ∈ 𝑊per(𝑌 ), 𝑎(𝑚̃, 𝜙) = −
∫︁

𝑌

(div𝐴) · ∇𝜙 ∀𝜙 ∈ 𝑊per(𝑌 ),
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where

𝑎 : 𝑊per(𝑌 )×𝑊per(𝑌 ) −→ R, 𝑎(𝑢, 𝑣) :=
∫︁

𝑌

𝐴∇𝑢 · ∇𝑣 +
∫︁

𝑌

𝑢(div𝐴) · ∇𝑣.

We further observe that (3.1) is equivalent to

𝑚̃ℎ ∈ 𝑀̃ℎ, 𝑎(𝑚̃ℎ, 𝜙ℎ) = −
∫︁

𝑌

(div𝐴) · ∇𝜙ℎ ∀𝜙ℎ ∈ 𝑀̃ℎ. (5.2)

We start by showing boundedness of 𝑎 and a G̊arding-type inequality. We claim that there exist constants
𝐶𝑏, 𝐶𝑔 > 0 such that

|𝑎(𝑢, 𝑣)| ≤ 𝐶𝑏‖𝑢‖𝐻1(𝑌 )‖𝑣‖𝐻1(𝑌 ) ∀𝑢, 𝑣 ∈ 𝑊per(𝑌 ), (5.3)

and

𝑎(𝑢, 𝑢) ≥ 𝜆

2
‖𝑢‖2𝐻1(𝑌 ) − 𝐶𝑔‖𝑢‖2𝐿2(𝑌 ) ∀𝑢 ∈ 𝑊per(𝑌 ). (5.4)

Let us first show (5.3). For 𝑢, 𝑣 ∈ 𝑊per(𝑌 ), by Hölder’s inequality and Sobolev embeddings (note that,
according to (2.1), 𝑞 > 𝑛), we have that⃒⃒⃒⃒∫︁

𝑌

𝑢(div𝐴) · ∇𝑣

⃒⃒⃒⃒
≤ ‖div𝐴‖𝐿𝑞(𝑌 )‖𝑢‖

𝐿
2𝑞

𝑞−2 (𝑌 )
‖∇𝑣‖𝐿2(𝑌 ) . ‖𝑢‖𝐻1(𝑌 )‖𝑣‖𝐻1(𝑌 ).

Using the fact that 𝐴 ∈ 𝑊 1,𝑞(𝑌 ) →˓ 𝐿∞(𝑌 ) since 𝑞 > 𝑛, we obtain the bound

|𝑎(𝑢, 𝑣)| ≤
⃒⃒⃒⃒∫︁

𝑌

𝐴∇𝑢 · ∇𝑣

⃒⃒⃒⃒
+
⃒⃒⃒⃒∫︁

𝑌

𝑢(div𝐴) · ∇𝑣

⃒⃒⃒⃒
. ‖𝑢‖𝐻1(𝑌 )‖𝑣‖𝐻1(𝑌 )

for any 𝑢, 𝑣 ∈ 𝑊per(𝑌 ), i.e., (5.3) holds.
Let us now show the estimate (5.4). For 𝑢 ∈ 𝑊per(𝑌 ), by ellipticity and Hölder’s inequality, we have

𝑎(𝑢, 𝑢) =
∫︁

𝑌

𝐴∇𝑢 · ∇𝑢 +
∫︁

𝑌

𝑢(div𝐴) · ∇𝑢

≥ 𝜆‖∇𝑢‖2𝐿2(𝑌 ) − ‖div𝐴‖𝐿𝑞(𝑌 )‖𝑢‖
𝐿

2𝑞
𝑞−2 (𝑌 )

‖∇𝑢‖𝐿2(𝑌 ).

For the second term we use the Gagliardo–Nirenberg inequality and Young’s inequality to obtain

‖div𝐴‖𝐿𝑞(𝑌 )‖𝑢‖
𝐿

2𝑞
𝑞−2 (𝑌 )

‖∇𝑢‖𝐿2(𝑌 ) ≤ 𝐶(𝑞, 𝑛)‖div𝐴‖𝐿𝑞(𝑌 )‖𝑢‖
1−𝑛

𝑞

𝐿2(𝑌 )‖∇𝑢‖1+
𝑛
𝑞

𝐿2(𝑌 )

≤ 𝜆

2
‖∇𝑢‖2𝐿2(𝑌 ) + 𝐶(𝑞, 𝑛, 𝜆, ‖div𝐴‖𝐿𝑞(𝑌 ))‖𝑢‖2𝐿2(𝑌 ).

Therefore, we have

𝑎(𝑢, 𝑢) ≥ 𝜆

2
‖∇𝑢‖2𝐿2(𝑌 ) − 𝐶(𝑞, 𝑛, 𝜆, ‖div𝐴‖𝐿𝑞(𝑌 ))‖𝑢‖2𝐿2(𝑌 )

=
𝜆

2
‖𝑢‖2𝐻1(𝑌 ) −

(︂
𝜆

2
+ 𝐶(𝑞, 𝑛, 𝜆, ‖div𝐴‖𝐿𝑞(𝑌 ))

)︂
‖𝑢‖2𝐿2(𝑌 )

for any 𝑢 ∈ 𝑊per(𝑌 ), i.e., (5.4) holds with

𝐶𝑔 :=
𝜆

2
+ 𝐶(𝑞, 𝑛, 𝜆, ‖div𝐴‖𝐿𝑞(𝑌 )).
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We use Schatz’s method to derive an a priori estimate; see [34]. The proof of the uniqueness of 𝑚̃ℎ ∈ 𝑀̃ℎ (which
implies its existence) proceeds analogously and is therefore omitted.

From our G̊arding-type inequality (5.4) we see that (note that 𝑚̃− 𝑚̃ℎ ∈ 𝑊per(𝑌 ))

‖𝑚̃− 𝑚̃ℎ‖𝐻1(𝑌 ) −
2𝐶𝑔

𝜆
‖𝑚̃− 𝑚̃ℎ‖𝐿2(𝑌 ) ≤ ‖𝑚̃− 𝑚̃ℎ‖𝐻1(𝑌 ) −

2𝐶𝑔

𝜆

‖𝑚̃− 𝑚̃ℎ‖2𝐿2(𝑌 )

‖𝑚̃− 𝑚̃ℎ‖𝐻1(𝑌 )

≤ 2
𝜆

𝑎(𝑚̃− 𝑚̃ℎ, 𝑚̃− 𝑚̃ℎ)
‖𝑚̃− 𝑚̃ℎ‖𝐻1(𝑌 )

·
(5.5)

By Galerkin-orthogonality and boundedness, we have for any 𝑣ℎ ∈ 𝑀̃ℎ that

𝑎(𝑚̃− 𝑚̃ℎ, 𝑚̃− 𝑚̃ℎ)
‖𝑚̃− 𝑚̃ℎ‖𝐻1(𝑌 )

=
𝑎(𝑚̃− 𝑚̃ℎ, 𝑚̃− 𝑣ℎ)
‖𝑚̃− 𝑚̃ℎ‖𝐻1(𝑌 )

≤ 𝐶𝑏‖𝑚̃− 𝑣ℎ‖𝐻1(𝑌 ),

and taking the infimum over all 𝑣ℎ ∈ 𝑀̃ℎ, we find that

𝑎(𝑚̃− 𝑚̃ℎ, 𝑚̃− 𝑚̃ℎ)
‖𝑚̃− 𝑚̃ℎ‖𝐻1(𝑌 )

≤ 𝐶𝑏 inf
𝑣ℎ∈𝑀̃ℎ

‖𝑚̃− 𝑣ℎ‖𝐻1(𝑌 ).

Combining this estimate with (5.5) yields

‖𝑚̃− 𝑚̃ℎ‖𝐻1(𝑌 ) −
2𝐶𝑔

𝜆
‖𝑚̃− 𝑚̃ℎ‖𝐿2(𝑌 ) ≤

2𝐶𝑏

𝜆
inf

𝑣ℎ∈𝑀̃ℎ

‖𝑚̃− 𝑣ℎ‖𝐻1(𝑌 ). (5.6)

Next, we use an Aubin–Nitsche-type duality argument.
Let 𝜑 ∈ 𝑊per(𝑌 ) be the unique solution to{︃

−∇ · (𝐴∇𝜑) + (div𝐴) · ∇𝜑 = 𝑚̃−𝑚̃ℎ

𝑚 in 𝑌,

𝜑 is 𝑌 -periodic,
∫︀

𝑌
𝜑 = 0.

(5.7)

We note that the solvability condition (2.5) is satisfied:∫︁
𝑌

𝑚̃− 𝑚̃ℎ

𝑚
𝑚 =

∫︁
𝑌

(𝑚̃− 𝑚̃ℎ) = 0.

We have, using the bounds on the invariant measure (2.4), the weak formulation of (5.7) and the symmetry of
𝐴, that

1
𝑀
‖𝑚̃− 𝑚̃ℎ‖2𝐿2(𝑌 ) ≤

∫︁
𝑌

𝑚̃− 𝑚̃ℎ

𝑚
(𝑚̃− 𝑚̃ℎ)

=
∫︁

𝑌

𝐴∇𝜑 · ∇(𝑚̃− 𝑚̃ℎ) +
∫︁

𝑌

(div𝐴) · ∇𝜑 (𝑚̃− 𝑚̃ℎ)

=
∫︁

𝑌

𝐴∇(𝑚̃− 𝑚̃ℎ) · ∇𝜑 +
∫︁

𝑌

(𝑚̃− 𝑚̃ℎ)(div𝐴) · ∇𝜑.

Next, we use Galerkin orthogonality, the boundedness (5.3) and an interpolation inequality to obtain

1
𝑀
‖𝑚̃− 𝑚̃ℎ‖2𝐿2(𝑌 ) ≤ 𝑎(𝑚̃− 𝑚̃ℎ, 𝜑)

= 𝑎(𝑚̃− 𝑚̃ℎ, 𝜑− ℐℎ𝜑)
. ‖𝑚̃− 𝑚̃ℎ‖𝐻1(𝑌 )‖𝜑− ℐℎ𝜑‖𝐻1(𝑌 )

. ℎ‖𝑚̃− 𝑚̃ℎ‖𝐻1(𝑌 )‖𝜑‖𝐻2(𝑌 ),
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where ℐℎ𝜑 denotes the continuous piecewise linear interpolant (for 𝑛 ≤ 3 and quasi-interpolant for 𝑛 ≥ 4) of 𝜑
on the triangulation. Finally, by a regularity estimate for 𝜑 and the bounds on the invariant measure (2.4), we
arrive at the bound

‖𝜑‖𝐻2(𝑌 ) .

⃦⃦⃦⃦
𝑚̃− 𝑚̃ℎ

𝑚

⃦⃦⃦⃦
𝐿2(𝑌 )

. ‖𝑚̃− 𝑚̃ℎ‖𝐿2(𝑌 ) ,

which provides us with the estimate

‖𝑚̃− 𝑚̃ℎ‖𝐿2(𝑌 ) ≤ 𝐶0ℎ‖𝑚̃− 𝑚̃ℎ‖𝐻1(𝑌 )

for some 𝐶0 > 0. Combining this with (5.6) we have(︂
1− 2𝐶𝑔𝐶0

𝜆
ℎ

)︂
‖𝑚̃− 𝑚̃ℎ‖𝐻1(𝑌 ) ≤ ‖𝑚̃− 𝑚̃ℎ‖𝐻1(𝑌 ) −

2𝐶𝑔

𝜆
‖𝑚̃− 𝑚̃ℎ‖𝐿2(𝑌 )

≤ 2𝐶𝑏

𝜆
inf

𝑣ℎ∈𝑀̃ℎ

‖𝑚̃− 𝑣ℎ‖𝐻1(𝑌 ).

Therefore, for ℎ sufficiently small, we arrive at the bounds

‖𝑚̃− 𝑚̃ℎ‖𝐻1(𝑌 ) . inf
𝑣ℎ∈𝑀̃ℎ

‖𝑚̃− 𝑣ℎ‖𝐻1(𝑌 ),

and

‖𝑚̃− 𝑚̃ℎ‖𝐿2(𝑌 ) ≤ 𝐶0ℎ‖𝑚̃− 𝑚̃ℎ‖𝐻1(𝑌 ) . ℎ inf
𝑣ℎ∈𝑀̃ℎ

‖𝑚̃− 𝑣ℎ‖𝐻1(𝑌 ).

We have thus established the a priori estimate

‖𝑚̃− 𝑚̃ℎ‖𝐿2(𝑌 ) + ℎ‖𝑚̃− 𝑚̃ℎ‖𝐻1(𝑌 ) . ℎ inf
𝑣ℎ∈𝑀̃ℎ

‖𝑚̃− 𝑣ℎ‖𝐻1(𝑌 ).

Finally, using that 𝑚 = 𝑚̃ + 1 and 𝑚ℎ = 𝑚̃ℎ + 1, we conclude that

‖𝑚−𝑚ℎ‖𝐿2(𝑌 ) + ℎ‖𝑚−𝑚ℎ‖𝐻1(𝑌 ) . ℎ inf
𝑣ℎ∈𝑀̃ℎ

‖𝑚− (𝑣ℎ + 1)‖𝐻1(𝑌 ).

�

Proof of Lemma 3.3. Fix 1 ≤ 𝑖, 𝑗 ≤ 𝑛. Using the definition of 𝐴0 = (𝑎0
𝑖𝑗), i.e.,

𝑎0
𝑖𝑗 =

∫︁
𝑌

𝑎𝑖𝑗𝑚,

we obtain the estimate

|𝑎0
𝑖𝑗 − 𝑎0

𝑖𝑗,ℎ| ≤ ‖𝑎𝑖𝑗(𝑚−𝑚ℎ)‖𝐿1(𝑌 ) + ‖𝑎𝑖𝑗𝑚ℎ − ℐℎ(𝑎𝑖𝑗𝑚ℎ)‖𝐿1(𝑌 ).

For the first term, we have

‖𝑎𝑖𝑗(𝑚−𝑚ℎ)‖𝐿1(𝑌 ) . ‖𝑚−𝑚ℎ‖𝐿1(𝑌 ) . ‖𝑚−𝑚ℎ‖𝐿2(𝑌 ).

For the second term, let us first note that using 𝑎𝑖𝑗 ∈ 𝑊 1,𝑞(𝑌 ) with 𝑞 > 𝑛 and Sobolev embeddings, we have

|𝑎𝑖𝑗𝑚ℎ|𝐻1(𝑌 ) ≤ ‖∇𝑎𝑖𝑗‖𝐿𝑞(𝑌 )‖𝑚ℎ‖
𝐿

2𝑞
𝑞−2 (𝑌 )

+ ‖𝑎𝑖𝑗‖𝐿∞(𝑌 )‖∇𝑚ℎ‖𝐿2(𝑌 )

. ‖𝑎𝑖𝑗‖𝑊 1,𝑞(𝑌 )‖𝑚ℎ‖𝐻1(𝑌 ).
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Therefore, using a standard interpolation error bound, we obtain

‖𝑎𝑖𝑗𝑚ℎ − ℐℎ(𝑎𝑖𝑗𝑚ℎ)‖𝐿1(𝑌 ) . ‖𝑎𝑖𝑗𝑚ℎ − ℐℎ(𝑎𝑖𝑗𝑚ℎ)‖𝐿2(𝑌 )

. ℎ|𝑎𝑖𝑗𝑚ℎ|𝐻1(𝑌 )

. ℎ‖𝑎𝑖𝑗‖𝑊 1,𝑞(𝑌 )‖𝑚ℎ‖𝐻1(𝑌 ).

By Theorem 3.1, for ℎ > 0 sufficiently small, we have that

|𝑎0
𝑖𝑗 − 𝑎0

𝑖𝑗,ℎ| . ‖𝑚−𝑚ℎ‖𝐿2(𝑌 ) + ℎ‖𝑚ℎ‖𝐻1(𝑌 )

. ‖𝑚−𝑚ℎ‖𝐿2(𝑌 ) + ℎ‖𝑚−𝑚ℎ‖𝐻1(𝑌 ) + ℎ‖𝑚‖𝐻1(𝑌 )

. ℎ inf
𝑣ℎ∈𝑀̃ℎ

‖𝑚− (𝑣ℎ + 1)‖𝐻1(𝑌 ) + ℎ‖𝑚‖𝐻1(𝑌 )

. ℎ‖𝑚− 1‖𝐻1(𝑌 ) + ℎ‖𝑚‖𝐻1(𝑌 )

. ℎ.

Finally, we note that this implies that for ℎ > 0 sufficiently small, 𝐴0
ℎ is elliptic. �

Proof of Lemma 3.4. We let 𝑤ℎ := 𝑢0 − 𝑢ℎ
0 ∈ 𝐻2(Ω) ∩𝐻1

0 (Ω) and note that 𝑤ℎ is the unique solution to the
boundary-value problem {︃

𝐴0 : 𝐷2𝑤ℎ = (𝐴0
ℎ −𝐴0) : 𝐷2𝑢ℎ

0 in Ω,

𝑤ℎ = 0 on 𝜕Ω.

We recall that 𝐴0 ∈ R𝑛×𝑛 is an elliptic constant matrix. For ℎ > 0 sufficiently small, by an 𝐻2 a priori estimate,
the Cauchy–Schwarz inequality and Lemma 3.3,

‖𝑤ℎ‖𝐻2(Ω) . ‖(𝐴0
ℎ −𝐴0) : 𝐷2𝑢ℎ

0‖𝐿2(Ω)

.

⎛⎜⎝∫︁
Ω

⃒⃒⃒⃒
⃒⃒ 𝑛∑︁
𝑖,𝑗=1

(𝑎0
𝑖𝑗,ℎ − 𝑎0

𝑖𝑗)𝜕2
𝑖𝑗𝑢

ℎ
0

⃒⃒⃒⃒
⃒⃒
2
⎞⎟⎠

1
2

.

⎛⎝∫︁
Ω

⎛⎝ 𝑛∑︁
𝑖,𝑗=1

|𝑎0
𝑖𝑗,ℎ − 𝑎0

𝑖𝑗 |2
⎞⎠⎛⎝ 𝑛∑︁

𝑖,𝑗=1

|𝜕2
𝑖𝑗𝑢

ℎ
0 |2
⎞⎠⎞⎠ 1

2

. ℎ |𝑢ℎ
0 |𝐻2(Ω).

Finally, we show that for ℎ > 0 sufficiently small, we have

‖𝑢ℎ
0‖𝐻2(Ω) . ‖𝑓‖𝐿2(Ω) (5.8)

with the constant being independent of ℎ. This can be seen by rewriting (3.2) as{︃
𝐴0 : 𝐷2𝑢ℎ

0 = 𝑓 + (𝐴0 −𝐴0
ℎ) : 𝐷2𝑢ℎ

0 in Ω,

𝑢ℎ
0 = 0 on 𝜕Ω.

(5.9)

Then, again by an 𝐻2 a priori estimate and Lemma 3.3,

‖𝑢ℎ
0‖𝐻2(Ω) . ‖𝑓 + (𝐴0 −𝐴0

ℎ) : 𝐷2𝑢ℎ
0‖𝐿2(Ω) . ‖𝑓‖𝐿2(Ω) + ℎ‖𝑢ℎ

0‖𝐻2(Ω)

with constants independent of ℎ, i.e., for ℎ > 0 sufficiently small, (5.8) holds with the constant being independent
of ℎ. �
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Proof of Theorem 3.11. We use (3.9) and the triangle inequality to obtain

‖𝑢𝜀 − 𝑢0,ℎ‖𝐻1(Ω) ≤ ‖𝑢𝜀 − 𝑢0‖𝐻1(Ω) + ‖𝑢0 − 𝑢0,ℎ‖𝐻1(Ω)

.
√

𝜀 ‖𝑢0‖𝑊 2,∞(Ω) + 𝜀‖𝑢0‖𝐻4(Ω) + ℎ‖𝑓‖𝐻1(Ω),

and for 1 ≤ 𝑘, 𝑙 ≤ 𝑛,⃦⃦
𝜕2

𝑘𝑙𝑢𝜀 − 𝑢𝑘𝑙
𝜀,ℎ

⃦⃦
𝐿1(Ω)

.
√

𝜀 ‖𝑢0‖𝑊 2,∞(Ω) + 𝜀‖𝑢0‖𝐻4(Ω) + ℎ‖𝑓‖𝐻1(Ω)

+
𝑛∑︁

𝑖,𝑗=1

⃦⃦⃦(︀
𝜕2

𝑘𝑙𝜒𝑖𝑗

)︀ (︁ ·
𝜀

)︁
𝜕2

𝑖𝑗𝑢0 − 𝑧𝑘𝑙
𝑖𝑗,ℎ

(︁ ·
𝜀

)︁
𝜕2

𝑖𝑗𝑢0,ℎ

⃦⃦⃦
𝐿1(Ω)

.

It remains to study the last term on the right-hand side of the above inequality. For fixed 1 ≤ 𝑖, 𝑗 ≤ 𝑛, we use
again the triangle inequality to obtain⃦⃦⃦(︀

𝜕2
𝑘𝑙𝜒𝑖𝑗

)︀ (︁ ·
𝜀

)︁
𝜕2

𝑖𝑗𝑢0 − 𝑧𝑘𝑙
𝑖𝑗,ℎ

(︁ ·
𝜀

)︁
𝜕2

𝑖𝑗𝑢0,ℎ

⃦⃦⃦
𝐿1(Ω)

≤
⃦⃦⃦
𝑧𝑘𝑙
𝑖𝑗,ℎ

(︁ ·
𝜀

)︁ (︀
𝜕2

𝑖𝑗𝑢0 − 𝜕2
𝑖𝑗𝑢0,ℎ

)︀⃦⃦⃦
𝐿1(Ω)

+
⃦⃦⃦(︀

𝜕2
𝑘𝑙𝜒𝑖𝑗 − 𝑧𝑘𝑙

𝑖𝑗,ℎ

)︀ (︁ ·
𝜀

)︁
𝜕2

𝑖𝑗𝑢0

⃦⃦⃦
𝐿1(Ω)

.
⃦⃦⃦
𝑧𝑘𝑙
𝑖𝑗,ℎ

(︁ ·
𝜀

)︁⃦⃦⃦
𝐿2(Ω)

‖𝑢0 − 𝑢0,ℎ‖𝐻2(Ω) +
⃦⃦⃦(︀

𝜕2
𝑘𝑙𝜒𝑖𝑗 − 𝑧𝑘𝑙

𝑖𝑗,ℎ

)︀ (︁ ·
𝜀

)︁⃦⃦⃦
𝐿2(Ω)

‖𝑢0‖𝑊 2,∞(Ω)

. ℎ

(︂⃦⃦⃦
𝑧𝑘𝑙
𝑖𝑗,ℎ

(︁ ·
𝜀

)︁⃦⃦⃦
𝐿2(Ω)

‖𝑓‖𝐻1(Ω) + ‖𝑢0‖𝑊 2,∞(Ω)

)︂
.

In the last step, we used that by the transformation formula and periodicity (cover Ω/𝜀 by 𝒪(𝜀−𝑛) many cells
of unit length), there holds ⃦⃦⃦(︀

𝜕2
𝑘𝑙𝜒𝑖𝑗 − 𝑧𝑘𝑙

𝑖𝑗,ℎ

)︀ (︁ ·
𝜀

)︁⃦⃦⃦
𝐿2(Ω)

.
⃦⃦
𝜕2

𝑘𝑙𝜒𝑖𝑗 − 𝑧𝑘𝑙
𝑖𝑗,ℎ

⃦⃦
𝐿2(𝑌 )

. ℎ. (5.10)

We claim that ⃦⃦⃦
𝑧𝑘𝑙
𝑖𝑗,ℎ

(︁ ·
𝜀

)︁⃦⃦⃦
𝐿2(Ω)

. ℎ + 1.

Indeed, we use the triangle inequality, (5.10) and the fact that 𝜒𝑖𝑗 ∈ 𝑊 2,∞(𝑌 ) to obtain⃦⃦⃦
𝑧𝑘𝑙
𝑖𝑗,ℎ

(︁ ·
𝜀

)︁⃦⃦⃦
𝐿2(Ω)

≤
⃦⃦⃦(︀

𝜕2
𝑘𝑙𝜒𝑖𝑗 − 𝑧𝑘𝑙

𝑖𝑗,ℎ

)︀ (︁ ·
𝜀

)︁⃦⃦⃦
𝐿2(Ω)

+
⃦⃦
𝜕2

𝑘𝑙𝜒𝑖𝑗

⃦⃦
𝐿∞(𝑌 )

. ℎ + 1.

�

Proof of Theorem 3.15. (i) For (Ω, 𝐴, 𝑓) ∈ ℋ, one shows similarly to the proof of Theorem 3 from [35] and
Theorem 2.5 that

‖𝑢𝜀‖𝐻2(Ω) .

⃦⃦⃦⃦
⃦ tr𝐴

(︀
·, ·𝜀
)︀

|𝐴
(︀
·, ·𝜀
)︀
|2

⃦⃦⃦⃦
⃦

𝐿∞(Ω)

‖𝑓‖𝐿2(Ω) . ‖𝑓‖𝐿2(Ω).

For (Ω, 𝐴, 𝑓) ∈ 𝒢, the claim follows from the method of freezing coefficients, using the uniform estimate
from Theorem 2.5 for the operators 𝐿𝑥0 := 𝐴

(︀
𝑥0,

·
𝜀

)︀
: 𝐷2 for fixed 𝑥0 ∈ Ω.

(ii) The uniform estimate from (𝑖) yields weak convergence in 𝐻2(Ω) and strong convergence in 𝐻1(Ω) for a
subsequence of (𝑢𝜀)𝜀>0 to some limit function 𝑢0 ∈ 𝐻2(Ω) ∩ 𝐻1

0 (Ω). We multiply (3.10) by 𝑚
(︀
·, ·𝜀
)︀

and
follow the transformation performed in [13] to find that the equality

𝑚𝜀𝑓 = 2∇ ·
(︁
𝐴𝜀∇𝑢𝜀 +

[︁
div𝑥𝐴

]︁𝜀
𝑢𝜀

)︁
− 2

[︁
div𝑥𝐴

]︁𝜀
· ∇𝑢𝜀 −

[︁
𝐷2

𝑥 : 𝐴
]︁𝜀

𝑢𝜀 −𝐷2 :
(︁
𝐴𝜀𝑢𝜀

)︁
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holds weakly, where 𝐴 := 𝐴𝑚 and 𝑣𝜀 denotes 𝑣
(︀
·, ·𝜀
)︀
. Passing to the limit, we obtain that 𝑢0 is a weak

solution of (3.13). We conclude the proof by noting that (3.13) admits a unique strong solution, since 𝐴0

is uniformly elliptic and Lipschitz continuous on Ω̄; see [25,26].
(iii) This can be proved similarly to Theorems 2.7 and 2.8, using that, by the assumptions made on 𝐴 and

elliptic regularity, we have

𝜒𝜀
𝑘𝑙, [𝜕𝑥𝑖𝜒𝑘𝑙]

𝜀
, [𝜕𝑦𝑖𝜒𝑘𝑙]

𝜀
,
[︁
𝜕2

𝑥𝑖𝑦𝑗
𝜒𝑘𝑙

]︁𝜀
,
[︁
𝜕2

𝑥𝑖𝑥𝑗
𝜒𝑘𝑙

]︁𝜀
∈ 𝐿∞(Ω)

for any 1 ≤ 𝑖, 𝑗, 𝑘, 𝑙 ≤ 𝑛.
�

5.3. Proofs of technical lemmata

Proof of Lemma 3.6. We start with the case (i). To this end, let (Ω, 𝐴, 𝑓) ∈ 𝒢1,2 with 𝜕Ω ∈ 𝐶3. Then, by elliptic
regularity theory, we have 𝑢ℎ

0 ∈ 𝐻3(Ω). Using elliptic regularity for problem (5.9) yields

‖𝑢ℎ
0‖𝐻3(Ω) . ‖𝑓 + (𝐴0 −𝐴0

ℎ) : 𝐷2𝑢ℎ
0‖𝐻1(Ω) . ‖𝑓‖𝐻1(Ω) + ℎ‖𝑢ℎ

0‖𝐻3(Ω)

with constants independent of ℎ, i.e., for ℎ > 0 sufficiently small, (3.3) holds with the constant being independent
of ℎ.

Let us now show the claim for the case (ii). To this end, let (Ω, 𝐴, 𝑓) ∈ ℋ1 with Ω ⊂ R2 being a polygon and
𝑓 ∈ 𝐻1

0 (Ω). Since

𝐴0
ℎ = 𝐴0 +

(︀
𝐴0

ℎ −𝐴0
)︀

=: 𝐴0 + 𝐵ℎ

is symmetric and elliptic for ℎ > 0 sufficiently small, there exists an orthogonal matrix 𝑄ℎ ∈ R2×2 with
𝑄ℎ𝑄T

ℎ = 𝑄T
ℎ 𝑄ℎ = 𝐼2 such that

𝑄ℎ

(︀
𝐴0 + 𝐵ℎ

)︀
𝑄T

ℎ = diag(𝜆+
ℎ , 𝜆−ℎ ) =: Λℎ,

where 𝜆±ℎ > 0 are given by

2𝜆±ℎ = tr
(︀
𝐴0 + 𝐵ℎ

)︀
±
(︁(︀

tr
(︀
𝐴0 + 𝐵ℎ

)︀)︀2 − 4 det
(︀
𝐴0 + 𝐵ℎ

)︀)︁ 1
2

.

We note that, by Lemma 3.3, the entries of 𝐵ℎ = (𝑏ℎ
𝑖𝑗)1≤𝑖,𝑗≤2 satisfy 𝑏ℎ

𝑖𝑗 . ℎ, and therefore, for ℎ > 0 sufficiently
small, we have 0 < 𝜆±ℎ + (𝜆±ℎ )−1 . 1.

The problem (3.2) in the new coordinates reads{︂
∆𝑈ℎ = 𝐹ℎ in 𝑃ℎ,

𝑈ℎ = 0 on 𝜕𝑃ℎ,
(5.11)

where 𝑈ℎ := 𝑢ℎ
0

(︁
𝑄T

ℎ Λ
1
2
ℎ ·
)︁

, 𝐹ℎ := 𝑓
(︁
𝑄T

ℎ Λ
1
2
ℎ ·
)︁

, and 𝑃ℎ := Λ−
1
2

ℎ 𝑄ℎΩ. Note that 𝑃ℎ is still a bounded convex

polygonal domain and that 𝐹ℎ ∈ 𝐻1
0 (𝑃ℎ). By the change of variables formula and the orthogonality of 𝑄ℎ,

‖𝑓‖2𝐻1(Ω) =
∫︁

Ω

(︁
|𝑓 |2 + |∇𝑓 |2

)︁
= det Λ

1
2
ℎ

∫︁
𝑃ℎ

(︂⃒⃒⃒
𝑓
(︁
𝑄T

ℎ Λ
1
2
ℎ ·
)︁⃒⃒⃒2

+
⃒⃒⃒
∇𝑓

(︁
𝑄T

ℎ Λ
1
2
ℎ ·
)︁⃒⃒⃒2)︂

= det Λ
1
2
ℎ

∫︁
𝑃ℎ

(︂
|𝐹ℎ|2 +

⃒⃒⃒
𝑄T

ℎ Λ−
1
2

ℎ ∇𝐹ℎ

⃒⃒⃒2)︂
= det Λ

1
2
ℎ

∫︁
𝑃ℎ

(︂
|𝐹ℎ|2 +

⃒⃒⃒
Λ−

1
2

ℎ ∇𝐹ℎ

⃒⃒⃒2)︂
&
∫︁

𝑃ℎ

(︁
|𝐹ℎ|2 + |∇𝐹ℎ|2

)︁
= ‖𝐹ℎ‖2𝐻1(𝑃ℎ) .
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Using Lemma 3.7, we have that, for ℎ > 0 sufficiently small, the solution to (5.11) satisfies

‖𝑈ℎ‖𝐻3(𝑃ℎ) . ‖𝐹ℎ‖𝐻1(𝑃ℎ) . ‖𝑓‖𝐻1(Ω)

with constants independent of ℎ. It remains to show the bound

‖𝑢ℎ
0‖𝐻3(Ω) . ‖𝑈ℎ‖𝐻3(𝑃ℎ). (5.12)

By the change of variables formula and the orthogonality of 𝑄ℎ, we obtain similarly as before,

‖𝑢ℎ
0‖2𝐻3(Ω) =

∫︁
Ω

(︁
|𝑢ℎ

0 |2 +
⃒⃒
∇𝑢ℎ

0

⃒⃒2
+
⃒⃒
𝐷2𝑢ℎ

0

⃒⃒2)︁
+

2∑︁
𝑖=1

∫︁
Ω

⃒⃒
𝐷2𝜕𝑖𝑢

ℎ
0

⃒⃒2
= det Λ

1
2
ℎ

∫︁
𝑃ℎ

(︂
|𝑈ℎ|2 +

⃒⃒⃒
𝑄T

ℎ Λ−
1
2

ℎ ∇𝑈ℎ

⃒⃒⃒2
+
⃒⃒⃒
𝑄T

ℎ Λ−
1
2

ℎ 𝐷2𝑈ℎ Λ−
1
2

ℎ 𝑄ℎ

⃒⃒⃒2)︂

+
2∑︁

𝑖=1

det Λ
1
2
ℎ

∫︁
𝑃ℎ

⃒⃒⃒⃒
⃒⃒ 2∑︁
𝑗=1

(𝑄ℎ)𝑗𝑖√︀
(Λℎ)𝑗𝑗

𝑄T
ℎ Λ−

1
2

ℎ 𝐷2𝜕𝑗𝑈ℎ Λ−
1
2

ℎ 𝑄ℎ

⃒⃒⃒⃒
⃒⃒
2

= det Λ
1
2
ℎ

∫︁
𝑃ℎ

(︂
|𝑈ℎ|2 +

⃒⃒⃒
Λ−

1
2

ℎ ∇𝑈ℎ

⃒⃒⃒2
+
⃒⃒⃒
Λ−

1
2

ℎ 𝐷2𝑈ℎ Λ−
1
2

ℎ

⃒⃒⃒2)︂
+

2∑︁
𝑖=1

det Λ
1
2
ℎ

(Λℎ)𝑖𝑖

∫︁
𝑃ℎ

⃒⃒⃒
Λ−

1
2

ℎ 𝐷2𝜕𝑖𝑈ℎ Λ−
1
2

ℎ

⃒⃒⃒2
.
∫︁

𝑃ℎ

(︁
|𝑈ℎ|2 + |∇𝑈ℎ|2 +

⃒⃒
𝐷2𝑈ℎ

⃒⃒2)︁
+

2∑︁
𝑖=1

∫︁
𝑃ℎ

⃒⃒
𝐷2𝜕𝑖𝑈ℎ

⃒⃒2
= ‖𝑈ℎ‖2𝐻3(𝑃ℎ),

i.e., we have established the bound (5.12). We conclude that, for ℎ > 0 sufficiently small, we have (3.3), i.e.,

‖𝑢ℎ
0‖𝐻3(Ω) . ‖𝑓‖𝐻1(Ω),

where the constant is independent of ℎ. �

Proof of Lemma 3.7. First, note that since Ω ⊂ R2 is a convex polygonal domain, we have 𝑢 ∈ 𝐻2(Ω)∩𝐻1
0 (Ω)

with ‖𝑢‖𝐻2(Ω) . ‖𝑓‖𝐿2(Ω); see [26]. Since 𝑓 ∈ 𝐻1
0 (Ω), there exists a sequence of smooth functions with compact

support (𝑓𝑚)𝑚 ⊂ 𝐶∞𝑐 (Ω) such that 𝑓𝑚 → 𝑓 in 𝐻1(Ω). Let (𝑢𝑚)𝑚 ⊂ 𝐻1
0 (Ω) be the sequence of solutions

in 𝐻1
0 (Ω) to ∆𝑢𝑚 = 𝑓𝑚 in Ω, and note that (𝑢𝑚)𝑚 ⊂ 𝐶∞(Ω̄) since the functions 𝑓𝑚 satisfy compatibility

conditions of any order; see Section 5.1 of [26]. Again we use the 𝐻2-regularity result for solutions of Poisson’s
problem on convex polygons to obtain

‖𝑢𝑚 − 𝑢‖𝐻2(Ω) . ‖𝑓𝑚 − 𝑓‖𝐿2(Ω) → 0,

i.e., 𝑢𝑚 → 𝑢 in 𝐻2(Ω).
Next, we shall use the fact that

|𝑣|𝐻3(Ω) = ‖∇(∆𝑣)‖𝐿2(Ω) ∀ 𝑣 ∈
{︀
𝑤 ∈ 𝐻1

0 (Ω) : ∆𝑤 ∈ 𝐻1
0 (Ω)

}︀
∩ 𝐶∞(Ω̄); (5.13)

see [32]. We apply (5.13) to the difference of two elements of the sequence (𝑢𝑚)𝑚 to find that (𝑢𝑚)𝑚 is a Cauchy
sequence in 𝐻3(Ω), using that 𝑓𝑚 → 𝑓 in 𝐻1(Ω). Thus, 𝑢𝑚 → 𝑢 in 𝐻3(Ω) and passing to the limit in (5.13)
applied to the functions 𝑢𝑚 yields

|𝑢|𝐻3(Ω) = ‖∇𝑓‖𝐿2(Ω).

Since ‖𝑢‖𝐻2(Ω) . ‖𝑓‖𝐿2(Ω), we conclude the bound (3.4). �
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6. Conclusion

In this paper we introduced a scheme for the numerical approximation of elliptic problems in nondivergence-
form with rapidly oscillating coefficients on 𝐶2,𝛾 and polygonal domains, which is based on a 𝑊 2,𝑝 corrector
estimate for such problems derived in the first part of this work.

We proved an optimal-order error bound for a finite element approximation of the corresponding invariant
measure using continuous 𝑌 -periodic piecewise linear basis functions on a shape-regular triangulation of the
unit cell 𝑌 under weak regularity assumptions on the coefficients. The coefficients are integrated against the so
obtained approximation of the invariant measure after piecewise linear interpolation on the mesh to obtain an
approximation of the constant coefficient-matrix of the homogenized problem. Using an 𝐻2 comparison result
for the solution of this perturbed problem, we eventually obtained an approximation of the solution 𝑢0 to the
homogenized problem in the 𝐻2-norm. In the case of a polygonal domain in two space dimensions, we made
use of compatibility conditions for the source term to ensure sufficiently high Sobolev-regularity of 𝑢0.

We obtained an approximation to the solution 𝑢𝜀 of the original problem, i.e., the problem with oscillating
coefficients, by making use of the 𝐻2 approximation of 𝑢0, finite element approximations to second-order deriva-
tives of the corrector functions, as well as an 𝐻2 corrector result. A method of successively approximating higher
derivatives for the approximation of corrector functions was provided and analyzed. The corrector functions are
necessary in order to obtain an approximation of 𝐷2𝑢𝜀 whereas the task of approximating 𝑢𝜀 in the 𝐻1-norm
can be achieved using only an 𝐻1 approximation of 𝑢0.

Furthermore, we generalized our results to the case of nonuniformly oscillating coefficients, i.e., we derived
an analogous corrector result and studied the approximation of the solution 𝑢0 to the homogenized problem
and the solution 𝑢𝜀 of the 𝜀-dependent problem in this case.

In the final part of the paper, we presented numerical experiments matching the theoretical results for
problems with both known and unknown 𝑢0, as well as problems with nonuniformly oscillating coefficients. We
illustrated the performance of the scheme for the approximation of the invariant measure, the solution 𝑢0 to
the homogenized problem and the solution 𝑢𝜀 to the problem involving oscillating coefficients for a fixed value
of 𝜀.

Future work will focus on weakening of the regularity assumptions on the coefficients and the approximation of
fully nonlinear nondivergence-form problems with oscillating coefficients such as the Hamilton–Jacobi–Bellman
equation.

Acknowledgements. This work was supported by the UK Engineering and Physical Sciences Research Council
[EP/L015811/1]. The authors thank the anonymous referees for their helpful comments and constructive suggestions.
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