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CONSTRUCTION AND ANALYSIS OF FOURTH ORDER, ENERGY
CONSISTENT, FAMILY OF EXPLICIT TIME DISCRETIZATIONS FOR

DISSIPATIVE LINEAR WAVE EQUATIONS

Juliette Chabassier1, Julien Diaz1 and Sébastien Imperiale2,*

Abstract. This paper deals with the construction of a family of fourth order, energy consistent, explicit
time discretizations for dissipative linear wave equations. The schemes are obtained by replacing the
inversion of a matrix, that comes naturally after using the technique of the Modified Equation on the
second order Leap Frog scheme applied to dissipative linear wave equations, by explicit approximations
of its inverse. The stability of the schemes are studied using an energy analysis and a convergence
analysis is carried out. Numerical results in 1D illustrate the space/time convergence properties of the
schemes and their efficiency is compared to more classical time discretizations.
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1. Introduction

Many imaging techniques, such as non-destructive testing, seismic probing and medical imaging, rely on the
transient simulation of linear wave equations in complex media. The question of an adapted and efficient time
discretization of the underlying Partial Differential Equation naturally arises, and turns out to be a bottleneck
in terms of computational burden. In this work, we focus on the formulation of the wave equation that involves a
second order time derivative, and we investigate the case of dissipative media. Without being exhaustive, one can
distinguish, among existing explicit methods: the Leap Frog scheme [9], Adam-Bashforths schemes [17], Explicit
Runge Kutta schemes [25], composition methods [24] or Modified Equation schemes [23] (these latter are based
on generating functions theory [19], see in particular [12] for the case of the first order wave equation system).
They exhibit different stability properties, different costs in terms of numbers of matrix/vector products and
therefore different efficiencies. On the one hand, the stability conditions of Runge Kutta or Adam Bashforth
methods are obtained by quantifying the extent of the imaginary axis which belongs to the stability region
of the method formulated at the first order in the complex plane. The associated efficiency can be defined as
the ratio between this value and the number of matrix/vector products needed by the method at each time
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Table 1. Comparison of methods efficiencies for non-dissipative media.

LF AB3 RK4 LF-Suzuki ME

Cost 1 1 4 5 2
Efficiency 1 ≈0.33 ≈0.45 ≈0.31 ≈0.85
Order 2 3 4 4 4

Notes. LF: Leap Frog, AB3: Adam Bashforth order 3, RK4: Runge Kutta order 4, LF-Suzuki: fourth order composition
method (Example 4.3 of [19]), ME: fourth-order Modified Equation scheme.

step. On the other hand, methods that preserve a discrete energy, which is consistent with the physical energy,
such as Leap Frog or the fourth order Modified Equation scheme, do exhibit explicit stability conditions based
on a CFL-condition. The efficiency of these methods can be defined in the same way. In the context of non-
dissipative media, the explicit fourth order Modified Equation turns out to be the most efficient scheme, as
shown in Table 1 where we present the efficiency of Leap-Frop, third order Adams-Bashforth, fourth order
Runge Kutta and fourth order Modified Equation.

In the presence of dissipative terms, the stability conditions of Runge Kutta or Adam Bashforth methods are
given by an implicit formula, which is not easy to fulfill a priori. Moreover, the composition method is formally
no longer fourth order accurate and its stability properties are not clear (the method involves a backward
step that increases the energy associated to the solution). The energy-consistent methods that we present here
exhibit an explicit CFL-condition. However, the direct application of the Modified Equation technique on the
dissipative wave equation does not lead to an explicit scheme (even if finite elements with mass lumping or
discontinuous Galerkin methods are used), which greatly hampers the efficiency of the method.

In this article, we aim at circumventing this difficulty. We design a family of explicit fourth order scheme, based
on the Modified Equation technique, which can account for physical attenuation in the medium while preserving
a discrete energy identity. Our schemes are based upon the use of the first terms of an adequate Neumann series,
in order to deal with the implicit part of the obtained equations. To be able to evaluate the efficiency of our
approach, we compare the obtained algorithm, first, with results obtained by the standard modified equation
scheme; second, with a fourth order time discretization using the explicit Runge–Kutta method. We show that
the solution of the modified equation is well approximated and that, in practical applications, our scheme is
roughly ten times more accurate for the same computational cost. The paper is organized as follows.

– Section 2 is dedicated to the presentation of the scheme and its formal derivation.
– In Section 3 we study the stability of the scheme by energy techniques.
– In Section 4 we provide a space-time convergence results of our schemes towards the solution obtained by

the modified equation.
– Section 5 is devoted to the presentation of one-dimensional space-time convergence results and cost efficiency

analysis.
– Appendices A and B contain proofs of Sections 3 and 4 that are not essential for the understanding of our

approach.
– Finally, in Appendix C, we provide a more dedicated stability analysis for one of the newly derived scheme.

It is done using eigenvalue analysis.

In the following, the method we develop is applied to dissipative linear wave equations in a bounded domain
Ω. An example of such equations is the following viscous acoustic wave equation, where 𝑢 : R+ × Ω → R is a
pressure, 𝑓 : R+ × Ω → R is an acoustic source and 𝑅 : Ω → R is a damping function.

𝜕2𝑢

𝜕𝑡2
+𝑅(𝑥)

𝜕𝑢

𝜕𝑡
−Δ𝑢 = 𝑓, in Ω× R+, 𝑢(0, .) = 𝑢0,

𝜕𝑢

𝜕𝑡
(0, .) = 𝑢̇0, in Ω. (1.1)
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Any smooth enough solution to (1.1) satisfies the so-called energy identity

dℰ
d𝑡

= −
∫︁

Ω

𝑅(𝑥)
(︂
𝜕𝑢

𝜕𝑡

)︂2

+
∫︁

Ω

𝑓
𝜕𝑢

𝜕𝑡
where ℰ(𝑡) =

1
2

∫︁
Ω

(︂
𝜕𝑢

𝜕𝑡

)︂2

+
1
2

∫︁
Ω

|∇𝑢|2 . (1.2)

Since we aim at designing high-order time scheme, we assume that the source term is smooth enough. Typically,
following the study presented in [5], to obtain a fourth order scheme one should have 𝑢 ∈ 𝐶6(R+;𝐿2(Ω)).
Obviously, this implies that the source term should be smooth enough, for instance, 𝑓 ∈𝑊 5,1(R+;𝐿2(Ω)), but
this implies also that other strong regularity assumptions should be satisfied by 𝑢0, 𝑢̇0 and 𝑓(0, .) in order to
ensure that

𝜕5𝑢

𝜕𝑡5
(0, .) ∈ 𝐻1(Ω),

𝜕6𝑢

𝜕𝑡6
(0, .) ∈ 𝐿2(Ω). (1.3)

If 𝑅(𝑥) = 0, then, one can show that (1.3) holds if

𝑢0 ∈ 𝐻6(Ω), 𝑢̇0 ∈ 𝐻5(Ω), 𝑓(0, .) ∈ 𝐻4(Ω). (1.4)

If 𝑅(𝑥) ̸= 0 but is smooth, e.g. 𝑅 ∈𝑊 4,∞(Ω), then (1.4) is sufficient to guaranty that (1.3) holds. If 𝑅(𝑥) is not
smooth then (1.4) is no longer sufficient since singularity in 𝑅(𝑥) should be compensated by the initial data,
typically by assuming that initial data vanish in neighborhood where 𝑅(𝑥) is not smooth. For the convergence
analysis that we present in this article we will avoid these difficulties by assuming that 𝑢̇0 = 𝑢0 = 0 and that 𝑓
also vanishes close to the initial time.

2. The explicit modified equation

This part is devoted to the introduction of a new explicit fourth order time discretization, for dissipative
linear wave equations of the form of (but not restricted to) (1.1).

In order to approach the complexity of the propagating medium and its geometry, the space discretization
is assumed to be done, for instance, with high order finite elements, based on a small parameter ℎ devoted to
tend to zero, which parametrizes a sequence of finite dimensional spaces {𝑉ℎ}ℎ. In the sequel, we identify any
element 𝑢ℎ ∈ 𝑉ℎ and its vectorial representation in a well chosen basis of 𝑉ℎ that we still call 𝑢ℎ. Once the
spatial discretization is fixed, we get a differential equation of the kind: Find 𝑢ℎ(𝑡, ·) ∈ 𝑉ℎ such that

𝑀ℎ
d2𝑢ℎ

d𝑡2
+𝐵ℎ

d𝑢ℎ

d𝑡
+𝐴ℎ𝑢ℎ = 𝑓ℎ, (2.1)

where 𝑀ℎ is the mass matrix, 𝐵ℎ the dissipation matrix and 𝐴ℎ is the stiffness matrix. We assume here that
the chosen space discretization method is such that 𝑀ℎ is easily invertible, i.e. diagonal or block diagonal. This
can be achieved for instance thanks to Finite Difference methods, Finite Element methods with mass lumping
(in particular Spectral Element methods [6–8]) or Discontinuous Galerkin Methods [18]. These types of methods
also guarantee that 𝐵ℎ is diagonal or block-diagonal as well. Moreover, we require 𝑀ℎ to be positive symmetric
and 𝐴ℎ to be non-negative symmetric. For dissipative problems, it is very likely that 𝐵ℎ is also non-negative
symmetric, but we shall not use this property until the numerical analysis.

Since 𝑀ℎ is positive symmetric, equation (2.1) can be rewritten as

d2𝑀
1
2
ℎ 𝑢ℎ

d𝑡2
+𝑀

− 1
2

ℎ 𝐵ℎ𝑀
− 1

2
ℎ

d𝑀
1
2
ℎ 𝑢ℎ

d𝑡
+𝑀

− 1
2

ℎ 𝐴ℎ𝑀
− 1

2
ℎ 𝑀

1
2
ℎ 𝑢ℎ = 𝑀

− 1
2

ℎ 𝑓ℎ. (2.2)

Obviously, matrix 𝑀− 1
2

ℎ 𝐴ℎ𝑀
− 1

2
ℎ (resp. 𝑀− 1

2
ℎ 𝐵ℎ𝑀

− 1
2

ℎ ) possesses the same properties of symmetry and of posi-

tiveness as 𝐴ℎ (resp. 𝐵ℎ). Hence, replacing 𝑀
1
2
ℎ 𝑢ℎ by 𝑢ℎ, 𝑀− 1

2
ℎ 𝑓ℎ by 𝑓ℎ, 𝑀− 1

2
ℎ 𝐵ℎ𝑀

− 1
2

ℎ by 𝐵ℎ and 𝑀− 1
2

ℎ 𝐴ℎ𝑀
− 1

2
ℎ

by 𝐴ℎ, we can consider the simpler formulation

d2𝑢ℎ

d𝑡2
+𝐵ℎ

d𝑢ℎ

d𝑡
+𝐴ℎ𝑢ℎ = 𝑓ℎ, (2.3)
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without any loss of generality.
A very robust and efficient time discretization for this equation is the centered and second order, explicit,

finite difference scheme known as the Leap-Frog scheme (see [9])

𝑢𝑛+1
ℎ − 2𝑢𝑛

ℎ + 𝑢𝑛−1
ℎ

Δ𝑡2
+𝐵ℎ

𝑢𝑛+1
ℎ − 𝑢𝑛−1

ℎ

2Δ𝑡
+𝐴ℎ𝑢

𝑛
ℎ = 𝑓𝑛

ℎ (LF)

where 𝑓𝑛
ℎ = 𝑓ℎ(𝑡𝑛) with 𝑡𝑛 = 𝑛Δ𝑡.

In order to preserve the precision obtained with high order finite elements in space, we wish to design higher
order time discretizations, while preserving some interesting mathematical properties as the dissipation of a
discrete energy and an efficiency close to the one observed for the second order scheme. More precisely, if 𝐵ℎ is
diagonal, scheme (LF) only requires the inversion of a diagonal matrix at each time step.

We propose to design these high-order time schemes thanks to the technique of the Modified Equation for
linear equations [23]. It is based on the evaluation of the truncation error of a scheme, and on the use of the
semi-discrete equation in order to replace some well chosen terms. Let us write the truncation error ℒℎ of the
scheme (LF), for the solution 𝑢ℎ to the semi-discrete equation (2.3), which is supposed as regular in time as
needed (the source term is also supposed as regular as needed)

ℒℎ =
𝑢ℎ(𝑡𝑛+1)− 2𝑢ℎ(𝑡𝑛) + 𝑢ℎ(𝑡𝑛−1)

Δ𝑡2
+𝐵ℎ

𝑢ℎ(𝑡𝑛+1)− 𝑢ℎ(𝑡𝑛−1)
2Δ𝑡

+𝐴ℎ𝑢ℎ(𝑡𝑛)− 𝑓𝑛
ℎ (2.4)

=
[︀
𝑑2

𝑡𝑢ℎ(𝑡𝑛) +𝐵ℎ𝑑𝑡𝑢ℎ(𝑡𝑛) +𝐴ℎ𝑢ℎ(𝑡𝑛)− 𝑓ℎ(𝑡𝑛)
]︀

+
Δ𝑡2

12
[︀
𝑑2

𝑡𝑓ℎ(𝑡𝑛) +𝐵ℎ𝑑
3
𝑡𝑢ℎ(𝑡𝑛)−𝐴ℎ𝑑

2
𝑡𝑢ℎ(𝑡𝑛)

]︀
+𝒪(Δ𝑡4).

The first bracket vanishes because 𝑢ℎ is solution to (2.3). The remaining terms are of order Δ𝑡2, which is the
order of the scheme. Equation (2.3) can be differentiated with respect to time once and twice, in order to replace
the terms involving derivatives of 𝑢ℎ. This gives

ℒℎ = 𝜀2ℎ(𝑢ℎ) +𝒪(Δ𝑡4) (2.5)

𝜀2ℎ(𝑢ℎ) =
Δ𝑡2

12
[︀
−𝐵2

ℎ𝑑
2
𝑡𝑢ℎ(𝑡𝑛)− (𝐵ℎ𝐴ℎ −𝐴ℎ𝐵ℎ) 𝑑𝑡𝑢ℎ(𝑡𝑛) +𝐴2

ℎ𝑢ℎ(𝑡𝑛)

+ 𝑑2
𝑡𝑓ℎ(𝑡𝑛)−𝐴ℎ𝑓ℎ(𝑡𝑛) +𝐵ℎ𝑑𝑡𝑓ℎ(𝑡𝑛)

]︀
.

Remark 2.1. This approach relates closely to the seek of a modified equation in the context of backward
error analysis for ODEs (see Chap. IX of [19]), where the numerical solution is interpreted as the sampling
of a continuous solution of a modified equation, whose coefficients are obtained using the original continuous
equation and the numerical scheme.

Out of linearity, it is possible to substract to scheme (LF) a term consistent with 𝜀2ℎ(𝑢ℎ). This approach leads
to the following scheme, fourth order accurate in time, referred to as “Modified Equation Scheme” (ME) in the
literature.

(︂
𝐼ℎ +

Δ𝑡2

12
𝐵2

ℎ

)︂
𝑢𝑛+1

ℎ − 2𝑢𝑛
ℎ + 𝑢𝑛−1

ℎ

Δ𝑡2
+
[︂
𝐵ℎ +

Δ𝑡2

12
(𝐵ℎ𝐴ℎ −𝐴ℎ𝐵ℎ)

]︂
𝑢𝑛+1

ℎ − 𝑢𝑛−1
ℎ

2Δ𝑡

+𝐴ℎ

(︂
𝐼ℎ −

Δ𝑡2

12
𝐴ℎ

)︂
𝑢𝑛

ℎ = ̂︀𝑓𝑛
ℎ (ME)

where the source term needs to be modified as follows,

̂︀𝑓𝑛
ℎ = 𝑓ℎ(𝑡𝑛) +

Δ𝑡2

12
[︀
𝑑2

𝑡𝑓ℎ(𝑡𝑛) +𝐵ℎ𝑑𝑡𝑓ℎ(𝑡𝑛)−𝐴ℎ𝑓ℎ(𝑡𝑛)
]︀
. (2.6)
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The above scheme is implicit. Indeed, it can be rewritten as(︂
𝐼ℎ +

Δ𝑡
2
𝐵ℎ +

Δ𝑡2

12
𝐵2

ℎ +
Δ𝑡3

24
(𝐵ℎ𝐴ℎ −𝐴ℎ𝐵ℎ)

)︂
𝑢𝑛+1

ℎ − 𝑢𝑛−1
ℎ

Δ𝑡2
= ̂︀𝑓𝑛

ℎ −𝐴ℎ

(︂
𝐼ℎ −

Δ𝑡2

12
𝐴ℎ

)︂
𝑢𝑛

ℎ

+ 2
(︂
𝐼ℎ +

Δ𝑡2

12
𝐵2

ℎ

)︂
𝑢𝑛

ℎ − 𝑢𝑛−1
ℎ

Δ𝑡2
· (2.7)

Even if 𝐵ℎ is diagonal, 𝐴ℎ and 𝐵ℎ do not commute in general, unless the eigen sub-spaces of 𝐵ℎ are invariant
by 𝐴ℎ, which is a strong condition on 𝐴ℎ, generally not satisfied. Therefore, the matrix to invert,

𝐼ℎ +
Δ𝑡
2
𝐵ℎ +

Δ𝑡2

12
𝐵2

ℎ +
Δ𝑡3

24
(𝐵ℎ𝐴ℎ −𝐴ℎ𝐵ℎ) , (2.8)

is not diagonal, nor even block diagonal, hence the resulting scheme is implicit. Of course, a natural method
would be to use an iterative solver to inverse this non-symmetric matrix. Such solvers rely on an arbitrary
stopping criterion, related to some norm of some residual, that allows to stop the algorithm after at a finite
number of iterations. Eventually, the algorithm provides an approximate solution that depends non linearly on
the solution to the linear problem, which makes it difficult to analyze mathematically.

To deepen the mathematical analysis, the main idea of this paper is to approximate the inverse of the matrix
(2.8) by a truncated Neumann series. The resulting algorithm will require a given number of matrix-vector
multiplications, which leads to an explicit algorithm, and can be seen as a linear version of an iterative inversion
process with an a priori given number of iterations. The main difficulty will be to prove that this approach does
not deteriorate the consistency and stability properties of the resulted scheme.

Let us introduce ̃︁𝑀ℎ = 𝐼ℎ +
Δ𝑡
2
𝐵ℎ +

Δ𝑡2

12
𝐵2

ℎ and 𝐶ℎ = 𝐵ℎ𝐴ℎ −𝐴ℎ𝐵ℎ, (2.9)

such that we have

𝐼ℎ +
Δ𝑡
2
𝐵ℎ +

Δ𝑡2

12
𝐵2

ℎ +
Δ𝑡3

24
(𝐵ℎ𝐴ℎ −𝐴ℎ𝐵ℎ) = ̃︁𝑀ℎ +

Δ𝑡3

24
𝐶ℎ. (2.10)

Denoting ‖ · ‖2 the induced euclidian matrix norm, we assume that Δ𝑡3||̃︁𝑀−1
ℎ 𝐶ℎ||2 < 24 for Δ𝑡 small enough

(a rigorous formalization of this statement will be done in the next section of the article), the matrix ̃︁𝑀ℎ +
Δ𝑡3𝐶ℎ/24 is invertible, and its inverse can be written using a special case of the Binomial inverse theorem (that
generalizes the Woodbury matrix identity),(︂̃︁𝑀ℎ +

Δ𝑡3

24
𝐶ℎ

)︂−1

=
+∞∑︁
𝑘=0

(︂
−Δ𝑡3

24
̃︁𝑀−1

ℎ 𝐶ℎ

)︂𝑘 ̃︁𝑀−1
ℎ . (2.11)

The identity above can also be proven using the expression of the inverse of perturbations of the identity by
a Neumann series. Note that, since ̃︁𝑀ℎ is diagonal or block diagonal, its inverse satisfies the same property.
Therefore, truncating the series up to order 𝑀 , defines a family of “Explicit Modified Equation schemes”
(EME-M) that are given by

𝑢𝑛+1
ℎ = 𝑢𝑛−1

ℎ +
𝑀∑︁

𝑘=0

(︂
−Δ𝑡3

24
̃︁𝑀−1

ℎ 𝐶ℎ

)︂𝑘

× ̃︁𝑀−1
ℎ

[︂
Δ𝑡2

(︂̂︀𝑓𝑛
ℎ −𝐴ℎ

(︂
𝐼ℎ −

Δ𝑡2

12
𝐴ℎ

)︂
𝑢𝑛

ℎ

)︂
+ 2

(︂
𝐼ℎ +

Δ𝑡2

12
𝐵2

ℎ

)︂
(𝑢𝑛

ℎ − 𝑢𝑛−1
ℎ )

]︂
. (EME-M)
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3. Stability analysis

Intuitively, the higher 𝑀 is, the more accurate the scheme should be, but the higher the computational cost is.
A compromise must therefore be found and another criterion for us is the possibility to conduct a mathematical
analysis for stability and convergence. For this purpose we perform the following assumption throughout the
paper unless specified.

Assumption 3.1. The matrix 𝐴ℎ is positive definite and the matrix 𝐵ℎ is symmetric, non-negative.

Wave equations analysis partially relies on the derivation of an energy identity that shows how the energy,
which is generally a semi-norm for the solution, varies in time. It is somewhat natural, in terms of consistency,
to construct a discretization that preserves a consistent version of this energy identity. It turns out that the
discrete energy identity also provides a so-called CFL condition on the discretization stability, but is also a tool
to show the space-time convergence of the fully discrete scheme. In our case, since 𝐵ℎ is assumed symmetric,
the symmetry of 𝐴ℎ implies that 𝐶ℎ = 𝐵ℎ𝐴ℎ −𝐴ℎ𝐵ℎ is skew-symmetric, hence, it is possible to show that the
classical implicit fourth order centered scheme (ME) satisfies the following energy relation, in the absence of
source.

ℰ𝑛+1/2
ℎ − ℰ𝑛−1/2

ℎ

Δ𝑡
= −𝐵ℎ

𝑢𝑛+1
ℎ − 𝑢𝑛−1

ℎ

2Δ𝑡
·
𝑢𝑛+1

ℎ − 𝑢𝑛−1
ℎ

2Δ𝑡
, (3.1)

where

ℰ𝑛+1/2
ℎ =

1
2

(︂
𝐼ℎ +

Δ𝑡2

12
𝐵2

ℎ −
Δ𝑡2

4
𝐴ℎ

[︂
𝐼ℎ −

Δ𝑡2

24
𝐴ℎ

]︂)︂
𝑢𝑛+1

ℎ − 𝑢𝑛
ℎ

Δ𝑡
·
𝑢𝑛+1

ℎ − 𝑢𝑛
ℎ

Δ𝑡

+
1
2
𝐴ℎ

(︂
𝐼ℎ −

Δ𝑡2

12
𝐴ℎ

)︂
𝑢𝑛+1

ℎ + 𝑢𝑛
ℎ

2
·
𝑢𝑛+1

ℎ + 𝑢𝑛
ℎ

2
· (3.2)

The energy terms ℰ𝑛+1/2
ℎ are positive as soon as the CFL condition is satisfied, which is given in this case (the

Modified Equation, see [4])

𝛼 := Δ𝑡
(︂
‖𝐴ℎ‖2

12

)︂ 1
2

=
Δ𝑡√
12
‖𝐴

1
2
ℎ ‖2, 𝛼 ≤ 1. (3.3)

Since 𝐵ℎ is non-negative, the right-hand-side of equation (3.1) is non-positive and the energy ℰ𝑛+1/2
ℎ decays

with 𝑛. The stability of the scheme in 𝐿2 norm can be deduced (see [5]) from the decay of the energy, which is
not necessarily a norm for the solution.

We prove in the next section that the schemes (EME-M) ensure a discrete energy relation of the form

ℰ𝑛+1/2
ℎ − ℰ𝑛−1/2

ℎ

Δ𝑡
= −𝐵ℎ,𝑀

𝑢𝑛+1
ℎ − 𝑢𝑛−1

ℎ

2Δ𝑡
·
𝑢𝑛+1

ℎ − 𝑢𝑛−1
ℎ

2Δ𝑡
(3.4)

where ℰ𝑛+1/2
ℎ is defined as in (3.2) and is therefore positive with the same CFL condition as for the standard

modified equation scheme (ME). In the following, we focus on the first four schemes which present the following
properties:

– (EME-0). This is the lowest order of approximation, its cost is close to twice the cost of the Leap-Frog
scheme and 𝐵ℎ,0 = 𝐵ℎ. Therefore the discrete energy is dissipated.

– (EME-1). In that case, we will show that the scheme is a fourth order scheme under some conditions on the
matrices 𝐵ℎ and 𝐴ℎ. We will show that 𝐵ℎ,1 has no sign so that exponential blow up may appear. We will
prove that these blow-ups, which are illustrated numerically in Appendix C, are of the form exp (𝑡 𝐶Δ𝑡)
with 𝐶 > 0 independent of ℎ and Δ𝑡 and are therefore not observable on usual time scales.

– (EME-2). A similar behavior to the one of scheme (EME-1) can be observed except that fourth order
convergence may be obtained in more situations and the exponential stability estimate is more favorable.
We will not study this scheme in detail here.



CONSERVATIVE DISCRETISATION FOR DISSIPATIVE WAVE EQUATIONS 851

– (EME-3). This scheme provides all the good properties one can expect: it has the maximum order of accuracy
and is dissipative. Among the schemes we analyze, it is however the most expensive in terms of computational
cost, yet its efficiency is better than the RK4 scheme.

Remark 3.2. Because of Assumption 3.1, the matrix ̃︁𝑀ℎ defined by

̃︁𝑀ℎ = 𝐼ℎ +
Δ𝑡
2
𝐵ℎ +

Δ𝑡2

12
𝐵2

ℎ

is symmetric and invertible, and its inverse is sparse (diagonal or block diagonal). Moreover, ̃︁𝑀ℎ is a positive
symmetric perturbation of the identity and therefore ‖̃︁𝑀−1

ℎ ‖2 ≤ 1 and ‖̃︁𝑀−1/2
ℎ ‖2 ≤ 1. We also have

‖̃︁𝑀ℎ‖2 ≤ 1 +
Δ𝑡 ‖𝐵ℎ‖2

2
+

Δ𝑡2 ‖𝐵ℎ‖22
12

·

3.1. Energy relation

In order to prove that the Explicit Modified Equation (EME-M) schemes described above ensure an energy
relation, we want to rewrite them similarly to the modified equation scheme (ME). One way to obtain such a
centered formulation is to compute the inverse of[︃

𝑀∑︁
𝑘=0

(︂
−Δ𝑡3

24
̃︁𝑀−1

ℎ 𝐶ℎ

)︂𝑘
]︃ ̃︁𝑀−1

ℎ . (3.5)

Notice that, if

𝛽 < 1 with 𝛽 :=
Δ𝑡3

24
‖̃︁𝑀−1

ℎ 𝐶ℎ‖2, (3.6)

then the inverse of the matrix given in (3.5) can be expressed thanks to a Neumann series. This motivates us
to introduce a second time step restriction.

Theorem 3.3. Assume that 𝛼 ≤ 1 and 𝛽 < 1. Then, for 𝑀 ∈ {0, 1, 3}, the scheme (EME-M) is equivalent to(︂
𝐼ℎ +

Δ𝑡2

12
𝐵2

ℎ

)︂
𝑢𝑛+1

ℎ − 2𝑢𝑛
ℎ + 𝑢𝑛−1

ℎ

Δ𝑡2
+
[︂
𝐵ℎ,𝑀 +

Δ𝑡2

12
𝐶ℎ,𝑀

]︂
𝑢𝑛+1

ℎ − 𝑢𝑛−1
ℎ

2Δ𝑡

+𝐴ℎ

(︂
𝐼ℎ −

Δ𝑡2

12
𝐴ℎ

)︂
𝑢𝑛

ℎ = ̂︀𝑓𝑛
ℎ , (3.7)

where ⎧⎪⎪⎨⎪⎪⎩
𝐵ℎ,0 = 𝐵ℎ, 𝐶ℎ,0 = 0.

𝐵ℎ,1 = 𝐵ℎ + Δ𝑡2

12

∑︀+∞
𝑘=0

(︁
Δ𝑡3

24

)︁2𝑘+1 (︁
𝐶ℎ
̃︁𝑀−1

ℎ

)︁2𝑘+1

𝐶ℎ, 𝐶ℎ,1 =
∑︀+∞

𝑘=0

(︁
Δ𝑡3

24

)︁2𝑘 (︁
𝐶ℎ
̃︁𝑀−1

ℎ

)︁2𝑘

𝐶ℎ.

𝐵ℎ,3 = 𝐵ℎ + Δ𝑡2

12

∑︀+∞
𝑘=0

(︁
Δ𝑡3

24

)︁4𝑘+3 (︁
𝐶ℎ
̃︁𝑀−1

ℎ

)︁4𝑘+3

𝐶ℎ, 𝐶ℎ,3 =
∑︀+∞

𝑘=0

(︁
Δ𝑡3

24

)︁4𝑘 (︁
𝐶ℎ
̃︁𝑀−1

ℎ

)︁4𝑘

𝐶ℎ.

Proof. Algorithm (EME-M) can be rewritten as

̃︁𝑀ℎ

[︃
𝑀∑︁

𝑘=0

(︂
−Δ𝑡3

24
̃︁𝑀−1

ℎ 𝐶ℎ

)︂𝑘
]︃−1

𝑢𝑛+1
ℎ − 𝑢𝑛−1

ℎ

Δ𝑡2
− 2

(︂
𝐼ℎ +

Δ𝑡2

12
𝐵2

ℎ

)︂
𝑢𝑛

ℎ − 𝑢𝑛−1
ℎ

Δ𝑡2

+𝐴ℎ

(︂
𝐼ℎ −

Δ𝑡2

12
𝐴ℎ

)︂
𝑢𝑛

ℎ = ̂︀𝑓𝑛
ℎ .
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Then, writing

̃︁𝑀ℎ

[︃
𝑀∑︁

𝑘=0

(︂
−Δ𝑡3

24
̃︁𝑀−1

ℎ 𝐶ℎ

)︂𝑘
]︃−1

= 𝐼ℎ +
Δ𝑡2

12
𝐵2

ℎ +𝑋ℎ,𝑀

with

𝑋ℎ,𝑀 := ̃︁𝑀ℎ

[︃
𝑀∑︁

𝑘=0

(︂
−Δ𝑡3

24
̃︁𝑀−1

ℎ 𝐶ℎ

)︂𝑘
]︃−1

− 𝐼ℎ −
Δ𝑡2

12
𝐵2

ℎ,

algorithm (EME-M) is actually equivalent to(︂
𝐼ℎ +

Δ𝑡2

12
𝐵2

ℎ

)︂
𝑢𝑛+1

ℎ − 2𝑢𝑛
ℎ + 𝑢𝑛−1

ℎ

Δ𝑡2
+𝑋ℎ,𝑀

𝑢𝑛+1
ℎ − 𝑢𝑛−1

ℎ

2Δ𝑡
+𝐴ℎ

(︂
𝐼ℎ −

Δ𝑡2

12
𝐴ℎ

)︂
𝑢𝑛

ℎ = ̂︀𝑓𝑛
ℎ . (3.8)

Let us now consider the different cases 𝑀 = 0, 1 and 3.
− When 𝑀 = 0, we have

𝑋ℎ,0 =
2

Δ𝑡

(︂̃︁𝑀ℎ − 𝐼ℎ −
Δ𝑡2

12
𝐵2

ℎ

)︂
= 𝐵ℎ,

which implies 𝐵ℎ,0 = 𝐵ℎ and 𝐶ℎ,0 = 0.
− For 𝑀 = 1 one can show, since[︃

1∑︁
𝑘=0

(︂
−Δ𝑡3

24
̃︁𝑀−1

ℎ 𝐶ℎ

)︂𝑘
]︃−1

=
[︂
𝐼ℎ −

Δ𝑡3

24
̃︁𝑀−1

ℎ 𝐶ℎ

]︂−1

=
𝑀∑︁

𝑘=0

(︂
Δ𝑡3

24
̃︁𝑀−1

ℎ 𝐶ℎ

)︂𝑘

that

𝑋ℎ,1 = 𝐵ℎ +
Δ𝑡2

12
𝐶ℎ +

2
Δ𝑡
̃︁𝑀ℎ

+∞∑︁
𝑘=2

(︂
Δ𝑡3

24
̃︁𝑀−1

ℎ 𝐶ℎ

)︂𝑘

,

from which we deduce the expression of 𝐵ℎ,1 and 𝐶ℎ,1 given by in the theorem’s statement by identifying
skew-symmetric and symmetric part in the above matrix.
− For the case 𝑀 = 3, we will use the property that, for any matrix 𝐷ℎ such that ‖𝐷ℎ‖2 < 1, we have[︀

𝐼ℎ −𝐷ℎ +𝐷2
ℎ −𝐷3

ℎ

]︀−1 =
[︀
(𝐼ℎ −𝐷ℎ)(𝐼ℎ +𝐷2

ℎ)
]︀−1 = (𝐼ℎ +𝐷2

ℎ)−1(𝐼ℎ −𝐷ℎ)−1

= (𝐼ℎ +𝐷2
ℎ)−1(𝐼ℎ −𝐷ℎ)−1(𝐼ℎ +𝐷ℎ)−1(𝐼ℎ +𝐷ℎ) = (𝐼ℎ −𝐷4

ℎ)−1(𝐼ℎ +𝐷ℎ)

therefore [︀
𝐼ℎ −𝐷ℎ +𝐷2

ℎ −𝐷3
ℎ

]︀−1 =

(︃
+∞∑︁
𝑘=0

𝐷4𝑘
ℎ

)︃
(𝐼ℎ +𝐷ℎ). (3.9)

Using (3.9) with 𝐷ℎ = Δ𝑡3̃︁𝑀−1
ℎ 𝐶ℎ/24 one can show that

𝑋ℎ,3 = 𝐵ℎ +
Δ𝑡2

12
𝐶ℎ +

2
Δ𝑡

(︂̃︁𝑀ℎ +
Δ𝑡3

24
𝐶ℎ

)︂ +∞∑︁
𝑘=1

(︂
Δ𝑡3

24
̃︁𝑀−1

ℎ 𝐶ℎ

)︂4𝑘

,

we obtain the last result of the theorem by identifying symmetric and skew-symmetric part of the above
matrix. �

Remark 3.4. Notice that (3.7) can be seen as a Leap-Frog scheme applied to the perturbed continuous problem(︂
𝐼ℎ +

Δ𝑡2

12
𝐵2

ℎ

)︂
d2𝑢ℎ

d𝑡2
+
[︂
𝐵ℎ,𝑀 +

Δ𝑡2

12
𝐶ℎ,𝑀

]︂
d𝑢ℎ

d𝑡
+𝐴ℎ

(︂
𝐼ℎ −

Δ𝑡2

12
𝐴ℎ

)︂
𝑢ℎ = ̂︀𝑓𝑛

ℎ , (3.10)

where some of the original matrices have been corrected with infinite series. This can be related again to the
modified equation in the context of backward error analysis for ODEs (see Chap. IX of [19]), where the modified
equation is expressed as an infinite series.
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3.2. Stability

This section is devoted to the stability analysis of the modified equations schemes. We first give an energy
estimate for a large class of schemes before applying it to the specific case of the (ME) and (EME-M) schemes.

3.2.1. General results

To continue the analysis, we need an intermediate result showing that the energy norm is a semi-norm for the
solution. Such a result is inspired from [5]. We recall here the statement and give a sketch of the proof for the
sake of completeness.

Proposition 3.5. If the CFL condition (3.3) is satisfied, then the functional ℰ𝑛+1/2
ℎ defined by (3.2) satisfies

1
4

⃦⃦⃦⃦
𝑢𝑛+1

ℎ − 𝑢𝑛
ℎ

Δ𝑡

⃦⃦⃦⃦2

2

+ (1− 𝛼2)
⃦⃦⃦⃦
𝐴

1
2
ℎ

𝑢𝑛+1
ℎ + 𝑢𝑛

ℎ

2

⃦⃦⃦⃦2

2

≤ 2 ℰ𝑛+1/2
ℎ ,

Proof. If the CFL condition (3.3) is satisfied, then, recalling that 𝐴ℎ is symmetric.

0 ≤ 𝐴ℎ(1− 𝛼2) ≤ 𝐴ℎ

(︂
𝐼ℎ −

Δ𝑡2

12
𝐴ℎ

)︂
.

Moreover, from Assumption 3.1, 𝐵ℎ is symmetric and non-negative and we have, by inspection of (3.2),(︂
𝐼ℎ −

Δ𝑡2

4
𝐴ℎ +

Δ𝑡4

48
𝐴2

ℎ

)︂
𝑢𝑛+1

ℎ − 𝑢𝑛
ℎ

Δ𝑡
·
𝑢𝑛+1

ℎ − 𝑢𝑛
ℎ

Δ𝑡
+𝐴ℎ

(︀
1− 𝛼2

)︀ 𝑢𝑛+1
ℎ + 𝑢𝑛

ℎ

2
·
𝑢𝑛+1

ℎ + 𝑢𝑛
ℎ

2
≤ 2 ℰ𝑛+1/2

ℎ .

Since the minimum of the positive polynomial 1− 𝑥/4 + 𝑥2/48 is reached at 𝑥 = 6 and is equal to 1/4, we get
the desired result. �

We address now one of the main results of this paper, which establishes a general stability result for schemes
of the following form: for 1 ≤ 𝑛 ≤ 𝑁(︂

𝐼ℎ +
Δ𝑡2

12
𝐵2

ℎ

)︂
𝑢𝑛+1

ℎ − 2𝑢𝑛
ℎ + 𝑢𝑛−1

ℎ

Δ𝑡2
+
[︁ ̃︀𝐵ℎ + ̃︀𝐶ℎ

]︁ 𝑢𝑛+1
ℎ − 𝑢𝑛−1

ℎ

2Δ𝑡

+𝐴ℎ

(︂
𝐼ℎ −

Δ𝑡2

12
𝐴ℎ

)︂
𝑢𝑛

ℎ = 𝑓𝑛
ℎ +𝐴

1
2
ℎ 𝑔

𝑛
ℎ , (3.11)

where ̃︀𝐵ℎ and ̃︀𝐶ℎ are respectively symmetric and skew-symmetric matrices that may depend on Δ𝑡. The stability
analysis of the generic scheme (3.11) is a preliminary step, not only to the stability proof of schemes (ME) and
(EME-M) that we perform in the next paragraph, but also to the convergence analysis that we detail in the
next section and which will give appropriate values to 𝑓𝑛

ℎ and 𝑔𝑛
ℎ . One can show the following theorem (whose

proof is postponed in Appendix A).

Theorem 3.6. Assume that (4.1) holds, that 𝛼 < 1 and that there exists 0 ≤ 𝑐𝐵 < 1/(4 Δ𝑡) such that for all
𝑣ℎ, we have ̃︀𝐵ℎ 𝑣ℎ · 𝑣ℎ ≥ −𝑐𝐵‖𝑣ℎ‖22, (3.12)

then solutions of (3.11) satisfies the following energy estimate, for all 1 ≤ 𝑛 ≤ 𝑁 ,√︁
ℰ𝑛+1/2

ℎ ≤ 𝐶Δ𝑡
𝑁∑︁

𝑘=1

(︃
10
⃦⃦⃦
𝑓𝑘

ℎ

⃦⃦⃦
2

+
1− 𝛾−1

Δ𝑡
√

1− 𝛼2

⃦⃦
𝑔𝑘

ℎ

⃦⃦
2

+
1√

1− 𝛼2

⃦⃦⃦⃦
⃦𝑔𝑘

ℎ − 𝑔𝑘−1
ℎ

Δ𝑡

⃦⃦⃦⃦
⃦

2

)︃

+
𝐶√

1− 𝛼2
sup

𝑘∈[1,𝑁 ]

⃦⃦
𝑔𝑘

ℎ

⃦⃦
2
+𝐶

√︁
ℰ1/2

ℎ ,
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where the positive scalar 𝐶 is given by
𝐶 = 2

√
2 𝛾 𝑒𝑁(𝛾−1) (3.13)

and where the amplification factor 𝛾 ≥ 1 is defined by

𝛾 :=
1 + 4 Δ𝑡 𝑐𝐵
1− 4 Δ𝑡 𝑐𝐵

·

3.2.2. Stability of the schemes (ME) and (EME-M)

In this section, we specify how Theorem 3.6 can be used to study the scheme (ME) and each scheme (EME-M),
𝑀 ∈ {0, 1, 3}. We first state Proposition 3.7 that gives the value of 𝑐𝐵 of equation (3.12) for (ME), and (EME-M)
with 𝑀 = 0 or 𝑀 = 3. In particular it is shown that 𝑐𝐵 = 0, so that no exponential growth occurs in the
stability estimates for schemes (ME), (EME-0) and (EME-3). This is not the case for the scheme (EME-1), for
which we establish Proposition 3.8 (a proof of which can be found in Appendix A) giving the value of 𝑐𝐵 in
that particular case.

Proposition 3.7. For all 𝑣ℎ ∈ 𝑉ℎ, 𝐵ℎ,0 𝑣ℎ · 𝑣ℎ ≥ 0. Moreover if 𝛼 ≤ 1 and 𝛽 < 1, then 𝐵ℎ,3 𝑣ℎ · 𝑣ℎ ≥ 0.
Therefore, Theorem 3.6 can be applied for (ME), (EME-1) and (EME-3) with 𝑐𝐵 ≡ 0.

Proof. The first statement comes from the non-negativity of 𝐵ℎ,0 = 𝐵ℎ. The second statement comes from
the expression of 𝐵ℎ,3 given by Theorem 3.3. Indeed, since 𝐶ℎ is skew symmetric, each term of the series is
non-negative: (︁

𝐶ℎ
̃︁𝑀−1

ℎ

)︁4𝑘+3

𝐶ℎ 𝑣ℎ · 𝑣ℎ ≥ 0.

�

Proposition 3.8. If 𝛼 ≤ 1 and 𝛽 < 1, then for all 𝑣ℎ ∈ 𝑉ℎ,

𝐵ℎ,1 𝑣ℎ · 𝑣ℎ ≥ 𝐵ℎ 𝑣ℎ · 𝑣ℎ −
2𝛽2

Δ𝑡
̃︁𝑀ℎ 𝑣ℎ · 𝑣ℎ ≥ −

4𝛽2

Δ𝑡
‖𝑣ℎ‖22. (3.14)

The result of Proposition 3.8 may seem not sharp enough since, in regards of the stability estimate given in
Theorem 3.6, an exponential growth of the energy may occur. The exponential factor is of the form

𝑒𝑁(𝛾−1) with 𝛾 − 1 =
8 Δ𝑡 𝑐𝐵

1− 4 Δ𝑡 𝑐𝐵
and so 𝑐𝐵 =

4𝛽2

Δ𝑡
· (3.15)

We will see however, in the applications we consider, that 𝛽 is proportional to Δ𝑡 and therefore, for Δ𝑡 small
enough we have 𝑐𝐵 < 1/(4Δ𝑡), which is a necessary condition to apply Theorem 3.6. Thus,

𝛾 − 1 ∼
Δ𝑡→0

Δ𝑡2,

meaning that, if 𝑇 = 𝑁Δ𝑡 is the final time of simulation, the exponential growth is of the form exp(𝐶 𝑇Δ𝑡),
with 𝐶 a positive scalar independent of Δ𝑡), so that the scheme can still be qualified as convergent and stable. In
Appendix C we show that estimate (3.14) is not optimal in specific situations. However, we illustrate numerically
in Appendix C that an exponential growth may indeed occur for some discretization parameters.

4. Convergence analysis

In this section we treat “partially” the space and time convergence analysis of our scheme. By partially,
we mean that we only prove a space and time convergence result of the solutions of explicit modified equation
schemes (EME-M) towards the solutions of the modified equation (ME). We first give an abstract error estimate
before tackling the particular case of the wave equation. To simplify the presentation, we restrict ourselves to
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the case of zero initial data and we assume that the source terms 𝑓𝑛
ℎ and 𝑔𝑛

ℎ are approximations of smooth
functions of time compactly supported in (0, 𝑇 ) (hence 𝑓0

ℎ = 0 and 𝑔0
ℎ = 0) and therefore we set

𝑢0
ℎ = 𝑢1

ℎ = 0. (4.1)

4.1. Abstract error estimate

We consider now a family of problems parametrized by a family of positive numbers ℎ that converge to 0,
meaning that we consider a family of matrices {𝐴ℎ} and {𝐵ℎ} that may act on larger and larger spaces as ℎ
goes to zero. We assume that the time step is given by the CFL condition (3.3). More precisely we assume 𝛼 < 1
fixed and set

Δ𝑡 :=
(︂

12𝛼
‖𝐴ℎ‖2

)︂ 1
2

.

With the above equality, the time step Δ𝑡 can be seen as a function of ℎ. Indeed, in the cases we want to
consider, 𝐴ℎ approximates an unbounded operator and ‖𝐴ℎ‖2 blows up when ℎ goes to 0, which implies that
Δ𝑡 goes to 0. Therefore, the space time convergence can be studied be letting ℎ tend to 0. Now we denote by
{𝑢𝑛

ℎ} the sequence of iterates obtained by solving the modified equation scheme (ME) and {𝑢𝑛
ℎ,𝑀} the sequence

of iterates obtained by solving (EME-M), formulated as in (3.7), and we define

𝑒𝑛
ℎ,𝑀 := 𝑢𝑛

ℎ − 𝑢𝑛
ℎ,𝑀 .

Our objective is to show that 𝑒𝑛
ℎ,𝑀 goes to 0 for a given ℎ−dependent norm when ℎ goes to 0. By simple

computations, one can show that the error term 𝑒𝑛
ℎ,𝑀 satisfies the explicit modified equation scheme (EME-M)

with source term depending on 𝑢𝑛
ℎ. More precisely, we have, for 1 ≤ 𝑛 ≤ 𝑁 ,(︂

𝐼ℎ +
Δ𝑡2

12
𝐵2

ℎ

)︂
𝑒𝑛+1
ℎ,𝑀 − 2𝑒𝑛

ℎ,𝑀 + 𝑒𝑛−1
ℎ,𝑀

Δ𝑡2
+
[︂
𝐵ℎ,𝑀 +

Δ𝑡2

12
𝐶ℎ,𝑀

]︂
𝑒𝑛+1
ℎ,𝑀 − 𝑒𝑛−1

ℎ,𝑀

2Δ𝑡

+𝐴ℎ

(︂
𝐼ℎ −

Δ𝑡2

12
𝐴ℎ

)︂
𝑒𝑛
ℎ,𝑀 = 𝐷ℎ,𝑀

𝑢𝑛+1
ℎ − 𝑢𝑛−1

ℎ

2Δ𝑡
, (4.2)

with

𝐷ℎ,𝑀 = 𝐵ℎ,𝑀 −𝐵ℎ +
Δ𝑡2

12
(𝐶ℎ,𝑀 − 𝐶ℎ).

Applying Theorem 3.3, we find

𝐷ℎ,0 = −Δ𝑡2

12
𝐶ℎ, (4.3)

and, for 𝑀 = 1 or 𝑀 = 3,

𝐷ℎ,𝑀 =
Δ𝑡2

12

∑︁
𝑘∈𝒩𝑀

(︂
Δ𝑡3

24

)︂𝑘 (︁
𝐶ℎ
̃︁𝑀−1

ℎ

)︁𝑘

𝐶ℎ, (4.4)

with
𝒩1 = N*, 𝒩3 = {4𝑘 − 1 | 𝑘 ∈ N*} ∪ {4𝑘 | 𝑘 ∈ N*}.

To continue the analysis, a simple way to proceed would be to apply Theorem 3.6 with

𝑓𝑛
ℎ = 𝐷ℎ,𝑀

𝑢𝑛+1
ℎ − 𝑢𝑛−1

ℎ

2Δ𝑡
and 𝑔𝑛

ℎ = 0. (4.5)

It is easy to obtain an estimation of (𝑢𝑛+1
ℎ − 𝑢𝑛−1

ℎ )/2Δ𝑡 using the stability of the (ME). However, if the function
𝑅(𝑥) is discontinuous, which happens frequently in the context of weve propagation, the term ‖𝐷ℎ,𝑀‖2 goes to
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0 as ℎ𝑀 . This behavior will be illustrated numerically in the next section. Hence, even with 𝑀 = 3, we will not
be able to prove the fourth order convergence of the scheme. An alternative is to write the right hand side of
(4.2) as

𝐷ℎ,𝑀
𝑢𝑛+1

ℎ − 𝑢𝑛−1
ℎ

2Δ𝑡
= 𝐴

1
2
ℎ 𝑔

𝑛
ℎ with 𝑔𝑛

ℎ =
(︁
𝐴
− 1

2
ℎ 𝐷ℎ,𝑀𝐴

− 1
2

ℎ

)︁(︂
𝐴

1
2
ℎ

𝑢𝑛+1
ℎ − 𝑢𝑛−1

ℎ

2Δ𝑡

)︂
, 𝑔0

ℎ = 0. (4.6)

and to apply Theorem 3.6 with 𝑔𝑛 given above and 𝑓𝑛 = 0. For this, by inspection of the estimation of
Theorem 3.6 we need to estimate

𝐴
− 1

2
ℎ 𝐷ℎ,𝑀𝐴

− 1
2

ℎ , 𝑞𝑛
ℎ := 𝐴

1
2
ℎ

𝑢𝑛+1
ℎ − 𝑢𝑛−1

ℎ

2Δ𝑡
and

𝑞𝑛
ℎ − 𝑞𝑛−1

ℎ

Δ𝑡
= 𝐴

1
2
ℎ

𝑢𝑛+1
ℎ − 𝑢𝑛

ℎ − 𝑢𝑛−1
ℎ + 𝑢𝑛−2

ℎ

2Δ𝑡2
· (4.7)

The next three lemmas aim at estimating these 3 terms successively.

Lemma 4.1. Assume that 𝛽 < 1 and 𝑀 = 1 or 𝑀 = 3. Then, we have,

‖𝐴−
1
2

ℎ 𝐷ℎ,𝑀𝐴
− 1

2
ℎ ‖2 ≤

Δ𝑡5

288
𝛽𝑀−1

1− 𝛽
‖𝐶ℎ𝐴

− 1
2

ℎ ‖22.

Note that the above lemma gives an estimation of 𝐴−
1
2

ℎ 𝐷ℎ,𝑀𝐴
− 1

2
ℎ (for 𝑀 = 1 or 𝑀 = 3) in terms of 𝐶ℎ𝐴

− 1
2

ℎ .
We explain in Section 4.2 why we expect that this operator, in the case of the wave equation, has good behavior
as ℎ goes to 0. We illustrate this numerically in Section 5.1.

Proof. Observe that, by definition of 𝐷ℎ,𝑀 given by (4.4), we have

12
Δ𝑡2

𝐴
− 1

2
ℎ 𝐷ℎ,𝑀𝐴

− 1
2

ℎ = 𝐴
− 1

2
ℎ

(︃ ∑︁
𝑘∈𝒩𝑀

(︂
Δ𝑡3

24

)︂𝑘 (︁
𝐶ℎ
̃︁𝑀−1

ℎ

)︁𝑘

𝐶ℎ

)︃
𝐴
− 1

2
ℎ

=
Δ𝑡3

24
𝐴
− 1

2
ℎ 𝐶ℎ

̃︁𝑀− 1
2

ℎ

(︃ ∑︁
𝑘+1∈𝒩𝑀

(︂
Δ𝑡3

24

)︂𝑘 (︁̃︁𝑀− 1
2

ℎ 𝐶ℎ
̃︁𝑀− 1

2
ℎ

)︁𝑘
)︃ ̃︁𝑀− 1

2
ℎ 𝐶ℎ𝐴

− 1
2

ℎ .

One can show that⃦⃦⃦⃦
⃦ ∑︁

𝑘+1∈𝒩𝑀

(︂
Δ𝑡3

24

)︂𝑘 (︁̃︁𝑀− 1
2

ℎ 𝐶ℎ
̃︁𝑀− 1

2
ℎ

)︁𝑘
⃦⃦⃦⃦
⃦

2

≤
+∞∑︁

𝑘=𝑀−1

(︂
Δ𝑡3

24

)︂𝑘

‖𝐶ℎ‖𝑘
2 ≤

+∞∑︁
𝑘=𝑀−1

𝛽𝑘 =
𝛽𝑀−1

1− 𝛽
·

We deduce that

‖𝐴−
1
2

ℎ 𝐷ℎ,𝑀𝐴
− 1

2
ℎ ‖2 ≤

Δ𝑡5

288
𝛽𝑀−1

1− 𝛽
‖𝐴−

1
2

ℎ 𝐶ℎ
̃︁𝑀− 1

2
ℎ ‖2 ‖̃︁𝑀− 1

2
ℎ 𝐶ℎ𝐴

− 1
2

ℎ ‖2

≤ Δ𝑡5

288
𝛽𝑀−1

1− 𝛽
‖𝐴−

1
2

ℎ 𝐶ℎ‖2 ‖𝐶ℎ𝐴
− 1

2
ℎ ‖2.

Finally, since ‖𝐴−
1
2

ℎ 𝐶ℎ‖2 = ‖(𝐴−
1
2

ℎ 𝐶ℎ)𝑇 ‖2 = ‖𝐶ℎ𝐴
− 1

2
ℎ ‖2 we obtain the result of the lemma. �

We give below standard result on the stability of the scheme (ME). The proof of the lemma below is given
in Appendix B for the sake of completeness.
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Lemma 4.2. Let 𝑢𝑛
ℎ be the solution of (ME) with 𝛼 < 1, 𝑢0

ℎ = 𝑢1
ℎ = 0, and ̂︀𝑓0

ℎ = ̂︀𝑓1
ℎ = 0. Then, for all

1 ≤ 𝑛 ≤ 𝑁 ⃦⃦⃦⃦
𝐴

1
2
ℎ

𝑢𝑛+1
ℎ − 𝑢𝑛−1

ℎ

2Δ𝑡

⃦⃦⃦⃦
2

≤ 36√
1− 𝛼2

Δ𝑡
𝑁∑︁

𝑘=1

⃦⃦⃦⃦
⃦ ̂︀𝑓𝑘

ℎ − ̂︀𝑓𝑘−1
ℎ

Δ𝑡

⃦⃦⃦⃦
⃦

2

.

Moreover if ̂︀𝑓2
ℎ = 0 then, for all 2 ≤ 𝑛 ≤ 𝑁⃦⃦⃦⃦

𝐴
1
2
ℎ

𝑢𝑛+1
ℎ − 𝑢𝑛

ℎ − 𝑢𝑛−1
ℎ + 𝑢𝑛−2

ℎ

2Δ𝑡2

⃦⃦⃦⃦
2

≤ 36√
1− 𝛼2

Δ𝑡
𝑁∑︁

𝑘=2

⃦⃦⃦⃦
⃦ ̂︀𝑓𝑘

ℎ − 2 ̂︀𝑓𝑘−1
ℎ + ̂︀𝑓𝑘−2

ℎ

Δ𝑡2

⃦⃦⃦⃦
⃦

2

·

It is now possible to state the following theorem on the estimation of the error term 𝑒𝑛
ℎ,𝑀 for schemes

(EME-M) (with 𝑀 ∈ {0, 1, 3}).

Theorem 4.3. Assume 𝛼 < 1, 𝛽 < 1/6 and

𝑢0
ℎ = 𝑢1

ℎ = 0, 𝑢0
ℎ,𝑀 = 𝑢1

ℎ,𝑀 = 0, ̂︀𝑓0
ℎ = ̂︀𝑓1

ℎ = ̂︀𝑓2
ℎ = 0.

Then, the error 𝑒𝑛
ℎ,𝑀 = 𝑢𝑛

ℎ − ℎ𝑛
ℎ,𝑀 satisfies, for 1 ≤ 𝑛 ≤ 𝑁 ,

⎛⎝1
4

⃦⃦⃦⃦
⃦𝑒

𝑛+1
ℎ,𝑀 − 𝑒𝑛

ℎ,𝑀

Δ𝑡

⃦⃦⃦⃦
⃦

2

2

+ (1− 𝛼2)

⃦⃦⃦⃦
⃦𝐴 1

2
ℎ

𝑒𝑛+1
ℎ,𝑀 + 𝑒𝑛

ℎ,𝑀

2

⃦⃦⃦⃦
⃦

2

2

⎞⎠ 1
2

≤ 𝑎ℎ,𝑀

[︃
𝑏ℎ,𝑀 Δ𝑡

𝑁∑︁
𝑘=1

⃦⃦⃦⃦
⃦ ̂︀𝑓𝑘

ℎ − ̂︀𝑓𝑘−1
ℎ

Δ𝑡

⃦⃦⃦⃦
⃦

2

+ 𝑁 Δ𝑡2
𝑁∑︁

𝑘=2

⃦⃦⃦⃦
⃦ ̂︀𝑓𝑘

ℎ − 2 ̂︀𝑓𝑘−1
ℎ + ̂︀𝑓𝑘−2

ℎ

Δ𝑡2

⃦⃦⃦⃦
⃦

2

]︃
,

with ⎧⎨⎩𝑎ℎ,0 = Δ𝑡2
12

1− 𝛼2
‖𝐴−

1
2

ℎ 𝐶ℎ𝐴
− 1

2
ℎ ‖2,

𝑏ℎ,0 = 1,
,

⎧⎪⎨⎪⎩𝑎ℎ,1 =
√

2 Δ𝑡5

1− 𝛼2
‖𝐶ℎ𝐴

− 1
2

ℎ ‖22 𝑒 64 𝑁 𝛽2
,

𝑏ℎ,1 = 1 + 32𝑁 𝛽2.

and ⎧⎨⎩𝑎ℎ,3 =
Δ𝑡5

1− 𝛼2
𝛽2 ‖𝐶ℎ𝐴

− 1
2

ℎ ‖22,

𝑏ℎ,3 = 1.

Proof. Because of our assumption on the initial data we can apply Theorem 3.6 on scheme (4.2) with 𝑓𝑛
ℎ = 0,

𝑔𝑛
ℎ given by (4.6) and by 𝑔0

ℎ := 0, and by

̃︀𝐵ℎ = 𝐵ℎ,𝑀 , ̃︀𝐶ℎ =
Δ𝑡2

12
𝐶ℎ,𝑀 .

Denoting ℰ𝑛+1/2
ℎ the energy given by (3.2) written with 𝑒𝑛

ℎ,𝑀 instead of 𝑢𝑛
ℎ, we get, for all 0 ≤ 𝑛 ≤ 𝑁,

√︁
ℰ𝑛+1/2

ℎ ≤ 𝐶𝑀 Δ𝑡
𝑁∑︁

𝑘=1

(︃
1− 𝛾−1

𝑀

Δ𝑡
√

1− 𝛼2

⃦⃦
𝑔𝑘

ℎ

⃦⃦
2

+
1√

1− 𝛼2

⃦⃦⃦⃦
⃦𝑔𝑘

ℎ − 𝑔𝑘−1
ℎ

Δ𝑡

⃦⃦⃦⃦
⃦

2

)︃

+
𝐶𝑀√
1− 𝛼2

sup
𝑘∈[1,𝑁 ]

⃦⃦
𝑔𝑘

ℎ

⃦⃦
2
.
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with 𝐶𝑀 = 2
√

2 𝛾𝑀 𝑒𝑁(𝛾𝑀−1) and where 𝛾0 = 1, 𝛾3 = 1 and using (3.15),

𝛾1 = 1 +
8 Δ𝑡 𝑐𝐵

1− 4 Δ𝑡 𝑐𝐵
with 𝑐𝐵 =

4𝛽2

Δ𝑡
⇒ 𝛾1 = 1 +

32𝛽2

1− 16𝛽2
·

Note that 𝛾1 is greater than one and is bounded because of the assumption 𝛽 < 1/6. Using the definition of 𝑞ℎ
𝑛

given by (4.7) we can show the following estimation√︁
ℰ𝑛+1/2

ℎ ≤ 𝐶𝑀,𝛼 Δ𝑡
𝑁∑︁

𝑘=1

(︃
1− 𝛾−1

𝑀

Δ𝑡

⃦⃦
𝑞𝑘
ℎ

⃦⃦
2

+

⃦⃦⃦⃦
⃦𝑞𝑘

ℎ − 𝑞𝑘−1
ℎ

Δ𝑡

⃦⃦⃦⃦
⃦

2

)︃
+ 𝐶𝑀,𝛼 sup

𝑘∈[1,𝑁 ]

⃦⃦
𝑞𝑘
ℎ

⃦⃦
2
. (4.8)

where 𝐶𝑀,𝛼 is given by

𝐶𝑀,𝛼 =
𝐶𝑀√
1− 𝛼2

‖𝐴−
1
2

ℎ 𝐷ℎ,𝑀𝐴
− 1

2
ℎ ‖2.

Moreover, thanks to Lemma 4.2, we have⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sup
𝑘∈[1,𝑁 ]

⃦⃦
𝑞𝑘
ℎ

⃦⃦
2
≤ 36√

1− 𝛼2
Δ𝑡

𝑁∑︁
𝑘=1

⃦⃦⃦⃦
⃦ ̂︀𝑓𝑘

ℎ − ̂︀𝑓𝑘−1
ℎ

Δ𝑡

⃦⃦⃦⃦
⃦

2

,

Δ𝑡
𝑁∑︁

𝑘=1

⃦⃦
𝑞𝑘
ℎ

⃦⃦
2
≤ 36𝑁 Δ𝑡√

1− 𝛼2
Δ𝑡

𝑁∑︁
𝑘=1

⃦⃦⃦⃦
⃦ ̂︀𝑓𝑘

ℎ − ̂︀𝑓𝑘−1
ℎ

Δ𝑡

⃦⃦⃦⃦
⃦

2

,

Δ𝑡
𝑁∑︁

𝑘=1

⃦⃦⃦⃦
⃦𝑞𝑘

ℎ − 𝑞𝑘−1
ℎ

Δ𝑡

⃦⃦⃦⃦
⃦

2

≤ 36𝑁 Δ𝑡√
1− 𝛼2

Δ𝑡
𝑁∑︁

𝑘=2

⃦⃦⃦⃦
⃦ ̂︀𝑓𝑘

ℎ − 2 ̂︀𝑓𝑘−1
ℎ + ̂︀𝑓𝑘−2

ℎ

Δ𝑡2

⃦⃦⃦⃦
⃦

2

.

Combining these estimates with the energy estimate (4.8), one gets√︁
ℰ𝑛+1/2

ℎ ≤ ̃︀𝐶𝑀,𝛼

[︃(︁
1 +

1− 𝛾−1
𝑀

Δ𝑡
𝑁 Δ𝑡

)︁
Δ𝑡

𝑁∑︁
𝑘=1

⃦⃦⃦⃦
⃦ ̂︀𝑓𝑘

ℎ − ̂︀𝑓𝑘−1
ℎ

Δ𝑡

⃦⃦⃦⃦
⃦

2

+𝑁 Δ𝑡2
𝑁∑︁

𝑘=2

⃦⃦⃦⃦
⃦ ̂︀𝑓𝑘

ℎ − 2 ̂︀𝑓𝑘−1
ℎ + ̂︀𝑓𝑘−2

ℎ

Δ𝑡2

⃦⃦⃦⃦
⃦

2

]︃
,

where ̃︀𝐶𝑀,𝛼 =
36𝐶𝑀,𝛼√

1− 𝛼2
·

The result of the theorem is obtained, first, using Proposition 3.5 that bounds by below the energy with respect
to semi-norms of the errors; second; using the recursive definition of the constant ̃︀𝐶𝑀,𝛼, 𝐶𝑀,𝛼 and 𝐶𝑀 as well
as Γ𝑀 ; third, using the estimation of

‖𝐴−
1
2

ℎ 𝐷ℎ,𝑀𝐴
− 1

2
ℎ ‖2

given by Lemma 4.1 for the cases 𝑀 = 1 and 𝑀 = 3, or equation (4.3) for the case 𝑀 = 0. Finally, note that,
because of the assumption on 𝛽, we have

𝛾1 ≤ 1 + 64𝛽2 and 1− 𝛾−1
1 ≤ 32𝛽2.

�

4.2. Application to wave equations

Our objective is now to apply the results we have obtained to the specific case mentioned in introduction,
namely the wave equation (1.1) with zero initial data. We consider the family of semi-discrete problem of the
form (2.1) and if one considers the total discretization by the modified equation technique (ME) it is natural
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to expect – if sought solutions are regular enough – a space-time convergence of order 4 of the solution given
by (ME) to the solution of (2.1). Finally, the convergence of (2.1) to the continuous solution of (1.1) is an
application of the finite-element convergence theory. To restrict the scope of our analysis we assume spatial
convergence at the right order is guaranteed, i.e.

sup
𝑡𝑛∈[0,𝑇 ]

‖𝑢𝑛
ℎ − 𝑢ℎ(𝑡𝑛)‖22 ≤ ℎ4 𝐶𝑢.

for some 𝐶𝑢 > 0 independent of ℎ. Such results was proved in [5] in the case 𝑅(𝑥) = 0 for a family of implicit or
explicit fourth order schemes. We assume here that adding dissipation does not deteriorate the convergence if
the scheme (ME) is used (such result is suggested by the computation of the truncation error (2.4) and (2.5)).
In the light, of the previous equation we seek for fourth order estimation of the error term 𝑒𝑛

ℎ,𝑀 . The proof given
in [5] relies, naturally, on regularity properties of the source term. In our context, we need equivalent regularity
properties and the corresponding assumption reads

Assumption 4.4. For any 𝑇 > 0 and Δ𝑡 given by (3.3) with 𝛼 < 1 independent of ℎ and 𝑁 = ⌊𝑇/Δ𝑡⌋, there
exists a scalar 𝐶𝑓 independent of ℎ > 0 such that

Δ𝑡
𝑁∑︁

𝑘=1

⃦⃦⃦⃦
⃦ ̂︀𝑓𝑘

ℎ − ̂︀𝑓𝑘−1
ℎ

Δ𝑡

⃦⃦⃦⃦
⃦

2

+
𝑁∑︁

𝑘=2

⃦⃦⃦⃦
⃦ ̂︀𝑓𝑘

ℎ − 2 ̂︀𝑓𝑘−1
ℎ + ̂︀𝑓𝑘−2

ℎ

Δ𝑡

⃦⃦⃦⃦
⃦

2

≤ 𝐶𝑓 .

In ordee to obtain more specific results in relation with our applications, we also need to assume a given
behavior for the norm of the matrices 𝐴ℎ and 𝐵ℎ. It is clear that ‖𝐴ℎ‖2 is equivalent to ℎ−2 when ℎ tends to
0, since it corresponds to the discretization of a second order differential operator. Moreover ‖𝐵ℎ‖2 should be
bounded independently of ℎ because it corresponds to the discretization of a zero order differential operator.
These observations are turned into assumption in what follows

Assumption 4.5. We assume that there exist three scalars 𝑐𝐴, 𝐶𝐴 and 𝐶𝐵, independent of ℎ, such that

𝑐𝐴
ℎ2

≤ ‖𝐴ℎ‖2 ≤
𝐶𝐴

ℎ2
and ‖𝐵ℎ‖2 ≤ 𝐶𝐵 .

Note that, because of the CFL condition (3.3), the maximum allowed time step Δ𝑡 is proportional to ℎ. As a
direct consequence, we have that

𝛽 = 𝛽(ℎ) ≤ Δ𝑡3

12
‖𝐴ℎ‖2‖𝐵ℎ‖2 = Δ𝑡 𝛼2‖𝐵ℎ‖2 ≤ Δ𝑡 𝐶𝐵 hence 𝛽(ℎ) −→

ℎ→0
0.

Therefore, for sufficiently small ℎ, 𝛽 < 1, and the schemes (EME-M) will be well defined (recall that we have
assumed that 𝛼 < 1).

Discussions on the norm of 𝐶ℎ𝐴
− 1

2

ℎ . An estimation of the norm of 𝐶ℎ𝐴
− 1

2
ℎ is required to deduce a space-

time convergence result from Theorem 4.3, since the norm of the operator may blow-up, which is the case in
practice as we show numerically in Section 5. A dedicated estimation of the norm of this operator is out of the
scope of this article. Instead, in what follows, we define reasonable assumptions on the behavior of the operator
with respect to ℎ, by analogy with the continuous setting. We have the following equality

‖𝐶ℎ𝐴
− 1

2
ℎ ‖2 = sup

𝑢ℎ,𝑣ℎ

|𝑣𝑇
ℎ𝐶ℎ𝐴

− 1
2

ℎ 𝑢ℎ|
‖𝑣ℎ‖2 ‖𝑢ℎ‖2

= sup
𝑤ℎ,𝑣ℎ

|𝑣𝑇
ℎ𝐶ℎ𝑤ℎ|

‖𝑣ℎ‖2 ‖𝐴
1
2
ℎ𝑤ℎ‖2

· (4.9)

Note that ‖𝐴
1
2
ℎ𝑤ℎ‖2 can be regarded as some approximation of the 𝐻1-norm of the function represented by 𝑤ℎ.

If one considers the wave equation (1.1), we have that 𝐶ℎ is some approximation of the operator 𝒞 : 𝐻1
0 (Ω) −→
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𝐻−1(Ω) defined, for 𝑅 ∈𝑊 1,∞ by

⟨𝒞𝑤, 𝑣⟩ := ⟨𝑅Δ𝑤 −Δ(𝑅𝑤), 𝑣⟩ = −⟨∇ · (𝑤∇𝑅), 𝑣⟩ − ⟨∇𝑅 · ∇𝑤, 𝑣⟩
= (𝑤,∇𝑅 · ∇𝑣)𝐿2(Ω) − (∇𝑅 · ∇𝑤, 𝑣)𝐿2(Ω) (4.10)

where ⟨·, ·⟩ denotes the duality product in 𝐻1
0 (Ω) and (·, ·)𝐿2(Ω) is the standard 𝐿2 scalar product. Then, in

light of equation (4.9) one can expect that an estimation of the term

|⟨𝒞𝑤, 𝑣⟩|
‖𝑣‖𝐿2(Ω)‖𝑤‖𝐻1(Ω)

(4.11)

will give a precise idea on how to obtain an estimation of ‖𝐶ℎ𝐴
− 1

2
ℎ ‖2 as soon as accurate enough finite elements

approximations are used. We consider below a piecewise smooth function 𝑅. To do so, we introduce a partition
of Ω into 𝐿 bounded Lipschitz sub-domains

Ω =
𝐿⋃︁

ℓ=1

Ωℓ, Ωℓ ∩ Ω𝑘 = ∅, 𝑘 ̸= ℓ,

and we define the following subspace of 𝑊 1,∞ of piecewise regular functions̃︁𝑊 1,∞(Ω) = {𝑢 ∈𝑊 1,∞(Ω), 𝑢|Ωℓ
∈ 𝐶1(Ωℓ) ∩𝑊 2,∞(Ωℓ), 𝑙 = 1, . . . , 𝐿}.

In Appendix B we prove the following result.

Theorem 4.6. There exists 𝐶Ω > 0, depending on Ω and on Ωℓ only, such that, if 𝑅 ∈𝑊 2,∞(Ω), then, for all
(𝑣, 𝑤) ∈ 𝐻1

0 (Ω)2
|⟨𝒞𝑤, 𝑣⟩|

‖𝑣‖𝐿2(Ω)‖𝑤‖𝐻1(Ω)
≤ 𝐶Ω

(︀
‖Δ𝑅‖𝐿∞(Ω) + ‖∇𝑅‖𝐿∞(Ω)

)︀
, (4.12)

and if 𝑅 ∈ ̃︁𝑊 1,∞(Ω)

|⟨𝒞𝑤, 𝑣⟩|
‖𝑣‖𝐿2(Ω)‖𝑤‖𝐻1(Ω)

≤ 𝐶Ω

(︃
‖∇𝑅‖𝐿∞(Ω) +

𝐿∑︁
ℓ=1

‖Δ𝑅‖𝐿∞(Ωℓ)

)︃⎛⎝1 +
‖𝑣‖

1
2
𝐻1(Ω)

‖𝑣‖
1
2
𝐿2(Ω)

⎞⎠ · (4.13)

Theorem 4.6 shows that one can expect ‖𝐶ℎ𝐴
− 1

2
ℎ ‖2 to be bounded by a term proportional to(︃

‖∇𝑅‖𝐿∞(Ω) +
𝐿∑︁

ℓ=1

‖Δ𝑅‖𝐿∞(Ωℓ)

)︃(︃
1 + sup

‖𝑣ℎ‖2=1

‖𝐴
1
2
ℎ 𝑣ℎ‖

1
2
2

)︃
, (4.14)

which leads to a conclusion remarking that, thanks to Assumption 4.5 we have,

‖𝐴
1
2
ℎ 𝑣ℎ‖2 ≤

√
𝐶𝐴

ℎ
‖𝑣ℎ‖2.

Moreover, if we introduce the spacẽ︀𝐿∞(Ω) = {𝑢 ∈ 𝐿∞(Ω), 𝑢|Ωℓ
∈ 𝐶0(Ωℓ) ∩𝑊 1,∞(Ωℓ), 𝑙 = 1, . . . , 𝐿},

then, in view of (4.14), it appears that one can extend the results obtained in the case 𝑅 ∈ ̃︀𝐿∞(Ω). Considering
a well chosen smooth function 𝑅ℎ ∈ ̃︁𝑊 1,∞(Ω) that converges towards 𝑅 in some well chosen norm, then, by
inverse inequality (see Sect. 4.5 of [1]) one can expect to “lose” a power of ℎ. To sum-up, it seems reasonable,
to perform the following assumption, which will be confirmed by numerical results in Sect. 5.1).
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Assumption 4.7. We assume that there exists a constant 𝐶𝐵𝐴, independent of ℎ, and 0 ≤ 𝑟 ≤ 3/2, such that

‖𝐶ℎ𝐴
− 1

2
ℎ ‖2 ≤

𝐶𝐵𝐴

ℎ𝑟
·

Remark 4.8. It is expected that if 𝑅 belongs to 𝑊 2,∞(Ω), then Assumption 4.7 holds with 𝑟 = 0, if 𝑅 ∈̃︁𝑊 1,∞(Ω), then Assumption 4.7 holds with 𝑟 = 1/2 and finally if 𝑅 ∈ ̃︀𝐿∞(Ω), then Assumption 4.7 holds with
𝑟 = 3/2.

Discussions on the norm of 𝐴
− 1

2

ℎ 𝐶ℎ𝐴
− 1

2

ℎ . As previously the norm of 𝐴−
1
2

ℎ 𝐶ℎ𝐴
− 1

2
ℎ must be estimated in

order to deduce a space-time convergence result from Theorem 4.3 in the case 𝑀 = 0. Following the above
discussion, we end-up to the following assumption by analogy with the continuous setting.

Assumption 4.9. We assume that there exists a constant 𝐶𝐵𝐴 independent of ℎ and 0 ≤ 𝑟 ≤ 1/2 such that

‖𝐴−
1
2

ℎ 𝐶ℎ𝐴
− 1

2
ℎ ‖2 ≤

𝐶𝐵𝐴

ℎ𝑟
·

Indeed, with the same arguments as before, one can see that an estimation of the norm 𝐴
− 1

2
ℎ 𝐶ℎ𝐴

− 1
2

ℎ should be
obtained from an estimation of

|⟨𝒞𝑤, 𝑣⟩|
‖𝑤‖𝐻1(Ω)‖𝑣‖𝐻1(Ω)

(4.15)

and we have the following theorem (proof given in Appendix B).

Theorem 4.10. There exists 𝐶Ω > 0, depending on Ω and on the Ωℓ only, such that, if 𝑅 ∈ 𝑊 1,∞(Ω), then,
for all (𝑣, 𝑤) ∈ 𝐻1

0 (Ω)2
|⟨𝒞𝑤, 𝑣⟩|

‖𝑣‖𝐿2(Ω)‖𝑤‖𝐻1(Ω)
≤ 𝐶Ω‖∇𝑅‖𝐿∞(Ω), (4.16)

and, if 𝑅 ∈ ̃︀𝐿∞(Ω) and (𝑣, 𝑤) ∈
(︀
𝐻1

0 (Ω) ∩𝐻2(Ω)
)︀2,

|⟨𝒞𝑤, 𝑣⟩|
‖𝑤‖𝐻1(Ω)‖𝑣‖𝐻1(Ω)

≤ 𝐶Ω

(︃
‖𝑅‖𝐿∞(Ω) +

𝐿∑︁
ℓ=1

‖∇𝑅‖𝐿∞(Ωℓ)

)︃⎛⎝1 +
‖𝑤‖

1
2
𝐻2(Ω)

‖𝑤‖
1
2
𝐻1(Ω)

+
‖𝑣‖

1
2
𝐻2(Ω)

‖𝑣‖
1
2
𝐻1(Ω)

⎞⎠ · (4.17)

where ⟨·, ·⟩ denotes here the duality product in 𝐻1
0 (Ω) ∩𝐻2(Ω).

Using the result of Theorem 4.10, we expect the norm of 𝐴−
1
2

ℎ 𝐶ℎ𝐴
− 1

2
ℎ to be proportional to(︃

‖𝑅‖𝐿∞(Ω) +
𝐿∑︁

ℓ=1

‖∇𝑅‖𝐿∞(Ωℓ)

)︃(︃
2 +

‖𝐴ℎ𝑤ℎ‖
1
2
2

‖𝐴
1
2
ℎ𝑤ℎ‖

1
2
2

+
‖𝐴ℎ𝑣ℎ‖

1
2
2

‖𝐴
1
2
ℎ 𝑣ℎ‖

1
2
2

)︃
,

if one admits that ‖𝐴ℎ𝑤ℎ‖2 is an approximation of the 𝐻2(Ω)-norm of the function corresponding to 𝑤ℎ. This
justifies Assumption 4.9 since

‖𝐴ℎ𝑤ℎ‖
1
2
2

‖𝐴
1
2
ℎ𝑤ℎ‖

1
2
2

≤ ‖𝐴
1
2
ℎ ‖

1
2
2 ≤

𝐶
1
4
𝐴

ℎ
1
2
·

Remark 4.11. It is expected that if 𝑅 belongs to𝑊 1,∞(Ω) then Assumption 4.9 holds with 𝑟 = 0, if𝑅 ∈ ̃︀𝐿∞(Ω)
then Assumption 4.7 holds with 𝑟 = 1/2.

Main result. Our main result is obtained as a corollary of Theorem 4.3 that takes into account the Assump-
tions 4.4–4.9.
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Corollary 4.12. Let 𝑇 > 0 and Δ𝑡 given by (3.3) with 𝛼 < 1 independent of ℎ and 𝑁 = ⌊𝑇/Δ𝑡⌋. Let
Assumptions 4.4, 4.5, 4.7, and 4.9 hold. Assume that

𝑢0
ℎ = 𝑢1

ℎ = 0, 𝑢0
ℎ,𝑀 = 𝑢1

ℎ,𝑀 = 0, ̂︀𝑓0
ℎ = ̂︀𝑓1

ℎ = ̂︀𝑓2
ℎ = 0.

Then, there exists 𝐶 > 0 such that, for sufficiently small ℎ, we have⃦⃦⃦
𝐴

1
2
ℎ 𝑒

𝑛+1
ℎ,𝑀

⃦⃦⃦2

2
≤ 𝐶 (1 + 𝑇 )𝑚(ℎ;𝑀, 𝑟),

where 𝑚(ℎ;𝑀, 𝑟) are decreasing functions of ℎ given by

𝑚(ℎ; 0, 𝑟) = ℎ2−𝑟 for 0 ≤ 𝑟 ≤ 1/2

and
𝑚(ℎ; 1, 𝑟) = 𝑒𝐶 𝑇 ℎ ℎ5−2𝑟 and 𝑚(ℎ; 3, 𝑟) = ℎ7−2𝑟 for 0 ≤ 𝑟 ≤ 3/2.

Proof. Note that, for sufficiently small ℎ, we have 𝛽 < 1/6 and we can apply Theorem 4.3. This shows that⎛⎝1
4

⃦⃦⃦⃦
⃦𝑒

𝑛+1
ℎ,𝑀 − 𝑒𝑛

ℎ,𝑀

Δ𝑡

⃦⃦⃦⃦
⃦

2

2

+ (1− 𝛼2)

⃦⃦⃦⃦
⃦𝐴 1

2
ℎ

𝑒𝑛+1
ℎ,𝑀 + 𝑒𝑛

ℎ,𝑀

2

⃦⃦⃦⃦
⃦

2

2

⎞⎠ 1
2

≤ 𝑎ℎ,𝑀

(︀
𝑏ℎ,𝑀 𝐶𝑓 + 𝑇 𝐶𝑓

)︀
, (4.18)

where we have used Assumption 4.4 to estimate the source term contribution and where the value of 𝑎ℎ,𝑀 and
𝑏ℎ,𝑀 are given by Theorem 4.3. Using Assumptions 4.7 and 4.9, the right hand side of (4.18) can be bounded
by 𝐶 (1 + 𝑇 )𝑚(ℎ;𝑀, 𝑟) for some constant 𝐶 independent of ℎ. Then, one can observe that

𝐴
1
2
ℎ 𝑒

𝑛+1
ℎ,𝑀 = 𝐴

1
2
ℎ

𝑒𝑛+1
ℎ,𝑀 + 𝑒𝑛

ℎ,𝑀

2
− Δ𝑡

2
𝐴

1
2
ℎ

𝑒𝑛
ℎ,𝑀 − 𝑒𝑛+1

ℎ,𝑀

Δ𝑡

and because of the CFL condition (3.3) we have Δ𝑡 ‖𝐴
1
2
ℎ ‖2 < 12. Therefore, by the triangular inequality,

‖𝐴
1
2
ℎ 𝑒

𝑛+1
ℎ,𝑀‖2 ≤

⃦⃦⃦⃦
⃦𝐴 1

2
ℎ

𝑒𝑛+1
ℎ,𝑀 + 𝑒𝑛

ℎ,𝑀

2

⃦⃦⃦⃦
⃦

2

+ 6

⃦⃦⃦⃦
⃦𝑒𝑛

ℎ,𝑀 − 𝑒𝑛+1
ℎ,𝑀

Δ𝑡

⃦⃦⃦⃦
⃦

2

.

Then, up to the definition of another constant 𝐶 > 0, we can deduce from equation (4.18) that

‖𝐴
1
2
ℎ 𝑒

𝑛+1
ℎ,𝑀‖2 ≤ 𝐶 (1 + 𝑇 )𝑚(ℎ;𝑀, 𝑟)

which concludes the proof of the corollary. �

5. Numerical results

For the numerical investigation of the schemes (EME-M), we use the following 1D dissipative wave equation
as a model problem. ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝜕2𝑢

𝜕𝑡2
+𝑅(𝑥)

𝜕𝑢

𝜕𝑡
− 𝜕2𝑢

𝜕𝑥2
= 𝑓, 𝑥 ∈ (0, 1), 𝑡 ∈ (0, 𝑇 ),

𝑢 = 0, 𝑥 ∈ {0, 1}, 𝑡 ∈ (0, 𝑇 ),

𝑢 = 0,
𝜕𝑢

𝜕𝑡
= 0, 𝑥 ∈ (0, 1), 𝑡 = 0.

(5.1)
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Figure 1. Norms of 𝐴ℎ, 𝐶ℎ, 𝐶ℎ𝐴
−1/2
ℎ and 𝐴

−1/2
ℎ 𝐶ℎ𝐴

−1/2
ℎ with respect to ℎ with 𝜎 = 1 on a

uniform mesh of [0, 1] using fourth order finite elements.

The source term 𝑓 is given by

𝑓(𝑥, 𝑡) = 𝑒
−
(︃
𝑥− 𝑥0

𝑟0

)︃2

𝑒
𝛼0

𝑔(𝑡)
𝑔(𝑡)− 1 , 𝑔(𝑡) =

(︂
𝑡− 𝑡0
𝜏

)︂2

. (5.2)

In practice, we set 𝑥0 = 0.8, 𝑟0 = 0.025, 𝑡0 = 0.3, 𝜏 = 0.08 and 𝛼0 = 100. In the following, we investigate two
different behaviors for the dissipative function 𝑅(𝑥): either 𝑅(𝑥) = 𝑅0(𝑥) ∈ ̃︀𝐿∞(Ω), 𝑅(𝑥) = 𝑅1(𝑥) ∈ ̃︁𝑊 1,∞(Ω),
or 𝑅(𝑥) = 𝑅2(𝑥) ∈ 𝐶∞(Ω), with 𝑅0 and 𝑅1 given by

𝑅0(𝑥) = 𝜎 1[0,𝑥1](𝑥), 𝑅1(𝑥) = 𝜎 1[𝑥1−𝑟1,𝑥1+𝑟1](𝑥)
𝑟1 − |𝑥− 𝑥1|

𝑟1

and 𝑅2 given by

𝑅2(𝑥) = 𝜎 1[−1,1]𝑠(𝑥) exp
(︂
𝛼1 +

𝛼1

𝑠(𝑥)2 − 1

)︂
, 𝑠(𝑥) =

𝑥− 𝑥1

𝑟1
·

In the above expressions, we set 𝑟1 = 0.2, 𝑥1 = 0.3 and 𝛼1 = 10. The positive scalar 𝜎 corresponds to the
maximum value of the dissipation profile and is a parameter for the numerical investigation.

The discretization in space is done using fourth order spectral finite elements method [6] leading to a diagonal
mass matrix.

5.1. Numerical investigations of ‖𝐶ℎ𝐴
− 1

2

ℎ ‖2 and ‖𝐴
− 1

2

ℎ 𝐶ℎ𝐴
− 1

2

ℎ ‖2

In this section, we investigate numerically the validity of Assumptions 4.7 and 4.9. To do so we assemble finite
element matrices constructed with fourth order finite elements on a uniform mesh of [0, 1]. Denoting ℎ = 1/𝑁
the space step, we display in Figure 1 the euclidean norm of

𝐴ℎ, 𝐶ℎ, 𝐶ℎ𝐴
−1/2
ℎ and 𝐴−1/2

ℎ 𝐶ℎ𝐴
−1/2
ℎ

for decreasing values of ℎ, with the three different dissipation profiles introduced before (with 𝜎 = 1).



864 J. CHABASSIER ET AL.

Figure 2. Convergence of schemes EME-0,1 and 3 to (ME) w.r.t. the space step ℎ.

We observe a perfect agreement with Assumption 4.7 and Remark 4.8 by looking at the black curves with
plain circles

⃦⃦⃦
𝐶ℎ𝐴

−1/2
ℎ

⃦⃦⃦
. If 𝑅 ∈ ̃︀𝐿∞(Ω) , we observe in Figure 1a that Assumption 4.7 holds with 𝑟 = 3/2; if

𝑅 ∈ ̃︁𝑊 1,∞(Ω), we observe in Figure 1b that Assumption 4.7 holds with 𝑟 = 1/2; and if 𝑅 belongs to 𝑊 2,∞(Ω),
we observe in Figure 1c that Assumption 4.7 holds with 𝑟 = 0.
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Figure 3. Convergence of schemes EME-3 to (ME) w.r.t. the space step ℎ for 𝑅 = 𝑅1 or
𝑅 = 𝑅2 with 𝜎 large.

Finally, we observe a perfect agreement with Assumption 4.9 and Remark 4.11 by looking at the red curves
with stars

⃦⃦⃦
𝐴
−1/2
ℎ 𝐶ℎ𝐴

−1/2
ℎ

⃦⃦⃦
If 𝑅 ∈ ̃︀𝐿∞(Ω), we observe in Figure 1a that Assumption 4.9 holds with 𝑟 = 1/2.

and if 𝑅 belongs to 𝑊 1,∞(Ω) or 𝑊 2,∞(Ω), we observe in Figures 1c and 1b that Assumption 4.9 holds with
𝑟 = 0.

5.2. Convergence of (EME-M) towards (ME)

In this section, we illustrate numerically the results of Theorem 4.3 in the context of wave equations, for
which we have investigated the values of 𝑟 in Assumptions 4.7 and 4.9. All these results are summed up in
Corollary 4.12. In Figure 2 are displayed the 𝐻1-norm in space, 𝐿2-norm in time, of the error between the
solution to (ME) and the solution to (EME-0), (EME-1) and (EME-3), as ℎ goes to zero. We keep the CFL-
number 𝛼 equal to 0.9, therefore Δ𝑡 is asymptotically proportional to ℎ. We choose to test two different values
of 𝜎 ∈ {1, 100} for each dissipation profile 𝑅𝑖, 𝑖 ∈ {0, 1, 2}. The parameters of the simulations are the same as
in the previous subsection, and the final time is set to 𝑇 = 3.

First, let us observe the convergence of scheme (EME-0), displayed with + signs in blue in Figure 2. Corol-
lary 4.12 predicts a convergence in ℎ2−𝑟, with 𝑟 depending on the regularity of the dissipation profile. The
observed convergence are in perfect agreement with the corollary and Remark 4.11. We observe second order
convergence for the profiles 𝑅2 and 𝑅1, which was expected since 𝑟 = 0 for 𝑅2 and 𝑅1, which belong to𝑊 1,∞(Ω).
For the profile 𝑅0, we observe a convergence at order 3/2, which was also expected since 𝑟 = 1/2 for 𝑅0, which
belongs to ̃︀𝐿∞(Ω).

Now, let us focus on the convergence of scheme (EME-1), displayed with ∘ signs in red in Figure 2. Corol-
lary 4.12 predicts a convergence in 𝑒𝐶𝑇ℎℎ5−2𝑟 with 𝑟 depending on the regularity of the dissipation profile.
The observed convergence are again in perfect agreement with the corollary and Remark 4.8. We observe a
convergence at order 5 for the profile 𝑅2, as expected, since 𝑟 = 0 because 𝑅2 ∈ 𝑊 2,∞(Ω). For the profile 𝑅1,
we observe a convergence at order 4, as expected, since 𝑟 = 1/2 for 𝑅1, which belongs to ̃︁𝑊 1,∞(Ω). Finally, for
the profile 𝑅0, we observe a convergence at order 2, again as expected, since 𝑟 = 3/2 for 𝑅0, which belongs tõ︀𝐿∞(Ω).
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Figure 4. Relative error for LF, ME, EME, RK4, w.r.t. the space step ℎ.

Let us then observe the convergence of scheme (EME-3) displayed with ∙ signs in black in Figure 2. Corol-
lary 4.12 predicts a convergence in ℎ7−2𝑟 with 𝑟 depending on the regularity of the dissipation profile. The
computed values of the errors are very small (close to machine precision), which illustrates that this scheme
is very accurate. Consequently, for these values of dissipation amplitudes, it is difficult to assess the asymp-
totical regime, except for the profile 𝑅0 with 𝜎 = 100. In this last case, the observed convergence happens at
order 4, which is in perfect agreement with the corollary and Remark 4.8 since 𝑟 = 3/2 for 𝑅0, which belongs
to ̃︀𝐿∞(Ω).

Finally, we have represented in Figure 3 the convergence of scheme (EME-3) for large values of 𝜎 with a
coarse discretization in the cases 𝑅 = 𝑅1 and 𝑅 = 𝑅2, in order to observe the convergence regime. We see that
in both cases the convergence is better than a convergence of order 6 which is in agreement with Corollary 4.12
and Remark 4.8 when considering dissipation profiles in ̃︁𝑊 1,∞(Ω).
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Figure 5. Relative error for LF, EME, RK4, w.r.t. the numerical cost.

5.3. Space/Time convergence analysis

For the space/time convergence analysis, we choose 𝑁 larger and larger (𝑁 ∈ [10, 400]) and we choose 99%
of the largest allowed time step, i.e. 𝛼 = 0.99. Four different schemes are compared:

– The Leap Frog scheme (LF). The maximum allowed time step is 2/
√︀
𝜌(𝐴ℎ).

– The Modified Equation scheme (ME). The maximum allowed time step is 2
√

3/
√︀
𝜌(𝐴ℎ).

– The explicit Modified Equation scheme (EME-M). The same time step than for (ME) is used.
– The explicit 4th order Runge–Kutta scheme (RK4). Without dissipation, the maximum allowed time step

is 2
√

2/
√︀
𝜌(𝐴ℎ). With dissipation, the maximum allowed time step must be implicitly deduced from the

stability region and the spectral properties of the semi-discretized equation.

Remark 5.1. The spectral radius of symmetric real matrices can be efficiently computed using the power
iteration algorithm. No such simple algorithm exists to estimate if the eigenvalues of non symmetric matrices
lie in a given region of the complex plane. This is why, in practice, for Runge–Kutta methods, one tries a time
step and reduces it in case of numerical instability. Note however that, in the examples presented below, Runge
Kutta schemes were stable even in the presence of dissipation when the time step was was set to 2

√
2/
√︀
𝜌(𝐴ℎ).

We assume that initial data are zero and that the source term is a compactly supported regular function in
space and time. A reference solution is computed using an explicit 4th order Runge–Kutta scheme on a fine
grid. We plot in Figures 4a and 4b the relative 𝐿2 error in space, 𝐿∞ in time obtained when 𝑅 = 𝑅0 and
𝜎 ∈ {1, 100}. In Figures 4c and 4d, we plot the error obtained when 𝑅 = 𝑅1 and 𝜎 ∈ {1, 100}.

We observe that, if the damping profile is smooth enough, then the explicit modified equation scheme (EME-
1) gives results similar to the modified equation scheme (ME). This nice property is lost if the damping profile
is discontinuous and we expect that a loss of space/time convergence could occur in this case. Note however
that the method, in the tested parameter range, gives relatively accurate results. Since, in realistic applications,
we expect the damping amplitude to be small, we believe that even in the case of discontinuous damping
profiles the scheme (EME-1) is interesting. To assess more accurately the efficiency of our scheme, we plot on
Figures 4b and 5b the error obtained with respect to the complexity of the algorithm. We compare the Leap
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Frog scheme, the explicit Modified Equation scheme and the Runge–Kutta 4 scheme applying the following rule:
for each iteration in time, we count the number of multiplications by the sparse finite element matrices (𝐴ℎ,
𝐶ℎ, 𝐵ℎ and 𝑀ℎ). For each scheme we obtain

(LF) Only one operation is counted: 1 multiplication by 𝐴ℎ.
(EME-M) 2+M operations are counted: 2 multiplications by 𝐴ℎ and 𝑀 by 𝐶ℎ. We have assumed that a multi-

plication by 𝐶ℎ is as costly as a multiplication by 𝐴ℎ which is a pessimistic estimation in regards of
the presented numerical results and for the implementation choice we made.

(RK4) At each stage of the 4 stages method, a multiplication by 𝐴ℎ needs to be computed: 4 multiplications
by 𝐴ℎ are counted in total.

Note that the Modified Equation is not compared since it requires the inversion of a matrix, that could be
done efficiently by iterative methods, but whose complexity is hard to assess.

Appendix A. Proofs of Section 3

Proof of Theorem 3.6. Multiplying equation (3.11) by (𝑢𝑛+1
ℎ − 𝑢𝑛−1

ℎ )/2Δ𝑡 we obtain the following energy rela-
tion

ℰ𝑛+1/2
ℎ − ℰ𝑛−1/2

ℎ

Δ𝑡
=
(︀
𝑓𝑛

ℎ +𝐴
1
2
ℎ 𝑔

𝑛
ℎ

)︀
·
𝑢𝑛+1

ℎ − 𝑢𝑛−1
ℎ

2Δ𝑡
− ̃︀𝐵ℎ

𝑢𝑛+1
ℎ − 𝑢𝑛−1

ℎ

2Δ𝑡
·
𝑢𝑛+1

ℎ − 𝑢𝑛−1
ℎ

2Δ𝑡
·

Using equation (3.12), we have the estimation

ℰ𝑛+1/2
ℎ − ℰ𝑛−1/2

ℎ

Δ𝑡
≤
(︀
𝑓𝑛

ℎ +𝐴
1
2
ℎ 𝑔

𝑛
ℎ

)︀
·
𝑢𝑛+1

ℎ − 𝑢𝑛−1
ℎ

2Δ𝑡
+ 𝑐𝐵

⃦⃦⃦⃦
𝑢𝑛+1

ℎ − 𝑢𝑛−1
ℎ

2Δ𝑡

⃦⃦⃦⃦2

2

.

Writing 𝑢𝑛+1
ℎ − 𝑢𝑛−1

ℎ = (𝑢𝑛+1
ℎ − 𝑢𝑛

ℎ) + (𝑢𝑛
ℎ − 𝑢𝑛−1

ℎ ) and using Proposition 3.5, we find that⃦⃦⃦⃦
𝑢𝑛+1

ℎ − 𝑢𝑛−1
ℎ

2Δ𝑡

⃦⃦⃦⃦2

2

≤ 1
2

⃦⃦⃦⃦
𝑢𝑛+1

ℎ − 𝑢𝑛
ℎ

Δ𝑡

⃦⃦⃦⃦2

2

+
1
2

⃦⃦⃦⃦
𝑢𝑛

ℎ − 𝑢𝑛−1
ℎ

Δ𝑡

⃦⃦⃦⃦2

2

≤ 4
(︁
ℰ𝑛+1/2

ℎ + ℰ𝑛−1/2
ℎ

)︁
(A.1)

hence

(1− 4 Δ𝑡 𝑐𝐵) ℰ𝑛+1/2
ℎ − (1 + 4 Δ𝑡 𝑐𝐵) ℰ𝑛−1/2

ℎ ≤ Δ𝑡
(︀
𝑓𝑛

ℎ +𝐴
1
2
ℎ 𝑔

𝑛
ℎ

)︀
·
𝑢𝑛+1

ℎ − 𝑢𝑛−1
ℎ

2Δ𝑡
·

Using the definition of the amplification factor we have

ℰ𝑛+1/2
ℎ − 𝛾 ℰ𝑛−1/2

ℎ ≤ 𝛾Δ𝑡
1 + 4 Δ𝑡 𝑐𝐵

(︀
𝑓𝑛

ℎ +𝐴
1
2
ℎ 𝑔

𝑛
ℎ

)︀
·
𝑢𝑛+1

ℎ − 𝑢𝑛−1
ℎ

2Δ𝑡
·

Therefore, one can show, using the above equation recursively, that, for 1 ≤ 𝑛 ≤ 𝑁 ,

ℰ𝑛+1/2
ℎ ≤ 𝛾𝑛 ℰ1/2

ℎ + 𝛾𝑛+1Δ𝑡
𝑛∑︁

𝑘=1

𝛾−𝑘
(︀
𝑓𝑘

ℎ +𝐴
1
2
ℎ 𝑔

𝑘
ℎ

)︀
·
𝑢𝑘+1

ℎ − 𝑢𝑘−1
ℎ

2Δ𝑡
· (A.2)

Note that, to obtain the above equation, we have used 1/(1 + 4 𝑐𝐵 Δ𝑡) ≤ 1. Then, one can show,

Δ𝑡
𝑛∑︁

𝑘=1

𝛾−𝑘𝐴
1
2
ℎ 𝑔

𝑘
ℎ ·

𝑢𝑘+1
ℎ − 𝑢𝑘−1

ℎ

2Δ𝑡
= 𝛾−𝑛𝑔𝑛

ℎ ·𝐴
1
2
ℎ

𝑢𝑛+1
ℎ + 𝑢𝑛

ℎ

2
−𝛾−1𝑔1

ℎ ·𝐴
1
2
ℎ

𝑢1
ℎ + 𝑢0

ℎ

2

−Δ𝑡
𝑛−1∑︁
𝑘=1

𝛾−𝑘−1𝑔𝑘+1
ℎ − 𝛾−𝑘𝑔𝑘

ℎ

Δ𝑡
·𝐴

1
2
ℎ

𝑢𝑘+1
ℎ + 𝑢𝑘

ℎ

2
·
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The above result is a discrete by-part integration in time, the objective being to exchange discrete time derivative
of the solution with multiplication by the square root of 𝐴ℎ of the source term. This is a standard strategy at
the continuous level when one studies the stability of the wave equation with source term in dual spaces (for
instance 𝐻−1(Ω)). Coming back to our estimation, we have, after using Cauchy–Schwarz inequality and the
results of Proposition 3.5,

Δ𝑡
𝑛∑︁

𝑘=1

𝛾−𝑘𝐴
1
2
ℎ 𝑔

𝑘
ℎ ·

𝑢𝑘+1
ℎ − 𝑢𝑘−1

ℎ

2Δ𝑡
≤

√
2√

1− 𝛼2

(︂
𝛾−𝑛 ‖𝑔𝑛

ℎ‖2
√︁
ℰ𝑛+1/2

ℎ +𝛾−1 ‖𝑔1
ℎ‖2

√︁
ℰ1/2

ℎ

)︂

+
√

2 Δ𝑡√
1− 𝛼2

𝑛−1∑︁
𝑘=1

⃦⃦⃦⃦
⃦𝛾−𝑘−1𝑔𝑘+1

ℎ − 𝛾−𝑘𝑔𝑘
ℎ

Δ𝑡

⃦⃦⃦⃦
⃦

2

√︁
ℰ𝑘+1/2

ℎ . (A.3)

The term involving 𝑓𝑘
ℎ is first written as follows

Δ𝑡
𝑛∑︁

𝑘=1

𝛾−𝑘 𝑓𝑘
ℎ ·

𝑢𝑘+1
ℎ − 𝑢𝑘−1

ℎ

2Δ𝑡
= 𝛾−𝑛 Δ𝑡

2
𝑓𝑛

ℎ ·
𝑢𝑘+1

ℎ − 𝑢𝑘
ℎ

Δ𝑡
+𝛾−1 Δ𝑡

2
𝑓1

ℎ ·
𝑢1

ℎ − 𝑢0
ℎ

Δ𝑡

+ Δ𝑡
𝑛−1∑︁
𝑘=1

𝛾−𝑘−1𝑓𝑘+1
ℎ + 𝛾−𝑘𝑓𝑘

ℎ

2
·
𝑢𝑘+1

ℎ − 𝑢𝑘
ℎ

Δ𝑡
,

from which we deduce the following estimation, using again Cauchy–Schwarz inequality and Proposition 3.5,

Δ𝑡
𝑛∑︁

𝑘=1

𝛾−𝑘 𝑓𝑘
ℎ ·

𝑢𝑘+1
ℎ − 𝑢𝑘−1

ℎ

2Δ𝑡
≤
√

2 Δ𝑡
(︂
𝛾−𝑛 ‖𝑓𝑛

ℎ ‖2
√︁
ℰ𝑛+1/2

ℎ +𝛾−1 ‖𝑓1
ℎ‖2

√︁
ℰ1/2

ℎ

)︂
(A.4)

+ 2
√

2 Δ𝑡
𝑛−1∑︁
𝑘=1

⃦⃦⃦⃦
⃦𝛾−𝑘−1𝑓𝑘+1

ℎ + 𝛾−𝑘𝑓𝑘
ℎ

2

⃦⃦⃦⃦
⃦

2

√︁
ℰ𝑘+1/2

ℎ . (A.5)

Combining (A.2)–(A.4) we obtain

ℰ𝑛+1/2
ℎ ≤ 𝛾𝑛 ℰ1/2

ℎ + 𝛾𝑛

(︃
Δ𝑡
√

2
⃦⃦⃦
𝑓1

ℎ

⃦⃦⃦
2

+
√

2√
1− 𝛼2

⃦⃦
𝑔1

ℎ

⃦⃦
2

)︃ √︁
ℰ1/2

ℎ

+

(︃
Δ𝑡
√

2 𝛾
⃦⃦⃦
𝑓𝑛

ℎ

⃦⃦⃦
2

+
√

2 𝛾√
1− 𝛼2

‖𝑔𝑛
ℎ‖2

)︃ √︁
ℰ𝑛+1/2

ℎ

+ 𝛾𝑛+1Δ𝑡
𝑛−1∑︁
𝑘=1

(︃
2
√

2

⃦⃦⃦⃦
⃦𝛾−𝑘−1𝑓𝑘+1

ℎ + 𝛾−𝑘𝑓𝑘
ℎ

2

⃦⃦⃦⃦
⃦

2

+
√

2√
1− 𝛼2

⃦⃦⃦⃦
⃦𝛾−𝑘−1𝑔𝑘+1

ℎ − 𝛾−𝑘𝑔𝑘
ℎ

Δ𝑡

⃦⃦⃦⃦
⃦

2

)︃√︁
ℰ𝑘+1/2

ℎ .

We define now

𝐷 := sup
𝑘∈[1,𝑁 ]

(︃
Δ𝑡
√

2 𝛾
⃦⃦⃦
𝑓𝑘

ℎ

⃦⃦⃦
2

+
√

2 𝛾√
1− 𝛼

⃦⃦
𝑔𝑘

ℎ

⃦⃦
2

)︃
.

Using Young’s inequality 2𝑎𝑏 ≤ 𝑎2 + 𝑏2, one can show that for all 1 ≤ 𝑛 ≤ 𝑁

1
2
ℰ𝑛+1/2

ℎ ≤ 1
2
𝐷2+𝛾𝑛 ℰ1/2

ℎ + 𝛾𝑛𝐷

√︁
ℰ1/2

ℎ + 𝛾𝑛Δ𝑡
𝑛−1∑︁
𝑘=1

𝑑𝑘+1/2

√︁
ℰ𝑘+1/2

ℎ ,

where

𝑑𝑘+1/2 := 2
√

2 𝛾

⃦⃦⃦⃦
⃦𝛾−𝑘−1𝑓𝑘+1

ℎ + 𝛾−𝑘𝑓𝑘
ℎ

2

⃦⃦⃦⃦
⃦

2

+
√

2√
1− 𝛼2

𝛾

⃦⃦⃦⃦
⃦𝛾−𝑘−1𝑔𝑘+1

ℎ − 𝛾−𝑘𝑔𝑘
ℎ

Δ𝑡

⃦⃦⃦⃦
⃦

2

.
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Now, remark that 𝛾 > 1 implies, for all 1 ≤ 𝑛 ≤ 𝑁 ,

𝛾𝑛 ≤ 𝑒𝑛(𝛾−1) ≤ 𝑒𝑁(𝛾−1),

we can then deduce for 1 ≤ 𝑛 ≤ 𝑁 the inequality

ℰ𝑛+1/2
ℎ ≤ 2𝐷2 + 3 𝑒2 𝑁(𝛾−1)ℰ1/2

ℎ + 𝑒𝑁(𝛾−1)Δ𝑡
𝑛−1∑︁
𝑘=1

𝑑𝑘+1/2

√︁
ℰ𝑘+1/2

ℎ . (A.6)

Inspired from the proof of [10], we apply standard arguments to prove a discrete Gronwall’s lemma and we
introduce, for 1 ≤ 𝑛 ≤ 𝑁 ,

ℰ𝑛+1/2
ℎ ≤ ℱ𝑛+1/2

ℎ := 2𝐷2 + 3 𝑒2 𝑁(𝛾−1)ℰ1/2
ℎ + 2𝑒𝑁(𝛾−1)Δ𝑡

𝑛−1∑︁
𝑘=1

𝑑𝑘+1/2

√︁
ℰ𝑘+1/2

ℎ .

Note that if ℱ𝑛+1/2
ℎ = 0 we have 𝐷 = 0 and ℰ1/2

ℎ = 0, meaning that the source terms and the initial data are
zero and the solution is also identically zero. Therefore, without loss of generality we assume that ℱ𝑛+1/2

ℎ > 0.
One can see that

ℱ𝑛+1/2
ℎ −ℱ𝑛−1/2

ℎ

Δ𝑡
= 2 𝑒𝑁(𝛾−1)𝑑𝑛−1/2

√︁
ℰ𝑛−1/2

ℎ

≤ 2 𝑒𝑁(𝛾−1)𝑑𝑛−1/2

(︂√︁
ℱ𝑛+1/2

ℎ +
√︁
ℱ𝑛−1/2

ℎ

)︂
.

which implies √︁
ℱ𝑛+1/2

ℎ −
√︁
ℱ𝑛−1/2

ℎ

Δ𝑡
≤ 2 𝑒𝑁(𝛾−1)𝑑𝑛−1/2.

Hence, for 0 ≤ 𝑛 ≤ 𝑁 , we have√︁
ℰ𝑛+1/2

ℎ ≤
√︁
ℱ𝑛+1/2

ℎ ≤
√︁
ℱ1/2

ℎ + 2 𝑒𝑁(𝛾−1) Δ𝑡
𝑁−1∑︁
𝑘=0

𝑑𝑘+1/2. (A.7)

To finish the proof we need to estimate the terms
√︁
ℱ1/2

ℎ and 𝑑𝑘+1/2. First, observe that√︁
ℱ1/2

ℎ ≤
√

2𝐷 +
√

3 𝑒𝑁(𝛾−1)

√︁
ℰ1/2

ℎ (A.8)

and

𝐷 ≤
√

2 𝛾Δ𝑡
𝑁∑︁

𝑘=1

⃦⃦⃦
𝑓𝑘

ℎ

⃦⃦⃦
2

+
√

2 𝛾√
1− 𝛼2

sup
𝑘∈[1,𝑁 ]

⃦⃦
𝑔𝑘

ℎ

⃦⃦
2
. (A.9)

Since 𝛾 > 1, one can show, writing 𝑔𝑘+1
ℎ = (𝑔𝑘+1

ℎ − 𝑔𝑘
ℎ) + 𝑔𝑘

ℎ and using triangular inequalities that

𝑑𝑘+1/2

√
2 𝛾

≤ 2
⃦⃦⃦
𝑓𝑘

ℎ

⃦⃦⃦
2

+ 2
⃦⃦⃦
𝑓𝑘+1

ℎ

⃦⃦⃦
2

+
1√

1− 𝛼2

⃦⃦⃦⃦
⃦𝑔𝑘+1

ℎ − 𝑔𝑘
ℎ

Δ𝑡

⃦⃦⃦⃦
⃦

2

+
1√

1− 𝛼2

(︂
1− 𝛾−1

Δ𝑡

)︂ ⃦⃦
𝑔𝑘

ℎ

⃦⃦
2
.

hence

Δ𝑡
𝑁−1∑︁
𝑘=0

𝑑𝑘+1/2 ≤ 2
√

2 𝛾Δ𝑡
𝑁∑︁

𝑘=1

(︃
4
⃦⃦⃦
𝑓𝑘

ℎ

⃦⃦⃦
2

+
1√

1− 𝛼2

⃦⃦⃦⃦
⃦𝑔𝑘

ℎ − 𝑔𝑘−1
ℎ

Δ𝑡

⃦⃦⃦⃦
⃦

2

+
1√

1− 𝛼2

(︂
1− 𝛾−1

Δ𝑡

)︂ ⃦⃦
𝑔𝑘

ℎ

⃦⃦
2

)︃
. (A.10)

Finally, combining (A.8), (A.9) with (A.7) and (A.10), we obtain the result of the theorem using the definition
(3.13) of the scalar 𝐶. �
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Proof of Proposition 3.8. Using the expression of 𝐵ℎ,1 given by Theorem 3.3,

𝐵ℎ,1𝑣ℎ · 𝑣ℎ = 𝐵ℎ 𝑣ℎ · 𝑣ℎ +
Δ𝑡2

12

(︃
+∞∑︁
𝑘=0

(︂
Δ𝑡3

24

)︂2𝑘+1 (︁
𝐶ℎ
̃︁𝑀−1

ℎ

)︁2𝑘+1

𝐶ℎ

)︃
𝑣ℎ · 𝑣ℎ. (A.11)

Since ̃︁𝑀ℎ is symmetric positive, we can define its square root ̃︁𝑀 1
2
ℎ and write that

Δ𝑡2

12

(︂
Δ𝑡3

24

)︂2𝑘+1 (︁
𝐶ℎ
̃︁𝑀−1

ℎ

)︁2𝑘+1

𝐶ℎ =
2

Δ𝑡

(︂
Δ𝑡3

24

)︂2𝑘+2 ̃︁𝑀 1
2
ℎ
̃︁𝑀− 1

2
ℎ

(︁
𝐶ℎ
̃︁𝑀−1

ℎ

)︁2𝑘+1

𝐶ℎ
̃︁𝑀− 1

2
ℎ
̃︁𝑀 1

2
ℎ

=
2

Δ𝑡

(︂
Δ𝑡3

24

)︂2𝑘+2 ̃︁𝑀 1
2
ℎ

(︁̃︁𝑀− 1
2

ℎ 𝐶ℎ
̃︁𝑀− 1

2
ℎ

)︁2𝑘+2 ̃︁𝑀 1
2
ℎ .

Denoting by 𝒮 the set of eigenvalues of the non positive symmetric matrix(︂
Δ𝑡3

24
̃︁𝑀− 1

2
ℎ 𝐶ℎ

̃︁𝑀− 1
2

ℎ

)︂2

,

we have that

+∞∑︁
𝑘≥0

̃︁𝑀 1
2
ℎ

(︂
Δ𝑡3

24
̃︁𝑀− 1

2
ℎ 𝐶ℎ

̃︁𝑀− 1
2

ℎ

)︂2𝑘+2 ̃︁𝑀 1
2
ℎ 𝑣ℎ · 𝑣ℎ =

+∞∑︁
𝑘≥0

(︂
Δ𝑡3

24
̃︁𝑀− 1

2
ℎ 𝐶ℎ

̃︁𝑀− 1
2

ℎ

)︂2𝑘+2 ̃︁𝑀 1
2
ℎ 𝑣ℎ · ̃︁𝑀 1

2
ℎ 𝑣ℎ

≥

⎛⎝min
𝜆∈𝒮

+∞∑︁
𝑘≥0

𝜆𝑘+1

⎞⎠ ̃︁𝑀 1
2
ℎ 𝑣ℎ · ̃︁𝑀 1

2
ℎ 𝑣ℎ,

and therefore

𝐵ℎ𝑣ℎ · 𝑣ℎ ≥ 𝐵ℎ𝑣ℎ · 𝑣ℎ +
2

Δ𝑡

⎛⎝min
𝜆∈𝒮

+∞∑︁
𝑘≥0

𝜆𝑘+1

⎞⎠ ̃︁𝑀1/2
ℎ 𝑣ℎ · ̃︁𝑀1/2

ℎ 𝑣ℎ. (A.12)

We now have to find a lower bound to min
𝜆∈𝒮

∑︁
𝜆𝑘+1. Remark that

𝜌

(︂(︁̃︁𝑀− 1
2

ℎ 𝐶ℎ
̃︁𝑀− 1

2
ℎ

)︁2
)︂

= 𝜌

(︂(︁̃︁𝑀−1
ℎ 𝐶ℎ

)︁2
)︂
≤
⃦⃦⃦̃︁𝑀−1

ℎ 𝐶ℎ

⃦⃦⃦2

2

Therefore, we have

𝜌

(︃(︂
Δ𝑡3

24
̃︁𝑀− 1

2
ℎ 𝐶ℎ

̃︁𝑀− 1
2

ℎ

)︂2
)︃
≤ 𝛽2 and 𝒮 ⊂

[︀
−𝛽2, 0

]︀
,

which implies, since 𝛽 < 1, that

2
Δ𝑡

min
𝜆∈𝒮

+∞∑︁
𝑘≥0

𝜆𝑘+1 =
2

Δ𝑡
min
𝜆∈𝒮

𝜆

1− 𝜆
≥ − 2

Δ𝑡
max
𝜆∈𝒮

|𝜆| ≥ −2𝛽2

Δ𝑡
·

Combining this last inequality with equation (A.12), we obtain the first inequality of the proposition. Morevoer
since 𝛽 < 1, we have from the definition of ̃︁𝑀ℎ given in Remark 3.2 that ‖̃︁𝑀ℎ‖2 < 19/12 < 2, therefore omitting
the positive term 𝐵ℎ 𝑣ℎ · 𝑣ℎ in (3.14) we obtain the last result of the proposition. �
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Appendix B. Proofs of Section 4

Proof of Lemma 4.2. We set

𝑣𝑛
ℎ :=

𝑢𝑛
ℎ − 𝑢𝑛−1

ℎ

Δ𝑡
,

then we subtract the scheme (ME) written at time 𝑛 and at time 𝑛 − 1, we obtain, after dividing by Δ𝑡, the
following equation, valid for all 2 ≤ 𝑛 ≤ 𝑁(︂

𝐼ℎ +
Δ𝑡2

12
𝐵2

ℎ

)︂
𝑣𝑛+1

ℎ − 2𝑣𝑛
ℎ + 𝑣𝑛−1

ℎ

Δ𝑡2
+
[︂
𝐵ℎ +

Δ𝑡2

12
𝐶ℎ

]︂
𝑣𝑛+1

ℎ − 𝑣𝑛−1
ℎ

2Δ𝑡

+𝐴ℎ

(︂
𝐼ℎ −

Δ𝑡2

12
𝐴ℎ

)︂
𝑣𝑛

ℎ =
̂︀𝑓𝑛
ℎ − ̂︀𝑓𝑛−1

ℎ

Δ𝑡
· (B.1)

Thanks to the hypothesis ̂︀𝑓1
ℎ = 0, we have 𝑢2

ℎ = 0 and thus 𝑣1
ℎ = 𝑣2

ℎ = 0. We can then apply the stability
Theorem 3.6 with 𝑔𝑛

ℎ = 0 and 𝑓𝑛
ℎ ≡ ( ̂︀𝑓𝑛

ℎ − ̂︀𝑓𝑛−1
ℎ )/Δ𝑡 Because 𝐵ℎ is non negative by assumption, we have

𝑐𝐵 = 0. Then, thanks to Proposition 3.5 we have for all 1 ≤ 𝑛 ≤ 𝑁√︂
1− 𝛼2

2

⃦⃦⃦⃦
𝐴

1
2
ℎ

𝑣𝑛+1
ℎ + 𝑣𝑛

ℎ

2

⃦⃦⃦⃦
2

≤
√︁
ℰ𝑛+1/2

ℎ ≤ 9
√

2 Δ𝑡
𝑁∑︁

𝑘=1

⃦⃦⃦⃦
⃦ ̂︀𝑓𝑘

ℎ − ̂︀𝑓𝑘−1
ℎ

Δ𝑡

⃦⃦⃦⃦
⃦

2

,

where the energy ℰ𝑛+1/2
ℎ is given by (3.2) with 𝑣𝑛

ℎ instead of 𝑢𝑛
ℎ. We obtain the result of the lemma by replacing

𝑣𝑛
ℎ by its value in terms of 𝑢𝑛

ℎ. To prove the second inequality of the statement we further introduce

𝑤𝑛
ℎ :=

𝑣𝑛
ℎ − 𝑣𝑛−1

ℎ

Δ𝑡
,

Subtracting scheme (B.1) written at time 𝑛 and at time 𝑛 − 1, we obtain, after dividing by Δ𝑡, the following
equation, valid for all 3 ≤ 𝑛 ≤ 𝑁(︂

𝐼ℎ +
Δ𝑡2

12
𝐵2

ℎ

)︂
𝑤𝑛+1

ℎ − 2𝑤𝑛
ℎ + 𝑤𝑛−1

ℎ

Δ𝑡2
+
[︂
𝐵ℎ +

Δ𝑡2

12
𝐶ℎ

]︂
𝑤𝑛+1

ℎ − 𝑤𝑛−1
ℎ

2Δ𝑡

+𝐴ℎ

(︂
𝐼ℎ −

Δ𝑡2

12
𝐴ℎ

)︂
𝑤𝑛

ℎ =
̂︀𝑓𝑛
ℎ − 2 ̂︀𝑓𝑛−1

ℎ + ̂︀𝑓𝑛−2
ℎ

Δ𝑡2
· (B.2)

Using the assumption ̂︀𝑓1
ℎ = ̂︀𝑓2

ℎ = 0, we deduce that 𝑣1
ℎ = 𝑣2

ℎ = 𝑣3
ℎ = 0 and therefore 𝑤2

ℎ = 𝑤3
ℎ = 0, so that

we can apply the stability Theorem 3.6 with 𝑔𝑛
ℎ = 0, 𝑓𝑛

ℎ ≡ ( ̂︀𝑓𝑛
ℎ − 2 ̂︀𝑓𝑛−1

ℎ + ̂︀𝑓𝑛−1
ℎ )/Δ𝑡2 and, once again 𝑐𝐵 = 0.

Then, thanks to Proposition 3.5 we have√︂
1− 𝛼2

2

⃦⃦⃦⃦
𝐴

1
2
ℎ

𝑤𝑛+1
ℎ + 𝑤𝑛

ℎ

2

⃦⃦⃦⃦
2

≤
√︁
ℰ𝑛+1/2

ℎ ≤ 9
√

2 Δ𝑡
𝑁∑︁

𝑘=2

⃦⃦⃦⃦
⃦ ̂︀𝑓𝑛

ℎ − 2 ̂︀𝑓𝑛−1
ℎ + ̂︀𝑓𝑛−2

ℎ

Δ𝑡2

⃦⃦⃦⃦
⃦

2

,

where the energy ℰ𝑛+1/2
ℎ is given by (3.2) with 𝑤𝑛

ℎ instead of 𝑢𝑛
ℎ. We obtain the result of the corollary by

replacing 𝑤𝑛
ℎ by its value in terms of 𝑢𝑛

ℎ. �

Proof of Theorem 4.6. To prove inequality (4.12) observe that, if 𝑅 ∈𝑊 2,∞(Ω), we have

⟨𝒞𝑤, 𝑣⟩ = −(Δ𝑅𝑤, 𝑣)𝐿2(Ω) − 2(∇𝑅 · ∇𝑤, 𝑣).
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Two applications of Cauchy–Schwartz inequality lead to the estimation (4.12). To prove (4.13), observe that,
from the right hand side of (4.10) we have, using Green’s formula on each Ωℓ,

⟨𝒞𝑤, 𝑣⟩ = − (∇𝑅 · ∇𝑤, 𝑣)𝐿2(Ω) −
𝐿∑︁

ℓ=1

(︀
(∇𝑅 · ∇𝑤, 𝑣)𝐿2(Ωℓ) + (Δ𝑅𝑤, 𝑣)𝐿2(Ωℓ)

)︀
+

𝐿∑︁
ℓ=1

(∇𝑅 · 𝑛𝑤, 𝑣)𝐿2(𝜕Ωℓ),

where 𝑛 on 𝜕Ωℓ denotes the outward unitary normal to Ωℓ. Remark that the function ∇𝑅 · 𝑛 is well defined on
𝜕Ωℓ and

‖∇𝑅 · 𝑛‖𝐿∞(𝜕Ωℓ) ≤ ‖∇𝑅‖𝐿∞(Ωℓ).

We can then deduce the following estimation

|⟨𝒞𝑤, 𝑣⟩| ≤ 2‖∇𝑅‖𝐿∞(Ω)‖∇𝑤‖𝐿2(Ω)‖𝑣‖𝐿2(Ω) + ‖𝑤‖𝐿2(Ω)‖𝑣‖𝐿2(Ω)

𝐿∑︁
ℓ=1

‖Δ𝑅‖𝐿∞(Ωℓ)

+
𝐿∑︁

ℓ=1

‖∇𝑅‖𝐿∞(Ωℓ)‖𝑤‖𝐿2(𝜕Ωℓ)‖𝑣‖𝐿2(𝜕Ωℓ). (B.3)

The last term of this estimation can be bounded using the following inequality, which is a direct consequence
of Theorem 1.5.1.10 of [16].

There exists 𝐶ℓ depending on Ωℓ only such that for all 𝑢 ∈ 𝐻1(Ωℓ) we have

‖𝑢‖𝐿2(𝜕Ωℓ) ≤ 𝐶ℓ‖𝑢‖𝐻1(Ωℓ) and ‖𝑢‖𝐿2(𝜕Ωℓ) ≤ 𝐶ℓ ‖𝑢‖
1
2
𝐻1(Ωℓ)

‖𝑢‖
1
2
𝐿2(Ωℓ)

.

Using these inequalities into (B.3), one can show that there exists a constant 𝐶Ω, independent of 𝑣, 𝑤 and 𝑅,
such that

|⟨𝒞𝑤, 𝑣⟩| ≤ 𝐶

(︃
‖∇𝑅‖𝐿∞(Ω) +

𝐿∑︁
ℓ=1

‖Δ𝑅‖𝐿∞(Ωℓ)

)︃
‖𝑤‖𝐻1(Ω)

(︁
‖𝑣‖𝐿2(Ω) + ‖𝑣‖

1
2
𝐻1(Ω)‖𝑣‖

1
2
𝐿2(Ω)

)︁
.

Estimation (4.13) follows then easily. �

Proof of Theorem 4.10. From (4.10), one can see that if 𝑅 ∈𝑊 1,∞(Ω), then estimation (4.16) is a consequence
of Cauchy–Schwartz inequality. Moreover, assuming 𝑅 ∈ 𝐿∞(Ω), (𝑣, 𝑤) ∈

(︀
𝐻1

0 (Ω) ∩𝐻2(Ω)
)︀2 we have

𝑅Δ𝑤 −Δ(𝑅𝑤) ∈
(︀
𝐻1

0 (Ω) ∩𝐻2(Ω)
)︀′

and one can deduce that
⟨𝒞𝑤, 𝑣⟩ = −(𝑅Δ𝑣, 𝑤)𝐿2(Ω) + (𝑅Δ𝑤, 𝑣)𝐿2(Ω).

Then, if 𝑅 ∈ ̃︀𝐿∞(Ω), introducing the partition of Ω into sub-domains Ωℓ, one can use Green’s formulae on each
sub-domains Ωℓ to obtain

⟨𝒞𝑤, 𝑣⟩ =
𝐿∑︁

ℓ=1

(∇𝑅 · ∇𝑣, 𝑤)𝐿2(Ωℓ) − (∇𝑅 · ∇𝑤, 𝑣)𝐿2(Ωℓ)

+
𝐿∑︁

ℓ=1

(𝑅∇𝑤 · 𝑛, 𝑣)𝐿2(Ωℓ) − (𝑅∇𝑣 · 𝑛,𝑤)𝐿2(Ωℓ). (B.4)
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Then, using standard trace inequalities (see again Thm. 1.5.1.10 of [16]), one can show that

|(𝑅∇𝑤 · 𝑛, 𝑣)𝐿2(Ωℓ)| ≤ 𝐶ℓ ‖𝑅‖𝐿∞(Ωℓ) ‖𝑤‖
1
2
𝐻2(Ω) ‖𝑤‖

1
2
𝐻1(Ω) ‖𝑣‖𝐻1(Ω).

Therefore, using the above estimation in (B.4) together with standard Cauchy–Schwartz inequality, we have

|⟨𝒞𝑤, 𝑣⟩| ≤ 𝐶Ω

(︃
‖𝑅‖𝐿∞(Ω) +

𝐿∑︁
ℓ=1

‖∇𝑅‖𝐿∞(Ωℓ)

)︃
×
(︁
‖∇𝑣‖𝐿2(Ω) ‖𝑤‖𝐿2(Ω) + ‖∇𝑤‖𝐿2(Ω) ‖𝑣‖𝐿2(Ω)

+ ‖𝑤‖
1
2
𝐻2(Ω) ‖𝑤‖

1
2
𝐻1(Ω) ‖𝑣‖𝐻1(Ω) + ‖𝑣‖

1
2
𝐻2(Ω) ‖𝑣‖

1
2
𝐻1(Ω) ‖𝑤‖𝐻1(Ω)

)︁
,

from which we deduce the estimation (4.17). �

Appendix C. Stability of (EME-1) by eigenvalue analysis

The previously obtained result shows that one may obtain exponential increasing behavior of the solution
in the energy norm. Our estimate ensures that if 𝛽 is proportional to Δ𝑡, this exponential instability in time
is of the form exp (𝐶 𝑇Δ𝑡) (with 𝐶 a positive scalar independent of Δ𝑡) . Although it can be satisfactory for
some applications, we show in what follows that this result can be improved asymptotically for small Δ𝑡 or if
𝐶𝐵 = ‖𝐵ℎ‖2 is small enough. For the following analysis we introduce the notations

̂︀𝐵ℎ =
𝐵ℎ

𝐶𝐵
, 𝜀 = 𝐶𝐵Δ𝑡.

Our result is based upon an asymptotic analysis in the parameter 𝜀 and is inspired from the work of [14] and of
[13]. We consider the homogeneous version of the algorithm (EME-1) (i.e. without any source term) written as
a first order system. To do so we introduce the variable 𝑣𝑛+1

ℎ = 𝑢𝑛
ℎ. One can see that the unknowns (𝑢𝑛+1

ℎ , 𝑣𝑛+1
ℎ )

are computed using (𝑢𝑛
ℎ, 𝑣

𝑛
ℎ). More precisely,(︂

𝑢𝑛+1
ℎ

𝑣𝑛+1
ℎ

)︂
= 𝒜ℎ(𝜀)

(︂
𝑢𝑛

ℎ
𝑣𝑛

ℎ

)︂
, (C.1)

where we get, from the scheme (EME-1), that

𝒜ℎ(𝜀) =

(︃
𝐷ℎ(𝜀) 0

0 𝐼ℎ

)︃⎛⎝2
(︂
𝐼ℎ +

𝜀2

12
̂︀𝐵2

ℎ

)︂
−Δ𝑡2 ̃︀𝐴ℎ −2

(︂
𝐼ℎ +

𝜀2

12
̂︀𝐵2

ℎ

)︂
𝐼ℎ 0

⎞⎠+

(︃
0 𝐼ℎ

0 0

)︃
,

with ⎧⎪⎪⎨⎪⎪⎩
𝐷ℎ(𝜀) = ̃︁𝑀−1

ℎ (𝜀)− 𝜀
Δ𝑡2

24
̃︁𝑀−1

ℎ (𝜀) ̂︀𝐶ℎ
̃︁𝑀−1

ℎ (𝜀),

̃︁𝑀ℎ(𝜀) = 𝐼ℎ +
𝜀

2
̂︀𝐵ℎ +

𝜀2

12
̂︀𝐵2

ℎ,

and

⎧⎪⎪⎨⎪⎪⎩
̂︀𝐶ℎ =

(︁ ̂︀𝐵ℎ𝐴ℎ −𝐴ℎ
̂︀𝐵ℎ

)︁
,

̃︀𝐴ℎ = 𝐴ℎ

(︂
𝐼ℎ −

Δ𝑡2

12
𝐴ℎ

)︂
.

Note that we have

𝒜ℎ(0) =

⎛⎝2 𝐼ℎ −Δ𝑡2 ̃︀𝐴ℎ −𝐼ℎ

𝐼ℎ 0

⎞⎠ .

The eigenvalues of 𝒜ℎ(0) can be deduced from the eigenvalues of 𝐴ℎ. Let us denote by 𝜆ℎ
𝑖 a positive eigenvalue

of 𝐴ℎ and by 𝜑ℎ
𝑖 a corresponding eigenvector. Since the matrix 𝐴ℎ is real and symmetric, the vectors {𝜑ℎ

𝑖 } are
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real and can be chosen as an orthonormal basis of R𝑁ℎ for the euclidian norm (𝑁ℎ is the number of degrees of
freedom of the underlying finite element space 𝑉ℎ). In particular, this implies that all eigenvalues are semi-simple
(their algebraic multiplicity corresponds to their geometric multiplicity). Now, we first remark that we have, for
each 𝑖 ∈ {1, . . . , 𝑁ℎ},

Δ𝑡2 ̃︀𝐴ℎ 𝜑
ℎ
𝑖 = 𝜇ℎ

𝑖 𝜑
ℎ
𝑖 , with 𝜇ℎ

𝑖 (Δ𝑡) = Δ𝑡2 𝜆ℎ
𝑖

(︂
1− Δ𝑡2 𝜆ℎ

𝑖

12

)︂
·

Thus, the set {𝜑ℎ
𝑖 } is also a basis of eigenvectors of Δ𝑡2 ̃︀𝐴ℎ associated to the eigenvalues {𝜇ℎ

𝑖 }. Then, it can be
shown that, for each 𝑖 ∈ {1, . . . , 𝑁ℎ}, such that 𝜇ℎ

𝑖 ̸= 0 and 𝜇ℎ
𝑖 ̸= 4, we have

𝒜ℎ(0)

⎛⎜⎝ 𝜑ℎ
𝑖

1
𝜂ℎ

𝑖

𝜑ℎ
𝑖

⎞⎟⎠ = 𝜂ℎ
𝑖

⎛⎜⎝ 𝜑ℎ
𝑖

1
𝜂ℎ

𝑖

𝜑ℎ
𝑖

⎞⎟⎠ with 𝜂ℎ
𝑖 = 𝜂ℎ

𝑖,+ or 𝜂ℎ
𝑖 = 𝜂ℎ

𝑖,−

and

𝜂ℎ
𝑖,± = 1− 𝜇ℎ

𝑖

2
± 𝑖

2

√︁
𝜇ℎ

𝑖 (4− 𝜇ℎ
𝑖 ). (C.2)

Theorem C.1. If for all 𝑖 ∈ {1, . . . , 𝑁ℎ} we have 𝜇ℎ
𝑖 ̸= 0 and 𝜇ℎ

𝑖 ̸= 4 then the spectrum of 𝒜ℎ(0) is the set
{𝜂ℎ

𝑖,±} and all these eigenvalues are semi-simple.

If the CFL condition is satisfied (i.e. 𝛼 ≤ 1), then 0 ≤ 𝜇ℎ
𝑖 ≤ 4. In that case we find that |𝜂ℎ

𝑖,±(Δ𝑡)|2 = 1.
Moreover, according to the previous theorem, if 0 < 𝜇ℎ

𝑖 < 4 the scheme (C.1) is stable for 𝜀 = 0 since the
amplification matrix 𝒜ℎ(0) is diagonalizable (all its eigenvalues are semi-simple) and its spectral radius is
exactly equal to 1. Such a situation occurs if the CFL condition is satisfied strictly (i.e. 𝛼 < 1) and thanks to
Assumption 3.1.
To study the spectrum of 𝒜ℎ(𝜀), we use the perturbation theory of linear operators [22]. More precisely, we use
Theorem 5.4 of [22] to compute the derivatives, w.r.t. 𝜀, of each eigenvalue 𝜂ℎ

𝑖,± of 𝒜ℎ(𝜀) at 𝜀 = 0. A first step
is to remark that 𝒜ℎ(𝜀) is continuous for small 𝜀, and to compute 𝑑𝒜ℎ(𝜀)/𝑑𝜀 at 𝜀 = 0. Observe that

d
d𝜀

(︂
𝐼ℎ +

𝜀2

12
̂︀𝐵2

ℎ

)︂
(0) =

d
d𝜀
̃︀𝐴ℎ = 0,

d
d𝜀
̃︁𝑀−1

ℎ (0) = −
̂︀𝐵ℎ

2
·

Taking into account the fact that ̃︁𝑀ℎ and ̂︀𝐵ℎ are diagonal or block diagonal matrices, we deduce that

𝑑

𝑑𝜀
𝐷−1

ℎ (0) = −
̂︀𝐵ℎ

2
− Δ𝑡2

24
̂︀𝐶ℎ.

Finally, one can compute that

𝑑

𝑑𝜀
𝒜ℎ(0) = −1

2

⎛⎝ ̂︀𝐵ℎ +
Δ𝑡2

12
̂︀𝐶ℎ 0

0 0

⎞⎠⎛⎝ 2𝐼ℎ −Δ𝑡2 ̃︀𝐴ℎ −2𝐼ℎ

0 0

⎞⎠ .

Denote by 𝜂 = 𝜂ℎ
𝑖,+ a complex eigenvalue of 𝒜ℎ(0) associated to some real 𝜇 = 𝜇ℎ

𝑖 that satisfies 0 < 𝜇ℎ
𝑖 < 4 (the

case 𝜂 = 𝜂ℎ
𝑖,− is treated similarly). As previously shown, 𝜂 is semi-simple and we assume that its multiplicity

may be greater than 1. We denote by Σ(𝜇) the set of numbers such that 𝜇ℎ
𝑗 = 𝜇 for all 𝑗 ∈ Σ(𝜇). The dimension
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of Σ(𝜇) is equal to the multiplicity of the eigenvalue 𝜇 of Δ𝑡2 ̃︀𝐴ℎ. For all 𝑗 ∈ Σ(𝜇), we denote by 𝜓ℎ
𝑗,𝑅 and 𝜓ℎ

𝑗,𝐿

the right and left eigenvectors of 𝒜ℎ(0) constructed as follows

𝜓ℎ
𝑗,𝑅 =

⎛⎜⎝ 𝜑ℎ
𝑗

1
𝜂
𝜑ℎ

𝑗

⎞⎟⎠ and 𝜓ℎ
𝑗,𝐿 =

⎛⎜⎝ 𝜑ℎ
𝑗

−1
𝜂
𝜑ℎ

𝑗

⎞⎟⎠ .

Remark that, since the eigenvectors 𝜑ℎ
𝑗 are orthonormal for all 𝑗 ∈ Σ(𝜇), the same property holds for the

eigenvectors 𝜓ℎ
𝑗 . With all these properties at hand, one can construct the eigenprojection matrix 𝑃 (𝜂) defined

as follows

𝑃 (𝜂) =
1

1− 𝜂−2

∑︁
𝑗∈Σ(𝜇)

𝜓ℎ
𝑗,𝑅 𝜓

ℎ,𝑇
𝑗,𝐿 .

We can show that 𝑃 (𝜂) is a projection operator that commutes with 𝒜ℎ(0), and

𝑃 (𝜂)𝒜ℎ(0) = 𝒜ℎ(0)𝑃 (𝜂) = 𝑃 (𝜂)𝒜ℎ(0)𝑃 (𝜂) = 𝜂𝑃 (𝜂).

We can now apply Theorem 5.4 of [22]: Any eigenvalue 𝜂(𝜀) of 𝒜ℎ(𝜀) is differentiable at 𝜀 = 0, and there exist
an eigenvalue 𝜂 of 𝒜ℎ(0) and an eigenvalue 𝜂 of

𝑃 (𝜂)
(︂
𝑑

𝑑𝜀
𝒜ℎ(0)

)︂
𝑃 (𝜂)

in the subspace spanned by the family {𝜓ℎ
𝑗,𝑅}𝑗∈Σ(𝜇), such that, for 𝜀 sufficiently small, we have

𝜂(𝜀) = 𝜂 + 𝜀 𝜂 + 𝑜(𝜀).

To continue this analysis, note that, since ̂︀𝐶ℎ is skew-symmetric, we have

𝑃 (𝜂)
(︂
𝑑

𝑑𝜀
𝒜ℎ(0)

)︂
𝑃 (𝜂) = −1

2
2− 𝜇− 2𝜂−1

1− 𝜂−2
̂︀𝐵ℎ(𝜇),

with

̂︀𝐵ℎ(𝜇) =

⎛⎝ ∑︁
𝑗∈Σ(𝜇)

𝜑ℎ
𝑗 (𝜑ℎ

𝑗 )𝑇

⎞⎠ ̂︀𝐵ℎ

⎛⎝ ∑︁
𝑗∈Σ(𝜇)

𝜑ℎ
𝑗 (𝜑ℎ

𝑗 )𝑇

⎞⎠ .

Since |𝜂| = 1, we have 𝜂−1 = 𝜂 and because of (C.2) we have 𝜂2 − (2− 𝜇) 𝜂 + 1 = 0. Therefore,

2− 𝜇− 2𝜂−1

1− 𝜂−2
=
𝜂2 − 1
𝜂 − 𝜂

= 𝜂,

which implies that any eigenvalue 𝜂(𝜀) behaves, for 𝜀 small enough, as

𝜂(𝜀) = 𝜂 (1− 𝜀𝛼ℎ) +𝑂(𝜀2)

where 𝜂 is an eigenvalue associated to some 𝜇 and 𝛼ℎ is one of the non-negative eigenvalues of ̂︀𝐵ℎ(𝜇). If the
eigenvalues of ̂︀𝐵ℎ(𝜇) are positive for all 𝜇, one can deduce, by continuity of the eigenvalues 𝜂(𝜀) with respect
to 𝜀, that |𝜂(𝜀)| ≤ 1 for all 0 ≤ 𝜀 ≤ 𝜀0, for some 𝜀0 depending on 𝒜ℎ(𝜀). For these values of 𝜀, the scheme is
stable. These observations are summed up in the following theorem:
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Figure C.1. Evolution of the largest eigenvalue amplitude w.r.t. 𝜎, 𝑁 = 10, 20.

Figure C.2. Trajectories of the eigenvalues of system (C.1) in the complex plane (with 𝑁 = 10
and 𝑅 = 𝑅0). Left: 𝜎 varies between 0 and 10. Right: 𝜎 varies between 0 and 20. Note that for
𝜎 = 0 the eigenvalues are all located on the unit circle and their exact location is represented
by circles. For 𝜎 ≤ 10 no eigenvalue is of absolute value greater than one. For 𝜎 = 20 two
eigenvalues are of absolute value greater than one.

Theorem C.2. Assume that Assumption 3.1 and assumptions of Theorem C.1 hold. Then, if

(𝜑ℎ
𝑗 )𝑇 ̂︀𝐵ℎ𝜑

ℎ
𝑗 > 0

for all eigenvectors 𝜑ℎ
𝑗 of Δ𝑡2 ̃︀𝐴ℎ, there exists 𝜀0 > 0 such that the scheme (C.1) is stable for all 0 ≤ 𝜀 ≤ 𝜀0.

Equivalently, all eigenvalues of 𝒜ℎ are semi-simple and of module lower or equal to 1.

Theorem C.2 gives a sharper result compared to what was obtained in the previous section thanks to an
analysis by energy technique, in the case of a small enough damping or a small time step. Note that a stronger
result would be obtained if one could guaranty that (𝜑ℎ

𝑗 )𝑇 ̂︀𝐵ℎ𝜑
ℎ
𝑗 > 0. Such a property depends on the spatial

discretization process and some pathological cases may arise, corresponding to situations where eigenvectors with
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compact support exist. Note however that, in a one-dimensional setting, the eigenvectors 𝜑ℎ
𝑗 are equidistributed

in the domain if a uniform mesh is used (see [11]).
We present now some numerical results to illutrate the theoretical results obtained above. We consider the

same discretization parameters as in the above section (with either 𝑁 = 10 or 𝑁 = 20). The discrete system of
equations for the (EME-1) scheme is written as a first order induction relation as in equation (C.1) and we com-
pute the eigenvalues when 𝜎 varies. The largest eigenvalue amplitude is plotted w.r.t. 𝜎 in Figures C.1a and C.1b.
In Figure C.2, the trajectories of the eigenvalues, with respect to 𝜎, are plotted. One can see that the amplitude
of the eigenvalues indeed decreases for small values of 𝜎, as predicted by Theorem C.2.
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