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CONSTRUCTION AND ANALYSIS OF FOURTH ORDER, ENERGY
CONSISTENT, FAMILY OF EXPLICIT TIME DISCRETIZATIONS FOR
DISSIPATIVE LINEAR WAVE EQUATIONS

JULIETTE CHABASSIER!, JULIEN DiAz! AND SEBASTIEN IMPERIALE>*

Abstract. This paper deals with the construction of a family of fourth order, energy consistent, explicit
time discretizations for dissipative linear wave equations. The schemes are obtained by replacing the
inversion of a matrix, that comes naturally after using the technique of the Modified Equation on the
second order Leap Frog scheme applied to dissipative linear wave equations, by explicit approximations
of its inverse. The stability of the schemes are studied using an energy analysis and a convergence
analysis is carried out. Numerical results in 1D illustrate the space/time convergence properties of the
schemes and their efficiency is compared to more classical time discretizations.
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1. INTRODUCTION

Many imaging techniques, such as non-destructive testing, seismic probing and medical imaging, rely on the
transient simulation of linear wave equations in complex media. The question of an adapted and efficient time
discretization of the underlying Partial Differential Equation naturally arises, and turns out to be a bottleneck
in terms of computational burden. In this work, we focus on the formulation of the wave equation that involves a
second order time derivative, and we investigate the case of dissipative media. Without being exhaustive, one can
distinguish, among existing explicit methods: the Leap Frog scheme [9], Adam-Bashforths schemes [17], Explicit
Runge Kutta schemes [25], composition methods [24] or Modified Equation schemes [23] (these latter are based
on generating functions theory [19], see in particular [12] for the case of the first order wave equation system).
They exhibit different stability properties, different costs in terms of numbers of matrix/vector products and
therefore different efficiencies. On the one hand, the stability conditions of Runge Kutta or Adam Bashforth
methods are obtained by quantifying the extent of the imaginary axis which belongs to the stability region
of the method formulated at the first order in the complex plane. The associated efficiency can be defined as
the ratio between this value and the number of matrix/vector products needed by the method at each time
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TABLE 1. Comparison of methods efficiencies for non-dissipative media.

LF AB3 RK4 LF-Suzuki ME

Cost 1 1 4 5 2
Efficiency 1 ~0.33 =045 =0.31 ~0.85
Order 2 3 4 4 4

Notes. LF: Leap Frog, AB3: Adam Bashforth order 3, RK4: Runge Kutta order 4, LF-Suzuki: fourth order composition
method (Example 4.3 of [19]), ME: fourth-order Modified Equation scheme.

step. On the other hand, methods that preserve a discrete energy, which is consistent with the physical energy,
such as Leap Frog or the fourth order Modified Equation scheme, do exhibit explicit stability conditions based
on a CFL-condition. The efficiency of these methods can be defined in the same way. In the context of non-
dissipative media, the explicit fourth order Modified Equation turns out to be the most efficient scheme, as
shown in Table 1 where we present the efficiency of Leap-Frop, third order Adams-Bashforth, fourth order
Runge Kutta and fourth order Modified Equation.

In the presence of dissipative terms, the stability conditions of Runge Kutta or Adam Bashforth methods are
given by an implicit formula, which is not easy to fulfill a priori. Moreover, the composition method is formally
no longer fourth order accurate and its stability properties are not clear (the method involves a backward
step that increases the energy associated to the solution). The energy-consistent methods that we present here
exhibit an explicit CFL-condition. However, the direct application of the Modified Equation technique on the
dissipative wave equation does not lead to an explicit scheme (even if finite elements with mass lumping or
discontinuous Galerkin methods are used), which greatly hampers the efficiency of the method.

In this article, we aim at circumventing this difficulty. We design a family of explicit fourth order scheme, based
on the Modified Equation technique, which can account for physical attenuation in the medium while preserving
a discrete energy identity. Our schemes are based upon the use of the first terms of an adequate Neumann series,
in order to deal with the implicit part of the obtained equations. To be able to evaluate the efficiency of our
approach, we compare the obtained algorithm, first, with results obtained by the standard modified equation
scheme; second, with a fourth order time discretization using the explicit Runge-Kutta method. We show that
the solution of the modified equation is well approximated and that, in practical applications, our scheme is
roughly ten times more accurate for the same computational cost. The paper is organized as follows.

— Section 2 is dedicated to the presentation of the scheme and its formal derivation.

— In Section 3 we study the stability of the scheme by energy techniques.

— In Section 4 we provide a space-time convergence results of our schemes towards the solution obtained by
the modified equation.

— Section 5 is devoted to the presentation of one-dimensional space-time convergence results and cost efficiency
analysis.

— Appendices A and B contain proofs of Sections 3 and 4 that are not essential for the understanding of our
approach.

— Finally, in Appendix C, we provide a more dedicated stability analysis for one of the newly derived scheme.
It is done using eigenvalue analysis.

In the following, the method we develop is applied to dissipative linear wave equations in a bounded domain
Q. An example of such equations is the following viscous acoustic wave equation, where u : RT x  — R is a
pressure, f : RT x  — R is an acoustic source and R : Q — R is a damping function.

O*u ou . + ou . .
w—l—R(x)a—AU—f, in Q xRT,  w(0,.) = ug, 5(0,.) =19, in Q. (1.1)
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Any smooth enough solution to (1.1) satisfies the so-called energy identity

de ou\? ou ou\?
E:_/QR(QJ) ((%) +/Qfa where S(t):;/ﬂ<at) +%/Q|Vu|2- (1.2)

Since we aim at designing high-order time scheme, we assume that the source term is smooth enough. Typically,
following the study presented in [5], to obtain a fourth order scheme one should have u € CS(R*; L*(Q)).
Obviously, this implies that the source term should be smooth enough, for instance, f € W51(R*; L2(Q)), but
this implies also that other strong regularity assumptions should be satisfied by ug, o and f(0,.) in order to
ensure that

Ou 1 u 9
ﬁ(O, )€ H (), %(0, ) € L7(Q). (1.3)
If R(x) =0, then, one can show that (1.3) holds if
up € H5(Q), 19 € H3(Q), f(0,.) € HX(Q). (1.4)

If R(x) # 0 but is smooth, e.g. R € W4°°(Q), then (1.4) is sufficient to guaranty that (1.3) holds. If R(x) is not
smooth then (1.4) is no longer sufficient since singularity in R(x) should be compensated by the initial data,
typically by assuming that initial data vanish in neighborhood where R(z) is not smooth. For the convergence
analysis that we present in this article we will avoid these difficulties by assuming that 1wy = ug = 0 and that f
also vanishes close to the initial time.

2. THE EXPLICIT MODIFIED EQUATION

This part is devoted to the introduction of a new explicit fourth order time discretization, for dissipative
linear wave equations of the form of (but not restricted to) (1.1).

In order to approach the complexity of the propagating medium and its geometry, the space discretization
is assumed to be done, for instance, with high order finite elements, based on a small parameter h devoted to
tend to zero, which parametrizes a sequence of finite dimensional spaces {V}},. In the sequel, we identify any
element u;, € Vj, and its vectorial representation in a well chosen basis of V}, that we still call u;. Once the
spatial discretization is fixed, we get a differential equation of the kind: Find wy,(¢,-) € V}, such that
d?uy, du

iz T B dth + Apun = fn, (2.1)

where M}, is the mass matrix, By, the dissipation matrix and Ay, is the stiffness matrix. We assume here that
the chosen space discretization method is such that Mj, is easily invertible, i.e. diagonal or block diagonal. This
can be achieved for instance thanks to Finite Difference methods, Finite Element methods with mass lumping
(in particular Spectral Element methods [6-8]) or Discontinuous Galerkin Methods [18]. These types of methods
also guarantee that Bj, is diagonal or block-diagonal as well. Moreover, we require M}, to be positive symmetric
and Aj, to be non-negative symmetric. For dissipative problems, it is very likely that Bj is also non-negative
symmetric, but we shall not use this property until the numerical analysis.
Since M), is positive symmetric, equation (2.1) can be rewritten as

My,

A2M7u i 1 dMPu
= Wh Bk + M, *B,M, 2#}1

_1 _1 L 1
T + M, 2 AM, 2 M2y, = M, 2 f. (2.2)

1 _1 _1 _1
Obviously, matrix M, > A, M, * (resp. M, > By M, *) possesses the same properties of symmetry and of posi-

1 1 1 1 _1 1
tiveness as Ay, (resp. By). Hence, replacing M,;” uy, by up, M, * fr, by fn, M, > B,M, * by By and M, *> A, M, >
by Aj, we can consider the simpler formulation

d2uh duh

e + Bhﬁ + Apup = fn, (2.3)
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without any loss of generality.
A very robust and efficient time discretization for this equation is the centered and second order, explicit,
finite difference scheme known as the Leap-Frog scheme (see [9])

n+1 n n—1 n+1 n—1
up '~ 2up tuy Up  —Up n _ fn
: B A = LF
At2 + bh IAL + hUp, fh ( )

where f7' = f(t") with t" = nAt.

In order to preserve the precision obtained with high order finite elements in space, we wish to design higher
order time discretizations, while preserving some interesting mathematical properties as the dissipation of a
discrete energy and an efficiency close to the one observed for the second order scheme. More precisely, if By, is
diagonal, scheme (LF) only requires the inversion of a diagonal matrix at each time step.

We propose to design these high-order time schemes thanks to the technique of the Modified Equation for
linear equations [23]. It is based on the evaluation of the truncation error of a scheme, and on the use of the
semi-discrete equation in order to replace some well chosen terms. Let us write the truncation error L£; of the
scheme (LF), for the solution u; to the semi-discrete equation (2.3), which is supposed as regular in time as
needed (the source term is also supposed as regular as needed)

wp (L) — 2up, (87) 4+ up (7L
, = ") Xiz) W) g,
= [d?uh@n) + Bhdtuh(t”) + Ahuh(t”) — fh(tn)]
At?

+ T [d?fh(tn) + Bhdfuh(t”) — Ahdfuh(t")] + O(At4).

uh(t"'H) — Uup, (tn_l)
2At

+ Apun(t") — i (2.4)

The first bracket vanishes because uy, is solution to (2.3). The remaining terms are of order At?, which is the
order of the scheme. Equation (2.3) can be differentiated with respect to time once and twice, in order to replace
the terms involving derivatives of uy. This gives

Ly, = Ei(uh) + O(At4) (2.5)
At?
Ei(uh) = H [—Bid?uh( n) — (BhAh — AhBh) dtuh(t”) + A%uh(t")

+ d7 fu(t") = Anfn(t™) + Budi fa(t™)] -

Remark 2.1. This approach relates closely to the seek of a modified equation in the context of backward
error analysis for ODEs (see Chap. IX of [19]), where the numerical solution is interpreted as the sampling
of a continuous solution of a modified equation, whose coefficients are obtained using the original continuous
equation and the numerical scheme.

Out of linearity, it is possible to substract to scheme (LF) a term consistent with €7 (uy,). This approach leads
to the following scheme, fourth order accurate in time, referred to as “Modified Equation Scheme” (ME) in the
literature.

A2\ uptt = 2un gt At? uptt — !
(14 G 8) R [ G (- au| Mg
At? ~
where the source term needs to be modified as follows,
n n AtQ 2 n n n
Bt = A7) + S [ Aalt™) + Badefult") = Anfa(t™)] (2.6)
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The above scheme is implicit. Indeed, it can be rewritten as

At At? At T At? .
<Ih + th 5 — B} + > (BrAy — AhBh)> % =fi —An (Ih - 12Ah) up,

At? u — !
2( I, + =B} | ——h . 2.7

+ < n+ 12 h) At2 ( )
Even if By, is diagonal, A, and By, do not commute in general, unless the eigen sub-spaces of Bj, are invariant
by Aj, which is a strong condition on Ay, generally not satisfied. Therefore, the matrix to invert,

At At? A3
Ih“!‘*Bh‘f' Bh+ 2

By A, — Ay B 2.
5 D (BrnAn — AnBh), (2.8)

is not diagonal, nor even block diagonal, hence the resulting scheme is implicit. Of course, a natural method
would be to use an iterative solver to inverse this non-symmetric matrix. Such solvers rely on an arbitrary
stopping criterion, related to some norm of some residual, that allows to stop the algorithm after at a finite
number of iterations. Eventually, the algorithm provides an approximate solution that depends non linearly on
the solution to the linear problem, which makes it difficult to analyze mathematically.

To deepen the mathematical analysis, the main idea of this paper is to approximate the inverse of the matrix
(2.8) by a truncated Neumann series. The resulting algorithm will require a given number of matrix-vector
multiplications, which leads to an explicit algorithm, and can be seen as a linear version of an iterative inversion
process with an a priori given number of iterations. The main difficulty will be to prove that this approach does
not deteriorate the consistency and stability properties of the resulted scheme.

Let us introduce

~ At At?
M, =1, + Bh + 7Bh and Cy = BrA, — ApBy, (29)
such that we have A A2 A A
t ~ t
I+ —B — B} BrAn — ApBp) = My, + —C,. 2.10
nt 5 Bat 45 Bi + 24(hh nBn) = Mn+ == Ch (2.10)
Denoting || - ||2 the induced euclidian matrix norm, we assume that At3||],\‘4/,:10h|\2 < 24 for At small enough

(a rigorous formalization of this statement will be done in the next section of the article), the matrix M), +
At3C}, /24 is invertible, and its inverse can be written using a special case of the Binomial inverse theorem (that
generalizes the Woodbury matrix identity),

N 3 -1 +oo 3 k N
<Mh+ Azich> = Z( ATZM 1Ch> Mt (2.11)
k=0
The identity above can also be proven using the expression of the inverse of perturbations of the identity by
a Neumann series. Note that, since M}, is diagonal or block diagonal, its inverse satisfies the same property.
Therefore, truncating the series up to order M, defines a family of “Explicit Modified Equation schemes”
(EME-M) that are given by

M At3 k
n+l _  n—1 E 1
’LLh = Uh + (24Mh Ch>
k=0

— - At? At?
X Ml:l At? ( ;LL — Ay (Ih — 12Ah> uZ) +2 <]h + Bh) ( — uZ 1):| . (EME-M)
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3. STABILITY ANALYSIS

Intuitively, the higher M is, the more accurate the scheme should be, but the higher the computational cost is.
A compromise must therefore be found and another criterion for us is the possibility to conduct a mathematical
analysis for stability and convergence. For this purpose we perform the following assumption throughout the
paper unless specified.

Assumption 3.1. The matrixz Ay, is positive definite and the matriz By, is symmetric, non-negative.

Wave equations analysis partially relies on the derivation of an energy identity that shows how the energy,
which is generally a semi-norm for the solution, varies in time. It is somewhat natural, in terms of consistency,
to construct a discretization that preserves a consistent version of this energy identity. It turns out that the
discrete energy identity also provides a so-called CFL condition on the discretization stability, but is also a tool
to show the space-time convergence of the fully discrete scheme. In our case, since By, is assumed symmetric,
the symmetry of Aj implies that Cy, = Bp Ay — Ap B, is skew-symmetric, hence, it is possible to show that the
classical implicit fourth order centered scheme (ME) satisfies the following energy relation, in the absence of
source.

82-5—1/2 - 5’?—1/2 UZ+1 _ uz—l u2L+1 _ Uﬁ_l
Al =BTSRr T aAar (31)
where
. 1 AtQ AtQ AtQ nt+l _  n n+l _ . 'n
5h+1/2 =3 (Ih + EB}% - TAh [Ih - 24Ah:|> h Al o e Al h
1 At? w4

“A (L — 24 h h . Zh h. 3.2
+ 5 4ih ( hT T h) 5 D) (3.2)

The energy terms &' /2 are positive as soon as the CFL condition is satisfied, which is given in this case (the
Modified Equation, see [4])

HAhHQ 3 At 1
= = ; <1. .
o At( - ZolAfle, o< (3.3)

Since By, is non-negative, the right-hand-side of equation (3.1) is non-positive and the energy S;Z +1/2 decays
with n. The stability of the scheme in L? norm can be deduced (see [5]) from the decay of the energy, which is
not necessarily a norm for the solution.

We prove in the next section that the schemes (EME-M) ensure a discrete energy relation of the form

5}1:,-‘,—1/2 o 82—1/2 B B 'U/Z-i_l o u;ll,—l 'LLZ+1 o uz—l (3 4)
At CMM T AL 2t '
where &' T1/2 s defined as in (3.2) and is therefore positive with the same CFL condition as for the standard

modified equation scheme (ME). In the following, we focus on the first four schemes which present the following
properties:

— (EME-0). This is the lowest order of approximation, its cost is close to twice the cost of the Leap-Frog
scheme and By, o = By,. Therefore the discrete energy is dissipated.

— (EME-1). In that case, we will show that the scheme is a fourth order scheme under some conditions on the
matrices By, and Ap. We will show that By ;1 has no sign so that exponential blow up may appear. We will
prove that these blow-ups, which are illustrated numerically in Appendix C, are of the form exp (t CAt)
with C' > 0 independent of h and At and are therefore not observable on usual time scales.

— (EME-2). A similar behavior to the one of scheme (EME-1) can be observed except that fourth order
convergence may be obtained in more situations and the exponential stability estimate is more favorable.
We will not study this scheme in detail here.
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— (EME-3). This scheme provides all the good properties one can expect: it has the maximum order of accuracy
and is dissipative. Among the schemes we analyze, it is however the most expensive in terms of computational
cost, yet its efficiency is better than the RK4 scheme.

Remark 3.2. Because of Assumption 3.1, the matrix ]T/[/h defined by

At At?
M, =1 —B —B
h n+ 5 h+ D

is symmetric and invertible, and its inverse is sparse (diagonal or block diagonal). Moreover, Mh is a positive
symmetric perturbation of the identity and therefore ||M, '||2 < 1 and HMh_l/2||2 < 1. We also have

|My]l2 <1+

At || Bulla | At?||Byll3
2 12

3.1. Energy relation

In order to prove that the Explicit Modified Equation (EME-M) schemes described above ensure an energy
relation, we want to rewrite them similarly to the modified equation scheme (ME). One way to obtain such a
centered formulation is to compute the inverse of

M k
Z At? — 1 -1
k=0
Notice that, if
At3 1
f<1 with g:= —HM Chlle, (3.6)

then the inverse of the matrix given in (3.5) can be expressed thanks to a Neumann series. This motivates us
to introduce a second time step restriction.

Theorem 3.3. Assume that « <1 and 8 < 1. Then, for M € {0,1,3}, the scheme (EME-M) is equivalent to

At? ul Tt — 2y gt At? ulttt — gt
<Ih + Bi) h h h |:Bh,M + Ch,M] —h___—h

12 At? 12 2At
At? -
+ Ah <I},, — 12Ah> UZ = f;:, (37)
where
B, = By, Cho=0.

Ul , 2kt . \2k

B =Bn+ 45 0% (%) (C’hM{l) Chr Cny =305 (%) (ChM{l) Ch.
4k+3 _ {4k+3 4k ~ 1\4%k

Bra=Bn+ 85 5 (35)  (GIE) T On Cha=Ti% (3F) (GWE) Cn

Proof. Algorithm (EME-M) can be rewritten as

M kL _
—~ A3 — ut Tt — gt At? u —ul !
M —-M,'C b h oI+ =B} )b
h LZ_O< 24 ”) A2 nt P AR
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Then, writing
-1

At?
=1In+ 73;, + Xnm

M, [i (—M 10h>k

k=0 12

with )
M k1~

~ A~ A,

Xt = M, L;) ( S My Ch> —In— 5 Bi

algorithm (EME-M) is actually equivalent to
At? utt —2ul 4! uttt — ot At? ~
In+ =B | = e X A (I — = An ) up = [ :
( AT h) At? TR TRy AU T A ) e = (38)

Let us now consider the different cases M =0, 1 and 3.
— When M = 0, we have

2 At?
X M, —I,— =B} ) =B
o = Ny ( A= h) B
which implies Bp, o = By, and Cj, 9 = 0.
— For M =1 one can show, since
1 k1~ -1 M k
A3 — A3 ~ At —
77M 1 — I 7M—1 — 7M_1
(Sma)] = [n-grma) -3 (G
k=0 k=0
that N A
At? 2 — XA~
Xp1 =B+ — —M, —
h1 = Bn+ 120h+At hz<24 hch) )

from which we deduce the expression of By ; and Cp; given by in the theorem’s statement by identifying
skew-symmetric and symmetric part in the above matrix.
— For the case M = 3, we will use the property that, for any matrix D), such that ||Dy|l2 < 1, we have

[I, — Dy + D} — D3] " = [(In = Dp)(In + D})] ' = (In+ D}) " (In — Dy) "
= (I + D)~ (In = D)™ (In + Dp) " (In + Dp) = (In — Dy) ™" (I, + Dp)

therefore N
[I,— D+ D} —D}] ' = (Z Dﬁ’;’“) (I, + Dy,). (3.9)
k=0
Using (3.9) with Dy, = Atgﬂh_lCh/le one can show that

At? 2 At At — Ak
X,3=B M —1
ha = Br+ —5-Ch At( h+ 4Ch>;<24 Ch) ;

we obtain the last result of the theorem by identifying symmetric and skew-symmetric part of the above
matrix. ]

Remark 3.4. Notice that (3.7) can be seen as a Leap-Frog scheme applied to the perturbed continuous problem

At? d?uy, At? dup, At? -
1 —B; | — By + — A - —A = f/ .1
< nt 15 h) e t { v+ o Ch,]u} @ A < 12 h) up = [y, (3.10)

where some of the original matrices have been corrected with infinite series. This can be related again to the
modified equation in the context of backward error analysis for ODEs (see Chap. IX of [19]), where the modified
equation is expressed as an infinite series.
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3.2. Stability

This section is devoted to the stability analysis of the modified equations schemes. We first give an energy
estimate for a large class of schemes before applying it to the specific case of the (ME) and (EME-M) schemes.
3.2.1. General results

To continue the analysis, we need an intermediate result showing that the energy norm is a semi-norm for the
solution. Such a result is inspired from [5]. We recall here the statement and give a sketch of the proof for the
sake of completeness.

Proposition 3.5. If the CFL condition (3.3) is satisfied, then the functional 5,?“/2 defined by (3.2) satisfies

n+1 n 2
Up — — Up

At

1 ’I’LJrl 2 n
+(1-a? Ut <2grt/?

&

2 2

Proof. If the CFL condition (3.3) is satisfied, then, recalling that Aj, is symmetric.
At?
0 § Ah(l - 012) § Ah <Ih - 12Ah> .

Moreover, from Assumption 3.1, Bj is symmetric and non-negative and we have, by inspection of (3.2),

1 1 1 1
I, — A—tzAh Ait‘lAz up Tt — . “Z+ —uj (1 B a2) uptt oun . n+ + up < 2£n+1/2
4 4 At At 2 2

Since the minimum of the positive polynomial 1 — /4 + 2%/48 is reached at x = 6 and is equal to 1/4, we get

the desired result. O

We address now one of the main results of this paper, which establishes a general stability result for schemes
of the following form: for 1 <n < N

At2 n+1 —oun + unfl un+1 unfl
1 —B h h {B C } “h  Th
( AT ) INE Rl AR 2At
At? o
+Ap (I — HA}L up = fh + Aﬁgh, (3.11)

where Eh and C~*h are respectively symmetric and skew-symmetric matrices that may depend on At. The stability
analysis of the generic scheme (3.11) is a preliminary step, not only to the stability proof of schemes (ME) and
(EME-M) that we perform in the next paragraph, but also to the convergence analysis that we detail in the
next section and which will give appropriate values to f[} and gp. One can show the following theorem (whose
proof is postponed in Appendix A).

Theorem 3.6. Assume that (4.1) holds, that o < 1 and that there exists 0 < cg < 1/(4 At) such that for all
v, we have N
By - v, > —cgl|lonll3, (3.12)

)

then solutions of (3.11) satisfies the following energy estimate, for all1 <n < N,

Ve < o3 (1], + St + e

(07

g —ag!
At

C
sup |k |l, +C /€2,

_|_ J—
V1—a? ke, N
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where the positive scalar C' is given by

C=2V2yeNOD (3.13)
and where the amplification factor v > 1 is defined by
. 14+4Atceg
7T I T 4Ates

3.2.2. Stability of the schemes (ME) and (EME-M)

In this section, we specify how Theorem 3.6 can be used to study the scheme (ME) and each scheme (EME-M),
M € {0,1,3}. We first state Proposition 3.7 that gives the value of ¢p of equation (3.12) for (ME), and (EME-M)
with M = 0 or M = 3. In particular it is shown that cg = 0, so that no exponential growth occurs in the
stability estimates for schemes (ME), (EME-0) and (EME-3). This is not the case for the scheme (EME-1), for
which we establish Proposition 3.8 (a proof of which can be found in Appendix A) giving the value of ¢p in
that particular case.

Proposition 3.7. For all vy, € V}, Bpovy - vp > 0. Moreover if oo < 1 and 8 < 1, then Bypzvp - v, > 0.
Therefore, Theorem 3.6 can be applied for (ME), (EME-1) and (EME-3) with c¢g = 0.

Proof. The first statement comes from the non-negativity of Bj o = Bj. The second statement comes from
the expression of By, 3 given by Theorem 3.3. Indeed, since C}, is skew symmetric, each term of the series is
non-negative:

— 4k
(Cth_ ) Chuyp, -vp > 0.
O
Proposition 3.8. If a <1 and B < 1, then for all vy, € Vp,,
B~ 46
Bpivp v > Bpop, - vp — EMh vp - Up > _EH%”%' (3.14)

The result of Proposition 3.8 may seem not sharp enough since, in regards of the stability estimate given in
Theorem 3.6, an exponential growth of the energy may occur. The exponential factor is of the form
eN(,yil) SAt Cp _ 462

ith —1=———— andso = .
wi v nd s CRB AL

= 1
1—4AtCB (3 5)

We will see however, in the applications we consider, that 3 is proportional to At and therefore, for At small
enough we have cg < 1/(4At), which is a necessary condition to apply Theorem 3.6. Thus,
—1 ~ A#?
v At—0 ’
meaning that, if 7 = NA¢ is the final time of simulation, the exponential growth is of the form exp(C TAt),
with C' a positive scalar independent of At), so that the scheme can still be qualified as convergent and stable. In

Appendix C we show that estimate (3.14) is not optimal in specific situations. However, we illustrate numerically
in Appendix C that an exponential growth may indeed occur for some discretization parameters.

4. CONVERGENCE ANALYSIS

In this section we treat “partially” the space and time convergence analysis of our scheme. By partially,
we mean that we only prove a space and time convergence result of the solutions of explicit modified equation
schemes (EME-M) towards the solutions of the modified equation (ME). We first give an abstract error estimate
before tackling the particular case of the wave equation. To simplify the presentation, we restrict ourselves to
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the case of zero initial data and we assume that the source terms f[f and g; are approximations of smooth
functions of time compactly supported in (0,7) (hence f) = 0 and g} = 0) and therefore we set

uy = uj, = 0. (4.1)

4.1. Abstract error estimate

We consider now a family of problems parametrized by a family of positive numbers h that converge to 0,
meaning that we consider a family of matrices {Ap} and {Bp} that may act on larger and larger spaces as h
goes to zero. We assume that the time step is given by the CFL condition (3.3). More precisely we assume « < 1
fixed and set

120 \?
At = () .
| Anll2

With the above equality, the time step At can be seen as a function of h. Indeed, in the cases we want to
consider, Aj, approximates an unbounded operator and ||Ap |2 blows up when h goes to 0, which implies that
At goes to 0. Therefore, the space time convergence can be studied be letting h tend to 0. Now we denote by
{u}'} the sequence of iterates obtained by solving the modified equation scheme (ME) and {u} ,,} the sequence
of iterates obtained by solving (EME-M), formulated as in (3.7), and we define 7

n _.n n
eh)M = Up — U’h,M'

Our objective is to show that €n v 8oes to 0 for a given h—dependent norm when h goes to 0. By simple
computations, one can show that the error term ey, , satisfies the explicit modified equation scheme (EME-M)
with source term depending on uj. More precisely, we have, for 1 <n < N,

A# 5\ i — 26k + g At Chort — Cht
I, + —B? ’ : ’ B —_g} ’ :
( AT h) A2 + [ T ’“M] 2At
Atz un+1 o un—l
Ap | I — —A no=Dpyt———h 4.2
+ Ap ( h 19 h) €h, M h,M AL ) (4.2)
with
At?
Dp oy = Bum — B + H(Oh,M — Ch).
Applying Theorem 3.3, we find
At?
Do = _ﬁcfu (4.3)
and, for M =1 or M = 3,
At ABNF L \k
D=5 (24> (cth 1) Ch, (4.4)
ENuM
with
N =N, N3={4k—-1|ke N}U{4k|k € N*}.
To continue the analysis, a simple way to proceed would be to apply Theorem 3.6 with
un+1 _ un—l R
i =Dpy—2 AT h and gy =0. (4.5)

It is easy to obtain an estimation of (u} ™" — u}'™")/2At using the stability of the (ME). However, if the function
R(x) is discontinuous, which happens frequently in the context of weve propagation, the term ||Dj, ar||2 goes to
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0 as h™. This behavior will be illustrated numerically in the next section. Hence, even with M = 3, we will not
be able to prove the fourth order convergence of the scheme. An alternative is to write the right hand side of
(4.2) as

1 1 1 ;uz+1 uy 1 o
Dna == = A7 gt with  gj = (Ah 2 Dy A, 2) (Ag 2At> . §=o. (4.6)
and to apply Theorem 3.6 with §" given above and f™ = 0. For this, by inspection of the estimation of
Theorem 3.6 we need to estimate
n+1 n—1 ~n ~n—1 n+1 n +UZ 2

—1 -1 Ly —u qr —q —u —uy
A 2D A2 n._ A2 h h d h h _A2 h h
oML Gh h oAt an At 2AE2

(4.7)

The next three lemmas aim at estimating these 3 terms successively.
Lemma 4.1. Assume that 3 <1 and M =1 or M = 3. Then, we have,

At5 M—-1

1
A, 2Dy mA, H
14 Dras 4y e < S T

IIChA 3.

_1 _1 _1

Note that the above lemma gives an estimation of A, 2Dy p A, ? (for M =1 or M = 3) in terms of C, A, .

We explain in Section 4.2 why we expect that this operator, in the case of the wave equation, has good behavior
as h goes to 0. We illustrate this numerically in Section 5.1.

Proof. Observe that, by definition of Dy, ar given by (4.4), we have

12 _1 _1 _1 A3\ F —~ A\ _
@Ah 2Dh,MAh 2 = Ah 2 < Z (24> (Cth 1) Ch) Ah

SIS

A3 1~ 1 ABNF 1 k) — _1
:24Ah20th2< 3 (24) (a1, 2 cuit, *) )Mh2ChAh2.

k+1eN Ny

One can show that

+oo ﬁM 1
S ( ) GlE< 3 = o

k+1ENNM 2 k=M-—1 k=M-—1
We deduce that
1 1 At5 ﬁM 1
Ay, 2 DaarAy 2 llz < -~ ||A 2O, 2 o 1M, 2 ChAy 2 s
288 1 —
At5 ﬁM—l 1 1
< — A 2C CrLA, 2|s.
< A s
_1 _1 _1
Finally, since |4, 2Cyll2 = [|(4,, 2Ch)T||2 = |CrhA,, ? ||2 we obtain the result of the lemma. O

We give below standard result on the stability of the scheme (ME). The proof of the lemma below is given
in Appendix B for the sake of completeness.
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Lemma 4.2. Let u} be the solution of (ME) with a < 1, u) = u} = 0, and ﬁf = f& = 0. Then, for all
1<n<N

n+1 n—1
Up — — Uy

2At

T

&

3 N
< At
2 \/170[2 k}Z:l

2

Moreover zfﬁf =0 then, for all2 <n < N

n n—2
up —up” + g

2A¢?

n+1
Up, —

fh—2h" +
At?

4}

36
< ——At
2 \/1 7012 kZ:Z 9

It is now possible to state the following theorem on the estimation of the error term €h M for schemes
(EME-M) (with M € {0,1,3}).

Theorem 4.3. Assume a <1, < 1/6 and

“:9
I
o

0o _ .1 _ o _ .1 _ 20 _ 71
up, = up =0, uh,M_uh,M_Ov h=rn =

Then, the error ey \, = up — hy \ satisfies, for 1 <n <N,

N

n+1 2

+1 n
L€y — €nm 2 1€ teh
- || 1— A2 T
4 At + A —af) A 2
2 2
N _ _ _
B A oot e 7
< an,M | bh,M tz AR )
k=1 2 2
with
_1 _1 2 A®
ap,0 = AtQ 1_ a2 ||Ah 2C’hAh 2 ||2, ap,1 = \1[ HC’h “%6641\[’62,
bro =1, bpi=1+32N g
and
an3 = 7 ICr A, 213,
bhs = 1.

Proof. Because of our assumption on the initial data we can apply Theorem 3.6 on scheme (4.2) with f;' =0,
gr given by (4.6) and by g9 := 0, and by

~ ~ A2

By, =Bpyv, Ch=——Chum.
12

Denoting Sn+1/2 the energy given by (3.2) written with e} 5, instead of uj, we get, for all 0 <n < N,
N —1 ~k—1
-y . 1 95—
entl/2 - o Ay M n h
s | g Il = | T )

SR TR lak]
V1—a? ken,n 2
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with Cpy = 2v27va eVO¥ =D and where 79 = 1, v3 = 1 and using (3.15),

8 Atcp . 43? 3232
NEI T T A, T BT n=t T T

Note that 7; is greater than one and is bounded because of the assumption 3 < 1/6. Using the definition of "
given by (4.7) we can show the following estimation

p N
Ve < e (L

k=1

&k ~k—1

)—i—CM’a sup H(j’ﬁ”z (4.8)
) ke[l,N]

where C)y,o is given by

_1 _1
*Dpv Ay 2 |2

Cm
Cra=—= 1A
M, /71—052 ” h

Moreover, thanks to Lemma 4.2, we have

36 N FE—
sup ||q < At ,
ke [1N]H iz < Vi-a? Z:: 2
N %71
- 36NAt
AtZH all, < Z :
k= 2
~k ~k—1 N Tk—1 Tk—2
qy — qh 36 N At fh—th + f
At < ——At
Z - 1— 052 kzﬂ AtQ
Combining these estimates with the energy estimate (4.8), one gets
- N |l 7x _ 7k—1 N | 7% Tk—1 | Fk—2
~ -7 = =20+
VEarT? < Cua | (14 ——2LN At ALY | 20| 4 N AP h—=Jh h
R =M A 2 At + 2 INE ’
k=1 2 k=2 2
where 360
5M,a M a

V1— o

The result of the theorem is obtained, first, using Proposition 3.5 that bounds by below the energy with respect
to semi-norms of the errors; second; using the recursive definition of the constant Chs ., Cir, and Cps as well
as I'ps; third, using the estimation of

_1 _1
145" Dnar Ay 2 2

given by Lemma 4.1 for the cases M = 1 and M = 3, or equation (4.3) for the case M = 0. Finally, note that,
because of the assumption on 3, we have

v <1+4643° and 1771_1§3252.

4.2. Application to wave equations

Our objective is now to apply the results we have obtained to the specific case mentioned in introduction,
namely the wave equation (1.1) with zero initial data. We consider the family of semi-discrete problem of the
form (2.1) and if one considers the total discretization by the modified equation technique (ME) it is natural
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to expect — if sought solutions are regular enough — a space-time convergence of order 4 of the solution given
by (ME) to the solution of (2.1). Finally, the convergence of (2.1) to the continuous solution of (1.1) is an
application of the finite-element convergence theory. To restrict the scope of our analysis we assume spatial
convergence at the right order is guaranteed, i.e.

sup lup — un(t")]3 < h* Cu.
tm€(0,T]

for some C,, > 0 independent of h. Such results was proved in [5] in the case R(x) = 0 for a family of implicit or
explicit fourth order schemes. We assume here that adding dissipation does not deteriorate the convergence if
the scheme (ME) is used (such result is suggested by the computation of the truncation error (2.4) and (2.5)).
In the light, of the previous equation we seek for fourth order estimation of the error term e} ;,. The proof given
in [5] relies, naturally, on regularity properties of the source term. In our context, we need équivalent regularity
properties and the corresponding assumption reads

Assumption 4.4. For any T > 0 and At given by (3.3) with o < 1 independent of h and N = |T/At], there
exists a scalar Cy independent of h > 0 such that

%3
k=1

In ordee to obtain more specific results in relation with our applications, we also need to assume a given
behavior for the norm of the matrices Aj, and By. It is clear that || A2 is equivalent to h~2 when h tends to
0, since it corresponds to the discretization of a second order differential operator. Moreover ||Bp||2 should be
bounded independently of h because it corresponds to the discretization of a zero order differential operator.
These observations are turned into assumption in what follows

=2+ f
At

<Cf.

2

i
At

2

Assumption 4.5. We assume that there exist three scalars ca, Ca and Cp, independent of h, such that
Ca
Ao ARz < 2 “Aand IBrll2 < Cp.

Note that, because of the CFL condition (3.3), the maximum allowed time step At is proportional to h. As a
direct consequence, we have that
A 3
B =B(h) < 5[l Anll2[|Ball2 = Ata®|| Byl < AtCp  hence  B(h) — 0.
Therefore, for sufficiently small h, 3 < 1, and the schemes (EME-M) will be well defined (recall that we have
assumed that o < 1).

Discussions on the norm of C, A, *. An estimation of the norm of C’hA is required to deduce a space-
time convergence result from Theorem 4.3, since the norm of the operator may blow-up, which is the case in
practice as we show numerically in Section 5. A dedicated estimation of the norm of this operator is out of the
scope of this article. Instead, in what follows, we define reasonable assumptions on the behavior of the operator
with respect to h, by analogy with the continuous setting. We have the following equality

1
[Cn Ay — sup [ECRA o O]

e = ; (4.9)
wnon vnll2 unllz wnon o 1y |AZ w1

1
Note that ||A7wp||2 can be regarded as some approximation of the H L_norm of the function represented by wy,.
If one considers the wave equation (1.1), we have that Cj, is some approximation of the operator C : H}(Q) —
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H=1(Q) defined, for R € W by
(Cw,v) :== (RAw — A(Rw),v) = —(V - (wVR),v) — (VR - Vw,v)
= (w, VR- V’U)Lz(g) - (VR . VU}, ’U)LZ(Q) (4.10)

where (-,-) denotes the duality product in Hj () and (-,-)z2(q) is the standard L? scalar product. Then, in
light of equation (4.9) one can expect that an estimation of the term

[{Cw, v)]|

||v||L2(Q) Hw”Hl(Q)

(4.11)

1
will give a precise idea on how to obtain an estimation of ||Cj, A4, ?||2 as soon as accurate enough finite elements
approximations are used. We consider below a piecewise smooth function R. To do so, we introduce a partition
of Q into L bounded Lipschitz sub-domains

L
Q=% 2nQu=0, k#¢
/=1

and we define the following subspace of W1 of piecewise regular functions
Whe(Q) = {u e Wh=(Q),ulo, € CHQ) NW2>(Q), [=1,...,L}.
In Appendix B we prove the following result.

Theorem 4.6. There exists Cq > 0, depending on Q and on 0y only, such that, if R € W°°(Q), then, for all
(v,w) € Hg()?

|(Cw, v)|
< Ca(|AR| L) + VR L= (9)), (4.12)
Hv||L2(Q)||w||H1(Q) ( ) ( ))
and if R € Wl’oo(Q)
L 3

Cw,v 101l 1.
o]l |2< ||w|>|| oy~ (”VRW(Q) +Z||AR||L°°(W>> T @ (4.13)

L) IWIH () =1 ”v”L?(Q)

1
Theorem 4.6 shows that one can expect [[C, A, 2 ||2 to be bounded by a term proportional to
L
11
<||VR||L°°(Q) +> AR”L“(Q@) (1 + | Sl‘llp ||Aﬁvh§> ; (4.14)
=1 vpll2=1
which leads to a conclusion remarking that, thanks to Assumption 4.5 we have,

1 Vv C
A7 op ]2 < Y24

[[onl2-

Moreover, if we introduce the space
L=(Q) = {u € L®(Q),ulq, € COQ)NWh=(Q,), 1=1,...,L},

then, in view of (4.14), it appears that one can extend the results obtained in the case R € EOO(Q) Considering
a well chosen smooth function R € WLDQ(Q) that converges towards R in some well chosen norm, then, by
inverse inequality (see Sect. 4.5 of [1]) one can expect to “lose” a power of h. To sum-up, it seems reasonable,
to perform the following assumption, which will be confirmed by numerical results in Sect. 5.1).
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Assumption 4.7. We assume that there exists a constant Cpa, independent of h, and 0 < r < 3/2, such that
Cpa
T
Remark 4.8. It is expected that if R belongs to W2>°(Q), then Assumption 4.7 holds with r = 0, if R €

Wl’w(ﬂ), then Assumption 4.7 holds with » = 1/2 and finally if R € L>°(2), then Assumption 4.7 holds with
r=23/2.

—1
1Ch A, ll2 <

_1 _1 1 1

Discussions on the norm of A, *Cp A, ?. As previously the norm of A, *Cy A, > must be estimated in
order to deduce a space-time convergence result from Theorem 4.3 in the case M = 0. Following the above
discussion, we end-up to the following assumption by analogy with the continuous setting.

Assumption 4.9. We assume that there exists a constant Cpa independent of h and 0 < r < 1/2 such that

Cpa

1 _1
145ty ) < =5

1 1
Indeed, with the same arguments as before, one can see that an estimation of the norm A, >Cy A, * should be

obtained from an estimation of
[(Cw, v)|

Hw||H1(Q)||UHH1(Q)

(4.15)

and we have the following theorem (proof given in Appendix B).

Theorem 4.10. There exists Cq > 0, depending on 2 and on the Qg only, such that, if R € W1°°(Q), then,
for all (v,w) € HE(Q)?
[{Cw, v)|

”UHLZ(Q)HMHHl(Q)

and, if R € L=(Q) and (v,w) € (HZ(Q) N H2(Q))?,

< Col| VR L= (0, (4.16)

. )

C ]| o]

[(Cw, )| < Co [ IRl o@ + 3 IVE] o 14— D) ) (4.17)
Tollzr o el @ o ! ;

Wil @) VIl H () =1 lwllfrgy  Ivl7 @)

where {-,-) denotes here the duality product in H}(Q) N H?(Q).

1 1
Using the result of Theorem 4.10, we expect the norm of A, *Cy A, * to be proportional to

L 1 1
Apwn |2 Apvp |2

<||R|Loc<m+Z||VR||LW<Q£>) <2+ [ Awonlls  IAvonlls )
=1 ||A;2LwhH22 ||A5Uh||§

if one admits that || Apwy||2 is an approximation of the H?(€)-norm of the function corresponding to wy,. This
justifies Assumption 4.9 since

=
NN

| Apwall3
1

11 C
1 <455 < ;
Az w3

[N

Remark 4.11. It is expected that if R belongs to W1°°(Q) then Assumption 4.9 holds with r = 0, if R € L> ()
then Assumption 4.7 holds with r» = 1/2.

Main result. Our main result is obtained as a corollary of Theorem 4.3 that takes into account the Assump-
tions 4.4-4.9.
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Corollary 4.12. Let T > 0 and At given by (3.3) with o« < 1 independent of h and N = |T/At]. Let
Assumptions 4.4, 4.5, 4.7, and 4.9 hold. Assume that

71 )
u%:u}b:O, u?x,M:ullz,Mzov J/CB o =15 =0.

Then, there exists C > 0 such that, for sufficiently small h, we have
HN#EHSC@+ﬂmWMM,
where m(h; M,r) are decreasing functions of h given by
m(h;0,7) =h?>"" for 0<r<1/2

and
m(h;1,7) = e“ThR>=2 and  m(h;3,7) =h7"2" for 0<r<3/2.

Proof. Note that, for sufficiently small h, we have 8 < 1/6 and we can apply Theorem 4.3. This shows that

1

2 2\ 2
n
ehM eh,M

1el s el
\2 hM h,M
At

+ (1 —a?) H 5

2

< apri (b Cp + T Cy), (4.18)

1
4
2

where we have used Assumption 4.4 to estimate the source term contribution and where the value of a s and
bn,ar are given by Theorem 4.3. Using Assumptions 4.7 and 4.9, the right hand side of (4.18) can be bounded
by C (1 +T)m(h; M,r) for some constant C' independent of h. Then, one can observe that

n+1 n n+1
AZentl _ AzehM"_eh,M_gA €hM ~ €
h hM 2 At

1
and because of the CFL condition (3.3) we have At|| A} [|2 < 12. Therefore, by the triangular inequality,

n TL-I—l
en,M — ChMm

n+1 n
A% €hm tCh M
At

HA2€H+1||2 B)

+6
2

2

Then, up to the definition of another constant C' > 0, we can deduce from equation (4.18) that
A7 €4tz < C (1 + T)m(h M, )

which concludes the proof of the corollary. O

5. NUMERICAL RESULTS

For the numerical investigation of the schemes (EME-M), we use the following 1D dissipative wave equation
as a model problem.

9%u ou 0%*u

w—i_R(m)E_@_fa 1'6(071), tE(O?T)7

uw=0, z€{0,1}, te(0,T), (5.1)
u=0, %:0, z€(0,1), t=0.
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FIGURE 1. Norms of A, Cj, C’hAgl/z and A;l/zChA,zl/z with respect to h with ¢ =1 on a
uniform mesh of [0, 1] using fourth order finite elements.

The source term f is given by

T — g g(?)

f(x,t):e_< o >26a°g<t)—1, g(t):(t—t())Q. (5.2)

T

In practice, we set xg = 0.8, ro = 0.025, to = 0.3, 7 = 0.08 and ap = 100. In the following, we investigate two
different behaviors for the dissipative function R(z): either R(z) = Ro(z) € L>®(Q), R(z) = Ri(z) € W1 (Q),
or R(z) = Ra(z) € C*>*(Q), with Ry and R; given by

r1— o — x|

RO(‘T) =0 1[0@1](.'17), Rl(x) =0 1[11*T1,931+T1]($) "

and Ry given by

(65} xr — T
Ry(x) = 0 1[_1 1)5(x) exp (a1 + 5(9:)21> , s(z) = —

In the above expressions, we set r1 = 0.2, x1 = 0.3 and a; = 10. The positive scalar ¢ corresponds to the
maximum value of the dissipation profile and is a parameter for the numerical investigation.

The discretization in space is done using fourth order spectral finite elements method [6] leading to a diagonal
mass matrix.

5.1. Numerical investigations of ||Cr A, ?||2 and ||A, *CrA}, ?||2

In this section, we investigate numerically the validity of Assumptions 4.7 and 4.9. To do so we assemble finite
element matrices constructed with fourth order finite elements on a uniform mesh of [0,1]. Denoting h = 1/N
the space step, we display in Figure 1 the euclidean norm of

Ap, Ch, ChA, % and A2 ¢y A2

for decreasing values of h, with the three different dissipation profiles introduced before (with o = 1).
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FIGURE 2. Convergence of schemes EME-0,1 and 3 to (ME) w.r.t. the space step h.

We observe a perfect agreement with Assumption 4.7 and Remark 4.8 by looking at the black curves with
plain circles HC’hA;IMH _If R € L*(f)) , we observe in Figure la that Assumption 4.7 holds with » = 3/2; if

Re WI’OO(Q), we observe in Figure 1b that Assumption 4.7 holds with » = 1/2; and if R belongs to W?2°°(1),
we observe in Figure lc that Assumption 4.7 holds with r = 0.
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10—2
——R=Ry,0 =10°
—e— R = Ry,0 =10
L 107%
2
¢
L
5 10-¢
= 6
2
ks
~ 1078
10-10
10-3 10—2 10-1

h

F1GurE 3. Convergence of schemes EME-3 to (ME) w.r.t. the space step h for R = Ry or
R = Ry with o large.

Finally, we observe a perfect agreement with Assumption 4.9 and Remark 4.11 by looking at the red curves
with stars HA;UQC’%A}_LUQH If R € L>(), we observe in Figure la that Assumption 4.9 holds with r = 1/2.

and if R belongs to W1>°(Q) or W2°°(Q), we observe in Figures lc and 1b that Assumption 4.9 holds with
r = 0.

5.2. Convergence of (EME-M) towards (ME)

In this section, we illustrate numerically the results of Theorem 4.3 in the context of wave equations, for
which we have investigated the values of r in Assumptions 4.7 and 4.9. All these results are summed up in
Corollary 4.12. In Figure 2 are displayed the H'-norm in space, L?-norm in time, of the error between the
solution to (ME) and the solution to (EME-0), (EME-1) and (EME-3), as h goes to zero. We keep the CFL-
number « equal to 0.9, therefore At is asymptotically proportional to h. We choose to test two different values
of o € {1,100} for each dissipation profile R;, i € {0,1,2}. The parameters of the simulations are the same as
in the previous subsection, and the final time is set to T' = 3.

First, let us observe the convergence of scheme (EME-0), displayed with + signs in blue in Figure 2. Corol-
lary 4.12 predicts a convergence in h%2~", with r depending on the regularity of the dissipation profile. The
observed convergence are in perfect agreement with the corollary and Remark 4.11. We observe second order
convergence for the profiles Ry and Ry, which was expected since 7 = 0 for Ry and Ry, which belong to W (Q).
For the profile Ry, we observe a convergence at order 3/2, which was also expected since r = 1/2 for Ry, which
belongs to L>(9).

Now, let us focus on the convergence of scheme (EME-1), displayed with o signs in red in Figure 2. Corol-
lary 4.12 predicts a convergence in e“T"h°~2" with r depending on the regularity of the dissipation profile.
The observed convergence are again in perfect agreement with the corollary and Remark 4.8. We observe a
convergence at order 5 for the profile Ry, as expected, since r = 0 because Ry € W2°°(€2). For the profile Ry,
we observe a convergence at order 4, as expected, since r = 1/2 for Ry, which belongs to W“’O(Q). Finally, for
the profile Ry, we observe a convergence at order 2, again as expected, since r = 3/2 for Ry, which belongs to
L>(Q).
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Let us then observe the convergence of scheme (EME-3) displayed with e signs in black in Figure 2. Corol-
lary 4.12 predicts a convergence in h’~%" with r depending on the regularity of the dissipation profile. The
computed values of the errors are very small (close to machine precision), which illustrates that this scheme
is very accurate. Consequently, for these values of dissipation amplitudes, it is difficult to assess the asymp-
totical regime, except for the profile Ry with ¢ = 100. In this last case, the observed convergence happens at
order 4, which is in perfect agreement with the corollary and Remark 4.8 since r = 3/2 for Ry, which belongs

Relative L>°(L?)-error

Relative L>°(L?)-error

to L>®(€).

Finally, we have represented in Figure 3 the convergence of scheme (EME-3) for large values of ¢ with a
coarse discretization in the cases R = Ry and R = Ry, in order to observe the convergence regime. We see that
in both cases the convergence is better than a convergence of order 6 which is in agreement with Corollary 4.12
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FIGURE 4. Relative error for LF, ME, EME, RK4, w.r.t. the space step h.

and Remark 4.8 when considering dissipation profiles in Wlm(ﬂ).
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FIGURE 5. Relative error for LF, EME, RK4, w.r.t. the numerical cost.

5.3. Space/Time convergence analysis

For the space/time convergence analysis, we choose N larger and larger (N € [10,400]) and we choose 99%
of the largest allowed time step, i.e. & = 0.99. Four different schemes are compared:

The Leap Frog scheme (LF). The maximum allowed time step is 2/+/p(Ap).

~ The Modified Equation scheme (ME). The maximum allowed time step is 2v/3//p(Ap).

— The explicit Modified Equation scheme (EME-M). The same time step than for (ME) is used.

— The explicit 4th order Runge-Kutta scheme (RK4). Without dissipation, the maximum allowed time step
is 2v/2/+/p(Ay). With dissipation, the maximum allowed time step must be implicitly deduced from the
stability region and the spectral properties of the semi-discretized equation.

Remark 5.1. The spectral radius of symmetric real matrices can be efficiently computed using the power
iteration algorithm. No such simple algorithm exists to estimate if the eigenvalues of non symmetric matrices
lie in a given region of the complex plane. This is why, in practice, for Runge—Kutta methods, one tries a time
step and reduces it in case of numerical instability. Note however that, in the examples presented below, Runge
Kutta schemes were stable even in the presence of dissipation when the time step was was set to 2v/2/+/p(Ap).

We assume that initial data are zero and that the source term is a compactly supported regular function in
space and time. A reference solution is computed using an explicit 4th order Runge-Kutta scheme on a fine
grid. We plot in Figures 4a and 4b the relative L? error in space, L™ in time obtained when R = Rj and
o € {1,100}. In Figures 4c and 4d, we plot the error obtained when R = Ry and o € {1,100}.

We observe that, if the damping profile is smooth enough, then the explicit modified equation scheme (EME-
1) gives results similar to the modified equation scheme (ME). This nice property is lost if the damping profile
is discontinuous and we expect that a loss of space/time convergence could occur in this case. Note however
that the method, in the tested parameter range, gives relatively accurate results. Since, in realistic applications,
we expect the damping amplitude to be small, we believe that even in the case of discontinuous damping
profiles the scheme (EME-1) is interesting. To assess more accurately the efficiency of our scheme, we plot on
Figures 4b and 5b the error obtained with respect to the complexity of the algorithm. We compare the Leap
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Frog scheme, the explicit Modified Equation scheme and the Runge—Kutta 4 scheme applying the following rule:
for each iteration in time, we count the number of multiplications by the sparse finite element matrices (Ay,
Ch, Bp, and My,). For each scheme we obtain

(LF) Only one operation is counted: 1 multiplication by Aj,.

(EME-M) 24M operations are counted: 2 multiplications by A and M by Cj,. We have assumed that a multi-
plication by C}, is as costly as a multiplication by Aj; which is a pessimistic estimation in regards of
the presented numerical results and for the implementation choice we made.

(RK4) At each stage of the 4 stages method, a multiplication by Ay needs to be computed: 4 multiplications
by A; are counted in total.

Note that the Modified Equation is not compared since it requires the inversion of a matrix, that could be

done efficiently by iterative methods, but whose complexity is hard to assess.

APPENDIX A. PROOFS OF SECTION 3

Proof of Theorem 3.6. Multiplying equation (3.11) by (uj ntl uzfl)/2At we obtain the following energy rela-

tion
5n+1/2 . Sn71/2 n+1 n—1 n+1 n—1 n+1 n—1

o Uy — U Suy —u
h Ath (fh+A2 - h h h h

20t 2At 2At
Using equation (3.12), we have the estimation

5n+1/2 _ 571—1/2 n+l _  n—1 n+1 n—112
h h < (fr+ Ahgh) Un 7 S | S )
At 2t 28t |,
Writing ™ — uf ™! = (up ™ —uf) + (u} — u}~!) and using Proposition 3.5, we find that
n+1 n—12 n+1 n 2 n—112
Up ~ Uy 1 — Uy Ll up —uy, ( n+1/2 | on— 1/2>
- = ——a— <4(& &, Al
2At =3 At ) T3 At AN * (A1)
hence
n+1/2 n—1/2 R T B T
(1-4Atcp)é, —(1+4Atcp) &, <At(fh+A2 ar) - —SAr

Using the definition of the amplification factor we have
, _ At uptt — !
gn+1/2 . 5" 1/2 < Y A2 ~n\ . “h h .
h TEh =T AAten (7 + 43i3) 2t
Therefore, one can show, using the above equation recursively, that, for 1 <n < N,

n+1/2 12 | a4l ALk uptt —up!
grtl2 < mgll? AtZy (FE+Azg) 2o —Th .
k=1

Note that, to obtain the above equation, we have used 1/(1 + 4 ¢g At) < 1. Then, one can show,

k+1 k—1 n+1
U — U 1 + up 1t +uf
At k:A2~k: h h _ 7n~n.A2 h —1~1 A2 h h
;’7 S = Ay T g A
—k—1-k+1 —kxk LRk

Y = Gh 4 b
—Atz N A7
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The above result is a discrete by-part integration in time, the objective being to exchange discrete time derivative
of the solution with multiplication by the square root of Aj, of the source term. This is a standard strategy at
the continuous level when one studies the stability of the wave equation with source term in dual spaces (for
instance H~!(Q)). Coming back to our estimation, we have, after using Cauchy—Schwarz inequality and the
results of Proposition 3.5,

k+1 k-1 V2
_ U Uu —n = n12 12
IND SR P sﬂ_MQ Mbv+/H1MMV/>

k=1
n—1 _
V2 At Z k=1g kH -7 gh /gk+1/2 (A.3)
V=2 h ’ )
\/1 @ At )
The term involving f}’f is first written as follows
1 k-1 k+1
AtZ'y‘k 7t up ™t — _ Atf _uh+ uk - Atf u}L u
2At h At At

k=1

—1 1. ~ _ ~
+Atn27 R A B R A
— 2 At

from which we deduce the following estimation, using again Cauchy—Schwarz inequality and Proposition 3.5,

_ uptt — ! on _
mszkhmyl<ﬁN("Whv+mﬂWMme) (A4
k=1
Ve, (A5)

_ ik k7
k—1 +1+'Y kf}llc

2
2
Combining (A.2)-(A.4) we obtain
nt1/2 _ nel/2 | n 1 1/2
U <l (Am |, + 2 1o hu2) Ve
+ e BT g, ) e
\/7
n—1 _ _ 1~ e~
ALY YT T V2| Ttk ) feere
k=1 2 V1-a? At 2 " .
We define now
D:= sup [Atv2 Hf H + g .
ke[1,N] ( ’y " \/7 H h||2

Using Young’s inequality 2ab < a? + b2, one can show that for all 1 <n < N

1on 1y
25h+1/2 5 DA & +~4"D 51/2+’YnAtde“/2\/8k+l/2

k=1

where

7—k—1ﬁc+1 n W—kﬁf ,y—k—1§2+1 _ ,y—kgﬁ

A2 = 9\/2 5

_|_

\[
\/1—042ry

2
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Now, remark that v > 1 implies, for all 1 <n < N,

A" < et < N1,

we can then deduce for 1 < n < N the inequality

n—1
EF7 < 2D +3e2NOVE N 4 NOTUALY T 12 g2, (A.6)
k=1

Inspired from the proof of [10], we apply standard arguments to prove a discrete Gronwall’s lemma and we
introduce, for 1 <n < N,

n—1

5;1+1/2 < f;LH‘l/Q = 2D2 + 3€2N('y71)5}1/2 + 26N(771)Atz dk+1/2 /g;:'i‘l/g.
k=1

Note that if .7-'}?+1/2 =0 we have D = 0 and 52/2 = 0, meaning that the source terms and the initial data are

zero and the solution is also identically zero. Therefore, without loss of generality we assume that F,' 25 0.
One can see that 1 "
I, - F, — 9N(y=1) gn—1/2, [ gn—1/2
At h
— — n+1/2 n—1/2
< 9 N(y=1) gn—1/2 (\/chr / +\/~7:h / ) )
which implies
nt1/2 \/ n—1/2
\/}—h T < 9eNO=1) gn—1/2
At -
Hence, for 0 <n < N, we have
N—-1
\/5;;“/2 < \/f,’;“/? < \/f;/z‘ +2eNOTD AL ST @2, (A.7)
k=0
To finish the proof we need to estimate the terms \/.7-',1/2 and d*+1/2, First, observe that
Fp? <V2D V3N, [g) (A8)
and
D<V2 Ativ:kaH L Y2 [ (A.9)
Svay ———= SUP ||9hn|y- .
=Ml v T—a? jepow 2
Since v > 1, one can show, writing QZH = (f]l,frl - g,’j) + f]’}f and using triangular inequalities that
dk+1/2 ~ N 1 gk-i—l o gk 1 1— '7_1
<27, 27 a -
v2y T Tuly + 2| 2+m At 2+ 1-a2\ At 92l
hence
N-1 N ~k _ ~k—1 -1
; 1 In—9 1 1—~ _
AT A2 <2 (4 H ’“H + hZIh || 4 ( > (A0
2, s 2mne (4l = | P | e ) Il ) (a0

Finally, combining (A.8), (A.9) with (A.7) and (A.10), we obtain the result of the theorem using the definition
(3.13) of the scalar C. O
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Proof of Proposition 3.8. Using the expression of By ; given by Theorem 3.3,

—+00 - 2k+1
A3 — .\ 2k+1
12 Z (24> (Cth_l) Ch> Vh * Up. (All)

At?
Bpvy - vy = Broy, - vp + — (

—~ —~1
Since M)}, is symmetric positive, we can define its square root M, and write that

A2 (ABN\ZFT 2k 2 [AP\FT? -
12<24> (endtit) " = At( )

2 FABNFTE 1 i\2k+2
== ( ) M (M FCu 7).

F

:.%\P—‘
©
}%h—t

Nfl ~ 4 2k+1 —~_ 1
M, (CIY) T G,

—

Denoting by S the set of eigenvalues of the non positive symmetric matrix
At — 1 2

< M, 0,0, ) ,

we have that

“+o00 1 Atg 1 1 2k+2 1 —+00 Atg 1 1 2k+2 1 1
> M <24Mh 2CnM, ) MZ vy -vop =Y (Mh 2Cn M, ) M2 vy, - Moy,

24
k>0 k>0
T —~1 —~1
> Iglei‘ISl ML M2y, - M2y,
k>0
and therefore
By, - vy, > Bpoy, - vp —I— man)\k'H ]/\‘/f;/zvh . Mi/zvh. (A.12)

Therefore, we have

At 3 1 —~_1 2
p (MMhzcth2) <p® and Sc[-5%0],

which implies, since § < 1, that

A 2 232

— mi ax|Al > — A

k‘+1 ' >
Atxesz Atxesl A Atlil

Combining this last inequality with equatlon (A.12), we obtain the first inequality of the proposition. Morevoer
since 8 < 1, we have from the definition of M, given in Remark 3.2 that || M|z < 19/12 < 2, therefore omitting
the positive term By, vy, - vy, in (3.14) we obtain the last result of the proposition. |
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APPENDIX B. PROOFS OF SECTION 4

Proof of Lemma 4.2. We set
n __ un71
o= _h
h At 3
then we subtract the scheme (ME) written at time n and at time n — 1, we obtain, after dividing by At, the

following equation, valid for all 2 <n < N

At? ot —oyn 4l At? prtt _ynet
I 7B2 h h h B =Y h h
( nt h) INE Bt 55O 2At

}'\n An —1

+A ]_AitzA n_ JhJh (B.1)
AT T ) T T A '

Thanks to the hypothesis E = 0, we have u? = 0 and thus v} = v} = 0. We can then apply the stability
Theorem 3.6 with g = 0 and f' = (f — g_l)/At Because Bj, is non negative by assumption, we have
cg = 0. Then, thanks to Proposition 3.5 we have for all 1 <n < N

1— a2 a
V5 <& <9vaaty”

2 k=1
where the energy SZLLH/ % is given by (3.2) with v} instead of uj}. We obtain the result of the lemma by replacing
vy by its value in terms of uj. To prove the second inequality of the statement we further introduce

popt o

Az -ﬁf*fk_l
h 2

h
At

)

2

ol — ,Un—l
wi = _h
At
Subtracting scheme (B.1) written at time n and at time n — 1, we obtain, after dividing by At, the following

equation, valid for all 3 <n < N
At? w — 2" 4wl ! At? w T —r !
I+ =B} ) b b 4 |Bp4 —Cp| i —
12 At 12 2At

A 2 A'n, _ 2 A’nfl An72

At?

Using the assumption f,% = E = 0, we deduce that U}L = vi = v,?’L = 0 and therefore w% = wf’L = 0, so that
we can apply the stability Theorem 3.6 with g; = 0, fﬁ =(f — 2f,?71 + f;:fl)/AtQ and, once again cg = 0.

Then, thanks to Proposition 3.5 we have
N
<\erttP<ovaaty

[1— a2
2 2 k=2

gZLL+1/2

foo2fi R
At?

n+1 n
A7 Wh + wy
h 2

where the energy is given by (3.2) with w} instead of u};. We obtain the result of the corollary by
replacing w}' by its value in terms of uj. (I

Proof of Theorem 4.6. To prove inequality (4.12) observe that, if R € W?2°°(Q), we have

(Cw,v) = —(ARw,v)r2(0) — 2(VR - Vw,v).
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Two applications of Cauchy—Schwartz inequality lead to the estimation (4.12). To prove (4.13), observe that,
from the right hand side of (4.10) we have, using Green’s formula on each Q,

L
(Cw,v) = = (VR-Vw,v)r2q) — Z (VR - Vw,v)r20,) + (ARw,v)12(q,))
=1

L
+ Z(VR ‘nw, ’L})Lz(aQZ),
=1

where n on 0§2y denotes the outward unitary normal to €2,. Remark that the function VR - n is well defined on
39@ and
IVR -0l L~ @0, < IVR| L0,

We can then deduce the following estimation

L
[(Cw,v)| < 2| VR| oI Vwll 2@ lvll2@) + [wll2@llvlz2@) Y IAR] L= (o)
/=1
L
+ Y VR o @ lwll 2000 1] 2 (002 - (B.3)
=1

The last term of this estimation can be bounded using the following inequality, which is a direct consequence
of Theorem 1.5.1.10 of [16].
There exists Cy depending on €, only such that for all u € H'(€;) we have

1 1
lullz2o0,) < Cellullm@,) and  [lullL2o0,) < Cellull 7o, llullZ2(o,)-

Using these inequalities into (B.3), one can show that there exists a constant Cg, independent of v, w and R,
such that

L

1 1
[(Cw,v)| < C (IIVRILoom) +) IARIILeo(m) [wll a1 () (Ilvl\m(m + HU||]211(Q)||7}H22(Q)) :
=1

Estimation (4.13) follows then easily. O

Proof of Theorem 4.10. From (4.10), one can see that if R € W1°°(Q), then estimation (4.16) is a consequence
of Cauchy-Schwartz inequality. Moreover, assuming R € L*°(Q), (v,w) € (H{(Q) N HQ(Q))2 we have
RAw — A(Rw) € (H¢(Q) N H*(Q))’

and one can deduce that
(Cw,v) = =(RAv,w)2(0) + (RAW, v) 12 ().

Then, if R € L>® (), introducing the partition of  into sub-domains £, one can use Green’s formulae on each
sub-domains 2, to obtain

M=

(Cw,v) = (VR -Vv,w)r2q,) — (VR-Vw,v)r2q,)

~
Il

1

L
+Z (RVw -n,v)r200,) — (RVv-n,w)r200,)- (B.4)
=1
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Then, using standard trace inequalities (see again Thm. 1.5.1.10 of [16]), one can show that
1 1
(RVw-1,0) 20| < Co IRl ) 0] ey 11001y 0l -
Therefore, using the above estimation in (B.4) together with standard Cauchy—Schwartz inequality, we have

L
[(Cw,v)| < Cq <||R||L°°(Q) +) VRIILoo(m>>

=1
% (IVell 2@y Il 2@ + 1 Vullzzq@ ol o)
1 1 1 1
+ ||w||}“12(9) ||wH]2—[1(Q) HU”Hl(Q) + HU”IZp(Q) ||UH12L11(Q) Hw||H1(Q))7
from which we deduce the estimation (4.17). O

ApPPENDIX C. STABILITY OF (EME-1) BY EIGENVALUE ANALYSIS

The previously obtained result shows that one may obtain exponential increasing behavior of the solution
in the energy norm. Our estimate ensures that if 8 is proportional to At, this exponential instability in time
is of the form exp (CTAt) (with C a positive scalar independent of At) . Although it can be satisfactory for
some applications, we show in what follows that this result can be improved asymptotically for small At or if

Cp = ||By||2 is small enough. For the following analysis we introduce the notations
~ B,
B, =—, e=CpgAt.
hE o B

Our result is based upon an asymptotic analysis in the parameter € and is inspired from the work of [14] and of

[13]. We consider the homogeneous version of the algorithm (EME-1) (i.e. without any source term) written as

a first order system. To do so we introduce the variable UZ‘H = uy. One can see that the unknowns (uZ‘H, ’UZ-H)

are computed using (u},v}). More precisely,

(1) = e (1), (1)

where we get, from the scheme (EME-1), that

2 2
Du(e) O\ (o1, + =B2)-A?A, —2(1, + = B2 0 In
Ah(e)< ) A TR e S P +< >

0 I I, 0 00
with A2
— 2 o ~ ~ ~
Dy(e) = My ' (e) — 5ﬂMh_1(5) Cn M, (o), Ch = (BhAh - AhBh) )
and 9
M £h 4 S e Ap=ap (- 254
Mh(5)21h+§Bh+T2Bha h — Ahp h_ﬁ h-

Note that we have _
2Ih — AtQ Ah —Ih
An(0) =
I, 0

The eigenvalues of A, (0) can be deduced from the eigenvalues of Aj. Let us denote by A a positive eigenvalue
of Aj, and by ¢! a corresponding eigenvector. Since the matrix Ay, is real and symmetric, the vectors {¢'} are
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real and can be chosen as an orthonormal basis of RV* for the euclidian norm (N}, is the number of degrees of
freedom of the underlying finite element space V},). In particular, this implies that all eigenvalues are semi-simple
(their algebraic multiplicity corresponds to their geometric multiplicity). Now, we first remark that we have, for
each i € {1,..., Ny},

~ "
AF Aol =i of, with ué’(AwAmg(lM).

12

Thus, the set {¢?} is also a basis of eigenvectors of At? A}, associated to the eigenvalues {ul}. Then, it can be
shown that, for each i € {1,..., Ny}, such that pl # 0 and ul* # 4, we have

7 &
AnO) | 1, [ =m | 1, | with g =nl'y ormlt =np_
— i —5 i
n; 1;

and

py o
M = 1= & o\ Jul(4—pl). (C.2)

Theorem C.1. If for all i € {1,...,N,} we have u? # 0 and pl # 4 then the spectrum of Ap(0) is the set
{nﬁi} and all these eigenvalues are semi-simple.

If the CFL condition is satisfied (i.e. « < 1), then 0 < u? < 4. In that case we find that |n£i(At)|2 =1
Moreover, according to the previous theorem, if 0 < ,ulh < 4 the scheme (C.1) is stable for £ = 0 since the
amplification matrix A,(0) is diagonalizable (all its eigenvalues are semi-simple) and its spectral radius is
exactly equal to 1. Such a situation occurs if the CFL condition is satisfied strictly (i.e. @ < 1) and thanks to
Assumption 3.1.

To study the spectrum of Ay (g), we use the perturbation theory of linear operators [22]. More precisely, we use
Theorem 5.4 of [22] to compute the derivatives, w.r.t. €, of each eigenvalue nﬁi of Ap(e) at e = 0. A first step
is to remark that Ap(e) is continuous for small €, and to compute dAp(e)/de at € = 0. Observe that

d e? o d ~ d
R I 732 :—A = B
de ( T h) © de " 0 de

_ B
M, H(0) = —="

Taking into account the fact that Mh and By, are diagonal or block diagonal matrices, we deduce that

d 4 B,  At?
- )= —— — —
gz (©) 2 "
Finally, one can compute that
~ At? 27
d 1 B +7C 0 QIh—At Ah —2Ih
TAO0) =~ b T
c 0 0 0 0

Denote by n = 772+ a complex eigenvalue of Aj,(0) associated to some real = u* that satisfies 0 < P < 4 (the
case ) = nfi_ is treated similarly). As previously shown, 7 is semi-simple and we assume that its multiplicity
may be greater than 1. We denote by ¥(u) the set of numbers such that u;? = pu for all j € 3 (u). The dimension
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of ¥(u) is equal to the multiplicity of the eigenvalue p of At2 Ay,. For all j € X(u), we denote by '(/JZR and ¢?,L
the right and left eigenvectors of A, (0) constructed as follows

h h
N d)j N J
pR= (1, [ and vy =1 -1,
n"’ n

Remark that, since the eigenvectors (j);? are orthonormal for all j € ¥(u), the same property holds for the
eigenvectors wjh. With all these properties at hand, one can construct the eigenprojection matrix P(n) defined
as follows

1
P(n) = ST owhpull

1— -2
T es(w

We can show that P(n) is a projection operator that commutes with .4;(0), and
P(n)An(0) = An(0)P(n) = P(n)An(0)P(n) = nP(n).

We can now apply Theorem 5.4 of [22]: Any eigenvalue n(e) of Ap(e) is differentiable at e = 0, and there exist
an eigenvalue 1 of A, (0) and an eigenvalue 7 of

P (A40)) P

in the subspace spanned by the family {1/)? R}jes(n)» such that, for e sufficiently small, we have

n(e) =n+en+o(e)

To continue this analysis, note that, since C}, is skew-symmetric, we have

12—p—2n""1 +

P (A4 0) Pl = —5 252 B,

with

Bu(w) = | > o@D | Bu| D #heh"
JEX(1) JES(1)

1

Since |n| = 1, we have n~! = 7 and because of (C.2) we have n*> — (2 — u)n + 1 = 0. Therefore,

2 —p—2n7t _7)2—1:77

1-n=2  n-7

which implies that any eigenvalue 7(¢) behaves, for € small enough, as
n(e) =1 (1~ ean) + O(?)

where 7 is an eigenvalue associated to some p and «y is one of the non-negative eigenvalues of Eh(,u). If the
eigenvalues of Eh(u) are positive for all u, one can deduce, by continuity of the eigenvalues n(e) with respect
to g, that |n(e)] < 1 for all 0 < e < gg, for some ¢y depending on A, (¢). For these values of €, the scheme is
stable. These observations are summed up in the following theorem:
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FiGure C.1. Evolution of the largest eigenvalue amplitude w.r.t. o, N = 10, 20.

FIGURE C.2. Trajectories of the eigenvalues of system (C.1) in the complex plane (with N = 10
and R = Ry). Left: o varies between 0 and 10. Right: o varies between 0 and 20. Note that for
o = 0 the eigenvalues are all located on the unit circle and their exact location is represented
by circles. For ¢ < 10 no eigenvalue is of absolute value greater than one. For ¢ = 20 two
eigenvalues are of absolute value greater than one.
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Theorem C.2. Assume that Assumption 3.1 and assumptions of Theorem C.1 hold. Then, if

(¢?)T§h¢? >0

877

for all eigenvectors ¢§P of At2/~1h, there exists g > 0 such that the scheme (C.1) is stable for all 0 < ¢ < gg.
Equivalently, all eigenvalues of Ap, are semi-simple and of module lower or equal to 1.

Theorem C.2 gives a sharper result compared to what was obtained in the previous section thanks to an
analysis by energy technique, in the case of a small enough damping or a small time step. Note that a stronger
result would be obtained if one could guaranty that (¢?)T§h¢>§? > 0. Such a property depends on the spatial
discretization process and some pathological cases may arise, corresponding to situations where eigenvectors with
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compact support exist. Note however that, in a one-dimensional setting, the eigenvectors (;5? are equidistributed
in the domain if a uniform mesh is used (see [11]).

We present now some numerical results to illutrate the theoretical results obtained above. We consider the
same discretization parameters as in the above section (with either N = 10 or N = 20). The discrete system of
equations for the (EME-1) scheme is written as a first order induction relation as in equation (C.1) and we com-
pute the eigenvalues when o varies. The largest eigenvalue amplitude is plotted w.r.t. o in Figures C.1a and C.1b.
In Figure C.2, the trajectories of the eigenvalues, with respect to o, are plotted. One can see that the amplitude
of the eigenvalues indeed decreases for small values of o, as predicted by Theorem C.2.
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