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PRIMAL-DUAL GAP ESTIMATORS FOR A POSTERIORI ERROR ANALYSIS
OF NONSMOOTH MINIMIZATION PROBLEMS

SOREN BARTELS* AND MARIJO MILICEVIC

Abstract. The primal-dual gap is a natural upper bound for the energy error and, for uniformly
convex minimization problems, also for the error in the energy norm. This feature can be used to
construct reliable primal-dual gap error estimators for which the constant in the reliability estimate
equals one for the energy error and equals the uniform convexity constant for the error in the energy
norm. In particular, it defines a reliable upper bound for any functions that are feasible for the primal
and the associated dual problem. The abstract a posteriori error estimate based on the primal-dual
gap is provided in this article, and the abstract theory is applied to the nonlinear Laplace problem and
the Rudin—Osher—Fatemi image denoising problem. The discretization of the primal and dual problems
with conforming, low-order finite element spaces is addressed. The primal-dual gap error estimator
is used to define an adaptive finite element scheme and numerical experiments are presented, which
illustrate the accurate, local mesh refinement in a neighborhood of the singularities, the reliability of
the primal-dual gap error estimator and the moderate overestimation of the error.
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1. INTRODUCTION

Many problems in various applications like partial differential equations, mechanics, imaging, and operations
research can be formulated as convex minimization problems of the form

ulg)f( E(u) = ulg;f( F(Bu) + G(u)
with convex functionals F, G and a bounded linear operator B. Examples are the nonlinear Laplace equation,
the Rudin—Osher—Fatemi model for image denoising, obstacle problems or convex programming. Depending on
the data and the geometry of the problem a solution u € X of the above minimization problem may suffer from
singularities which can harm the convergence rate as the mesh size h > 0 of a finite element method tends to
zero. A well-known example for this phenomenon is the linear Laplace problem on the L-shaped domain. The
geometry of the domain leads to a convergence rate of order O(h?) instead of O(h) in the energy norm, where
0 < 7 < 1 and 7 depends on the angle at the reentrant corner. Singularities may also arise due to intrinsic

Keywords and phrases. Convex minimization, primal-dual gap, adaptive mesh refinement, nonlinear Laplace, image denoising.

Department of Applied Mathematics, Mathematical Institute, University of Freiburg, Hermann-Herder-Str. 9, 79104 Freiburg
im Breisgau, Germany.
*Corresponding author: bartels@mathematik.uni-freiburg.de

Article published by EDP Sciences © EDP Sciences, SMAI 2020


https://doi.org/10.1051/m2an/2019074
https://www.esaim-m2an.org
mailto:bartels@mathematik.uni-freiburg.de
https://www.edpsciences.org

1636 S. BARTELS AND M. MILICEVIC

properties of the functions in the underlying space X. An example is the space of functions with bounded
variation BV(Q), which allows for jumps along interfaces, which is of interest, e.g., in image processing to
preserve sharp edges. Yet, these jumps cause problems in the finite element approximation of BV-functions.

One way to overcome these drawbacks is adaptive mesh refinement. The general procedure of adaptive routines
is to compute an approximation of the minimizer in the discrete space with a given underlying triangulation,
compute a posteriori error estimators on the basis of the computed approximation, refine the mesh locally
where the error estimators are relatively large and to compute a new approximate solution corresponding to
the new mesh. In this sense, adaptive methods are iterative numerical methods. The reader is referred to,
e.g., [1,5,40,49,52] to get an overview of adaptive finite element methods.

The design of a posteriori error estimators is fundamental to adaptive finite element methods. Particularly,
it is crucial that the error estimators define upper (reliability) and lower (efficiency) bounds for an appropriate
measure of the error and that the constant in the upper bound is small and known. We will consider primal-
dual gap error estimators which can be derived using duality theory from convex analysis. In the contributions
[8,11,42-47] these primal-dual gap error estimators have been introduced and used for various problems, e.g.,
elasto-plasticity and optimal transport. In [45], the primal-dual gap error estimator has been analyzed for general
convex minimization problems with uniformly convex functionals and the relation to other a posteriori error
estimators based on, e.g., residual and gradient recovery methods has been addressed. Yet, the numerical study
of primal-dual gap error estimators has not been considered in any of those contributions. We will analyze
primal-dual gap based error estimators for the nonlinear Laplace problem

1
EAU(U):;/Q|VU|"d3:—/qudx —  Min.!

with 1 < o < oo, which has also been addressed in [43] without a numerical study, and for the Rudin—Osher—
Fatemi (ROF) model

a .
Eyot(u) = |Dul(Q) + EHU - g||2L2(Q) —  Min.!

with |Du|(€2) the total variation of «, which has been analyzed in, e.g., [8].

The nonlinear Laplace problem serves as a model problem for degenerate nonlinear systems. Results con-
cerning the regularity of solutions, their approximation by finite elements and a priori error estimates can be
found, e.g., [7,18,22,23,25,26,31,34,35]. An important observation in the a priori error analysis was that the
energy norm is not well suited for the analysis since optimal convergence rates can only be guaranteed under
restrictive assumptions on the regularity of the solution, cf. [7,18,31,34,35]. It turned out that a so-called
quasi-norm, which is a weighted L2-norm of the gradient with a weight depending on the gradient and which
has been introduced in [7], is more appropriate for the analysis of the nonlinear Laplacian, cf. [20,25]. Par-
ticularly, the optimal convergence rate O(h) for P1 finite elements can be proven under much less restrictive
regularity assumptions on the solution, ¢f. [20,25,26]. In [36-38] residual-based a posteriori error estimators
have been proposed and reliability and efficiency has been established with respect to the quasi-norm. However,
the involved constants are not explicitly available. Residual-based quasi-norm error estimators yielding explicit
constants in the reliability estimate have been discussed in [16] under the assumption that the modulus of the
gradient is greater than zero almost everywhere in the domain whereas the reliability and efficiency of quasi-
norm error estimators based on gradient recovery techniques has been established in [17]. The convergence of
an adaptive scheme with residual-based a posteriori error estimators has been proven in [51]. In [13,21] the
linear convergence and optimality of an adaptive method driven by residual-based quasi-norm error estimators
has been proven. The involved constants particularly for the upper bound depend on the nonlinearity of the
problem. In [28,29] the error is measured in a residual flux-based dual norm and the a posteriori error estimator
consists of a residual term, a diffusive flux term and a linearization term. Flux reconstruction techniques are
presented to compute the error estimator and reliability (with constant one) and efficiency (with a constant
independent of the nonlinearity of the problem) are shown. Particular focus is on the balance of linearization
and discretization errors.
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The ROF model serves as a prototype for BV-regularized minimization problems with applications, e.g., in
image processing (cf. [4,48]) and mechanics (¢f. [50]). A primal-dual gap error estimator has been proposed
to define an adaptive algorithm for the ROF problem in [8], which has proven to accurately detect the a
priori unknown jump sets of the minimizer yielding locally refined meshes in a neighborhood of the jump sets.
Therein, a finite element method has been proposed where the primal and dual problem have been discretized
with continuous, elementwise affine finite elements. However, the approximation of the dual ROF problem by
continuous finite elements is suboptimal since the dual ROF problem is posed on Hy (div;2). This is reflected
in the experiments in [8] where oscillations of the approximations along the interface can be observed.

The advantage of primal-dual gap error estimators is that they are applicable to a large class of convex
minimization problems and naturally yield upper bounds for the energy difference between the energy of an
arbitrary admissible test function and the optimal energy with constant one. In case of F' or G being strongly
convex (or coercive) they also define upper bounds for some appropriate error measure with a constant depending
on the coercivity constant. Particularly, they define reliable upper bounds independently of the iterative solver
used to approximate discrete solutions to the primal and dual problem, i.e., the primal-dual gap error estimator
can be evaluated at any two feasible functions for the primal and the dual problem to obtain an upper bound for
the error. Last but not least, the functionals F' and G need not be assumed to be differentiable and there does
not need to exist a variational formulation of the primal problem to establish the reliability of the primal-dual
gap error estimators.

In this paper we will consider primal-dual gap error estimators for both the nonlinear Laplace problem and
the ROF problem. While in [43] the primal-dual gap error estimator has been considered for the nonlinear
Laplacian, the discretization and numerical implementation is missing. Furthermore, noting that the dual prob-
lem corresponding to the nonlinear Laplace problem is given by a smooth, linearly constrained optimization
problem a modified error estimator, which is an upper bound for the primal-dual gap error estimator, is sug-
gested in [43] allowing for dual test functions that do not satisfy the linear constraint. We will consider the
“original” primal-dual gap error estimator to control the quasi-norm used in [7,21]. In particular, the primal-
dual gap error estimator n,q can be used to improve the reliability estimate for the convergent, reliable and
efficient residual-based error estimator 7.5 analyzed in [13,21], i.e., defining Mcom = Min{npd, Nres} We obtain a
reliable, robust, efficient and convergent error estimator. Continuous, piecewise affine finite elements are used
for the discretization of the primal nonlinear Laplace problem and the ROF problem posed in W1<(£2) and
BV (Q)NL3(), respectively. The dual problems are posed in W#(div; Q), 3 = a/(a—1), and Hy(div;Q) in case
of the nonlinear Laplacian and the ROF problem, respectively. In both cases we use the Brezzi-Douglas—Marini
finite element (cf. [14]), which consists of discontinuous piecewise affine vector fields with continuous normal
components across interelement sides, for the discretization. This is in contrast to the discretization in [8] where
the dual ROF problem has been discretized with continuous, piecewise affine vector fields, which is known to be
problematic in, e.g., the discretization of the dual formulation of the linear Laplacian with mixed finite elements.
Particularly, oscillations are observed in the approximation of u along the interface, cf. Section 6. The discrete
optimization problems related to the primal and the dual problems are solved using the Variable-Alternating
Direction Method of Multipliers (Variable-ADMM) proposed in [10] which is an operator splitting method with
variable step sizes.

The paper is organized as follows. In Section 2 we introduce the notation, important function spaces and
finite element spaces and state some approximation results. The abstract primal-dual gap error estimator and a
posteriori error estimate are the subject of Section 3. In Sections 4 and 5 we state the nonlinear Laplace problem
and the ROF problem, respectively, and the associated dual problems, summarize a priori and a posteriori error
estimates and briefly address the numerical solution of the discrete primal and dual problems. Finally, we present
in Section 6 our numerical results for both problems for examples for which the exact solutions are explicitly
available.

Let us remark that this article is part of the thesis [39], in which certain arguments have been elaborated.
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2. PRELIMINARIES

2.1. Function spaces and convex analysis

We let Q € RY, d = 2, 3, be a bounded, polygonal Lipschitz domain with Dirichlet boundary I'p and Neumann

boundary I'y such that 9Q = I'p UT'y. The L2-norm on ( is denoted by || - || and is induced by the scalar
product
(v,w) := / v-wdx
Q
for scalar functions or vector fields v, w € L*(Q;R"), r € {1,d}, and we write | - | for the Euclidean norm.

For s > 0 and 0 > 1 we let W*?(€;R") be the standard Sobolev space with norm ||- |lys,7 () and seminorm |-
lws.o (o) with differentiability exponent s and integrability exponent . The subspace W5 (S5 R") consists of
all functions in W#7(€;R") that vanish on I'p for s > 1 in the sense of traces. If s = 0 we write L7(2;R")
instead of W*7(Q;R").

Finally, for ¢/ > 1, we denote by W¢’ (div; ©2) the function space consisting of all vector fields p € Lo (4 RY)
such that there exists a function f € L7 (Q) with

/p'Vgodx:—/fgodx
Q Q

for all continuously differentiable, compactly supported functions ¢ € C1(Q). If such a function f € L7 (Q)
exists, we write divp = f. The space W7 (div; Q) is equipped with the norm

I Nlwo @iviy = I+ 1o @y + 1 div |l or (-

Furthermore, we denote by W (div; Q) all elements of p € W (div; Q) with p-n = 0 on I'y in distributional
sense, 1.€.,

(p-n,u)z/p~Vudx+/udivpdx:O
Q Q

for all uw € W57(Q), where ¢ > 1 is the dual exponent to o’ > 1, i.e., 1/0 + 1/0’ = 1. If ¢/ = 2 we write
H(div; Q) instead of W2(div;2), and accordingly Hy (div; ) instead of W3 (div; Q).

For the general, abstract a posteriori error estimate we will work with two reflexive Banach spaces X and Y
equipped with the norms ||-||x and |||y, respectively. We denote their duals by X’ and Y’ and the corresponding
duality pairings by (-, ) x+ x and (-, )y’ y, respectively. The double duals X" and Y are identified with X and Y,
respectively. If X is a Hilbert space with inner product (-, -) x, we identify the dual X’ with X. Given a bounded
linear operator B : X — Y we denote by B’ : Y’ — X' its adjoint. For proper, convex and lower-semicontinuous
functionals F': Y — RU{oo} and G : X — RU{oo} the subdifferentials 0G(u) C X’ at u € X and 9F (p) C Y’
at p € Y are defined by

IG(u) ={we X' : (w,v—u)x/ x +G(u) <G(v) forallve X},
IOF(p)={ €Y' : Nqg—p)y'y +F(p) <F(q) forallqeY}.

Possible coercivity of the functionals F' and G is characterized by non-negative mappings or : ¥ x Y — R
and p¢ : X x X — Ry such that for w € 0G(u) and A € OF (p) we have

(w, v —u)x x + Gu) + oa(v,u) < G(v) forallve X,

2.1
Na—pyy +F(p) +or(g,p) < F(q) forallgeY. 21)

This can be regarded as a generalization of the notion of uniform convexity and strong convexity. The existence
of non-trivial o or gr will induce an error measure for which we establish primal-dual gap error estimates.
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Possible constraints will be encoded using indicator functionals Ix with K C X defining the constraint and Ix
being defined as
0 ifve K
I — ) 7
x () {Jroo, ifvée K.

For the a posteriori error analysis we will need the Fenchel conjugates F'* and G*, which are defined by

F*(q) = sup(q,p)y'y — F(p), G*(v) = sup(v,u)x’ x — G(u).
peEY ueX

These are used to convert the primal problems into dual problems.

2.2. Finite element spaces

We let (73)n>0 be a family of regular triangulations of Q. The set S, consists of all edges (d = 2) or faces
(d = 3) of elements of 7;, and N}, denotes the set of nodes of 7. The elementwise constant mesh size function
hr € L£L°(Q) is defined by

h’T|T = hT = dlam(T)

for all T' € 7;,. In the context of locally refined meshes we employ the average mesh size

E — |Nh|_1/d

defined with the cardinality |Ny| of Aj. Throughout the paper ¢ will denote a generic, positive and mesh-
independent constant.

For an integer k > 0 and a triangle T' € 7}, let Px(T) be the space of polynomials on T with total degree at
most k. We then consider for r € {1,d} the finite element spaces

Sk('ﬂl)r = {vh € C(R") : vy|r € Pp(T) for all T € Th}

and
LT = {an € L"(UR") ¢ qulr € Po(T)" for all T € Ty, }.

For an elementwise continuous function v € C(73) the operator
Iy : C(Th,) — LN(Th)

is defined by the elementwise application of the standard nodal interpolation operator Z;, : C(Q) — S'(T3), i.e.,
the function Z,v € L£1(73) is the piecewise affine function uniquely defined by

th|T(Zi) = |7 (i)

for all T € 7p, and its vertices z;, ¢ = 1,...,d + 1. Note that fh|c(§) = Tj. With the nodal basis {¢, : z €
N} € 8Y(73,) the bilinear form

(v, w)p ::/fh(vw)dx: Z Z BT (2)w|r(2)
Q TET, 2eEN,NT

for v,w € L1(7), where 3, = fT ¢ dx, defines an inner product on £!(7). This mass lumping will allow for
the nodewise solution of certain nonlinearities. We have the relation

lonll < llonlln < (d+2)"2lonll

for all v, € £L1(73,), ¢f. Lemma 3.9 of [9].
For completeness we provide the next lemma which states that (J,.,S*(75)? is dense in W' (div; Q) for
1 <o <oo.
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Lemma 2.1. Let 1 < o/ < 0o and p € W (div; Q). For every ¢ > 0 there exists h(e) > 0 such that for all
h < h(e) there exists a function qn, € S*(75)¢ with

||p - qh”Wﬁ(div;Q) < €.
Proof. Since C*°(; R?) is dense in W7 (div; Q), there exists for given e > 0 a function ¢ € C>(Q;R%) with
P — qll zaivio) < €/2
Standard nodal interpolation estimates yield
¢ = Zhallwe @ivio) < 1 = Znallwror (iray < chlalwz.o@ra)-

Now let h be such that
g = Znallwo (givin) < €/2-

Choosing ¢, = Zj,q and using the triangle inequality yields the assertion. (I

For an element T' € 75, and p;, € Px(T)" we have by an inverse estimate

pnl|2 gy < chg ™™ Y22 py |2, o,

cf. [15]. Hence, we may introduce for 1 < o < 2 the weighted L2-inner product

(th(Q/g_l)

(pth}z)w,, = ph»Qh)

for pn,qn € L¥(7,). Its induced norm then has the property || - [lw, < ¢l - |17 () on £*(T3).

Let us finally introduce the so called Brezzi-Douglas—Marini (BDM) finite element space which is given by
BDM(Q) = £Y(T;,)% n H(div; Q) C H(div; ),

cf. [14]. For an element T € 7;, we can define a local interpolation operator IIj, 7 : H(T)? — P;(T)¢ by

/q-m/}ds:/ﬂhqupds
s s

for all sides S € S, NT of the element T' and all affine functions ¢ € P;(S) on S. Note that the interpolation
operator is well-defined also for less regular functions, e.g., for ¢ € H(div;T) N LY(T;R?) with v > 2, cf. [14].
The global interpolation operator IIj, : H*(2)¢ — BDM(RQ) is then defined by

(Mng)|r =y 7(gl7)
and, in particular, I, € BDM(Q) C H(div; Q). For more details on H (div; Q)-conforming finite element spaces

we refer the reader to [14].

3. ABSTRACT ERROR ESTIMATE

In the following we recap the existing results on abstract a posteriori error estimation for convex minimization
problems and refer to [8,42,43,45] for further details.
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Let F: Y - RU{oo} and G : X — RU {co} be proper, convex and lower-semicontinuous functionals and
B: X — Y be bounded and linear. Under these hypothesis there holds F' = (F*)* and we obtain

l}g(E(u) = ulg)f{F(Bu) + G(u)

inf sup (p, Bu)y'y — F*(p) + G(u)

ueX pey

> sup inf —F*(p) + (p, Bu)y'y + G(u)
peY’ ueX

= sup —sup F*(p) + (—B'p,u)x' x — G(u)
pEY’  weX

= sup —F*(p) — G*(-B'p)
peY’

=: psg/)lD(p).

Hence, the dual formulation seeks a maximizer p € Y’ for D. Particularly, we have the weak duality relation

E(v) = D(q) (3.1)
for all v € X and ¢ € Y'. If u € X is a minimizer for E, the necessary optimality condition reads

0 € OE(u).
With a nonnegative coercivity functional g : X x X — [0, 00) this is equivalent to

on(v,u) + B(u) < E(v) (3.2)

for all v € X. A combination of (3.1) and (3.2) yields the following abstract a posteriori error estimate.

Proposition 3.1 (Primal-dual gap estimates). Let X, C X and Y, C Y’ and u € X and up, € X, be minimial
for E in X and Xy, respectively. We then have the a priori error estimate

or(u,up) < E(up) — E(u) < inf E(vy) — E(u).

v €Xn
For any wy, € X), and q, € Yy, we have with n(wy,, qn) := (E(wp) — D(qx))*? the a posteriori error estimate
or(u,up) < n*(Wh, qn).

Proof. The a priori error estimate is a direct consequence of (3.2). Using the optimality (3.2) of u € X, the
weak duality (3.1) and Y, C Y’ we then obtain

or(u,up) < E(wp) — E(u) < E(up) — sup D(p) < E(wn) — D(qn),

which concludes the proof. a

Remark 3.2. (1) Note that in case of strong duality, i.e., there holds equality in (3.1), the a posteriori error
estimate stated in Proposition 3.1 is sharp in the sense that if we use wp = w and ¢, = p in n with u € X
and p € Y’ being solutions to the primal and the dual problem, respectively, we have

n*(u,p) = E(u) = D(p) = inf E(v) - s D(q) =0.
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Sufficient for strong duality is that there exists w € X with F(Bw) < oo, G(w) < oo and F' being continuous
at Bw. In this case the solutions are related by the inclusions

—B'p € 0G(u), p€ OF(Bu),
¢f. [27], which are equivalent to the variational inequalities

(=B'p,v —u)x/ x + oc(v,u) + G(u)

G(v),
(p, Bv — Bu)y'y + or(Bv, Bu) + F(Bu) < F

(Bw).

VANVAN

Adding both inequalities gives (3.2) with
QE(”) U) = QF(BU7BU) + QG(Ua U),

which serves as an error measure.

(2) Let us emphasize that for the derivation of the reliability estimate for the primal-dual gap error estimator n
we did not need to make any assumptions on the differentiability of the functionals F' and G.

(3) One is free in the construction of feasible functions wy € Xj and ¢, € Y} to define the error estima-
tor n(wp, qn). We will use the Variable-ADMM introduced in [10] to approximately solve the primal and
the dual problem for the nonlinear Laplace problem and the ROF problem. However, feasible functions,
e.g., for the dual problem, may be constructed using other techniques like gradient recovery or flux recon-
struction techniques, if they are applicable for the specific problem. The relation between primal-dual gap
error estimators and other error estimators is discussed in [45] for a certain class of convex minimization
problems.

4. NONLINEAR LAPLACE EQUATION

4.1. Primal and dual formulation

The nonlinear Laplace problem secks for o € (1,00), 0/ =0 /(0—1), f € L7 (Q), g € L7 (T'y), uip € W7 (Q)
and up = Up|r, a minimizer u € W7 (Q) for

1
EAU(u):;/Q|Vu|”dx—/qudx—/F guds + I, (ulrp,)-

The indicator functional I,,,, encodes the boundary condition u|r, = up on I'p = 92\ T'y. The minimization
problem admits a unique minimizer, ¢f. [31]. Minimization problems of the above structure arise in various
areas of interest, e.g., nonlinear diffusion [41], nonlinear elasticity [2], and fluid mechanics [3,6].

Let us make the following assumption that will simplify the presentation.

Assumption 4.1. For ease of presentation we restrict to the case g =0 and up = 0 in what follows. We then
omit the indicator functional L, (ulr,) in the definition of Ea, and seek for a minimizer u € W57 () instead.

The dual nonlinear Laplace problem seeks p € W]‘{,I(div; Q) that maximizes the functional

1 ’ .
Da,(p) == [ 10l do = I(5) (= v

The following result (cf. [43], Thm. 1) shows that the dual nonlinear Laplace problem is in fact the dual problem
to the primal nonlinear Laplace problem in the sense of Fenchel duality. It further ensures the strong duality
between the primal and the dual nonlinear Laplace problem.
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Theorem 4.2 (Strong duality). There exists a unique minimizer u € Wé’” (Q) for Ea_ and a unique mazimizer
pE W]‘\’,l (div; Q) for Da_. The functions u and p are related by divp = —f, p = |Vu|"~2Vu (or, equivalently,
Vu = [p|” ~?p) and

Ex,(u) = Da,(p)-

Proof. The assertion follows from standard arguments in duality theory, cf. [27,43]. ]

The unique minimizer u € W;’U(Q) satisfies the variational equality
/ |Vu|”?Vu - Vodr = / fvda
Q Q

for all v € W57 (), cf. [19,31].
Next, we introduce suitable finite element spaces for the primal and dual nonlinear Laplace problem.

4.2. Finite element spaces and a priori estimates

To make use of the primal-dual gap estimator we need to choose conforming finite element spaces X; C
W})’U(Q) and Y), C Wg (div; Q). We let

X, =SUT) NWET(Q), Vi, = BDM(Q) N W (div; Q).

For f, € L°(T}) being the elementwise L?-projection of f we set
1
EZU (up) = f/ [Vup|® dz —/ fnup da,
g Jo Q

1 , .
DX _(pn) = —;/Q|Ph|” dz — Igf,y (= divpp),

~

1 [ .
DZa(ph) = —;/th|ph|a dz — Ity (= divpp).

As it has been found out in earlier contributions, the energy norm ||V - ||+ () is not well suited for the a priori
and a posterior: error analysis for the nonlinear Laplacian, since one obtains convergence rates that are not
optimal for a discretization with linear finite elements, cf. [7]. Instead, for a fixed function v € W17(Q), a so
called quasi-norm defined by

IVl o) = [ (Vol+ [Tl Vul dr
has been introduced and widely used in the literature, c¢f. [7,13,17,21,25,36-38]. Defining
o—2
V(Vv) = |Vu| 2 Vo
it has been shown in [20,21] that there exist constants ¢, C' > 0 with
Vo = Vul, ) < [V(Vo) - V(Va)|? < O Vo - Vul?, .
The following a priori estimate for the quasi-norm has been shown in Lemma 5.2 of [20].

Proposition 4.3 (A priori estimate). Let u and uy, be the minimizers for Ea, in W5 () and in Xy, respec-
tively. Then we have
IV (Va) =V(Vup)| < ¢ inf [[V(Vu) = V(Vor)ll.
h h

If the minimizer u additionally satisfies V(Vu) € W12(Q;R?), there holds
IV (Vu) = V(Vup)| < e inf [[V(Va) = V(Vop)|| < chlVV(Vu).
Vh h
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Proof. A complete proof is given in [20]. O

Remark 4.4. Under certain regularity assumptions on the data f and the boundary 952 one can prove V(Vu) €
WL2(Q; RY), cf. [24,26]. In general, one may only expect V(Vu) € W7 (Q;R?) for some v > 1 and, in this
case,

IV (Vu) =V (Vup)|| < ch®

with s = min{1,2 — 2/7}, ¢f. Remark 5.2 of [13].

To obtain an a posteriori error estimate in the style of Proposition 3.1 we need to bound the error in the
quasi-norm by the energy difference. This is established in Lemma 16 of [21] for the difference between two
finite element solutions of the nonlinear Laplace problem on nested finite element spaces.

Proposition 4.5 ([21], Lem. 16). Let u € W% (Q) be the unique minimizer of Ea, and vy, € X, be arbitrary.
Then we have

|V (Vu) = V(Vop)||? < Ea, (vi) — Ea, (u).

Proof. A proof is presented in Lemma 16 of [21], where the error between two minimizers up, € Xp, and up € Xp/
of E, in nested spaces X, C Xy C Wllj’” (Q) is considered. However, the minimality property of wuy, is not used
so that we may replace it by any test function v, € X}, see also Lemma 3.2, Remark 3.3 of [13]. We refer the
reader to Lemma 16 of [21] for details. O

The previous proposition enables us to follow the arguments for the a posteriori error analysis presented in
the abstract setting.

4.3. A posteriori estimate and error estimator

By Proposition 4.5 and the strong duality ensured by Theorem 4.2 we obtain an a posteriori error estimate
and an error estimator in the fashion of Proposition 3.1, which can be used for adaptive local mesh refinement.
The next result is a special case of Proposition 3.1 for the nonlinear Laplace problem, where also the data
approximation error is taken into account.

Proposition 4.6 (A posteriori estimate). Let u and uy, be the unique minimizers for Ea, in W5°(Q) and
for EZU i X, respectively, and let py, be the unique maximizer for DZU in Y. Then we have for any v, € Xp,
and qn € Yy, with div g, = —fy that
, 1/(o—1
[V (V) = V(Var) > < 1k, 0nsa6) + ellpall 2556 11 = full o s

with 7720 (Vh,qn)? = Ego (vp) — DZU (qn).

Proof. By Proposition 4.5, the strong duality given by Theorem 4.2 and the optimality of u, and pp in Xj
and Y}, respectively, we have

+ En, (up) — EX_(u) + DX_(pn) — Da, (p)
< 7720 (v, an)?
+ Ea, (up) — EX_(un) + DX (pn) — Da, (p).
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Using the Poincaré inequality and choosing v, = wj in the variational equality satisfied by u; we obtain

unllLo ) < cllVunllLo ) < c||th1L/”(,‘I5)1). Hence, the first data approximation error can be estimated by

B () = B, () = [ (= f)de < 50 = Sl

To estimate the second error involving the discretization of the dual functional we will construct a function
Prn € W (div; Q) for which Da, is finite, i.e., divpy, = — f, and which relates p and pj. Let w™ € W7 (Q) be
the unique weak solution with vanishing mean of

—div(|VwM |7 2vuw®™) = f — f, |V |72V0™ . p =0 on 9Q.

The existence of w® follows with standard arguments from the theory of monotone operators, see, e.g., [19,31],

using the closed subspace W17 (Q) € W1 () consisting of all functions in W17 () with vanishing mean. Set
p = |VwM|7=2Vw™") . Then we have p®) € Wg (div; Q) with

||P(h)|\er'(Q) <cf- fh”L”/(Q)'

For 7y, = pp, + p™ there holds — div pj, = f, i.e., Da, (Pn) < oo. With the optimality of p, the feasibility of py,
with respect to Da_ and the monotonicity

jal”" = bl < o’la]” 2 - (a D)

for a,b € R? we can then bound the error DX (pr) — Da, (p) by

DX (pn) — Da, (p) < DX_(pn) — Da, (Pn)
< / lpn|” ~2pn - (pn — D) da
Q

<|llpnl® 71||L<’(Q)||p(h)||Lff'(Q)

1/(oc—1
< ellpall 50, 11 = fall Lo .
which completes the proof. 0

Remark 4.7. (1) In our numerical experiments below the sequence of discrete solutions to the dual nonlinear
Laplace problem (pp)p>o remained bounded in L",(Q). Unfortunately, we were not able to prove this
theoretically in general.

(2) In Proposition 4.9 we prove that the error indicator is nonnegative.

Remark 4.8. (1) Note that the (discrete) primal-dual gap error estimator 1]20 defines for arbitrary vy, € X,
and g, € Y}, with div g, = — f, a reliable upper bound (up to data oscillations) for the error in the quasi-
norm, i.e., we do not need to compute exact discrete solutions uy and pp of the primal and dual nonlinear
Laplace problem, respectively.

(2) The proof of the reliability of the primal-dual gap error estimator did not require any differentiability
assumptions on Fa_ or a variational formulation of the primal nonlinear Laplace problem.

(3) Using integration by parts and div ¢, = —f), we obtain the expression

1 1 ’
n&mmf=/www+ﬁmw—%v%m
Q g g
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(4) In our numerical experiments we will use the computable (lumped) discrete primal-dual gap error estimator

Nk, (vn,qn)? = EX_(va) — DX _(an)

so that subproblems appearing in the iterative solution of the dual nonlinear Laplace problem can be
efficiently solved nodewise. As before, integration by parts and the relation div ¢, = — f yield

1 1~ /
A, (v, an)® = / =|Von|” + =5 Znlgnl” — gn - Vup da.
Q00 g

For T € T}, the local error indicator is given by restriction of the global error estimator to the element T7'. We
have the following nonnegativity result.

Proposition 4.9. Let for any T € T}, the local error indicator be defined by
h,7T 2 _ 1 o 1 a_/
A (n,qn)™ = | =|Vonl” + = lgn|” —qn - Vo da,
T O g
1 1~ /
ﬁi’z(”h’%)Q = / —|Vun|? + =ZInlgnl” — qn - Vor da.
T O g
Then we have for any v, € Xy and qp € Yy,
"/’}\Zzﬂ(vh7q}7,) Z n27j(vh7qh) 2 0.

Proof. Using that for an element T € 7;, and x € T the mapping & — |gx ()| is convex we conclude that
Ih|qh|‘7/ > |qh|‘7/ on T since gp|r is affine, and, therefore,

b, T BT
na. (nsqn)® = nx"- (vnsqn)?

Note that the integrand in the definition of nZ’UT is nonnegative, because for arbitrary b € R? we have by Young’s
inequality

(1/0")b" = sup a-b— (1/0)al".
a€R?

Particularly, we have

1 1 ,
ng’z(vh,%f = / =[Von|” + = lqnl” —qn - Vordr >0
T g g

for every element T' € 7;,. Hence, putting everything together, we arrive at
~h,T h,T
Na, (Vnsqn) = 1a-, (Vn,qn) =0

for any T € 7y, (]
In the sequel we briefly discuss the explicit computation of the primal-dual gap error estimator.

4.4. Iterative solution

As we have pointed out in Remark 4.8 the quantity 172” (vh,qn), and therefore also 7’7\20 (vn,qn) by Proposi-
tion 4.9, defines a reliable upper bound for any feasible functions v, € X} and ¢ € Y},. Since the minimizer uy
of EZU in X} and the maximizer p; of DZ(, in Y}, are not directly available, a reasonable choice of functions vy,
and g with div g, = —f,, are approximate discrete solutions of the primal and dual nonlinear Laplace problem.
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These will be computed using splitting methods based on augmented Lagrange functionals, which have been
introduced in [30,31]. For the primal problem we define

1
LE (up,rp; An) = */ |7l dz */ frup dz
0 Jao Q
r
+ ()\h, Vup, — Th)w(, + §||Vuh — Th”i]a
for uj, € X3, and rp, A, € £°(73,)%. For the dual problem we consider

1 [~ _
L2 (pn, qn; pn) = ;/QIM%V dz + I,y (divpp)

T 2
+ (Mh,ph - qh)h,wo/ + Eth - Qh‘ hyaw,

for qn, un € L1(73)? and py, € Yj,. The minimization of Ego and —ﬁgd is equivalent to seeking a saddle point
for LE and LP, respectively, i.e.,

min ER (up) = min max  LZ(up,rn; M),
up€Xp i (wn,rn)EX X LO(Th)% A €LO(Th)?

. h . D
min —DR (pn) = min max L (pn, qn; tn)-
PhEYS 00 (Proan) €V X LT €LL(T)e T

The associated saddle-point problems are then solved using the Variable-ADMM, which alternately optimizes LY
and LD with repsect to uj, and 7, and pj, and g, respectively, followed by an update of the Lagrange multipliers,
cf. [10] for details on the Variable-ADMM. The optimization problems related to LZ boil down to elementwise
optimization problems, which is due to the choice of the piecewise constant finite element space EO('Z}L)d, whereas
the optimization problems related to LY are given by nodewise optimization problems, since mass lumping and
the piecewise affine finite element space £1(7;,)? are used. The elementwise and nodewise optimization problems
are solved using Newton’s method, see [39] for details.

5. RUDIN-OSHER—FATEMI IMAGE DENOISING

5.1. Primal and dual formulation

In this section we consider a variant of the nonlinear Laplacian with limit exponent ¢ = 1. For a given
function g € L?(Q) and a fidelity parameter o > 0 we seek a minimizer u € BV(£2) N L?(£2) of the functional

(0%
But(w) = [ |Dul + G lu gl
Q

This particular minimization problem has been proposed in image processing for denoising a given noisy image g
and is known as the Rudin—Osher—Fatemi (ROF) image denoising problem [48]. It also serves as a model problem
for general BV-regularized minimization problems and evolutions, cf., e.g., [50]. The (pre-)dual problem is given
by the maximization of the functional

1 . «
Diot(p) = —@H divp + ag|]* + 5”9”2 — Ik, (0)(P)

in the set of vector fields p € Hy(div; Q) with square integrable distributional divergence and vanishing normal
component on 9, cf. [33]. The indicator functional I, (o) of the set of vector fields ¢ € L?(Q2; R?) which satisfy
lg| < 1in Q introduces a pointwise constraint. Note that a maximizer of D,.s may not be unique. The primal
and the dual ROF problem are in strong duality and the unique minimizer v € BV(Q) N L?(Q) of E,o¢ and any
maximizer p € Hy(div; ) of D, are related by

dlvp:a(U—g), —(u,dlv(q—p)) <0
for all ¢ € Hy(div; Q) N K1(0), ¢f. [33].
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5.2. Finite element spaces

As for the nonlinear Laplace equation we let
X, =SYT,) C BV(Q) N LA(9).
The discrete space Y}, is chosen to consist of continuous or discontinuous, elementwise affine vector fields
v, =SYT) N Hy(div;Q), or YIC = £Y(T;)% N Hy(div; Q).

We have the consistency relation th C Y,flc C Hpy(div;Q) and denote by Y}, either of the two spaces. Let
gn € LY(T3) be the elementwise L2-projection of g. The discretized functionals are then defined by

«
Elye(wn) = [ [Vunldo -+ 5l = gn

1 . a
Droe(pn) = =5l divpn + agall® = i, o) (pn) + 5 llgnll*.

Remark 5.1. The discretization of the dual ROF problem with the lowest order Raviart—Thomas finite element
is not suitable since it does not include nodal degrees of freedom which is required to ensure the pointwise
constraint |py| < 1 which in turn is mandatory to derive a meaningful and useful a posteriori error estimate.

Let u and uy, be the unique minimizers of E,¢ in BV(Q) N L2(2) and X}, respectively. The strong convexity
of E.of can be used to derive the a priori error estimate

3 lu = un? < ch'/?

if u € BV(Q)NL>®(Q), ¢f. [9,12]. The optimal convergence rate for the approximation with continuous, piecewise
linear functions is, however, given by

min_ |lu — vy ||* < ch,
v, €81 (Th)

which cannot be improved in general, cf. [9,12].
Motivated by the relation divp = a(u — g) we also consider for any discrete maximizer p, € Y}, of DrhOf the
approximation

1.
Up = — div pp, + gn € L°(T)
of u, for which the following convergence result can be proven.

h

Proposition 5.2. Let for any h > 0 the function p, be a discrete mazimizer of D] ; in Yy and let U, =

(1/a) divps + gn- If gn — g in L?(Q), we have
llu—Tn| — 0
as h — 0.

Proof. The sequence (gp,)n C L?(£2) is uniformly bounded since g;, — ¢ in L?(Q). Using that pj, is a minimizer
for —Dfof in Y, we can bound

1 . «
2 1 divpn + agnl® — gl\th2 = —D].x(pr) < =Dl (0) =0,

i.e.,

1 o
— || di 2 < Zgnll®.
2a\| ivpn + agn|” < 2||gh||
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Thus, the sequence (pp,)p>o is uniformly bounded in Hy (div;§2). Hence, we can choose a subsequence (pp/)n/>0
with pps — p for a function p € Hy (div;2). On the other hand there exists for any ¢ € Hy(div; Q) a sequence
(qn)n>o0 C Y,€ with |gs| <1 for all h > 0 and g, — ¢ in Hy(div; Q). Indeed, for given ¢ € Hy (div; ) one can
construct a smooth function § € C°(£; R?) via convolution of ¢ with a nonnegative convolution kernel noting
that this process does not increase the L>-norm. One then procedes as in the proof of Lemma 2.1 noting again
that neither the nodal interpolation operator increases the L°°-norm. The weak lower-semicontinuity of —D,q¢
and the optimality of each pp/ yield

_Drof (p) S hg? Héf _Drof (ph’)

< limsup —D!¢ () + D (pr) — Drot (pir)
h’—0

< limsup — D} (pnr) + cllg — gn|l

< lim sup *sz(%/)
h'—0

= lim sup 7Dr0f(qh’) + Drof(qh/) - Dfo,f(q}ﬂ)
h/—0

< IIZHSUP _Drof(qh’) + C”g - gh’” = _Drof(Q)’
’'—0

Hence, p is a minimizer of —D,o. By choosing ¢ = p and a (possibly different) sequence (gn)n>0 C V;¢ with
gn — p in Hy(div; Q) we particularly find that

*Drof (P) = hl’lmo 7Drof (Ph’)~
Since gy — ¢ and div pp, — div p, this implies that
| div pu || — | divp||.

Altogether, we have that divpp — divp in Hy(div; ). By strong duality of the primal and dual ROF problem
we have

1
u=—divp+g.
o

With div py, — divp and gpr — ¢ it follows that
_ 1. 1.
u—"up = —divp+g— —divpy —gp — 0.
@ @

Thus, every convergent subsequence of (uj)p~o converges to u. Therefore, the whole sequence converges
to u. (]

Using the strong convexity of the functional E.¢, i.e., there holds
@ 2
5”“ - ’Uh” S Erof(vh) - Erof(u) (51)

for any v, € S'(7},), we can carry out the a posteriori error analysis.

5.3. A posteriori estimate and error estimator

By the strong convexity (5.1) and the strong duality of the primal and dual ROF problem we can establish
an a posteriori error estimate and an error estimator in the fashion of Proposition 3.1, which can be used
for adaptive mesh refinement. The following reliability result is a special case of Proposition 3.1 for the ROF
problem, where also the data approximation error is taken into account.
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Proposition 5.3. Letu and uy, be the unique minimizers for Eyor in BV(Q)NL%(Q) and E" ; in X}, respectively,
and let pp be a maximizer for Dfof in Yy. Then we have for any vy, € Xp, and qn € Yy, with |gn| < 1 that

o
5““ —up|® < nlte(vn, qn)? +cllg — gnll

with nfof(vh, an)? = Er}gf(vh) — Drhof(qh) and ¢ depending on ||g||.

Proof. Let p € Hy(div;Q) be a maximizer of D,or. Taking v = wy in (5.1) and using the strong duality
Eof(u) = Dyog(p), the optimality of p in Hy (div; Q), the optimality of py in Y, € Hy(div; Q) and the optimality
of up in X}, we have

= wnll® < Frot(un) = Fror(w)
= Eyof(un) — Drot(p)
< Erot(un) — Drot(pn)
= it (un, pn)? + Evof (un) — Ejog(up)
+ D} (pn) — Dot (ph)
< 0lor(Vns n)® + Brot(un) — Elog(un)

+ Dfof(ph) — Dyot(pn)-

The first data approximation error can be bounded by

(0%
Bro) = () = 5 [ (o= 9)(2un =g = 1) da < clg — o]

where we used that ||up|| < ¢|lgrnll and ||grn|l < ¢|lg||. The second data approximation error can be analogously

estimated by

D&@wlhdm);Léwhm@h+w¢rﬁ4@gw@&WM+a@+gmmx

<cllg — anll
using that || divpy|| < ¢||lgnll < c which completes the proof. O
g | divp g qll, p p

Remark 5.4. (1) Note that, as for the nonlinear Laplace problem, the (discrete) primal-dual gap error esti-
mator nfof defines for arbitrary v, € Xp, and ¢, € Yp, with |gn]| < 1 a reliable upper bound (up to data
oscillations) for the error. Particularly, the exact discrete solutions u;, and py, of the primal and dual ROF
problem, respectively, need not to be computed exactly to estimate the error.

(2) Using binomial formulas and integration by parts we obtain the representation

1 .
nhe (v, qn)? = / |Von| = Vo, - qn do + %H div g, — (v, — gn) |
Q

for vy, € X}, and g, € Yy, with |g,] < 1.

As for the nonlinear Laplace problem, for T' € 7} the local error indicators are defined wvia restricting the
global error estimator to the simplex T'. The local error indicators are non-negative due to the condition |g,| < 1
as the next proposition shows.

Proposition 5.5. Let for any T € 7T}, the local error indicator be defined by

..
ot (on,qn)* = / Vo] = Vun - gndz + o || div gn — a(vs — DI2er)-
T
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Then we have for any v, € X, and qn, € Yy, with |qn| <1 that
et (n,an) = 0.
Proof. The non-negativity immediately follows from |gy| < 1 and the Cauchy—Schwarz inequality. (]
To obtain a computable a posteriori error estimator we iteratively solve the primal and dual ROF problem.

5.4. Iterative solution

v and foof as in the case of the nonlinear Laplacian
via an augmented Lagrangian approach. To this end, we introduce for the primal problem

We approximate discrete minimizers uy and py, of Ef

a
LE (i) = [ Il do + 5 un = gnl?
Q
.
+ (A, Vup, —73)w + §||Vuh —rull2
for uj, € X3, and rp, A\, € £°(73,)%, and, for the dual problem,

1 . a
LE (ph, qn; pun) = %H div pp + agp|* — §||gh||2 + I, 0y(qn)
T 2
+ (thsPh — Q) + §th —anlli

for qn, un € £1(71,)% and py, € Yy,. The corresponding saddle-point problems are again solved using the Variable-
ADMM presented in [10]. The elementwise optimization problem with respect to r, appearing in the Variable-
ADMM is solved using for given u; and Ap the explicit formula

Ap + 7Vuy
rp, = max |\, + 7Vuy| — h_dT_l,O _— .
h {| h a } [An + 7Vup|
For given p; and pp the optimization problem with respect to ¢ is a nodewise optimization problem due to
mass lumping and is solved using the shrinkage operator

pn/T + ph
max{1,|un/T + pu|}’

an =
see [39] for details.

6. NUMERICAL EXPERIMENTS

In this section we present our numerical results for the approximation of solutions for the nonlinear Laplace
equation and the ROF problem using mesh adaptivity which is based on the primal-dual gap estimators n(up, pp)-
The refinement of a given triangulation 7} relies on the Dorfler marking and consists in the bisection of elements
T € My, of a minimal set Mj, C 7}, for which

1/2 1/2
[ > nT(umph)Q} >1/2 lz nT(uh,ph)]

TeMyp, T€eTh

holds. Additional elements then are refined to avoid hanging nodes. The numerical approximations uy and pp
for the primal and dual problem, respectively, are obtained using the corresponding saddle-point formulations
and the Variable-ADMM presented in [10].

Before we report the performance of the adaptive algorithm for the nonlinear Laplace equation and the ROF
problem in this section, we will first briefly comment on the hybrid realization of the Brezzi—Douglas—Marini
finite element space.
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6.1. Hybrid implementation of BDM(f2)
We first of all define the space

Zp = {Th € L°°(USp,) : rp|s affine for all S € Sh}7

i.e., Zp, contains all functions r, that are piecewise affine, discontinuous functions on the skeleton S, of the
triangulation 7;,. The space BDM(2) consists of all elementwise affine vector fields g;, for which the normal
component is continuous across interelement sides S € Sy, i.e.,

lan - nslls(z) = lim (qn (@ + ens) — an(x — eng)) - ns =0

for all € S with a unit normal ng on S. If BDM() is defined to be a subspace of Hy(div; ), the normal
component on I'y vanishes, i.e.,

lan - ns]ls(@) = gn(z) -ns =0
for all boundary sides S € S, NIy and = € S. This means that ¢, € BDM(), if and only if ¢, € £'(7;,)? and

/ lgn -ns]rnds =0
U(Sh\(Sh,OFD))

for all r, € Zp,.

6.2. Nonlinear Laplace equation
We consider the nonlinear Laplace problem with inhomogeneous Dirichlet data on the L-shaped domain and

let Q = (=1,1)%\ ([0,1] x [-1,0]), Tp = 92 and g = 0, and define the Dirichlet data up = u|gq through
restriction of the exact solution given in polar coordinates by

u(r,0) = r° sin(56)

to the boundary. The choice of § will be specified later in dependence of the choice of o. The nonsmooth source
term f is then given in polar coordinates by

f(r,0) = —=(2 —0)6° 11 — §)r@= D" =1gin(50).

We let § = (6/5)(1 — 1/0). Then we have that v € W12(Q) but v ¢ W2°(Q). In what follows u, € Xp,
and p;, € Y}, denote approximate solutions to the primal and dual nonlinear Laplace problem obtained with the
iterative scheme Variable-ADMM (cf. [10]).

In Figure 1 the error estimator ﬁgo (un,pn) and the error in the quasi-norm on the left-hand side of the
estimate in Proposition 4.6

0X? = IV(Vu) = V(Vuy)

are plotted against the number of degrees of freedom N :lNh| in a loglog-plot. One can clearly observe that
mesh adaptivity yields the quasi-optimal convergence rate h ~ N~'/2. Particularly, the primal-dual gap error
estimator ﬁgﬂ (un, pn) defines a reliable upper bound for the error in the quasi-norm. On the right-hand side of

Figure 1 we displayed the energy curves for the primal and dual energy EZJ (up) and BZU (pn), respectively. The

primal and dual energy converge to the optimal value and the primal-dual gap EZO (up) — ZADZU (pr) converges
to zero as N — oo and at a higher rate, when local mesh refinement is used. In Figure 2 three snapshots of
the refined mesh are displayed, which show that the primal-dual gap error estimator yields triangulations that
are locally refined in the neighborhood of the singularity. The high resolution is even more localized for o — 1,
since the singularity at the reentrant corner increases.
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FIGURE 1. Primal-dual gap error estimators 7%  and error QlA/f = ||V(Vu) = V(Vu,)| (left)

and primal and dual energy EX (uj) and EZ, (pn) (right) for uniform and adaptive mesh
refinement. Top: nonlinear Laplace problem with ¢ = 1.6. Bottom: primal-dual gap estimator
Laplace problem with ¢ = 1.2.

FIGURE 2. Snapshots of refined meshes for nonlinear Laplace problem with o = 1.6 (left),
o = 1.2 (middle) and o = 1.05 (right). The mesh is locally refined in a neighborhood of the
reentrant corner. The resolution at the reentrant corner increases as o — 1.
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FIGURE 3. Iterations numbers for Variable-ADMM for the minimization of E'Za ﬁga for both
uniform and adaptive refinement. Left: ¢ = 1.6; right: 0 = 1.2.

In Figure 3 the iteration numbers for the Variable-ADMM for the primal and dual problem are plotted versus
the number of degrees of freedom for both uniform and adaptive mesh refinement and for parameters o = 1.6
and o = 1.2. The error tolerance for the residual in the VariableeADMM was of order O(h?). One can observe
that the iteration numbers for the dual problem critically increase as ¢ is decreased.

Let us finally consider the residual-based error estimator

Nfes(un)? = Y el (un)®
T€eT,

from [13,21,36-38] with

h, T h,S
Mt (un)? =g (un)? + > " (un)?
5€5,\09Q,5CaT

and
T (up)? = / (Vo™ + kol ful)” ~2h21 2 da,
T

05w = [ (Funl + |[Funlsl) 2 V] d,

ws

where wg = {11, T2 € T, : S=T1NTy} for S € S, \ 9N and wuy, is the unique discrete minimizer of EZG. The
expression [Vuy]s denotes the jump of Vuy, across an inner side S € Sy, defined by

Wuh]]s = Vuh|T1 — Vuh|T2

for S = Ty N'Ty. The error estimator n”(u;) has been extensively studied in [13,21,36-38], where the efficiency
and reliability of the estimator has been proven and the linear convergence as well as the optimality of the
corresponding adaptive finite element scheme have been shown.

In Figure 4 we compare the primal-dual gap error estimator ﬁgﬂ (un,pr) with the residual error estima-
tor n"_(up) for the nonlinear Laplace problem with inhomogeneous Dirichlet data on the L-shaped domain for
o = 1.6 and o = 1.2 as before. One can observe that both estimators decay at the same rate O(N~/2) on a
sequence of locally refined meshes driven by an element marking strategy based on ?]ZU (wn,pn)-

However, the overestimation of the primal-dual gap estimator ﬁ’ALU (un,pr) is moderate compared to the

h

residual-based error estimator /.

(up). While the overestimation of 7" (u) for ¢ = 1.6 and ¢ = 1.2 do not
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FIGURE 4. Primal-dual gap estimator ﬁgd, residual-based estimator 7", and error oA, =

|V(Vu) = V(Vuy)|| for a sequence of adaptively refined meshes driven by 7% . Left: nonlinear
laplace problem with ¢ = 1.6. Right: nonlinear laplace problem with ¢ = 1.2.

TABLE 1. Effectivity indices €% and el

res

freedom |Np|.

. for primal-dual gap estimator and residual-based
estimator, respectively, for a sequence of adaptively refined meshes with number of degrees of

Effectivity indices for nonlinear Laplace problem

c=156 oc=12

Wl TA,  mies VAL DA, s

209 2.64 15.45 218 1.76 13.08
1221 2.26 13.66 118 1.43 10.75
1863 2.23 1348 1824 1.38 10.42
2306 2.23 13.52 2254 1.35 10.22
2840 2.21 13.38 2815 1.34 10.18
3524 2.15 13.06 3519 1.34 10.17
4398 2.15 13.05 4401 1.34 10.16
5468 2.14 1297 5524 1.32 10.07
6808 2.15 13.05 6934 1.29 9.86
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differ significantly, the gap between the primal-dual gap error estimator and the error diminishes for o = 1.2. Let
us also remark that in the proofs of the reliability and the efficiency of the residual-based error estimator 7 (uz,)
it is crucial that uy, is the unique solution to the primal nonlinear Laplace problem in X}, ¢f. [21]. Its robustness
regarding inexact iterative solutions is not addressed in the aforementioned articles.

Finally, in Table 1 the effectivity indices

=h
e —LA” e
A T 1720
On,

h
h __ Mres
res — 1/2
A

corresponding to the primal-dual gap error estimator and the residual-based estimator, respectively, are shown
depending on the number of degrees of freedom |N}|. It has to be taken into account that the uniform convexity
constant of the functional Fa_ enters the a posteriori error estimate in Proposition 4.6.
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FIGURE 5. Error estimator nfof for Example 6.1 with discretization of the dual problem with
continuous finite element space Y,C (left) and H (div;Q)-conforming finite element space Y,4¢
(right) for uniform and adaptive mesh refinement.

6.3. Rudin—Osher—Fatemi image denoising

We let Q = (—1,1)% and consider two examples with the given function g being the characteristic function
of a set, the first one with homogeneous Neumann boundary conditions and the second one with homogeneous
Dirichlet boundary conditions, for which we have an explicit solution at hand. In the case of Dirichlet boundary
conditions the dual energy functional D, is maximized over H (div; Q) instead of Hy (div;2). The calculations
remain valid, but in general it is nontrivial to guarantee the existence of solutions for Dirichlet boundary
conditions. Since our principal motivation for considering the ROF problem is the application to total variation
regularized damage evolution models from continuum mechanics, ¢f. [50], rather than image processing we do
not include experiments with g being a real image. For adaptive mesh refinement techniques applied to real
images we refer the reader, e.g., to [32].

Example 6.1. We set I'p =0, I'y = 9Q, o = 100, and g = XBgs,(0) the characteristic function of B1°72(0) =
{(z1,22) € R? : max{|z1], |22]} < 1/2}.

In Figure 5 the error estimator 7 is plotted against the number of degrees of freedom N = |\ | using a
logarithmic scaling on both axes both for uniform and adaptive mesh refinement and with the dual problem

discretized with the continuous finite element space Y,¢ = 81(7},)¢ and the H(div; Q)-conforming finite element
space Y4¢ = LY(7;,)¢ N Hy(div; Q). Again, one can observe that using locally refined meshes with Y;* as the

discrete space for the dual problem yields a better convergence rate 50'76 ~ N7938% a5 compared to uniform
refinement with an experimental convergence rate of 50'47. For the choice Yﬁc we record the rates Eo'sl ~ N4
(adaptive) and R N0 (uniform). The choice of the finite element space for the discretization of the
dual problem does not significantly affect the rate of convergence of the primal-dual gap error estimator nrhof.

Example 6.2. Weset I'p =9Q, 'y =0, a =10 and g = XB2 ,(0) with Bf/Q(O) ={reR?: |z| <1/2}.
In this case the exact solution is given by u = (3/5))(3?/2(0), cf. [9].
In Figure 6 the error estimator 1", and the L2-error
0t = (@/2)?[lu—w

are plotted against the number of degrees of freedom in a loglog-plot and again, as before, both for uniform
and adaptive mesh refinement and for the discretization of the dual problem with Y, (left) and Y€ (right).
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Example 6.2 with discretization of the dual problem with continuous finite element space th
(left) and H (div; 2)-conforming finite element space Y2 (right) for uniform and adaptive mesh
refinement.
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FIGURE 7. Iterations numbers for Variable-ADMM for the minimization of Efof and foOf for
both uniform and adaptive refinement. Left: Yj, = Y,¥; right: Y}, = Y,4¢.

The plot underlines that the quantity nfof defines a reliable estimator for the L2-error gi{fz as predicted by

Proposition 5.3. One can, once again, observe that adaptive mesh refinement leads to an improvement of the
convergence rate from M o N022 1 5% o N=031 for hoth discretization methods for the dual problem.
In Figure 7 the iteration numbers for the Variable-ADMM for the primal and dual problem are plotted against
the number of degrees of freedom for both uniform and adaptive mesh refinement and for discretizations of
the dual problem with Y;, = th and Y, = Y,{ic. The error tolerance for the residual in the Variable-ADMM
was of order O(h). The iteration numbers for Y, = th and Y} = Y,flo do not differ significantly. However,
one can observe that the iteration numbers of the Variable-ADMM as a function of the degrees of freedom
grow significantly faster for the dual problem compared to the primal problem reflecting the weaker coercivity
property.
In Table 2 the effectivity index

rof — 1/2

rof
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TABLE 2. Effectivity index efof for primal-dual gap estimator for a sequence of adaptively
refined meshes with number of degrees of freedom |A,|.

Effectivity index for ROF problem

INL| 1531 3542 5432 7356 9868 11579 13373 15638
e. 327 282 291 291 295 292 290  2.86

FIGURE 8. Piecewise constant approximations @, = (1/a)divpy + gn for a sequence of
adaptively refined triangulations for Example 6.2. Top: dual variable is approximated in
Y,¢ = SY(73,)¢. Middle: dual variable is approximated in Y4¢ = £1(7,)? N Hy(div; Q). One
can observe oscillations of uy along the jump set for the discretization of the dual ROF prob-
lem with Y,©. Bottom: bird’s eye view of the middle row. The mesh is locally refined in a
neighborhood of the circular jump set.

depending on the number of degrees of freedom | N} | is presented and shows that the overestimation of the error
is moderate.

In Figure 8 we depicted for a sequence of adaptively refined triangulations the piecewise constant approxi-
mations uy, = (1/) divpp, + g, with p, € Y€ (top) and p,, € Y;2¢ (bottom), cf. Proposition 5.2. Although the
different discretization methods for the dual problem do not affect the convergence rates in the presented exper-
iments, the discretization of the dual problem with the continuous finite element space th causes oscillations

in wy, along the jump set.
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7. CONCLUSION

We have seen that the primal-dual gap error estimator defines a reliable upper bound with constant one
for the error in the energy for convex minimization problems. For uniformly convex minimization problems
it also controls the error with respect to a distance induced by the uniform convexity. The primal-dual gap
error estimator has been introduced in [45] in an abstract setting and has been applied to several minimization
problems in an infinite-dimensional framework. We extended the theory to general finite discretizations of convex
minimization problems and applied the theory to the nonlinear Laplace problem and the ROF problem, which
serve as model problems for a wide class of convex minimization problems. The theoretical results, especially the
reliability of the primal-dual gap error estimator, has been confirmed in several numerical experiments. In order
to compute the estimator we approximately solved the primal and dual problems using the Variable-ADMM
provided in [10]. Yet, it seems necessary to consider more efficient strategies to construct feasible functions
especially for the dual problems.
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tion Techniques in Solid Mechanics: Development of Non-standard Discretization Methods, Mechanical and Mathematical
Analysis.
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