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PRIMAL-DUAL GAP ESTIMATORS FOR A POSTERIORI ERROR ANALYSIS
OF NONSMOOTH MINIMIZATION PROBLEMS

Sören Bartels* and Marijo Milicevic

Abstract. The primal-dual gap is a natural upper bound for the energy error and, for uniformly
convex minimization problems, also for the error in the energy norm. This feature can be used to
construct reliable primal-dual gap error estimators for which the constant in the reliability estimate
equals one for the energy error and equals the uniform convexity constant for the error in the energy
norm. In particular, it defines a reliable upper bound for any functions that are feasible for the primal
and the associated dual problem. The abstract a posteriori error estimate based on the primal-dual
gap is provided in this article, and the abstract theory is applied to the nonlinear Laplace problem and
the Rudin–Osher–Fatemi image denoising problem. The discretization of the primal and dual problems
with conforming, low-order finite element spaces is addressed. The primal-dual gap error estimator
is used to define an adaptive finite element scheme and numerical experiments are presented, which
illustrate the accurate, local mesh refinement in a neighborhood of the singularities, the reliability of
the primal-dual gap error estimator and the moderate overestimation of the error.
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1. Introduction

Many problems in various applications like partial differential equations, mechanics, imaging, and operations
research can be formulated as convex minimization problems of the form

inf
𝑢∈𝑋

𝐸(𝑢) = inf
𝑢∈𝑋

𝐹 (𝐵𝑢) +𝐺(𝑢)

with convex functionals 𝐹,𝐺 and a bounded linear operator 𝐵. Examples are the nonlinear Laplace equation,
the Rudin–Osher–Fatemi model for image denoising, obstacle problems or convex programming. Depending on
the data and the geometry of the problem a solution 𝑢 ∈ 𝑋 of the above minimization problem may suffer from
singularities which can harm the convergence rate as the mesh size ℎ > 0 of a finite element method tends to
zero. A well-known example for this phenomenon is the linear Laplace problem on the L-shaped domain. The
geometry of the domain leads to a convergence rate of order 𝒪(ℎ𝛾) instead of 𝒪(ℎ) in the energy norm, where
0 < 𝛾 < 1 and 𝛾 depends on the angle at the reentrant corner. Singularities may also arise due to intrinsic
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properties of the functions in the underlying space 𝑋. An example is the space of functions with bounded
variation BV(Ω), which allows for jumps along interfaces, which is of interest, e.g., in image processing to
preserve sharp edges. Yet, these jumps cause problems in the finite element approximation of BV-functions.

One way to overcome these drawbacks is adaptive mesh refinement. The general procedure of adaptive routines
is to compute an approximation of the minimizer in the discrete space with a given underlying triangulation,
compute a posteriori error estimators on the basis of the computed approximation, refine the mesh locally
where the error estimators are relatively large and to compute a new approximate solution corresponding to
the new mesh. In this sense, adaptive methods are iterative numerical methods. The reader is referred to,
e.g., [1, 5, 40,49,52] to get an overview of adaptive finite element methods.

The design of a posteriori error estimators is fundamental to adaptive finite element methods. Particularly,
it is crucial that the error estimators define upper (reliability) and lower (efficiency) bounds for an appropriate
measure of the error and that the constant in the upper bound is small and known. We will consider primal-
dual gap error estimators which can be derived using duality theory from convex analysis. In the contributions
[8, 11, 42–47] these primal-dual gap error estimators have been introduced and used for various problems, e.g.,
elasto-plasticity and optimal transport. In [45], the primal-dual gap error estimator has been analyzed for general
convex minimization problems with uniformly convex functionals and the relation to other a posteriori error
estimators based on, e.g., residual and gradient recovery methods has been addressed. Yet, the numerical study
of primal-dual gap error estimators has not been considered in any of those contributions. We will analyze
primal-dual gap based error estimators for the nonlinear Laplace problem

𝐸Δ𝜎
(𝑢) =

1
𝜎

∫︁
Ω

|∇𝑢|𝜎 d𝑥−
∫︁

Ω

𝑓𝑢d𝑥 −→ Min.!

with 1 < 𝜎 < ∞, which has also been addressed in [43] without a numerical study, and for the Rudin–Osher–
Fatemi (ROF) model

𝐸rof(𝑢) = |𝐷𝑢|(Ω) +
𝛼

2
‖𝑢− 𝑔‖2𝐿2(Ω) −→ Min.!

with |𝐷𝑢|(Ω) the total variation of 𝑢, which has been analyzed in, e.g., [8].
The nonlinear Laplace problem serves as a model problem for degenerate nonlinear systems. Results con-

cerning the regularity of solutions, their approximation by finite elements and a priori error estimates can be
found, e.g., [7, 18, 22, 23, 25, 26, 31, 34, 35]. An important observation in the a priori error analysis was that the
energy norm is not well suited for the analysis since optimal convergence rates can only be guaranteed under
restrictive assumptions on the regularity of the solution, cf. [7, 18, 31, 34, 35]. It turned out that a so-called
quasi-norm, which is a weighted 𝐿2-norm of the gradient with a weight depending on the gradient and which
has been introduced in [7], is more appropriate for the analysis of the nonlinear Laplacian, cf. [20, 25]. Par-
ticularly, the optimal convergence rate 𝒪(ℎ) for P1 finite elements can be proven under much less restrictive
regularity assumptions on the solution, cf. [20, 25, 26]. In [36–38] residual-based a posteriori error estimators
have been proposed and reliability and efficiency has been established with respect to the quasi-norm. However,
the involved constants are not explicitly available. Residual-based quasi-norm error estimators yielding explicit
constants in the reliability estimate have been discussed in [16] under the assumption that the modulus of the
gradient is greater than zero almost everywhere in the domain whereas the reliability and efficiency of quasi-
norm error estimators based on gradient recovery techniques has been established in [17]. The convergence of
an adaptive scheme with residual-based a posteriori error estimators has been proven in [51]. In [13, 21] the
linear convergence and optimality of an adaptive method driven by residual-based quasi-norm error estimators
has been proven. The involved constants particularly for the upper bound depend on the nonlinearity of the
problem. In [28,29] the error is measured in a residual flux-based dual norm and the a posteriori error estimator
consists of a residual term, a diffusive flux term and a linearization term. Flux reconstruction techniques are
presented to compute the error estimator and reliability (with constant one) and efficiency (with a constant
independent of the nonlinearity of the problem) are shown. Particular focus is on the balance of linearization
and discretization errors.
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The ROF model serves as a prototype for BV-regularized minimization problems with applications, e.g., in
image processing (cf. [4, 48]) and mechanics (cf. [50]). A primal-dual gap error estimator has been proposed
to define an adaptive algorithm for the ROF problem in [8], which has proven to accurately detect the a
priori unknown jump sets of the minimizer yielding locally refined meshes in a neighborhood of the jump sets.
Therein, a finite element method has been proposed where the primal and dual problem have been discretized
with continuous, elementwise affine finite elements. However, the approximation of the dual ROF problem by
continuous finite elements is suboptimal since the dual ROF problem is posed on 𝐻𝑁 (div; Ω). This is reflected
in the experiments in [8] where oscillations of the approximations along the interface can be observed.

The advantage of primal-dual gap error estimators is that they are applicable to a large class of convex
minimization problems and naturally yield upper bounds for the energy difference between the energy of an
arbitrary admissible test function and the optimal energy with constant one. In case of 𝐹 or 𝐺 being strongly
convex (or coercive) they also define upper bounds for some appropriate error measure with a constant depending
on the coercivity constant. Particularly, they define reliable upper bounds independently of the iterative solver
used to approximate discrete solutions to the primal and dual problem, i.e., the primal-dual gap error estimator
can be evaluated at any two feasible functions for the primal and the dual problem to obtain an upper bound for
the error. Last but not least, the functionals 𝐹 and 𝐺 need not be assumed to be differentiable and there does
not need to exist a variational formulation of the primal problem to establish the reliability of the primal-dual
gap error estimators.

In this paper we will consider primal-dual gap error estimators for both the nonlinear Laplace problem and
the ROF problem. While in [43] the primal-dual gap error estimator has been considered for the nonlinear
Laplacian, the discretization and numerical implementation is missing. Furthermore, noting that the dual prob-
lem corresponding to the nonlinear Laplace problem is given by a smooth, linearly constrained optimization
problem a modified error estimator, which is an upper bound for the primal-dual gap error estimator, is sug-
gested in [43] allowing for dual test functions that do not satisfy the linear constraint. We will consider the
“original” primal-dual gap error estimator to control the quasi-norm used in [7, 21]. In particular, the primal-
dual gap error estimator 𝜂pd can be used to improve the reliability estimate for the convergent, reliable and
efficient residual-based error estimator 𝜂res analyzed in [13,21], i.e., defining 𝜂com = min{𝜂pd, 𝜂res} we obtain a
reliable, robust, efficient and convergent error estimator. Continuous, piecewise affine finite elements are used
for the discretization of the primal nonlinear Laplace problem and the ROF problem posed in 𝑊 1,𝛼(Ω) and
BV(Ω)∩𝐿2(Ω), respectively. The dual problems are posed in 𝑊 𝛽(div; Ω), 𝛽 = 𝛼/(𝛼−1), and 𝐻𝑁 (div; Ω) in case
of the nonlinear Laplacian and the ROF problem, respectively. In both cases we use the Brezzi–Douglas–Marini
finite element (cf. [14]), which consists of discontinuous piecewise affine vector fields with continuous normal
components across interelement sides, for the discretization. This is in contrast to the discretization in [8] where
the dual ROF problem has been discretized with continuous, piecewise affine vector fields, which is known to be
problematic in, e.g., the discretization of the dual formulation of the linear Laplacian with mixed finite elements.
Particularly, oscillations are observed in the approximation of 𝑢 along the interface, cf. Section 6. The discrete
optimization problems related to the primal and the dual problems are solved using the Variable-Alternating
Direction Method of Multipliers (Variable-ADMM) proposed in [10] which is an operator splitting method with
variable step sizes.

The paper is organized as follows. In Section 2 we introduce the notation, important function spaces and
finite element spaces and state some approximation results. The abstract primal-dual gap error estimator and a
posteriori error estimate are the subject of Section 3. In Sections 4 and 5 we state the nonlinear Laplace problem
and the ROF problem, respectively, and the associated dual problems, summarize a priori and a posteriori error
estimates and briefly address the numerical solution of the discrete primal and dual problems. Finally, we present
in Section 6 our numerical results for both problems for examples for which the exact solutions are explicitly
available.

Let us remark that this article is part of the thesis [39], in which certain arguments have been elaborated.
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2. Preliminaries

2.1. Function spaces and convex analysis

We let Ω ⊂ R𝑑, 𝑑 = 2, 3, be a bounded, polygonal Lipschitz domain with Dirichlet boundary Γ𝐷 and Neumann
boundary Γ𝑁 such that 𝜕Ω = Γ𝐷 ∪ Γ𝑁 . The 𝐿2-norm on Ω is denoted by ‖ · ‖ and is induced by the scalar
product

(𝑣, 𝑤) :=
∫︁

Ω

𝑣 · 𝑤 d𝑥

for scalar functions or vector fields 𝑣, 𝑤 ∈ 𝐿2(Ω; R𝑟), 𝑟 ∈ {1, 𝑑}, and we write | · | for the Euclidean norm.
For 𝑠 ≥ 0 and 𝜎 ≥ 1 we let 𝑊 𝑠,𝜎(Ω; R𝑟) be the standard Sobolev space with norm ‖·‖𝑊 𝑠,𝜎(Ω) and seminorm | ·

|𝑊 𝑠,𝜎(Ω) with differentiability exponent 𝑠 and integrability exponent 𝜎. The subspace 𝑊 𝑠,𝜎
𝐷 (Ω; R𝑟) consists of

all functions in 𝑊 𝑠,𝜎(Ω; R𝑟) that vanish on Γ𝐷 for 𝑠 ≥ 1 in the sense of traces. If 𝑠 = 0 we write 𝐿𝜎(Ω; R𝑟)
instead of 𝑊 𝑠,𝜎(Ω; R𝑟).

Finally, for 𝜎′ ≥ 1, we denote by 𝑊𝜎′(div; Ω) the function space consisting of all vector fields 𝑝 ∈ 𝐿𝜎′(Ω; R𝑑)
such that there exists a function 𝑓 ∈ 𝐿𝜎′(Ω) with∫︁

Ω

𝑝 · ∇𝜙d𝑥 = −
∫︁

Ω

𝑓𝜙d𝑥

for all continuously differentiable, compactly supported functions 𝜙 ∈ 𝐶1
𝑐 (Ω). If such a function 𝑓 ∈ 𝐿𝜎′(Ω)

exists, we write div 𝑝 = 𝑓 . The space 𝑊𝜎′(div; Ω) is equipped with the norm

‖ · ‖𝑊 𝜎′ (div;Ω) = ‖ · ‖𝐿𝜎′ (Ω) + ‖div ·‖𝐿𝜎′ (Ω).

Furthermore, we denote by 𝑊𝜎′

𝑁 (div; Ω) all elements of 𝑝 ∈ 𝑊𝜎′(div; Ω) with 𝑝 · 𝑛 = 0 on Γ𝑁 in distributional
sense, i.e.,

⟨𝑝 · 𝑛, 𝑢⟩ =
∫︁

Ω

𝑝 · ∇𝑢d𝑥+
∫︁

Ω

𝑢div 𝑝 d𝑥 = 0

for all 𝑢 ∈ 𝑊 1,𝜎
𝐷 (Ω), where 𝜎 ≥ 1 is the dual exponent to 𝜎′ ≥ 1, i.e., 1/𝜎 + 1/𝜎′ = 1. If 𝜎′ = 2 we write

𝐻(div; Ω) instead of 𝑊 2(div; Ω), and accordingly 𝐻𝑁 (div; Ω) instead of 𝑊 2
𝑁 (div; Ω).

For the general, abstract a posteriori error estimate we will work with two reflexive Banach spaces 𝑋 and 𝑌
equipped with the norms ‖·‖𝑋 and ‖·‖𝑌 , respectively. We denote their duals by 𝑋 ′ and 𝑌 ′ and the corresponding
duality pairings by ⟨·, ·⟩𝑋′,𝑋 and ⟨·, ·⟩𝑌 ′,𝑌 , respectively. The double duals𝑋 ′′ and 𝑌 ′′ are identified with𝑋 and 𝑌 ,
respectively. If 𝑋 is a Hilbert space with inner product (·, ·)𝑋 , we identify the dual 𝑋 ′ with 𝑋. Given a bounded
linear operator 𝐵 : 𝑋 → 𝑌 we denote by 𝐵′ : 𝑌 ′ → 𝑋 ′ its adjoint. For proper, convex and lower-semicontinuous
functionals 𝐹 : 𝑌 → R∪{∞} and 𝐺 : 𝑋 → R∪{∞} the subdifferentials 𝜕𝐺(𝑢) ⊂ 𝑋 ′ at 𝑢 ∈ 𝑋 and 𝜕𝐹 (𝑝) ⊂ 𝑌 ′

at 𝑝 ∈ 𝑌 are defined by

𝜕𝐺(𝑢) = {𝑤 ∈ 𝑋 ′ : ⟨𝑤, 𝑣 − 𝑢⟩𝑋′,𝑋 +𝐺(𝑢) ≤ 𝐺(𝑣) for all 𝑣 ∈ 𝑋},
𝜕𝐹 (𝑝) = {𝜆 ∈ 𝑌 ′ : ⟨𝜆, 𝑞 − 𝑝⟩𝑌 ′,𝑌 + 𝐹 (𝑝) ≤ 𝐹 (𝑞) for all 𝑞 ∈ 𝑌 }.

Possible coercivity of the functionals 𝐹 and 𝐺 is characterized by non-negative mappings 𝜚𝐹 : 𝑌 × 𝑌 → R+

and 𝜚𝐺 : 𝑋 ×𝑋 → R+ such that for 𝑤 ∈ 𝜕𝐺(𝑢) and 𝜆 ∈ 𝜕𝐹 (𝑝) we have

⟨𝑤, 𝑣 − 𝑢⟩𝑋′,𝑋 +𝐺(𝑢) + 𝜚𝐺(𝑣, 𝑢) ≤ 𝐺(𝑣) for all 𝑣 ∈ 𝑋,
⟨𝜆, 𝑞 − 𝑝⟩𝑌 ′,𝑌 + 𝐹 (𝑝) + 𝜚𝐹 (𝑞, 𝑝) ≤ 𝐹 (𝑞) for all 𝑞 ∈ 𝑌.

(2.1)

This can be regarded as a generalization of the notion of uniform convexity and strong convexity. The existence
of non-trivial 𝜚𝐺 or 𝜚𝐹 will induce an error measure for which we establish primal-dual gap error estimates.
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Possible constraints will be encoded using indicator functionals 𝐼𝐾 with 𝐾 ⊂ 𝑋 defining the constraint and 𝐼𝐾
being defined as

𝐼𝐾(𝑣) =

{︃
0, if 𝑣 ∈ 𝐾,
+∞, if 𝑣 /∈ 𝐾.

For the a posteriori error analysis we will need the Fenchel conjugates 𝐹 * and 𝐺*, which are defined by

𝐹 *(𝑞) = sup
𝑝∈𝑌

⟨𝑞, 𝑝⟩𝑌 ′,𝑌 − 𝐹 (𝑝), 𝐺*(𝑣) = sup
𝑢∈𝑋

⟨𝑣, 𝑢⟩𝑋′,𝑋 −𝐺(𝑢).

These are used to convert the primal problems into dual problems.

2.2. Finite element spaces

We let (𝒯ℎ)ℎ>0 be a family of regular triangulations of Ω. The set 𝒮ℎ consists of all edges (𝑑 = 2) or faces
(𝑑 = 3) of elements of 𝒯ℎ and 𝒩ℎ denotes the set of nodes of 𝒯ℎ. The elementwise constant mesh size function
ℎ𝒯 ∈ ℒ∞(Ω) is defined by

ℎ𝒯 |𝑇 = ℎ𝑇 = diam(𝑇 )

for all 𝑇 ∈ 𝒯ℎ. In the context of locally refined meshes we employ the average mesh size

ℎ = |𝒩ℎ|−1/𝑑

defined with the cardinality |𝒩ℎ| of 𝒩ℎ. Throughout the paper 𝑐 will denote a generic, positive and mesh-
independent constant.

For an integer 𝑘 ≥ 0 and a triangle 𝑇 ∈ 𝒯ℎ let 𝑃𝑘(𝑇 ) be the space of polynomials on 𝑇 with total degree at
most 𝑘. We then consider for 𝑟 ∈ {1, 𝑑} the finite element spaces

𝒮𝑘(𝒯ℎ)𝑟 :=
{︀
𝑣ℎ ∈ 𝐶(Ω; R𝑟) : 𝑣ℎ|𝑇 ∈ 𝑃𝑘(𝑇 )𝑟 for all 𝑇 ∈ 𝒯ℎ

}︀
and

ℒ𝑘(𝒯ℎ)𝑟 :=
{︀
𝑞ℎ ∈ 𝐿1(Ω; R𝑟) : 𝑞ℎ|𝑇 ∈ 𝑃𝑘(𝑇 )𝑟 for all 𝑇 ∈ 𝒯ℎ

}︀
.

For an elementwise continuous function 𝑣 ∈ 𝐶(𝒯ℎ) the operator

̂︀ℐℎ : 𝐶(𝒯ℎ) → ℒ1(𝒯ℎ)

is defined by the elementwise application of the standard nodal interpolation operator ℐℎ : 𝐶(Ω) → 𝒮1(𝒯ℎ), i.e.,
the function ̂︀ℐℎ𝑣 ∈ ℒ1(𝒯ℎ) is the piecewise affine function uniquely defined by

̂︀ℐℎ𝑣|𝑇 (𝑧𝑖) = 𝑣|𝑇 (𝑧𝑖)

for all 𝑇 ∈ 𝒯ℎ and its vertices 𝑧𝑖, 𝑖 = 1, . . . , 𝑑 + 1. Note that ̂︀ℐℎ|𝐶(Ω) = ℐℎ. With the nodal basis {𝜙𝑧 : 𝑧 ∈
𝒩ℎ} ⊂ 𝒮1(𝒯ℎ) the bilinear form

(𝑣, 𝑤)ℎ :=
∫︁

Ω

̂︀ℐℎ(𝑣𝑤) d𝑥 =
∑︁

𝑇∈𝒯ℎ

∑︁
𝑧∈𝒩ℎ∩𝑇

𝛽𝑇
𝑧 𝑣|𝑇 (𝑧)𝑤|𝑇 (𝑧)

for 𝑣, 𝑤 ∈ ℒ1(𝒯ℎ), where 𝛽𝑧 =
∫︀

𝑇
𝜙𝑧 d𝑥, defines an inner product on ℒ1(𝒯ℎ). This mass lumping will allow for

the nodewise solution of certain nonlinearities. We have the relation

‖𝑣ℎ‖ ≤ ‖𝑣ℎ‖ℎ ≤ (𝑑+ 2)1/2‖𝑣ℎ‖

for all 𝑣ℎ ∈ ℒ1(𝒯ℎ), cf. Lemma 3.9 of [9].
For completeness we provide the next lemma which states that

⋃︀
ℎ>0 𝒮1(𝒯ℎ)𝑑 is dense in 𝑊𝜎′(div; Ω) for

1 < 𝜎′ <∞.
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Lemma 2.1. Let 1 < 𝜎′ < ∞ and 𝑝 ∈ 𝑊𝜎′(div; Ω). For every 𝜀 > 0 there exists ℎ(𝜀) > 0 such that for all
ℎ ≤ ℎ(𝜀) there exists a function 𝑞ℎ ∈ 𝒮1(𝒯ℎ)𝑑 with

‖𝑝− 𝑞ℎ‖𝑊 𝛽(div;Ω) < 𝜀.

Proof. Since 𝐶∞(Ω; R𝑑) is dense in 𝑊𝜎′(div; Ω), there exists for given 𝜀 > 0 a function 𝑞 ∈ 𝐶∞(Ω; R𝑑) with

‖𝑝− 𝑞‖𝐻(div;Ω) < 𝜀/2.

Standard nodal interpolation estimates yield

‖𝑞 − ℐℎ𝑞‖𝑊 𝜎′ (div;Ω) ≤ ‖𝑞 − ℐℎ𝑞‖𝑊 1,𝜎′ (Ω;R𝑑) ≤ 𝑐ℎ|𝑞|𝑊 2,∞(Ω;R𝑑).

Now let ℎ be such that
‖𝑞 − ℐℎ𝑞‖𝑊 𝜎′ (div;Ω) < 𝜀/2.

Choosing 𝑞ℎ = ℐℎ𝑞 and using the triangle inequality yields the assertion. �

For an element 𝑇 ∈ 𝒯ℎ and 𝑝ℎ ∈ 𝑃𝑘(𝑇 )𝑟 we have by an inverse estimate

‖𝑝ℎ‖2𝐿2(𝑇 ) ≤ 𝑐ℎ
2 min{0,𝑑/2−𝑑/𝜎}
𝑇 ‖𝑝ℎ‖2𝐿𝜎(𝑇 ),

cf. [15]. Hence, we may introduce for 1 ≤ 𝜎 < 2 the weighted 𝐿2-inner product

(𝑝ℎ, 𝑞ℎ)𝑤𝜎 = (ℎ𝑑(2/𝜎−1)
𝒯 𝑝ℎ, 𝑞ℎ)

for 𝑝ℎ, 𝑞ℎ ∈ ℒ𝑘(𝒯ℎ). Its induced norm then has the property ‖ · ‖𝑤𝜎 ≤ 𝑐‖ · ‖𝐿𝜎(Ω) on ℒ𝑘(𝒯ℎ).
Let us finally introduce the so called Brezzi–Douglas–Marini (BDM) finite element space which is given by

ℬ𝒟ℳ(Ω) = ℒ1(𝒯ℎ)𝑑 ∩𝐻(div; Ω) ⊂ 𝐻(div; Ω),

cf. [14]. For an element 𝑇 ∈ 𝒯ℎ we can define a local interpolation operator Πℎ,𝑇 : 𝐻1(𝑇 )𝑑 → 𝑃1(𝑇 )𝑑 by∫︁
𝑆

𝑞 · 𝑛𝜓 d𝑠 =
∫︁

𝑆

Πℎ,𝑇 𝑞 · 𝑛𝜓 d𝑠

for all sides 𝑆 ∈ 𝒮ℎ ∩ 𝑇 of the element 𝑇 and all affine functions 𝜓 ∈ 𝑃1(𝑆) on 𝑆. Note that the interpolation
operator is well-defined also for less regular functions, e.g., for 𝑞 ∈ 𝐻(div;𝑇 ) ∩ 𝐿𝛾(𝑇 ; R𝑑) with 𝛾 > 2, cf. [14].
The global interpolation operator Πℎ : 𝐻1(Ω)𝑑 → ℬ𝒟ℳ(Ω) is then defined by

(Πℎ𝑞)|𝑇 = Πℎ,𝑇 (𝑞|𝑇 )

and, in particular, Πℎ𝑞 ∈ ℬ𝒟ℳ(Ω) ⊂ 𝐻(div; Ω). For more details on 𝐻(div; Ω)-conforming finite element spaces
we refer the reader to [14].

3. Abstract error estimate

In the following we recap the existing results on abstract a posteriori error estimation for convex minimization
problems and refer to [8, 42,43,45] for further details.
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Let 𝐹 : 𝑌 → R ∪ {∞} and 𝐺 : 𝑋 → R ∪ {∞} be proper, convex and lower-semicontinuous functionals and
𝐵 : 𝑋 → 𝑌 be bounded and linear. Under these hypothesis there holds 𝐹 = (𝐹 *)* and we obtain

inf
𝑢∈𝑋

𝐸(𝑢) = inf
𝑢∈𝑋

𝐹 (𝐵𝑢) +𝐺(𝑢)

= inf
𝑢∈𝑋

sup
𝑝∈𝑌 ′

⟨𝑝,𝐵𝑢⟩𝑌 ′,𝑌 − 𝐹 *(𝑝) +𝐺(𝑢)

≥ sup
𝑝∈𝑌 ′

inf
𝑢∈𝑋

−𝐹 *(𝑝) + ⟨𝑝,𝐵𝑢⟩𝑌 ′,𝑌 +𝐺(𝑢)

= sup
𝑝∈𝑌 ′

− sup
𝑢∈𝑋

𝐹 *(𝑝) + ⟨−𝐵′𝑝, 𝑢⟩𝑋′,𝑋 −𝐺(𝑢)

= sup
𝑝∈𝑌 ′

−𝐹 *(𝑝)−𝐺*(−𝐵′𝑝)

=: sup
𝑝∈𝑌 ′

𝐷(𝑝).

Hence, the dual formulation seeks a maximizer 𝑝 ∈ 𝑌 ′ for 𝐷. Particularly, we have the weak duality relation

𝐸(𝑣) ≥ 𝐷(𝑞) (3.1)

for all 𝑣 ∈ 𝑋 and 𝑞 ∈ 𝑌 ′. If 𝑢 ∈ 𝑋 is a minimizer for 𝐸, the necessary optimality condition reads

0 ∈ 𝜕𝐸(𝑢).

With a nonnegative coercivity functional 𝜚𝐸 : 𝑋 ×𝑋 → [0,∞) this is equivalent to

𝜚𝐸(𝑣, 𝑢) + 𝐸(𝑢) ≤ 𝐸(𝑣) (3.2)

for all 𝑣 ∈ 𝑋. A combination of (3.1) and (3.2) yields the following abstract a posteriori error estimate.

Proposition 3.1 (Primal-dual gap estimates). Let 𝑋ℎ ⊂ 𝑋 and 𝑌ℎ ⊂ 𝑌 ′ and 𝑢 ∈ 𝑋 and 𝑢ℎ ∈ 𝑋ℎ be minimial
for 𝐸 in 𝑋 and 𝑋ℎ, respectively. We then have the a priori error estimate

𝜚𝐸(𝑢, 𝑢ℎ) ≤ 𝐸(𝑢ℎ)− 𝐸(𝑢) ≤ inf
𝑣ℎ∈𝑋ℎ

𝐸(𝑣ℎ)− 𝐸(𝑢).

For any 𝑤ℎ ∈ 𝑋ℎ and 𝑞ℎ ∈ 𝑌ℎ we have with 𝜂(𝑤ℎ, 𝑞ℎ) := (𝐸(𝑤ℎ)−𝐷(𝑞ℎ))1/2 the a posteriori error estimate

𝜚𝐸(𝑢, 𝑢ℎ) ≤ 𝜂2(𝑤ℎ, 𝑞ℎ).

Proof. The a priori error estimate is a direct consequence of (3.2). Using the optimality (3.2) of 𝑢 ∈ 𝑋, the
weak duality (3.1) and 𝑌ℎ ⊂ 𝑌 ′ we then obtain

𝜚𝐸(𝑢, 𝑢ℎ) ≤ 𝐸(𝑤ℎ)− 𝐸(𝑢) ≤ 𝐸(𝑢ℎ)− sup
𝑝∈𝑌 ′

𝐷(𝑝) ≤ 𝐸(𝑤ℎ)−𝐷(𝑞ℎ),

which concludes the proof. �

Remark 3.2. (1) Note that in case of strong duality, i.e., there holds equality in (3.1), the a posteriori error
estimate stated in Proposition 3.1 is sharp in the sense that if we use 𝑤ℎ = 𝑢 and 𝑞ℎ = 𝑝 in 𝜂 with 𝑢 ∈ 𝑋
and 𝑝 ∈ 𝑌 ′ being solutions to the primal and the dual problem, respectively, we have

𝜂2(𝑢, 𝑝) = 𝐸(𝑢)−𝐷(𝑝) = inf
𝑣∈𝑋

𝐸(𝑣)− sup
𝑞∈𝑌 ′

𝐷(𝑞) = 0.
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Sufficient for strong duality is that there exists 𝑤 ∈ 𝑋 with 𝐹 (𝐵𝑤) <∞, 𝐺(𝑤) <∞ and 𝐹 being continuous
at 𝐵𝑤. In this case the solutions are related by the inclusions

−𝐵′𝑝 ∈ 𝜕𝐺(𝑢), 𝑝 ∈ 𝜕𝐹 (𝐵𝑢),

cf. [27], which are equivalent to the variational inequalities

⟨−𝐵′𝑝, 𝑣 − 𝑢⟩𝑋′,𝑋 + 𝜚𝐺(𝑣, 𝑢) +𝐺(𝑢) ≤ 𝐺(𝑣),
⟨𝑝,𝐵𝑣 −𝐵𝑢⟩𝑌 ′,𝑌 + 𝜚𝐹 (𝐵𝑣,𝐵𝑢) + 𝐹 (𝐵𝑢) ≤ 𝐹 (𝐵𝑣).

Adding both inequalities gives (3.2) with

𝜚𝐸(𝑣, 𝑢) = 𝜚𝐹 (𝐵𝑣,𝐵𝑢) + 𝜚𝐺(𝑣, 𝑢),

which serves as an error measure.
(2) Let us emphasize that for the derivation of the reliability estimate for the primal-dual gap error estimator 𝜂

we did not need to make any assumptions on the differentiability of the functionals 𝐹 and 𝐺.
(3) One is free in the construction of feasible functions 𝑤ℎ ∈ 𝑋ℎ and 𝑞ℎ ∈ 𝑌ℎ to define the error estima-

tor 𝜂(𝑤ℎ, 𝑞ℎ). We will use the Variable-ADMM introduced in [10] to approximately solve the primal and
the dual problem for the nonlinear Laplace problem and the ROF problem. However, feasible functions,
e.g., for the dual problem, may be constructed using other techniques like gradient recovery or flux recon-
struction techniques, if they are applicable for the specific problem. The relation between primal-dual gap
error estimators and other error estimators is discussed in [45] for a certain class of convex minimization
problems.

4. Nonlinear Laplace equation

4.1. Primal and dual formulation

The nonlinear Laplace problem seeks for 𝜎 ∈ (1,∞), 𝜎′ = 𝜎/(𝜎−1), 𝑓 ∈ 𝐿𝜎′(Ω), 𝑔 ∈ 𝐿𝜎′(Γ𝑁 ), ̃︀𝑢𝐷 ∈𝑊 1,𝜎(Ω)
and 𝑢𝐷 = ̃︀𝑢𝐷|Γ𝐷

a minimizer 𝑢 ∈𝑊 1,𝜎(Ω) for

𝐸Δ𝜎
(𝑢) =

1
𝜎

∫︁
Ω

|∇𝑢|𝜎 d𝑥−
∫︁

Ω

𝑓𝑢d𝑥−
∫︁

Γ𝑁

𝑔𝑢d𝑠+ 𝐼𝑢𝐷
(𝑢|Γ𝐷

).

The indicator functional 𝐼𝑢𝐷
encodes the boundary condition 𝑢|Γ𝐷

= 𝑢𝐷 on Γ𝐷 = 𝜕Ω ∖ Γ𝑁 . The minimization
problem admits a unique minimizer, cf. [31]. Minimization problems of the above structure arise in various
areas of interest, e.g., nonlinear diffusion [41], nonlinear elasticity [2], and fluid mechanics [3, 6].

Let us make the following assumption that will simplify the presentation.

Assumption 4.1. For ease of presentation we restrict to the case 𝑔 = 0 and 𝑢𝐷 = 0 in what follows. We then
omit the indicator functional 𝐼𝑢𝐷

(𝑢|Γ𝐷
) in the definition of 𝐸Δ𝜎 and seek for a minimizer 𝑢 ∈𝑊 1,𝜎

𝐷 (Ω) instead.

The dual nonlinear Laplace problem seeks 𝑝 ∈𝑊𝜎′

𝑁 (div; Ω) that maximizes the functional

𝐷Δ𝜎
(𝑝) := − 1

𝜎′

∫︁
Ω

|𝑝|𝜎
′
d𝑥− 𝐼{𝑓}(− div 𝑝).

The following result (cf. [43], Thm. 1) shows that the dual nonlinear Laplace problem is in fact the dual problem
to the primal nonlinear Laplace problem in the sense of Fenchel duality. It further ensures the strong duality
between the primal and the dual nonlinear Laplace problem.
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Theorem 4.2 (Strong duality). There exists a unique minimizer 𝑢 ∈𝑊 1,𝜎
𝐷 (Ω) for 𝐸Δ𝜎

and a unique maximizer
𝑝 ∈ 𝑊𝜎′

𝑁 (div; Ω) for 𝐷Δ𝜎 . The functions 𝑢 and 𝑝 are related by div 𝑝 = −𝑓 , 𝑝 = |∇𝑢|𝜎−2∇𝑢 (or, equivalently,
∇𝑢 = |𝑝|𝜎′−2𝑝) and

𝐸Δ𝜎
(𝑢) = 𝐷Δ𝜎

(𝑝).

Proof. The assertion follows from standard arguments in duality theory, cf. [27, 43]. �

The unique minimizer 𝑢 ∈𝑊 1,𝜎
𝐷 (Ω) satisfies the variational equality∫︁

Ω

|∇𝑢|𝜎−2∇𝑢 · ∇𝑣 d𝑥 =
∫︁

Ω

𝑓𝑣 d𝑥

for all 𝑣 ∈𝑊 1,𝜎
𝐷 (Ω), cf. [19, 31].

Next, we introduce suitable finite element spaces for the primal and dual nonlinear Laplace problem.

4.2. Finite element spaces and a priori estimates

To make use of the primal-dual gap estimator we need to choose conforming finite element spaces 𝑋ℎ ⊂
𝑊 1,𝜎

𝐷 (Ω) and 𝑌ℎ ⊂𝑊𝜎′

𝑁 (div; Ω). We let

𝑋ℎ = 𝒮1(𝒯ℎ) ∩𝑊 1,𝜎
𝐷 (Ω), 𝑌ℎ = ℬ𝒟ℳ(Ω) ∩𝑊𝜎′

𝑁 (div; Ω).

For 𝑓ℎ ∈ ℒ0(𝒯ℎ) being the elementwise 𝐿2-projection of 𝑓 we set

𝐸ℎ
Δ𝜎

(𝑢ℎ) =
1
𝜎

∫︁
Ω

|∇𝑢ℎ|𝜎 d𝑥−
∫︁

Ω

𝑓ℎ𝑢ℎ d𝑥,

𝐷ℎ
Δ𝜎

(𝑝ℎ) = − 1
𝜎′

∫︁
Ω

|𝑝ℎ|𝜎
′
d𝑥− 𝐼{𝑓ℎ}(−div 𝑝ℎ),

̂︀𝐷ℎ
Δ𝜎

(𝑝ℎ) = − 1
𝜎′

∫︁
Ω

̂︀ℐℎ|𝑝ℎ|𝜎
′
d𝑥− 𝐼{𝑓ℎ}(−div 𝑝ℎ).

As it has been found out in earlier contributions, the energy norm ‖∇ · ‖𝐿𝜎(Ω) is not well suited for the a priori
and a posteriori error analysis for the nonlinear Laplacian, since one obtains convergence rates that are not
optimal for a discretization with linear finite elements, cf. [7]. Instead, for a fixed function 𝑣 ∈ 𝑊 1,𝜎(Ω), a so
called quasi-norm defined by

‖∇𝑤‖2(𝑣,𝜎) :=
∫︁

Ω

(|∇𝑣|+ |∇𝑤|)𝜎−2|∇𝑤|2 d𝑥

has been introduced and widely used in the literature, cf. [7, 13,17,21,25,36–38]. Defining

𝑉 (∇𝑣) := |∇𝑣|
𝜎−2

2 ∇𝑣

it has been shown in [20,21] that there exist constants 𝑐, 𝐶 > 0 with

𝑐‖∇𝑣 −∇𝑤‖2(𝑣,𝜎) ≤ ‖𝑉 (∇𝑣)− 𝑉 (∇𝑤)‖2 ≤ 𝐶‖∇𝑣 −∇𝑤‖2(𝑣,𝜎).

The following a priori estimate for the quasi-norm has been shown in Lemma 5.2 of [20].

Proposition 4.3 (A priori estimate). Let 𝑢 and 𝑢ℎ be the minimizers for 𝐸Δ𝜎 in 𝑊 1,𝜎
𝐷 (Ω) and in 𝑋ℎ, respec-

tively. Then we have
‖𝑉 (∇𝑢)− 𝑉 (∇𝑢ℎ)‖ ≤ 𝑐 inf

𝑣ℎ∈𝑋ℎ

‖𝑉 (∇𝑢)− 𝑉 (∇𝑣ℎ)‖.

If the minimizer 𝑢 additionally satisfies 𝑉 (∇𝑢) ∈𝑊 1,2(Ω; R𝑑), there holds

‖𝑉 (∇𝑢)− 𝑉 (∇𝑢ℎ)‖ ≤ 𝑐 inf
𝑣ℎ∈𝑋ℎ

‖𝑉 (∇𝑢)− 𝑉 (∇𝑣ℎ)‖ ≤ 𝑐ℎ‖∇𝑉 (∇𝑢)‖.
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Proof. A complete proof is given in [20]. �

Remark 4.4. Under certain regularity assumptions on the data 𝑓 and the boundary 𝜕Ω one can prove 𝑉 (∇𝑢) ∈
𝑊 1,2(Ω; R𝑑), cf. [24, 26]. In general, one may only expect 𝑉 (∇𝑢) ∈ 𝑊 1,𝛾(Ω; R𝑑) for some 𝛾 > 1 and, in this
case,

‖𝑉 (∇𝑢)− 𝑉 (∇𝑢ℎ)‖ ≤ 𝑐ℎ𝑠

with 𝑠 = min{1, 2− 2/𝛾}, cf. Remark 5.2 of [13].

To obtain an a posteriori error estimate in the style of Proposition 3.1 we need to bound the error in the
quasi-norm by the energy difference. This is established in Lemma 16 of [21] for the difference between two
finite element solutions of the nonlinear Laplace problem on nested finite element spaces.

Proposition 4.5 ([21], Lem. 16). Let 𝑢 ∈𝑊 1,𝜎
𝐷 (Ω) be the unique minimizer of 𝐸Δ𝜎

and 𝑣ℎ ∈ 𝑋ℎ be arbitrary.
Then we have

𝑐‖𝑉 (∇𝑢)− 𝑉 (∇𝑣ℎ)‖2 ≤ 𝐸Δ𝜎
(𝑣ℎ)− 𝐸Δ𝜎

(𝑢).

Proof. A proof is presented in Lemma 16 of [21], where the error between two minimizers 𝑢ℎ ∈ 𝑋ℎ and 𝑢ℎ′ ∈ 𝑋ℎ′

of 𝐸Δ𝜎 in nested spaces 𝑋ℎ ⊂ 𝑋ℎ′ ⊂𝑊 1,𝜎
𝐷 (Ω) is considered. However, the minimality property of 𝑢ℎ is not used

so that we may replace it by any test function 𝑣ℎ ∈ 𝑋ℎ, see also Lemma 3.2, Remark 3.3 of [13]. We refer the
reader to Lemma 16 of [21] for details. �

The previous proposition enables us to follow the arguments for the a posteriori error analysis presented in
the abstract setting.

4.3. A posteriori estimate and error estimator

By Proposition 4.5 and the strong duality ensured by Theorem 4.2 we obtain an a posteriori error estimate
and an error estimator in the fashion of Proposition 3.1, which can be used for adaptive local mesh refinement.
The next result is a special case of Proposition 3.1 for the nonlinear Laplace problem, where also the data
approximation error is taken into account.

Proposition 4.6 (A posteriori estimate). Let 𝑢 and 𝑢ℎ be the unique minimizers for 𝐸Δ𝜎
in 𝑊 1,𝜎

𝐷 (Ω) and
for 𝐸ℎ

Δ𝜎
in 𝑋ℎ, respectively, and let 𝑝ℎ be the unique maximizer for 𝐷ℎ

Δ𝜎
in 𝑌ℎ. Then we have for any 𝑣ℎ ∈ 𝑋ℎ

and 𝑞ℎ ∈ 𝑌ℎ with div 𝑞ℎ = −𝑓ℎ that

𝑐‖𝑉 (∇𝑢)− 𝑉 (∇𝑢ℎ)‖2 ≤ 𝜂ℎ
Δ𝜎

(𝑣ℎ, 𝑞ℎ)2 + 𝑐‖𝑝ℎ‖1/(𝜎−1)

𝐿𝜎′ (Ω)
‖𝑓 − 𝑓ℎ‖𝐿𝜎′ (Ω),

with 𝜂ℎ
Δ𝜎

(𝑣ℎ, 𝑞ℎ)2 = 𝐸ℎ
Δ𝜎

(𝑣ℎ)−𝐷ℎ
Δ𝜎

(𝑞ℎ).

Proof. By Proposition 4.5, the strong duality given by Theorem 4.2 and the optimality of 𝑢ℎ and 𝑝ℎ in 𝑋ℎ

and 𝑌ℎ, respectively, we have

𝑐‖𝑉 (∇𝑢)− 𝑉 (∇𝑢ℎ)‖2 ≤ 𝐸Δ𝜎
(𝑢ℎ)− 𝐸Δ𝜎

(𝑢)
= 𝐸Δ𝜎 (𝑢ℎ)−𝐷Δ𝜎 (𝑝)

= 𝐸ℎ
Δ𝜎

(𝑢ℎ)−𝐷ℎ
Δ𝜎

(𝑝ℎ)

+ 𝐸Δ𝜎 (𝑢ℎ)− 𝐸ℎ
Δ𝜎

(𝑢ℎ) +𝐷ℎ
Δ𝜎

(𝑝ℎ)−𝐷Δ𝜎
(𝑝)

≤ 𝜂ℎ
Δ𝜎

(𝑣ℎ, 𝑞ℎ)2

+ 𝐸Δ𝜎
(𝑢ℎ)− 𝐸ℎ

Δ𝜎
(𝑢ℎ) +𝐷ℎ

Δ𝜎
(𝑝ℎ)−𝐷Δ𝜎

(𝑝).
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Using the Poincaré inequality and choosing 𝑣ℎ = 𝑢ℎ in the variational equality satisfied by 𝑢ℎ we obtain
‖𝑢ℎ‖𝐿𝜎(Ω) ≤ 𝑐‖∇𝑢ℎ‖𝐿𝜎(Ω) ≤ 𝑐‖𝑓ℎ‖1/(𝜎−1)

𝐿𝜎′ (Ω)
. Hence, the first data approximation error can be estimated by

𝐸Δ𝜎 (𝑢ℎ)− 𝐸ℎ
Δ𝜎

(𝑢ℎ) =
∫︁

Ω

𝑢ℎ(𝑓 − 𝑓ℎ) d𝑥 ≤ 𝑐‖𝑓ℎ‖1/(𝜎−1)

𝐿𝜎′ (Ω)
‖𝑓 − 𝑓ℎ‖𝐿𝜎′ (Ω).

To estimate the second error involving the discretization of the dual functional we will construct a functioñ︀𝑝ℎ ∈𝑊𝜎′

𝑁 (div; Ω) for which 𝐷Δ𝜎
is finite, i.e., div ̃︀𝑝ℎ = −𝑓 , and which relates 𝑝 and 𝑝ℎ. Let 𝑤(ℎ) ∈𝑊 1,𝜎(Ω) be

the unique weak solution with vanishing mean of

−div(|∇𝑤(ℎ)|𝜎−2∇𝑤(ℎ)) = 𝑓 − 𝑓ℎ, |∇𝑤(ℎ)|𝜎−2∇𝑤(ℎ) · 𝑛 = 0 on 𝜕Ω.

The existence of 𝑤(ℎ) follows with standard arguments from the theory of monotone operators, see, e.g., [19,31],
using the closed subspace ̃︁𝑊 1,𝜎(Ω) ⊂𝑊 1,𝜎(Ω) consisting of all functions in 𝑊 1,𝜎(Ω) with vanishing mean. Set
𝑝(ℎ) = |∇𝑤(ℎ)|𝜎−2∇𝑤(ℎ). Then we have 𝑝(ℎ) ∈𝑊𝜎′

𝑁 (div; Ω) with

‖𝑝(ℎ)‖𝐿𝜎′ (Ω) ≤ 𝑐‖𝑓 − 𝑓ℎ‖𝐿𝜎′ (Ω).

For ̃︀𝑝ℎ = 𝑝ℎ + 𝑝(ℎ) there holds −div ̃︀𝑝ℎ = 𝑓 , i.e., 𝐷Δ𝜎 (̃︀𝑝ℎ) <∞. With the optimality of 𝑝, the feasibility of ̃︀𝑝ℎ

with respect to 𝐷Δ𝜎
and the monotonicity

|𝑎|𝜎
′
− |𝑏|𝜎

′
≤ 𝜎′|𝑎|𝜎

′−2𝑎 · (𝑎− 𝑏)

for 𝑎, 𝑏 ∈ R𝑑 we can then bound the error 𝐷ℎ
Δ𝜎

(𝑝ℎ)−𝐷Δ𝜎
(𝑝) by

𝐷ℎ
Δ𝜎

(𝑝ℎ)−𝐷Δ𝜎 (𝑝) ≤ 𝐷ℎ
Δ𝜎

(𝑝ℎ)−𝐷Δ𝜎 (̃︀𝑝ℎ)

≤
∫︁

Ω

|𝑝ℎ|𝜎
′−2𝑝ℎ · (𝑝ℎ − ̃︀𝑝ℎ) d𝑥

≤ ‖|𝑝ℎ|𝜎
′−1‖𝐿𝜎(Ω)‖𝑝(ℎ)‖𝐿𝜎′ (Ω)

≤ 𝑐‖𝑝ℎ‖1/(𝜎−1)

𝐿𝜎′ (Ω)
‖𝑓 − 𝑓ℎ‖𝐿𝜎′ (Ω),

which completes the proof. �

Remark 4.7. (1) In our numerical experiments below the sequence of discrete solutions to the dual nonlinear
Laplace problem (𝑝ℎ)ℎ>0 remained bounded in 𝐿𝜎′(Ω). Unfortunately, we were not able to prove this
theoretically in general.

(2) In Proposition 4.9 we prove that the error indicator is nonnegative.

Remark 4.8. (1) Note that the (discrete) primal-dual gap error estimator 𝜂ℎ
Δ𝜎

defines for arbitrary 𝑣ℎ ∈ 𝑋ℎ

and 𝑞ℎ ∈ 𝑌ℎ with div 𝑞ℎ = −𝑓ℎ a reliable upper bound (up to data oscillations) for the error in the quasi-
norm, i.e., we do not need to compute exact discrete solutions 𝑢ℎ and 𝑝ℎ of the primal and dual nonlinear
Laplace problem, respectively.

(2) The proof of the reliability of the primal-dual gap error estimator did not require any differentiability
assumptions on 𝐸Δ𝜎 or a variational formulation of the primal nonlinear Laplace problem.

(3) Using integration by parts and div 𝑞ℎ = −𝑓ℎ we obtain the expression

𝜂ℎ
Δ𝜎

(𝑣ℎ, 𝑞ℎ)2 =
∫︁

Ω

1
𝜎
|∇𝑣ℎ|𝜎 +

1
𝜎′
|𝑞ℎ|𝜎

′
− 𝑞ℎ · ∇𝑣ℎ d𝑥.
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(4) In our numerical experiments we will use the computable (lumped) discrete primal-dual gap error estimator

̂︀𝜂ℎ
Δ𝜎

(𝑣ℎ, 𝑞ℎ)2 = 𝐸ℎ
Δ𝜎

(𝑣ℎ)− ̂︀𝐷ℎ
Δ𝜎

(𝑞ℎ)

so that subproblems appearing in the iterative solution of the dual nonlinear Laplace problem can be
efficiently solved nodewise. As before, integration by parts and the relation div 𝑞ℎ = −𝑓ℎ yield

̂︀𝜂ℎ
Δ𝜎

(𝑣ℎ, 𝑞ℎ)2 =
∫︁

Ω

1
𝜎
|∇𝑣ℎ|𝜎 +

1
𝜎′

̂︀ℐℎ|𝑞ℎ|𝜎
′
− 𝑞ℎ · ∇𝑣ℎ d𝑥.

For 𝑇 ∈ 𝒯ℎ the local error indicator is given by restriction of the global error estimator to the element 𝑇 . We
have the following nonnegativity result.

Proposition 4.9. Let for any 𝑇 ∈ 𝒯ℎ the local error indicator be defined by

𝜂ℎ,𝑇
Δ𝜎

(𝑣ℎ, 𝑞ℎ)2 =
∫︁

𝑇

1
𝜎
|∇𝑣ℎ|𝜎 +

1
𝜎′
|𝑞ℎ|𝜎

′
− 𝑞ℎ · ∇𝑣ℎ d𝑥,

̂︀𝜂ℎ,𝑇
Δ𝜎

(𝑣ℎ, 𝑞ℎ)2 =
∫︁

𝑇

1
𝜎
|∇𝑣ℎ|𝜎 +

1
𝜎′

̂︀ℐℎ|𝑞ℎ|𝜎
′
− 𝑞ℎ · ∇𝑣ℎ d𝑥.

Then we have for any 𝑣ℎ ∈ 𝑋ℎ and 𝑞ℎ ∈ 𝑌ℎ

̂︀𝜂ℎ,𝑇
Δ𝜎

(𝑣ℎ, 𝑞ℎ) ≥ 𝜂ℎ,𝑇
Δ𝜎

(𝑣ℎ, 𝑞ℎ) ≥ 0.

Proof. Using that for an element 𝑇 ∈ 𝒯ℎ and 𝑥 ∈ 𝑇 the mapping 𝑥 ↦→ |𝑞ℎ(𝑥)|𝜎′ is convex we conclude that̂︀ℐℎ|𝑞ℎ|𝜎
′ ≥ |𝑞ℎ|𝜎

′
on 𝑇 since 𝑞ℎ|𝑇 is affine, and, therefore,

̂︀𝜂ℎ,𝑇
Δ𝜎

(𝑣ℎ, 𝑞ℎ)2 ≥ 𝜂ℎ,𝑇
Δ𝜎

(𝑣ℎ, 𝑞ℎ)2.

Note that the integrand in the definition of 𝜂ℎ,𝑇
Δ𝜎

is nonnegative, because for arbitrary 𝑏 ∈ R𝑑 we have by Young’s
inequality

(1/𝜎′)|𝑏|𝜎
′

= sup
𝑎∈R𝑑

𝑎 · 𝑏− (1/𝜎)|𝑎|𝜎.

Particularly, we have

𝜂ℎ,𝑇
Δ𝜎

(𝑣ℎ, 𝑞ℎ)2 =
∫︁

𝑇

1
𝜎
|∇𝑣ℎ|𝜎 +

1
𝜎′
|𝑞ℎ|𝜎

′
− 𝑞ℎ · ∇𝑣ℎ d𝑥 ≥ 0

for every element 𝑇 ∈ 𝒯ℎ. Hence, putting everything together, we arrive at

̂︀𝜂ℎ,𝑇
Δ𝜎

(𝑣ℎ, 𝑞ℎ) ≥ 𝜂ℎ,𝑇
Δ𝜎

(𝑣ℎ, 𝑞ℎ) ≥ 0

for any 𝑇 ∈ 𝒯ℎ. �

In the sequel we briefly discuss the explicit computation of the primal-dual gap error estimator.

4.4. Iterative solution

As we have pointed out in Remark 4.8 the quantity 𝜂ℎ
Δ𝜎

(𝑣ℎ, 𝑞ℎ), and therefore also ̂︀𝜂ℎ
Δ𝜎

(𝑣ℎ, 𝑞ℎ) by Proposi-
tion 4.9, defines a reliable upper bound for any feasible functions 𝑣ℎ ∈ 𝑋ℎ and 𝑞ℎ ∈ 𝑌ℎ. Since the minimizer 𝑢ℎ

of 𝐸ℎ
Δ𝜎

in 𝑋ℎ and the maximizer 𝑝ℎ of 𝐷ℎ
Δ𝜎

in 𝑌ℎ are not directly available, a reasonable choice of functions 𝑣ℎ

and 𝑞ℎ with div 𝑞ℎ = −𝑓ℎ are approximate discrete solutions of the primal and dual nonlinear Laplace problem.
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These will be computed using splitting methods based on augmented Lagrange functionals, which have been
introduced in [30,31]. For the primal problem we define

𝐿𝐸
𝜏 (𝑢ℎ, 𝑟ℎ;𝜆ℎ) =

1
𝜎

∫︁
Ω

|𝑟ℎ|𝜎 d𝑥−
∫︁

Ω

𝑓ℎ𝑢ℎ d𝑥

+ (𝜆ℎ,∇𝑢ℎ − 𝑟ℎ)𝑤𝜎
+
𝜏

2
‖∇𝑢ℎ − 𝑟ℎ‖2𝑤𝜎

for 𝑢ℎ ∈ 𝑋ℎ and 𝑟ℎ, 𝜆ℎ ∈ ℒ0(𝒯ℎ)𝑑. For the dual problem we consider

𝐿𝐷
𝜏 (𝑝ℎ, 𝑞ℎ;𝜇ℎ) =

1
𝜎′

∫︁
Ω

̂︀ℐℎ|𝑞ℎ|𝜎
′
d𝑥+ 𝐼{−𝑓ℎ}(div 𝑝ℎ)

+ (𝜇ℎ, 𝑝ℎ − 𝑞ℎ)ℎ,𝑤𝜎′ +
𝜏

2
‖𝑝ℎ − 𝑞ℎ‖2ℎ,𝑤𝜎′

for 𝑞ℎ, 𝜇ℎ ∈ ℒ1(𝒯ℎ)𝑑 and 𝑝ℎ ∈ 𝑌ℎ. The minimization of 𝐸ℎ
Δ𝜎

and − ̂︀𝐷ℎ
Δ𝜎

is equivalent to seeking a saddle point
for 𝐿𝐸

𝜏 and 𝐿𝐷
𝜏 , respectively, i.e.,

min
𝑢ℎ∈𝑋ℎ

𝐸ℎ
Δ𝜎

(𝑢ℎ) = min
(𝑢ℎ,𝑟ℎ)∈𝑋ℎ×ℒ0(𝒯ℎ)𝑑

max
𝜆ℎ∈ℒ0(𝒯ℎ)𝑑

𝐿𝐸
𝜏 (𝑢ℎ, 𝑟ℎ;𝜆ℎ),

min
𝑝ℎ∈𝑌ℎ

− ̂︀𝐷ℎ
Δ𝜎

(𝑝ℎ) = min
(𝑝ℎ,𝑞ℎ)∈𝑌ℎ×ℒ1(𝒯ℎ)𝑑

max
𝜇ℎ∈ℒ1(𝒯ℎ)𝑑

𝐿𝐷
𝜏 (𝑝ℎ, 𝑞ℎ;𝜇ℎ).

The associated saddle-point problems are then solved using the Variable-ADMM, which alternately optimizes 𝐿𝐸
𝜏

and 𝐿𝐷
𝜏 with repsect to 𝑢ℎ and 𝑟ℎ, and 𝑝ℎ and 𝑞ℎ, respectively, followed by an update of the Lagrange multipliers,

cf. [10] for details on the Variable-ADMM. The optimization problems related to 𝐿𝐸
𝜏 boil down to elementwise

optimization problems, which is due to the choice of the piecewise constant finite element space ℒ0(𝒯ℎ)𝑑, whereas
the optimization problems related to 𝐿𝐷

𝜏 are given by nodewise optimization problems, since mass lumping and
the piecewise affine finite element space ℒ1(𝒯ℎ)𝑑 are used. The elementwise and nodewise optimization problems
are solved using Newton’s method, see [39] for details.

5. Rudin–Osher–Fatemi image denoising

5.1. Primal and dual formulation

In this section we consider a variant of the nonlinear Laplacian with limit exponent 𝜎 = 1. For a given
function 𝑔 ∈ 𝐿2(Ω) and a fidelity parameter 𝛼 > 0 we seek a minimizer 𝑢 ∈ BV(Ω) ∩ 𝐿2(Ω) of the functional

𝐸rof(𝑢) =
∫︁

Ω

|𝐷𝑢|+ 𝛼

2
‖𝑢− 𝑔‖2.

This particular minimization problem has been proposed in image processing for denoising a given noisy image 𝑔
and is known as the Rudin–Osher–Fatemi (ROF) image denoising problem [48]. It also serves as a model problem
for general BV-regularized minimization problems and evolutions, cf., e.g., [50]. The (pre-)dual problem is given
by the maximization of the functional

𝐷rof(𝑝) = − 1
2𝛼
‖ div 𝑝+ 𝛼𝑔‖2 +

𝛼

2
‖𝑔‖2 − 𝐼𝐾1(0)(𝑝)

in the set of vector fields 𝑝 ∈ 𝐻𝑁 (div; Ω) with square integrable distributional divergence and vanishing normal
component on 𝜕Ω, cf. [33]. The indicator functional 𝐼𝐾1(0) of the set of vector fields 𝑞 ∈ 𝐿2(Ω; R𝑑) which satisfy
|𝑞| ≤ 1 in Ω introduces a pointwise constraint. Note that a maximizer of 𝐷rof may not be unique. The primal
and the dual ROF problem are in strong duality and the unique minimizer 𝑢 ∈ BV(Ω)∩𝐿2(Ω) of 𝐸rof and any
maximizer 𝑝 ∈ 𝐻𝑁 (div; Ω) of 𝐷rof are related by

div 𝑝 = 𝛼(𝑢− 𝑔), −(𝑢,div(𝑞 − 𝑝)) ≤ 0

for all 𝑞 ∈ 𝐻𝑁 (div; Ω) ∩𝐾1(0), cf. [33].



1648 S. BARTELS AND M. MILICEVIC

5.2. Finite element spaces

As for the nonlinear Laplace equation we let

𝑋ℎ = 𝒮1(𝒯ℎ) ⊂ BV(Ω) ∩ 𝐿2(Ω).

The discrete space 𝑌ℎ is chosen to consist of continuous or discontinuous, elementwise affine vector fields

𝑌 𝐶
ℎ = 𝒮1(𝒯ℎ)𝑑 ∩𝐻𝑁 (div; Ω), or 𝑌 𝑑𝐶

ℎ = ℒ1(𝒯ℎ)𝑑 ∩𝐻𝑁 (div; Ω).

We have the consistency relation 𝑌 𝐶
ℎ ⊂ 𝑌 𝑑𝐶

ℎ ⊂ 𝐻𝑁 (div; Ω) and denote by 𝑌ℎ either of the two spaces. Let
𝑔ℎ ∈ ℒ0(𝒯ℎ) be the elementwise 𝐿2-projection of 𝑔. The discretized functionals are then defined by

𝐸ℎ
rof(𝑢ℎ) =

∫︁
Ω

|∇𝑢ℎ|d𝑥+
𝛼

2
‖𝑢ℎ − 𝑔ℎ‖2,

𝐷ℎ
rof(𝑝ℎ) = − 1

2𝛼
‖div 𝑝ℎ + 𝛼𝑔ℎ‖2 − 𝐼𝐾1(0)(𝑝ℎ) +

𝛼

2
‖𝑔ℎ‖2.

Remark 5.1. The discretization of the dual ROF problem with the lowest order Raviart–Thomas finite element
is not suitable since it does not include nodal degrees of freedom which is required to ensure the pointwise
constraint |𝑝ℎ| ≤ 1 which in turn is mandatory to derive a meaningful and useful a posteriori error estimate.

Let 𝑢 and 𝑢ℎ be the unique minimizers of 𝐸rof in BV(Ω)∩𝐿2(Ω) and 𝑋ℎ, respectively. The strong convexity
of 𝐸rof can be used to derive the a priori error estimate

𝛼

2
‖𝑢− 𝑢ℎ‖2 ≤ 𝑐ℎ1/2

if 𝑢 ∈ BV(Ω)∩𝐿∞(Ω), cf. [9,12]. The optimal convergence rate for the approximation with continuous, piecewise
linear functions is, however, given by

min
𝑣ℎ∈𝒮1(𝒯ℎ)

‖𝑢− 𝑣ℎ‖2 ≤ 𝑐ℎ,

which cannot be improved in general, cf. [9, 12].
Motivated by the relation div 𝑝 = 𝛼(𝑢 − 𝑔) we also consider for any discrete maximizer 𝑝ℎ ∈ 𝑌ℎ of 𝐷ℎ

rof the
approximation

𝑢ℎ =
1
𝛼

div 𝑝ℎ + 𝑔ℎ ∈ ℒ0(𝒯ℎ)

of 𝑢, for which the following convergence result can be proven.

Proposition 5.2. Let for any ℎ > 0 the function 𝑝ℎ be a discrete maximizer of 𝐷ℎ
rof in 𝑌ℎ and let 𝑢ℎ =

(1/𝛼) div 𝑝ℎ + 𝑔ℎ. If 𝑔ℎ → 𝑔 in 𝐿2(Ω), we have

‖𝑢− 𝑢ℎ‖ → 0

as ℎ→ 0.

Proof. The sequence (𝑔ℎ)ℎ ⊂ 𝐿2(Ω) is uniformly bounded since 𝑔ℎ → 𝑔 in 𝐿2(Ω). Using that 𝑝ℎ is a minimizer
for −𝐷ℎ

rof in 𝑌ℎ we can bound

1
2𝛼
‖div 𝑝ℎ + 𝛼𝑔ℎ‖2 −

𝛼

2
‖𝑔ℎ‖2 = −𝐷ℎ

rof(𝑝ℎ) ≤ −𝐷ℎ
rof(0) = 0,

i.e.,
1

2𝛼
‖ div 𝑝ℎ + 𝛼𝑔ℎ‖2 ≤

𝛼

2
‖𝑔ℎ‖2.
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Thus, the sequence (𝑝ℎ)ℎ>0 is uniformly bounded in 𝐻𝑁 (div; Ω). Hence, we can choose a subsequence (𝑝ℎ′)ℎ′>0

with 𝑝ℎ′ ⇀ 𝑝 for a function 𝑝 ∈ 𝐻𝑁 (div; Ω). On the other hand there exists for any 𝑞 ∈ 𝐻𝑁 (div; Ω) a sequence
(𝑞ℎ)ℎ>0 ⊂ 𝑌 𝐶

ℎ with |𝑞ℎ| ≤ 1 for all ℎ > 0 and 𝑞ℎ → 𝑞 in 𝐻𝑁 (div; Ω). Indeed, for given 𝑞 ∈ 𝐻𝑁 (div; Ω) one can
construct a smooth function ̃︀𝑞 ∈ 𝐶∞𝑐 (Ω; R𝑑) via convolution of 𝑞 with a nonnegative convolution kernel noting
that this process does not increase the 𝐿∞-norm. One then procedes as in the proof of Lemma 2.1 noting again
that neither the nodal interpolation operator increases the 𝐿∞-norm. The weak lower-semicontinuity of −𝐷rof

and the optimality of each 𝑝ℎ′ yield

−𝐷rof(𝑝) ≤ lim inf
ℎ′→0

−𝐷rof(𝑝ℎ′)

≤ lim sup
ℎ′→0

−𝐷ℎ′

rof(𝑝ℎ′) +𝐷ℎ′

rof(𝑝ℎ′)−𝐷rof(𝑝ℎ′)

≤ lim sup
ℎ′→0

−𝐷ℎ′

rof(𝑝ℎ′) + 𝑐‖𝑔 − 𝑔ℎ′‖

≤ lim sup
ℎ′→0

−𝐷ℎ′

rof(𝑞ℎ′)

= lim sup
ℎ′→0

−𝐷rof(𝑞ℎ′) +𝐷rof(𝑞ℎ′)−𝐷ℎ′

rof(𝑞ℎ′)

≤ lim sup
ℎ′→0

−𝐷rof(𝑞ℎ′) + 𝑐‖𝑔 − 𝑔ℎ′‖ = −𝐷rof(𝑞).

Hence, 𝑝 is a minimizer of −𝐷rof . By choosing 𝑞 = 𝑝 and a (possibly different) sequence (𝑞ℎ)ℎ>0 ⊂ 𝑌 𝐶
ℎ with

𝑞ℎ → 𝑝 in 𝐻𝑁 (div; Ω) we particularly find that

−𝐷rof(𝑝) = lim
ℎ′→0

−𝐷rof(𝑝ℎ′).

Since 𝑔ℎ′ → 𝑔 and div 𝑝ℎ′ ⇀ div 𝑝, this implies that

‖div 𝑝ℎ′‖ → ‖div 𝑝‖.

Altogether, we have that div 𝑝ℎ′ → div 𝑝 in 𝐻𝑁 (div; Ω). By strong duality of the primal and dual ROF problem
we have

𝑢 =
1
𝛼

div 𝑝+ 𝑔.

With div 𝑝ℎ′ → div 𝑝 and 𝑔ℎ′ → 𝑔 it follows that

𝑢− 𝑢ℎ′ =
1
𝛼

div 𝑝+ 𝑔 − 1
𝛼

div 𝑝ℎ′ − 𝑔ℎ′ → 0.

Thus, every convergent subsequence of (𝑢ℎ)ℎ>0 converges to 𝑢. Therefore, the whole sequence converges
to 𝑢. �

Using the strong convexity of the functional 𝐸rof , i.e., there holds

𝛼

2
‖𝑢− 𝑣ℎ‖2 ≤ 𝐸rof(𝑣ℎ)− 𝐸rof(𝑢) (5.1)

for any 𝑣ℎ ∈ 𝒮1(𝒯ℎ), we can carry out the a posteriori error analysis.

5.3. A posteriori estimate and error estimator

By the strong convexity (5.1) and the strong duality of the primal and dual ROF problem we can establish
an a posteriori error estimate and an error estimator in the fashion of Proposition 3.1, which can be used
for adaptive mesh refinement. The following reliability result is a special case of Proposition 3.1 for the ROF
problem, where also the data approximation error is taken into account.
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Proposition 5.3. Let 𝑢 and 𝑢ℎ be the unique minimizers for 𝐸rof in BV(Ω)∩𝐿2(Ω) and 𝐸ℎ
rof in 𝑋ℎ, respectively,

and let 𝑝ℎ be a maximizer for 𝐷ℎ
rof in 𝑌ℎ. Then we have for any 𝑣ℎ ∈ 𝑋ℎ and 𝑞ℎ ∈ 𝑌ℎ with |𝑞ℎ| ≤ 1 that

𝛼

2
‖𝑢− 𝑢ℎ‖2 ≤ 𝜂ℎ

rof(𝑣ℎ, 𝑞ℎ)2 + 𝑐‖𝑔 − 𝑔ℎ‖

with 𝜂ℎ
rof(𝑣ℎ, 𝑞ℎ)2 = 𝐸ℎ

rof(𝑣ℎ)−𝐷ℎ
rof(𝑞ℎ) and 𝑐 depending on ‖𝑔‖.

Proof. Let 𝑝 ∈ 𝐻𝑁 (div; Ω) be a maximizer of 𝐷rof . Taking 𝑣 = 𝑢ℎ in (5.1) and using the strong duality
𝐸rof(𝑢) = 𝐷rof(𝑝), the optimality of 𝑝 in 𝐻𝑁 (div; Ω), the optimality of 𝑝ℎ in 𝑌ℎ ⊂ 𝐻𝑁 (div; Ω) and the optimality
of 𝑢ℎ in 𝑋ℎ we have

𝛼

2
‖𝑢− 𝑢ℎ‖2 ≤ 𝐸rof(𝑢ℎ)− 𝐸rof(𝑢)

= 𝐸rof(𝑢ℎ)−𝐷rof(𝑝)
≤ 𝐸rof(𝑢ℎ)−𝐷rof(𝑝ℎ)

= 𝜂ℎ
rof(𝑢ℎ, 𝑝ℎ)2 + 𝐸rof(𝑢ℎ)− 𝐸ℎ

rof(𝑢ℎ)

+𝐷ℎ
rof(𝑝ℎ)−𝐷rof(𝑝ℎ)

≤ 𝜂ℎ
rof(𝑣ℎ, 𝑞ℎ)2 + 𝐸rof(𝑢ℎ)− 𝐸ℎ

rof(𝑢ℎ)

+𝐷ℎ
rof(𝑝ℎ)−𝐷rof(𝑝ℎ).

The first data approximation error can be bounded by

𝐸rof(𝑢ℎ)− 𝐸ℎ
rof(𝑢ℎ) =

𝛼

2

∫︁
Ω

(𝑔ℎ − 𝑔)(2𝑢ℎ − 𝑔 − 𝑔ℎ) d𝑥 ≤ 𝑐‖𝑔 − 𝑔ℎ‖,

where we used that ‖𝑢ℎ‖ ≤ 𝑐‖𝑔ℎ‖ and ‖𝑔ℎ‖ ≤ 𝑐‖𝑔‖. The second data approximation error can be analogously
estimated by

𝐷ℎ
rof(𝑝ℎ)−𝐷rof(𝑝ℎ) =

1
2

[︂∫︁
Ω

(𝑔ℎ − 𝑔)(𝑔ℎ + 𝑔) d𝑥+
∫︁

Ω

(𝑔 − 𝑔ℎ)(2 div 𝑝ℎ + 𝛼(𝑔 + 𝑔ℎ)) d𝑥
]︂

≤ 𝑐‖𝑔 − 𝑔ℎ‖

using that ‖div 𝑝ℎ‖ ≤ 𝑐‖𝑔ℎ‖ ≤ 𝑐‖𝑔‖, which completes the proof. �

Remark 5.4. (1) Note that, as for the nonlinear Laplace problem, the (discrete) primal-dual gap error esti-
mator 𝜂ℎ

rof defines for arbitrary 𝑣ℎ ∈ 𝑋ℎ and 𝑞ℎ ∈ 𝑌ℎ with |𝑞ℎ| ≤ 1 a reliable upper bound (up to data
oscillations) for the error. Particularly, the exact discrete solutions 𝑢ℎ and 𝑝ℎ of the primal and dual ROF
problem, respectively, need not to be computed exactly to estimate the error.

(2) Using binomial formulas and integration by parts we obtain the representation

𝜂ℎ
rof(𝑣ℎ, 𝑞ℎ)2 =

∫︁
Ω

|∇𝑣ℎ| − ∇𝑣ℎ · 𝑞ℎ d𝑥+
1

2𝛼
‖ div 𝑞ℎ − 𝛼(𝑣ℎ − 𝑔ℎ)‖2

for 𝑣ℎ ∈ 𝑋ℎ and 𝑞ℎ ∈ 𝑌ℎ with |𝑞ℎ| ≤ 1.

As for the nonlinear Laplace problem, for 𝑇 ∈ 𝒯ℎ the local error indicators are defined via restricting the
global error estimator to the simplex 𝑇 . The local error indicators are non-negative due to the condition |𝑞ℎ| ≤ 1
as the next proposition shows.

Proposition 5.5. Let for any 𝑇 ∈ 𝒯ℎ the local error indicator be defined by

𝜂ℎ,𝑇
rof (𝑣ℎ, 𝑞ℎ)2 =

∫︁
𝑇

|∇𝑣ℎ| − ∇𝑣ℎ · 𝑞ℎ d𝑥+
1

2𝛼
‖div 𝑞ℎ − 𝛼(𝑣ℎ − 𝑔)‖2𝐿2(𝑇 ).
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Then we have for any 𝑣ℎ ∈ 𝑋ℎ and 𝑞ℎ ∈ 𝑌ℎ with |𝑞ℎ| ≤ 1 that

𝜂ℎ,𝑇
rof (𝑣ℎ, 𝑞ℎ) ≥ 0.

Proof. The non-negativity immediately follows from |𝑞ℎ| ≤ 1 and the Cauchy–Schwarz inequality. �

To obtain a computable a posteriori error estimator we iteratively solve the primal and dual ROF problem.

5.4. Iterative solution

We approximate discrete minimizers 𝑢ℎ and 𝑝ℎ of 𝐸ℎ
rof and −𝐷ℎ

rof as in the case of the nonlinear Laplacian
via an augmented Lagrangian approach. To this end, we introduce for the primal problem

𝐿𝐸
𝜏 (𝑢ℎ, 𝑟ℎ;𝜆ℎ) =

∫︁
Ω

|𝑟ℎ|d𝑥+
𝛼

2
‖𝑢ℎ − 𝑔ℎ‖2

+ (𝜆ℎ,∇𝑢ℎ − 𝑟ℎ)𝑤 +
𝜏

2
‖∇𝑢ℎ − 𝑟ℎ‖2𝑤

for 𝑢ℎ ∈ 𝑋ℎ and 𝑟ℎ, 𝜆ℎ ∈ ℒ0(𝒯ℎ)𝑑, and, for the dual problem,

𝐿𝐷
𝜏 (𝑝ℎ, 𝑞ℎ;𝜇ℎ) =

1
2𝛼
‖ div 𝑝ℎ + 𝛼𝑔ℎ‖2 −

𝛼

2
‖𝑔ℎ‖2 + 𝐼𝐾1(0)(𝑞ℎ)

+ (𝜇ℎ, 𝑝ℎ − 𝑞ℎ)ℎ +
𝜏

2
‖𝑝ℎ − 𝑞ℎ‖2ℎ

for 𝑞ℎ, 𝜇ℎ ∈ ℒ1(𝒯ℎ)𝑑 and 𝑝ℎ ∈ 𝑌ℎ. The corresponding saddle-point problems are again solved using the Variable-
ADMM presented in [10]. The elementwise optimization problem with respect to 𝑟ℎ appearing in the Variable-
ADMM is solved using for given 𝑢ℎ and 𝜆ℎ the explicit formula

𝑟ℎ = max
{︀
|𝜆ℎ + 𝜏∇𝑢ℎ| − ℎ−𝑑𝜏−1, 0

}︀ 𝜆ℎ + 𝜏∇𝑢ℎ

|𝜆ℎ + 𝜏∇𝑢ℎ|
·

For given 𝑝ℎ and 𝜇ℎ the optimization problem with respect to 𝑞ℎ is a nodewise optimization problem due to
mass lumping and is solved using the shrinkage operator

𝑞ℎ =
𝜇ℎ/𝜏 + 𝑝ℎ

max{1, |𝜇ℎ/𝜏 + 𝑝ℎ|}
,

see [39] for details.

6. Numerical experiments

In this section we present our numerical results for the approximation of solutions for the nonlinear Laplace
equation and the ROF problem using mesh adaptivity which is based on the primal-dual gap estimators 𝜂(𝑢ℎ, 𝑝ℎ).
The refinement of a given triangulation 𝒯ℎ relies on the Dörfler marking and consists in the bisection of elements
𝑇 ∈ℳℎ of a minimal set ℳℎ ⊂ 𝒯ℎ for which[︃ ∑︁

𝑇∈ℳℎ

𝜂𝑇 (𝑢ℎ, 𝑝ℎ)2
]︃1/2

≥ 1/2

[︃ ∑︁
𝑇∈𝒯ℎ

𝜂𝑇 (𝑢ℎ, 𝑝ℎ)

]︃1/2

holds. Additional elements then are refined to avoid hanging nodes. The numerical approximations 𝑢ℎ and 𝑝ℎ

for the primal and dual problem, respectively, are obtained using the corresponding saddle-point formulations
and the Variable-ADMM presented in [10].

Before we report the performance of the adaptive algorithm for the nonlinear Laplace equation and the ROF
problem in this section, we will first briefly comment on the hybrid realization of the Brezzi–Douglas–Marini
finite element space.
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6.1. Hybrid implementation of ℬ𝒟ℳ(Ω)

We first of all define the space

𝑍ℎ =
{︀
𝑟ℎ ∈ 𝐿∞(∪𝒮ℎ) : 𝑟ℎ|𝑆 affine for all 𝑆 ∈ 𝒮ℎ

}︀
,

i.e., 𝑍ℎ contains all functions 𝑟ℎ that are piecewise affine, discontinuous functions on the skeleton 𝒮ℎ of the
triangulation 𝒯ℎ. The space ℬ𝒟ℳ(Ω) consists of all elementwise affine vector fields 𝑞ℎ for which the normal
component is continuous across interelement sides 𝑆 ∈ 𝒮ℎ, i.e.,

[[𝑞ℎ · 𝑛𝑆 ]]|𝑆(𝑥) = lim
𝜀→0

(︀
𝑞ℎ(𝑥+ 𝜀𝑛𝑆)− 𝑞ℎ(𝑥− 𝜀𝑛𝑆)

)︀
· 𝑛𝑆 = 0

for all 𝑥 ∈ 𝑆 with a unit normal 𝑛𝑆 on 𝑆. If ℬ𝒟ℳ(Ω) is defined to be a subspace of 𝐻𝑁 (div; Ω), the normal
component on Γ𝑁 vanishes, i.e.,

[[𝑞ℎ · 𝑛𝑆 ]]|𝑆(𝑥) = 𝑞ℎ(𝑥) · 𝑛𝑆 = 0

for all boundary sides 𝑆 ∈ 𝒮ℎ ∩Γ𝑁 and 𝑥 ∈ 𝑆. This means that 𝑞ℎ ∈ ℬ𝒟ℳ(Ω), if and only if 𝑞ℎ ∈ ℒ1(𝒯ℎ)𝑑 and∫︁
∪(𝒮ℎ∖(𝒮ℎ∩Γ𝐷))

[[𝑞ℎ · 𝑛𝑆 ]]𝑟ℎ d𝑠 = 0

for all 𝑟ℎ ∈ 𝑍ℎ.

6.2. Nonlinear Laplace equation

We consider the nonlinear Laplace problem with inhomogeneous Dirichlet data on the L-shaped domain and
let Ω = (−1, 1)2 ∖ ([0, 1] × [−1, 0]), Γ𝐷 = 𝜕Ω and 𝑔 = 0, and define the Dirichlet data 𝑢𝐷 = 𝑢|𝜕Ω through
restriction of the exact solution given in polar coordinates by

𝑢(𝑟, 𝜃) = 𝑟𝛿 sin(𝛿𝜃)

to the boundary. The choice of 𝛿 will be specified later in dependence of the choice of 𝜎. The nonsmooth source
term 𝑓 is then given in polar coordinates by

𝑓(𝑟, 𝜃) = −(2− 𝜎)𝛿𝜎−1(1− 𝛿)𝑟(𝛿−1)(𝜎−1)−1 sin(𝛿𝜃).

We let 𝛿 = (6/5)(1 − 1/𝜎). Then we have that 𝑢 ∈ 𝑊 1,𝜎(Ω) but 𝑢 /∈ 𝑊 2,𝜎(Ω). In what follows 𝑢ℎ ∈ 𝑋ℎ

and 𝑝ℎ ∈ 𝑌ℎ denote approximate solutions to the primal and dual nonlinear Laplace problem obtained with the
iterative scheme Variable-ADMM (cf. [10]).

In Figure 1 the error estimator ̂︀𝜂ℎ
Δ𝜎

(𝑢ℎ, 𝑝ℎ) and the error in the quasi-norm on the left-hand side of the
estimate in Proposition 4.6

𝜚
1/2
Δ𝜎

= ‖𝑉 (∇𝑢)− 𝑉 (∇𝑢ℎ)‖

are plotted against the number of degrees of freedom 𝑁 = |𝒩ℎ| in a loglog-plot. One can clearly observe that
mesh adaptivity yields the quasi-optimal convergence rate ℎ ∼ 𝑁−1/2. Particularly, the primal-dual gap error
estimator ̂︀𝜂ℎ

Δ𝜎
(𝑢ℎ, 𝑝ℎ) defines a reliable upper bound for the error in the quasi-norm. On the right-hand side of

Figure 1 we displayed the energy curves for the primal and dual energy 𝐸ℎ
Δ𝜎

(𝑢ℎ) and ̂︀𝐷ℎ
Δ𝜎

(𝑝ℎ), respectively. The
primal and dual energy converge to the optimal value and the primal-dual gap 𝐸ℎ

Δ𝜎
(𝑢ℎ) − ̂︀𝐷ℎ

Δ𝜎
(𝑝ℎ) converges

to zero as 𝑁 → ∞ and at a higher rate, when local mesh refinement is used. In Figure 2 three snapshots of
the refined mesh are displayed, which show that the primal-dual gap error estimator yields triangulations that
are locally refined in the neighborhood of the singularity. The high resolution is even more localized for 𝜎 → 1,
since the singularity at the reentrant corner increases.
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Figure 1. Primal-dual gap error estimators ̂︀𝜂ℎ
Δ𝜎

and error 𝜚1/2
Δ𝜎

= ‖𝑉 (∇𝑢) − 𝑉 (∇𝑢ℎ)‖ (left)
and primal and dual energy 𝐸ℎ

Δ𝜎
(𝑢ℎ) and ̂︀𝐷ℎ

Δ𝜎
(𝑝ℎ) (right) for uniform and adaptive mesh

refinement. Top: nonlinear Laplace problem with 𝜎 = 1.6. Bottom: primal-dual gap estimator
Laplace problem with 𝜎 = 1.2.

Figure 2. Snapshots of refined meshes for nonlinear Laplace problem with 𝜎 = 1.6 (left),
𝜎 = 1.2 (middle) and 𝜎 = 1.05 (right). The mesh is locally refined in a neighborhood of the
reentrant corner. The resolution at the reentrant corner increases as 𝜎 → 1.
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Figure 3. Iterations numbers for Variable-ADMM for the minimization of 𝐸ℎ
Δ𝛼

̂︀𝐷ℎ
Δ𝛼

for both
uniform and adaptive refinement. Left: 𝜎 = 1.6; right: 𝜎 = 1.2.

In Figure 3 the iteration numbers for the Variable-ADMM for the primal and dual problem are plotted versus
the number of degrees of freedom for both uniform and adaptive mesh refinement and for parameters 𝜎 = 1.6
and 𝜎 = 1.2. The error tolerance for the residual in the Variable-ADMM was of order 𝒪(ℎ2). One can observe
that the iteration numbers for the dual problem critically increase as 𝜎 is decreased.

Let us finally consider the residual-based error estimator

𝜂ℎ
res(𝑢ℎ)2 =

∑︁
𝑇∈𝒯ℎ

𝜂ℎ,𝑇
res (𝑢ℎ)2

from [13,21,36–38] with
𝜂ℎ,𝑇
res (𝑢ℎ)2 = 𝜂ℎ,𝑇

𝐸 (𝑢ℎ)2 +
∑︁

𝑆∈𝒮ℎ∖𝜕Ω,𝑆⊂𝜕𝑇

𝜂ℎ,𝑆
𝐽 (𝑢ℎ)2

and

𝜂ℎ,𝑇
𝐸 (𝑢ℎ)2 =

∫︁
𝑇

(|∇𝑢ℎ|𝜎−1 + ℎ𝑇 |𝑓ℎ|)𝜎′−2ℎ2
𝑇 |𝑓ℎ|2 d𝑥,

𝜂ℎ,𝑆
𝐽 (𝑢ℎ)2 =

∫︁
𝜔𝑆

(|∇𝑢ℎ|+ |[[∇𝑢ℎ]]𝑆 |)𝜎−2|[[∇𝑢ℎ]]𝑆 |2 d𝑥,

where 𝜔𝑆 =
⋃︀
{𝑇1, 𝑇2 ∈ 𝒯ℎ : 𝑆 = 𝑇1 ∩𝑇2} for 𝑆 ∈ 𝒮ℎ ∖ 𝜕Ω and 𝑢ℎ is the unique discrete minimizer of 𝐸ℎ

Δ𝜎
. The

expression [[∇𝑢ℎ]]𝑆 denotes the jump of ∇𝑢ℎ across an inner side 𝑆 ∈ 𝒮ℎ defined by

[[∇𝑢ℎ]]𝑆 = ∇𝑢ℎ|𝑇1 −∇𝑢ℎ|𝑇2

for 𝑆 = 𝑇1 ∩𝑇2. The error estimator 𝜂ℎ
res(𝑢ℎ) has been extensively studied in [13,21,36–38], where the efficiency

and reliability of the estimator has been proven and the linear convergence as well as the optimality of the
corresponding adaptive finite element scheme have been shown.

In Figure 4 we compare the primal-dual gap error estimator ̂︀𝜂ℎ
Δ𝜎

(𝑢ℎ, 𝑝ℎ) with the residual error estima-
tor 𝜂ℎ

res(𝑢ℎ) for the nonlinear Laplace problem with inhomogeneous Dirichlet data on the L-shaped domain for
𝜎 = 1.6 and 𝜎 = 1.2 as before. One can observe that both estimators decay at the same rate 𝒪(𝑁−1/2) on a
sequence of locally refined meshes driven by an element marking strategy based on ̂︀𝜂ℎ

Δ𝜎
(𝑢ℎ, 𝑝ℎ).

However, the overestimation of the primal-dual gap estimator ̂︀𝜂ℎ
Δ𝜎

(𝑢ℎ, 𝑝ℎ) is moderate compared to the
residual-based error estimator 𝜂ℎ

res(𝑢ℎ). While the overestimation of 𝜂ℎ
res(𝑢ℎ) for 𝜎 = 1.6 and 𝜎 = 1.2 do not
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Figure 4. Primal-dual gap estimator ̂︀𝜂ℎ
Δ𝜎

, residual-based estimator 𝜂ℎ
res and error 𝜚

1/2
Δ𝜎

=
‖𝑉 (∇𝑢)− 𝑉 (∇𝑢ℎ)‖ for a sequence of adaptively refined meshes driven by ̂︀𝜂ℎ

Δ𝜎
. Left: nonlinear

laplace problem with 𝜎 = 1.6. Right: nonlinear laplace problem with 𝜎 = 1.2.

Table 1. Effectivity indices ̂︀𝑒ℎ
Δ𝜎

and 𝑒ℎ
res for primal-dual gap estimator and residual-based

estimator, respectively, for a sequence of adaptively refined meshes with number of degrees of
freedom |𝒩ℎ|.

Effectivity indices for nonlinear Laplace problem
𝜎 = 1.6 𝜎 = 1.2

|𝒩ℎ| ̂︀𝜂ℎ
Δ𝜎

𝜂ℎ
res |𝒩ℎ| ̂︀𝜂ℎ

Δ𝜎
𝜂ℎ
res

209 2.64 15.45 218 1.76 13.08
1221 2.26 13.66 1186 1.43 10.75
1863 2.23 13.48 1824 1.38 10.42
2306 2.23 13.52 2254 1.35 10.22
2840 2.21 13.38 2815 1.34 10.18
3524 2.15 13.06 3519 1.34 10.17
4398 2.15 13.05 4401 1.34 10.16
5468 2.14 12.97 5524 1.32 10.07
6808 2.15 13.05 6934 1.29 9.86

differ significantly, the gap between the primal-dual gap error estimator and the error diminishes for 𝜎 = 1.2. Let
us also remark that in the proofs of the reliability and the efficiency of the residual-based error estimator 𝜂ℎ

res(𝑢ℎ)
it is crucial that 𝑢ℎ is the unique solution to the primal nonlinear Laplace problem in 𝑋ℎ, cf. [21]. Its robustness
regarding inexact iterative solutions is not addressed in the aforementioned articles.

Finally, in Table 1 the effectivity indices

̂︀𝑒ℎ
Δ𝜎

=
̂︀𝜂ℎ
Δ𝜎

𝜚
1/2
Δ𝜎

, 𝑒ℎ
res =

𝜂ℎ
res

𝜚
1/2
Δ𝜎

corresponding to the primal-dual gap error estimator and the residual-based estimator, respectively, are shown
depending on the number of degrees of freedom |𝒩ℎ|. It has to be taken into account that the uniform convexity
constant of the functional 𝐸Δ𝜎

enters the a posteriori error estimate in Proposition 4.6.
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Figure 5. Error estimator 𝜂ℎ
rof for Example 6.1 with discretization of the dual problem with

continuous finite element space 𝑌 𝐶
ℎ (left) and 𝐻(div; Ω)-conforming finite element space 𝑌 𝑑𝐶

ℎ
(right) for uniform and adaptive mesh refinement.

6.3. Rudin–Osher–Fatemi image denoising

We let Ω = (−1, 1)2 and consider two examples with the given function 𝑔 being the characteristic function
of a set, the first one with homogeneous Neumann boundary conditions and the second one with homogeneous
Dirichlet boundary conditions, for which we have an explicit solution at hand. In the case of Dirichlet boundary
conditions the dual energy functional 𝐷rof is maximized over 𝐻(div; Ω) instead of 𝐻𝑁 (div; Ω). The calculations
remain valid, but in general it is nontrivial to guarantee the existence of solutions for Dirichlet boundary
conditions. Since our principal motivation for considering the ROF problem is the application to total variation
regularized damage evolution models from continuum mechanics, cf. [50], rather than image processing we do
not include experiments with 𝑔 being a real image. For adaptive mesh refinement techniques applied to real
images we refer the reader, e.g., to [32].

Example 6.1. We set Γ𝐷 = ∅, Γ𝑁 = 𝜕Ω, 𝛼 = 100, and 𝑔 = 𝜒𝐵∞1/2(0)
the characteristic function of 𝐵∞1/2(0) =

{(𝑥1, 𝑥2) ∈ R2 : max{|𝑥1|, |𝑥2|} ≤ 1/2}.

In Figure 5 the error estimator 𝜂ℎ
rof is plotted against the number of degrees of freedom 𝑁 = |𝒩ℎ| using a

logarithmic scaling on both axes both for uniform and adaptive mesh refinement and with the dual problem
discretized with the continuous finite element space 𝑌 𝐶

ℎ = 𝒮1(𝒯ℎ)𝑑 and the 𝐻(div; Ω)-conforming finite element
space 𝑌 𝑑𝐶

ℎ = ℒ1(𝒯ℎ)𝑑 ∩𝐻𝑁 (div; Ω). Again, one can observe that using locally refined meshes with 𝑌 𝐶
ℎ as the

discrete space for the dual problem yields a better convergence rate ℎ
0.76 ∼ 𝑁−0.38 as compared to uniform

refinement with an experimental convergence rate of ℎ
0.47

. For the choice 𝑌 𝑑𝐶
ℎ we record the rates ℎ

0.81 ∼ 𝑁−0.4

(adaptive) and ℎ
0.47 ∼ 𝑁−0.24 (uniform). The choice of the finite element space for the discretization of the

dual problem does not significantly affect the rate of convergence of the primal-dual gap error estimator 𝜂ℎ
rof .

Example 6.2. We set Γ𝐷 = 𝜕Ω, Γ𝑁 = ∅, 𝛼 = 10 and 𝑔 = 𝜒𝐵2
1/2(0)

with 𝐵2
1/2(0) = {𝑥 ∈ R2 : |𝑥| ≤ 1/2}.

In this case the exact solution is given by 𝑢 = (3/5)𝜒𝐵2
1/2(0)

, cf. [9].

In Figure 6 the error estimator 𝜂ℎ
rof and the 𝐿2-error

𝜚
1/2
rof = (𝛼/2)1/2‖𝑢− 𝑢ℎ‖

are plotted against the number of degrees of freedom in a loglog-plot and again, as before, both for uniform
and adaptive mesh refinement and for the discretization of the dual problem with 𝑌 𝐶

ℎ (left) and 𝑌 𝑑𝐶
ℎ (right).
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Figure 6. Primal-dual gap error estimator 𝜂ℎ
rof and 𝐿2-error 𝜚1/2

rof = (𝛼/2)1/2‖𝑢 − 𝑢ℎ‖ for
Example 6.2 with discretization of the dual problem with continuous finite element space 𝑌 𝐶

ℎ

(left) and 𝐻(div; Ω)-conforming finite element space 𝑌 𝑑𝐶
ℎ (right) for uniform and adaptive mesh

refinement.

Figure 7. Iterations numbers for Variable-ADMM for the minimization of 𝐸ℎ
rof and −𝐷ℎ

rof for
both uniform and adaptive refinement. Left: 𝑌ℎ = 𝑌 𝐶

ℎ ; right: 𝑌ℎ = 𝑌 𝑑𝐶
ℎ .

The plot underlines that the quantity 𝜂ℎ
rof defines a reliable estimator for the 𝐿2-error 𝜚1/2

rof as predicted by
Proposition 5.3. One can, once again, observe that adaptive mesh refinement leads to an improvement of the
convergence rate from ℎ

0.44 ∼ 𝑁−0.22 to ℎ
0.62 ∼ 𝑁−0.31 for both discretization methods for the dual problem.

In Figure 7 the iteration numbers for the Variable-ADMM for the primal and dual problem are plotted against
the number of degrees of freedom for both uniform and adaptive mesh refinement and for discretizations of
the dual problem with 𝑌ℎ = 𝑌 𝐶

ℎ and 𝑌ℎ = 𝑌 𝑑𝐶
ℎ . The error tolerance for the residual in the Variable-ADMM

was of order 𝒪(ℎ). The iteration numbers for 𝑌ℎ = 𝑌 𝐶
ℎ and 𝑌ℎ = 𝑌 𝑑𝐶

ℎ do not differ significantly. However,
one can observe that the iteration numbers of the Variable-ADMM as a function of the degrees of freedom
grow significantly faster for the dual problem compared to the primal problem reflecting the weaker coercivity
property.

In Table 2 the effectivity index

𝑒ℎ
rof =

𝜂ℎ
rof

𝜚
1/2
rof
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Table 2. Effectivity index 𝑒ℎ
rof for primal-dual gap estimator for a sequence of adaptively

refined meshes with number of degrees of freedom |𝒩ℎ|.

Effectivity index for ROF problem

|𝒩ℎ| 1531 3542 5432 7356 9868 11 579 13 373 15 638

𝑒ℎ
rof 3.27 2.82 2.91 2.91 2.95 2.92 2.90 2.86

Figure 8. Piecewise constant approximations 𝑢ℎ = (1/𝛼) div 𝑝ℎ + 𝑔ℎ for a sequence of
adaptively refined triangulations for Example 6.2. Top: dual variable is approximated in
𝑌 𝐶

ℎ = 𝒮1(𝒯ℎ)𝑑. Middle: dual variable is approximated in 𝑌 𝑑𝐶
ℎ = ℒ1(𝒯ℎ)𝑑 ∩ 𝐻𝑁 (div; Ω). One

can observe oscillations of 𝑢ℎ along the jump set for the discretization of the dual ROF prob-
lem with 𝑌 𝐶

ℎ . Bottom: bird’s eye view of the middle row. The mesh is locally refined in a
neighborhood of the circular jump set.

depending on the number of degrees of freedom |𝒩ℎ| is presented and shows that the overestimation of the error
is moderate.

In Figure 8 we depicted for a sequence of adaptively refined triangulations the piecewise constant approxi-
mations 𝑢ℎ = (1/𝛼) div 𝑝ℎ + 𝑔ℎ with 𝑝ℎ ∈ 𝑌 𝐶

ℎ (top) and 𝑝ℎ ∈ 𝑌 𝑑𝐶
ℎ (bottom), cf. Proposition 5.2. Although the

different discretization methods for the dual problem do not affect the convergence rates in the presented exper-
iments, the discretization of the dual problem with the continuous finite element space 𝑌 𝐶

ℎ causes oscillations
in 𝑢ℎ along the jump set.
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7. Conclusion

We have seen that the primal-dual gap error estimator defines a reliable upper bound with constant one
for the error in the energy for convex minimization problems. For uniformly convex minimization problems
it also controls the error with respect to a distance induced by the uniform convexity. The primal-dual gap
error estimator has been introduced in [45] in an abstract setting and has been applied to several minimization
problems in an infinite-dimensional framework. We extended the theory to general finite discretizations of convex
minimization problems and applied the theory to the nonlinear Laplace problem and the ROF problem, which
serve as model problems for a wide class of convex minimization problems. The theoretical results, especially the
reliability of the primal-dual gap error estimator, has been confirmed in several numerical experiments. In order
to compute the estimator we approximately solved the primal and dual problems using the Variable-ADMM
provided in [10]. Yet, it seems necessary to consider more efficient strategies to construct feasible functions
especially for the dual problems.
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tion Techniques in Solid Mechanics: Development of Non-standard Discretization Methods, Mechanical and Mathematical
Analysis.
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[29] A. Ern and M. Vohraĺık, Adaptive inexact newton methods with a posteriori stopping criteria for nonlinear diffusion PDEs.
SIAM J. Sci. Comput. 35 (2013) A1761–A1791.

[30] D. Gabay and B. Mercier, A dual algorithm for the solution of nonlinear variational problems via finite element approximation.
Comput. Math. App. 2 (1976) 17–40.
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