
ESAIM: M2AN 54 (2020) 493–529 ESAIM: Mathematical Modelling and Numerical Analysis
https://doi.org/10.1051/m2an/2019073 www.esaim-m2an.org

ON QUASI-REVERSIBILITY SOLUTIONS TO THE CAUCHY PROBLEM FOR
THE LAPLACE EQUATION: REGULARITY AND ERROR ESTIMATES

Laurent Bourgeois1,* and Lucas Chesnel2

Abstract. We are interested in the classical ill-posed Cauchy problem for the Laplace equation. One
method to approximate the solution associated with compatible data consists in considering a family
of regularized well-posed problems depending on a small parameter 𝜀 > 0. In this context, in order to
prove convergence of finite elements methods, it is necessary to get regularity results of the solutions to
these regularized problems which hold uniformly in 𝜀. In the present work, we obtain these results in
smooth domains and in 2D polygonal geometries. In presence of corners, due to the particular structure
of the regularized problems, classical techniques à la Grisvard do not work and instead, we apply the
Kondratiev approach. We describe the procedure in detail to keep track of the dependence in 𝜀 in all
the estimates. The main originality of this study lies in the fact that the limit problem is ill-posed in
any framework.
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1. Introduction and setting of the problem

Let us consider a bounded Lipschitz domain Ω ⊂ R𝑑, 𝑑 > 1, the boundary 𝜕Ω of which is partitioned into
two sets Γ and Γ̃. More precisely, Γ and Γ̃ are non empty open sets for the topology induced on 𝜕Ω from the
topology on R𝑑, 𝜕Ω = Γ ∪ Γ̃ and Γ ∩ Γ̃ = ∅ (see Fig. 1). The Cauchy problem we are interested in consists, for
some data (𝑔0, 𝑔1) ∈ 𝐻1/2(Γ)×𝐻−1/2(Γ), in finding 𝑢 ∈ 𝐻1(Ω) such that⎧⎨⎩∆𝑢 = 0 in Ω

𝑢 = 𝑔0 on Γ
𝜕𝜈𝑢 = 𝑔1 on Γ,

(1.1)

where 𝜈 is the outward unit normal to 𝜕Ω. This kind of problem arises when some part Γ̃ of the boundary of a
structure is not accessible, while the complementary part Γ is the support of measurements which provide the
Cauchy data (𝑔0, 𝑔1). It is important to note that in practice those measurements are contaminated by some
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Figure 1. Examples of domains Ω. The thick blue lines represent the support of measurements.

noise. Due to Holmgren’s theorem, the Cauchy problem (1.1) has at most one solution. However it is ill-posed in
the sense of Hadamard: existence may not hold for some data (𝑔0, 𝑔1), as for example shown in [3]. A possibility
to regularize problem (1.1) is to use the quasi-reversibility method, which goes back to [31] and was revisited in
[27]. The original idea was to replace an ill-posed Boundary Value Problem such as (1.1) by a family, depending
on a small parameter 𝜀, of well-posed fourth-order BVPs. Much later, the first author introduced the notion of
mixed formulation of quasi-reversibility for the Cauchy problem of the Laplace equation [4]. This notion was
extended to general abstract linear ill-posed problems in [7]. The idea is to replace the ill-posed second-order
BVP by a family, again depending on a small parameter 𝜀, of second-order systems of two coupled BVPs: the
advantage is that the order of the regularized problem is the same as the original one, which is interesting when
it comes to the numerical resolution. The price to pay is the introduction of a second unknown function 𝜆𝜀 in
addition to the principal unknown 𝑢𝜀. Such mixed formulation of quasi-reversibility is the following: for 𝜀 > 0,
find (𝑢𝜀, 𝜆𝜀) ∈ 𝑉𝑔0 × 𝑉0 such that for all (𝑣, 𝜇) ∈ 𝑉0 × 𝑉0,⎧⎪⎪⎨⎪⎪⎩

𝜀

∫︁
Ω

∇𝑢𝜀 · ∇𝑣 d𝑥+
∫︁

Ω

∇𝑣 · ∇𝜆𝜀 d𝑥 = 0∫︁
Ω

∇𝑢𝜀 · ∇𝜇d𝑥−
∫︁

Ω

∇𝜆𝜀 · ∇𝜇d𝑥 = ⟨𝑔1, 𝜇⟩𝐻−1/2(Γ),𝐻̃1/2(Γ),
(1.2)

where 𝑉𝑔0 = {𝑢 ∈ 𝐻1(Ω), 𝑢|Γ = 𝑔0}, 𝑉0 = {𝑢 ∈ 𝐻1(Ω), 𝑢|Γ = 0} and 𝑉0 = {𝜆 ∈ 𝐻1(Ω), 𝜆|Γ̃ = 0}. In (1.2), the
brackets stand for the duality pairing between 𝐻−1/2(Γ) and 𝐻̃1/2(Γ). Here 𝐻̃1/2(Γ) is the subspace formed by
the functions in 𝐻1/2(Γ) which, once extended by 0 on 𝜕Ω, remain in 𝐻1/2(𝜕Ω). We observe that in view of
Poincaré inequality, the standard norm of 𝐻1(Ω) in the spaces 𝑉0 and 𝑉0 is equivalent to the semi-norm ‖ · ‖
defined by ‖ · ‖2 =

∫︀
Ω
|∇ · |2 d𝑥. Let us denote (·, ·) the corresponding scalar product. We remark that the weak

formulation (1.2) is equivalent to the strong problem⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∆𝑢𝜀 = 0 in Ω
∆𝜆𝜀 = 0 in Ω
𝑢𝜀 = 𝑔0 on Γ
𝜕𝜈𝑢𝜀 − 𝜕𝜈𝜆𝜀 = 𝑔1 on Γ
𝜆𝜀 = 0 on Γ̃
𝜀 𝜕𝜈𝑢𝜀 + 𝜕𝜈𝜆𝜀 = 0 on Γ̃,

(1.3)

where we observe that the two unknowns 𝑢𝜀 and 𝜆𝜀 are harmonic functions which are coupled at the boundary
𝜕Ω. We have the following theorem.

Theorem 1.1. For all (𝑔0, 𝑔1) ∈ 𝐻1/2(Γ) × 𝐻−1/2(Γ), the problem (1.2) has a unique solution (𝑢𝜀, 𝜆𝜀) ∈
𝑉𝑔0 × 𝑉0. There exists a constant 𝐶 which depends only on the geometry such that

∀𝜀 ∈ (0, 1],
√
𝜀‖𝑢𝜀‖𝐻1(Ω) + ‖𝜆𝜀‖𝐻1(Ω) ≤ 𝐶(‖𝑔0‖𝐻1/2(Γ) + ‖𝑔1‖𝐻−1/2(Γ)).
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If in addition we assume that (𝑔0, 𝑔1) is such that problem (1.1) has a (unique) solution 𝑢 (the data are said to
be compatible), then there exists a constant 𝐶 which depends only on the geometry such that

∀𝜀 > 0, ‖𝑢𝜀‖𝐻1(Ω) +
‖𝜆𝜀‖𝐻1(Ω)√

𝜀
≤ 𝐶‖𝑢‖𝐻1(Ω)

and
lim
𝜀→0

‖𝑢𝜀 − 𝑢‖𝐻1(Ω) = 0.

To prove such theorem, we need the following lemma, which establishes an equivalent weak formulation to
problem (1.1) and which is proved in [7].

Lemma 1.2. For (𝑔0, 𝑔1) ∈ 𝐻1/2(Γ) × 𝐻−1/2(Γ), the function 𝑢 is a solution to problem (1.1) if and only if
𝑢 ∈ 𝑉𝑔0 and for all 𝜇 ∈ 𝑉0, we have∫︁

Ω

∇𝑢 · ∇𝜇 d𝑥 = ⟨𝑔1, 𝜇⟩𝐻−1/2(Γ),𝐻̃1/2(Γ). (1.4)

Proof of Theorem 1.1. Let us begin with the first part of the theorem. There exists a continuous lifting operator
𝑔0 ↦→ 𝑈 from 𝐻1/2(Γ) to 𝐻1(Ω) such that 𝑈 |Γ = 𝑔0. Let us define 𝑢̂𝜀 = 𝑢𝜀 − 𝑈 ∈ 𝑉0. By replacing in (1.2), we
obtain that (𝑢̂𝜀, 𝜆𝜀) ∈ 𝑉0 × 𝑉0 satisfies, for all (𝑣, 𝜇) ∈ 𝑉0 × 𝑉0, the system⎧⎪⎪⎨⎪⎪⎩

𝜀

∫︁
Ω

∇𝑢̂𝜀 · ∇𝑣 d𝑥+
∫︁

Ω

∇𝑣 · ∇𝜆𝜀 d𝑥 = −𝜀
∫︁

Ω

∇𝑈 · ∇𝑣 d𝑥∫︁
Ω

∇𝑢̂𝜀 · ∇𝜇d𝑥−
∫︁

Ω

∇𝜆𝜀 · ∇𝜇d𝑥 = ⟨𝑔1, 𝜇⟩𝐻−1/2(Γ),𝐻̃1/2(Γ) −
∫︁

Ω

∇𝑈 · ∇𝜇d𝑥.

Well-posedness then relies on the Lax–Milgram lemma applied to the coercive bilinear form

𝐴𝜀((𝑢, 𝜆); (𝑣, 𝜇)) = 𝜀

∫︁
Ω

∇𝑢 · ∇𝑣 d𝑥+
∫︁

Ω

∇𝑣 · ∇𝜆 d𝑥−
∫︁

Ω

∇𝑢 · ∇𝜇d𝑥+
∫︁

Ω

∇𝜆 · ∇𝜇d𝑥

on 𝑉0 × 𝑉0. Choosing 𝑣 = 𝑢̂𝜀 and 𝜇 = 𝜆𝜀 and subtracting the two above equations, we obtain

𝜀

∫︁
Ω

|∇𝑢̂𝜀|2 d𝑥+
∫︁

Ω

|∇𝜆𝜀|2 d𝑥 = −𝜀
∫︁

Ω

∇𝑈 · ∇𝑢̂𝜀 d𝑥− ⟨𝑔1, 𝜆𝜀⟩+
∫︁

Ω

∇𝑈 · ∇𝜆𝜀 d𝑥.

The Cauchy–Schwarz inequality implies

𝜀‖𝑢̂𝜀‖2 + ‖𝜆𝜀‖2 ≤ 𝜀‖𝑈‖‖𝑢̂𝜀‖+ ‖𝑔1‖𝐻−1/2(Γ)‖𝜆𝜀‖𝐻1/2(Γ) + ‖𝑈‖‖𝜆𝜀‖.

The equivalence of the norm ‖ · ‖ and the standard 𝐻1(Ω) norm in spaces 𝑉0 and 𝑉0, the continuity of the trace
operator and the continuity of the lifting operator 𝑔0 ↦→ 𝑈 yield

𝜀‖𝑢̂𝜀‖2𝐻1(Ω) + ‖𝜆𝜀‖2𝐻1(Ω) ≤ 𝐶𝜀‖𝑔0‖𝐻1/2(Γ)‖𝑢̂𝜀‖𝐻1(Ω) + (𝑐‖𝑔1‖𝐻−1/2(Γ) + 𝐶‖𝑔0‖𝐻1/2(Γ))‖𝜆𝜀‖𝐻1(Ω).

Using the Young’s inequality to deal with the right hand side of the above inequality, the result follows. Let us
prove the second part of the theorem. In the case when the Cauchy data (𝑔0, 𝑔1) is associated with the solution
𝑢, then 𝑢 satisfies the weak formulation (1.4). By subtracting (1.4) to the second equation of (1.2), we obtain
that for all 𝜇 ∈ 𝑉0, ∫︁

Ω

∇(𝑢𝜀 − 𝑢) · ∇𝜇d𝑥−
∫︁

Ω

∇𝜆𝜀 · ∇𝜇d𝑥 = 0. (1.5)
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Now setting 𝑣 = 𝑢𝜀−𝑢 ∈ 𝑉0 in the first equation of (1.2), setting 𝜇 = 𝜆𝜀 ∈ 𝑉0 in equation (1.5) and subtracting
the two obtained equations, we get

𝜀

∫︁
Ω

∇𝑢𝜀 · ∇(𝑢𝜀 − 𝑢) d𝑥+
∫︁

Ω

|∇𝜆𝜀|2 d𝑥 = 0.

We deduce that the term (𝑢𝜀, 𝑢𝜀−𝑢) in the above sum is nonpositive, which from the Cauchy–Schwarz inequality
implies that ‖𝑢𝜀‖ ≤ ‖𝑢‖ and then ‖𝜆𝜀‖ ≤

√
𝜀‖𝑢‖. Hence there exists a constant 𝐶 such that

‖𝑢𝜀‖𝐻1(Ω) ≤ 𝐶‖𝑢‖𝐻1(Ω) and ‖𝜆𝜀‖𝐻1(Ω) ≤ 𝐶
√
𝜀‖𝑢‖𝐻1(Ω).

It remains to prove that 𝑢𝜀 → 𝑢 in 𝐻1(Ω) when 𝜀 → 0. The sequence (𝑢𝜀) is bounded in 𝐻1(Ω). Therefore,
there exists a subsequence, still denoted (𝑢𝜀), such that 𝑢𝜀 ⇀ 𝑤 in 𝐻1(Ω) when 𝜀→ 0, with 𝑤 ∈ 𝐻1(Ω). Since
the affine space 𝑉𝑔0 is convex and closed, it is weakly closed. This guarantees that 𝑤 ∈ 𝑉𝑔0 . Besides, by passing
to the limit in the second equation of (1.2) we obtain that 𝑤 satisfies the weak formulation (1.4). Uniqueness
in problem (1.1) then implies that 𝑤 = 𝑢, so that (𝑢𝜀) weakly converges to 𝑢 in 𝐻1(Ω). But

‖𝑢𝜀 − 𝑢‖2 = (𝑢𝜀, 𝑢𝜀 − 𝑢)− (𝑢, 𝑢𝜀 − 𝑢) ≤ −(𝑢, 𝑢𝜀 − 𝑢),

so that weak convergence implies strong convergence. Lastly, a standard contradiction argument enables us to
conclude that all the sequence (𝑢𝜀) strongly converges to 𝑢 in 𝐻1(Ω). �

Remark 1.3. Let us mention that another type of mixed formulation of quasi-reversibility was introduced
in [20], in which the additional unknown lies in 𝐻div(Ω) instead of 𝐻1(Ω). In addition, a notion of iterative
formulation of quasi-reversibility was introduced and analyzed in [19]. We believe that the quasi-reversibility
formulation (1.2) is the easiest one to handle to establish regularity results of the weak solutions.

The estimates of Theorem 1.1 involve 𝐻1(Ω) norms of the regularized solution (𝑢𝜀, 𝜆𝜀) in the case of a Lipschitz
domain Ω and for the natural regularity of the Cauchy data (𝑔0, 𝑔1), that is 𝐻1/2(Γ)×𝐻−1/2(Γ). These estimates
were derived in two different cases: the data (𝑔0, 𝑔1) are compatible or not. The main concern of this paper is
to analyze, when the domain Ω and the Cauchy data (𝑔0, 𝑔1) are more regular than Lipschitz and 𝐻1/2(Γ) ×
𝐻−1/2(Γ), respectively, the additional regularity of the solution (𝑢𝜀, 𝜆𝜀), whether the data (𝑔0, 𝑔1) are compatible
or not. We also want to obtain estimates in the corresponding norms. In order to simplify the analysis, the
additional regularity of the data (𝑔0, 𝑔1) is formulated in the following way: we assume that (𝑔0, 𝑔1) is such that
there exists a function 𝑈 in 𝐻2(Ω) with (𝑈 |Γ, 𝜕𝜈𝑈 |Γ) = (𝑔0, 𝑔1) and that we can define a continuous lifting
operator (𝑔0, 𝑔1) ↦→ 𝑈 . Denoting 𝑓 = ∆𝑈 ∈ 𝐿2(Ω) and considering the new translated unknown 𝑢−𝑈 → 𝑢, the
initial Cauchy problem (1.1) can be transformed into a homogeneous one (however still ill-posed): for 𝑓 ∈ 𝐿2(Ω),
find 𝑢 ∈ 𝐻1(Ω) such that ⎧⎨⎩−∆𝑢 = 𝑓 in Ω

𝑢 = 0 on Γ
𝜕𝜈𝑢 = 0 on Γ.

(1.6)

We emphasize that this regularity assumption made on the data is not an assumption of regularity of the
solution 𝑢. It is simple to construct smooth data in the sense above such that the corresponding 𝑢 is only in
𝐻1(Ω) and not in 𝐻2(Ω). The mixed formulation of quasi-reversibility for problem (1.6) takes the following
form: for 𝜀 > 0, find (𝑢𝜀, 𝜆𝜀) ∈ 𝑉0 × 𝑉0 such that for all (𝑣, 𝜇) ∈ 𝑉0 × 𝑉0,⎧⎪⎪⎨⎪⎪⎩

𝜀

∫︁
Ω

∇𝑢𝜀 · ∇𝑣 d𝑥+
∫︁

Ω

∇𝑣 · ∇𝜆𝜀 d𝑥 = 0∫︁
Ω

∇𝑢𝜀 · ∇𝜇d𝑥−
∫︁

Ω

∇𝜆𝜀 · ∇𝜇d𝑥 =
∫︁

Ω

𝑓𝜇d𝑥.
(1.7)
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Note that the strong equations corresponding to problem (1.7) are⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−(1 + 𝜀)∆𝑢𝜀 = 𝑓 in Ω
−(1 + 𝜀)∆𝜆𝜀 = −𝜀 𝑓 in Ω
𝑢𝜀 = 0 on Γ
𝜕𝜈𝑢𝜀 − 𝜕𝜈𝜆𝜀 = 0 on Γ
𝜆𝜀 = 0 on Γ̃
𝜀 𝜕𝜈𝑢𝜀 + 𝜕𝜈𝜆𝜀 = 0 on Γ̃.

(1.8)

The analog of Theorem 1.1, the proof of which is skipped, is the following.

Theorem 1.4. For all 𝑓 ∈ 𝐿2(Ω) and 𝜀 > 0, the problem (1.7) has a unique solution (𝑢𝜀, 𝜆𝜀) ∈ 𝑉0 × 𝑉0. There
exists a constant 𝐶 which depends only on the geometry such that

∀𝜀 ∈ (0, 1],
√
𝜀‖𝑢𝜀‖𝐻1(Ω) + ‖𝜆𝜀‖𝐻1(Ω) ≤ 𝐶‖𝑓‖𝐿2(Ω). (1.9)

If in addition we assume that 𝑓 is such that problem (1.6) has a (unique) solution 𝑢, then there exists a constant
𝐶 which depends only on the geometry such that

∀𝜀 > 0, ‖𝑢𝜀‖𝐻1(Ω) +
‖𝜆𝜀‖𝐻1(Ω)√

𝜀
≤ 𝐶‖𝑢‖𝐻1(Ω) (1.10)

and
lim
𝜀→0

‖𝑢𝜀 − 𝑢‖𝐻1(Ω) = 0.

The objective is now to study the regularity of the solution (𝑢𝜀, 𝜆𝜀) to problem (1.7) and to complete the
statements (1.9) and (1.10) of Theorem 1.4 by giving estimates in stronger norms. One objective, as will be seen
in Section 6, is the following. In practice, one has to solve problem (1.7) in the presence of two approximations.
Firstly, the data 𝑓 is altered by some noise of amplitude 𝛿. Secondly, the problem (1.7) is discretized, for instance
with the help of a Finite Element Method (FEM) based on a mesh of size ℎ. It is then desirable to estimate
the error between the approximated solution and the exact solution as a function of 𝜀, 𝛿 and ℎ. Such error
estimate for the 𝐻1(Ω) norm needs the solution to be in a Sobolev space 𝐻𝑠(Ω), with 𝑠 > 1. It could be noted
that in a recent contribution [13] (see also [9–12]), a discretized method was proposed in order to regularize the
Cauchy problem (1.1) in the presence of noisy data without introducing a regularized problem such as (1.7)
at the continuous level. In some sense, the method of [13] relies on a single asymptotic parameter, that is ℎ,
instead of two in our method, that is 𝜀 and ℎ. However, we believe that from the theoretical point of view, the
regularity of quasi-reversibility solutions is an interesting problem in itself. To our best knowledge, it has never
been investigated up to now. The difficulty stems from the fact that we analyze the regularity of a problem
involving a small parameter 𝜀 which degenerates when 𝜀 tends to 0. There are other contributions (see e.g.
[15, 16, 18, 26, 35, 36]) where regularity results or asymptotic expansions are obtained in situations where the
limit problem has a different nature from the regularized one. For example in [18], the authors study a mixed
Neumann-Robin problem where the small parameter 𝜀 is the inverse of the Robin coefficient. But while both
the perturbed problem and the limit one are well-posed in [18], only the perturbed problem is well-posed in
our case, the limit problem being ill-posed (in any framework). Our contribution is original in this sense. In the
present work, we study the regularity of the solution of the regularized problem as 𝜀 tends to zero. We emphasize
that computing an asymptotic expansion of the solution with respect to 𝜀 and proving error estimates (e.g. as
in [24, 33]) remains an open problem, the reason being that, due to the ill-posedness of the limit problem, no
result of stability can be easily established.

Our paper is organized as follows. First we consider the simple case of a smooth domain in Section 2, where
classical regularity results (see e.g. [8]) can be used. The case of the polygonal domain is introduced in Section 3,
where we also analyze the regularity of the quasi-reversibility solution in corners delimited by two edges of Γ or
two edges of Γ̃. In this case, the regularity of functions 𝑢𝜀 and 𝜆𝜀 can be analyzed separately with the help of the
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classical regularity results of [22] in a polygon for the Laplace equation with Dirichlet or Neumann boundary
conditions. In Section 5 we consider the more difficult case of a corner of mixed type, that is delimited by one
edge of Γ and one edge of Γ̃. This analysis relies on the Kondratiev approach [28], which is based on some
properties of weighted Sobolev spaces which are recalled in Section 4. Section 6 is dedicated to the application
of our regularity results to derive some error estimate between the exact solution and the quasi-reversibility
solution in the presence of two perturbations: noisy data and discretization with the help of a FEM. We also try
to illustrate our error estimate by presenting a numerical example. Two appendices containing technical results,
which are used in Section 5, complete the paper. The main results of this article are Theorem 2.2 (uniform
regularity estimates in smooth domains), Theorem 3.1 (uniform regularity estimates in 2D polygonal domains)
and the final approximation analysis of Section 6.

2. The case of a smooth domain

Let us first assume that Ω is a domain of class 𝐶1,1. If (𝑔0, 𝑔1) ∈ 𝐻3/2(Γ) × 𝐻1/2(Γ), then there exists a
function 𝑈 ∈ 𝐻2(Ω) such that (𝑈 |Γ, 𝜕𝜈𝑈 |Γ) = (𝑔0, 𝑔1) and even a continuous lifting operator (𝑔0, 𝑔1) ↦→ 𝑈
from 𝐻3/2(Γ)×𝐻1/2(Γ) to 𝐻2(Ω) (see Thm. 1.5.1.2 in [21]). We are therefore in the situation described in the
Section 1, where the problem to solve is (1.6). We begin with an interior regularity result.

Proposition 2.1. For 𝑓 ∈ 𝐿2(Ω), the solution (𝑢𝜀, 𝜆𝜀) ∈ 𝑉0 × 𝑉0 to the problem (1.7) is such that for all
𝜁 ∈ C∞

0 (Ω), 𝜁𝑢𝜀 and 𝜁𝜆𝜀 belong to 𝐻2(Ω) and there exists a constant 𝐶 > 0 which depends only on the
geometry such that

∀𝜀 ∈ (0, 1],
√
𝜀‖𝜁𝑢𝜀‖𝐻2(Ω) + ‖𝜁𝜆𝜀‖𝐻2(Ω) ≤ 𝐶‖𝑓‖𝐿2(Ω).

If in addition 𝑓 is such that problem (1.6) has a solution 𝑢, then

∀𝜀 ∈ (0, 1], ‖𝜁𝑢𝜀‖𝐻2(Ω) +
‖𝜁𝜆𝜀‖𝐻2(Ω)√

𝜀
≤ 𝐶‖𝑢‖𝐻1(Δ,Ω),

where the norm ‖ · ‖𝐻1(Δ,Ω) is defined by

‖𝑢‖2𝐻1(Δ,Ω) = ‖𝑢‖2𝐻1(Ω) + ‖∆𝑢‖2𝐿2(Ω).

Proof. From the first equation of (1.8), we have that

−∆(𝜁𝑢𝜀) + 𝜁𝑢𝜀 = (−∆𝜁 + 𝜁)𝑢𝜀 − 2∇𝜁 · ∇𝑢𝜀 + 𝜁
𝑓

1 + 𝜀
:= 𝐹𝜀.

Clearly 𝐹𝜀 ∈ 𝐿2(R𝑑), which by using the Fourier transform implies that

‖𝜁𝑢𝜀‖𝐻2(R𝑑) = ‖𝐹𝜀‖𝐿2(R𝑑),

and hence
‖𝜁𝑢𝜀‖𝐻2(Ω) = ‖𝐹𝜀‖𝐿2(Ω) ≤ 𝐶 (‖𝑢𝜀‖𝐻1(Ω) + ‖𝑓‖𝐿2(Ω)).

From (1.9) we obtain that √
𝜀‖𝜁𝑢𝜀‖𝐻2(Ω) ≤ 𝐶 ‖𝑓‖𝐿2(Ω).

If in addition 𝑓 is such that problem (1.6) has a (unique) solution 𝑢, from (1.10) we obtain

‖𝜁𝑢𝜀‖𝐻2(Ω) ≤ 𝐶 ‖𝑢‖𝐻1(Δ,Ω).

The estimates of 𝜁𝜆𝜀 are obtained following the same lines. �

Let us now establish a global regularity estimate (up to the boundary) in the restricted case when Γ ∩ Γ̃ = ∅
(see Fig. 1 right).
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Theorem 2.2. For 𝑓 ∈ 𝐿2(Ω), the solution (𝑢𝜀, 𝜆𝜀) ∈ 𝑉0 × 𝑉0 to the problem (1.7) is such that 𝑢𝜀 and 𝜆𝜀
belong to 𝐻2(Ω) and there exists a constant 𝐶 > 0 which depends only on the geometry such that

∀𝜀 ∈ (0, 1], 𝜀‖𝑢𝜀‖𝐻2(Ω) +
√
𝜀‖𝜆𝜀‖𝐻2(Ω) ≤ 𝐶‖𝑓‖𝐿2(Ω).

If in addition 𝑓 is such that problem (1.6) has a solution 𝑢, then

∀𝜀 ∈ (0, 1],
√
𝜀‖𝑢𝜀‖𝐻2(Ω) + ‖𝜆𝜀‖𝐻2(Ω) ≤ 𝐶‖𝑢‖𝐻1(Δ,Ω).

Proof. Given Γ ∩ Γ̃ = ∅, we may find two infinitely smooth functions 𝜁 and 𝜁 such that (𝜁, 𝜁) = (1, 0) in a
vicinity of Γ and (𝜁, 𝜁) = (0, 1) in a vicinity of Γ̃. We have from the first equation of (1.8),

−∆(𝜁𝑢𝜀) = −∆𝜁𝑢𝜀 − 2∇𝜁 · ∇𝑢𝜀 + 𝜁
𝑓

1 + 𝜀
= 𝐹𝜀.

Since 𝑢𝜀 = 0 on Γ, from a standard regularity result for the Poisson equation with Dirichlet boundary condition
we obtain

‖𝜁𝑢𝜀‖𝐻2(Ω) ≤ 𝐶‖𝐹𝜀‖𝐿2(Ω) ≤ 𝐶(‖𝑓‖𝐿2(Ω) + ‖𝑢𝜀‖𝐻1(Ω)), (2.1)

and from (1.9) we have √
𝜀‖𝜁𝑢𝜀‖𝐻2(Ω) ≤ 𝐶‖𝑓‖𝐿2(Ω).

From a standard continuity result for the normal derivative and using that 𝜕𝜈𝑢𝜀 − 𝜕𝜈𝜆𝜀 = 0 on Γ, we obtain
√
𝜀‖𝜕𝜈𝜆𝜀‖𝐻1/2(Γ) =

√
𝜀‖𝜕𝜈𝑢𝜀‖𝐻1/2(Γ) ≤ 𝐶‖𝑓‖𝐿2(Ω).

From the second equation of (1.8) we have

‖∆𝜆𝜀‖𝐿2(Ω) ≤ 𝐶𝜀‖𝑓‖𝐿2(Ω).

Combining the two previous estimates with the fact that 𝜆𝜀 = 0 on Γ̃ implies the regularity estimate
√
𝜀‖𝜆𝜀‖𝐻2(Ω) ≤ 𝐶‖𝑓‖𝐿2(Ω).

Reusing the second equation of (1.8), the estimate (1.9) and that 𝜆𝜀 = 0 on Γ̃ leads to

‖𝜁𝜆𝜀‖𝐻2(Ω) ≤ 𝐶‖𝑓‖𝐿2(Ω),

and using that 𝜀𝜕𝜈𝑢𝜀 + 𝜕𝜈𝜆𝜀 = 0 on Γ̃, we obtain

𝜀‖𝜕𝜈𝑢𝜀‖𝐻1/2(Γ̃) = ‖𝜕𝜈𝜆𝜀‖𝐻1/2(Γ̃) ≤ 𝐶‖𝑓‖𝐿2(Ω).

We conclude that
𝜀‖𝑢𝜀‖𝐻2(Ω) ≤ 𝐶‖𝑓‖𝐿2(Ω).

Now let us assume that 𝑓 is such that problem (1.6) has a solution 𝑢. From (1.10) and (2.1) we now have the
better estimate

‖𝜁𝑢𝜀‖𝐻2(Ω) ≤ 𝐶‖𝑢‖𝐻1(Ω,Δ).

Using that 𝜕𝜈𝑢𝜀 − 𝜕𝜈𝜆𝜀 = 0 on Γ, we obtain

‖𝜕𝜈𝜆𝜀‖𝐻1/2(Γ) ≤ 𝐶‖𝑢‖𝐻1(Δ,Ω),

and then
‖𝜆𝜀‖𝐻2(Ω) ≤ 𝐶‖𝑢‖𝐻1(Δ,Ω).
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Figure 2. An example of polygonal domain. 𝑆1, 𝑆2, 𝑆3 represent the three types of vertices
that we will study in Sections 3.2, 5, and 3.3, respectively.

Reusing the second equation of (1.8), the estimate (1.10) and that 𝜆𝜀 = 0 on Γ̃ leads to

‖𝜁𝜆𝜀‖𝐻2(Ω) ≤ 𝐶
√
𝜀‖𝑢‖𝐻1(Δ,Ω).

Since 𝜀𝜕𝜈𝑢𝜀 + 𝜕𝜈𝜆𝜀 = 0 on Γ̃, we obtain
√
𝜀‖𝜕𝜈𝑢𝜀‖𝐻1/2(Γ̃) ≤ 𝐶‖𝑢‖𝐻1(Δ,Ω).

We conclude that
√
𝜀‖𝑢𝜀‖𝐻2(Ω) ≤ 𝐶‖𝑢‖𝐻1(Δ,Ω). �

Remark 2.3. From Theorem 1.1 and Proposition 2.1, we notice that in the interior of the domain, the 𝐻2

estimates are the same as the 𝐻1 estimates, whether the data are compatible or not. However, from Theo-
rems 1.1 and 2.2, when it comes to the 𝐻2 estimates in the whole domain, up to the boundary, one loses a

√
𝜀

factor with respect to the 𝐻1 estimates, whether the data are compatible or not.

3. The case of a polygonal domain

3.1. Main result

From now on, Ω is a polygonal domain in dimension 2. Our motivation is indeed to obtain error estimates in the
context of the discretization with the help of a classical FEM: due to the meshing procedure in two dimensions,
in practice the computational domain is often a polygon. We use the same notations as in [22] to describe the
geometry of such a polygon. Let us assume that 𝜕Ω is the union of segments Γ𝑗 , 𝑗 = 1, . . . , 𝑁 , where 𝑁 is an
integer. Let us denote 𝑆𝑗 the vertex such that 𝑆𝑗 = Γ𝑗∩Γ𝑗+1, 𝜔𝑗 the angle between Γ𝑗 and Γ𝑗+1 from the interior
of Ω, 𝜏𝑗 the unit tangent oriented in the counter-clockwise sense and 𝜈𝑗 the outward normal to 𝜕Ω. We assume
that Γ and Γ̃ are formed by a finite number of edges, namely 𝑛 and 𝑛̃, respectively, with 𝑛+𝑛̃ = 𝑁 . Let us denote
ℋ(Γ) the subset of functions (𝑔0, 𝑔1) ∈ 𝐿2(Γ)×𝐿2(Γ) such that (𝑓𝑗 , 𝑔𝑗) := (𝑔0|Γ𝑗 , 𝑔1|Γ𝑗 ) ∈ 𝐻3/2(Γ𝑗)×𝐻1/2(Γ𝑗),
𝑗 = 1, . . . , 𝑛, with the following compatibility conditions at 𝑆𝑗 :⎧⎪⎨⎪⎩

𝑓𝑗(𝑆𝑗) = 𝑓𝑗+1(𝑆𝑗)
𝜕𝜏𝑗

𝑓𝑗 ≡ − cos(𝜔𝑗)𝜕𝜏𝑗+1𝑓𝑗+1 + sin(𝜔𝑗)𝑔𝑗+1 at 𝑆𝑗

𝑔𝑗 ≡ − sin(𝜔𝑗)𝜕𝜏𝑗+1𝑓𝑗+1 − cos(𝜔𝑗)𝑔𝑗+1 at 𝑆𝑗 ,

(3.1)

and the equivalence 𝜑𝑗 ≡ 𝜑𝑗+1 at 𝑆𝑗 means that for small 𝛿 > 0∫︁ 𝛿

0

|𝜑𝑗(𝑥𝑗(−𝜎))− 𝜑𝑗+1(𝑥𝑗(+𝜎))|2

𝜎
d𝜎 < +∞,
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where 𝑥𝑗(𝜎) denotes the point of 𝜕Ω which, for small enough |𝜎| (say |𝜎| ≤ 𝛿), is at distance 𝜎 (counted
algebraically) of 𝑆𝑗 along 𝜕Ω. More precisely, 𝑥𝑗(𝜎) ∈ Γ𝑗 if 𝜎 < 0 and 𝑥𝑗(𝜎) ∈ Γ𝑗+1 if 𝜎 > 0. It is proved in [22],
that for (𝑔0, 𝑔1) ∈ ℋ, there exists a function 𝑈 ∈ 𝐻2(Ω) such that for each 𝑗 = 1, . . . , 𝑛, (𝑈 |Γ𝑗 , 𝜕𝜈𝑗𝑈 |Γ𝑗 ) = (𝑓𝑗 , 𝑔𝑗)
and even a continuous lifting (𝑔0, 𝑔1) ↦→ 𝑈 from ℋ to 𝐻2(Ω). We are hence again in the framework of Section 1,
where the problem to solve is (1.6).

Clearly, the interior estimates given by Proposition 2.1 are true in the polygonal domain since they are
independent of the regularity of the boundary. Let us now analyze the regularity up to the boundary. As done
in [22], the estimates are obtained by using a partition of unity, which enables us to localize our analysis in
three different types of corners (see Fig. 2):

– regularity at a corner delimited by two edges which belong to Γ, called a corner of type Γ,
– regularity at a corner delimited by two edges which belong to Γ̃, called a corner of type Γ̃,
– regularity at a corner delimited by one edge which belongs to Γ and one edge which belongs to Γ̃, called a

corner of mixed type.

Let us denote by 𝑁𝐶 the set of 𝑗 such that 𝑆𝑗 is either a vertex of type Γ or a vertex of type Γ̃ and 𝑁𝑀 the
set of 𝑗 such that 𝑆𝑗 is a corner of mixed type. We wish to prove the following theorem, which is obtained by
gathering Propositions 2.1, 3.5, 3.6 and 5.12 hereafter.

Theorem 3.1. Let us take 𝑠𝐶 < min𝑗∈𝑁𝐶
(1 + 𝜋/𝜔𝑗) if there exists 𝑗 ∈ 𝑁𝐶 such that 𝜔𝑗 > 𝜋 and 𝑠𝐶 = 2

otherwise. Let us take 𝑠𝑀 < min𝑗∈𝑁𝑀
(1 + 𝜋/(2𝜔𝑗)) if there exists 𝑗 ∈ 𝑁𝑀 such that 𝜔𝑗 ≥ 𝜋/2 and 𝑠𝑀 = 2

otherwise. Let us denote 𝑠 = min{𝑠𝐶 , 𝑠𝑀}.
For 𝑓 ∈ 𝐿2(Ω) and 𝜀 > 0, the solution (𝑢𝜀, 𝜆𝜀) ∈ 𝑉0 × 𝑉0 to the problem (1.7) is such that 𝑢𝜀 and 𝜆𝜀 belong

to 𝐻𝑠(Ω) and there exists a constant 𝐶 > 0 which depends only on the geometry such that

∀𝜀 ∈ (0, 1], 𝜀‖𝑢𝜀‖𝐻𝑠(Ω) +
√
𝜀‖𝜆𝜀‖𝐻𝑠(Ω) ≤ 𝐶‖𝑓‖𝐿2(Ω).

If in addition we assume that 𝑓 is such that problem (1.6) has a (unique) solution 𝑢, then

∀𝜀 ∈ (0, 1],
√
𝜀‖𝑢𝜀‖𝐻𝑠(Ω) + ‖𝜆𝜀‖𝐻𝑠(Ω) ≤ 𝐶‖𝑢‖𝐻1(Δ,Ω).

Remark 3.2. The global estimates of Theorem 3.1 are obtained by gathering all the local estimates obtained
in Propositions 2.1, 3.5, 3.6 and 5.12. Each of these estimates are locally better than the global estimate of
Theorem 3.1.

3.2. Regularity at a corner of type Γ

The regularity of solutions 𝑢𝜀 and 𝜆𝜀 near a corner delimited by two edges which belong to Γ can be analyzed
separately. They will be obtained by directly applying the results of [22] for Dirichlet and Neumann Laplacian
problems. Let us consider 𝑆𝑗 the vertex of a corner delimited by two edges Γ𝑗 and Γ𝑗+1 which belong to Γ. Let
us denote (𝑟𝑗 , 𝜃𝑗) the local polar coordinates with respect to the point 𝑆𝑗 and 𝜁𝑗 ∈ C∞(Ω) a radial function
(depending only on 𝑟𝑗) such that 𝜁𝑗 = 1 for 𝑟𝑗 ≤ 𝑎𝑗 and 𝜁𝑗 = 0 for 𝑟𝑗 ≥ 𝑏𝑗 . We assume that 𝑏𝑗 is chosen such
that 𝜁𝑗 = 0 in a vicinity of all edges Γ𝑘 except for 𝑘 = 𝑗 or 𝑘 = 𝑗+ 1. In order to simplify notations, we skip the
reference to index 𝑗, denoting in particular 𝑆𝑗 = 𝑆, Γ𝑗 = Γ0 and Γ𝑗+1 = Γ𝜔. Let us introduce the finite cone
𝐾𝑏 = Ω ∩𝐵(𝑆, 𝑏). The two following lemmata are proved in [22].

Lemma 3.3. For 𝐹 ∈ 𝐿2(𝐾𝑏), the problem: find 𝑈 ∈ 𝐻1(𝐾𝑏) such that{︂
−∆𝑈 = 𝐹 in 𝐾𝑏

𝑈 = 0 on 𝜕𝐾𝑏
(3.2)

has a unique solution and there exists a unique constant 𝑐 ∈ R and a unique function 𝑉 ∈ 𝐻2(𝐾𝑏) such that

𝑈 = 𝑐 𝑟𝜋/𝜔 sin
(︂
𝜋𝜃

𝜔

)︂
+ 𝑉.
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Moreover, there exists a constant 𝐶 > 0 such that

|𝑐|+ ‖𝑉 ‖𝐻2(𝐾𝑏) ≤ 𝐶 ‖𝐹‖𝐿2(𝐾𝑏). (3.3)

In addition, if 𝜔 ≤ 𝜋 then 𝑐 = 0.

Lemma 3.4. For 𝐹 ∈ 𝐿2(𝐾𝑏), the problem: find 𝑈 ∈ 𝐻1(𝐾𝑏) such that⎧⎨⎩−∆𝑈 = 𝐹 in 𝐾𝑏

𝑈 = 0 on 𝜕𝐵(𝑆, 𝑏) ∩ 𝜕𝐾𝑏

𝜕𝜈𝑈 = 0 on (Γ0 ∪ Γ𝜔) ∩ 𝜕𝐾𝑏

(3.4)

has a unique solution and there exists a unique constant 𝑐 ∈ R and a unique function 𝑉 ∈ 𝐻2(𝐾𝑏) such that

𝑈 = 𝑐 𝑟𝜋/𝜔 cos
(︂
𝜋𝜃

𝜔

)︂
+ 𝑉.

Moreover, there exists a constant 𝐶 > 0 such that (3.3) holds. In addition, if 𝜔 ≤ 𝜋 then 𝑐 = 0.

Proposition 3.5. Assume that 𝑆 is the vertex of a corner of type Γ. Let us consider 𝑠 < 1 + 𝜋/𝜔 if 𝜔 > 𝜋 and
𝑠 = 2 otherwise. For 𝑓 ∈ 𝐿2(Ω), the solution (𝑢𝜀, 𝜆𝜀) ∈ 𝑉0 × 𝑉0 to the problem (1.7) is such that 𝜁𝑢𝜀 and 𝜁𝜆𝜀
belong to 𝐻𝑠(Ω) and there exists a constant 𝐶 > 0 which depends only on the geometry such that

∀𝜀 ∈ (0, 1],
√
𝜀(‖𝜁𝑢𝜀‖𝐻𝑠(Ω) + ‖𝜁𝜆𝜀‖𝐻𝑠(Ω)) ≤ 𝐶‖𝑓‖𝐿2(Ω).

If in addition 𝑓 is such that problem (1.6) has a solution 𝑢, then

∀𝜀 ∈ (0, 1], ‖𝜁𝑢𝜀‖𝐻𝑠(Ω) + ‖𝜁𝜆𝜀‖𝐻𝑠(Ω) ≤ 𝐶‖𝑢‖𝐻1(Δ,Ω).

Proof. From (1.8) we have that 𝜁𝑢𝜀 satisfies problem (3.2) with

𝐹𝜀 = −∆𝜁𝑢𝜀 − 2∇𝜁 · ∇𝑢𝜀 + 𝜁
𝑓

1 + 𝜀
· (3.5)

By using Lemma 3.3, we have that there exists a unique constant 𝑐𝜀 ∈ R and a unique function 𝑉𝜀 ∈ 𝐻2(𝐾𝑏)
such that

𝜁(𝑟)𝑢𝜀 = 𝑐𝜀 𝑟
𝜋/𝜔 sin

(︂
𝜋𝜃

𝜔

)︂
+ 𝑉𝜀

and there exists a constant 𝐶 > 0 such that

|𝑐𝜀|+ ‖𝑉𝜀‖𝐻2(𝐾𝑏) ≤ 𝐶 ‖𝐹𝜀‖𝐿2(𝐾𝑏).

From (3.5), we deduce that we have

|𝑐𝜀|+ ‖𝑉𝜀‖𝐻2(Ω) ≤ 𝐶(‖𝑢𝜀‖𝐻1(𝐾𝑏) + ‖𝑓‖𝐿2(Ω)).

From Theorem 1.4.5.3 of [21], the function (𝑟, 𝜃) ↦→ 𝜁(𝑟)𝑟𝜋/𝜔 sin(𝜋𝜃/𝜔) belongs to 𝐻𝑠(Ω) for any 𝑠 < 1 + 𝜋/𝜔.
We conclude from (1.9) that there exists a constant 𝐶 > 0 which depends only on the geometry such that, for
𝑠 < 1 + 𝜋/𝜔, {︃√

𝜀‖𝜁𝑢𝜀‖𝐻2(Ω) ≤ 𝐶 ‖𝑓‖𝐿2(Ω) if 𝜔 < 𝜋
√
𝜀‖𝜁𝑢𝜀‖𝐻𝑠(Ω) ≤ 𝐶 ‖𝑓‖𝐿2(Ω) if 𝜔 > 𝜋.
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We remark from (1.8) that the function 𝑑𝜀 = 𝑢𝜀−𝜆𝜀 satisfies −∆𝑑𝜀 = 𝑓 in Ω and 𝜕𝜈𝑑𝜀 = 0 on Γ, which implies
that 𝜁𝑑𝜀 satisfies problem (3.4) with

𝐹𝜀 = −∆𝜁𝑑𝜀 − 2∇𝜁 · ∇𝑑𝜀 + 𝜁𝑓.

By using Lemma 3.4, we have that there exists a unique constant 𝑐𝜀 ∈ R and a unique function 𝑉𝜀 ∈ 𝐻2(𝐾𝑏)
such that

𝜁𝑑𝜀 = 𝑐 𝑟𝜋/𝜔 cos
(︂
𝜋𝜃

𝜔

)︂
+ 𝑉𝜀

and there exists a constant 𝐶 > 0 such that

|𝑐𝜀|+ ‖𝑉𝜀‖𝐻2(𝐾𝑏) ≤ 𝐶 ‖𝐹𝜀‖𝐿2(𝐾𝑏).

We infer that

|𝑐𝜀|+ ‖𝑉𝜀‖𝐻2(𝐾𝑏) ≤ 𝐶(‖𝑑𝜀‖𝐻1(𝐾𝑏) + ‖𝑓‖𝐿2(𝐾𝑏)) ≤ 𝐶(‖𝑢𝜀‖𝐻1(𝐾𝑏) + ‖𝜆𝜀‖𝐻1(𝐾𝑏) + ‖𝑓‖𝐿2(𝐾𝑏)).

And we conclude from (1.9) that there exists a constant 𝐶 > 0 which depends only on the geometry such that{︃√
𝜀‖𝜁𝑑𝜀‖𝐻2(Ω) ≤ 𝐶 ‖𝑓‖𝐿2(Ω) if 𝜔 < 𝜋

√
𝜀‖𝜁𝑑𝜀‖𝐻𝑠(Ω) ≤ 𝐶 ‖𝑓‖𝐿2(Ω) if 𝜔 > 𝜋,

so that 𝜆𝜀 = 𝑑𝜀 − 𝑢𝜀 satisfies the same estimate. The case when 𝑓 is such that there is a solution 𝑢 to (1.6)
follows the same lines: it suffices to use estimate (1.10) instead of (1.9). �

3.3. Regularity at a corner of type Γ̃

We reuse the notations introduced in the last section.

Proposition 3.6. Assume that 𝑆 is the vertex of a corner of type Γ̃. Let us consider 𝑠 < 1 + 𝜋/𝜔 if 𝜔 > 𝜋 and
𝑠 = 2 otherwise. For 𝑓 ∈ 𝐿2(Ω), the solution (𝑢𝜀, 𝜆𝜀) ∈ 𝑉0 × 𝑉0 to the problem (1.7) is such that 𝜁𝑢𝜀 and 𝜁𝜆𝜀
belong to 𝐻𝑠(Ω) and there exists a constant 𝐶 > 0 which depends only on the geometry such that

∀𝜀 ∈ (0, 1], 𝜀‖𝜁𝑢𝜀‖𝐻𝑠(Ω) + ‖𝜁𝜆𝜀‖𝐻𝑠(Ω) ≤ 𝐶‖𝑓‖𝐿2(Ω).

If in addition we assume that 𝑓 is such that problem (1.6) has a (unique) solution 𝑢, then

∀𝜀 ∈ (0, 1],
√
𝜀‖𝜁𝑢𝜀‖𝐻𝑠(Ω) +

‖𝜁𝜆𝜀‖𝐻𝑠(Ω)√
𝜀

≤ 𝐶‖𝑢‖𝐻1(Δ,Ω).

Proof. From (1.8) we have that 𝜁𝜆𝜀 satisfies problem (3.2) with

𝐹𝜀 = −∆𝜁𝜆𝜀 − 2∇𝜁 · ∇𝜆𝜀 − 𝜀𝜁
𝑓

1 + 𝜀
·

By using Lemma 3.3, we have that there exists a unique constant 𝑐𝜀 ∈ R and a unique function 𝑉𝜀 ∈ 𝐻2(𝐾𝑏)
such that

𝜁𝜆𝜀 = 𝑐𝜀 𝑟
𝜋/𝜔 sin

(︂
𝜋𝜃

𝜔

)︂
+ 𝑉𝜀

and there exists a constant 𝐶 > 0 such that

|𝑐𝜀|+ ‖𝑉𝜀‖𝐻2(𝐾𝑏) ≤ 𝐶 ‖𝐹𝜀‖𝐿2(𝐾𝑏).
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We deduce the estimate
|𝑐𝜀|+ ‖𝑉𝜀‖𝐻2(𝐾𝑏) ≤ 𝐶(‖𝜆𝜀‖𝐻1(Ω) + 𝜀‖𝑓‖𝐿2(Ω)).

And we conclude from (1.9) that there exists a constant 𝐶 > 0 which depends only on the geometry such that,
for 𝑠 < 1 + 𝜋/𝜔 {︃

‖𝜁𝜆𝜀‖𝐻2(Ω) ≤ 𝐶 ‖𝑓‖𝐿2(Ω) if 𝜔 < 𝜋

‖𝜁𝜆𝜀‖𝐻𝑠(Ω) ≤ 𝐶 ‖𝑓‖𝐿2(Ω) if 𝜔 > 𝜋.

We remark from (1.8) that the function 𝑠𝜀 = 𝜀𝑢𝜀+𝜆𝜀 satisfies −∆𝑠𝜀 = 0 in Ω and 𝜕𝜈𝑠𝜀 = 0 on Γ̃, which implies
that 𝜁𝑠𝜀 satisfies problem (3.4) with

𝐹𝜀 = −∆𝜁𝑠𝜀 − 2∇𝜁 · ∇𝑠𝜀.

By using Lemma 3.4, we have that there exists a unique constant 𝑐𝜀 ∈ R and a unique function 𝑉𝜀 ∈ 𝐻2(𝐾𝑏)
such that

𝜁𝑠𝜀 = 𝑐𝜀 𝑟
𝜋/𝜔 cos

(︂
𝜋𝜃

𝜔

)︂
+ 𝑉𝜀

and there exists a constant 𝐶 > 0 such that

|𝑐𝜀|+ ‖𝑉𝜀‖𝐻2(𝐾𝑏) ≤ 𝐶 ‖𝐹𝜀‖𝐿2(𝐾𝑏).

We infer that
|𝑐𝜀|+ ‖𝑉𝜀‖𝐻2(𝐾𝑏) ≤ 𝐶‖𝑠𝜀‖𝐻1(𝐾𝑏) ≤ 𝐶(𝜀‖𝑢𝜀‖𝐻1(𝐾𝑏) + ‖𝜆𝜀‖𝐻1(𝐾𝑏)).

And we conclude from (1.9) that there is a constant 𝐶 > 0 which depends only on Ω such that{︃
‖𝜁𝑠𝜀‖𝐻2(Ω) ≤ 𝐶 ‖𝑓‖𝐿2(Ω) if 𝜔 < 𝜋

‖𝜁𝑠𝜀‖𝐻𝑠(Ω) ≤ 𝐶 ‖𝑓‖𝐿2(Ω) if 𝜔 > 𝜋,

so that 𝜀𝑢𝜀 = 𝑠𝜀 − 𝜆𝜀 satisfies the same estimate. The case when 𝑓 is such that there is a solution 𝑢 to (1.6) is
similar. �

Remark 3.7. We emphasize that the small parameter 𝜀 plays a different role in Proposition 3.5 and in Propo-
sition 3.6. In Proposition 3.5, the exponent in 𝜀 is the same before 𝑢𝜀 and before 𝜆𝜀 because the corner is inside
Γ and Γ is the support of the Cauchy data. In Proposition 3.6, the exponent in 𝜀 before 𝑢𝜀 is one more than
the one before 𝜆𝜀 because the corner is inside Γ̃ and data on Γ̃ are unknown.

It remains to analyze the regularity of functions 𝑢𝜀 and 𝜆𝜀 at corners of mixed type and to derive corresponding
estimates. As we will see, this is a much more difficult task. The main reason is that we do not know whether or
not the eigenvectors of a certain symbol L𝜀 defined on (0, 𝜔) (see (5.4)) form a Hilbert basis of 𝐿2(0, 𝜔)×𝐿2(0, 𝜔).
To bypass this difficulty, we will apply the Kondratiev approach of the seminal article [28] (see also [29,30,32,34]
for more recent presentations). We will follow strictly the methodology proposed in these works. However, we
emphasize that in our study we have to keep track of the dependence in 𝜀 in all the estimates. This is the reason
why we present the procedure in details. Let us mention that a somehow similar analysis has been conducted
in a simpler situation in Annex of [14]. We start by presenting some preliminaries on weighted Sobolev spaces
borrowed from [29].

4. Some preliminaries on weighted Sobolev spaces

Let us consider the strip 𝐵 = {(𝑡, 𝜃) ∈ R × (0, 𝜔)} for 𝜔 > 0. For 𝛽 ∈ R and 𝑚 ∈ N, let us introduce the
weighted Sobolev space

𝑊𝑚
𝛽 (𝐵) = {𝑣 ∈ 𝐿2

loc(𝐵), e𝛽𝑡𝑣 ∈ 𝐻𝑚(𝐵)},
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equipped with the norm
‖𝑣‖𝑊𝑚

𝛽 (𝐵) = ‖e𝛽𝑡𝑣‖𝐻𝑚(𝐵). (4.1)

We also denote 𝑊̊𝑚
𝛽 (𝐵) the closure of C∞

0 (𝐵) in 𝑊𝑚
𝛽 (𝐵), 𝑊̊𝑚

𝛽,0(𝐵) the closure in 𝑊𝑚
𝛽 (𝐵) of the set of functions

in C∞
0 (𝐵) which vanish in a vicinity of 𝜕𝐵0 = 𝜕𝐵 ∩ {𝜃 = 0}, 𝑊̊𝑚

𝛽,𝜔(𝐵) the closure in 𝑊𝑚
𝛽 (𝐵) of the set of

functions in C∞
0 (𝐵) which vanish in a vicinity of 𝜕𝐵𝜔 = 𝜕𝐵∩{𝜃 = 𝜔}. Let us introduce the Laplace transform

̂︀𝑣(𝜆) = (ℒ𝑣)(𝜆) =
∫︁ +∞

−∞
e−𝜆𝑡𝑣(𝑡) d𝑡. (4.2)

We recall the following properties of the Laplace transform.

(1) The Laplace transform is a linear and continuous map from C∞
0 (R) to the space of holomorphic functions

in the complex plane. In addition, we have ℒ(𝜕𝑡𝑣) = 𝜆ℒ(𝑣) for all 𝑣 ∈ C∞
0 (R).

(2) For all 𝑢, 𝑣 ∈ C∞
0 (R), we have the Parseval identity∫︁ +∞

−∞
e2𝛽𝑡𝑢(𝑡)𝑣(𝑡) d𝑡 =

1
2𝜋𝑖

∫︁
Re𝜆=−𝛽

̂︀𝑢(𝜆)̂︀𝑣(𝜆) d𝜆.

Hence, the Laplace transform (4.2) can be extended as an isomorphism from 𝐿2
𝛽(R) to 𝐿2(ℓ−𝛽), where

𝐿2
𝛽(R) = {𝑣 ∈ 𝐿2

loc(R), e𝛽𝑡𝑣 ∈ 𝐿2(R)} and ℓ−𝛽 = {𝜆 = −𝛽 + 𝑖𝜏, 𝜏 ∈ R}.
(3) The inverse Laplace transform is given by the formula

𝑣(𝑡) = (ℒ−1̂︀𝑣)(𝑡) =
1

2𝜋𝑖

∫︁
ℓ−𝛽

e𝜆𝑡̂︀𝑣(𝜆) d𝜆.

(4) If 𝑣 ∈ 𝐿2
𝛽1

(R) ∩ 𝐿2
𝛽2

(R) for 𝛽1 < 𝛽2, then the function 𝜆 ↦→ ̂︀𝑣(𝜆) is holomorphic in the strip defined by
−𝛽2 < Re𝜆 < −𝛽1.

By using the above properties, one can prove that for 𝛽 ∈ R and 𝑚 ∈ N, the norm (4.1) is equivalent to the
norm given by

‖𝑣‖𝛽,𝑚 =

(︃
1

2𝜋𝑖

∫︁
ℓ−𝛽

‖̂︀𝑣‖2𝐻𝑚(0,𝜔;𝜆) d𝜆

)︃1/2

, (4.3)

where
‖̂︀𝑣‖2𝐻𝑚(0,𝜔;𝜆) = ‖̂︀𝑣‖2𝐻𝑚(0,𝜔) + |𝜆|2𝑚‖̂︀𝑣‖2𝐿2(0,𝜔). (4.4)

Next, we introduce the infinite cone

𝐾 = {(𝑟 cos 𝜃, 𝑟 sin 𝜃), 𝑟 > 0, 0 < 𝜃 < 𝜔},

with 𝜔 ∈ (0, 2𝜋). For 𝛽 ∈ R and 𝑚 ∈ N, let us introduce the weighted Sobolev space 𝑉 𝑚𝛽 (𝐾) as the closure of
C∞

0 (𝐾 ∖ {0}) for the norm

‖𝑣‖𝑉𝑚
𝛽 (𝐾) =

⎛⎝ ∑︁
|𝛼|≤𝑚

‖𝑟|𝛼|−𝑚+𝛽𝜕𝛼𝑥 𝑣‖2𝐿2(𝐾)

⎞⎠1/2

. (4.5)

We also denote by 𝑉 𝑚𝛽 (𝐾) the closure of C∞
0 (𝐾) in 𝑉 𝑚𝛽 (𝐾), 𝑉 𝑚𝛽,0(𝐾) the closure in 𝑉 𝑚𝛽 (𝐾) of the set of functions

in C∞
0 (𝐾) which vanish in a vicinity of 𝜕𝐾0 = 𝜕𝐾 ∩ {𝜃 = 0}, 𝑉 𝑚𝛽,𝜔(𝐾) the closure in 𝑉 𝑚𝛽 (𝐾) of the set of
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functions in C∞
0 (𝐾) which vanish in a vicinity of 𝜕𝐾𝜔 = 𝜕𝐾 ∩{𝜃 = 𝜔}. One can show that the norm of 𝑉 𝑚𝛽 (𝐾)

is equivalent to the norm

‖𝑣‖ =

⎛⎝∫︁ +∞

0

𝑟2(−𝑚+𝛽)
𝑚∑︁
𝑗=0

‖(𝑟𝜕𝑟)𝑗𝑣(𝑟, ·)‖2𝐻𝑚−𝑗(0,𝜔)𝑟 d𝑟

⎞⎠1/2

. (4.6)

The key point consists in the change of variable 𝑡 = ln 𝑟, which transforms the cone 𝐾 = R*+ × (0, 𝜔) into the
strip 𝐵 = R× (0, 𝜔). In particular, if we introduce, for a function 𝑣 defined in 𝐾, the function ℰ𝑣 defined in 𝐵
by

(ℰ𝑣)(𝜃, 𝑡) = 𝑣(𝜃, e𝑡),

since 𝑟𝜕𝑟𝑣 = 𝜕𝑡(ℰ𝑣), the norm (4.6) is equivalent to

‖𝑣‖ =

⎛⎝∫︁ +∞

0

e2(−𝑚+𝛽+1)𝑡
𝑚∑︁
𝑗=0

‖𝜕𝑗𝑡 (ℰ𝑣)(𝑡, ·)‖2𝐻𝑚−𝑗(0,𝜔) d𝑡

⎞⎠1/2

,

hence
‖𝑣‖ = ‖e(−𝑚+𝛽+1)𝑡ℰ𝑣‖𝐻𝑚(𝐵) = ‖ℰ𝑣‖𝑊𝑚

𝛽−𝑚+1(𝐵).

This shows that there exists an isomorphism between the spaces 𝑉 𝑚𝛽 (𝐾) and 𝑊𝑚
𝛽−𝑚+1(𝐵), or in other words,

between 𝑊𝑚
𝛽 (𝐵) and 𝑉 𝑚𝛽+𝑚−1(𝐾).

We point out that in [25], the weighted spaces 𝑉 𝑚𝛽 were already used in the context of the regularization of
the Cauchy problem (1.1).

5. The case of a corner of mixed type

The regularity of solutions 𝑢𝜀 and 𝜆𝜀 at a corner of mixed type can no longer be analyzed separately. We use
the weighted Sobolev spaces introduced in the previous section. We first consider the quasi-reversibility problem
in the strip 𝐵. The strong equations corresponding to (1.7) in the strip are⎧⎪⎨⎪⎩

−∆𝑢𝜀 = ∆𝜆𝜀/𝜀 = 𝑓/(1 + 𝜀) in 𝐵

𝑢𝜀 = 0 and 𝜕𝜈𝑢𝜀 − 𝜕𝜈𝜆𝜀 = 0 on 𝜕𝐵0

𝜆𝜀 = 0 and 𝜀 𝜕𝜈𝑢𝜀 + 𝜕𝜈𝜆𝜀 = 0 on 𝜕𝐵𝜔.

(5.1)

For 𝛽 ∈ R, define the operator ℬ𝛽 : 𝒟(ℬ𝛽) → ℛ(ℬ𝛽) such that ℬ𝛽(𝑢𝜀, 𝜆𝜀) = (𝑓1, 𝑓2), with

(𝑓1, 𝑓2) = (−∆𝑢𝜀,−∆𝜆𝜀/𝜀)

𝒟(ℬ𝛽) = {(𝑢𝜀, 𝜆𝜀) ∈ 𝑊̊ 1
𝛽,0(𝐵) ∩𝑊 2

𝛽 (𝐵)× 𝑊̊ 1
𝛽,𝜔(𝐵) ∩𝑊 2

𝛽 (𝐵), (5.2)
𝜕𝜈𝑢𝜀 − 𝜕𝜈𝜆𝜀 = 0 on 𝜕𝐵0, 𝜀𝜕𝜈𝑢𝜀 + 𝜕𝜈𝜆𝜀 = 0 on 𝜕𝐵𝜔}

and ℛ(ℬ𝛽) = 𝑊 0
𝛽 (𝐵)×𝑊 0

𝛽 (𝐵).

This operator is associated with the following problem in the strip 𝐵:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−∆𝑢𝜀 = 𝑓1 in 𝐵
−∆𝜆𝜀 = 𝜀 𝑓2 in 𝐵
𝑢𝜀 = 0 on 𝜕𝐵0

𝜕𝜈𝑢𝜀 − 𝜕𝜈𝜆𝜀 = 0 on 𝜕𝐵0

𝜆𝜀 = 0 on 𝜕𝐵𝜔
𝜀 𝜕𝜈𝑢𝜀 + 𝜕𝜈𝜆𝜀 = 0 on 𝜕𝐵𝜔.

(5.3)
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Figure 3. Position of the 𝜆±𝑛 in the complex plane.

If we apply the Laplace transform to problem (5.3), the following symbol L𝜀(𝜆) : 𝒟(L𝜀) → ℛ(L𝜀) such that
L𝜀(𝜆)(𝜙𝜀, 𝜓𝜀) = (𝑔1, 𝑔2) naturally appears, with

(𝑔1, 𝑔2) = (−(𝜆2 + 𝑑2
𝜃)𝜙𝜀,−

1
𝜀

(𝜆2 + 𝑑2
𝜃)𝜓𝜀)

𝒟(L𝜀) = {(𝜙𝜀, 𝜓𝜀) ∈ 𝐻2(0, 𝜔)×𝐻2(0, 𝜔), 𝜙𝜀(0) = 0, 𝜓𝜀(𝜔) = 0,
𝑑𝜃𝜙𝜀(0)− 𝑑𝜃𝜓𝜀(0) = 0, 𝜀𝑑𝜃𝜙𝜀(𝜔) + 𝑑𝜃𝜓𝜀(𝜔) = 0},

and ℛ(L𝜀) = 𝐿2(0, 𝜔)× 𝐿2(0, 𝜔).

(5.4)

We will say that 𝜆 ∈ C is an eigenvalue of L𝜀 if Ker L𝜀(𝜆) ̸= {0}. We have the following lemma.

Lemma 5.1. The eigenvalues of the symbol L𝜀 are

𝜆±𝑛 =
1
𝜔

(︁𝜋
2

+ 𝑛𝜋 ± 𝑖 ln 𝛾𝜀
)︁
, 𝑛 ∈ Z, (5.5)

with

𝛾𝜀 =

√︂
1 +

1
𝜀

+

√︂
1
𝜀

(see Fig. 3). (5.6)

The corresponding (non normalized) eigenfunctions are given by

𝜙±𝑛 (𝜃) = cos(𝜆±𝑛𝜔) sin(𝜆±𝑛 𝜃), 𝜓±𝑛 (𝜃) = sin(𝜆±𝑛 (𝜃 − 𝜔)).

Proof. Let us find all non vanishing pairs (𝜙,𝜓) such that −(𝜆2 + 𝑑2
𝜃)𝜙 = 0 and −(𝜆2 + 𝑑2

𝜃)𝜓 = 0 in (0, 𝜔)
with 𝜙(0) = 0, 𝜓(𝜔) = 0, 𝑑𝜃𝜙(0) − 𝑑𝜃𝜓(0) = 0 and 𝜀𝑑𝜃𝜙(𝜔) + 𝑑𝜃𝜓(𝜔) = 0. It is readily seen that 𝜆 = 0 is not
an eigenvalue, so that we assume that 𝜆 ̸= 0 in the sequel. From the two equations in (0, 𝜔) and the two first
boundary conditions, we obtain that

𝜙(𝜃) = 𝐴 sin(𝜆𝜃), 𝜓(𝜃) = 𝐵 sin(𝜆(𝜃 − 𝜔)).

Then we use the two last boundary conditions, and we obtain (since 𝜆 ̸= 0)

𝐴−𝐵 cos(𝜆𝜔) = 0, 𝜀𝐴 cos(𝜆𝜔) +𝐵 = 0.

The complex number 𝜆 is an eigenvalue if and only if

1 + 𝜀 cos2(𝜆𝜔) = 0,
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that is if and only if cos(𝜆𝜔) = ±𝑖/
√
𝜀. Hence we deduce that we must have

𝑧2 + 2
±𝑖√
𝜀
𝑧 + 1 = 0 for 𝑧 := e𝑖𝜆𝜔.

The solutions to these two equations are 𝑧 = ±𝑖𝛾±𝜀 , with

𝛾±𝜀 =

√︂
1 +

1
𝜀
±
√︂

1
𝜀
·

It remains to find 𝜆 such that e𝑖𝜆𝜔 = ±𝑖𝛾±𝜀 . Writing 𝜆 = 𝑎+ 𝑖𝑏 with (𝑎, 𝑏) ∈ R2, since ±𝑖 = e𝑖𝜋(1∓1/2), we find

e−𝑏𝜔 = 𝛾±𝜀 , 𝑎𝜔 = 𝜋

(︂
1∓ 1

2

)︂
+ 2𝑛𝜋, 𝑛 ∈ Z.

This implies
𝑏𝜔 = − ln 𝛾±𝜀 , 𝑎𝜔 =

𝜋

2
+ 𝑛𝜋, 𝑛 ∈ Z,

which gives the result, in view of ln 𝛾−𝜀 = − ln 𝛾+
𝜀 (note that 𝛾+

𝜀 𝛾
−
𝜀 = 1). �

Remark 5.2. We notice that the symbol L𝜀 has complex eigenvalues and is not self-adjoint. This is a difference
with the symbols which are involved when considering the Laplace equation with Dirichlet or Neumann boundary
conditions.

Let us first consider the case 𝛽 = 0. Then we simply denote 𝑊̊ 1
0,0(𝐵) = 𝐻1

0,0(𝐵) and 𝑊̊ 1
0,𝜔(𝐵) = 𝐻1

0,𝜔(𝐵). We
have the following theorem.

Theorem 5.3. The operator ℬ0 defined in (5.2) is an isomorphism. Furthermore, there exists a constant 𝐶 > 0
such that for all (𝑓1, 𝑓2) ∈ ℛ(ℬ0), the solution (𝑢𝜀, 𝜆𝜀) ∈ 𝒟(ℬ0) to the problem (5.1) satisfies

√
𝜀‖𝑢𝜀‖𝐻2(𝐵) + ‖𝜆𝜀‖𝐻2(𝐵) ≤ 𝐶(‖𝑓1‖𝐿2(𝐵) +

√
𝜀‖𝑓2‖𝐿2(𝐵)).

Proof. We simply have

𝒟(ℬ0) = {(𝑢𝜀, 𝜆𝜀) ∈ 𝐻1
0,0(𝐵) ∩𝐻2(𝐵)×𝐻1

0,𝜔(𝐵) ∩𝐻2(𝐵),
𝜕𝜈𝑢𝜀 − 𝜕𝜈𝜆𝜀 = 0 on 𝜕𝐵0, 𝜀𝜕𝜈𝑢𝜀 + 𝜕𝜈𝜆𝜀 = 0 on 𝜕𝐵𝜔}

and ℛ(ℬ0) = 𝐿2(𝐵)× 𝐿2(𝐵).

By applying the Laplace transform to the problem (5.3) with respect to 𝑡 and by setting 𝜆 = 𝑖𝜏 with 𝜏 ∈ R, we
obtain ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(𝜏2 − 𝑑2
𝜃)̂︀𝑢𝜀 = ̂︀𝑓1 in (0, 𝜔)

(𝜏2 − 𝑑2
𝜃)̂︀𝜆𝜀 = 𝜀 ̂︀𝑓2 in (0, 𝜔)̂︀𝑢𝜀(0) = 0

𝑑𝜃̂︀𝑢𝜀(0)− 𝑑𝜃̂︀𝜆𝜀(0) = 0̂︀𝜆𝜀(𝜔) = 0
𝜀 𝑑𝜃̂︀𝑢𝜀(𝜔) + 𝑑𝜃̂︀𝜆𝜀(𝜔) = 0.

For fixed 𝜏 , this problem is equivalent to the weak formulation: find (̂︀𝑢𝜀, ̂︀𝜆𝜀) ∈ 𝐻1
0,0(0, 𝜔) ×𝐻1

0,𝜔(0, 𝜔), where
𝐻1

0,0(0, 𝜔) = {𝑣 ∈ 𝐻1(0, 𝜔), 𝑣(0) = 0} and 𝐻1
0,𝜔(0, 𝜔) = {𝜇 ∈ 𝐻1(0, 𝜔), 𝜇(𝜔) = 0}, such that for all (𝑣, 𝜇) ∈

𝐻1
0,0(0, 𝜔)×𝐻1

0,𝜔(0, 𝜔),⎧⎪⎪⎨⎪⎪⎩
𝜀

∫︁ 𝜔

0

(𝑑𝜃̂︀𝑢𝜀 𝑑𝜃𝑣 + 𝜏2̂︀𝑢𝜀𝑣) d𝜃 +
∫︁ 𝜔

0

(𝑑𝜃𝑣 𝑑𝜃̂︀𝜆𝜀 + 𝜏2𝑣 ̂︀𝜆𝜀) d𝜃 =
∫︁ 𝜔

0

𝜀( ̂︀𝑓1 + ̂︀𝑓2)𝑣 d𝜃∫︁ 𝜔

0

(𝑑𝜃̂︀𝑢𝜀 𝑑𝜃𝜇+ 𝜏2̂︀𝑢𝜀𝜇) d𝜃 −
∫︁ 𝜔

0

(𝑑𝜃̂︀𝜆𝜀 𝑑𝜃𝜇+ 𝜏2̂︀𝜆𝜀𝜇) d𝜃 =
∫︁ 𝜔

0

( ̂︀𝑓1 − 𝜀 ̂︀𝑓2)𝜇d𝜃.
(5.7)
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By the Lax–Milgram Lemma, the weak formulation (5.7) is well-posed and there exists some constant 𝐶 > 0
(independent of 𝜆 and of 𝜀) such that

√
𝜀(‖̂︀𝑢𝜀‖𝐻2(0,𝜔) + |𝜆|2‖̂︀𝑢𝜀‖𝐿2(0,𝜔)) + ‖̂︀𝜆𝜀‖𝐻2(0,𝜔) + |𝜆|2‖̂︀𝜆𝜀‖𝐿2(0,𝜔)

≤ 𝐶(‖ ̂︀𝑓1‖𝐿2(0,𝜔) +
√
𝜀‖ ̂︀𝑓2‖𝐿2(0,𝜔)).

(5.8)

Indeed, by setting 𝑣 = ̂︀𝑢𝜀 and 𝜇 = ̂︀𝜆𝜀 in (5.7), we obtain

𝜀(‖𝑑𝜃̂︀𝑢𝜀‖2𝐿2(0,𝜔) + |𝜆|2‖̂︀𝑢𝜀‖2𝐿2(0,𝜔)) + ‖𝑑𝜃̂︀𝜆𝜀‖2𝐿2(0,𝜔) + |𝜆|2‖̂︀𝜆𝜀‖2𝐿2(0,𝜔)

=
∫︁ 𝜔

0

𝜀( ̂︀𝑓1 + ̂︀𝑓2)̂︀𝑢𝜀 d𝜃 −
∫︁ 𝜔

0

( ̂︀𝑓1 − 𝜀 ̂︀𝑓2)̂︀𝜆𝜀 d𝜃

≤ (𝜀‖ ̂︀𝑓1 + ̂︀𝑓2‖2𝐿2(0,𝜔) + ‖ ̂︀𝑓1 − 𝜀 ̂︀𝑓2‖2𝐿2(0,𝜔))
1/2(𝜀‖̂︀𝑢𝜀‖2𝐿2(0,𝜔) + ‖̂︀𝜆𝜀‖2𝐿2(0,𝜔))

1/2

≤
√

1 + 𝜀 (‖ ̂︀𝑓1‖𝐿2(0,𝜔) +
√
𝜀‖ ̂︀𝑓2‖𝐿2(0,𝜔))(𝜀‖̂︀𝑢𝜀‖2𝐿2(0,𝜔) + ‖̂︀𝜆𝜀‖2𝐿2(0,𝜔)))

1/2.

By using the Poincaré inequality and assuming that 𝜀 ≤ 1 we obtain that

√
𝜀‖̂︀𝑢𝜀‖𝐻1(0,𝜔) + ‖̂︀𝜆𝜀‖𝐻1(0,𝜔) ≤ 𝐶(‖ ̂︀𝑓1‖𝐿2(0,𝜔) +

√
𝜀‖ ̂︀𝑓2‖𝐿2(0,𝜔))

and
|𝜆|2(

√
𝜀‖̂︀𝑢𝜀‖𝐿2(0,𝜔) + ‖̂︀𝜆𝜀‖𝐿2(0,𝜔)) ≤ 𝐶(‖ ̂︀𝑓1‖𝐿2(0,𝜔) +

√
𝜀‖ ̂︀𝑓2‖𝐿2(0,𝜔)),

where 𝐶 is independent of 𝜆 and 𝜀. Now, given that

𝑑2
𝜃̂︀𝑢𝜀 = |𝜆|2̂︀𝑢𝜀 − ̂︀𝑓1, 𝑑2

𝜃
̂︀𝜆𝜀 = |𝜆|2̂︀𝜆𝜀 − 𝜀 ̂︀𝑓2,

we deduce
√
𝜀‖𝑑2

𝜃̂︀𝑢𝜀‖𝐿2(0,𝜔) +‖𝑑2
𝜃
̂︀𝜆𝜀‖𝐿2(0,𝜔)

≤ |𝜆|2(
√
𝜀‖̂︀𝑢𝜀‖𝐿2(0,𝜔) + ‖̂︀𝜆𝜀‖𝐿2(0,𝜔)) + 𝐶(‖ ̂︀𝑓1‖𝐿2(0,𝜔) +

√
𝜀‖ ̂︀𝑓2‖𝐿2(0,𝜔))

≤ 𝐶(‖ ̂︀𝑓1‖𝐿2(0,𝜔) +
√
𝜀‖ ̂︀𝑓2‖𝐿2(0,𝜔)),

which implies (5.8). Finally, we have for all 𝜆 = 𝑖𝜏

√
𝜀‖̂︀𝑢𝜀(𝜆, ·)‖𝐻2(0,𝜔,𝜆) ≤ 𝐶(‖ ̂︀𝑓1‖𝐿2(0,𝜔) +

√
𝜀‖ ̂︀𝑓2‖𝐿2(0,𝜔))

and
‖̂︀𝜆𝜀(𝜆, ·)‖𝐻2(0,𝜔,𝜆) ≤ 𝐶(‖ ̂︀𝑓1‖𝐿2(0,𝜔) +

√
𝜀‖ ̂︀𝑓2‖𝐿2(0,𝜔)),

which by integration on ℓ0 and by definition of the norms ‖ · ‖𝛽,𝑚 (see (4.3)) implies

√
𝜀‖𝑢𝜀‖0,2 + ‖𝜆𝜀‖0,2 ≤ 𝐶(‖𝑓1‖0,0 +

√
𝜀‖𝑓2‖0,0).

This gives the estimate

√
𝜀‖𝑢𝜀‖𝐻2(𝐵) + ‖𝜆𝜀‖𝐻2(𝐵) ≤ 𝐶(‖𝑓1‖𝐿2(𝐵) +

√
𝜀‖𝑓2‖𝐿2(𝐵))

which proves that ℬ0 is an isomorphism. �

Now we wish to extend the result of Theorem 5.3 to any 𝛽 /∈ {(𝜋/2 + 𝑛𝜋)/𝜔, 𝑛 ∈ Z}.
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Theorem 5.4. For any 𝛽 /∈ {(𝜋/2 + 𝑛𝜋)/𝜔, 𝑛 ∈ Z}, the operator ℬ𝛽 is an isomorphism. Furthermore, there
exists a constant 𝐶 > 0 independent of 𝜀 such that for all (𝑓1, 𝑓2) ∈ ℛ(ℬ𝛽), the solution (𝑢𝜀, 𝜆𝜀) ∈ 𝒟(ℬ𝛽) to the
problem (5.3) (which depends on 𝛽) satisfies

√
𝜀‖𝑢𝜀‖𝛽,2 + ‖𝜆𝜀‖𝛽,2 ≤ 𝐶 (‖𝑓1‖𝛽,0 +

√
𝜀‖𝑓2‖𝛽,0). (5.9)

Proof. For (𝑓1, 𝑓2) ∈ 𝐿2(0, 𝜔)×𝐿2(0, 𝜔), we consider the problem of finding the functions (𝑢̂𝜀, 𝜆̂𝜀) ∈ 𝐻1
0, 0(0, 𝜔)×

𝐻1
0, 𝜔(0, 𝜔) such that ⎧⎪⎪⎪⎨⎪⎪⎪⎩

−𝜀 (𝑑2
𝜃 + 𝜆2)𝑢̂𝜀 = 𝜀 𝑓1 in (0, 𝜔)

−(𝑑2
𝜃 + 𝜆2)𝜆̂𝜀 = 𝜀 𝑓2 in (0, 𝜔)

𝑑𝜃𝑢̂𝜀(0)− 𝑑𝜃𝜆̂𝜀(0) = 0
𝜀 𝑑𝜃𝑢̂𝜀(𝜔) + 𝑑𝜃𝜆̂𝜀(𝜔) = 0.

(5.10)

We wish to prove that there is a constant 𝐶 > 0 such that the solution of problem (5.10) satisfies
√
𝜀(‖𝑢̂𝜀‖𝐻2(0,𝜔) + |𝜆|2‖𝑢̂𝜀‖𝐿2(0,𝜔)) + ‖𝜆̂𝜀‖𝐻2(0,𝜔) + |𝜆|2‖𝜆̂𝜀‖𝐿2(0,𝜔)

≤ 𝐶 (‖𝑓1‖𝐿2(0,𝜔) +
√
𝜀‖𝑓2‖𝐿2(0,𝜔))

(5.11)

for all 𝜀 > 0, 𝜆 ∈ ℓ𝛽 = {𝛾 ∈ C, Re 𝛾 = 𝛽}. Note that 𝐶 depends on 𝛽 but not on 𝜀, 𝜆 ∈ ℓ𝛽 . According to
the analytic Fredholm theorem, we know that problem (5.10) admits a unique solution if and only if the only
solution for (𝑓1, 𝑓2) = (0, 0) is (𝑢̂𝜀, 𝜆̂𝜀) = (0, 0), that is if and only if 𝜆 is not an eigenvalue of L𝜀. Lemma 5.1
guarantees that for 𝛽 /∈ {(𝜋/2 + 𝑛𝜋)/𝜔, 𝑛 ∈ Z}, this is indeed the case for all 𝜀 > 0, 𝜆 ∈ ℓ𝛽 . Estimate (5.11)
has already been established for 𝛽 = 0. Now we assume that 𝛽 ̸= 0. In order to show (5.11), we work with the
decomposition (𝑢̂𝜀, 𝜆̂𝜀) = (𝑢0, 𝜆0) + (𝑢♯, 𝜆♯), where 𝑢0 ∈ 𝐻1

0, 0(0, 𝜔) and 𝜆0 ∈ 𝐻1
0, 𝜔(0, 𝜔) are the functions which

solve {︂
−(𝑑2

𝜃 + 𝜆2)𝑢0 = 𝑓1 in (0, 𝜔)
𝑑𝜃𝑢0(𝜔) = 0

and
{︂
−(𝑑2

𝜃 + 𝜆2)𝜆0 = 𝜀 𝑓2 in (0, 𝜔)
𝑑𝜃𝜆0(0) = 0.

For these classical problems, by using Proposition A.1, there is a constant 𝐶 > 0 such that

‖𝑑2
𝜃𝑢0‖𝐿2(0,𝜔) + |𝜆|2‖𝑢0‖𝐿2(0,𝜔) ≤ 𝐶‖𝑓1‖𝐿2(0,𝜔) (5.12)

and
‖𝑑2
𝜃𝜆0‖𝐿2(0,𝜔) + |𝜆|2‖𝜆0‖𝐿2(0,𝜔) ≤ 𝐶𝜀‖𝑓2‖𝐿2(0,𝜔) (5.13)

for all 𝜆 ∈ ℓ𝛽 when 𝛽 /∈ {(𝜋/2 +𝑛𝜋)/𝜔, 𝑛 ∈ Z}. Here and in what follows, the constant 𝐶 > 0 may change from
a line to another but is independent of 𝜀 > 0, 𝜆 ∈ ℓ𝛽 := {𝛾 ∈ C, Re 𝛾 = 𝛽}.
Now, we see that (𝑢♯, 𝜆♯) ∈ 𝐻1

0, 0(0, 𝜔)×𝐻1
0, 𝜔(0, 𝜔) satisfies⎧⎪⎪⎪⎨⎪⎪⎪⎩

(𝑑2
𝜃 + 𝜆2)𝑢♯ = 0 in (0, 𝜔)

(𝑑2
𝜃 + 𝜆2)𝜆♯ = 0 in (0, 𝜔)

𝑑𝜃𝑢♯(0)− 𝑑𝜃𝜆♯(0) = −𝑑𝜃𝑢0(0)
𝜀 𝑑𝜃𝑢♯(𝜔) + 𝑑𝜃𝜆♯(𝜔) = −𝑑𝜃𝜆0(𝜔).

(5.14)

Looking for 𝑢♯, 𝜆♯ of the form 𝑢♯(𝜃) = 𝐴 sin(𝜆𝜃), 𝜆♯(𝜃) = 𝐵 sin(𝜆(𝜃−𝜔)), we find that 𝐴 and 𝐵 must solve the
problem (︂

𝜆 −𝜆 cos(𝜆𝜔)
𝜀 𝜆 cos(𝜆𝜔) 𝜆

)︂(︂
𝐴
𝐵

)︂
=
(︂
−𝑑𝜃𝑢0(0)
−𝑑𝜃𝜆0(𝜔)

)︂
.

We deduce that

𝑢♯(𝜃) = −
𝑑𝜃𝑢0(0) + cos(𝜆𝜔)𝑑𝜃𝜆0(𝜔)

𝜆(1 + 𝜀 cos2(𝜆𝜔))
sin(𝜆𝜃)
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and

𝜆♯(𝜃) =
𝜀 cos(𝜆𝜔)𝑑𝜃𝑢0(0)− 𝑑𝜃𝜆0(𝜔)

𝜆(1 + 𝜀 cos2(𝜆𝜔))
sin(𝜆(𝜃 − 𝜔)).

From identity (B.1), we have | sin(𝜆𝜃)|2 = (cosh(2𝜏𝜃)− cos(2𝛽𝜃))/2, for 𝜆 = 𝛽 + 𝑖𝜏 . We can write

‖𝑢♯‖2𝐿2(𝐼) =
⃒⃒⃒⃒
𝑑𝜃𝑢0(0) + cos(𝜆𝜔)𝑑𝜃𝜆0(𝜔)

2𝜆(1 + 𝜀 cos2(𝜆𝜔))

⃒⃒⃒⃒2
(𝜏−1 sinh(2𝜏𝜔)− 𝛽−1 sin(2𝛽𝜔)). (5.15)

Since 𝛽 ̸= 0, one can verify that there is 𝐶 > 0 such that, for all 𝜏 ∈ R, we have

𝛽−1 sin(2𝛽𝜔) = |𝛽|−1 sin(2|𝛽|𝜔) ≤ 2𝜔 ≤ |𝜏 |−1 sinh(2|𝜏 |𝜔) = 𝜏−1 sinh(2𝜏𝜔) ≤ 𝐶 e2|𝜏 |𝜔/|𝜆|. (5.16)

Using (5.16) in (5.15), we obtain

|𝜆|4‖𝑢♯‖2𝐿2(𝐼) ≤ 𝐶 |𝜆|
(︂ |𝑑𝜃𝑢0(0)|2

|1 + 𝜀 cos2(𝜆𝜔)|2
+
| cos(𝜆𝜔)𝑑𝜃𝜆0(𝜔)|2

|1 + 𝜀 cos2(𝜆𝜔)|2

)︂
e2|𝜏 |𝜔. (5.17)

Now we explain how to obtain estimates for |𝑑𝜃𝑢0(0)| and | cos(𝜆𝜔)𝑑𝜃𝜆0(𝜔)|.
⋆ First we multiply the equation −(𝑑2

𝜃 +𝜆2)𝑢0 = 𝑓1 in (0, 𝜔) by cos(𝜆(𝜃−𝜔)) and integrate by parts. This gives
us

−𝑑𝜃𝑢0(0) cos(𝜆𝜔) =
∫︁ 𝜔

0

𝑑2
𝜃𝑢0 cos(𝜆(𝜃 − 𝜔))− 𝑢0𝑑

2
𝜃(cos(𝜆(𝜃 − 𝜔))) d𝜃 = −

∫︁ 𝜔

0

𝑓1 cos(𝜆(𝜃 − 𝜔)) d𝜃

and leads to
| cos(𝜆𝜔)𝑑𝜃𝑢0(0)|2 ≤ ‖𝑓1‖2𝐿2(0,𝜔)‖ cos(𝜆(𝜃 − 𝜔))‖2𝐿2(0,𝜔). (5.18)

An analogous computation to what precedes (5.15), based on identity (B.2), yields

‖ cos(𝜆(𝜃 − 𝜔))‖2𝐿2(0,𝜔) = (𝜏−1 sinh(2𝜏𝜔) + 𝛽−1 sin(2𝛽𝜔))/4.

Using the latter result as well as (5.16), we get

|𝑑𝜃𝑢0(0)|2 ≤ 𝐶 ‖𝑓1‖2𝐿2(𝐼) e2|𝜏 |𝜔/(|𝜆| | cos(𝜆𝜔)|2). (5.19)

From identity (B.2) and by using the fact that 𝛽 /∈ {(𝜋/2 + 𝑛𝜋)/𝜔, 𝑛 ∈ Z}, one can check that there is a
constant 𝐶 > 0 such that e2|𝜏 |𝜔/| cos(𝜆𝜔)|2 ≤ 𝐶 for all 𝜏 ∈ R. We deduce from (5.19) that

|𝑑𝜃𝑢0(0)|2 ≤ 𝐶 ‖𝑓1‖2𝐿2(0,𝜔)/|𝜆|. (5.20)

⋆ Now, we provide an estimate for | cos(𝜆𝜔)𝑑𝜃𝜆0(𝜔)|. Multiplying the equation −(𝑑2
𝜃 + 𝜆2)𝜆0 = 𝜀 𝑓2 in (0, 𝜔) by

cos(𝜆𝜃) and integrating by parts, we find

𝑑𝜃𝜆0(𝜔) cos(𝜆𝜔) =
∫︁ 𝜔

0

𝑑2
𝜃𝜆0 cos(𝜆𝜃)− 𝜆0𝑑

2
𝜃(cos(𝜆𝜃)) d𝜃 = −𝜀

∫︁ 𝜔

0

𝑓2 cos(𝜆𝜃) d𝜃.

Working as above, this allows us to write

|𝑑𝜃𝜆0(𝜔) cos(𝜆𝜔)|2 ≤ 𝐶 𝜀2 ‖𝑓2‖2𝐿2(0,𝜔)e
2|𝜏 |𝜔/|𝜆|. (5.21)

In Lemmas B.1 and B.2, we get the following estimates

e2|𝜏 |𝜔

|1 + 𝜀 cos2(𝜆𝜔)|2
≤ 𝐶/𝜀,

𝜀2e4|𝜏 |𝜔

|1 + 𝜀 cos2(𝜆𝜔)|2
≤ 𝐶, (5.22)
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where again 𝐶 > 0 is independent of 𝜀 > 0, 𝜆 = 𝛽 + 𝑖𝜏 ∈ ℓ𝛽 . Therefore, inserting (5.19) as well as (5.21) in
(5.17) and using (5.22), we obtain

√
𝜀|𝜆|2‖𝑢♯‖𝐿2(0,𝜔) ≤ 𝐶 (‖𝑓1‖𝐿2(0,𝜔) +

√
𝜀‖𝑓2‖𝐿2(0,𝜔)). Since ‖𝑑2

𝜃𝑢♯‖𝐿2(0,𝜔) =
|𝜆|2‖𝑢♯‖𝐿2(0,𝜔), we infer that

√
𝜀(‖𝑢♯‖𝐻2(0,𝜔) + |𝜆|2‖𝑢♯‖𝐿2(0,𝜔)) ≤ 𝐶 (‖𝑓1‖𝐿2(0,𝜔) +

√
𝜀‖𝑓2‖𝐿2(0,𝜔)). (5.23)

Now, let us derive a similar estimate for 𝜆♯. From the equation before (5.15), we have

‖𝜆♯‖2𝐿2(0,𝜔) =
⃒⃒⃒⃒
𝜀 cos(𝜆𝜔)𝑑𝜃𝑢0(0)− 𝑑𝜃𝜆0(𝜔)

4𝜆(1 + 𝜀 cos2(𝜆𝜔))

⃒⃒⃒⃒2
(𝜏−1 sinh(2𝜏𝜔)− 𝛽−1 sin(2𝛽𝜔)). (5.24)

We infer that

|𝜆|4‖𝜆♯‖2𝐿2(0,𝜔) ≤ 𝐶 |𝜆|
(︂
𝜀2| cos(𝜆𝜔)𝑑𝜃𝑢0(0)|2

|1 + 𝜀 cos2(𝜆𝜔)|2
+

|𝑑𝜃𝜆0(𝜔)|2

|1 + 𝜀 cos2(𝜆𝜔)|2

)︂
e2|𝜏 |𝜔.

Working as in (5.19) and (5.21), we find

| cos(𝜆𝜔)𝑑𝜃𝑢0(0)|2 ≤ 𝐶 ‖𝑓1‖2𝐿2(0,𝜔) e2|𝜏 |𝜔/|𝜆|

and
|𝑑𝜃𝜆0(𝜔)|2 = 𝐶 𝜀2 ‖𝑓2‖2𝐿2(0,𝜔)e

2|𝜏 |𝜔/(|𝜆| | cos(𝜆𝜔)|2) ≤ 𝐶 𝜀2 ‖𝑓2‖2𝐿2(0,𝜔)/|𝜆|.

By using again Lemmas B.1 and B.2, we deduce that |𝜆|2‖𝜆♯‖𝐿2(0,𝜔) ≤ 𝐶 (‖𝑓1‖𝐿2(0,𝜔) +
√
𝜀‖𝑓2‖𝐿2(0,𝜔)). Since

‖𝑑2
𝜃𝜆♯‖𝐿2(0,𝜔) = |𝜆|2‖𝜆♯‖𝐿2(0,𝜔), we infer that

‖𝜆♯‖𝐻2(0,𝜔) + |𝜆|2‖𝜆♯‖𝐿2(0,𝜔) ≤ 𝐶 (‖𝑓1‖𝐿2(0,𝜔) +
√
𝜀‖𝑓2‖𝐿2(0,𝜔)). (5.25)

From the decomposition (𝑢̂𝜀, 𝜆̂𝜀) = (𝑢0, 𝜆0)+(𝑢♯, 𝜆♯), using estimates (5.12), (5.13), (5.23) and (5.25), we finally
obtain

√
𝜀(‖𝑢̂𝜀‖𝐻2(0,𝜔) + |𝜆|2‖𝑢̂𝜀‖𝐿2(0,𝜔)) + ‖𝜆̂𝜀‖𝐻2(0,𝜔) + |𝜆|2‖𝜆̂𝜀‖𝐿2(0,𝜔) ≤ 𝐶 (‖𝑓1‖𝐿2(0,𝜔) +

√
𝜀‖𝑓2‖𝐿2(0,𝜔)).

It remains to integrate the above estimate on ℓ−𝛽 following the definition of the norm ‖ · ‖𝛽,0 given
by (4.3). �

We now consider a problem in the infinite cone 𝐾 of vertex 𝑆 and angle 𝜔 which is associated with the problem
(5.3) in the strip via the change of variable 𝑡 = ln 𝑟. For 𝛽 ∈ R, we define the operator 𝒞𝛽 : 𝒟(𝒞𝛽) −→ ℛ(𝒞𝛽)
such that (𝑓1, 𝑓2) = 𝒞𝛽(𝑢𝜀, 𝜆𝜀) with

(𝑓1, 𝑓2) = (−∆𝑢𝜀,−∆𝜆𝜀/𝜀) (5.26)

and 𝒟(𝒞𝛽) = {(𝑢𝜀, 𝜆𝜀) ∈ 𝑉 1
𝛽−1,0(𝐾) ∩ 𝑉 2

𝛽 (𝐾)× 𝑉 1
𝛽−1,𝜔(𝐾) ∩ 𝑉 2

𝛽 (𝐾),
𝜕𝜈𝑢𝜀 − 𝜕𝜈𝜆𝜀 = 0 on 𝜕𝐾0, 𝜀𝜕𝜈𝑢𝜀 + 𝜕𝜈𝜆𝜀 = 0 on 𝜕𝐾𝜔}

ℛ(𝒞𝛽) = 𝑉 0
𝛽 (𝐾)× 𝑉 0

𝛽 (𝐾).

We have the following corollary to Theorem 5.4.

Corollary 5.5. If 𝛽 − 1 /∈ {(𝜋/2 + 𝑛𝜋)/𝜔, 𝑛 ∈ Z}, then the operator 𝒞𝛽 is an isomorphism. Moreover, there
exists a constant 𝐶 > 0 such that for all (𝑓1, 𝑓2) ∈ ℛ(𝒞𝛽), the solution (𝑢𝜀, 𝜆𝜀) ∈ 𝒟(𝒞𝛽) to problem (5.26)
satisfies √

𝜀‖𝑢𝜀‖𝑉 2
𝛽 (𝐾) + ‖𝜆𝜀‖𝑉 2

𝛽 (𝐾) ≤ 𝐶 (‖𝑓1‖𝑉 0
𝛽 (𝐾) +

√
𝜀‖𝑓2‖𝑉 0

𝛽 (𝐾)). (5.27)
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Proof. The equation −∆𝑢 = 𝑓 in 𝐾 writes in polar coordinates

−((𝑟𝜕𝑟)2 + 𝜕2
𝜃 )𝑢 = 𝑟2𝑓,

which by using the operator ℰ implies that

𝑟2𝒞𝛽 = ℰ−1ℬ𝛽−1ℰ .

Indeed the operator ℰ maps 𝑉 2
𝛽 (𝐾) to the space 𝑊 2

𝛽−2+1(𝐵) = 𝑊 2
𝛽−1(𝐵), the space 𝑉 1

𝛽−1,0(𝐾) to the space
𝑊̊ 1
𝛽−1,0(𝐵) and the space 𝑉 1

𝛽−1,𝜔(𝐾) to the space 𝑊̊ 1
𝛽−1,𝜔(𝐵), which implies that ℰ is an isomorphism from

𝒟(𝒞𝛽) to 𝒟(ℬ𝛽−1). In addition, the operator ℬ𝛽−1 is an isomorphism if 𝛽 − 1 /∈ {(𝜋/2 + 𝑛𝜋)/𝜔, 𝑛 ∈ Z}. Lastly,
the operator ℰ−1 maps the space 𝑊 0

𝛽−1(𝐵) to the space 𝑉 0
𝛽−2(𝐾), which implies that ℰ−1 is an isomorphism

from ℛ(ℬ𝛽−1) to ℛ(𝒞𝛽−2). It remains to remark that the operator 𝑓 ↦→ 𝑟−2𝑓 maps the space 𝑉 0
𝛽−2(𝐾) to the

space 𝑉 0
𝛽 (𝐾), and is hence an isomorphism from ℛ(𝒞𝛽−2) to ℛ(𝒞𝛽). This completes the proof of the first part.

The estimate relies again on the identity 𝑟2𝒞𝛽 = ℰ−1ℬ𝛽−1ℰ , on the fact that ℰ is an isomorphism from 𝑉 2
𝛽 (𝐾)

to 𝑊 2
𝛽−1(𝐵), on the estimate (5.9) with 𝛽 replaced by 𝛽 − 1 and of the fact that 𝑟−2ℰ−1 is an isomorphism

from 𝑊 0
𝛽−1(𝐵) to 𝑉 0

𝛽 (𝐾). �

In order to link the solutions of problem (5.26) obtained for different 𝛽, we need to compute the adjoint of the
symbol L𝜀 defined in (5.4) and to specify its eigenvalues and eigenfunctions.

Lemma 5.6. The adjoint of the symbol L𝜀(𝜆) is the symbol L *
𝜀 (𝜆) : 𝒟(L *

𝜀 ) → ℛ(L *
𝜀 ) with

L *
𝜀 (𝜆)(𝑔𝜀, ℎ𝜀) = (−(𝜆

2
+ 𝑑2

𝜃)𝑔𝜀,−
1
𝜀

(𝜆
2

+ 𝑑2
𝜃)ℎ𝜀)

𝒟(L *
𝜀 ) = {(𝑔𝜀, ℎ𝜀) ∈ 𝐻2(0, 𝜔)×𝐻2(0, 𝜔), 𝑑𝜃𝑔𝜀(𝜔) = 0, 𝑑𝜃ℎ𝜀(0) = 0,

𝑔𝜀(𝜔)− ℎ𝜀(𝜔) = 0, 𝜀𝑔𝜀(0) + ℎ𝜀(0) = 0},

and ℛ(L *
𝜀 ) = 𝐿2(0, 𝜔)× 𝐿2(0, 𝜔).

Proof. For (𝜙,𝜓) ∈ 𝒟(L𝜀) and (𝑔, ℎ) ∈ 𝒟(L *
𝜀 ), we have by an integration by parts formula∫︁ 𝜔

0

−(𝜆2 + 𝑑2
𝜃)𝜙𝑔 d𝜃 +

∫︁ 𝜔

0

−1
𝜀

(𝜆2 + 𝑑2
𝜃)𝜓 ℎd𝜃

=
∫︁ 𝜔

0

𝜙 −(𝜆
2

+ 𝑑2
𝜃)𝑔 d𝜃 +

∫︁ 𝜔

0

𝜓 −1
𝜀

(𝜆
2

+ 𝑑2
𝜃)ℎd𝜃

− 𝑑𝜃𝜙(𝜔)𝑔(𝜔) + 𝑑𝜃𝜙(0)𝑔(0) + 𝜙(𝜔)𝑑𝜃𝑔(𝜔)− 𝜙(0)𝑑𝜃𝑔(0)

− 1
𝜀
𝑑𝜃𝜓(𝜔)ℎ(𝜔) +

1
𝜀
𝑑𝜃𝜓(0)ℎ(0) +

1
𝜀
𝜓(𝜔)𝑑𝜃ℎ(𝜔)− 1

𝜀
𝜓(0)𝑑𝜃ℎ(0).

It is readily seen that all the boundary terms vanish due to the boundary conditions satisfied by (𝜙,𝜓) and
(𝑔, ℎ) at 𝜃 = 0 and 𝜃 = 𝜔. This completes the proof. �

Lemma 5.7. The eigenvalues of the symbol L *
𝜀 are the same as that of L𝜀 and are given by (5.5) and (5.6).

The corresponding (non normalized) eigenfunctions are given by

𝑔±𝑛 (𝜃) = cos(𝜆±𝑛𝜔) cos(𝜆±𝑛 (𝜃 − 𝜔)), ℎ±𝑛 (𝜃) = cos(𝜆±𝑛 𝜃).

The proof of Lemma 5.7 is the same as the proof of Lemma 5.1 and is therefore not given. Lastly, we will need
a biorthogonality relationship between the eigenfunctions of L𝜀 and that of L *

𝜀 .
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Lemma 5.8. Assume that 𝑗, 𝑘 ∈ Z and 𝜈, 𝜇 = ± satisfy either 𝑗 + 𝑘 ̸= −1 or 𝜇 + 𝜈 ̸= 0. The eigenfunctions
(𝜙±𝑛 , 𝜓

±
𝑛 ) of L𝜀 and the eigenfunctions (𝑔±𝑛 , ℎ

±
𝑛 ) of L *

𝜀 satisfy∫︁ 𝜔

0

𝜙𝜈𝑘𝑔
𝜇
𝑗 d𝜃 +

1
𝜀

∫︁ 𝜔

0

𝜓𝜈𝑘ℎ
𝜇
𝑗 d𝜃 = 𝛿𝜈𝜇𝛿𝑘𝑗𝑑𝑘,

with

𝑑𝑘 = (−1)𝑘+1𝜔

𝜀

√︂
1 +

1
𝜀
· (5.28)

Proof. On the one hand, the assumption 𝑗+𝑘 ̸= −1 or 𝜇+𝜈 ̸= 0 is equivalent to 𝜆𝜇𝑗 ̸= −𝜆𝜈𝑘. Let us first assume
that 𝑘 ̸= 𝑗 and 𝜈 = 𝜇 = +, which implies on the other hand that 𝜆𝜇𝑗 ̸= 𝜆𝜈𝑘. Skipping the sign +, we have

−𝜆2
𝑘

∫︁ 𝜔

0

(︂
𝜙𝑘𝑔𝑗 +

1
𝜀
𝜓𝑘ℎ𝑗

)︂
d𝜃 =

∫︁ 𝜔

0

(︂
∆𝜙𝑘𝑔𝑗 +

1
𝜀

∆𝜓𝑘ℎ𝑗

)︂
d𝜃

=
∫︁ 𝜔

0

(︂
𝜙𝑘∆𝑔𝑗 +

1
𝜀
𝜓𝑘∆ℎ𝑗

)︂
d𝜃 = −𝜆2

𝑗

∫︁ 𝜔

0

(︂
𝜙𝑘𝑔𝑗 +

1
𝜀
𝜓𝑘ℎ𝑗

)︂
d𝜃.

Since 𝜆2
𝑗 ̸= 𝜆2

𝑘, this implies that for 𝑗 ̸= 𝑘 and 𝜈 = 𝜇 = +, we have∫︁ 𝜔

0

(︂
𝜙𝜈𝑘𝑔

𝜇
𝑗 +

1
𝜀
𝜓𝜈𝑘ℎ

𝜇
𝑗

)︂
d𝜃 = 0.

We clearly obtain the same result each time that (𝑘, 𝜈) ̸= (𝑗, 𝜇). Let us now assume that 𝑘 = 𝑗 and 𝜈 = 𝜇. We
have ∫︁ 𝜔

0

𝜙𝜈𝑘𝑔
𝜈
𝑘 d𝜃 = cos2(𝜆𝜈𝑘𝜔)

∫︁ 𝜔

0

sin(𝜆𝜈𝑘𝜃) cos(𝜆𝜈𝑘(𝜃 − 𝜔)) d𝜃

and ∫︁ 𝜔

0

𝜓𝜈𝑘ℎ
𝜈
𝑘 d𝜃 =

∫︁ 𝜔

0

sin(𝜆𝜈𝑘(𝜃 − 𝜔)) cos(𝜆𝜈𝑘𝜃) d𝜃 = −
∫︁ 𝜔

0

sin(𝜆𝜈𝑘𝜃) cos(𝜆𝜈𝑘(𝜃 − 𝜔)) d𝜃.

Given that 1 + 𝜀 cos2(𝜆𝜈𝑘𝜔) = 0, we obtain∫︁ 𝜔

0

𝜙𝜈𝑘𝑔
𝜈
𝑘 d𝜃 +

1
𝜀

∫︁ 𝜔

0

𝜓𝜈𝑘ℎ
𝜈
𝑘d𝜃 = −2

𝜀

∫︁ 𝜔

0

sin(𝜆𝜈𝑘𝜃) cos(𝜆𝜈𝑘(𝜃 − 𝜔)) d𝜃. (5.29)

But a direct calculus gives∫︁ 𝜔

0

sin(𝜆𝜈𝑘𝜃) cos(𝜆𝜈𝑘(𝜃 − 𝜔)) d𝜃 =
1
2

∫︁ 𝜔

0

sin(𝜆𝜈𝑘(2𝜃 − 𝜔)) d𝜃 +
1
2

∫︁ 𝜔

0

sin(𝜆𝜈𝑘𝜔) d𝜃

=
1
2
𝜔 sin(𝜆𝜈𝑘𝜔) =

1
2
𝜔 sin

(︁𝜋
2

+ 𝑘𝜋 + 𝑖𝜈 ln 𝛾𝜀
)︁

=
(−1)𝑘

2
𝜔 cos(𝑖𝜈 ln 𝛾𝜀) =

(−1)𝑘

2
𝜔 cosh(ln 𝛾𝜀).

(5.30)

Since 𝛾𝜀 =
√︀

1 + 1/𝜀+
√︀

1/𝜀, we find

cosh(ln 𝛾𝜀) =
1
2

(︂
𝛾𝜀 +

1
𝛾𝜀

)︂
=

√︂
1 +

1
𝜀
· (5.31)

Using (5.31) and (5.30) in (5.29), we get the desired result. �

In the next theorem, we compare two solutions of problem (5.3) associated with two different values of 𝛽.
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Theorem 5.9. Assume that 𝛽1 < 𝛽2 are two real numbers such that 𝛽𝑗 /∈ {(𝜋/2 + 𝑛𝜋)/𝜔, 𝑛 ∈ Z}, 𝑗 =
1, 2. Let us denote by 𝜆𝜈1 , 𝜆

𝜈
2 , . . . , 𝜆

𝜈
𝑁 , with 𝜈 = ±, the eigenvalues of L𝜀 in the strip −𝛽2 < Re𝜆 < −𝛽1.

For (𝑓1, 𝑓2) ∈ ℛ(ℬ𝛽1) ∩ ℛ(ℬ𝛽2), the solutions (𝑢𝛽1 , 𝜆𝛽1) ∈ 𝒟(ℬ𝛽1) and (𝑢𝛽2 , 𝜆𝛽2) ∈ 𝒟(ℬ𝛽2) to the problems
ℬ𝛽1(𝑢𝛽1 , 𝜆𝛽1) = (𝑓1, 𝑓2) and ℬ𝛽2(𝑢𝛽2 , 𝜆𝛽2) = (𝑓1, 𝑓2) satisfy the relationship

(𝑢𝛽2 , 𝜆𝛽2) = (𝑢𝛽1 , 𝜆𝛽1) +
∑︁
𝜈∈{±}

𝑁∑︁
𝑘=1

𝑐𝜈𝑘e𝜆
𝜈
𝑘𝑡(𝜙𝜈𝑘, 𝜓

𝜈
𝑘), (5.32)

where (𝜙𝜈𝑘, 𝜓
𝜈
𝑘) is the eigenvector of L𝜀 associated with the eigenvalue 𝜆𝜈𝑘 (see Lem. 5.1) and

𝑐𝜈𝑘 =
1

2𝜆𝜈𝑘𝑑𝑘

(︁
(𝑓1, e−𝜆

𝜈
𝑘𝑡𝑔𝜈𝑘)𝐿2(𝐵) + (𝑓2, e−𝜆

𝜈
𝑘𝑡ℎ𝜈𝑘)𝐿2(𝐵)

)︁
. (5.33)

Here (𝑔𝜈𝑘 , ℎ
𝜈
𝑘) stand for the eigenvector of L *

𝜀 associated with the eigenvalue 𝜆𝜈𝑘 (see Lem. 5.7) and 𝑑𝑘 is given
by (5.28).

Proof. The first part of the theorem is obtained by using the residue theorem as in the proof of Theorem 5.1.1
from [29]. Now we establish (5.33). Let us introduce a cut-off function 𝜉 ∈ R such that 𝜉(𝑡) = 0 for 𝑡 ≤ 𝑡1 and
𝜉(𝑡) = 1 for 𝑡 ≥ 𝑡2, with 𝑡1 < 𝑡2. From (5.32) and using the short notation ℬ = (−∆,−∆/𝜀), we have

−ℬ(𝜉(𝑢𝛽2 − 𝑢𝛽1), 𝜉(𝜆𝛽2 − 𝜆𝛽1)) =
∑︁
𝜈∈{±}

𝑁∑︁
𝑘=1

𝑐𝜈𝑘

(︁
∆(𝜉(e𝜆

𝜈
𝑘𝑡𝜙𝜈𝑘)) +

1
𝜀

∆(𝜉(e𝜆
𝜈
𝑘𝑡𝜓𝜈𝑘))

)︁
.

We observe that ∆(𝜉(e𝜆
𝜈
𝑘𝑡𝜙𝜈𝑘)) and ∆(𝜉(e𝜆

𝜈
𝑘𝑡𝜙𝜈𝑘)) are non vanishing only on [𝑡1, 𝑡2] × [0, 𝜔], which implies that

for 𝑗 = 1, . . . , 𝑁 and 𝜇 = ±,

−
(︁
ℬ(𝜉(𝑢𝛽2 − 𝑢𝛽1), 𝜉(𝜆𝛽2 − 𝜆𝛽1)), (e−𝜆

𝜇
𝑗 𝑡𝑔𝑗 , e−𝜆

𝜇
𝑗 𝑡ℎ𝑗)

)︁
𝐿2(𝐵)×𝐿2(𝐵)

=
∑︁
𝜈∈{±}

𝑁∑︁
𝑘=1

𝑐𝜈𝑘

(︁
∆(𝜉(e𝜆

𝜈
𝑘𝑡𝜙𝜈𝑘)), e−𝜆

𝜇
𝑗 𝑡𝑔𝑗

)︁
𝐿2((𝑡1,𝑡2)×(0,𝜔))

+
1
𝜀

∑︁
𝜈∈{±}

𝑁∑︁
𝑘=1

𝑐𝜈𝑘

(︁
∆(𝜉(e𝜆

𝜈
𝑘𝑡𝜓𝜈𝑘)), e−𝜆

𝜇
𝑗 𝑡ℎ𝑗

)︁
𝐿2((𝑡1,𝑡2)×(0,𝜔))

.

By an integration by parts formula in the domain (𝑡1, 𝑡2) × (0, 𝜔) and by using that ∆(e−𝜆
𝜇
𝑗 𝑡𝑔𝑗) = 0 and

∆(e−𝜆
𝜇
𝑗 𝑡ℎ𝑗) = 0, we get that

−
(︁
ℬ(𝜉(𝑢𝛽2 − 𝑢𝛽1), 𝜉(𝜆𝛽2 − 𝜆𝛽1)), (e−𝜆

𝜇
𝑗 𝑡𝑔𝑗 , e−𝜆

𝜇
𝑗 𝑡ℎ𝑗)

)︁
𝐿2(𝐵)×𝐿2(𝐵)

=
∑︁
𝜈∈{±}

𝑁∑︁
𝑘=1

𝑐𝜈𝑘

(︁
𝜆𝜈𝑘e𝜆

𝜈
𝑘𝑡2𝜙𝜈𝑘, e

−𝜆𝜇
𝑗 𝑡2𝑔𝜇𝑗

)︁
𝐿2(0,𝜔)

+
1
𝜀

∑︁
𝜈∈{±}

𝑁∑︁
𝑘=1

𝑐𝜈𝑘

(︁
𝜆𝜈𝑘e𝜆

𝜈
𝑘𝑡2𝜓𝜇𝑘 , e

−𝜆𝜇
𝑗 𝑡2ℎ𝜇𝑗

)︁
𝐿2(0,𝜔)

−
∑︁
𝜈∈{±}

𝑁∑︁
𝑘=1

𝑐𝜈𝑘

(︁
e𝜆

𝜈
𝑘𝑡2𝜙𝜈𝑘,−𝜆

𝜇
𝑗 e−𝜆

𝜇
𝑗 𝑡2𝑔𝜇𝑗

)︁
𝐿2(0,𝜔)

− 1
𝜀

∑︁
𝜈∈{±}

𝑁∑︁
𝑘=1

𝑐𝜈𝑘

(︁
e𝜆

𝜈
𝑘𝑡2𝜓𝜈𝑘 ,−𝜆

𝜇
𝑗 e−𝜆

𝜇
𝑗 𝑡2ℎ𝜇𝑗

)︁
𝐿2(0,𝜔)

.

In view of the biorthogonality relationships of Lemma 5.8 and due to the fact that in case 𝜆𝜈𝑘 = −𝜆𝜇𝑗 (that is
𝑗 + 𝑘 = −1 and 𝜈 + 𝜇 = 0) the first and third terms within the brackets above compensate one another as well
as the second and fourth terms, we end up with

−
(︁
ℬ(𝜉(𝑢𝛽2 − 𝑢𝛽1), 𝜉(𝜆𝛽2 − 𝜆𝛽1)), (e−𝜆

𝜇
𝑗 𝑡𝑔𝑗 , e−𝜆

𝜇
𝑗 𝑡ℎ𝑗)

)︁
𝐿2(𝐵)×𝐿2(𝐵)

= 2𝜆𝜇𝑗 𝑐
𝜇
𝑗 𝑑𝑗 . (5.34)
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On the other end, since 𝛽1 < 𝛽2, the function 𝑢𝛽2 is more decreasing than 𝑢𝛽1 at +∞. And the situation is
inverted at −∞. The same property holds for 𝜆𝛽2 and 𝜆𝛽1 . Since 𝜉 vanishes at −∞, we have that (𝜉𝑢𝛽2 , 𝜉𝜆𝛽2) ∈
𝒟(ℬ𝛽1) ∩ 𝒟(ℬ𝛽2). Using an integration by parts in 𝐵 and the fact that −𝛽2 < Re𝜆𝑗 , we obtain that(︁

ℬ(𝜉𝑢𝛽2 , 𝜉𝜆𝛽2), (e−𝜆
𝜇
𝑗 𝑡𝑔𝑗 , e−𝜆

𝜇
𝑗 𝑡ℎ𝑗)

)︁
𝐿2(𝐵)×𝐿2(𝐵)

= 0. (5.35)

With the same argument, we obtain(︁
ℬ((1− 𝜉)𝑢𝛽1 , (1− 𝜉)𝜆𝛽1), (e−𝜆

𝜇
𝑗 𝑡𝑔𝑗 , e−𝜆

𝜇
𝑗 𝑡ℎ𝑗)

)︁
𝐿2(𝐵)×𝐿2(𝐵)

= 0. (5.36)

By combining (5.34)–(5.36), we get

2𝜆𝜇𝑗 𝑐
𝜇
𝑗 𝑑𝑗 =

(︁
ℬ(𝜉(𝑢𝛽1 − 𝑢𝛽2), 𝜉(𝜆𝛽1 − 𝜆𝛽2)), (e−𝜆

𝜇
𝑗 𝑡𝑔𝑗 , e−𝜆

𝜇
𝑗 𝑡ℎ𝑗)

)︁
𝐿2(𝐵)×𝐿2(𝐵)

=
(︁
ℬ(𝜉𝑢𝛽1 , 𝜉𝜆𝛽1), (e−𝜆

𝜇
𝑗 𝑡𝑔𝑗 , e−𝜆

𝜇
𝑗 𝑡ℎ𝑗)

)︁
𝐿2(𝐵)×𝐿2(𝐵)

=
(︁
ℬ(𝑢𝛽1 , 𝜆𝛽1), (e−𝜆

𝜇
𝑗 𝑡𝑔𝑗 , e−𝜆

𝜇
𝑗 𝑡ℎ𝑗)

)︁
𝐿2(𝐵)×𝐿2(𝐵)

−
(︁
ℬ((1− 𝜉)𝑢𝛽1 , (1− 𝜉)𝜆𝛽1), (e−𝜆

𝜇
𝑗 𝑡𝑔𝑗 , e−𝜆

𝜇
𝑗 𝑡ℎ𝑗)

)︁
𝐿2(𝐵)×𝐿2(𝐵)

=
(︁
ℬ(𝑢𝛽1 , 𝜆𝛽1), (e−𝜆

𝜇
𝑗 𝑡𝑔𝑗 , e−𝜆

𝜇
𝑗 𝑡ℎ𝑗)

)︁
𝐿2(𝐵)×𝐿2(𝐵)

=
(︁

(𝑓1, 𝑓2), (e−𝜆
𝜇
𝑗 𝑡𝑔𝑗 , e−𝜆

𝜇
𝑗 𝑡ℎ𝑗)

)︁
𝐿2(𝐵)×𝐿2(𝐵)

,

which completes the proof. �

From the previous theorem in the strip, we obtain the following corollary in the infinite cone by using the
identity 𝑟2𝒞𝛽 = ℰ−1ℬ𝛽−1ℰ

Corollary 5.10. Assume that 𝛽1 < 𝛽2 are two real numbers such that 𝛽𝑗−1 /∈ {(𝜋/2+𝑛𝜋)/𝜔, 𝑛 ∈ Z}, 𝑗 = 1, 2.
Let us denote by 𝜆𝜈1 , 𝜆

𝜈
2 , . . . , 𝜆

𝜈
𝑁 , with 𝜈 = ±, the eigenvalues of L𝜀 in the strip −𝛽2 + 1 < Re𝜆 < −𝛽1 + 1.

For (𝑓1, 𝑓2) ∈ ℛ(𝒞𝛽1) ∩ ℛ(𝒞𝛽2), the solutions (𝑢𝛽1 , 𝜆𝛽1) ∈ 𝒟(𝒞𝛽1) and (𝑢𝛽2 , 𝜆𝛽2) ∈ 𝒟(𝒞𝛽2) to the problems
𝒞𝛽1(𝑢𝛽1 , 𝜆𝛽1) = (𝑓1, 𝑓2) and 𝒞𝛽2(𝑢𝛽2 , 𝜆𝛽2) = (𝑓1, 𝑓2) satisfy the relationship

(𝑢𝛽2 , 𝜆𝛽2) = (𝑢𝛽1 , 𝜆𝛽1) +
∑︁
𝜈∈{±}

𝑁∑︁
𝑘=1

𝑐𝜈𝑘𝑟
𝜆𝜈

𝑘 (𝜙𝜈𝑘, 𝜓
𝜈
𝑘),

where
𝑐𝜈𝑘 =

1
2𝜆𝜈𝑘𝑑𝑘

(︁
(𝑓1, 𝑟−𝜆

𝜈
𝑘𝑔𝜈𝑘)𝐿2(𝐾) + (𝑓2, 𝑟−𝜆

𝜈
𝑘ℎ𝜈𝑘)𝐿2(𝐾)

)︁
.

Remark 5.11. For real valued functions 𝑓1 and 𝑓2, we have 𝑐𝜈𝑘 = 𝑐−𝜈𝑘 for all 𝑘 ∈ {1, . . . , 𝑁}.

We end up with the main proposition of this section.

Proposition 5.12. Assume that 𝑆 is the vertex of a corner of mixed type. Let us consider 𝑠 < 1 + 𝜋/(2𝜔) if
𝜔 ≥ 𝜋/2 and 𝑠 = 2 otherwise. For 𝑓 ∈ 𝐿2(Ω) and 𝜀 > 0, the solution (𝑢𝜀, 𝜆𝜀) ∈ 𝑉0 × 𝑉0 to the problem (1.7) is
such that 𝜁𝑢𝜀 and 𝜁𝜆𝜀 belong to 𝐻𝑠(Ω) and there exists a constant 𝐶 > 0 which depends only on the geometry
such that

∀𝜀 ∈ (0, 1], 𝜀‖𝜁𝑢𝜀‖𝐻𝑠(Ω) +
√
𝜀‖𝜁𝜆𝜀‖𝐻𝑠(Ω) ≤ 𝐶‖𝑓‖𝐿2(Ω).

If in addition we assume that 𝑓 is such that problem (1.6) has a (unique) solution 𝑢, then

∀𝜀 ∈ (0, 1],
√
𝜀‖𝜁𝑢𝜀‖𝐻𝑠(Ω) + ‖𝜁𝜆𝜀‖𝐻𝑠(Ω) ≤ 𝐶‖𝑢‖𝐻1(Δ,Ω).



ON QUASI-REVERSIBILITY SOLUTIONS TO THE CAUCHY PROBLEM FOR THE LAPLACE EQUATION 517

Proof. The pair (𝑣𝜀, 𝜇𝜀),= (𝜁𝑢𝜀, 𝜁𝜆𝜀), where (𝑢𝜀, 𝜆𝜀) ∈ 𝑉0 × 𝑉0 solves (1.7), satisfies the problem⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−∆𝑣𝜀 = 𝑔𝜀 in 𝐾
−∆𝜇𝜀 = 𝜀 ℎ𝜀 in 𝐾
𝑣𝜀 = 0 on 𝜕𝐾0

𝜕𝜈𝑣𝜀 − 𝜕𝜈𝜇𝜀 = 0 on 𝜕𝐾0

𝜇𝜀 = 0 on 𝜕𝐾𝜔

𝜀 𝜕𝜈𝑣𝜀 + 𝜕𝜈𝜇𝜀 = 0 on 𝜕𝐾𝜔,

(5.37)

with (𝑔𝜀, ℎ𝜀) =
(︁
−∆𝜁𝑢𝜀 − 2∇𝜁 · ∇𝑢𝜀 + 𝜁

𝑓

1 + 𝜀
,−∆𝜁

𝜆𝜀
𝜀
− 2∇𝜁 · ∇

(︁𝜆𝜀
𝜀

)︁
− 𝜁

𝑓

1 + 𝜀

)︁
.

Let us study the regularity of 𝑣𝜀, 𝜇𝜀 by using the properties of the operator 𝒞𝛽 defined in (5.26). To proceed, in
particular, we will exploit the results of Corollaries 5.5 and 5.10.
First, observing that 𝑉 0

0 (𝐾) = 𝐿2(𝐾) and that 𝜁 is compactly supported, we deduce that (𝑔𝜀, ℎ𝜀) ∈ 𝑉 0
0 (𝐾) ×

𝑉 0
0 (𝐾). And more generally, we have (𝑔𝜀, ℎ𝜀) ∈ ℛ(𝒞𝛽) = 𝑉 0

𝛽 (𝐾)× 𝑉 0
𝛽 (𝐾) for all 𝛽 ≥ 0. For 𝛽 = 1, there holds

𝛽 − 1 /∈ {(𝜋/2 + 𝑛𝜋)/𝜔, 𝑛 ∈ Z}. From Corollary 5.5, we infer that 𝒞1 is an isomorphism from

𝒟(𝒞1) = {(𝑣𝜀, 𝜇𝜀) ∈ 𝑉 1
0,0(𝐾) ∩ 𝑉 2

1 (𝐾)× 𝑉 1
0,𝜔(𝐾) ∩ 𝑉 2

1 (𝐾),
𝜕𝜈𝑣𝜀 − 𝜕𝜈𝜇𝜀 = 0 on 𝜕𝐾0, 𝜀𝜕𝜈𝑣𝜀 + 𝜕𝜈𝜇𝜀 = 0 on 𝜕𝐾𝜔}

toℛ(𝒞1) ∋ (𝑔𝜀, ℎ𝜀). Let us denote by (𝑣1
𝜀 , 𝜇

1
𝜀) ∈ 𝒟(𝒞1) the unique element of𝒟(𝒞1) such that 𝒞1(𝑣1

𝜀 , 𝜇
1
𝜀) = (𝑔𝜀, ℎ𝜀).

Corollary 5.5 ensures that there is a constant 𝐶 such that
√
𝜀‖𝑣1

𝜀‖𝑉 2
1 (𝐾) + ‖𝜇1

𝜀‖𝑉 2
1 (𝐾) ≤ 𝐶 (‖𝑔𝜀‖𝑉 0

1 (𝐾) +
√
𝜀‖ℎ𝜀‖𝑉 0

1 (𝐾)).

Let us prove that (𝑣1
𝜀 , 𝜇

1
𝜀) coincides with (𝑣𝜀, 𝜇𝜀). We have (𝑣𝜀, 𝜇𝜀) ∈ 𝑉 1

0,0 × 𝑉 1
0,𝜔. Indeed, 𝑣𝜀 vanishes for 𝑟 ≥ 𝑏

and from Poincaré’s inequality, there holds∫︁
𝐾𝑏

1
𝑟2
𝑣2
𝜀 d𝑥 ≤ 𝐶

∫︁
𝐾𝑏

|∇𝑣𝜀|2 d𝑥.

The same inequality is valid for 𝜇𝜀. Next, let us introduce 𝜐 ∈ C∞
0 (𝐾) such that 𝜐 vanishes in a vicinity of 𝜕𝐾0

and 𝜓 ∈ C∞
0 (𝐾) such that 𝜓 vanishes in a vicinity of 𝜕𝐾𝜔. It is easy to check that (𝑣𝜀, 𝜇𝜀) solves⎧⎪⎪⎨⎪⎪⎩

𝜀

∫︁
𝐾

∇𝑣𝜀 · ∇𝜐 d𝑥+
∫︁
𝐾

∇𝜐 · ∇𝜇𝜀 d𝑥 =
∫︁
𝐾

𝜀(𝑔𝜀 + ℎ𝜀) 𝜐 d𝑥∫︁
𝐾

∇𝑣𝜀 · ∇𝜓 d𝑥−
∫︁
𝐾

∇𝜇𝜀 · ∇𝜓 d𝑥 =
∫︁
𝐾

(𝑔𝜀 − 𝜀 ℎ𝜀)𝜓 d𝑥.
(5.38)

One can also verify that (𝑣1
𝜀 , 𝜇

1
𝜀) satisfies (5.38). Since (𝑣𝜀 − 𝑣1

𝜀 , 𝜇𝜀 − 𝜇1
𝜀) ∈ 𝑉 1

0,0 × 𝑉 1
0,𝜔, using the density of the

set of functions 𝜐 (resp. 𝜓) in 𝑉 1
0,0 (resp. in 𝑉 1

0,𝜔), we conclude that (𝑣𝜀, 𝜇𝜀) = (𝑣1
𝜀 , 𝜇

1
𝜀). Now we must separate

the rest of the analysis according to the configuration.
⋆ Let us first assume that 𝜔 < 𝜋/2. In this case, for 𝛽 = 0, we have 𝛽 − 1 /∈ {(𝜋/2 + 𝑛𝜋)/𝜔, 𝑛 ∈ Z}. Then
Corollary 5.5 guarantees that 𝒞0 is an isomorphism from

𝒟(𝒞0) = {(𝑣𝜀, 𝜇𝜀) ∈ 𝑉 1
−1,0(𝐾) ∩ 𝑉 2

0 (𝐾)× 𝑉 1
−1,𝜔(𝐾) ∩ 𝑉 2

0 (𝐾),
𝜕𝜈𝑣𝜀 − 𝜕𝜈𝜇𝜀 = 0 on 𝜕𝐾0, 𝜀𝜕𝜈𝑣𝜀 + 𝜕𝜈𝜇𝜀 = 0 on 𝜕𝐾𝜔}

toℛ(𝒞0) ∋ (𝑔𝜀, ℎ𝜀). Let us denote by (𝑣0
𝜀 , 𝜇

0
𝜀) ∈ 𝒟(𝒞0) the unique element of𝒟(𝒞0) such that 𝒞0(𝑣0

𝜀 , 𝜇
0
𝜀) = (𝑔𝜀, ℎ𝜀).

Corollary 5.5 ensures that there is a constant 𝐶 such that
√
𝜀‖𝑣0

𝜀‖𝑉 2
0 (𝐾) + ‖𝜇0

𝜀‖𝑉 2
0 (𝐾) ≤ 𝐶 (‖𝑔𝜀‖𝐿2(𝐾) +

√
𝜀‖ℎ𝜀‖𝐿2(𝐾)). (5.39)
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But from Lemma 5.1, the eigenvalues 𝜆±𝑛 of L𝜀 satisfy Re𝜆±𝑛 = (𝜋/2 + 𝑛𝜋)/𝜔, 𝑛 ∈ Z. As a consequence when
𝜔 < 𝜋/2, none of them lies in the strip 0 < Re𝜆 < 1. This implies that

(𝑣𝜀, 𝜇𝜀) = (𝑣1
𝜀 , 𝜇

1
𝜀) = (𝑣0

𝜀 , 𝜇
0
𝜀).

Besides, we observe that 𝑉 2
0 (𝐾) ⊂ 𝐻2(𝐾𝑏). Hence (𝑣𝜀, 𝜇𝜀) ∈ 𝐻2(𝐾𝑏)×𝐻2(𝐾𝑏). Using the estimates{︃

‖𝑔𝜀‖𝐿2(𝐾) ≤ 𝐶(‖𝑢𝜀‖𝐻1(𝐾𝑏) + ‖𝑓‖𝐿2(𝐾𝑏))
‖ℎ𝜀‖𝐿2(𝐾) ≤ 𝐶(‖𝜆𝜀‖𝐻1(𝐾𝑏)/𝜀+ ‖𝑓‖𝐿2(𝐾𝑏)),

(5.40)

then from (5.39), we can write
√
𝜀‖𝜁𝑢𝜀‖𝐻2(Ω) + ‖𝜁𝜆𝜀‖𝐻2(Ω) =

√
𝜀‖𝑣𝜀‖𝐻2(𝐾𝑏) + ‖𝜇𝜀‖𝐻2(𝐾𝑏)

≤ 𝐶(
√
𝜀‖𝑣0

𝜀‖𝑉 2
0 (𝐾) + ‖𝜇0

𝜀‖𝑉 2
0 (𝐾)) ≤ 𝐶(‖𝑔𝜀‖𝐿2(𝐾𝑏) +

√
𝜀‖ℎ𝜀‖𝐿2(𝐾𝑏))

≤ 𝐶(‖𝑢𝜀‖𝐻1(𝐾𝑏) +
1√
𝜀
‖𝜆𝜀‖𝐻1(𝐾𝑏) + ‖𝑓‖𝐿2(𝐾𝑏)).

By using (1.9), finally we get
𝜀‖𝜁𝑢𝜀‖𝐻2(Ω) +

√
𝜀‖𝜁𝜆𝜀‖𝐻2(Ω) ≤ 𝐶‖𝑓‖𝐿2(Ω).

⋆ Now let us assume that 𝜔 ≥ 𝜋/2. Choose 𝛽 such that 0 ≤ 1 − 𝜋/(2𝜔) < 𝛽 < 1. In this case, since 𝛽 − 1 /∈
{(𝜋/2 + 𝑛𝜋)/𝜔, 𝑛 ∈ Z}, the operator 𝒞𝛽 is an isomorphism from

𝒟(𝒞𝛽) = {(𝑣𝜀, 𝜇𝜀) ∈ 𝑉 1
𝛽−1,0(𝐾) ∩ 𝑉 2

𝛽 (𝐾)× 𝑉 1
𝛽−1,𝜔(𝐾) ∩ 𝑉 2

𝛽 (𝐾),
𝜕𝜈𝑢𝜀 − 𝜕𝜈𝜆𝜀 = 0 on 𝜕𝐾0, 𝜀𝜕𝜈𝑢𝜀 + 𝜕𝜈𝜆𝜀 = 0 on 𝜕𝐾𝜔}

to ℛ(𝒞𝛽) ∋ (𝑔𝜀, ℎ𝜀). Let us denote by (𝑣𝛽𝜀 , 𝜇
𝛽
𝜀 ) ∈ 𝒟(𝒞𝛽) the unique element of 𝒟(𝒞𝛽) such that 𝒞𝛽(𝑣𝛽𝜀 , 𝜇

𝛽
𝜀 ) =

(𝑔𝜀, ℎ𝜀). Using Corollary 5.5 and the fact that 𝑔𝜀, ℎ𝜀 are compactly supported with 𝛽 > 0, we can write
√
𝜀‖𝑣𝛽𝜀 ‖𝑉 2

𝛽 (𝐾) + ‖𝜇𝛽𝜀 ‖𝑉 2
𝛽 (𝐾) ≤ 𝐶 (‖𝑔𝜀‖𝑉 0

𝛽 (𝐾) +
√
𝜀‖ℎ𝜀‖𝑉 0

𝛽 (𝐾))
≤ 𝐶 (‖𝑔𝜀‖𝐿2(𝐾) +

√
𝜀‖ℎ𝜀‖𝐿2(𝐾)).

(5.41)

Again, none of the 𝜆±𝑛 lies in the strip 0 < Re𝜆 < 1− 𝛽, which implies that

(𝑣𝜀, 𝜇𝜀) = (𝑣1
𝜀 , 𝜇

1
𝜀) = (𝑣𝛽𝜀 , 𝜇

𝛽
𝜀 ).

Besides, note that 𝑣𝜀 and 𝜇𝜀 are supported in 𝐾𝑏. The Theorem 5.2 of [37] ensures that the space 𝑉 2
𝛽 (𝐾𝑏) is

continuously embedded in the interpolate space [𝑉 2
0 (𝐾𝑏), 𝑉 2

1 (𝐾𝑏)]𝜃 for all 𝜃 ∈ (𝛽, 1). Since the spaces 𝑉 2
0 (𝐾𝑏)

and 𝑉 1
0 (𝐾𝑏) are continuously embedded in 𝐻2(𝐾𝑏) and 𝐻1(𝐾𝑏), respectively, we infer that [𝑉 2

0 (𝐾𝑏), 𝑉 2
1 (𝐾𝑏)]𝜃

is continuously embedded in [𝐻2(𝐾𝑏), 𝐻1(𝐾𝑏)]𝜃 = 𝐻2−𝜃(𝐾𝑏) for all 𝜃 ∈ (𝛽, 1). Since 𝛽 is arbitrarily close to
1 − 𝜋/(2𝜔), we conclude that the space 𝑉 2

𝛽 (𝐾𝑏) is continuously embedded in 𝐻𝑠(𝐾𝑏) for all 𝑠 < 1 + 𝜋/(2𝜔).
Gathering the estimates (5.40) and (5.41), we infer that for all 𝑠 < 1 + 𝜋/(2𝜔),

√
𝜀‖𝜁𝑢𝜀‖𝐻𝑠(Ω) + ‖𝜁𝜆𝜀‖𝐻𝑠(Ω) =

√
𝜀‖𝑣𝜀‖𝐻𝑠(𝐾𝑏) + ‖𝜇𝜀‖𝐻𝑠(𝐾𝑏)

≤ 𝐶(
√
𝜀‖𝑣𝛽𝜀 ‖𝑉 2

𝛽 (𝐾) + ‖𝜇𝛽𝜀 ‖𝑉 2
𝛽 (𝐾)) ≤ 𝐶(‖𝑔𝜀‖𝐿2(𝐾𝑏) +

√
𝜀‖ℎ𝜀‖𝐿2(𝐾𝑏))

≤ 𝐶(‖𝑢𝜀‖𝐻1(𝐾𝑏) +
1√
𝜀
‖𝜆𝜀‖𝐻1(𝐾𝑏) + ‖𝑓‖𝐿2(𝐾𝑏)).

By using the estimate (1.9), finally we get 𝜀‖𝜁𝑢𝜀‖𝐻𝑠(Ω) +
√
𝜀‖𝜁𝜆𝜀‖𝐻𝑠(Ω) ≤ 𝐶‖𝑓‖𝐿2(Ω). �
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Remark 5.13. By using Corollary 5.10 for 𝛽1 = 0 and 𝛽2 = 1, we obtain all the singular functions at a corner
of mixed type, which are the functions 𝑟𝜆

𝜈
𝑘 (𝜙𝜈𝑘, 𝜓

𝜈
𝑘) which belong to 𝐻1(𝐾𝑏) but not to 𝐻2(𝐾𝑏). The singular

functions are readily determined by the value of Re(𝜆𝜈𝑘) = (𝜋/2 + 𝑘𝜋)/𝜔 for 𝑘 ∈ Z:

– there is no singularity for 𝜔 ≤ 𝜋/2,
– singularities are obtained for 𝑘 = 0 and 𝜈 = ± for 𝜋/2 < 𝜔 ≤ 3𝜋/2,
– singularities are obtained for 𝑘 = 0, 𝑘 = 1 and 𝜈 = ± for 𝜔 > 3𝜋/2.

Note that this conclusion is very similar to the case of the Laplace equation with mixed Dirichlet-Neumann
boundary conditions (see [22]).

6. Application to error estimates

In this last section, we use the regularity estimates for solutions of quasi-reversibility problem (1.7), in
particular Theorem 3.1, to derive error estimates between the exact solution and the quasi-reversibility solution
obtained in the presence of noisy data and with the help of a FEM.

6.1. Main analysis

Let us assume that Ω is a polygonal domain in two dimensions and that 𝑢 ∈ 𝐻1(Ω) is the exact solution of
problem (1.6) associated with the exact data 𝑓 ∈ 𝐿2(Ω). In the context of inverse problems, usually 𝑓 is not
available. Only an approximate data 𝑓𝛿 ∈ 𝐿2(Ω) is available, with

‖𝑓𝛿 − 𝑓‖𝐿2(Ω) ≤ 𝛿, (6.1)

where 𝛿 can be viewed as the amplitude of noise. A natural idea is to solve problem (1.7) with 𝑓𝛿 instead of
𝑓 , and a practical way of proceeding is to discretize problem (1.7) with the help of a FEM. More precisely, we
assume that Ω supports a triangular mesh which is regular in the sense of [17], the maximal diameter of each
triangle being ℎ. Let us denote by 𝑉0,ℎ and 𝑉0,ℎ the finite dimensional subspaces of 𝑉0 and 𝑉0, respectively,
formed by the continuous functions on Ω which are affine on each triangle and which vanish on the sides which
belong to Γ and Γ̃, respectively. The discretized version of the mixed formulation of quasi-reversibility (1.7) is:
for 𝜀 > 0, find (𝑢𝜀,ℎ, 𝜆𝜀,ℎ) ∈ 𝑉0,ℎ × 𝑉0,ℎ such that for all (𝑣ℎ, 𝜇ℎ) ∈ 𝑉0,ℎ × 𝑉0,ℎ,⎧⎪⎪⎨⎪⎪⎩

𝜀

∫︁
Ω

∇𝑢𝜀,ℎ · ∇𝑣ℎ d𝑥+
∫︁

Ω

∇𝑣ℎ · ∇𝜆𝜀,ℎ d𝑥 = 0∫︁
Ω

∇𝑢𝜀,ℎ · ∇𝜇ℎ d𝑥−
∫︁

Ω

∇𝜆𝜀,ℎ · ∇𝜇ℎ d𝑥 =
∫︁

Ω

𝑓𝜇ℎ d𝑥.
(6.2)

We denote (𝑢𝛿𝜀,ℎ, 𝜆
𝛿
𝜀,ℎ) the solution to problem (6.2) which is associated with the noisy data 𝑓𝛿 instead of the

exact data 𝑓 . In practice, the solution 𝑢𝛿𝜀,ℎ is the only approximate function of the exact solution 𝑢 which is
accessible, this is why we are interested in the norm of the discrepancy 𝑢𝛿𝜀,ℎ − 𝑢 in the domain Ω. In this view,
we write

‖𝑢𝛿𝜀,ℎ − 𝑢‖𝐻1(Ω) ≤ ‖𝑢𝛿𝜀,ℎ − 𝑢𝜀,ℎ‖𝐻1(Ω) + ‖𝑢𝜀,ℎ − 𝑢𝜀‖𝐻1(Ω) + ‖𝑢𝜀 − 𝑢‖𝐻1(Ω), (6.3)

and estimate each term of this decomposition. The first term to estimate corresponds to the error due to the
noisy data. Let us prove the following lemma.

Lemma 6.1. There exists a constant 𝐶 > 0 which depends only on the geometry such that

‖𝑢𝛿𝜀,ℎ − 𝑢𝜀,ℎ‖𝐻1(Ω) ≤ 𝐶
𝛿√
𝜀
· (6.4)
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Proof. By reusing the bilinear form 𝐴𝜀 introduced in the proof of Theorem 1.1, (𝑢𝛿𝜀,ℎ, 𝜆
𝛿
𝜀,ℎ) and (𝑢𝜀,ℎ, 𝜆𝜀,ℎ) are

solutions in 𝑉0,ℎ × 𝑉0,ℎ to the weak problems: for all (𝑣ℎ, 𝜇ℎ) ∈ 𝑉0,ℎ × 𝑉0,ℎ,

𝐴𝜀((𝑢𝛿𝜀,ℎ, 𝜆
𝛿
𝜀,ℎ); (𝑣ℎ, 𝜇ℎ)) = −

∫︁
Ω

𝑓𝛿𝜇ℎ d𝑥, 𝐴𝜀((𝑢𝜀,ℎ, 𝜆𝜀,ℎ); (𝑣ℎ, 𝜇ℎ)) = −
∫︁

Ω

𝑓𝜇ℎ d𝑥.

Taking the difference, setting (𝑣ℎ, 𝜇ℎ) = (𝑢𝛿𝜀,ℎ − 𝑢𝜀,ℎ, 𝜆
𝛿
𝜀,ℎ − 𝜆𝜀,ℎ), we get

𝜀‖𝑢𝛿𝜀,ℎ − 𝑢𝜀,ℎ‖2 + ‖𝜆𝛿𝜀,ℎ − 𝜆𝜀,ℎ‖2 ≤ ‖𝑓𝛿 − 𝑓‖𝐿2(Ω)‖𝜆𝛿𝜀,ℎ − 𝜆𝜀,ℎ‖𝐿2(Ω),

where we recall that ‖ ·‖ denotes the 𝐻1(Ω) semi-norm. We complete the proof by using the Poincaré inequality
and (6.1). �

The second term of (6.3) corresponds to the error due to discretization. Let us prove the following lemma, which
is a consequence of Theorem 3.1.

Lemma 6.2. There is a constant 𝐶 > 0 which depends only on the geometry and on 𝑢 such that

‖𝑢𝜀,ℎ − 𝑢𝜀‖𝐻1(Ω) ≤ 𝐶
ℎ𝑠−1

𝜀
, (6.5)

where 𝑠 is given in the statement of Theorem 3.1.

Proof. The proof relies in particular on Céa’s lemma. Since we need a uniform estimate with respect to 𝜀, we
detail the proof. For all (𝑣ℎ, 𝜇ℎ) ∈ 𝑉0,ℎ × 𝑉0,ℎ, we have

𝐴𝜀((𝑢𝜀 − 𝑢𝜀,ℎ, 𝜆𝜀 − 𝜆𝜀,ℎ); (𝑣ℎ, 𝜇ℎ)) = 0.

This implies that for all (𝑣ℎ, 𝜇ℎ) ∈ 𝑉0,ℎ × 𝑉0,ℎ,

𝐴𝜀((𝑢𝜀 − 𝑢𝜀,ℎ, 𝜆𝜀 − 𝜆𝜀,ℎ); (𝑢𝜀 − 𝑢𝜀,ℎ, 𝜆𝜀 − 𝜆𝜀,ℎ)) = 𝐴𝜀((𝑢𝜀 − 𝑢𝜀,ℎ, 𝜆𝜀 − 𝜆𝜀,ℎ); (𝑢𝜀 − 𝑣ℎ, 𝜆𝜀 − 𝜇ℎ)),

hence
𝐴𝜀((𝑢𝜀 − 𝑢𝜀,ℎ, 𝜆𝜀 − 𝜆𝜀,ℎ); (𝑢𝜀 − 𝑢𝜀,ℎ, 𝜆𝜀 − 𝜆𝜀,ℎ))

≤ inf
(𝑣ℎ,𝜇ℎ)∈𝑉0,ℎ×𝑉0,ℎ

|𝐴𝜀((𝑢𝜀 − 𝑢𝜀,ℎ, 𝜆𝜀 − 𝜆𝜀,ℎ); (𝑢𝜀 − 𝑣ℎ, 𝜆𝜀 − 𝜇ℎ))| .

But on the one hand, we have

𝐴𝜀((𝑢𝜀 − 𝑢𝜀,ℎ, 𝜆𝜀 − 𝜆𝜀,ℎ); (𝑢𝜀 − 𝑢𝜀,ℎ, 𝜆𝜀 − 𝜆𝜀,ℎ)) = 𝜀‖𝑢𝜀 − 𝑢𝜀,ℎ‖2 + ‖𝜆𝜀 − 𝜆𝜀,ℎ‖2

while on the other hand, there holds

inf
(𝑣ℎ,𝜇ℎ)∈𝑉0,ℎ×𝑉0,ℎ

|𝐴𝜀((𝑢𝜀 − 𝑢𝜀,ℎ, 𝜆𝜀 − 𝜆𝜀,ℎ); (𝑢𝜀 − 𝑣ℎ, 𝜆𝜀 − 𝜇ℎ))|

≤ (𝜀‖𝑢𝜀 − 𝑢𝜀,ℎ‖+ ‖𝜆𝜀 − 𝜆𝜀,ℎ‖) inf
𝑣ℎ∈𝑉0,ℎ

‖𝑢𝜀 − 𝑣ℎ‖+ (‖𝑢𝜀 − 𝑢𝜀,ℎ‖+ ‖𝜆𝜀 − 𝜆𝜀,ℎ‖) inf
𝜇ℎ∈𝑉0,ℎ

‖𝜆𝜀 − 𝜇ℎ‖.

By using the classical interpolation error estimates in 𝐻𝑠(Ω) for 𝑠 > 1 (see [22]), we know that there exists a
constant 𝐶 > 0 which depends only on the geometry such that

inf
𝑣ℎ∈𝑉0,ℎ

‖𝑢𝜀 − 𝑣ℎ‖ ≤ 𝐶 ℎ𝑠−1‖𝑢𝜀‖𝐻𝑠(Ω), inf
𝜇ℎ∈𝑉0,ℎ

‖𝜆𝜀 − 𝜇ℎ‖ ≤ 𝐶 ℎ𝑠−1‖𝜆𝜀‖𝐻𝑠(Ω).

Theorem 3.1 in the case of exact data 𝑓 implies that there is a constant 𝐶 > 0 which depends on the geometry
and on 𝑢 such that

‖𝑢𝜀‖𝐻𝑠(Ω) ≤ 𝐶
1√
𝜀

and ‖𝜆𝜀‖𝐻𝑠(Ω) ≤ 𝐶.
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From the three above estimates, we get

inf
(𝑣ℎ,𝜇ℎ)∈𝑉0,ℎ×𝑉0,ℎ

|𝐴𝜀((𝑢𝜀 − 𝑢𝜀,ℎ, 𝜆𝜀 − 𝜆𝜀,ℎ); (𝑢𝜀 − 𝑣ℎ, 𝜆𝜀 − 𝜇ℎ))|

≤ 𝐶
ℎ𝑠−1

√
𝜀

(𝜀‖𝑢𝜀 − 𝑢𝜀,ℎ‖+ ‖𝜆𝜀 − 𝜆𝜀,ℎ‖) + 𝐶 ℎ𝑠−1(‖𝑢𝜀 − 𝑢𝜀,ℎ‖+ ‖𝜆𝜀 − 𝜆𝜀,ℎ‖)

≤ 𝐶
ℎ𝑠−1

√
𝜀

(
√
𝜀‖𝑢𝜀 − 𝑢𝜀,ℎ‖+ ‖𝜆𝜀 − 𝜆𝜀,ℎ‖).

Eventually we end up with

𝜀‖𝑢𝜀 − 𝑢𝜀,ℎ‖2 + ‖𝜆𝜀 − 𝜆𝜀,ℎ‖2 ≤ 𝐶
ℎ𝑠−1

√
𝜀

(𝜀‖𝑢𝜀 − 𝑢𝜀,ℎ‖2 + ‖𝜆𝜀 − 𝜆𝜀,ℎ‖2)1/2,

which completes the proof. �

Estimating the third term in (6.3) is strongly related to the stability of the Cauchy problem for the Laplace
equation, a topic which has a long history since the pioneering paper [23] (see e.g. [1–3, 5, 6, 38–40]). It is
well-known that since such problem is exponentially ill-posed, the corresponding stability estimate is at best
of logarithmic type (see e.g. [5]). To our best knowledge, an estimate of 𝜂(𝜀) := ‖𝑢𝜀 − 𝑢‖𝐻1(Ω), which tends
to 0 when 𝜀 tends to 0 in view of Theorem 1.4, is unknown. However, a logarithmic stability estimate for
‖𝑢𝜀 − 𝑢‖𝐿2(Ω) can be derived from Theorem 1.9 in [1] and a Hölder stability estimate for ‖𝑢𝜀 − 𝑢‖𝐻1(𝐺) can be
derived from Propositions 2.2 and 2.3 in [5], where 𝐺 is a subdomain of Ω which excludes a vicinity of Γ̃ and a
vicinity of corners.

Lemma 6.3. There exists a constant 𝐶 > 0 which depends only on the geometry and on 𝑢 and a constant
𝜇 ∈ (0, 1) which depends only on the geometry such that

‖𝑢𝜀 − 𝑢‖𝐿2(Ω) ≤ 𝐶
1(︀

log(1/𝜀)
)︀𝜇 ·

Proof. From (1.6) and (1.8), the functions 𝑢𝜀 − 𝑢 and 𝜆𝜀 satisfy⎧⎨⎩−∆(𝑢𝜀 − 𝑢) = −𝜀𝑓/(1 + 𝜀) in Ω
𝑢𝜀 − 𝑢 = 0 on Γ
𝜕𝜈(𝑢𝜀 − 𝑢) = 𝜕𝜈𝜆𝜀 on Γ.

(6.6)

By using the estimate (1.10) of Theorem 1.4, we get

‖𝑢𝜀 − 𝑢‖𝐻1(Ω) ≤ 𝐶, ‖∆(𝑢𝜀 − 𝑢)‖𝐿2(Ω) ≤ 𝐶 𝜀, ‖𝜕𝜈(𝑢𝜀 − 𝑢)‖𝐻−1/2(Γ) ≤ 𝐶
√
𝜀.

By plugging these estimates in Theorem 1.9 of [1], we obtain the result. �

Lemma 6.4. There exists a constant 𝐶 > 0 which depends only on the geometry and on 𝑢 and a constant
𝜇 ∈ (0, 1) which depends only on the geometry such that

‖𝑢𝜀 − 𝑢‖𝐻1(𝐺) ≤ 𝐶 𝜀𝜇.

Proof. We start again from the system (6.6) satisfied by the function 𝑢𝜀 − 𝑢 in Ω. Let us consider some 𝑥0 ∈ Γ
and a sufficiently small 𝑟 > 0 such that Γ0 = Γ ∩ 𝐵(𝑥0, 𝑟) is the interior of a segment. We have that, by using
a trace inequality,

‖𝜕𝜈(𝑢𝜀 − 𝑢)‖𝐿2(Γ0) = ‖𝜕𝜈𝜆𝜀‖𝐿2(Γ0) ≤ 𝐶 ‖𝜆𝜀‖𝐻3/2(𝜔0),
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where 𝜔0 = Ω ∩𝐵(𝑥0, 𝑟). Then, by interpolation

‖𝜆𝜀‖𝐻3/2(𝜔0) ≤ 𝐶 ‖𝜆𝜀‖1/2𝐻1(𝜔0)
‖𝜆𝜀‖1/2𝐻2(𝜔0)

.

Now, the estimates of 𝜆𝜀 given by Theorems 1.4 and 2.2 provide

‖𝜆𝜀‖𝐻1(𝜔0) ≤ 𝐶
√
𝜀, ‖𝜆𝜀‖𝐻2(𝜔0) ≤ 𝐶.

We end up with
‖𝜕𝜈(𝑢𝜀 − 𝑢)‖𝐿2(Γ0) ≤ 𝐶 𝜀1/4.

Plugging the estimates

‖𝑢𝜀 − 𝑢‖𝐻1(Ω) ≤ 𝐶, ‖∆(𝑢𝜀 − 𝑢)‖𝐿2(Ω) ≤ 𝐶 𝜀, ‖𝜕𝜈(𝑢𝜀 − 𝑢)‖𝐿2(Γ0) ≤ 𝐶 𝜀1/4

in Propositions 2.3 (propagation of smallness from a subpart of the boundary to the interior of the domain)
and 2.2 (interior propagation of smallness) in [5], we obtain the result. �

Remark 6.5. Our analysis does not provide a uniform bound of ‖𝑢𝜀−𝑢‖𝐻𝑠(Ω) with respect to 𝜀 for some 𝑠 > 1.
Such uniform bound is required when trying to propagate smallness from the interior up to the boundary (see
Prop. 2.4 in [5]). This is why a stability estimate for ‖𝑢𝜀 − 𝑢‖𝐻1(Ω) can not be obtained from what precedes.

In conclusion, by gathering (6.3)–(6.5), we end up with the final estimate

‖𝑢𝛿𝜀,ℎ − 𝑢‖𝐻1(Ω) ≤ 𝐶
𝛿√
𝜀

+ 𝐶
ℎ𝑠−1

𝜀
+ 𝜂(𝜀), (6.7)

where 𝑠 is given in the statement of Theorem 3.1 and 𝜂 converges to 0 when 𝜀 tends to 0 at best with a
logarithmic convergence rate in view of Lemma 6.3. An important application of the estimate (6.7) is that when
𝛿 → 0, we have to choose 𝜀 = 𝜀(𝛿) and ℎ = ℎ(𝜀) such that

lim
𝛿→0

𝛿√︀
𝜀(𝛿)

= 0, lim
𝜀→0

ℎ𝑠−1(𝜀)
𝜀

= 0

in order to obtain a good approximation of the exact solution from noisy data and by using our FEM.

Remark 6.6. Taking Lemma 6.4 into account, the estimate (6.7) is slightly improved in the truncated
domain 𝐺:

‖𝑢𝛿𝜀,ℎ − 𝑢‖𝐻1(𝐺) ≤ 𝐶

(︂
𝛿√
𝜀

+
ℎ

𝜀
+ 𝜀𝜇

)︂
, (6.8)

where the exponent of ℎ is 1 because the domain 𝐺 excludes all the corners (we use a slight adaptation of
Theorem 2.2).

6.2. Numerical illustrations

In this paragraph, we present the results of preliminary numerical experiments we conducted to illustrate
certain features of the estimate (6.7). We set

Ω = (0, 1)× (0, 1) and Γ = ({0} × (0, 1)) ∪ ({1} × (0, 1)) ∪ ((0, 1)× {0}),

as well as 𝑓 = −∆𝑢, where
𝑢(𝑥, 𝑦) = (sin(𝑥) sin(1− 𝑥) sin(𝑦))2.

Note that the function 𝑢 satisfies 𝑢 = 𝜕𝜈𝑢 = 0 on Γ. As a consequence, 𝑢 is the solution of the Cauchy problem
(1.6). Then for a given small 𝜀 > 0, we numerically approximate the solution of the mixed formulation of
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Figure 4. Curves ‖𝑢𝜀,ℎ − 𝑢‖𝐻1(Ω) with respect to ℎ for 𝜀 = 10−5, 𝜀 = 10−6 and 𝜀 = 10−7.

quasi-reversibility (1.7) using a P1 FEM. To proceed, we use the library FreeFem++3. This gives us a numerical
solution 𝑢𝜀,ℎ where ℎ corresponds to the mesh size. The mesh of the domain Ω is structured and composed
of triangles that are all the same. We emphasize that in order to interpret the results more easily, that is to
analyze the conjugate effects of 𝜀 and ℎ on the error, we take 𝑓𝛿 = 𝑓 . In other words, we work with noiseless data.

In Figure 4, we have displayed the curve ‖𝑢𝜀,ℎ − 𝑢‖𝐻1(Ω) as a function of ℎ for different values of 𝜀. Given
the geometry considered here, Theorem 3.1 ensures that we can take 𝑠 = 2 in (6.7). As a consequence, we have
the theoretical estimate

‖𝑢𝜀,ℎ − 𝑢‖𝐻1(Ω) ≤ 𝐶
ℎ

𝜀
+ 𝜂(𝜀), (6.9)

where the function 𝜂 is not known but at best logarithmic (see the discussion above). We observe that ‖𝑢𝜀,ℎ −
𝑢‖𝐻1(Ω) is a function that decreases as ℎ tends to zero. However, such function seems linear for small values
of 𝜀 and turns out to be a constant for large values of 𝜀 in the region where ℎ is small (see the left curve of
Fig. 4). An attempt to explain such phenomenon is the following: for small values of 𝜀, the first term in the
right-hand side of (6.9) is much larger than the second one, so that the linearity with respect to ℎ is visible.
This is confirmed, looking at the vertical scales indicated on the figure, by the fact that the maximal error is
increasing when 𝜀 is decreasing. For large values of 𝜀, the second term becomes dominant and does not depend
on ℎ, which explains why a threshold is visible.

Such effect can be attenuated if we truncate the domain close to the boundary 𝜕Ω ∖ Γ = (0, 1) × {1}, that
is where the data are unknown. Indeed, as we can see on Figure 5, the numerical errors create some instability
close to that part of the boundary.

In Figure 6, we set 𝐺̃ = (0, 1) × (0, 0.9) (interior domain) and we represent the curve ‖𝑢𝜀,ℎ − 𝑢‖𝐻1(𝐺̃) as a
function of ℎ for different values of 𝜀. In that case, adapting a bit (6.8) (because Γ has some corners but angles
are right angles), we obtain the theoretical estimate

‖𝑢𝜀,ℎ − 𝑢‖𝐻1(𝐺̃) ≤ 𝐶

(︂
ℎ

𝜀
+ 𝜀𝜇

)︂
(6.10)

for some positive 𝜇. In this situation, in agreement with (6.10), we observe that the linear behaviour with
respect to ℎ as ℎ tends to zero appears quite clearly, because the first term in the right-hand side of (6.10) is
not absorbed by the second one any more, for all values of 𝜀 that we consider. This may be due to the fact that
the Hölder estimate 𝐶 𝜀𝜇 is much smaller than the estimate 𝜂(𝜀), which is at best logarithmic.

Finally, in Figure 7 we show the curves ‖𝑢𝜀,ℎ − 𝑢‖𝐻1(Ω) (left) and ‖𝑢𝜀,ℎ − 𝑢‖𝐻1(𝐺̃) (right) with respect to
log 𝜀 for a given ℎ, by using the same horizontal and vertical scales. In accordance with (6.9) and (6.10), we

3FreeFem++, http://www.freefem.org/ff++/.

http://www.freefem.org/ff++/
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Figure 5. Exact solution 𝑢 (left) and error 𝑢𝜀,ℎ − 𝑢 (right) for 𝜀 = 10−8, ℎ ≈ 7.1× 10−3.
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Figure 6. Curves ‖𝑢𝜀,ℎ − 𝑢‖𝐻1(𝐺̃) with respect to ℎ for 𝜀 = 10−5, 𝜀 = 10−6 and 𝜀 = 10−7.
Here 𝐺̃ = (0, 1)× (0, 0.9).
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Figure 7. Curves ‖𝑢𝜀,ℎ − 𝑢‖𝐻1(Ω) (left) and ‖𝑢𝜀,ℎ − 𝑢‖𝐻1(𝐺̃) (right) with respect to log 𝜀 for
ℎ ≈ 8.3× 10−3.
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observe that for a fixed ℎ, when 𝜀 decreases to zero, the errors firstly improve and secondly deteriorate. This is
especially observable for the error in Ω (left picture).

Appendix A. A basic uniform estimate

For 𝜆 ∈ C, we introduce the symbol J (𝜆) : 𝒟(J ) −→ 𝐿2(0, 𝜔) where

𝒟(J ) = {𝑢 ∈ 𝐻1
0,0(0, 𝜔) ∩𝐻2(0, 𝜔), 𝑑𝜃𝑢(𝜔) = 0}

and
J (𝜆)𝜙 = −(𝜆2 + 𝑑2

𝜃)𝜙.

The goal of the appendix is to establish the following result.

Proposition A.1. If Re𝜆 /∈ {(𝜋/2 + 𝑛𝜋)/𝜔, 𝑛 ∈ Z}, then J is an isomorphism and if 𝜙 ∈ 𝒟(J ) satisfies
J (𝜙) = 𝑔 ∈ 𝐿2(0, 𝜔), we have the estimate

‖𝑑2
𝜃𝜙‖𝐿2(0,𝜔) + |𝜆|2‖𝜙‖𝐿2(0,𝜔) ≤ 𝐶 ‖𝑔‖𝐿2(0,𝜔), (A.1)

where 𝐶 > 0 is independent of 𝑔 and Im𝜆.

To prove Proposition A.1, we need three lemmas. We first consider a simple situation when 𝜆 is purely imaginary.

Lemma A.2. If 𝜆 = 𝑖𝜏 , 𝜏 ∈ R, the mapping J is an isomorphism and if 𝜙 ∈ 𝒟(J ) satisfies J (𝜙) = 𝑔 ∈
𝐿2(0, 𝜔), we have

‖𝑑2
𝜃𝜙‖𝐿2(0,𝜔) + |𝜆|2‖𝜙‖𝐿2(0,𝜔) ≤ 3 ‖𝑔‖𝐿2(0,𝜔).

Proof. For 𝜆 = 𝑖𝜏 with 𝜏 ∈ R, due to the Lax–Milgram lemma and Poincaré inequality, for all 𝑔 ∈ 𝐿2(0, 𝜔)
there exists a unique 𝜙 ∈ 𝐻1

0,𝜔(0, 𝜔) such that (𝜏2 − 𝑑2
𝜃)𝜙 = 𝑔 and 𝑑𝜃𝜙(𝜔) = 0. Then 𝑑2

𝜃𝜙 = 𝜏2𝜙− 𝑔 ∈ 𝐿2(0, 𝜔).
Hence J (𝜆) is invertible and continuous. From the Banach theorem, J (𝜆) is an isomorphism. More precisely,
the Lax–Milgram lemma implies that

‖𝑑𝜃𝜙‖2𝐿2(0,𝜔) + |𝜆|2‖𝜙‖2𝐿2(0,𝜔) = (𝑔, 𝜙)𝐿2(0,𝜔),

in particular
|𝜆|2‖𝜙‖𝐿2(0,𝜔) ≤ ‖𝑔‖𝐿2(0,𝜔).

Since in addition 𝑑2
𝜃𝜙 = 𝜏2𝜙− 𝑔, we have

‖𝑑2
𝜃𝜙‖𝐿2(0,𝜔) ≤ |𝜆|2‖𝜙‖𝐿2(0,𝜔) + ‖𝑔‖𝐿2(0,𝜔) ≤ 2 ‖𝑔‖𝐿2(0,𝜔),

which completes the proof. �

We will say that 𝜆 ∈ C is an eigenvalue of J if Ker J (𝜆) ̸= {0}. We have the following lemma.

Lemma A.3. For all 𝜆 ∈ C, J (𝜆) : 𝒟(J ) −→ 𝐿2(0, 𝜔) is an isomorphism if and only if 𝜆 is not one of the
𝜆𝑛 = (𝜋/2 + 𝑛𝜋)/𝜔, 𝑛 ∈ Z.

Proof. Lemma A.2 indicates that the result is true for any 𝜆 ∈ 𝑖R. It follows from the analytic Fredholm
theorem that J (𝜆) : 𝒟(J ) −→ 𝐿2(0, 𝜔) is an isomorphism if and only if 𝜆 is not an eigenvalue of J . It is
straightforward that the eigenvalues of J are 𝜆𝑛 = (𝜋/2 + 𝑛𝜋)/𝜔, 𝑛 ∈ Z, the corresponding eigenfunctions
being given by 𝜙𝑛(𝜃) = sin((𝜋/2 + 𝑛𝜋)𝜃/𝜔). The result follows. �

We now consider a situation where 𝜆 is no longer purely imaginary.
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Lemma A.4. There exists a real positive constant 𝛿 such that for all 𝜆 ∈ C satisfying

|Re𝜆| < 𝛿 |Im𝜆|,

the operator J is an isomorphism and if 𝜙 ∈ 𝒟(J ) satisfies J (𝜆)𝜙 = 𝑔 ∈ 𝐿2(0, 𝜔), then

‖𝑑2
𝜃𝜙‖𝐿2(0,𝜔) + |𝜆|2‖𝜙‖𝐿2(0,𝜔) ≤ 4 ‖𝑔‖𝐿2(0,𝜔).

Proof. We already know from Lemma A.2 that the result holds for 𝜆 ∈ 𝑖R. Now let us consider the case when
𝜆 /∈ 𝑖R. We write 𝜆 as 𝜆 = ±𝑖|𝜆|e𝑖𝜓 for 𝜓 ∈ (−𝜋/2, 𝜋/2). Set 𝜆̃ = ±𝑖|𝜆|. Since |𝜆| = |𝜆̃|, we have

‖𝑑2
𝜃𝜙‖𝐿2(0,𝜔) + |𝜆|2‖𝜙‖𝐿2(0,𝜔) = ‖𝑑2

𝜃𝜙‖𝐿2(0,𝜔) + |𝜆̃|2‖𝜙‖𝐿2(0,𝜔).

Let us define 𝑔 = J (𝜆̃)𝜙. According to Lemma A.2, we have

‖𝑑2
𝜃𝜙‖𝐿2(0,𝜔) + |𝜆|2‖𝜙‖𝐿2(0,𝜔) ≤ 3 ‖𝑔‖𝐿2(0,𝜔).

We have that
‖𝑔‖𝐿2(0,𝜔) ≤ ‖𝑔‖𝐿2(0,𝜔) + ‖𝑔 − 𝑔‖𝐿2(0,𝜔)

and
‖𝑔 − 𝑔‖𝐿2(0,𝜔) = ‖J (𝜆̃)𝜙−J (𝜆)𝜙‖𝐿2(0,𝜔) ≤ |𝜆̃2 − 𝜆2|‖𝜙‖𝐿2(0,𝜔).

We obtain that
‖𝑔 − 𝑔‖𝐿2(0,𝜔) ≤ |e2𝑖𝜓 − 1|2|𝜆|2‖𝜙‖𝐿2(0,𝜔).

For all 𝜀 > 0, there exist 𝛿 small enough such that ‖𝑔 − 𝑔‖𝐿2(0,𝜔) ≤ 𝜀|𝜆|2‖𝜙‖𝐿2(0,𝜔). By choosing 3𝜀 = 1/4 we
eventually obtain the result. �

Proof of Proposition A.1. Lemma A.4 implies that for all 𝜆 ∈ C such that Re𝜆 = 𝛽 and |Im(𝜆)| ≥ 𝜈𝛽 , we have
the estimate

‖𝑑2
𝜃𝜙‖𝐿2(0,𝜔) + |𝜆|2‖𝜙‖𝐿2(0,𝜔) ≤ 𝐶 ‖𝑔‖𝐿2(0,𝜔),

where 𝐶 > 0 is independent of 𝜆, 𝑔 and 𝜈𝛽 depends only on 𝛽. For 𝜆 ∈ [𝛽 − 𝑖𝜈𝛽 , 𝛽 + 𝑖𝜈𝛽 ], the symbol J (𝜆)
is invertible according to Lemma A.3. The analytic Fredholm theorem guarantees that the inverse operator
𝜆 ↦→ J (𝜆)−1 is continuous outside of its poles. Since the segment [−𝛽 − 𝑖𝜈𝛽 ,−𝛽 + 𝑖𝜈𝛽 ] is compact, we deduce
that the above estimate remains true for all 𝜆 such that Re𝜆 = 𝛽 with a constant 𝐶 which depends neither on
𝑔 nor Im𝜆. �

Appendix B. Proofs of Lemmas B.1 and B.2

In order to prove Lemmas B.1 and B.2, we will need the following formulas, which hold for any 𝜆 ∈ C and
𝜃 ∈ R,

cos(𝜆𝜃) = cos(Re(𝜆)𝜃) cosh(Im(𝜆)𝜃)− 𝑖 sin(Re(𝜆)𝜃) sinh(Im(𝜆)𝜃)

and
sin(𝜆𝜃) = sin(Re(𝜆)𝜃) cosh(Im(𝜆)𝜃) + 𝑖 cos(Re(𝜆)𝜃) sinh(Im(𝜆)𝜃).

They imply
| sin(𝜆𝜃)|2 = (cosh(2Im(𝜆)𝜃)− cos(2Re(𝜆)𝜃))/2 (B.1)

and
| cos(𝜆𝜃)|2 = (cosh(2Im(𝜆)𝜃) + cos(2Re(𝜆)𝜃))/2. (B.2)

In the following lemmas, we give the proof of two technical results needed in the previous analysis.
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Lemma B.1. Assume that 𝛽 /∈ {(𝜋/2 + 𝑛𝜋)/𝜔, 𝑛 ∈ Z}. There is a constant 𝐶 > 0 independent of 𝜀 > 0,
𝜆 = 𝛽 + 𝑖𝜏 ∈ ℓ𝛽 such that

e2|𝜏 |𝜔

|1 + 𝜀 cos2(𝜆𝜔)|2
≤ 𝐶/𝜀. (B.3)

Proof. Observing that e2|𝜏 |𝜔 ≤ 4 cosh(𝜏𝜔)2, we see that to establish (B.3), it is sufficient to show that there is
some 𝜂 > 0 such that

𝜂
√
𝜀 cosh(𝜏𝜔)

|1 + 𝑖
√
𝜀 cos(𝜆𝜔)|2

𝜂
√
𝜀 cosh(𝜏𝜔)

|1− 𝑖
√
𝜀 cos(𝜆𝜔)|2

≤ 1. (B.4)

We will study the two factors on the left hand side of (B.4) proving that for 𝜂 > 0 small enough they are both
smaller than one. Let us consider the first one. A direct computation gives

|1 + 𝑖
√
𝜀 cos(𝜆𝜔)|2 = 𝜀 cos(𝛽𝜔)2 cosh(𝜏𝜔)2 + (1 +

√
𝜀 sin(𝛽𝜔) sinh(𝜏𝜔))2. (B.5)

Define the polynomial function 𝑃 such that

𝑃 (𝑋) = 𝑋2 cos(𝛽𝜔)2 cosh(𝜏𝜔)2 + (1 +𝑋 sin(𝛽𝜔) sinh(𝜏𝜔))2 − 𝜂𝑋 cosh(𝜏𝜔).

We see that the first factor on the left hand side of (B.4) is smaller than one as soon as 𝑃 is positive on R.
Since 𝑃 (0) = 1 > 0, it is sufficient to show that its discriminant is negative. We find

∆𝑃 = (2 sin(𝛽𝜔) sinh(𝜏𝜔) + 𝜂 cosh(𝜏𝜔))2 − 4(cos(𝛽𝜔)2 cosh(𝜏𝜔)2 + sin(𝛽𝜔)2 sin(𝜏𝜔)2)
=
(︁

(𝜂2 − 4 cos(𝛽𝜔)2) cosh(𝜏𝜔) + 4𝜂 sin(𝛽𝜔) sinh(𝜏𝜔)
)︁

cosh(𝜏𝜔).

Observing that | sinh(𝜏𝜔)| < cosh(𝜏𝜔), we can write

(𝜂2 − 4 cos(𝛽𝜔)2) cosh(𝜏𝜔) + 4𝜂 sin(𝛽𝜔) sinh(𝜏𝜔)
≤ (𝜂2 + 4𝜂| sin(𝛽𝜔)| − 4 cos(𝛽𝜔)2) cosh(𝜏𝜔).

Therefore, since cos(𝛽𝜔) ̸= 0 when 𝛽 /∈ {(𝜋/2+𝑛𝜋)/𝜔, 𝑛 ∈ Z}, we see that we can find 𝜂 > 0 small enough (but
independent of 𝜏) such that ∆𝑃 < 0. This shows that the first factor on the left hand side of (B.4) is smaller
than one. A completely similar approach allows one to prove that the second factor is also smaller than one. As
a consequence, (B.4) is satisfied for 𝜂 small enough and so is (B.3). �

Lemma B.2. Assume that 𝛽 /∈ {(𝜋/2 + 𝑛𝜋)/𝜔, 𝑛 ∈ Z}. There is a constant 𝐶 > 0 independent of 𝜀 > 0,
𝜆 = 𝛽 + 𝑖𝜏 ∈ ℓ𝛽 such that

𝜀2e4|𝜏 |𝜔

|1 + 𝜀 cos2(𝜆𝜔)|2
≤ 𝐶. (B.6)

Proof. As in the proof of Lemma B.1, one can check that it is sufficient to show that there is some 𝜂 > 0 such
that

𝜂𝜀 cosh(𝜏𝜔)2

|1 + 𝑖
√
𝜀 cos(𝜆𝜔)|2

𝜂𝜀 cosh(𝜏𝜔)2

|1− 𝑖
√
𝜀 cos(𝜆𝜔)|2

≤ 1. (B.7)

In (B.5), we obtained

|1± 𝑖
√
𝜀 cos(𝜆𝜔)|2 = 𝜀 cos(𝛽𝜔)2 cosh(𝜏𝜔)2 + (1∓

√
𝜀 sin(𝛽𝜔) sinh(𝜏𝜔))2. (B.8)

Therefore, we can write

|1± 𝑖
√
𝜀 cos(𝜆𝜔)|2 − 𝜂𝜀 cosh(𝜏𝜔)2

= 𝜀(cos(𝛽𝜔)2 − 𝜂) cosh(𝜏𝜔)2 + (1∓
√
𝜀 sin(𝛽𝜔) sinh(𝜏𝜔))2 > 0

for 𝜂 small enough. This is enough to conclude. �
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[23] J. Hadamard, Sur les problèmes aux dérivées partielles et leur signification physique. Princeton Univ. Bull. (1902) 49–52.

[24] A.M. Il’in, Matching of asymptotic expansions of solutions of boundary value problems. In: Vol. 102 of Translations of Math-
ematical Monographs. AMS, Providence, RI (1992).

[25] T. Johansson, An iterative procedure for solving a Cauchy problem for second order elliptic equations. Math. Nachr. 272
(2004) 46–54.

[26] A. Kirsch, The Robin problem for the Helmholtz equation as a singular perturbation problem. Numer. Func. Anal. Opt. 8
(1985) 1–20.

[27] M.V. Klibanov and F. Santosa, A computational quasi-reversibility method for Cauchy problems for Laplace’s equation. SIAM
J. Appl. Math. 51 (1991) 1653–1675.

[28] V.A. Kondratiev, Boundary-value problems for elliptic equations in domains with conical or angular points. Trans. Moscow
Math. Soc. 16 (1967) 227–313.

[29] V.A. Kozlov, V.G. Maz’ya and J. Rossmann, Elliptic boundary value problems in domains with point singularities. In: Vol. 52
of Mathematical Surveys and Monographs. AMS, Providence (1997).

[30] V.A. Kozlov, V.G. Maz’ya and J. Rossmann, Spectral problems associated with corner singularities of solutions to elliptic
equations. In: Vol. 85 of Mathematical Surveys and Monographs. AMS, Providence (2001).
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