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ON QUASI-REVERSIBILITY SOLUTIONS TO THE CAUCHY PROBLEM FOR
THE LAPLACE EQUATION: REGULARITY AND ERROR ESTIMATES

LAURENT BOURGEOIS!™ AND Lucas CHESNEL?

Abstract. We are interested in the classical ill-posed Cauchy problem for the Laplace equation. One
method to approximate the solution associated with compatible data consists in considering a family
of regularized well-posed problems depending on a small parameter € > 0. In this context, in order to
prove convergence of finite elements methods, it is necessary to get regularity results of the solutions to
these regularized problems which hold uniformly in . In the present work, we obtain these results in
smooth domains and in 2D polygonal geometries. In presence of corners, due to the particular structure
of the regularized problems, classical techniques a la Grisvard do not work and instead, we apply the
Kondratiev approach. We describe the procedure in detail to keep track of the dependence in ¢ in all
the estimates. The main originality of this study lies in the fact that the limit problem is ill-posed in
any framework.
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1. INTRODUCTION AND SETTING OF THE PROBLEM

Let us consider a bounded Lipschitz domain €2 C R?, d > 1, the boundary 9 of which is partitioned into
two sets I' and I". More precisely, I' and I' are non empty open sets for the topology induced on 9f) from the

topology on R4, Q0 =TUT and TNT = 0 (see Fig. 1). The Cauchy problem we are interested in consists, for
some data (go,g1) € H'/?(I') x H-'/2(T"), in finding u € H'(Q) such that

Au=0 in Q
U= go on T (1.1)
dyu=g¢gy on T,

where v is the outward unit normal to . This kind of problem arises when some part T' of the boundary of a
structure is not accessible, while the complementary part I' is the support of measurements which provide the
Cauchy data (go, g1). It is important to note that in practice those measurements are contaminated by some
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FiGURE 1. Examples of domains €2. The thick blue lines represent the support of measurements.

noise. Due to Holmgren’s theorem, the Cauchy problem (1.1) has at most one solution. However it is ill-posed in
the sense of Hadamard: existence may not hold for some data (go, g1), as for example shown in [3]. A possibility
to regularize problem (1.1) is to use the quasi-reversibility method, which goes back to [31] and was revisited in
[27]. The original idea was to replace an ill-posed Boundary Value Problem such as (1.1) by a family, depending
on a small parameter ¢, of well-posed fourth-order BVPs. Much later, the first author introduced the notion of
mixed formulation of quasi-reversibility for the Cauchy problem of the Laplace equation [4]. This notion was
extended to general abstract linear ill-posed problems in [7]. The idea is to replace the ill-posed second-order
BVP by a family, again depending on a small parameter e, of second-order systems of two coupled BVPs: the
advantage is that the order of the regularized problem is the same as the original one, which is interesting when
it comes to the numerical resolution. The price to pay is the introduction of a second unknown function A, in
addition to the principal unknown u.. Such mixed formulation of quasi-reversibility is the following: for € > 0,
find (ue, Ac) € Vg, Vp such that for all (v, ) € Vo x Vo,

5/ VuE~Vvdx—|—/ Vo -VA.dex =0

$ & (1.2)
/ qu . Vudz —/ V/\E . V[Ldl‘ = <gl,ﬂ>H_1/2(F)’H1/2(F),

Q Q

where V,, = {u € H'(Q), ulr = go}, Vo = {u € H'(Q), ulr = 0} and Vy = {\ € H'(Q), Az = 0}. In (1.2), the
brackets stand for the duality pairing between H~1/2(T') and H/?(T'). Here H'/?(T') is the subspace formed by
the functions in H'/?(T") which, once extended by 0 on 99, remain in H'/2(9$). We observe that in view of
Poincaré inequality, the standard norm of H'(2) in the spaces V and Vo is equivalent to the semi-norm -1l

defined by [ - || = [, |V - |*dz. Let us denote (-,-) the corresponding scalar product. We remark that the weak
formulation (1.2) is equivalent to the strong problem

Au. =0 in Q
AN, =0 in Q
Ue = go on T
dyus —OyA. = g1 on r (1.3)
Ae=0 on 1:‘
educ +0,A=0 on T

)

where we observe that the two unknowns u. and \. are harmonic functions which are coupled at the boundary
092. We have the following theorem.

Theorem 1.1. For all (go,91) € HY2(T) x H~Y(T"), the problem (1.2) has a unique solution (uc,)\.) €
Vgo X Vo. There exists a constant C which depends only on the geometry such that

Ve e (0,1],  Veluella) + IXellz@) < Clllgoll ey + g1l a-1r2(ry)-
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If in addition we assume that (go, g1) is such that problem (1.1) has a (unique) solution u (the data are said to
be compatible), then there exists a constant C' which depends only on the geometry such that

Al (o)
NG

Ve >0, |luellmio) + < Cllull g

and
lim [Jue — ull 1) = 0.

To prove such theorem, we need the following lemma, which establishes an equivalent weak formulation to
problem (1.1) and which is proved in [7].

Lemma 1.2. For (go,91) € HY?(T) x H=Y/2(T), the function w is a solution to problem (1.1) if and only if
u € Vy, and for all p € Vo, we have

/QVu . V/L dr = <g1,,U>H71/2(F),g1/2(F)- (1‘4)

Proof of Theorem 1.1. Let us begin with the first part of the theorem. There exists a continuous lifting operator
go — U from HY?(T) to H'(Q) such that Ulr = go. Let us define 4. = u. — U € V. By replacing in (1.2), we
obtain that (&., A.) € Vo x Vj satisfies, for all (v, u) € Vh x Vj, the system

5/Vﬁg-Vvdx—i—/Vsz)\gdx:—e/VU-Vvdx

Q Q Q

/VﬂEVudxf/ V)\EV,udx: <g1,/L>H_1/2(F)7H1/2(F)*/ VUV,MdI
Q Q Q

Well-posedness then relies on the Lax—Milgram lemma applied to the coercive bilinear form

Ac(( s (0, ) = /

Vu~Vvdx+/
Q

VU~V)\d$*/
Q

Vu-Vudx+/ VA-Vude
Q Q

on Vy x V. Choosing v = 4, and u = A; and subtracting the two above equations, we obtain

5/ |Va€|2dx+/ |V)\E|2dx:—s/VU-Vﬁde—<gl,)\e>+/VU~V)\Ed:c.
Q Q Q Q

The Cauchy—Schwarz inequality implies
ellaell® + Il < el UMl + Ngrll -2y lIXell ey + IUIA]-

The equivalence of the norm || - || and the standard H'(Q) norm in spaces Vy and Vp, the continuity of the trace
operator and the continuity of the lifting operator gy — U yield

elliclFqy + Xy < Cellgoll ey lltellar) + (llgrllm-12wy + Cllgoll gz ) 1Al a1 )

Using the Young’s inequality to deal with the right hand side of the above inequality, the result follows. Let us
prove the second part of the theorem. In the case when the Cauchy data (g, g1) is associated with the solution
u, then wu satisfies the weak formulation (1.4). By subtracting (1.4) to the second equation of (1.2), we obtain
that for all u € Vp,

/ V(ua—u)-v,uda:—/ VA -Vudz =0. (1.5)
Q Q
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Now setting v = u. —u € Vp in the first equation of (1.2), setting p = A. € Vp in equation (1.5) and subtracting
the two obtained equations, we get

6/VuE-V(u8—u)dx—|—/ |VA:|? dz = 0.
Q Q

We deduce that the term (u,, uc —u) in the above sum is nonpositive, which from the Cauchy—Schwarz inequality
implies that ||u|| < ||lu|| and then ||| < v/2|lu||. Hence there exists a constant C' such that

luell @) < Cllulla @) and Al m ) < CVellull g (o)

It remains to prove that u. — u in H'(Q) when ¢ — 0. The sequence (u.) is bounded in H!(£2). Therefore,
there exists a subsequence, still denoted (u.), such that u. — w in H*(Q2) when € — 0, with w € H*(Q2). Since
the affine space Vy, is convex and closed, it is weakly closed. This guarantees that w € V. Besides, by passing
to the limit in the second equation of (1.2) we obtain that w satisfies the weak formulation (1.4). Uniqueness
in problem (1.1) then implies that w = u, so that (u.) weakly converges to u in H'(). But

lue —ul|® = (ue,ue —u) — (u,ue —u) < —(u,ue — u),

so that weak convergence implies strong convergence. Lastly, a standard contradiction argument enables us to
conclude that all the sequence (u.) strongly converges to u in H*(£2). O

Remark 1.3. Let us mention that another type of mixed formulation of quasi-reversibility was introduced
n [20], in which the additional unknown lies in Hyg;, (Q2) instead of H!(Q). In addition, a notion of iterative
formulation of quasi-reversibility was introduced and analyzed in [19]. We believe that the quasi-reversibility
formulation (1.2) is the easiest one to handle to establish regularity results of the weak solutions.

The estimates of Theorem 1.1 involve H'(€) norms of the regularized solution (uc, \.) in the case of a Lipschitz
domain Q and for the natural regularity of the Cauchy data (go, g1), that is H'/?(T") x H~/2(T). These estimates
were derived in two different cases: the data (go, g1) are compatible or not. The main concern of this paper is
to analyze, when the domain Q and the Cauchy data (go,g;) are more regular than Lipschitz and H'/?(T) x
H~'/2(T"), respectively, the additional regularity of the solution (u., A. ), whether the data (go, g1) are compatible
or not. We also want to obtain estimates in the corresponding norms. In order to simplify the analysis, the
additional regularity of the data (go, g1) is formulated in the following way: we assume that (go, g1) is such that
there exists a function U in H?(Q) with (U|r,d,U|r) = (go,91) and that we can define a continuous lifting
operator (go,g1) — U. Denoting f = AU € L*(Q) and considering the new translated unknown u — U — u, the
initial Cauchy problem (1.1) can be transformed into a homogeneous one (however still ill-posed): for f € L?(Q),
find u € H'(2) such that

—Au=f in Q
u=0 on T (1.6)
o,u=0 on T

We emphasize that this regularity assumption made on the data is not an assumption of regularity of the
solution u. It is simple to construct smooth data in the sense above such that the corresponding w is only in
H'() and not in H?(Q2). The mixed formulation of quasi-reversibility for problem (1.6) takes the following
form: for e > 0, find (u., A;) € V % V, such that for all (v, ) € Vi X Vo,

/Vug Vvdx+/Vv VAedr =0

/Vu8 Vud:r—/V)\ V,udac-/fudx
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Note that the strong equations corresponding to problem (1.7) are

—(14+e)Au. = f in Q
—(14+e)AX.=—cf in Q
us =0 on T
Oy — Oy e =0 on I (1.8)
Ae =0 on T
r.

gaVuE + ay/\g = O on
The analog of Theorem 1.1, the proof of which is skipped, is the following.

Theorem 1.4. For all f € L*() and & > 0, the problem (1.7) has a unique solution (ue,\.) € Vo x Viy. There
ezists a constant C' which depends only on the geometry such that

Ve € (0,1, Velucllar + Xl < Cllflliza)- (1.9)

If in addition we assume that f is such that problem (1.6) has a (unique) solution u, then there exists a constant
C which depends only on the geometry such that

[ Aellm ()
NG

Ve >0, |luclmo) + < Cllulla (o) (1.10)
and
lim [[ue — ullm1() = 0.

The objective is now to study the regularity of the solution (uc,A:) to problem (1.7) and to complete the
statements (1.9) and (1.10) of Theorem 1.4 by giving estimates in stronger norms. One objective, as will be seen
in Section 6, is the following. In practice, one has to solve problem (1.7) in the presence of two approximations.
Firstly, the data f is altered by some noise of amplitude §. Secondly, the problem (1.7) is discretized, for instance
with the help of a Finite Element Method (FEM) based on a mesh of size h. It is then desirable to estimate
the error between the approximated solution and the exact solution as a function of €, § and h. Such error
estimate for the H'(£) norm needs the solution to be in a Sobolev space H*(2), with s > 1. It could be noted
that in a recent contribution [13] (see also [9-12]), a discretized method was proposed in order to regularize the
Cauchy problem (1.1) in the presence of noisy data without introducing a regularized problem such as (1.7)
at the continuous level. In some sense, the method of [13] relies on a single asymptotic parameter, that is h,
instead of two in our method, that is € and h. However, we believe that from the theoretical point of view, the
regularity of quasi-reversibility solutions is an interesting problem in itself. To our best knowledge, it has never
been investigated up to now. The difficulty stems from the fact that we analyze the regularity of a problem
involving a small parameter £ which degenerates when ¢ tends to 0. There are other contributions (see e.g.
[15, 16,18, 26, 35, 36]) where regularity results or asymptotic expansions are obtained in situations where the
limit problem has a different nature from the regularized one. For example in [18], the authors study a mixed
Neumann-Robin problem where the small parameter ¢ is the inverse of the Robin coefficient. But while both
the perturbed problem and the limit one are well-posed in [18], only the perturbed problem is well-posed in
our case, the limit problem being ill-posed (in any framework). Our contribution is original in this sense. In the
present work, we study the regularity of the solution of the regularized problem as € tends to zero. We emphasize
that computing an asymptotic expansion of the solution with respect to ¢ and proving error estimates (e.g. as
in [24,33]) remains an open problem, the reason being that, due to the ill-posedness of the limit problem, no
result of stability can be easily established.

Our paper is organized as follows. First we consider the simple case of a smooth domain in Section 2, where
classical regularity results (see e.g. [8]) can be used. The case of the polygonal domain is introduced in Section 3,
where we also analyze the regularity of the quasi-reversibility solution in corners delimited by two edges of I' or
two edges of I. In this case, the regularity of functions u. and \. can be analyzed separately with the help of the
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classical regularity results of [22] in a polygon for the Laplace equation with Dirichlet or Neumann boundary
conditions. In Section 5 we consider the more difficult case of a corner of mixed type, that is delimited by one
edge of T and one edge of I'. This analysis relies on the Kondratiev approach [28], which is based on some
properties of weighted Sobolev spaces which are recalled in Section 4. Section 6 is dedicated to the application
of our regularity results to derive some error estimate between the exact solution and the quasi-reversibility
solution in the presence of two perturbations: noisy data and discretization with the help of a FEM. We also try
to illustrate our error estimate by presenting a numerical example. Two appendices containing technical results,
which are used in Section 5, complete the paper. The main results of this article are Theorem 2.2 (uniform
regularity estimates in smooth domains), Theorem 3.1 (uniform regularity estimates in 2D polygonal domains)
and the final approximation analysis of Section 6.

2. THE CASE OF A SMOOTH DOMAIN

Let us first assume that Q is a domain of class C*1. If (go,g1) € H?/?(T') x HY?(T), then there exists a
function U € H?(Q) such that (Ul|r,d,U|r) = (go,91) and even a continuous lifting operator (go, g1) — U
from H3/?(T') x HY/?(T) to H?(Q) (see Thm. 1.5.1.2 in [21]). We are therefore in the situation described in the
Section 1, where the problem to solve is (1.6). We begin with an interior regularity result.

Proposition 2.1. For f € L*(Q), the solution (uc,\.) € Vo x Vi to the problem (1.7) is such that for all
¢ € 6°(Q), Cue and (e belong to H2(Y) and there exists a constant C' > 0 which depends only on the
geometry such that

Ve € (0,1],  VellCuelluz) + Il m2(0) < CllfllL2()-
If in addition f is such that problem (1.6) has a solution u, then

[N
Ve € (0,1, |[Cuellme(q) + @) N 9D < Clullman,

where the norm || - | g1 (a,q) is defined by

||u||?—11(A,Q) = ||U||%11(Q) + ||AU||%2(Q)-
Proof. From the first equation of (1.8), we have that

—A(Cue) 4 Cue = (—AC + Que — 2V¢ - Vu + g% = F..

Clearly F. € L?(R9), which by using the Fourier transform implies that

ICucll g2y = | Fell L2 (re),

and hence
||Cus||H2(Q) = ||FsHL2(Q) < C(H“e“Hl(Q) + ||fHL2(Q))~

From (1.9) we obtain that
VellCuell a2y < Cll fllz2 -

If in addition f is such that problem (1.6) has a (unique) solution u, from (1.10) we obtain
[Cuellr2(0) < Cllullmr(an)-
The estimates of (A, are obtained following the same lines. O
0

Let us now establish a global regularity estimate (up to the boundary) in the restricted case when I' N I =
(see Fig. 1 right).
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Theorem 2.2. For f € L?*(Q), the solution (us, \.) € Vo x Vi to the problem (1.7) is such that u. and A
belong to H?(Q) and there exists a constant C > 0 which depends only on the geometry such that

Ve € (0,1],  ellucllaz) + Velrellmz@) < Cliflizz@)-

If in addition f is such that problem (1.6) has a solution u, then
Ve € (0,1], Veluelluz(o) + [IAellm2(0) < Cllullm a,0)-

Proof. Given I' N T = (), we may find two infinitely smooth functions ¢ and ¢ such that (¢,¢) = (1,0) in a
vicinity of T" and (¢, ¢) = (0,1) in a vicinity of I'. We have from the first equation of (1.8),

f

—A(Cue) = —AQue — 2V( - Vu, + (o=

£

Since u. = 0 on I', from a standard regularity result for the Poisson equation with Dirichlet boundary condition
we obtain

[Cuell2(0) < CllFell2) < CUfll2@) + [luellmi@), (2.1)
and from (1.9) we have
VellCuell w2y < Cll fllLz)-
From a standard continuity result for the normal derivative and using that d,u. — d,A\c = 0 on I', we obtain

Velloudellgrremy = Vellduuel gimwy < Clifllcz @)

From the second equation of (1.8) we have

AN L2() < CellfllL2(0)-
Combining the two previous estimates with the fact that A. =0 on r implies the regularity estimate

Veldellmz@) < Cllfllpzo)-
Reusing the second equation of (1.8), the estimate (1.9) and that A. = 0 on I leads to

ICANz2() < Cllf L2,
and using that €0, u. + 9, A =0 on I, we obtain

5||8VU6||H1/2(f) = Hau/\€||H1/2(f‘) < C||f||L2(Q)~
We conclude that
ellucll ) < CllfllL2()-

Now let us assume that f is such that problem (1.6) has a solution w. From (1.10) and (2.1) we now have the
better estimate

[Cuellm2(0) < Cllullr(o,a)-
Using that d,u. — 9, - = 0 on I', we obtain

100 Ac [ mrr2(ry < Cllulla a0

and then
[Aell 2 () < Cllullai(a,n)-
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S

FIGURE 2. An example of polygonal domain. Sy, Sy, S35 represent the three types of vertices
that we will study in Sections 3.2, 5, and 3.3, respectively.

Reusing the second equation of (1.8), the estimate (1.10) and that A. = 0 on T leads to
[N rr2 0y < CVENUll a1 (a0
Since £8,u. + 8,\. = 0 on I, we obtain
VellOuuell gayegry < Cllullm a,0)-
We conclude that \/e||uc|| g2 (o) < Cllullgr(a,0)- O

Remark 2.3. From Theorem 1.1 and Proposition 2.1, we notice that in the interior of the domain, the H?
estimates are the same as the H' estimates, whether the data are compatible or not. However, from Theo-
rems 1.1 and 2.2, when it comes to the H? estimates in the whole domain, up to the boundary, one loses a /2
factor with respect to the H' estimates, whether the data are compatible or not.

3. THE CASE OF A POLYGONAL DOMAIN

3.1. Main result

From now on,  is a polygonal domain in dimension 2. Our motivation is indeed to obtain error estimates in the
context of the discretization with the help of a classical FEM: due to the meshing procedure in two dimensions,
in practice the computational domain is often a polygon. We use the same notations as in [22] to describe the
geometry of such a polygon. Let us assume that 99 is the union of segments I';, j = 1,..., N, where N is an
integer. Let us denote S; the vertex such that S; = I‘Tﬂ I'j+1, wj the angle between I'; and I'j 1 from the interior
of Q, 7; the unit tangent oriented in the counter-clockwise sense and v; the outward normal to 0€2. We assume
that T and T are formed by a finite number of edges, namely n and n, respectively, with n+n = N. Let us denote
H(T') the subset of functions (go, g1) € L*(T') x L*(T") such that (f;,9;) == (golr,,g1|r,) € H3/*(T';) x HY/*(T;),
Jj =1,...,n, with the following compatibility conditions at S;:

[i(S5) = fi+1(55)
Or, fj = — co8(w;) 0, fj+1 +sin(w;)gjr1  at S; (3.1)

95 = —sin(w;)0r; ., fi1 — cos(w;)g;1 at  S;

and the equivalence ¢; = ¢;1 at S; means that for small § > 0

/5 |¢j(2j(=0)) = ¢j1(z;(+0))]?
0

g

do < 400,
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where (o) denotes the point of 9Q which, for small enough |o| (say |o] < §), is at distance o (counted
algebraically) of S; along 9. More precisely, z;(c) € T'; if 0 < 0 and z;(0) € T'j+1 if ¢ > 0. It is proved in [22],
that for (go, g1) € H, there exists a function U € H?(f2) such that for each j = 1,...,n, (Ulr,,0,,Ulr;) = (f5,95)
and even a continuous lifting (go, g1) +— U from H to H?(Q2). We are hence again in the framework of Section 1,
where the problem to solve is (1.6).

Clearly, the interior estimates given by Proposition 2.1 are true in the polygonal domain since they are
independent of the regularity of the boundary. Let us now analyze the regularity up to the boundary. As done
n [22], the estimates are obtained by using a partition of unity, which enables us to localize our analysis in
three different types of corners (see Fig. 2):

— regularity at a corner delimited by two edges which belong to I', called a corner of type I,

— regularity at a corner delimited by two edges which belong to T, called a corner of type T,

— regularity at a corner delimited by one edge which belongs to I' and one edge which belongs to T, called a
corner of mixed type.

Let us denote by N¢ the set of j such that S; is either a vertex of type I' or a vertex of type I and Ny, the
set of j such that S; is a corner of mixed type. We wish to prove the following theorem, which is obtained by
gathering Propositions 2.1, 3.5, 3.6 and 5.12 hereafter.

Theorem 3.1. Let us take s¢ < minjen, (1 + m/wj) if there exists j € No such that w; > m and s¢ = 2
otherwise. Let us take sy < minjen,, (1 + m/(2w;)) if there exists j € Nas such that w; > /2 and sy = 2
otherwise. Let us denote s = min{sc, spr}.

For f € L2(Q) and & > 0, the solution (us, \.) € Vo x Vi to the problem (1.7) is such that u. and \. belong
to H5(Q)) and there exists a constant C > 0 which depends only on the geometry such that

Ve € (0,1],  ellucllms() + Vellrellmso) < ClfllLz)-

If in addition we assume that f is such that problem (1.6) has a (unique) solution u, then

Ve € (0,1],  Veluellgs ) + IXellae @) < Cllullara,o)-

Remark 3.2. The global estimates of Theorem 3.1 are obtained by gathering all the local estimates obtained
in Propositions 2.1, 3.5, 3.6 and 5.12. Each of these estimates are locally better than the global estimate of
Theorem 3.1.

3.2. Regularity at a corner of type I

The regularity of solutions u. and A, near a corner delimited by two edges which belong to I" can be analyzed
separately. They will be obtained by directly applying the results of [22] for Dirichlet and Neumann Laplacian
problems. Let us consider S; the vertex of a corner delimited by two edges I'; and I';; which belong to I'. Let
us denote (r;,0;) the local polar coordinates with respect to the point S; and (; € €°°(Q) a radial function
(depending only on ;) such that {; =1 for r; < a; and (; = 0 for r; > b;. We assume that b; is chosen such
that ¢; = 0 in a vicinity of all edges I'y, except for k = j or k = j + 1. In order to simplify notations, we skip the
reference to index j, denoting in particular S; = §, I'; = I'g and I'j;1 = I',,. Let us introduce the finite cone
K, = QN B(S,b). The two following lemmata are proved in [22].

Lemma 3.3. For F € L?(K,), the problem: find U € H*(K3) such that

{AUF in K, (3.2)

U=0 on 0K,

has a unique solution and there exists a unique constant c € R and a unique function V€ H*(K,) such that

U =cr™¥sin <7r9> + V.

w
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Moreover, there exists a constant C' > 0 such that
el + IVl m2x,) < ClFlL2()- (3.3)
In addition, if w < 7 then ¢ = 0.
Lemma 3.4. For F € L?(K,;), the problem: find U € H*(K}) such that
—AU=F in K,
U=0 on OB(S,b) NIOK, (3.4)
0,U=0 on (FOUFw)ﬂaKb

has a unique solution and there exists a unique constant ¢ € R and a unique function V€ H*(K,) such that
0
U =cr™“cos <7r) + V.
w

Moreover, there exists a constant C > 0 such that (3.3) holds. In addition, if w < 7 then ¢ = 0.

Proposition 3.5. Assume that S is the vertex of a corner of type I'. Let us consider s < 1 +7/w ifw>7 and
s = 2 otherwise. For f € L*(Q), the solution (us,\.) € Vo x Vg to the problem (1.7) is such that Cu. and (.
belong to H*(Q2) and there exists a constant C' > 0 which depends only on the geometry such that

Ve € (0,1],  Ve(l[Cuellm=a) + 1CA N m= ) < ClIflL20)-
If in addition f is such that problem (1.6) has a solution u, then
Ve € (0,1],  [[Cuellars() + [[CAell s () < Cllullar(a,n)-
Proof. From (1.8) we have that (u. satisfies problem (3.2) with

f

FE = —AC’U/E — 2VC . VUE + Cm

(3.5)

By using Lemma 3.3, we have that there exists a unique constant c. € R and a unique function V. € H?(Kj)
such that

C(r)ue = c. r™“ sin (f) + V.
and there exists a constant C' > 0 such that
lcel + IVellrz (k) < C I FelL2(xy)-
From (3.5), we deduce that we have
lee| + IVellm2() < Cllluella ) + [1f11L2())-

From Theorem 1.4.5.3 of [21], the function (r, ) — ((r)r™* sin(mf/w) belongs to H*(Q) for any s < 1 + 7/w.
We conclude from (1.9) that there exists a constant C' > 0 which depends only on the geometry such that, for
s<l+m/w,

VellSuellgz) < Cllfllez) if w<m
\/gHCUEHHS(Q) <C ||fHL2(Q) if w>m.
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We remark from (1.8) that the function d. = u. — A satisfies —Ad. = f in Q and d,d. = 0 on I'; which implies
that (d. satisfies problem (3.4) with

F. = —ACd. — 2VC - Vd. + (.

By using Lemma 3.4, we have that there exists a unique constant c. € R and a unique function V. € H?(Kj)
such that

0
Cde = cr™¥ cos <7r) + Ve
w
and there exists a constant C' > 0 such that
lee| + I Vellm2 k) < C I Fellz2(x,)-
We infer that
lce| + [IVellaz(r,) < Olldell i,y + 1 fllLzx)) < Clluellmrxy) + Al ) + 1 fllz2x))-

And we conclude from (1.9) that there exists a constant C' > 0 which depends only on the geometry such that

Vellldellaz) < Clfllzz if w<m
VelCdellms ) < Cllfllee  if w>m,

so that \e = d. — u. satisfies the same estimate. The case when f is such that there is a solution u to (1.6)
follows the same lines: it suffices to use estimate (1.10) instead of (1.9). O

3.3. Regularity at a corner of type r
We reuse the notations introduced in the last section.

Proposition 3.6. Assume that S is the vertex of a corner of type . Let us consider s < 1 +7/w if w>7 and
s = 2 otherwise. For f € L*(Q), the solution (us,\:) € Vo x Vo to the problem (1.7) is such that Cu. and (e
belong to H*() and there exists a constant C' > 0 which depends only on the geometry such that

Ve € (0,1],  ellCuellzrs o) + €A s ) < Cllfllz2(0)-

If in addition we assume that f is such that problem (1.6) has a (unique) solution w, then

1G22
Ve € (07 1]a \EHCUEHH*(Q) + ET() < CHUJHHl(A’Q)

Proof. From (1.8) we have that (). satisfies problem (3.2) with

f
1+4+¢

F.= —AC\. — 2V( - VA, — &C

By using Lemma 3.3, we have that there exists a unique constant c. € R and a unique function V. € H?(K3)
such that

0
e = ¢ 7™ sin (77) + Vs
w
and there exists a constant C > 0 such that

lcel + IVellmz (i) < C Nl FellLz(x,)-



504 L. BOURGEOIS AND L. CHESNEL

We deduce the estimate
lce| + Vellmz(x,) < CAllmr () + el fllz2@))-

And we conclude from (1.9) that there exists a constant C' > 0 which depends only on the geometry such that,
for s <1+4+m/w

[CAcllrz) € Cllfllr2 i w<m
HC}\EHHS(Q) <(C ||f||L2(Q) if w>m.

We remark from (1.8) that the function s. = eu. + A. satisfies —As. =0 in Q and J,s. = 0 on f, which implies
that (s. satisfies problem (3.4) with
F. = —-A(s. —2V( - Vs..

By using Lemma 3.4, we have that there exists a unique constant c¢. € R and a unique function V. € H?(K})
such that

w

(s. =ce ™% cos <7n9> + Ve

and there exists a constant C' > 0 such that
lce| + IVellmz(x,) < CNIFe| L2 (k)

We infer that
leel + Vel (k) < Cllsellazy) < Clelluellm i) + IAell 1 (5))-

And we conclude from (1.9) that there is a constant C' > 0 which depends only on € such that

[¢sellmz) < Cllfllzz H w<mw

[¢sellms@) < CllfllLe) i w>m,
so that eu, = s. — A. satisfies the same estimate. The case when f is such that there is a solution u to (1.6) is
similar. O

Remark 3.7. We emphasize that the small parameter € plays a different role in Proposition 3.5 and in Propo-
sition 3.6. In Proposition 3.5, the exponent in ¢ is the same before u. and before A. because the corner is inside
I' and T is the support of the Cauchy data. In Proposition 3.6, the exponent in ¢ before u. is one more than
the one before . because the corner is inside I' and data on I' are unknown.

It remains to analyze the regularity of functions u. and \. at corners of mixed type and to derive corresponding
estimates. As we will see, this is a much more difficult task. The main reason is that we do not know whether or
not the eigenvectors of a certain symbol .. defined on (0,w) (see (5.4)) form a Hilbert basis of L?(0,w) x L?(0,w).
To bypass this difficulty, we will apply the Kondratiev approach of the seminal article [28] (see also [29,30,32,34]
for more recent presentations). We will follow strictly the methodology proposed in these works. However, we
emphasize that in our study we have to keep track of the dependence in ¢ in all the estimates. This is the reason
why we present the procedure in details. Let us mention that a somehow similar analysis has been conducted
in a simpler situation in Annex of [14]. We start by presenting some preliminaries on weighted Sobolev spaces
borrowed from [29].

4. SOME PRELIMINARIES ON WEIGHTED SOBOLEV SPACES

Let us consider the strip B = {(¢,6) € R x (0,w)} for w > 0. For 8 € R and m € N, let us introduce the
weighted Sobolev space
Wg (B) = {v € L} (B), e’'v € H™(B)},

loc
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equipped with the norm
lollwyz) = el z)- (4.1)

We also denote Wg"(B) the closure of €3 (B) in W§*(B), W[%(B) the closure in Wi (B) of the set of functions
in €5°(B) which vanish in a vicinity of 9By = 0B N {0 = 0}, W5, (B) the closure in WZ*(B) of the set of

functions in €§°(B) which vanish in a vicinity of 0B, = dBN{# = w}. Let us introduce the Laplace transform

400

5(\) = (Lv)(N) = / e My (t) dt. (4.2)

— 00
We recall the following properties of the Laplace transform.

(1) The Laplace transform is a linear and continuous map from %3°(R) to the space of holomorphic functions
in the complex plane. In addition, we have L(0,v) = AL(v) for all v € €§°(R).
(2) For all u,v € 5°(R), we have the Parseval identity

+oo - 1
/ ePlu(t)w(t)dt = — a(A\)o(\) dA.
—oo 270 JRe x=—3

Hence, the Laplace transform (4.2) can be extended as an isomorphism from L%(R) to L?({_g), where

L3(R) = {v € L},.(R), eftv € L2(R)} and {_5 = {\ = -3 +ir, T € R}.

loc
(3) The inverse Laplace transform is given by the formula

o(t) = (L' - Mo .
(1) = (£7D)(1) /@ () dx

C2mi

(4) Ifv e L3 (R) N L%Q (R) for /1 < B2, then the function A — ¥(\) is holomorphic in the strip defined by
—02 < Re A < —f.

By using the above properties, one can prove that for 5 € R and m € N, the norm (4.1) is equivalent to the
norm given by
1/2
1 112
vllg,m = i ), 1011 2rm (0,00:0) AA ; (4.3)
-5

01 (0,13 = PN 0.y + A 101122 0 - (4.4)

where

Next, we introduce the infinite cone
K ={(rcosf,rsind), r > 0,0 < 0 < w},

with w € (0,27). For 8 € R and m € N, let us introduce the weighted Sobolev space Vﬁm(K) as the closure of
65° (K \ {0}) for the norm

1/2

ollvpao = | D IH* 7" PogulZag | - (4.5)

la|<m

We also denote by Vﬁm(K) the closure of €3°(K) in V" (K), ‘7570(K) the closure in V" (K) of the set of functions
in 6°(K) which vanish in a vicinity of 0Ky = 0K N {0 = 0}, ‘D/é?u(K) the closure in V3"(K) of the set of
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functions in 4§ (K) which vanish in a vicinity of K, = K N {6 = w}. One can show that the norm of Vi (K)
is equivalent to the norm

1/2

+o0 m )
l[oll = /0 PN (@) ol W e dr | (4.6)
=0

The key point consists in the change of variable ¢ = Inr, which transforms the cone K = R* x (0,w) into the
strip B = R x (0,w). In particular, if we introduce, for a function v defined in K, the function £v defined in B
by

(Ev)(0,t) = v(f,e"),

since rd,v = 0;(€v), the norm (4.6) is equivalent to

1/2

+00 m )
[ol] = /0 ACmHIEVEN 0] (Ev)(t, MErm—s 0wy dt |

=0

hence
lv]| = ||e(*m+5+1)t5’UHHm(B) = ||Ev||W/5";m,+1(B)'

This shows that there exists an isomorphism between the spaces V3" (K) and Wi ., (B), or in other words,
between Wi*(B) and V1, (K).

We point out that in [25], the weighted spaces V3" were already used in the context of the regularization of
the Cauchy problem (1.1).

5. THE CASE OF A CORNER OF MIXED TYPE

The regularity of solutions u. and A at a corner of mixed type can no longer be analyzed separately. We use
the weighted Sobolev spaces introduced in the previous section. We first consider the quasi-reversibility problem
in the strip B. The strong equations corresponding to (1.7) in the strip are

—Au. =AN /e =f/(1+¢) in B
ue =0 and d,ue. — I\ =0 on 0By (5.1)
Ad=0and edyu. +9,A. =0 on 0JB,.

For 8 € R, define the operator Bg : D(Bz) — R(Bg) such that Bg(us, Ac) = (f1, f2), with

(f1, f2) = (=Aue, —AN /¢)
D(By) = {(ue, o) € Who(B) NWE(B) x W) (B) n WE(B) 52)
dpue — O e =0 on 0By, edyu. + 0, A =0 on 0B, }
and  R(Bg) = WJ(B) x WJ(B).

This operator is associated with the following problem in the strip B:

—Au. = f1 in B

—AX. =¢ fo in B

ue =0 on 0By

auus - a1/>\5 - 0 on 8BO (5‘3)
Ae=0 on 0B,

edus +0,A =0 on OB,.
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FIGURE 3. Position of the A\ in the complex plane.
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If we apply the Laplace transform to problem (5.3), the following symbol .Z;(\) : D(Z:) — R(.Z.) such that

Z:(N)(@e, 1) = (91, 92) naturally appears, with

(91,92) = (~(3 + dB)pe, = O + )
D(Z:) = {(pe,¥e) € HQ(O,w) x H2(07w)7 ¢e(0) =0, Pe(w) =0,
dope(0) — dgtp-(0) = 0, edope (w) + dgtpe (w) = 0},
and R(Z.) = L?(0,w) x L*(0,w).

We will say that A € C is an eigenvalue of .Z, if Ker Z,(\) # {0}. We have the following lemma.

Lemma 5.1. The eigenvalues of the symbol £ are

Aizl(

"W

1 1
=4/14+ - — Fig. 3).
Ve =14/ +E+\/; (see Fig. 3)

The corresponding (non normalized) eigenfunctions are given by

g—l—mr:l:iln%), n € 7,

with

E(0) = cos(AEw) sin(A0), E(0) = sin(AE(0 — ).

Proof. Let us find all non vanishing pairs (p,) such that —(A\? + d2)p = 0 and —(A\? + d2)y = 0 in (0,w)
with ¢(0) = 0, ¥(w) = 0, dew(0) — dp1p(0) = 0 and edgp(w) + dotp(w) = 0. It is readily seen that A = 0 is not
an eigenvalue, so that we assume that A # 0 in the sequel. From the two equations in (0,w) and the two first

boundary conditions, we obtain that

»(0) = Asin(A9), ¥(0) = Bsin(A(0 — w)).
Then we use the two last boundary conditions, and we obtain (since A # 0)

A — Bcos(Aw) =0, gAcos(Aw)+ B =0.
The complex number A is an eigenvalue if and only if

1+ ecos’(Mw) =0,
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that is if and only if cos(Aw) = +i/\/c. Hence we deduce that we must have
+i ,
22+2—Zz+1:0 for z:= e,
Ve

The solutions to these two equations are z = j:i’yai, with
1 1
7E = \1+-= \/>
€ €
It remains to find A such that e’ = +iy*. Writing A\ = a + ib with (a,b) € R?, since +i = ei™(1F1/2) " we find
—bw + 1
e =, aw =T 1:F§ +2nm, ne€Z.

This implies

bw:—lnvai, awzg—i-mr, n €7,
which gives the result, in view of Iny. = —In~ (note that 7= = 1). O

Remark 5.2. We notice that the symbol .Z. has complex eigenvalues and is not self-adjoint. This is a difference
with the symbols which are involved when considering the Laplace equation with Dirichlet or Neumann boundary
conditions.

Let us first consider the case 8 = 0. Then we simply denote Wol,o(B) = Hj(B) and T/T/OIM (B) = Hj ,(B). We
have the following theorem.

Theorem 5.3. The operator By defined in (5.2) is an isomorphism. Furthermore, there ezists a constant C > 0
such that for all (f1, f2) € R(By), the solution (us, \.) € D(By) to the problem (5.1) satisfies

Velluellmzsy + Xell a2 ) < Ol fill2 sy + Vel fall2s))-
Proof. We simply have
D(By) = {(ue, \e) € Hyo(B) N H?*(B) x Hg ,(B) N H*(B),
dpue — O e =0 on 0By, edyu. + 0, A =0 on 0B, }
and R(Bo) = L2(B) x L*(B).

By applying the Laplace transform to the problem (5.3) with respect to ¢ and by setting A = i7 with 7 € R, we
obtain

(2 — d2)i. = fu in  (0,w)
(2 —d)A. =¢fs in  (0,w)
4.(0) =0

doti-(0) — dgAe(0) =0

Ae w) =10

e dpte (w) + dgxe(w) =0.

For fixed 7, this problem is equivalent to the weak formulation: find (ﬂg,xg) € H&O(O,w) X H&w(o,w), where
H{,(0,w) = {v € H'(0,w), v(0) = 0} and H{ ,(0,w) = {p € H*(0,w), p(w) = 0}, such that for all (v,u) €
H&,O(Oaw) X H(},w(o?w)7

w

5/ (doti. dgT + T%0.7) dO + /
0 0

/ (dolic dot + 77U T) dO — / (doAe dofi + T2NT7) df = / (f1 — efo)rdo.
0 0 0

(dgTdgAe + 72T N) A = / e(fi + fo)udo
0
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By the Lax—Milgram Lemma, the weak formulation (5.7) is well-posed and there exists some constant C' > 0
(independent of A and of €) such that

Velllell 2 o.w) + Ml 2 00) + IAel 2(0.0) + NP 2 (0,0)

~ ~ (5.8)
< C(|Ifille2(0w) + Vel fallL20,w))-
Indeed, by setting v = u. and p = Xs in (5.7), we obtain
(o e 0y + NP0 o) + oA 20,0 + VIR0
= [+ Bmao- [ (- <R
0 0
< (ellfi + follF20w) + 11 = 8f2||2L2(O,w))1/2(5”a€||2L2(0,w) + ||/\6||%2(0,w))1/2
T2 (15l 20) + VEIB 220, 18 12 0,0y + IRe B 0.0 )2
By using the Poincaré inequality and assuming that € < 1 we obtain that
Vellellm o) + el 0w < CUANL 0w + VElF2llz2(0)
and
AP (Velle ]l 20,0y + [Xellz20,0) < CULAllZ200) + VEll f2llz200))5
where C' is independent of A and €. Now, given that
2. = |\, — fi, BA. = |\2A —cfo,
we deduce
VEldzte | r20.0) G 22(0,0)
< A2 (\[HUsHL?(o w) T A l2(0,0)) + C(Hf1||L2(0 w) T f||f2||L2(O W)
< C(Ifllz20w) + VeI R2ll20.w));
which implies (5.8). Finally, we have for all A =
Vellae (N )l a2 0w < CUlfllz20w) + Vel fallzzow))
and
A\ a2 0,00 < Cllfillz20.0) + VElF2ll220.0));
which by integration on ¢y and by definition of the norms | - ||3,m (see (4.3)) implies
Vellue (I f1llo.0 + vl f2llo0.0)-
This gives the estimate
Velluellazsy + [Xella2 ) < Ol fill2s) + Vel fall2s))
which proves that By is an isomorphism. (]

Now we wish to extend the result of Theorem 5.3 to any 3 ¢ {(7/2 + nw)/w, n € Z}.
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Theorem 5.4. For any 8 ¢ {(7/2 + nn)/w, n € Z}, the operator Bg is an isomorphism. Furthermore, there
exists a constant C > 0 independent of € such that for all (f1, f2) € R(Bg), the solution (us, A:) € D(Bg) to the
problem (5.3) (which depends on () satisfies

Veluellpe + [[Aells2 < C (I f1lls.o + Vel fallso)- (5.9)

Proof. For (fl, fz) € L%(0,w) x L?(0,w), we consider the problem of finding the functions (i, ;\E) € H& 0(0,w) x
Hj ,(0,w) such that
—e (2 + N = fi in (0,
—(dg+N)Ae=¢fs in (0,
dGﬁs(O) - dOS\EA(O) =0
edglic(w) + dgAc(w) = 0.

We wish to prove that there is a constant C' > 0 such that the solution of problem (5.10) satisfies

w) (5.10)

VE(liell r20w) + AP Ntellz2(0.0)) + 1Al 2 (0,) + AP Acll 2200
< C(Ifillr20m) + Vel follz20.m)

for all e > 0, A € £3 = {y € C, Rey = 3}. Note that C' depends on § but not on &, A € {g. According to
the analytic Fredholm theorem, we know that problem (5.10) admits a unique solution if and only if the only
solution for (f1, f2) = (0,0) is (fie, Ae) = (0,0), that is if and only if X is not an eigenvalue of .Z.. Lemma 5.1
guarantees that for 8 ¢ {(7/2 4+ nw)/w, n € Z}, this is indeed the case for all ¢ > 0, A € £g. Estimate (5.11)
has already been established for 8 = 0. Now we assume that § # 0. In order to show (5.11), we work with the
decomposition (i, \e) = (uo, o) + (ug, Ag), where ug € Hj ¢(0,w) and Ao € Hy ,(0,w) are the functions which
solve

(5.11)

_(dg + )\2)11,0 = fl in (va) and —(d% + )\2))\0 =€ f2 in (O,w)
dGUO(w) =0 d9>\()(0) =0.
For these classical problems, by using Proposition A.1, there is a constant C' > 0 such that
Idguoll L2 (0. + IMPlluoll 20,0y < CllfillL20.) (5.12)
and X
ldg X0l 2(0,w) + AP0l 22 0,w) < CellfallL20.m) (5.13)

for all A € £g when 3 ¢ {(n/2+nn)/w, n € Z}. Here and in what follows, the constant C' > 0 may change from
a line to another but is independent of € > 0, A € {3 := {y € C, Rey = §}.
Now, we see that (ug, ) € Hg (0,w) x Hj ,(0,w) satisfies

(dZ+ X)uy =0 in (0,w)
(dZ2+ X)X\ =0 in  (0,w)
douy(0) — dpA3(0) = —dguo(0)
Ed@Uﬁ( ) + da)\ﬁ( ) —d@)\o( ).

#(0

(5.14)

Looking for ug, A4 of the form uy(0) = A sin(A\), A

problem
(cremony SO (3) = (S,

doug(0) + cos(Aw)dpAo(w)
A1+ € cos?2(Mw))

) = B sin(A\(# — w)), we find that A and B must solve the

We deduce that

uy(6) = — sin(A0)
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and
_ecos(Aw)dgug(0) — dgAo(w)

Aul0) = A1+ € cos?(Mw))
From identity (B.1), we have |sin(\0)|? = (cosh(2760) — cos(236))/2, for A = 3+ iT. We can write

sin(A(6 — w)).

I ”2 B doun(0) + cos(Aw)dpAo(w) 2
#la = 2A(1 + € cos?(Aw))

(771 sinh(27w) — B! sin(26w)). (5.15)
Since (8 # 0, one can verify that there is C' > 0 such that, for all 7 € R, we have
B Lsin(26w) = |87 sin(2|flw) < 2w < |7 sinh(2]7|w) = 77 sinh(27w) < C 2T/ (5.16)

Using (5.16) in (5.15), we obtain

\douo(0)|2 cos(Aw)dvo(W)F) 2l (5.17)

)\4 2 < CI|\
AP lluglzey < CIA <1+€ cos?(Aw)?2 |1 4¢ cos?(Aw)|?

Now we explain how to obtain estimates for [dpug(0)| and | cos(Aw)dgAo(w)|.
* First we multiply the equation —(d3 + A\?)ug = f1 in (0,w) by cos(A(f —w)) and integrate by parts. This gives
us

—dpup(0) cos(Aw) = /Ow dZug cos( A0 — w)) — updz(cos(A( — w))) df = — /Ow f1cos(A(0 —w))do

and leads to X
| cos(Aw)dpuuo(0)[* < [[f11172(0 w) |l cOSAB = w))|72(0,0- (5.18)

An analogous computation to what precedes (5.15), based on identity (B.2), yields
|| cos(A(0 — w))||:£2(07w) = (77 tsinh(27w) + B! sin(26w)) /4.
Using the latter result as well as (5.16), we get
|douo(0)* < C |l fillZ2(ry €™ /(IAl | cos(Aw) ). (5.19)

From identity (B.2) and by using the fact that 8 ¢ {(7/2 + nw)/w, n € Z}, one can check that there is a
constant C' > 0 such that e?I71* /| cos(A\w)|? < C for all 7 € R. We deduce from (5.19) that

|dguo(0)]* < Cl| fillZ2(0.0)/ 1 (5.20)

* Now, we provide an estimate for | cos(Aw)dgAo(w)|. Multiplying the equation —(d% + A2)Ag = ¢ fo in (0,w) by
cos(Af) and integrating by parts, we find

dgAo(w) cos(Aw) = / d3 Mo cos(A0) — N\od3(cos(A\)) df = —5/ f2 cos(A) d6.
0 0
Working as above, this allows us to write

|doo(w) cos(Aw)|? < C&? || fal 20,y €” ™ /|A. (5.21)

In Lemmas B.1 and B.2, we get the following estimates

e2\‘r|w 4|7 |w

2
£e <c, (5.22)

<c
/e 1+e cos2(Ow)2 =

|1+ e cos?(Mw)|?2 —
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where again C' > 0 is independent of € > 0, A = § + i € {3. Therefore, inserting (5.19) as well as (5.21) in

(5.17) and using (5.22), we obtain v/E[A?|lugl|z20w) < C ([ f1llr2(0.0) + VEI follL2(0.w))- Since ||d2us | r2(0.0) =
IAI2[|ug] 2 (0,w), We infer that

Ve(llugl a2 0,0y + M llugl 22 0.0) < C (1 fillz20.0) + VENF2ll2(0,0))- (5.23)
Now, let us derive a similar estimate for A;. From the equation before (5.15), we have

e cos(Aw)dgug(0) — doAo(w)|?

2 _ -1 . —1 .
||/\ﬁ||L2(0,w) = I+ 2 cos?(Ow) (77" sinh(27w) — 87" sin(20w)). (5.24)
We infer that ) , )
Aw)dgug(0)] |dgAo(w)]
ANl 2oy < €] (SR 27l
A ﬁ”Lz(O’“’) <CW ( |1+ & cos?(Aw)|? |1+ & cos?(Aw)|? ¢

Working as in (5.19) and (5.21), we find
| cos(Aw)dyuo(0)[* < C [l fillZ (0. €7/

and
ldoro(w)[* = C e[| fall T2 (0.0)€” ™/ (IA] cos(Mw)|?) < C & || f2ll 720/ 1AI-

By using again Lemmas B.1 and B.2, we deduce that [A[*[|Ag]|12(0,0) < C(||f1||L2(0,w) + \/E||f2||L2(07w)). Since
3N\l £2(0,0) = [A2 [ Mgl 22(0,0), We infer that

Il 20,00 + I 22 00) < C (1 fillE20,0) + VENf2ll 22(0.0))- (5.25)

From the decomposition (te, A:) = (ug, Ao) + (ug, Ag), using estimates (5.12), (5.13), (5.23) and (5.25), we finally
obtain

Ve(llael 20wy + Ml L20.w) + 1Al 2 00) + AP E200) < C (1f1ll22(0,0) + VENF2ll 22 0,0))-

It remains to integrate the above estimate on ¢_g following the definition of the norm || - ||30 given
by (4.3). O

We now consider a problem in the infinite cone K of vertex S and angle w which is associated with the problem
(5.3) in the strip via the change of variable ¢t = Inr. For § € R, we define the operator Cs : D(Cg) — R(C3)
such that (f1, f2) = Ca(ue, Ae) with

(f1, f2) = (—Au., —AN. /e) (5.26)
and  D(Cg) = {(ue, o) € Vi_y o(K) NVE(E) x Vi_y ,(K) N VF(K),
Oyue — O e =0 on 0Ky, edyu. + O, : =0 on 0K, }
R(Cs) = V3 (K) x V§(K).

We have the following corollary to Theorem 5.4.

Corollary 5.5. If 3 —1 ¢ {(7/2 4+ nw)/w, n € Z}, then the operator Cg is an isomorphism. Moreover, there
exists a constant C' > 0 such that for all (f1, f2) € R(Cg), the solution (ue, ) € D(Cg) to problem (5.26)
satisfies

\ﬁ”ua”vg(f() + Pellvz ey < C A llvecr) + \@||f2||vg(1<))- (5.27)
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Proof. The equation —Au = f in K writes in polar coordinates
~((rd,)* + F)u =r?f,
which by using the operator £ implies that
r2Cs = E 1By €.

I?deed the operator £ maps Vﬁz(K) to the space VV;_HI(B) = Wg_l(B), the space f/ﬁl_l,O(K) to the space
Wé—l,o(B) and the space Vﬁl_Lw(K) to the space Wﬂl_lﬁw(B)7 which implies that £ is an isomorphism from
D(Cs) to D(Bz—1). In addition, the operator Bg_; is an isomorphism if 5 —1 ¢ {(7/2 + n7)/w, n € Z}. Lastly,
the operator £~ maps the space Wg_l(B) to the space VBO_2(K), which implies that £~1 is an isomorphism
from R(Bs—1) to R(Cs—2). It remains to remark that the operator f — r~f maps the space Vj_,(K) to the
space V(K ), and is hence an isomorphism from R(Cg—2) to R(Cs). This completes the proof of the first part.
The estimate relies again on the identity 12Cs = £ 1Bg_1&, on the fact that & is an isomorphism from Vﬁz(K )
to W5_,(B), on the estimate (5.9) with § replaced by 8 — 1 and of the fact that 7=>£~" is an isomorphism
from Wj_,(B) to VJ(K). O

In order to link the solutions of problem (5.26) obtained for different 3, we need to compute the adjoint of the
symbol %, defined in (5.4) and to specify its eigenvalues and eigenfunctions.

Lemma 5.6. The adjoint of the symbol Z.(\) is the symbol LX(X) : D(ZLF) — R(ZL) with

€ €

L2 N)(gerhe) = (~( + dB)ge, - (% + d)he)
D(L) = {(ges he) € H*(0,0) x H?(0,w), dgge(w) = 0, dgh.(0) = 0,
0e(@) = he(w) = 0, £g2(0) + h(0) = 0},
and  R(ZL*) = L*(0,w) x L*(0,w).

Proof. For (¢,v) € D(Z.) and (g,h) € D(ZF), we have by an integration by parts formula
/w —(N+dj)pgdd + /w Loz azyenan
0 o ¢
:/ o —(V +d3)gde+/ b~ 4+ d3)has
0 0 €
— dpp(w)g(w) + dop(0)g(0) + p(w)dpg(w) — ¢ (0)deg(0)
— g @)F() + 2o (OVR(0) + T (@)deh(w) — Z(0)deT(0).

It is readily seen that all the boundary terms vanish due to the boundary conditions satisfied by (¢, ) and
(g,h) at 8 = 0 and 6 = w. This completes the proof. a

Lemma 5.7. The eigenvalues of the symbol £ are the same as that of £, and are given by (5.5) and (5.6).
The corresponding (non normalized) eigenfunctions are given by

gE(0) = cos(/\TiLw) COS(E(@ —w)), hE(H) = COS(EH).

The proof of Lemma 5.7 is the same as the proof of Lemma 5.1 and is therefore not given. Lastly, we will need
a biorthogonality relationship between the eigenfunctions of %, and that of .Z.



514 L. BOURGEOIS AND L. CHESNEL

Lemma 5.8. Assume that j,k € Z and v,u = £ satisfy either j + k # —1 or p+ v # 0. The eigenfunctions
(o, E) of £ and the eigenfunctions (g;=, hit) of L satisfy

¢ T 1 ¥ v
| eirao < [ uihiao = dbi
0 0

1
dy = (~1)F12 14 5.28
k= (-1) VR (5.28)

Proof. On the one hand, the assumption j+k # —1 or p+v # 0 is equivalent to A;‘ # —A{. Let us first assume
that k # j and v = u = +, which implies on the other hand that )\3-‘ # A. Skipping the sign +, we have

“ 1 — “ 1 —
—Ai/o (@kgﬂr awkhg‘> e :/0 (Amgﬁ eAwkhj) de
w _ 1 w 1 I
0 0
Since )\f # A2, this implies that for j # k and v = = +, we have

w _ 1 _
/ <¢ng + Ew,Zh?) do = 0.
0

We clearly obtain the same result each time that (k,v) # (4, p). Let us now assume that k = j and v = p. We
have

with

/ ©rgt df = cos®( Zw)/ sin(A}0) cos(A\L(0 — w)) d
0 0
and

/ Yy do = / sin(A} (0 — w)) cos(A}0)do = —/ sin(A;0) cos(A; (0 — w)) do.
0 0 0
Given that 1 + & cos?(A\Yw) = 0, we obtain
w o 1 w - 2 w .
/ wrgy do + g/ Y hydl = —Z / sin(Az0) cos(A; (0 — w)) d6. (5.29)
0 0 0

But a direct calculus gives

/ sin(A70) cos(A} (0 — w)) dd = % / sin(Af (20 —w)) do + % / sin(Afw) dé
0 0 0

1 1
=3 wsin(Ajw) = B wsin (g + kr+ivin 'ys> (5.30)
—1)* —1)*
= %wcos(iz/ln%) = ( 2) w cosh(In ).
Since 7. = \/1+ 1/e + /1/e, we find
1 1 1
cosh(In~,) = 3 (’75 + %> =4/1+ - (5.31)
Using (5.31) and (5.30) in (5.29), we get the desired result. O

In the next theorem, we compare two solutions of problem (5.3) associated with two different values of 3.
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Theorem 5.9. Assume that /1 < (2 are two real numbers such that §; ¢ {(7/2 + nw)/w,n € Z}, j =
1,2. Let us denote by Ay, N5, ..., A%, with v = £, the eigenvalues of Z. in the strip —f2 < ReA < —0;.
For (f1, f2) € R(Bg,) N R(Bgs,), the solutions (up,,Ag,) € D(Bg,) and (ug,,A\g,) € D(Bgs,) to the problems
Bs, (ug,, Ag,) = (f1, f2) and Ba, (ug,, Ag,) = (f1, f2) satisfy the relationship

(u52 ) Aﬁz) u[31 ) >‘51 Z Z CU Ak t @ka 1;[};;)’ (532)

ve{x} k=1

where (Y, YY) is the eigenvector of 2. associated with the eigenvalue X} (see Lem. 5.1) and

- ((flye_kztgi)mw) + (f2ve_)\zch)L2(B))~ (5.33)
Here (g}, hy) stand for the eigenvector of £ associated with the eigenvalue A} (see Lem. 5.7) and dy, is given
by (5.28).

Proof. The first part of the theorem is obtained by using the residue theorem as in the proof of Theorem 5.1.1
from [29]. Now we establish (5.33). Let us introduce a cut-off function £ € R such that £(¢) = 0 for ¢ < ¢; and
&(t) =1 for t > tg, with ¢1 < ta. From (5.32) and using the short notation B = (—A, —A/e), we have

—~B(E(ug —up) E0 = As)) = D ch( M) + ZAE L))
ve{+} k=1

We observe that A(£(e*etpY)) and A(E(eM?pY)) are non vanishing only on [t;, %] x [0,w], which implies that
forj=1,...,N and p ==,

_ (lS‘(f(ug2 —ug,),E(N\g, — )\ﬁl))’(e " tgsre o Nith ))

L2(B)x L*(B)
N
— CV<A )\ t v —)\?t )
vez{ﬂ::}; HAEEED). 93) L2t )¢ (0.))
1 N _
+ - cv (A é‘ e)\ztwy ’ef)\;,‘th_) .
6”;}; ’ o ) ! L2((t1,t2)x(0,w))

By an integration by parts formula in the domain (t1,t2) x (0,w) and by using that A(e_rytgj) = 0 and
A(ef)‘?thj) =0, we get that

i
~ (Blelus, s ), €0, =23, (g e R
N 1 N
> ZCZ(AZGWW e tzgf)Lz(o Y PRI (’\V eyl e tzh#)LZ(o )
ve{+} k=1 “ ve{+} k=1 @
N
Apt N\ >\ to [t At VD —/\ to g M
DI IACE S ZQJ)LQM vy G A B
ve{£} k=1 ue{:l:}k: 1

In view of the biorthogonality relationships of Lemma 5.8 and due to the fact that in case A} = —)\? (that is

j+k=—1and v+ p=0) the first and third terms within the brackets above compensate one another as well
as the second and fourth terms, we end up with
-2 2
~(Bleus, —us). €0 = M) (g e ) L= 2N (5.34)
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On the other end, since 31 < (2, the function ug, is more decreasing than ug, at +oo. And the situation is
inverted at —oo. The same property holds for Ag, and Ag, . Since & vanishes at —oo, we have that (§ug,,&Ag,) €
D(Bg,) N D(Bg,). Using an integration by parts in B and the fact that —3, < Re \;, we obtain that

(Bus, €3, (e gy e ny) =0 (5.35)
With the same argument, we obtain
(B = &g, (1 =X, gy e T) =0 (5.30)
By combining (5.34)—(5.36), we get
2jefd; = (Blelus, —ug). €0 — ) (g NMhy) L
= (Bleus,, x0), (Vlgy e my)) L L
- (B(U'B“Aﬁl)’ O tgjﬁiﬁthj» L?(B)xL?(B)
(B~ ug, (1 =), (N gy NMhy) L
= (B(uﬁw\ﬁl% (e‘ré’tgj,e‘vthj))mB)XLz(B) = ((fh fa), (e_vtgjae_rgthj))m(B)xLQ(B),
which completes the proof. (I

From the previous theorem in the strip, we obtain the following corollary in the infinite cone by using the
identity TQCg = 57135_15

Corollary 5.10. Assume that 31 < (2 are two real numbers such that ;—1 ¢ {(7/2+nn)/w, n € Z}, j =1,2.
Let us denote by A\Y, Ny, ..., A}, with v = %+, the eigenvalues of Z. in the strip —02 +1 < Re A < —p1 + 1.
For (f1,f2) € R(Cs,) N R(Cs,), the solutions (up,,Ag,) € D(Cs,) and (ug,,Ag,) € D(Cgs,) to the problems
Cs, (ug,, Ag,) = (f1, f2) and Ca,(ug,, Ag,) = (f1, f2) satisfy the relationship

(uﬁz’ )‘ﬁz) (uﬁ1 ) /\51 Z Z Ck Sakv Vi),

ve{+} k=1

where
1

& = gz (Vo om0 + (o sao )

Remark 5.11. For real valued functions f; and f,, we have ¢f = ¢, for all k € {1,...,N}.

We end up with the main proposition of this section.

Proposition 5.12. Assume that S is the vertex of a corner of mized type. Let us consider s < 1+ w/(2w) if
w > /2 and s = 2 otherwise. For f € L*(Q) and € > 0, the solution (us, \.) € Vo x Vo to the problem (1.7) is
such that Cu. and (e belong to H*(Q) and there exists a constant C' > 0 which depends only on the geometry
such that

Ve € (0,1, ellCucllre@) + VelCAellae ) < CllflL2(e)

If in addition we assume that f is such that problem (1.6) has a (unique) solution u, then

Ve € (0,1],  Vel|lCuellgs() + ICx N me() < Cllullgi(a,0)-
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Proof. The pair (ve, tie), = (Cue, (Ae), where (us, \o) € Vo X Vo solves (1.7), satisfies the problem

—Av. = g, in K
—Ap. =c€h, in K
ve =0 on 0Ky
auvs - aV,U/E =0 on 8K0 (537)
e =0 on 0K,
€0 + Oy =0 on  IK,,
/

A A
with (g., he) = ( ~ AQus =2V Ve + (— ~ACTE 2V v(?) — (3 i E).

Let us study the regularity of v., p1. by using the properties of the operator Cg defined in (5.26). To proceed, in
particular, we will exploit the results of Corollaries 5.5 and 5.10.

First, observing that V' (K) = L?(K) and that ¢ is compactly supported, we deduce that (ge,h.) € VQ(K) x
Vg (K). And more generally, we have (., he) € R(Cs) = VJ(K) x VJ(K) for all 3 > 0. For 8 = 1, there holds
B—-1¢{(n/2+nn)/w, n € Z}. From Corollary 5.5, we infer that C; is an isomorphism from

D(C1) = {(ve. 1) € Vi (K) NVA(E) x Vi, (K) N V2(K),
Opve — Oppe =0 on 0Ky, €0,ve + Oppie = 0 on 0K, }

to R(C1) D (ge, he). Let us denote by (v}, ul) € D(Cy) the unique element of D(Cy) such that Cq (v}, pul) = (ge, he)-
Corollary 5.5 ensures that there is a constant C' such that

Vellvtllva e + lutllveae < C lgellvo ey + Vellbellvo )

Let us prove that (v}, ul) coincides with (v., p.). We have (ve, pie) € ‘0/0170 X ‘0/017“,. Indeed, v. vanishes for r > b
and from Poincaré’s inequality, there holds

1
—v2de < C |V |* da.
K, T ° K
b b

The same inecgality is valid for p.. Next, let us introduce v € G5°(K) such that v vanishes in a vicinity of 0Ky
and ¢ € €5°(K) such that ¢ vanishes in a vicinity of OK,,. It is easy to check that (v, ue) solves

6/ VUE~Vde+/ Vv~Vusdx:/ e(ge + he) vda
K K K

(5.38)

/ Vo, - Voo dz —/ Ve - Vipdo = / (g — eho) Y da.
K K K

One can also verify that (v}, ul) satisfies (5.38). Since (ve — v}, pe — pl) € ‘0/0170 X 10/01#, using the density of the
set of functions v (resp. ¥) in ‘0/01,0 (resp. in YZiw)7 we conclude that (v, p.) = (v}, ul). Now we must separate
the rest of the analysis according to the configuration.
* Let us first assume that w < 7/2. In this case, for 8 = 0, we have 8 — 1 ¢ {(7/2 + nw)/w, n € Z}. Then
Corollary 5.5 guarantees that Cy is an isomorphism from

D(Co) = {(ve, p1e) € V2 o(K) NVE(K) x V2, [ (K) NVR(K),
Opve — Oppe =0 on 0Ky, €0,vc + Oppie = 0 on 0K, }

to R(Co) > (ge, he). Let us denote by (v2, u2) € D(Cp) the unique element of D(Cq) such that Co(v2, u) = (ge, he).
Corollary 5.5 ensures that there is a constant C' such that

ﬁllvgllvg(m + HMS”VO?(K) < C(Hg€||L2(K) + \/thEHL?(K))- (5.39)
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But from Lemma 5.1, the eigenvalues A\ of Z. satisfy Re A\f = (7/2 4+ nn)/w, n € Z. As a consequence when
w < 7/2, none of them lies in the strip 0 < Re A < 1. This implies that

(Uénuﬁ) = (v;,,u;) = (’Ugnug)'

Besides, we observe that VZ(K) C H?(K). Hence (ve, i) € H?(K}p) x H?(K,). Using the estimates

{ gell 2y < Cllluellm ) + 11F11L2 k) (5.40)

1hellzz iy < CUANmr iy /€ + 12 )
then from (5.39), we can write

VElCuell a2y + KA N m2 ) = Vellvellm2xy) + el m2 (k)

< C(Wellvlllve ey + 1z iy) < Clgellnz k) + VellbellL2(x,))
1
< Clluella(ry) + ﬁH)\EHHI(Kb) + 1 flle2(x))-

By using (1.9), finally we get
ellCuell r2e0) + Vel a2y < Cllfll2)-

* Now let us assume that w > 7/2. Choose 3 such that 0 < 1 —7/(2w) < 8 < 1. In this case, since 3 — 1 ¢
{(r/2 4+ nn)/w, n € Z}, the operator Cg is an isomorphism from

D(Cp) = {(ve, ) € Vii_y o(K) NVE(K) x Vi, ,(K)NVE(K),
Optie — OyAe =0 on 0Ky, edyu. + Oy . =0 on 0K, }

to R(Cs) > (ge, he). Let us denote by (v2, u?) € D(Cs) the unique element of D(Cs) such that Cs(v2, uf) =
(ge, he). Using Corollary 5.5 and the fact that ge, h. are compactly supported with 5 > 0, we can write

\/5||Ug||vg(K) + HM?\|V5(K) < C(||gava(K) + ﬁHhava(K))

5.41
< O (lgelloor + VEIReowey)- (5.41)

Again, none of the A lies in the strip 0 < Re A < 1 — 3, which implies that

(Uaaﬂa) = (’U;MU;) = (v?,uf).

Besides, note that v, and p. are supported in Kj. The Theorem 5.2 of [37] ensures that the space V7 (K}) is
continuously embedded in the interpolate space [VZ(K,), Vi2(Kp)]e for all § € (3,1). Since the spaces VZ(Kp)
and V' (K}) are continuously embedded in H?(K}) and H'(Kj,), respectively, we infer that [VZ(Kp), V2 (Kp)]e
is continuously embedded in [H?(K3), H'(K})]g = H?>7%(K,) for all § € (3,1). Since 3 is arbitrarily close to
1 — 7/(2w), we conclude that the space Vg(Kb) is continuously embedded in H*(Kj}) for all s < 14 7/(2w).
Gathering the estimates (5.40) and (5.41), we infer that for all s < 1+ 7/(2w),

VelCuellas ) + 1A e () = Vellvell s (ko) + el s (k)

< C(\ﬁHU?va(K) +162lva i) < CUllgellLa () + VEllhel L2 (x,))

1
< C(lJuellar (k) + %”AE”Hl(Kb) + 11l 22 (k)

By using the estimate (1.9), finally we get ||Cuc| g+ (o) + VE[CAellm: () < CllfllL2(0)- O
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Remark 5.13. By using Corollary 5.10 for ; = 0 and B2 = 1, we obtain all the singular functions at a corner
of mixed type, which are the functions 7k (¥, 4¥) which belong to H'(K}) but not to H?(Kj). The singular
functions are readily determined by the value of Re(\}) = (7/2 + k) /w for k € Z:

— there is no singularity for w < /2,
— singularities are obtained for k = 0 and v = £ for 7/2 < w < 37/2,
— singularities are obtained for k =0, k =1 and v = + for w > 37/2.

Note that this conclusion is very similar to the case of the Laplace equation with mixed Dirichlet-Neumann
boundary conditions (see [22]).

6. APPLICATION TO ERROR ESTIMATES

In this last section, we use the regularity estimates for solutions of quasi-reversibility problem (1.7), in
particular Theorem 3.1, to derive error estimates between the exact solution and the quasi-reversibility solution
obtained in the presence of noisy data and with the help of a FEM.

6.1. Main analysis

Let us assume that (2 is a polygonal domain in two dimensions and that u € H'(f2) is the exact solution of
problem (1.6) associated with the exact data f € L?(f2). In the context of inverse problems, usually f is not
available. Only an approximate data f° € L?(Q) is available, with

10 = fllz2ee) <6, (6.1)

where § can be viewed as the amplitude of noise. A natural idea is to solve problem (1.7) with f° instead of
f, and a practical way of proceeding is to discretize problem (1.7) with the help of a FEM. More precisely, we
assume that ) supports a triangular mesh which is regular in the sense of [17], the maximal diameter of each
triangle being h. Let us denote by Vp  and th the finite dimensional subspaces of Vi and Vp, respectively,
formed by the continuous functions on Q which are affine on each triangle and which vanish on the sides which
belong to T’ and T, respectively. The discretized version of the mixed formulation of quasi-reversibility (1.7) is:
for € > 0, find (uen, Ae,n) € Vo X f/oﬁ such that for all (vp, up) € Vo,n X 1707;“

8/ Ve - Vo, dz —|—/ Vup - VAcpde =0
@ {2 (6.2)
Vuep - Voppdr — | VAep - Vppde = / funde.
Q Q Q

We denote (ug’h, /\‘;h) the solution to problem (6.2) which is associated with the noisy data f? instead of the
exact data f. In practice, the solution ug’h is the only approximate function of the exact solution u which is
accessible, this is why we are interested in the norm of the discrepancy u? n — u in the domain Q. In this view,
we write

[ul g, = ull ey < lulp = venllm@) + luen — uellmi@) + lue = ull @), (6.3)
and estimate each term of this decomposition. The first term to estimate corresponds to the error due to the
noisy data. Let us prove the following lemma.

Lemma 6.1. There exists a constant C > 0 which depends only on the geometry such that

)
||Ug,h —Ue (0 £ C—F%- (6.4)

NG
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Proof. By reusing the bilinear form A, introduced in the proof of Theorem 1.1, (ul ug s )\5 h) and (ue p, Ae,p) are
solutions in Vj j x Voﬁ to the weak problems: for all (vy, pp) € Vo X Vo,h,

Ae((u8 0 N2): (0 10) / Pounde,  Ac((en den): (0n, 1n) / fn e
Taking the difference, setting (vp, pn) = (ud ug p, — Ue, h,)\5 — Aen), we get

5||Ug,h - Ue,th + H)‘g,h - As,hHQ < ||f‘S - fHLZ(Q)”)‘g,h = Aenllz()s

where we recall that || - || denotes the H!() semi-norm. We complete the proof by using the Poincaré inequality
and (6.1). O

The second term of (6.3) corresponds to the error due to discretization. Let us prove the following lemma, which
is a consequence of Theorem 3.1.

Lemma 6.2. There is a constant C > 0 which depends only on the geometry and on u such that

hs—l
lue,n — vellgr ) < C Pt (6.5)

where s is given in the statement of Theorem 3.1.

Proof. The proof relies in particular on Céa’s lemma. Since we need a uniform estimate with respect to ¢, we
detail the proof. For all (vp, up) € Vo,n x Vo1, we have

AE((UE — Ue,h, Ae — As,h)? (’Uhvlj'h)) =0.
This implies that for all (v, us) € Vo X Von,

AE((UE — Ug,h, Ae — )\a,h); (ue — Ug,h, Ae — )\s,h)) = Aa((ue — Ug,h, Ae — /\6,h); (ua — Uh, Ae — ,Uh))7

hence
AE((UE — Ug,h, Ae — /\s,h); (ue — Ug,h, Ae — /\E,h))

< inf |AE((UE _ue,ha/\s _)\a,h)§(ue _Uha/\s _,uh))|-

(Vh 1) EVo,n X Vo, n

But on the one hand, we have
Ac((te = ey Ae = Aen); (Ue = e jy A = Acn)) = €llue — uenl® + A = Acnl?
while on the other hand, there holds
inf |Ae ((Ue = e ny Ae — Acn)i (ue — Vny Ae — fin))]

(vn,1n)EVo,n X Vo,n

< (eflue —uenll + 1A = Acnll) nf lue —vnll + (lue — venll + A = Aenl) lenvf [Ae = pan-
) prr€Vo,n

By using the classical interpolation error estimates in H*(Q) for s > 1 (see [22]), we know that there exists a
constant C' > 0 which depends only on the geometry such that

inf [lu. —vnll < OB o e, inf A — il < OBV -

’UhGV(),h /J«h,GVO,h,

Theorem 3.1 in the case of exact data f implies that there is a constant C' > 0 which depends on the geometry
and on u such that

1
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From the three above estimates, we get

inf N ‘As((us — Ug,h, Ae — /\E,h)§ (Us — Uh, Ae — Uh))'
(V) EVo,n X Vo,
hs—l .
<C NG (ellue = tenll + [|Ae = Acnll) + Ch* 7 (lue — uenll + A = Acpnll)
hs—l

<C

NG (\ﬁ”ue = Ue p | + [[Ae = Acnll)-

Eventually we end up with

hsfl
Ve

which completes the proof. O

5”“6 - Uz—:,h||2 + ||)\8 - >\s,hH2 <C (5Hus - us,h”2 + H>‘6 - )\s,h||2)1/27

Estimating the third term in (6.3) is strongly related to the stability of the Cauchy problem for the Laplace
equation, a topic which has a long history since the pioneering paper [23] (see e.g. [1-3,5,6,38-40]). It is
well-known that since such problem is exponentially ill-posed, the corresponding stability estimate is at best
of logarithmic type (see e.g. [5]). To our best knowledge, an estimate of n(¢) := |[u. — u| g1 (q), which tends
to 0 when ¢ tends to 0 in view of Theorem 1.4, is unknown. However, a logarithmic stability estimate for
|lue — u||£2(0) can be derived from Theorem 1.9 in [1] and a Hélder stability estimate for [|ue — u|| g1 (@) can be
derived from Propositions 2.2 and 2.3 in [5], where G is a subdomain of 2 which excludes a vicinity of I and a
vicinity of corners.

Lemma 6.3. There exists a constant C > 0 which depends only on the geometry and on w and a constant
u € (0,1) which depends only on the geometry such that

_r
(log(1/2))"

Proof. From (1.6) and (1.8), the functions u. — u and \. satisfy

|ue —ul[z2(q) < C

—A(ue —u)=—cf/(1+e) in Q
Ue —u=0 on T (6.6)
Oy (ue —u) = Oy e on TI.
By using the estimate (1.10) of Theorem 1.4, we get
lue —ullm@) <C IA@e —u)llrz@) < Ce, 10y (ue —u)llg-1/2) < C Ve
By plugging these estimates in Theorem 1.9 of [1], we obtain the result. O

Lemma 6.4. There exists a constant C' > 0 which depends only on the geometry and on u and a constant
u € (0,1) which depends only on the geometry such that

||u5 — U”Hl(G) < Cet.

Proof. We start again from the system (6.6) satisfied by the function u. — w in . Let us consider some zg € T’
and a sufficiently small » > 0 such that Ty = I' N B(xg, ) is the interior of a segment. We have that, by using
a trace inequality,

10y (ue — u)l|L2(rg) = 100 AellL2 o) < ClIA N H3/2(w0)>
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where wg = QN B(zg, 7). Then, by interpolation

1/2 1/2
Al #1272 () < C 1A 1y e )

Now, the estimates of A\; given by Theorems 1.4 and 2.2 provide
Xellfrwe) < C Ve, IAellmz(we) < C.

We end up with
Ha,,(ug — U)||L2(Fg) < 051/4.

Plugging the estimates
hie —ulliney < 1A@e — )iz < Cer (180 — )]y < O

in Propositions 2.3 (propagation of smallness from a subpart of the boundary to the interior of the domain)
and 2.2 (interior propagation of smallness) in [5], we obtain the result. O

Remark 6.5. Our analysis does not provide a uniform bound of ||u. —ul| = () with respect to e for some s > 1.
Such uniform bound is required when trying to propagate smallness from the interior up to the boundary (see
Prop. 2.4 in [5]). This is why a stability estimate for ||uc — u| g1 (o) can not be obtained from what precedes.

In conclusion, by gathering (6.3)—(6.5), we end up with the final estimate

) hs—l
| ), = ulli (@) < C =t C—+n(e), (6.7)

where s is given in the statement of Theorem 3.1 and 7 converges to 0 when ¢ tends to 0 at best with a
logarithmic convergence rate in view of Lemma 6.3. An important application of the estimate (6.7) is that when
0 — 0, we have to choose ¢ = €(d) and h = h(e) such that

s—1
—0, Jim 1)

lim ——— =0
5—0 5(5) e—0 €

in order to obtain a good approximation of the exact solution from noisy data and by using our FEM.

Remark 6.6. Taking Lemma 6.4 into account, the estimate (6.7) is slightly improved in the truncated
domain G:

1) h
o=l < © (G + 2 <)) (63)

where the exponent of h is 1 because the domain G excludes all the corners (we use a slight adaptation of
Theorem 2.2).

6.2. Numerical illustrations

In this paragraph, we present the results of preliminary numerical experiments we conducted to illustrate
certain features of the estimate (6.7). We set

Q=(0,1) x (0,1) and I'=({0} x (0,1)) U ({1} x (0,1)) U ((0,1) x {0}),

as well as f = —Awu, where
2

u(z,y) = (sin(z) sin(1 — ) sin(y))*.
Note that the function u satisfies u = d,u = 0 on I'. As a consequence, u is the solution of the Cauchy problem
(1.6). Then for a given small £ > 0, we numerically approximate the solution of the mixed formulation of
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FICURE 4. Curves [uc ;, — || g1 () With respect to h for e =107%, e =107% and e = 107".

quasi-reversibility (1.7) using a P1 FEM. To proceed, we use the library FreeFem++3. This gives us a numerical
solution u. , where h corresponds to the mesh size. The mesh of the domain € is structured and composed
of triangles that are all the same. We emphasize that in order to interpret the results more easily, that is to
analyze the conjugate effects of ¢ and h on the error, we take fO = f. In other words, we work with noiseless data.

In Figure 4, we have displayed the curve |luc, — u||g1(q) as a function of h for different values of . Given
the geometry considered here, Theorem 3.1 ensures that we can take s = 2 in (6.7). As a consequence, we have
the theoretical estimate

h
luen — ullgr@) < C - +n(e), (6.9)

where the function 7 is not known but at best logarithmic (see the discussion above). We observe that ||u. p —
ul| H1(0) s a function that decreases as h tends to zero. However, such function seems linear for small values
of € and turns out to be a constant for large values of ¢ in the region where h is small (see the left curve of
Fig. 4). An attempt to explain such phenomenon is the following: for small values of €, the first term in the
right-hand side of (6.9) is much larger than the second one, so that the linearity with respect to h is visible.
This is confirmed, looking at the vertical scales indicated on the figure, by the fact that the maximal error is
increasing when ¢ is decreasing. For large values of ¢, the second term becomes dominant and does not depend
on h, which explains why a threshold is visible.

Such effect can be attenuated if we truncate the domain close to the boundary 9Q \ T = (0,1) x {1}, that
is where the data are unknown. Indeed, as we can see on Figure 5, the numerical errors create some instability
close to that part of the boundary.

In Figure 6, we set G' = (0,1) x (0,0.9) (interior domain) and we represent the curve ||ucj, — ull 1) as a
function of h for different values of €. In that case, adapting a bit (6.8) (because I' has some corners but angles
are right angles), we obtain the theoretical estimate

h
”ue,h - U”Hl((;) <C <€ + 6”) (6.10)

for some positive p. In this situation, in agreement with (6.10), we observe that the linear behaviour with
respect to h as h tends to zero appears quite clearly, because the first term in the right-hand side of (6.10) is
not absorbed by the second one any more, for all values of € that we consider. This may be due to the fact that
the Holder estimate C'e# is much smaller than the estimate (), which is at best logarithmic.

Finally, in Figure 7 we show the curves [luc,n — ul[p1 (o) (left) and [lucn — ul| g1 (right) with respect to
loge for a given h, by using the same horizontal and vertical scales. In accordance with (6.9) and (6.10), we

3 FreeFem++, http://www.freefem.org/ff++/.
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FIGURE 5. Exact solution u (left) and error u. 5 — u (right) for e = 1078, h &~ 7.1 x 1073.
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and |lue,n — ull () (right) with respect to loge for
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observe that for a fixed h, when e decreases to zero, the errors firstly improve and secondly deteriorate. This is
especially observable for the error in Q (left picture).

APPENDIX A. A BASIC UNIFORM ESTIMATE
For A € C, we introduce the symbol #(\) : D(_¢) — L?*(0,w) where
D(J7)={ue H&,O(O,w) N HQ(O,w)7 dpu(w) = 0}
and
I Np=—(N +dj)e.
The goal of the appendix is to establish the following result.

Proposition A.1. If ReX ¢ {(n/2 + nn)/w, n € Z}, then 7 is an isomorphism and if ¢ € D(_#) satisfies
J(p) =g € L*(0,w), we have the estimate

151l L2 0.0y + APl L2 0w) < CllgllL2(0.0)s (A1)
where C' > 0 is independent of g and Im A.
To prove Proposition A.1, we need three lemmas. We first consider a simple situation when A is purely imaginary.

Lemma A.2. If A\ =ir, 7 € R, the mapping # is an isomorphism and if ¢ € D(_#) satisfies 7 (p) =g €
L?(0,w), we have
5ol 2 (0.w) + IAPllellz2(0.0) < 3119122 (0.0)-

Proof. For A\ = it with 7 € R, due to the Lax-Milgram lemma and Poincaré inequality, for all g € L?(0,w)
there exists a unique ¢ € Hg ,(0,w) such that (7% — d§)e = g and dgp(w) = 0. Then djp = 7%p — g € L*(0,w).
Hence _# () is invertible and continuous. From the Banach theorem, ¢ () is an isomorphism. More precisely,
the Lax—Milgram lemma implies that
”da(pH%Z(O,w) + |)“2||<p||%2(0,w) = (ng)Lz(O,w)a
in particular
APl z2 0,w) < NlgllL2(0.0)-

Since in addition d2¢ = 7% — g, we have
5ol z2(0.0) < APllell 20wy + 19122 (0,0) < 21190220095
which completes the proof. O

We will say that A € C is an eigenvalue of ¢ if Ker #(\) # {0}. We have the following lemma.

Lemma A.3. For all A\ € C, Z(\):D(_#) — L*(0,w) is an isomorphism if and only if X is not one of the
A = (/2 4+ n7)/w, n € Z.

Proof. Lemma A.2 indicates that the result is true for any A € iR. It follows from the analytic Fredholm
theorem that #(\) : D(_#) — L?(0,w) is an isomorphism if and only if X is not an eigenvalue of #. It is
straightforward that the eigenvalues of ¢ are A, = (7/2 + nm)/w, n € Z, the corresponding eigenfunctions
being given by ¢, (0) = sin((7/2 4+ nr)0/w). The result follows. O

We now consider a situation where A is no longer purely imaginary.
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Lemma A.4. There exists a real positive constant § such that for all A € C satisfying
[Re \| < 6 |Im Al,
the operator # is an isomorphism and if o € D(_7) satisfies 7 (N)p = g € L*(0,w), then

IdgellL20.w) + IAPlI@llL20,0) < 4119l L2(0,0)-

Proof. We already know from Lemma A.2 that the result holds for A € iR. Now let us consider the case when
A ¢ iR. We write A as A = +i|A|e'¥ for o € (—7/2,7/2). Set A = £i|\|. Since |A| = |A|, we have

gl 200y + AP0l 22 (0.0) = 15l L2(0,0) + AP0l 220,
Let us define § = _# (A\)g. According to Lemma A.2, we have

ldgellL20.w) + AP0l L2(0,w) < 31171 L2(0,0)-

We have that
91200y < l9ll20.0) + 119 — 9ll20,.w)

and
13 = 9ll20.w) = 1LZ Ve = Z Nellrz0w) < 1A = Nllellz20w)-

We obtain that

2ip _

19— gllz20,w) < le 112IAP ]l £2(0,0)-

For all € > 0, there exist § small enough such that ||§ — gl r2(0,.) < €|AI?|l¢]lL2(0,w)- By choosing 3e = 1/4 we
eventually obtain the result. O

Proof of Proposition A.1. Lemma A.4 implies that for all A € C such that Re A = § and [Im(\)| > vg, we have
the estimate

dgellL20.w) + AP0l 200wy < CllgllL2(0.0)5

where C' > 0 is independent of X, g and vz depends only on . For A € [8 — ivg, § + ivg], the symbol _#(\)
is invertible according to Lemma A.3. The analytic Fredholm theorem guarantees that the inverse operator
A+ _Z(X)~!is continuous outside of its poles. Since the segment [—3 — ivg, —3 + ivg) is compact, we deduce
that the above estimate remains true for all A such that Re A = 3 with a constant C' which depends neither on
g nor Im . O

APPENDIX B. PROOFS OF LEMMAS B.1 AND B.2

In order to prove Lemmas B.1 and B.2, we will need the following formulas, which hold for any A € C and
0 € R,
cos(A) = cos(Re(A)) cosh(Im(A)0) — i sin(Re(A)0) sinh(Im(A)0)

and
sin(A@) = sin(Re(A)0) cosh(Im(A)#) + i cos(Re(A)€) sinh(Im(A)8).
They imply
|sin(A@)|*> = (cosh(2Im(A)8) — cos(2Re(N)6))/2 (B.1)
and
| cos(A0)|* = (cosh(2Im(\)@) + cos(2Re(N)6))/2. (B.2)

In the following lemmas, we give the proof of two technical results needed in the previous analysis.
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Lemma B.1. Assume that 8 ¢ {(7/2 + nw)/w, n € Z}. There is a constant C > 0 independent of ¢ > 0,

A= B+ 11 € Lg such that
62\T|w

< . .
Tz coOu) = /¢ (B-3)

Proof. Observing that e?l71¥ < 4 cosh(rw)?, we see that to establish (B.3), it is sufficient to show that there is
some 7 > 0 such that
14/ cosh(Tw) nv/€ cosh(7w)

1+ i/ cos(Aw)|? |1 —iy/E cos(Aw)[?2 —

We will study the two factors on the left hand side of (B.4) proving that for n > 0 small enough they are both
smaller than one. Let us consider the first one. A direct computation gives

|1+ vz cos(Aw)|? = £ cos(Bw)? cosh(Tw)? + (1 + /& sin(Bw) sinh(Tw))?. (B.5)

(B.4)

Define the polynomial function P such that
P(X) = X? cos(Bw)? cosh(Tw)? + (1 + X sin(Bw) sinh(7w))? — nX cosh(rw).

We see that the first factor on the left hand side of (B.4) is smaller than one as soon as P is positive on R.
Since P(0) =1 > 0, it is sufficient to show that its discriminant is negative. We find

Ap = (2sin(fw) sinh(rw) + 7 cosh(7w))? — 4(cos(Bw)? cosh(rw)? + sin(Bw)? sin(rw)?)
= ((772 — 4 cos(fBw)?) cosh(rw) + 4nsin(Bw) sinh(Tw)) cosh(rw).

Observing that |sinh(7w)| < cosh(rw), we can write

(n? — 4 cos(Bw)?) cosh(Tw) + 4nsin(Bw) sinh(Tw)
< (n* + 4n| sin(Bw)| — 4 cos(Bw)?) cosh(Tw).

Therefore, since cos(fw) # 0 when 8 ¢ {(7/2+nm)/w, n € Z}, we see that we can find > 0 small enough (but
independent of 7) such that Ap < 0. This shows that the first factor on the left hand side of (B.4) is smaller
than one. A completely similar approach allows one to prove that the second factor is also smaller than one. As
a consequence, (B.4) is satisfied for n small enough and so is (B.3). O

Lemma B.2. Assume that 8 ¢ {(n/2 + nrn)/w,n € Z}. There is a constant C > 0 independent of € > 0,

A= B+ it € £g such that
€2€4|‘r|w

<C. .
|1+ & cos?(Aw)|? — ¢ (B-6)

Proof. As in the proof of Lemma B.1, one can check that it is sufficient to show that there is some 1 > 0 such
that

ne cosh(rw)? ne cosh(Tw)? <1 (B.7)
[1 4 iy/e cos(Aw)|? |1 — i/e cos(Aw)|?
In (B.5), we obtained
|1 £ iv/e cos(Aw)|? = e cos(Bw)? cosh(Tw)? + (1 F /e sin(Bw) sinh(Tw))?. (B.8)

Therefore, we can write

|14 iy/E cos(Aw)|? — ne cosh(Tw)?
= (cos(Bw)? — n) cosh(rw)? + (1 F /2 sin(Bw) sinh(7w))? > 0

for n small enough. This is enough to conclude. (]
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