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CONSERVATIVE DISCONTINUOUS FINITE VOLUME AND MIXED SCHEMES
FOR A NEW FOUR-FIELD FORMULATION IN POROELASTICITY

Sarvesh Kumar1, Ricardo Oyarzúa2,3, Ricardo Ruiz-Baier4,5,* and
Ruchi Sandilya6

Abstract. We introduce a numerical method for the approximation of linear poroelasticity equations,
representing the interaction between the non-viscous filtration flow of a fluid and the linear mechanical
response of a porous medium. In the proposed formulation, the primary variables in the system are the
solid displacement, the fluid pressure, the fluid flux, and the total pressure. A discontinuous finite volume
method is designed for the approximation of solid displacement using a dual mesh, whereas a mixed
approach is employed to approximate fluid flux and the two pressures. We focus on the stationary case
and the resulting discrete problem exhibits a double saddle-point structure. Its solvability and stability
are established in terms of bounds (and of norms) that do not depend on the modulus of dilation of
the solid. We derive optimal error estimates in suitable norms, for all field variables; and we exemplify
the convergence and locking-free properties of this scheme through a series of numerical tests.
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1. Introduction

The linear poroelasticity equations constitute one of the simplest continuum models for fluid-structure inter-
action. In the classical description of the consolidation problem by Biot (see the seminal paper [12]), the filtration
of a viscous fluid within the porous skeleton is described by Darcy’s law, whereas the deformation of the solid
material is governed by Hooke’s linear elasticity. The formalism assumes that the porous medium is saturated
by the interstitial fluid. Modern applications of this classical framework include numerous problems in science
and engineering, where notable examples are logging technologies and the study of borehole instabilities, the
behaviour of soils under tunnelling, or in the process of CO2 sequestration; as well as biomedical investigations
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such as the characterisation of biological soft tissue (e.g. arterial walls, skin, lungs, cardiac muscle, and articular
cartilage).

Due to the coupling of flow, transport, and conservation of linear momentum, obtaining analytical solutions
for poroelasticity equations is not trivial, and one has therefore to rely on computational simulations. How-
ever, the success in accurately replicating poroelasticity solutions using numerical methods is often affected by
the manifestation of three unphysical scenarios: spurious pressure modes, locking phenomena (instabilities and
polluted convergence of the solid displacement approximation), and loss of mass. In view of remediating these
shortcomings encountered in the solutions produced with classical methods and formulations, here we extend
the three-field formulation proposed in [39,47] (where classical finite elements can be employed straightforwardly
without the risk of producing the first two spurious phenomena), and we further introduce a family of discon-
tinuous finite volume (DFV) – mixed finite element (MFE) schemes that aim at rectifying the third nonphysical
situation. Apart from enabling robustness with respect to the incompressibility limit (at the additional cost
of coupling with one scalar equation), the additional unknown of total pressure used here and in [39, 47] has
also a clear physical meaning. It encompasses the contributions of isotropic stress from fluid and solid phases,
and it constitutes a more natural extension of the so-called Hermann formulation (displacement-pressure) for
elasticity, to the case of poromechanics, and it has special interest in some recent extended models such as the
so-called multiple-network poroelasticity and the method proposed in [40]. Therein, the authors indicate that
using the total pressure has an important quantitative impact on the computation of displacement magnitude
for certain tests cases.

With the exception of the finite volume (FV) discretisation of Biot’s system applied in [8,45], the numerical
solution of poroelasticity equations has been traditionally associated with finite element (FE) methods. Some of
these studies include stabilised conforming schemes for primal formulations and least-squares FE methods [1,9,
10,27,42,44,62,63,66] (see also the extensive review [41]); as well as HDG schemes [28], DG methods [21,35,53]
(in particular, conservative schemes from [33, 34, 36]), and HHO methods (hybrid high-order discretisations
which are conservative and robust with respect to locking and spurious pressure modes, advanced in [13]).
On the other hand, a few schemes that combine discontinuous Galerkin (or finite volume, or weak Galerkin)
discretisations and mixed methods solving also for the fluid flux, have been proposed in [19, 50, 55, 59, 65].
Apart from reproducing accurately the mechanical equilibrium, guaranteeing the conservation of fluid mass is
of substantial importance in most applications. Some dedicated techniques are available, including for instance
the stabilised method in [24]; and the reconstruction of stress and fluid fluxes by a modified Arnold–Winther
scheme, recently analysed in [52]. Other double mixed formulations (mixed for the elasticity and mixed for
Darcy’s flow) have been recently rigorously analysed in [2]. These schemes are particularly useful when fluid
flux and stress act as coupling variables with other phenomena such as thermal processes, multiphase flows,
or chemical reactions. We also point out that stability and monotonicity issues related to numerical methods
for Biot’s equations are addressed in [54]. As mentioned above, an important aspect is the robustness of the
methods with respect to model parameters. This has been achieved for Biot and multiple network poroelasticity
in the very recent works [33,34]. There the authors are able to derive stability bounds independent of the Lamé
constants, but also independence with respect to constrained specific storage and solid permeability. Their
results hinge on the definition of parameter-dependent norms for displacement, fluid flux, and fluid pressure. In
addition, using the classical framework of abstract Riesz representation of perturbed linear problems developed
in [43], they present adequate block preconditioners that preserve parameter robustness.

Here we also aim at developing stable and convergent schemes using similar ideas as those in [40, 47]; but
the primary differences with respect to the contributions listed above is that we use a special blend of DFV
and MFE methods for the numerical approximation of the underlying coupled problem, recast in terms of
solid displacement, fluid flux, fluid pressure, and total pressure. FV schemes are a particular class of Petrov-
Galerkin methods that require to define trial and test spaces associated with primal and dual partitions of
the domain, respectively. Different types of dual meshes are employed when the FV method is of conforming,
non-nonconforming, or discontinuous type (see details and comparisons in e.g. [18]), but in most cases they
feature local conservativity as well as suitability for deriving energy and 𝐿2-error estimates. Moreover, schemes
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using DFV approximations preserve features of both DG and general FV methods, including smaller support of
dual elements (when compared with conforming and non-conforming FV schemes) as well as appropriateness in
handling discontinuous coefficients. Establishing the solvability of the continuous formulation and the stability
bounds for the proposed numerical schemes in a robust manner is not trivial, since we do not employ parameter-
weighted norms as done, e.g. [33, 34, 39, 40, 43]. In particular, a current limitation in our approach is that the
structure of our analysis does not permit to treat the case of zero constrained specific storage coefficients.
However our numerical experiments show that this might be only a technical requirement.

We have structured the contents of this paper as follows. Section 2 outlines the main ingredients of the model
problem and carry out its solvability and stability analysis. A family of DFV-MFE methods is then introduced
in Section 3, and the invertibility of the discrete solution operator is derived in Section 4. The error analysis
of the proposed schemes is addressed next in Section 5, and in Section 6 we provide a few numerical tests
illustrating the properties of the proposed method. We close in Section 7 with a summary and discussion of
possible extensions.

2. The governing equations in a mixed-mixed structure

2.1. Preliminaries

From now on we will adopt the classical notation for Lebesgue and Sobolev spaces. In addition by M and
M we will denote the corresponding vectorial and tensorial counterparts of the generic scalar functional space
M. For instance, if Θ ⊆ R𝑑, 𝑑 = 2, 3 is a domain, Λ ⊆ R𝑑 is a Lipschitz surface, and 𝑟 ∈ R, we define
H𝑟(Θ) := [H𝑟(Θ)]𝑑 and H𝑟(Λ) := [H𝑟(Λ)]𝑑. By 0 we will refer to the generic zero vector and we will denote
by 𝐶 and 𝑐, with or without subscripts, bars, tildes or hats, generic constants independent of the discretisation
parameters. We recall that H(div; Θ) := {𝜏 ∈ L2(Θ) : ∇ · 𝜏 ∈ 𝐿2(Θ)} associated with the norm

‖𝜏‖2div,Θ := ‖𝜏‖20,Θ + ‖∇ · 𝜏‖20,Θ ,

is a Hilbert space.
As a model problem we consider a homogeneous porous medium constituted by a mixture of incompressible

grains and interstitial fluid. The domain of interest Ω ⊂ R𝑑, 𝑑 = 2, 3 is assumed bounded and simply connected.
For a given body force 𝑓 and a given volumetric fluid source ℓ, we will concentrate the discussion on the following
four-field mixed-mixed formulation of Biot’s equations: find the displacements of the porous skeleton, 𝑢, the
total pore pressure of the fluid, 𝑝, the fluid flux, 𝜎, and the total fluid-structure pressure (or total volumetric
stress), 𝜑; satisfying

−div(2𝜇𝜀(𝑢)− 𝜑I) = 𝑓 in Ω, (2.1)
𝜑 = 𝛼𝑝− 𝜆 div 𝑢 in Ω, (2.2)

𝜎 = −𝜅
𝜂

(∇𝑝− 𝜌𝑔) in Ω, (2.3)(︂
𝑐0 +

𝛼2

𝜆

)︂
𝑝− 𝛼

𝜆
𝜑+ div 𝜎 = ℓ in Ω, (2.4)

where 𝜀(𝑢) = 1
2 (∇𝑢 + ∇𝑢𝑇 ) is the tensor of infinitesimal strains, 𝜅 is the permeability of the porous solid

(assumed uniformly bounded 0 < 𝜅1 ≤ 𝜅(𝑥) ≤ 𝜅2 <∞, for all 𝑥 ∈ Ω), 𝜆, 𝜇 are the Lamé constants of the solid
(moduli of dilation and shear, respectively), 𝑐0 > 0 is the constrained specific storage coefficient, 𝛼 > 0 is the
Biot-Willis parameter, 𝑔 is the gravity acceleration; and 𝜂 > 0, 𝜌 > 0 are the viscosity and density of the pore
fluid. In a stationary setting, equation (2.1) states conservation of momentum for the mixture, (2.4) corresponds
to mass conservation of the fluid content (for instance resulting at time iteration when doing a semidiscretisation
in time of the transient Biot equations), and (2.2), (2.3) define the new unknowns in the system in terms of the
primal variables.
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The boundary of Ω is assumed disjointly split into segments or surfaces where Dirichlet conditions are to
be considered for fluid pressure and solid displacements: 𝜕Ω = Γ𝑝 ∪ Γ𝑢, Γ𝑝 ∩ Γ𝑢 = ∅. These prescriptions are
accompanied by zero normal total stress, and by zero normal fluid flux, respectively. In summary, we endow the
system (2.1)–(2.4) with the following boundary conditions

𝑝 = 𝑝Γ, (2𝜇𝜀(𝑢)− 𝜑I) 𝑛 = 0 on Γ𝑝, and 𝑢 = 0, 𝜎 · 𝑛 = 0 on Γ𝑢, (2.5)

where 𝑛 is the exterior unit normal vector on 𝜕Ω and 𝑝Γ ∈ H1/2
00 (Γ𝑝) := {𝑣|Γ𝑝

: 𝑣 ∈ H1
Γ𝑢

(Ω)}, with H1
Γ𝑢

(Ω) :=
{𝑣 ∈ H1(Ω) : 𝑣|Γ𝑢

= 0}. The space H1/2
00 (Γ𝑝) is endowed with the norm

‖𝜉‖1/2,00,Γ𝑝
:= inf{‖𝑣‖1,Ω : 𝑣 ∈ H1

Γ𝑢
(Ω) and 𝑣|Γ𝑝 = 𝜉}.

More elaborated boundary conditions can be found in e.g. [57].

2.2. Weak formulation

We proceed to test equations (2.1)–(2.4) against appropriate functions and to integrate by parts. This step
leads to the following weak formulation of the coupled problem: find 𝑢 ∈ H, 𝜑 ∈ Q, 𝜎 ∈ Z, and 𝑝 ∈ Q such that

𝑎𝑠(𝑢,𝑣) + 𝑏𝑠(𝑣, 𝜑) = 𝐹 (𝑣) ∀𝑣 ∈ H, (2.6)
𝑏𝑠(𝑢, 𝜓) − 𝑐𝑠(𝜑, 𝜓) + 𝑏𝑠𝑓 (𝜓, 𝑝) = 0 ∀𝜓 ∈ Q, (2.7)

𝑎𝑓 (𝜎, 𝜏 ) + 𝑏𝑓 (𝜏 , 𝑝) = 𝐺(𝜏 ) ∀𝜏 ∈ Z, (2.8)
𝑏𝑠𝑓 (𝜑, 𝑞) + 𝑏𝑓 (𝜎, 𝑞) − 𝑐𝑓 (𝑝, 𝑞) = 𝐻(𝑞) ∀𝑞 ∈ Q, (2.9)

where the bilinear forms and linear functionals appearing in (2.6)–(2.9) (denoted with a subscript 𝑠 or 𝑓 whenever
the arguments are solely related to structure or to fluid variables, respectively) are specified in the following
way

𝑎𝑠(𝑢,𝑣) := 2𝜇
∫︁

Ω

𝜀(𝑢) : 𝜀(𝑣), 𝑏𝑠(𝑣, 𝜓) := −
∫︁

Ω

𝜓 div 𝑣, 𝑏𝑠𝑓 (𝜓, 𝑞) :=
𝛼

𝜆

∫︁
Ω

𝜓𝑞, 𝑐𝑠(𝜑, 𝜓) :=
1
𝜆

∫︁
Ω

𝜑𝜓,

𝑎𝑓 (𝜎, 𝜏 ) :=
𝜂

𝜅

∫︁
Ω

𝜎 · 𝜏 , 𝑏𝑓 (𝜏 , 𝑞) := −
∫︁

Ω

𝑞 div 𝜏 , 𝑐𝑓 (𝑝, 𝑞) :=
(︂
𝑐0 +

𝛼2

𝜆

)︂∫︁
Ω

𝑝𝑞, (2.10)

𝐹 (𝑣) :=
∫︁

Ω

𝑓 · 𝑣, 𝐺(𝜏 ) :=
∫︁

Ω

𝜌𝑔 · 𝜏 − ⟨𝜏 · 𝑛, 𝑝Γ⟩Γ𝑝
, 𝐻(𝑞) := −

∫︁
Ω

ℓ 𝑞,

and the conditions in (2.5) imply that the functional spaces may be chosen as

H := H1
Γ𝑢

(Ω) = {𝑣 ∈ H1(Ω) : 𝑣|Γ𝑢
= 0}, Q := L2(Ω), Z := {𝜏 ∈ H(div; Ω) : 𝜏 · 𝑛 = 0 on Γ𝑢}.

Notice that the mixed character of the fluid conservation equation implies that the Dirichlet datum for the fluid
pressure appears in the linear functional 𝐺.

2.3. Properties of the involved forms

Thanks to the Cauchy–Schwarz inequality, it is readily seen that all bilinear forms and linear functionals are
uniformly bounded, that is

|𝑎𝑠(𝑢,𝑣)| ≤ 2𝜇𝐶𝑘,2‖𝑢‖1,Ω‖𝑣‖1,Ω, |𝑎𝑓 (𝜎, 𝜏 )| ≤ 𝜂

𝜅1
‖𝜎‖div,Ω‖𝜏‖div,Ω,

|𝑏𝑠(𝑣, 𝜓)| ≤ ‖𝑣‖1,Ω‖𝜓‖0,Ω, |𝑏𝑠𝑓 (𝜓, 𝑞)| ≤ 𝛼𝜆−1‖𝜓‖0,Ω‖𝑞‖0,Ω, |𝑏𝑓 (𝜏 , 𝑞)| ≤ ‖𝜏‖div,Ω‖𝑞‖0,Ω,

|𝑐𝑠(𝜑, 𝜓)| ≤ 𝜆−1‖𝜑‖0,Ω‖𝜓‖0,Ω, |𝑐𝑓 (𝑝, 𝑞)| ≤
(︀
𝑐0 +

𝛼2

𝜆

)︀
‖𝑝‖0,Ω‖𝑞‖0,Ω,

(2.11)
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and

|𝐹 (𝑣)| ≤ ‖𝑓‖0,Ω‖𝑣‖1,Ω, |𝐺(𝜏 )| ≤ (𝜌‖𝑔‖0,Ω + ‖𝑝Γ‖1/2,00,Γ𝑝
)‖𝜏‖div,Ω, |𝐻(𝑞)| ≤ ‖ℓ‖0,Ω‖𝑞‖0,Ω, (2.12)

for all 𝑢,𝑣 ∈ H, 𝑝, 𝑞, 𝜑, 𝜓 ∈ Q, 𝜎, 𝜏 ∈ Z. Above, 𝐶𝑘,2 is one of the positive constants satisfying

𝐶𝑘,1‖𝑣‖21,Ω ≤ ‖𝜀(𝑣)‖20,Ω ≤ 𝐶𝑘,2‖𝑣‖21,Ω, ∀𝑣 ∈ H. (2.13)

Regarding the positivity of the forms 𝑎𝑠 and 𝑎𝑓 , we begin by using (2.13), to obtain

𝑎𝑠(𝑣,𝑣) ≥ 2𝜇𝐶𝑘,1‖𝑣‖21,Ω, ∀𝑣 ∈ H. (2.14)

In turn, we define

𝐾𝑓 := {𝜏 ∈ Z : 𝑏𝑓 (𝜏 , 𝑞) = 0 ∀ 𝑞 ∈ Q} = {𝜏 ∈ Z : div 𝜏 = 0 in Ω} ,

and observe that the following inequality holds

𝑎𝑓 (𝜏 , 𝜏 ) ≥ 𝜂

𝜅2
‖𝜏‖2div,Ω, ∀ 𝜏 ∈ 𝐾𝑓 . (2.15)

Finally, we recall the following inf-sup conditions satisfied by the forms 𝑏𝑠 and 𝑏𝑓 (see e.g. [31]):

sup
𝑣∈H∖0

𝑏𝑠(𝑣, 𝜓)
‖𝑣‖1,Ω

≥ 𝛽𝑠‖𝜓‖0,Ω ∀𝜓 ∈ Q and sup
𝜏∈Z∖0

𝑏𝑓 (𝜏 , 𝑞)
‖𝜏‖div,Ω

≥ 𝛽𝑓‖𝑞‖0,Ω ∀ 𝑞 ∈ Q, (2.16)

with 𝛽𝑠, 𝛽𝑓 > 0 depending on |Ω|.

2.4. Analysis of the continuous problem

In what follows we establish the well-posedness and stability of our formulation. To that end we derive the
continuous dependence result for (2.6)–(2.9) by considering generic functionals appearing on the corresponding
right-hand side. Then, recalling that the problem is defined by a self-adjoint operator from a Hilbert space into
itself, the well-posedness and stability can be readily derived (see for instance [15], Cor. 2.18). In addition, we
observe in advance that the discrete version of the following theorem, whose proof can be obtained by following
the same steps provided next, is crucial for the derivation of a companion error estimate. Let us then define
𝐹1 ∈ H′, 𝐺1 ∈ Q′, 𝐹2 ∈ Z′ and 𝐺2 ∈ Q′ and let (𝑢, 𝜑,𝜎, 𝑝) ∈ H×Q× Z×Q, be such that

𝑎𝑠(𝑢,𝑣) + 𝑏𝑠(𝑣, 𝜑) = 𝐹1(𝑣) ∀𝑣 ∈ H, (2.17)
𝑏𝑠(𝑢, 𝜓) − 𝑐𝑠(𝜑, 𝜓) + 𝑏𝑠𝑓 (𝜓, 𝑝) = 𝐺1(𝜓) ∀𝜓 ∈ Q, (2.18)

𝑎𝑓 (𝜎, 𝜏 ) + 𝑏𝑓 (𝜏 , 𝑝) = 𝐹2(𝜏 ) ∀𝜏 ∈ Z, (2.19)
𝑏𝑠𝑓 (𝜑, 𝑞) + 𝑏𝑓 (𝜎, 𝑞) − 𝑐𝑓 (𝑝, 𝑞) = 𝐺2(𝑞) ∀𝑞 ∈ Q. (2.20)

For the subsequent analysis we will appeal to a collection of preliminary results and definitions. We begin by
observing that each 𝜏 in Z can be uniquely decomposed into the form

𝜏 = 𝜏 0 + 𝜏⊥, with 𝜏 0 ∈ 𝐾𝑓 and 𝜏⊥ ∈ 𝐾⊥
𝑓 .

Then, we define 𝐹 0
2 ∈ 𝐾 ′

𝑓 and 𝐹⊥2 ∈ (𝐾⊥
𝑓 )′ be such that

𝐹2(𝜏 ) = 𝐹 0
2 (𝜏 0) + 𝐹⊥2 (𝜏⊥) ∀ 𝜏 = 𝜏 0 + 𝜏⊥ ∈ Z. (2.21)

Clearly
𝐹2|𝐾𝑓

(𝜏 ) = 𝐹 0
2 (𝜏 0), 𝐹2|𝐾⊥𝑓 (𝜏 ) = 𝐹⊥2 (𝜏⊥), 𝐹 0

2 (𝜏⊥) = 0 and 𝐹⊥2 (𝜏 0) = 0. (2.22)
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Similarly, we define
𝐾𝑠 := {𝑣 ∈ H : 𝑏𝑠(𝑣, 𝜓) = 0 ∀𝜓 ∈ Q} ,

and observe that each 𝑣 in H can be uniquely decomposed into the form

𝑣 = 𝑣0 + 𝑣⊥, with 𝑣0 ∈ 𝐾𝑠 and 𝑣⊥ ∈ 𝐾⊥
𝑠 .

Let us now observe that from the inf-sup conditions (2.16), there holds

sup
(𝑣,𝜏 )∈(H×Z)∖0

𝑏𝑠(𝑣, 𝜓) + 𝑏𝑓 (𝜏 , 𝑞)
‖𝑣‖1,Ω + ‖𝜏‖div,Ω

≥ 𝛽(‖𝜓‖0,Ω + ‖𝑞‖0,Ω) ∀𝜓, 𝑞 ∈ Q, (2.23)

with 𝛽 > 0 independent of 𝜆. From (2.23) and Lemma 2.1 of [29] it can be easily deduced that

sup
(𝜓,𝑞)∈(Q×Q)∖0

𝑏𝑠(𝑣⊥, 𝜓) + 𝑏𝑓 (𝜏⊥, 𝑞)
‖𝜓‖0,Ω + ‖𝑞‖0,Ω

≥ 𝛽(‖𝑣⊥‖1,Ω + ‖𝜏⊥‖div,Ω) ∀ (𝑣⊥, 𝜏⊥) ∈ 𝐾⊥
𝑠 ×𝐾⊥

𝑓 . (2.24)

To conclude we define

𝐶((𝜑, 𝑝), (𝜓, 𝑞)) := 𝑐𝑠(𝜑, 𝜓) + 𝑐𝑓 (𝑝, 𝑞)− 𝑏𝑠𝑓 (𝜑, 𝑞)− 𝑏𝑠𝑓 (𝜓, 𝑝)

=
1
𝜆

∫︁
Ω

(𝜑− 𝛼𝑝)(𝜓 − 𝛼𝑞) + 𝑐0

∫︁
Ω

𝑝𝑞, ∀𝜑, 𝜓, 𝑝, 𝑞 ∈ Q,

and notice that

|𝐶((𝜑, 𝑝), (𝜓, 𝑞))| ≤ 𝐶((𝜑, 𝑝), (𝜑, 𝑝)))1/2(𝐶((𝜓, 𝑞), (𝜓, 𝑞)))1/2

=
(︂

1
𝜆
‖𝜑− 𝛼𝑝‖20,Ω + 𝑐0‖𝑝‖20,Ω

)︂1/2(︂ 1
𝜆
‖𝜓 − 𝛼𝑞‖20,Ω + 𝑐0‖𝑞‖20,Ω

)︂1/2

,
(2.25)

for all 𝜑, 𝜓, 𝑝, 𝑞 ∈ Q, and

𝐶((𝜓, 𝑞), (𝜓, 𝑞)) =
1
𝜆
‖𝜓 − 𝛼𝑞‖20,Ω + 𝑐0‖𝑞‖20,Ω ≥ 𝑐0‖𝑞‖20,Ω. (2.26)

Theorem 2.1. Let (𝑢, 𝜑,𝜎, 𝑝) ∈ H×Q×Z×Q be such that the system (2.17)–(2.20) holds. Then, there exists
a constant 𝐶 > 0, independent of 𝜆, such that

‖𝑢‖1,Ω + ‖𝜑‖0,Ω + ‖𝜎‖div,Ω + ‖𝑝‖0,Ω ≤ 𝐶(‖𝐹1‖H′ + ‖𝐺1‖Q′ + ‖𝐹2‖Z′ + ‖𝐺2‖Q′).

Proof. Proceeding similarly to the proof of Theorem 4.3.1 from [14], we will perform three steps. Firstly, we
assume that 𝐺1 = 0 and 𝐹2 = 0 and bound the solution in terms of 𝐹1 and 𝐺2. Secondly, we assume that
𝐹1 = 0, 𝐺2 = 0, 𝐺1 = 0 and derive an estimate for the solution in terms of 𝐹2. Finally, we assume that 𝐹1 = 0,
𝐺2 = 0 and 𝐹2 = 0 and derive an estimate for the solution in terms of 𝐺1. In this way, the desired stability will
follow by linearity after adding the obtained estimates.

Step 1 (𝐺1 = 0 and 𝐹2 = 0). Taking 𝑣 = 𝑢 in (2.17), 𝜓 = 𝜑 in (2.18), 𝜏 = 𝜎 in (2.8) and 𝑞 = 𝑝 in (2.20) and
performing the operations (2.17) − (2.18) + (2.19) − (2.20), we obtain

𝑎𝑠(𝑢,𝑢) + 𝑎𝑓 (𝜎,𝜎) + 𝐶((𝜑, 𝑝), (𝜑, 𝑝)) = 𝐹1(𝑢) +𝐺2(𝑝).

Then, applying (2.14), (2.26) and the boundedness of 𝐹1 and 𝐺2 in the identity above, we deduce that

2𝜇𝐶𝑘,1‖𝑢‖21,Ω + 𝑐0‖𝑝‖20,Ω ≤ ‖𝐹1‖H′‖𝑢‖1,Ω + ‖𝐺2‖Q′‖𝑝‖0,Ω,

which implies that
‖𝑢‖1,Ω + ‖𝑝‖0,Ω ≤ 𝐶1(‖𝐹1‖H′ + ‖𝐺2‖Q′), (2.27)
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with 𝐶1 > 0 independent of 𝜆. Then from the first condition in (2.16) and (2.18) we observe that

𝛽𝑠‖𝜑‖0,Ω ≤ sup
𝑣∈H∖{0}

𝑏𝑠(𝑣, 𝜑)
‖𝑣‖1,Ω

= sup
𝑣∈H∖{0}

𝐹1(𝑣)− 𝑎𝑠(𝑢,𝑣)
‖𝑣‖1,Ω

,

which together with (2.27) and the continuity of 𝑎𝑠 and 𝐹1, implies

‖𝜑‖0,Ω ≤ 𝐶2(‖𝐹1‖H′ + ‖𝐺2‖Q′), (2.28)

with 𝐶2 > 0 independent of 𝜆.
Now, in order to bound ‖𝜎‖div,Ω, we let 𝜎0 ∈ 𝐾𝑓 and 𝜎⊥ ∈ 𝐾⊥

𝑓 , such that 𝜎 = 𝜎0 + 𝜎⊥. First, from (2.19)
with 𝜏 = 𝜎0 and noticing that 𝜎0 ∈ 𝐾𝑓 , we have

𝑎𝑓 (𝜎0,𝜎0) = −𝑎𝑓 (𝜎⊥,𝜎0),

which jointly with (2.15) and the continuity of 𝑎𝑓 (cf. (2.11)), gives

‖𝜎0‖div,Ω ≤
𝜅2

𝜅1
‖𝜎⊥‖div,Ω. (2.29)

In turn, combining the second condition in (2.16) with Lemma 2.1 of [29] and (2.20), we obtain

𝛽𝑓‖𝜎⊥‖div,Ω ≤ sup
𝑞∈Q∖0

𝑏𝑓 (𝜎, 𝑞)
‖𝑞‖0,Ω

= sup
𝑞∈Q∖0

𝐺2(𝑞)− 𝑏𝑠𝑓 (𝜑, 𝑞)− 𝑐𝑓 (𝑝, 𝑞)
‖𝑞‖0,Ω

,

which together with the continuity of 𝐺2, 𝑏𝑠𝑓 and 𝑐𝑓 (cf. (2.11)), estimates (2.27) and (2.28), yields

‖𝜎⊥‖div,Ω ≤ 𝐶

(︂
1 +

2
𝜆

+ 𝑐0

)︂
(‖𝐹1‖H′ + ‖𝐺2‖Q′), (2.30)

where 1 + 2
𝜆 + 𝑐0 must be thought as a constant independent of 𝜆 if 𝜆→∞. Then, from (2.29), (2.30) and the

triangle inequality we easily deduce that

‖𝜎‖div,Ω ≤ 𝐶3(‖𝐹1‖H′ + ‖𝐺2‖Q′), (2.31)

with 𝐶3 > 0 independent of 𝜆. We conclude the first step by observing that the aforementioned estimate follows
from (2.27), (2.28) and (2.31).

Step 2 (𝐹1 = 0, 𝐺1 = 0 and 𝐺2 = 0). Now we proceed to bound the solution in terms of ‖𝐹2‖Z′ . To that end
we recall the decomposition 𝐹2 = 𝐹 0

2 + 𝐹⊥2 from (2.21). Consequently we bound the solution, firstly in terms
of ‖𝐹⊥2 ‖(𝐾⊥𝑓 )′ (assuming that 𝐹 0

2 = 0), and secondly in terms of ‖𝐹 0
2 ‖𝐾′𝑓 (assuming that 𝐹⊥2 = 0). Hence, the

desired estimate follows by linearity, adding both estimates.
Let 𝜎0 ∈ 𝐾𝑓 and 𝜎⊥ ∈ 𝐾⊥

𝑓 be such that 𝜎 = 𝜎0 + 𝜎⊥. Similarly, we let 𝑢0 ∈ 𝐾𝑠 and 𝑢⊥ ∈ 𝐾⊥
𝑠 be such

that 𝑢 = 𝑢0 + 𝑢⊥. In turn, taking 𝑣 = 𝑢 in (2.17), 𝜓 = 𝜑 in (2.18), 𝜏 = 𝜎 in (2.19) and 𝑞 = 𝑝 in (2.20) and
performing the operations (2.17) − (2.18) + (2.19) − (2.20), we observe that there holds

𝑎𝑠(𝑢,𝑢) + 𝑎𝑓 (𝜎,𝜎) + 𝐶((𝜑, 𝑝), (𝜑, 𝑝)) = 𝐹 0
2 (𝜎0) + 𝐹⊥2 (𝜎⊥), (2.32)

In addition, from (2.19) with 𝜏 = 𝜎0 and (2.22) we notice that

𝑎𝑓 (𝜎0,𝜎0) + 𝑎𝑓 (𝜎⊥,𝜎0) = 𝐹 0
2 (𝜎0). (2.33)

𝐹 0
2 = 0. We begin by noticing that from (2.32) there holds

𝐶((𝜑, 𝑝), (𝜑, 𝑝)) ≤ 𝐹⊥2 (𝜎⊥), (2.34)
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and since 𝐹 0
2 = 0, from (2.33), and from the continuity and ellipticity of 𝑎𝑓 , we have

‖𝜎0‖div,Ω ≤
𝜅2

𝜅1
‖𝜎⊥‖div,Ω. (2.35)

Moreover, summing up equations (2.18) and (2.20), we deduce that

𝑏𝑠(𝑢⊥, 𝜓) + 𝑏𝑓 (𝜎⊥, 𝑞) = 𝐶((𝜑, 𝑝), (𝜓, 𝑞)) ∀𝜓, 𝑞 ∈ Q,

which together with (2.24), (2.25) and (2.34) implies

𝛽‖𝜎⊥‖div,Ω ≤ sup
(𝜓,𝑞)∈(Q×Q)∖0

𝑏𝑠(𝑢⊥, 𝜓) + 𝑏𝑓 (𝜎⊥, 𝑞)
‖𝜓‖0,Ω + ‖𝑞‖0,Ω

= sup
(𝜓,𝑞)∈(Q×Q)∖0

𝐶((𝜑, 𝑝), (𝜓, 𝑞))
‖𝜓‖0,Ω + ‖𝑞‖0,Ω

≤
(︂

1
𝜆
‖𝜑− 𝛼𝑝‖20,Ω + 𝑐0‖𝑝‖20,Ω

)︂1/2

sup
(𝜓,𝑞)∈(Q×Q)∖0

(︀
1
𝜆‖𝜓 − 𝛼𝑞‖20,Ω + 𝑐0‖𝑞‖20,Ω

)︀1/2
‖𝜓‖0,Ω + ‖𝑞‖0,Ω

≤
(︀
𝐹⊥2 (𝜎⊥)

)︀1/2
sup

(𝜓,𝑞)∈(Q×Q)∖0

(︀
1
𝜆‖𝜓 − 𝛼𝑞‖20,Ω + 𝑐0‖𝑞‖20,Ω

)︀1/2
‖𝜓‖0,Ω + ‖𝑞‖0,Ω

·

(2.36)

Then, defining

𝐶𝑐 = sup
(𝜓,𝑞)∈(Q×Q)∖0

(︀
1
𝜆‖𝜓 − 𝛼𝑞‖20,Ω + 𝑐0‖𝑞‖20,Ω

)︀1/2
‖𝜓‖0,Ω + ‖𝑞‖0,Ω

, (2.37)

which can be seen as a constant independent of 𝜆 if 𝜆→∞, from (2.36) we obtain

‖𝜎⊥‖div,Ω ≤
𝐶2
𝑐

𝛽2
‖𝐹⊥2 ‖(𝐾⊥𝑓 )′ . (2.38)

Hence, combining (2.32) and (2.38) together with (2.14) and (2.26), we can easily deduce that

‖𝑢‖1,Ω + ‖𝑝‖0,Ω ≤ 𝐶4‖𝐹⊥2 ‖(𝐾⊥𝑓 )′ , (2.39)

with 𝐶4 > 0 independent of 𝜆. Moreover, from (2.35), (2.38) and the triangle inequality we also get

‖𝜎‖div,Ω ≤ ‖𝜎0‖div,Ω + ‖𝜎⊥‖div,Ω ≤
(︂

1 +
𝜅2

𝜅1

)︂
‖𝜎⊥‖div,Ω ≤ 𝐶5‖𝐹⊥2 ‖(𝐾⊥𝑓 )′ , (2.40)

with 𝐶5 > 0 independent of 𝜆. Finally, using the inf-sup condition (2.16) and proceeding similarly as for the
derivation of (2.28), we can obtain

‖𝜑‖0,Ω ≤ 𝐶6‖𝐹⊥2 ‖(𝐾⊥𝑓 )′ (2.41)

with 𝐶6 > 0 independent of 𝜆. In this way from (2.39) to (2.41) we obtain the result for the case 𝐹 0
2 = 0.

𝐹⊥2 = 0. First, from (2.32) and (2.33) we obtain, respectively

1
𝜆
‖𝜑− 𝛼𝑝‖20,Ω + 𝑐0‖𝑝‖20,Ω ≤ 𝐹 0

2 (𝜎0), (2.42)

and
‖𝜎0‖div,Ω ≤

𝜅2

𝜅1
‖𝜎⊥‖div,Ω +

2𝜅2

𝜂
‖𝐹 0

2 ‖𝐾′𝑓 . (2.43)

Now, similarly as in (2.36), from the inf-sup condition (2.24), estimates (2.25) and (2.42), and recalling the
definition of the constant 𝐶𝑐 in (2.37), we obtain

𝛽‖𝜎⊥‖div,Ω ≤ 𝐶𝑐
(︀
𝐹 0

2 (𝜎0)
)︀1/2 ≤ 𝐶𝑐‖𝐹 0

2 ‖
1/2
𝐾′𝑓
‖𝜎0‖1/2div,Ω,
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which, associated with (2.43) and Young’s inequality, yields

‖𝜎⊥‖div,Ω ≤ 𝐶‖𝐹 0
2 ‖𝐾′𝑓 + 𝐶‖𝐹 0

2 ‖
1/2
𝐾′𝑓
‖𝜎⊥‖1/2div,Ω ≤ 𝐶‖𝐹 0

2 ‖𝐾′𝑓 +
1
2
‖𝜎⊥‖div,Ω,

and therefore
‖𝜎⊥‖div,Ω ≤ 2𝐶‖𝐹 0

2 ‖𝐾′𝑓 , (2.44)

with 𝐶 independent of 𝜆. Notice that from the latter and estimate (2.43) it readily follows that

‖𝜎0‖div,Ω ≤ 𝐶‖𝐹 0
2 ‖𝐾′𝑓 . (2.45)

In this way, from (2.44), (2.45) and the triangle inequality, we can assert that

‖𝜎‖div,Ω ≤ 𝐶7‖𝐹 0
2 ‖𝐾′𝑓 , (2.46)

with 𝐶7 > 0 independent of 𝜆. Moreover, from (2.14), (2.32) and (2.45) we can deduce that

‖𝑢‖1,Ω + ‖𝑝‖0,Ω ≤ 𝐶8‖𝐹 0
2 ‖𝐾′𝑓 , (2.47)

with 𝐶8 > 0 independent of 𝜆, and to conclude, analogously to (2.28), from the inf-sup condition (2.16), equation
(2.18) and (2.47), we obtain

‖𝜑‖0,Ω ≤ 𝐶9‖𝐹 0
2 ‖𝐾′𝑓 , (2.48)

with 𝐶9 > 0 independent of 𝜆. The desired estimate then follows from (2.46) to (2.48).

Step 3 (𝐹1 = 0, 𝐺2 = 0 and 𝐹2 = 0). Once again we let 𝜎0 ∈ 𝐾𝑓 and 𝜎⊥ ∈ 𝐾⊥
𝑓 be such that 𝜎 = 𝜎0 + 𝜎⊥

and 𝑢0 ∈ 𝐾𝑠 and 𝑢⊥ ∈ 𝐾⊥
𝑠 satisfying 𝑢 = 𝑢0 + 𝑢⊥, and observe that there holds

𝑎𝑠(𝑢,𝑢) + 𝑎𝑓 (𝜎,𝜎) + 𝐶((𝜑, 𝑝), (𝜑, 𝑝)) = 𝐺1(𝜑), (2.49)

and
𝑏𝑠(𝑢⊥, 𝜓) + 𝑏𝑓 (𝜎⊥, 𝑞)− 𝐶((𝜑, 𝑝), (𝜓, 𝑞)) = 𝐺1(𝜓) ∀𝜓, 𝑞 ∈ Q.

In particular, from the latter and the inf-sup condition (2.24) we obtain

𝛽(‖𝑢⊥‖1,Ω + ‖𝜎⊥‖div,Ω) ≤ sup
(𝜓,𝑞)∈(Q×Q)∖0

𝑏𝑠(𝑢⊥, 𝜓) + 𝑏𝑓 (𝜎⊥, 𝑞)
‖𝜓‖0,Ω + ‖𝑞‖0,Ω

= sup
(𝜓,𝑞)∈(Q×Q)∖0

𝐺1(𝜓) + 𝐶((𝜑, 𝑝), (𝜓, 𝑞))
‖𝜓‖0,Ω + ‖𝑞‖0,Ω

,

which together with (2.25), (2.49) and the continuity of 𝐺1, gives the bound

𝛽(‖𝑢⊥‖1,Ω + ‖𝜎⊥‖div,Ω) ≤ ‖𝐺1‖Q′ + 𝐶𝑐{𝐶((𝜑, 𝑝), (𝜑, 𝑝))}1/2

≤ ‖𝐺1‖Q′ + 𝐶𝑐‖𝐺1‖1/2𝑄′ ‖𝜑‖
1/2
0,Ω.

(2.50)

where 𝐶𝑐 > 0 is the constant defined in (2.37). Now, from (2.17) with 𝑣 = 𝑢0 and using the ellipticity and
continuity of 𝑎𝑠 (cf. (2.14) and (2.11), respectively), it readily follows that

‖𝑢0‖1,Ω ≤
𝐶𝑘,2
𝐶𝑘,1

‖𝑢⊥‖1,Ω,

which implies

‖𝑢‖1,Ω ≤
(︂

1 +
𝐶𝑘,2
𝐶𝑘,1

)︂
‖𝑢⊥‖1,Ω. (2.51)
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The latter, the inf-sup condition (2.16) and equation (2.17) yield

‖𝜑‖0,Ω ≤ 𝛽−1
𝑠 sup

𝑣∈H∖0

𝑏𝑠(𝑣, 𝜑)
‖𝑣‖1,Ω

≤ 𝛽−1
𝑠 sup

𝑣∈H∖0

−𝑎𝑠(𝑢,𝑣)
‖𝑣‖1,Ω

≤ 2𝜇𝛽−1
𝑠 𝐶𝑘,2‖𝑢‖1,Ω ≤ 𝐶1‖𝑢⊥‖1,Ω, (2.52)

with 𝐶1 > 0 independent of 𝜆. Then, combining (2.50) and (2.52) with Young’s inequality, we obtain

‖𝑢⊥‖1,Ω ≤ 𝐶2‖𝐺1‖Q′ .

Using this inequality, from (2.51) and (2.52), we easily get

‖𝑢‖1,Ω ≤ 𝐶3‖𝐺1‖Q′ and ‖𝜑‖0,Ω ≤ 𝐶4‖𝐺1‖Q′ , (2.53)

with 𝐶3 > 0 and 𝐶4 > 0 independent of 𝜆. In turn, similarly as in (2.29) we can assert that

‖𝜎0‖div,Ω ≤
𝜅2

𝜅1
‖𝜎⊥‖div,Ω,

and invoking (2.50) and (2.53) we can derive the bound

‖𝜎‖div,Ω ≤ 𝐶5‖𝐺1‖Q′ , (2.54)

with 𝐶5 > 0 independent of 𝜆. Finally, from the second inf-sup condition in (2.16), equation (2.19) and estimate
(2.54) there holds

‖𝑝‖0,Ω ≤ 𝐶6‖𝐺1‖Q′ . (2.55)

In this way, from (2.53) to (2.55) we obtain the desired estimate, which concludes the proof. �

As a consequence of Theorem 2.1 we can readily deduce the following result.

Theorem 2.2. There exists a unique (𝑢, 𝜑,𝜎, 𝑝) ∈ H×Q×Z×Q satisfying (2.6)–(2.9). Moreover, there exists
𝐶 > 0, independent of 𝜆, such that

‖𝑢‖1,Ω + ‖𝜑‖0,Ω + ‖𝜎‖div,Ω + ‖𝑝‖0,Ω ≤ 𝐶stab(‖𝑓‖0,Ω + ‖𝑔‖0,Ω + ‖ℓ‖0,Ω + ‖𝑝Γ‖1/2,00,Γ𝑝
).

Proof. By setting 𝐹1, 𝐹2 = 0 and 𝐺1, 𝐺2 = 0 in (2.17)–(2.20) from Theorem 2.1 we can readily deduce the
uniqueness of solution of problem (2.6)–(2.9). Furthermore, noticing that (2.6)–(2.9) is a symmetric linear
problem, the above also guarantees existence of solution, which completes the solvability analysis. In turn, by
setting 𝐹1 = 𝐹 , 𝐺1 = 0, 𝐹2 = 𝐺 and 𝐺2 = 𝐻, the continuous dependence result is a direct consequence of
Theorem 2.1 and (2.12), which concludes the proof. �

Notice that in the proof of the preceding theorem, to obtain the estimate for 𝑝 we use explicitly that 𝑐𝑓 (𝑝, 𝑝) =
𝑐0‖𝑝‖20,Ω, and consequently 𝐶stab is a constant depending on 1/𝑐0 (see for instance estimate (2.27)). Therefore, for
the limit case 𝑐0 = 0 (i.e. a medium with incompressible solid grains) the analysis above is not straightforwardly
applicable. If 𝑐0 = 0 one can still proceed similarly to the proof of Theorem 4.3.1 from [14] to obtain the stability
result but unfortunately with a constant depending on 𝜆. However, numerical evidence shows that our method
is still stable even if 𝑐0 = 0 or small enough (see Examples 2 and 3 in Sect. 6, below), which suggests that for
the case 𝑐0 = 0 the analysis might be derived using a different approach.
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Figure 1. A compound of six elements in 𝒯ℎ (a), and barycentric subdivision of a given 𝑇 ∈ 𝒯ℎ
into three control volumes 𝑇 *𝑗 belonging to the dual mesh 𝒦*ℎ (b). The vertices of 𝒯ℎ are labelled
with 𝐴𝑖, and the edges of primal elements are denoted 𝑒𝑖.

3. Discontinuous finite volumes – mixed finite elements

3.1. Primal and dual meshes

The construction of DFV-MFE schemes can be straightforwardly carried out for 𝑑 = 2, 3; however, for sake of
conciseness, we will restrict the presentation to the 2D case. We stress that by following the analysis of [37] and
[17], the present analysis can be easily extended to 3D case. Let us then consider a family {𝒯ℎ}ℎ>0 of regular,
quasi-uniform partitions of Ω̄ into triangles 𝑇 of diameter ℎ𝑇 , where ℎ = max{ℎ𝑇 : 𝑇 ∈ 𝒯ℎ} is the meshsize.
We will refer to these triangulations as primal meshes.

Let ℰℎ denote the set of interior edges in the primal mesh and write ℰℎ(𝑇 ) for its localisation to the element
𝑇 ∈ 𝒯ℎ. Moreover, let 𝑒 ∈ ℰℎ be shared by two elements 𝑇1 and 𝑇2 in 𝒯ℎ with outward unit normal vectors 𝑛1

and 𝑛2, respectively. For a scalar 𝑞, we will write [[𝑞]] := 𝑞|𝜕𝑇1 − 𝑞|𝜕𝑇2 and {{𝑞}} := 1
2 (𝑞|𝜕𝑇1 + 𝑞|𝜕𝑇2) to denote its

jump and average values on 𝑒, respectively. For a generic vector r, its vector jump and vectorial average across
edge 𝑒 is denoted respectively, by [[r]] := r|𝜕𝑇1 − r|𝜕𝑇2 and {{r}} := 1

2 (r|𝜕𝑇1 + r|𝜕𝑇2).
In order to define DFV approximations for the solid displacements, we construct an auxiliary, dual mesh.

Starting from a given triangle 𝑇 in the primal mesh 𝒯ℎ, we proceed to divide it into three sub-triangles by
joining the barycentre 𝐵 to the vertices of 𝑇 . The dual mesh, denoted by 𝒦*ℎ, will then consist of all these
control volumes, 𝑇 *, generated after barycentric subdivison. A sketch of the subdivision in a given 𝑇 and also
a compound of six primal elements is presented in Figure 1.

3.2. Discrete trial and test spaces

Specifying the trial and test spaces will completely characterise the DFV method. Let us introduce the trial
space for the approximation of solid displacements as

Hℎ := {𝑣ℎ ∈ L2(Ω) : 𝑣ℎ|𝑇 ∈ 𝒫1(𝑇 )2 ∀𝑇 ∈ 𝒯ℎ},

whereas the corresponding test space will be associated with the dual mesh 𝒦*ℎ, and will be defined as

H*
ℎ := {𝑣ℎ ∈ L2(Ω) : 𝑣ℎ|*𝑇 ∈ 𝒫0(𝑇 *)2 ∀𝑇 * ∈ 𝒦*ℎ}.
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Here 𝒫𝑘(𝑇 ) denotes the space of polynomials of degree less than or equal than 𝑘 defined over the element 𝑇 . One
readily notices that given the specific form of control volumes, the linear systems arising from the discretisation
of operators involving the solid displacement approximation will be square. Moreover, we observe that the dual
elements have support only in the primal triangle they belong to (in contrast to conforming FVE schemes, where
the control volumes have a support shared on the neighbouring triangles in the primal mesh, see e.g. [5]). Such
localisation property may turn the method more amenable for parallelisation and eventual implementation of
adaptive DFV schemes.

Next, let us define H(ℎ) := Hℎ + [H2(Ω) ∩H1
Γ𝑢

(Ω)], and introduce a mapping that connects this modified
trial space with the test space as follows

𝑅ℎ : H(ℎ) −→ H*
ℎ, 𝑣|𝑇* ↦→ 𝑅ℎ𝑣|𝑇* :=

1
ℎ𝑒

∫︁
𝑒

𝑣|𝑇* , 𝑇 * ∈ 𝒦*ℎ,

where ℎ𝑒 denotes the length of the generic edge 𝑒 of the primal element 𝑇 that contains the control volume 𝑇 *

(see Fig. 1b). We provide H(ℎ) with the mesh-dependent norm |||·|||ℎ, defined as

|||𝑣|||2ℎ := |𝑣|21,ℎ +
∑︁
𝑒∈ℰℎ

1
ℎ𝑒

∫︁
𝑒

[[𝑣]]2,

which uses the broken H-semi-norm |𝑣|21,ℎ =
∑︀
𝑇∈𝒯ℎ

|𝑣|21,𝑇 .

On the other hand, we consider the finite dimensional space associated with the approximation of the fluid
flux and the fluid pressure as the mixed finite element constituted by the lowest order Raviart–Thomas space
and the space of piecewise constants defined over the primal mesh

Zℎ := {𝜏ℎ ∈ Z : 𝜏ℎ|𝑇 ∈ ℛ𝒯 0(𝑇 ), ∀𝑇 ∈ 𝒯ℎ, and 𝜏ℎ · 𝑛 = 0 on Γ𝑢},
Qℎ := {𝑞ℎ ∈ Q : 𝑞ℎ|𝑇 is a constant, ∀𝑇 ∈ 𝒯ℎ},

where ℛ𝒯 0 denotes the local Raviart–Thomas space of lowest order. The trial and test spaces for the approxi-
mation of the total pressure will coincide with the ones used for the fluid pressure.

Boundary or transmission conditions could be alternatively set up using appropriate Lagrange multipliers (see
e.g. the recent analysis in [3]), in which case appropriate compatibility conditions should be required between
the interior and boundary meshes.

3.3. The conservative discrete formulation

Applying then a combined DFV-MFE discretisation, we end up with the following formulation: Find
(𝑢ℎ, 𝜑ℎ,𝜎ℎ, 𝑝ℎ) ∈ Hℎ ×Qℎ × Zℎ ×Qℎ such that

𝑎ℎ𝑠 (𝑢ℎ,𝑣ℎ) + 𝑏ℎ𝑠 (𝑣ℎ, 𝜑ℎ) = 𝐹 (𝑅ℎ𝑣ℎ) ∀𝑣ℎ ∈ Hℎ, (3.1)

𝑏̃ℎ𝑠 (𝑢ℎ, 𝜓ℎ) − 𝑐𝑠(𝜑ℎ, 𝜓ℎ) + 𝑏𝑠𝑓 (𝜓ℎ, 𝑝ℎ) = 0 ∀𝜓ℎ ∈ Qℎ, (3.2)
𝑎𝑓 (𝜎ℎ, 𝜏ℎ) + 𝑏𝑓 (𝜏ℎ, 𝑝ℎ) = 𝐺(𝜏ℎ) ∀𝜏ℎ ∈ Zℎ, (3.3)

𝑏𝑠𝑓 (𝜑ℎ, 𝑞ℎ) + 𝑏𝑓 (𝜎ℎ, 𝑞ℎ) − 𝑐𝑓 (𝑝ℎ, 𝑞ℎ) = 𝐻(𝑞ℎ) ∀𝑞ℎ ∈ Qℎ, (3.4)

where the three bilinear forms that are modified with respect to the ones specified in (2.10), are now defined as
follows

𝑎ℎ𝑠 (𝑢ℎ,𝑣ℎ) := −2𝜇
∑︁
𝒯 ∈𝒯ℎ

3∑︁
𝑗=1

∫︁
𝐴𝑗+1𝐵𝐴𝑗

𝜀(𝑢ℎ)𝑛 ·𝑅ℎ𝑣ℎ − 2𝜇
∑︁
𝑒∈ℰℎ

⟨[[𝑅ℎ𝑣ℎ]], {{𝜀(𝑢ℎ)𝑛}}⟩𝑒

− 2𝜃𝜇
∑︁

𝑒∈ℰℎ∪Γ𝑢

⟨[[𝑅ℎ𝑢ℎ]], {{𝜀(𝑣ℎ)𝑛}}⟩𝑒 +
∑︁

𝑒∈ℰℎ∪Γ𝑢

2𝜇
𝛾𝑢

ℎ𝑒
⟨[[𝑢ℎ]], [[𝑣ℎ]]⟩𝑒,
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𝑏ℎ𝑠 (𝑣ℎ, 𝜓ℎ) :=
∑︁
𝒯 ∈𝒯ℎ

3∑︁
𝑗=1

∫︁
𝐴𝑗+1𝐵𝐴𝑗

𝜓ℎ𝑅ℎ𝑣ℎ · 𝑛 +
∑︁
𝑒∈ℰℎ

⟨{{𝜓ℎ𝑛}}, [[𝑅ℎ𝑣ℎ]]⟩𝑒,

𝑏̃ℎ𝑠 (𝑢ℎ, 𝜓ℎ) := −
∫︁

Ω

𝜓ℎ div 𝑢ℎ +
∑︁

𝑒∈ℰℎ∪Γ𝑢

⟨{{𝜓ℎ𝑛}}, [[𝑅ℎ𝑢ℎ]]⟩𝑒,

with 𝐴4 = 𝐴1 (see Fig. 1b), and where 𝛾𝑢 > 0 is a penalty parameter independent of ℎ (see e.g. the DFV
formulations for Stokes equations proposed in [37, 64]). The symmetrisation parameter 𝜃 ∈ {1, 0,−1} leads
respectively to symmetric, incomplete, and non-symmetric interior penalty DG formulations. We recall that
for boundary edges we adopt the convention that {{r}} = r and [[r]] = r, for a generic vector field r. We also
note that the edge integrals on Γ𝑢 are required only if the Dirichlet boundary conditions for displacements are
implemented using Nitsche’s approach.

4. Solvability and stability of the discrete problem

4.1. Preliminaries

The unique solvability of the discrete problem (3.1)–(3.4) can be established by proving that the sole feasible
solution to the homogeneous counterpart of the system is the trivial one. We start by collecting some useful
results to be exploited in the sequel.
First, for any 𝑣 ∈ H1(𝑇 ) and for any edge 𝑒 ∈ ℰℎ(𝑇 ) one has the trace inequality (cf. [6])

‖𝑣‖20,𝑒 ≤ 𝐶
(︁
ℎ−1
𝑒 ‖𝑣‖20,𝑇 + ℎ𝑒|𝑣|21,𝑇

)︁
. (4.1)

Secondly, the bilinear forms 𝑎ℎ𝑠 (·, ·), 𝑏̃ℎ1 (·, ·) and 𝑏ℎ1 (·, ·) hold the following set of properties (continuity, pos-
itivity, and suitable inf-sup conditions). There exist constants 𝐶𝑖 > 0, 𝛽0 > 0 independent of the meshsize ℎ,
such that

𝑎ℎ𝑠 (𝑣ℎ,𝑤ℎ) ≤ 𝐶1 |||𝑣ℎ|||ℎ |||𝑤ℎ|||ℎ ∀𝑣ℎ,𝑤ℎ ∈ H(ℎ), (4.2)

𝑎ℎ𝑠 (𝑣ℎ,𝑣ℎ) ≥ 𝐶2 |||𝑣ℎ|||2ℎ ∀𝑣ℎ ∈ Hℎ, (4.3)

𝑏ℎ𝑠 (𝑣ℎ, 𝜓ℎ) ≤ 𝐶3 |||𝑣ℎ|||ℎ ‖𝜓ℎ‖0,Ω ∀𝑣ℎ ∈ H(ℎ), 𝜓ℎ ∈ Qℎ, (4.4)

sup
0̸=𝑣ℎ∈Hℎ

𝑏̃ℎ𝑠 (𝑣ℎ, 𝜓ℎ)
|||𝑣ℎ|||ℎ

≥ 𝛽0 ‖𝜓ℎ‖0,Ω ∀𝜓ℎ ∈ Qℎ, (4.5)

𝑏ℎ𝑠 (𝑣ℎ, 𝜓ℎ) = 𝑏̃ℎ𝑠 (𝑣ℎ, 𝜓ℎ) 𝑣ℎ ∈ H(ℎ), 𝜓ℎ ∈ Qℎ. (4.6)

For a proof of (4.2) and (4.3) we refer to Lemma 4 of [37], whereas the bounds (4.4), (4.5), as well as the
equivalence (4.6) can be found respectively in Lemmas 3.4, 4.1 and 3.2 from [64]. In particular, from (4.4) and
the inverse inequality |𝜓ℎ|1,𝑇 ≤ 𝐶ℎ−1‖𝜓ℎ‖0,𝑇 , for all 𝜑ℎ ∈ Qℎ and for all 𝑇 ∈ 𝒯ℎ, with 𝐶 > 0 independent of ℎ
(see for instance [25], Lem. 1.44), it follows that

𝑏ℎ𝑠 (𝑣ℎ, 𝜓ℎ) ≤ ̃︀𝐶3 |||𝑣ℎ|||ℎ ‖𝜓ℎ‖0,Ω ∀𝑣ℎ ∈ H(ℎ), 𝜓ℎ ∈ Qℎ. (4.7)

Let us now establish the stability properties of the forms 𝑎𝑓 , 𝑏𝑓 and 𝑐𝑓 . We begin by recalling that, since
div Zℎ ⊆ Qℎ, the kernel of the bilinear form 𝑏𝑓 can be characterised as follows

Kℎ := {𝜏ℎ ∈ Zℎ : 𝑏𝑓 (𝜏ℎ, 𝑞ℎ) = 0 ∀ 𝑞ℎ ∈ Qℎ} = {𝜏ℎ ∈ Zℎ : div 𝜏ℎ = 0 in Ω}.

Then, the Kℎ-ellipticity of the bilinear form 𝑎𝑓 is straightforward

𝑎𝑓 (𝜏ℎ, 𝜏ℎ) ≥ 𝜂

𝜅
‖𝜏ℎ‖2div,Ω ∀ 𝜏ℎ ∈ Kℎ.
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In turn, it is well–known that the bilinear form 𝑏𝑓 satisfies the following inf–sup condition

sup
𝜏ℎ∈Zℎ∖{0}

𝑏𝑓 (𝜏ℎ, 𝑞ℎ)
‖𝜏ℎ‖div,Ω

≥ ̂︀𝛽‖𝑞ℎ‖0,Ω ∀ 𝑞ℎ ∈ Qℎ,

with ̂︀𝛽 > 0 independent of ℎ (see [29], Sect. 4.2).
We point out that the continuity of the forms 𝑐𝑠, 𝑏𝑠𝑓 , 𝑎𝑓 , 𝑏𝑓 , 𝑐𝑓 , as well as the functionals 𝐺 and 𝐻 are

inherited from the continuous case, preserving the exact same continuity constants.

4.2. Well-posedness of the discrete scheme

We proceed similarly to the continuous case, and establish continuous dependence on data for (3.1)–(3.4)
considering generic functionals, that is, we let 𝐹ℎ1 ∈ H′

ℎ, 𝐺ℎ1 ∈ Q′ℎ, 𝐹ℎ2 ∈ Z′ℎ and 𝐺ℎ2 ∈ Q′ℎ and bound 𝑢ℎ ∈ Hℎ,
𝜑ℎ ∈ Qℎ, 𝜎ℎ ∈ Zℎ and 𝑝ℎ ∈ Qℎ, satisfying

𝑎ℎ𝑠 (𝑢ℎ,𝑣ℎ) + 𝑏ℎ𝑠 (𝑣ℎ, 𝜑ℎ) = 𝐹ℎ1 (𝑣ℎ) ∀𝑣ℎ ∈ Hℎ, (4.8)

𝑏̃ℎ𝑠 (𝑢ℎ, 𝜓ℎ) − 𝑐𝑠(𝜑ℎ, 𝜓ℎ) + 𝑏𝑠𝑓 (𝜓ℎ, 𝑝ℎ) = 𝐺ℎ1 (𝜓ℎ) ∀𝜓ℎ ∈ Qℎ, (4.9)

𝑎𝑓 (𝜎ℎ, 𝜏ℎ) + 𝑏𝑓 (𝜏ℎ, 𝑝ℎ) = 𝐹ℎ2 (𝜏ℎ) ∀𝜏ℎ ∈ Zℎ, (4.10)

𝑏𝑠𝑓 (𝜑ℎ, 𝑞ℎ) + 𝑏𝑓 (𝜎ℎ, 𝑞ℎ) − 𝑐𝑓 (𝑝ℎ, 𝑞ℎ) = 𝐺ℎ2 (𝑞ℎ) ∀𝑞ℎ ∈ Qℎ, (4.11)

in terms of the aforementioned functionals 𝐹ℎ1 , 𝐺ℎ1 , 𝐹ℎ2 and 𝐺ℎ2 . This result is established next.

Theorem 4.1. Let (𝑢ℎ, 𝜑ℎ,𝜎ℎ, 𝑝ℎ) ∈ Hℎ × Qℎ × Zℎ × Qℎ satisfy the system of equations (4.8)–(4.11). Then,
there exists a constant ̂︀𝐶 > 0, independent of ℎ and 𝜆, such that

|||𝑢ℎ|||ℎ + ‖𝜑ℎ‖0,Ω + ‖𝜎ℎ‖div,Ω + ‖𝑝ℎ‖0,Ω ≤ ̂︀𝐶(‖𝐹ℎ1 ‖H′ℎ + ‖𝐺ℎ1‖Q′ℎ + ‖𝐹ℎ2 ‖Z′ℎ + ‖𝐺ℎ2‖Q′ℎ). (4.12)

Proof. Employing the discrete version of the stability properties of the forms involved, and proceeding analo-
gously to the proof of Theorem 2.1, we can straightforwardly derive (4.12). �

Now we are in position of establishing the well-posedness and stability of (3.1)–(3.4).

Theorem 4.2. There exists a unique (𝑢ℎ, 𝜑ℎ,𝜎ℎ, 𝑝ℎ) ∈ Hℎ×Qℎ×Zℎ×Qℎ solution of the system (3.1)–(3.4).
Moreover, there exists a constant ̂︀𝐶stab > 0, independent of 𝜆, such that

|||𝑢ℎ|||ℎ + ‖𝜑ℎ‖0,Ω + ‖𝜎ℎ‖div,Ω + ‖𝑝ℎ‖0,Ω ≤ ̂︀𝐶stab(‖𝑓‖0,Γ + ‖𝑔‖0,Ω + ‖ℓ‖0,Ω + ‖𝑝Γ‖1/2,00,Γ𝑝
). (4.13)

Proof. By setting 𝐹ℎ1 = 0, 𝐺ℎ1 = 0, 𝐹ℎ2 = 0 and 𝐺ℎ2 = 0 in (4.8)–(4.11) from Theorem 4.1 it follows that 𝑢ℎ = 0,
𝜑ℎ = 0, 𝜎ℎ = 0 and 𝑝ℎ = 0 which implies that that the only solution of the homogeneous problem is the
trivial solution. From the latter, and from the fact that for finite dimensional linear problems existence and
uniqueness of solution are equivalent, we readily obtain the well-posedness of (3.1)–(3.4). Moreover, by setting
𝐹ℎ1 = 𝐹𝑅ℎ|Hℎ

, 𝐺ℎ1 = 0, 𝐹ℎ2 = 𝐺|Zℎ
and 𝐺ℎ2 = 𝐻|Qℎ

in (4.8)–(4.11) from (4.12) we easily obtain (4.13), which
concludes the proof. �

5. Error estimate

5.1. Preliminaries

Given 𝑘 ≥ 0, on each primal element 𝑇 ∈ 𝒯ℎ, let Λ𝑇𝑘 : 𝐿2(𝑇 ) → 𝒫𝑘(𝑇 ) denote the orthogonal 𝐿2-projection
operator, which satisfies the following approximation property (see, for instance, [38]): For all 𝑠 ∈ {0, . . . , 𝑘+1},
there holds

|𝑣 − Λ𝑇𝑘 𝑣|𝑚,𝑇 ≤ 𝐶ℎ𝑠−𝑚𝑇 |𝑣|𝑠,𝑇 ∀𝑣 ∈ H𝑚(𝑇 ), ∀𝑚 ∈ {0, . . . , 𝑠}. (5.1)
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We will also use a vector version of Λ𝑇𝑘 , say Λ𝑇
𝑘 : L2(𝑇 ) → P𝑘(𝑇 ), which is defined component-wise by Λ𝑇𝑘 .

Then, we define the global operators Π1 : H(ℎ) → Hℎ and Λ0 : Q → Qℎ by

(Π1𝑣)|𝑇 := Λ𝑇
1 𝑣, (Λ0𝑞)|𝑇 := Λ𝑇0 𝑞 ∀𝑇 ∈ 𝒯ℎ.

It is clear that operator Λ0 satisfies the approximation property

‖𝑣 − Λ0𝑣‖0,Ω ≤ 𝐶ℎ|𝑣|1,𝑇 ∀𝑣 ∈ H1(Ω). (5.2)

In turn, we can proceed analogously to Section 4.3 of [7] and utilise the trace inequality (4.1) and estimates
(5.1) with 𝑚 = 1 and 𝑠 = 2 to obtain the bound

|||𝑢−Π1𝑢|||ℎ ≤ 𝐶ℎ ‖𝑢‖2,Ω ∀𝑢 ∈ H2(Ω). (5.3)

Let us now recall the Raviart–Thomas interpolation operator Πdiv : H1(Ω) → Zℎ, which, given 𝜏 ∈ H1(Ω),
is characterised by the following identities:∫︁

𝑒

(Πdiv(𝜏 ) · 𝑛) 𝑟 =
∫︁
𝑒

(𝜏 · 𝑛)𝑟 ∀ 𝑒 ∈ ℰℎ, ∀ 𝑟 ∈ 𝑃0(𝑒). (5.4)

As a consequence of (5.4), there holds

div(Πdiv(𝜏 )) = Λ0(div 𝜏 ).

In addition, the operator Πdiv satisfies the following approximation properties (see for instance [29]):

‖𝜏 −Πdiv(𝜏 )‖0,𝑇 ≤ 𝑐1ℎ𝑇 |𝜏 |1,𝑇 ∀ 𝑇 ∈ 𝒯ℎ, (5.5)

for each 𝜏 ∈ H1(Ω), and

‖ div(𝜏 −Πdiv(𝜏 ))‖0,𝑇 ≤ 𝑐2ℎ𝑇 |div 𝜏 |1,𝑇 ∀ 𝑇 ∈ 𝒯ℎ, (5.6)

for each 𝜏 ∈ H1(Ω), such that div 𝜏 ∈ H1(Ω). Combining (5.5) and (5.6) it is clear that the following global
estimate holds

‖𝜏 −Πdiv(𝜏 )‖div,Ω ≤ 𝐶ℎ(|𝜏 |1,Ω + |div 𝜏 |1,Ω), (5.7)

for each 𝜏 ∈ H1(Ω), such that div 𝜏 ∈ H1(Ω). After these preliminary steps we embark in proving optimal error
estimates.

Theorem 5.1. Let (𝑢, 𝜑,𝜎, 𝑝) and (𝑢ℎ, 𝜑ℎ,𝜎ℎ, 𝑝ℎ) be the solutions of (2.6)–(2.9) and (3.1)–(3.4), respectively,
and let us assume that 𝑢 ∈ H2(Ω), 𝜎 ∈ H1(Ω), div 𝜎 ∈ H1(Ω), and 𝜑, 𝑝 ∈ H1(Ω). Then, there exists a constant
𝐶 > 0 independent of both ℎ and 𝜆, such that

|||𝑢− 𝑢ℎ|||ℎ + ‖𝜑− 𝜑ℎ‖0,Ω + ‖𝜎 − 𝜎ℎ‖div,Ω + ‖𝑝− 𝑝ℎ‖0,Ω
≤ 𝐶ℎ(‖𝑢‖2,Ω + ‖𝜑‖1,Ω + ‖𝜎‖1,Ω + ‖div 𝜎‖1,Ω + ‖𝑝‖1,Ω).

Proof. Let (𝑢, 𝜑,𝜎, 𝑝) and (𝑢ℎ, 𝜑ℎ,𝜎ℎ, 𝑝ℎ) be the solutions of (2.6)–(2.9) and (3.1)–(3.4), respectively. In view
of the definition of bilinear forms 𝑎ℎ𝑠 (·, ·), 𝑏ℎ𝑠 (·, ·) and 𝑏̃ℎ𝑠 (·, ·) along with the regularity assumptions on 𝜑 and
𝑢, i.e., 𝜑 ∈ 𝐻1(Ω) and 𝑢 ∈ H2(Ω) (for more details see also [37] and [64]), we can proceed to test (2.1)–(2.4)
against suitable functions and to integrate by parts, to obtain the following relations

𝑎ℎ𝑠 (𝑢,𝑣ℎ) + 𝑏ℎ𝑠 (𝑣ℎ, 𝜑) = 𝐹 (𝑅ℎ𝑣ℎ) ∀𝑣ℎ ∈ Hℎ, (5.8)

𝑏̃ℎ𝑠 (𝑢, 𝜓ℎ) − 𝑐𝑠(𝜑, 𝜓ℎ) + 𝑏𝑠𝑓 (𝜓ℎ, 𝑝) = 0 ∀𝜓ℎ ∈ Qℎ, (5.9)
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𝑎𝑓 (𝜎, 𝜏ℎ) + 𝑏𝑓 (𝜏ℎ, 𝑝) = 𝐺(𝜏ℎ) ∀𝜏ℎ ∈ Zℎ, (5.10)
𝑏𝑠𝑓 (𝜑, 𝑞ℎ) + 𝑏𝑓 (𝜎, 𝑞ℎ) − 𝑐𝑓 (𝑝, 𝑞ℎ) = 𝐻(𝑞ℎ) ∀𝑞ℎ ∈ Qℎ. (5.11)

Next, and in order to alleviate the notation in the subsequent analysis, we write e𝑢 := 𝑢 − 𝑢ℎ, 𝑒𝜑 := 𝜑 − 𝜑ℎ,
e𝜎 := 𝜎 − 𝜎ℎ and 𝑒𝑝 := 𝑝− 𝑝ℎ. As usual, we shall then decompose these errors into

e𝑢 = 𝜉𝑢 + 𝜒𝑢, 𝑒𝜑 = 𝜉𝜑 + 𝜒𝜑, e𝜎 = 𝜉𝜎 + 𝜒𝜎 and 𝑒𝑝 = 𝜉𝑝 + 𝜒𝑝, (5.12)

where
𝜉𝑢 := 𝑢−Π1(𝑢), 𝜒𝑢 := Π1(𝑢)− 𝑢ℎ, 𝜉𝜑 := 𝜑− Λ0(𝜑), 𝜒𝜑 := Λ0(𝜑)− 𝜑ℎ,
𝜉𝜎 := 𝜎 −Πdiv(𝜎) 𝜒𝜎 := Πdiv(𝜎)− 𝜎ℎ 𝜉𝑝 := 𝑝− Λ0(𝑝), 𝜒𝑝 := Λ0(𝑝)− 𝑝ℎ.

Then, in what follows we prove that there exists 𝐶 > 0, independent of ℎ and 𝜆, such that

|||𝜒𝑢|||ℎ + ‖𝜒𝜑‖0,Ω + ‖𝜒𝜎‖div,Ω + ‖𝜒𝑝‖0,Ω ≤ 𝐶(|||𝜉𝑢|||ℎ + ‖𝜉𝜑‖0,Ω + ‖𝜉𝜎‖div,Ω + ‖𝜉𝑝‖0,Ω),

thus the desired result can be easily obtained from the latter, the triangle inequality and estimates (5.2), (5.3)
and (5.7). We notice that on subtracting (3.1)–(3.4) from (5.8) to (5.11), we immediately obtain the following
orthogonality property

𝑎ℎ𝑠 (e𝑢,𝑣ℎ) + 𝑏ℎ𝑠 (𝑣ℎ, 𝑒𝜑) = 0 ∀𝑣ℎ ∈ Hℎ,

𝑏̃ℎ𝑠 (e𝑢, 𝜓ℎ) − 𝑐𝑠(𝑒𝜑, 𝜓ℎ) + 𝑏𝑠𝑓 (𝜓ℎ, 𝑒𝑝) = 0 ∀𝜓ℎ ∈ Qℎ,

𝑎𝑓 (e𝜎, 𝜏ℎ) + 𝑏𝑓 (𝜏ℎ, 𝑒𝑝) = 0 ∀𝜏ℎ ∈ Zℎ,

𝑏𝑠𝑓 (𝑒𝜑, 𝑞ℎ) + 𝑏𝑓 (e𝜎, 𝑞ℎ) − 𝑐𝑓 (𝑒𝑝, 𝑞ℎ) = 0 ∀𝑞ℎ ∈ Qℎ,

which, together with the decompositions (5.12), implies that

𝑎ℎ𝑠 (𝜒𝑢,𝑣ℎ) + 𝑏ℎ𝑠 (𝑣ℎ, 𝜒𝜑) = 𝐹ℎ1 (𝑣ℎ) ∀𝑣ℎ ∈ Hℎ,

𝑏̃ℎ𝑠 (𝜒𝑢, 𝜓ℎ) − 𝑐𝑠(𝜒𝜑, 𝜓ℎ) + 𝑏𝑠𝑓 (𝜓ℎ, 𝜒𝑝) = 𝐺ℎ1 (𝜓ℎ) ∀𝜓ℎ ∈ Qℎ, (5.13)

𝑎𝑓 (𝜒𝜎, 𝜏ℎ) + 𝑏𝑓 (𝜏ℎ, 𝜒𝑝) = 𝐹ℎ2 (𝜏ℎ) ∀𝜏ℎ ∈ Zℎ,

𝑏𝑠𝑓 (𝜒𝜑, 𝑞ℎ) + 𝑏𝑓 (𝜒𝜎, 𝑞ℎ) − 𝑐𝑓 (𝜒𝑝, 𝑞ℎ) = 𝐺ℎ2 (𝑞ℎ) ∀𝑞ℎ ∈ Qℎ,

with
𝐹ℎ1 (𝑣ℎ) := −𝑎ℎ𝑠 (𝜉𝑢,𝑣ℎ)− 𝑏ℎ𝑠 (𝑣ℎ, 𝜉𝜑), 𝐺ℎ1 (𝜓ℎ) := 𝑐𝑠(𝜉𝜑, 𝜓ℎ)− 𝑏̃ℎ𝑠 (𝜉𝑢, 𝜓ℎ)− 𝑏𝑠𝑓 (𝜓ℎ, 𝜉𝑝),
𝐹ℎ2 (𝜏ℎ) := −𝑎𝑓 (𝜉𝜎, 𝜏ℎ)− 𝑏𝑓 (𝜏ℎ, 𝜉𝑝), 𝐺ℎ2 (𝑞ℎ) := 𝑐𝑓 (𝜉𝑝, 𝑞ℎ)− 𝑏𝑠𝑓 (𝜉𝜑, 𝑞ℎ)− 𝑏𝑓 (𝜉𝜎, 𝑞ℎ).

Then, applying Theorem 4.1 to (5.13) we deduce that there exists 𝐶 > 0, independent of 𝜆 and ℎ, such that

|||𝜒𝑢|||ℎ + ‖𝜒𝜑‖0,Ω + ‖𝜒𝜎‖div,Ω + ‖𝜒𝑝‖0,Ω ≤ 𝐶(‖𝐹ℎ1 ‖H′ℎ + ‖𝐺ℎ1‖Q′ℎ + ‖𝐹ℎ2 ‖Z′ℎ + ‖𝐺ℎ2‖Q′ℎ). (5.14)

Now we proceed to bound the norms on the right-hand side of (5.14). We start by observing that from the
continuity of 𝑎ℎ𝑠 and 𝑏ℎ𝑠 (cf. (4.2) and (4.7), respectively), we obtain

‖𝐹ℎ1 ‖H′ℎ ≤ 𝑐1(|||𝜉𝑢|||ℎ + ‖𝜉𝜑‖0,Ω),

with 𝑐1 > 0 independent of 𝜆 and ℎ. In turn, using again the continuity of 𝑏ℎ𝑠 , together with the continuity of
𝑐𝑠 and 𝑏𝑠𝑓 (cf. (2.11)), it follows that

‖𝐺ℎ1‖Q′ℎ ≤ 𝑐2(𝜆−1‖𝜉𝜑‖0,Ω + 𝜆−1‖𝜉𝑝‖0,Ω + |||𝜉𝑢|||ℎ),

with 𝑐2 > 0 independent of 𝜆 and ℎ. Next, to bound ‖𝐹ℎ2 ‖Z′ℎ we make us of the continuity of 𝑎𝑓 and 𝑏𝑓 (cf.
(2.11)) to get

‖𝐹ℎ2 ‖Z′ℎ ≤ 𝑐3(‖𝜉𝜎‖div,Ω + ‖𝜉𝑝‖0,Ω),
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with 𝑐3 > 0 independent of 𝜆 and ℎ. Finally, the continuity of 𝑐𝑓 , 𝑏𝑠𝑓 and 𝑏𝑓 (cf. (2.11)) imply

‖𝐺ℎ2‖Q′ℎ ≤ 𝑐4(‖𝜉𝑝‖0,Ω + 𝜆−1‖𝜉𝜑‖0,Ω + ‖𝜉𝜎‖div,Ω), (5.15)

with 𝑐4 > 0 independent of 𝜆 and ℎ. Therefore, from (5.14) and (5.15) we obtain that there exists 𝐶 > 0,
independent of 𝜆 and ℎ, such that

|||𝜒𝑢|||ℎ + ‖𝜒𝜑‖0,Ω + ‖𝜒𝜎‖div,Ω + ‖𝜒𝑝‖0,Ω ≤ 𝐶(|||𝜉𝑢|||ℎ + (1 + 2𝜆−1)‖𝜉𝜑‖0,Ω + ‖𝜉𝜎‖div,Ω + (2 + 𝜆−1)‖𝜉𝑝‖0,Ω),

which combined with the fact that 1 + 2𝜆−1 and 2 + 𝜆−1 can be seen as constants independent of 𝜆 if 𝜆→∞,
concludes the proof. �

6. Numerical verification

We now provide a set of examples serving to illustrate convergence and locking-free properties of the proposed
method. In contrast with the computational implementation of conforming FVE schemes (where only mass and
source terms need to define matrix blocks that interact with the control volumes in the dual meshes), our
coupled DFV-MFE solver uses an explicit construction of the inter-mesh projection map, as the associated
interpolation matrix is used in the contributions due to strain and the off-diagonal bilinear forms 𝑏ℎ1 (·, ·) and
𝑏̃ℎ1 (·, ·). All operations involving matrix assembly and the solution of linear systems using distributed Krylov
solvers, were performed with an in-house code based on the libraries Trilinos (www.trilinos.org) and OpenMPI
(www.open-mpi.org), and primal meshes used in Examples 1–4 were generated with GMSH [30].
Example 1: Convergence test and locking phenomenon. In order to experimentally confirm the error
estimates derived in Theorem 5.1 we consider a rectangular domain Ω = (0, 3/2)× (0, 1), where the boundaries
are split as Γ𝑢 = {(𝑥, 𝑦) : 𝑥 = 0 or 𝑦 = 1} and Γ𝑝 = {(𝑥, 𝑦) : 𝑥 = 3/2 or 𝑦 = 0}. We employ the approach of
manufactured solutions and propose the following closed form solutions to (2.1)–(2.4)

𝑢 =

(︃
−16𝑥2(𝑥− 1)2𝑦(𝑦 − 1)(2𝑦 − 1) + 𝑥2

2𝐸𝜆

16𝑦2(𝑦 − 1)2𝑥(𝑥− 1)(2𝑥− 1) + 𝑦2

2𝐸𝜆

)︃
, 𝑝 = 𝑥3 − 𝑦4, 𝜑 = 𝛼𝑝− 𝜆 div 𝑢, 𝜎 = −𝜅

𝜂
(∇𝑝− 𝜌𝑔).

These smooth functions are used to construct a body force 𝑓 , a fluid source ℓ, the non-homogeneous Dirichlet
pressure 𝑝Γ, and a non-homogeneous normal stress defined on Γ𝑝. The non-dimensional model and discretisation
parameters adopted in this test are chosen as follows: 𝜂 = 𝑐0 = 𝜅0 = 0.001, 𝛼 = 𝜌 = 𝜃 = 1, 𝜅(𝑥) = 𝜅0[1 +
𝜅0 sin2(𝜋𝑥) cos2(𝜋𝑦)], 𝑔 = (0,−1)𝑇 , and 𝛾𝑢 = 1000. The Young modulus is 𝐸 = 100, whereas for the Poisson
ratio we will consider three cases assigning 𝜈 = 0.4 (giving 𝜇 = 35.71, 𝜆 = 42.857) 𝜈 = 0.495 (with 𝜇 = 33.44,
𝜆 = 3311.04), and 𝜈 = 0.4999 (implying 𝜇 = 33.333, 𝜆 = 1.666e4).

On a sequence of uniformly refined meshes we produce approximate solutions using the proposed DFV-MFE
method, and in Table 1 we collect errors computed in the norms suggested by the analysis of Section 5, together
with convergence rates calculated as

rate = log
(︂
𝑒(·)̂︀𝑒(·)

)︂
[log(ℎ/̂︀ℎ)]−1,

where 𝑒, ̂︀𝑒 stand for errors generated by methods defined on meshes with meshsizes ℎ,̂︀ℎ, respectively. We can see
that the error decay provides verification of the overall first order approximation anticipated by our theoretical
results, holding irrespectively of the value of 𝜆. The converged solutions for the intermediate value of the
Poisson ratio, are displayed in Figure 2. A similar test is conducted to test the robustness with respect to the
specific storage coefficient 𝑐0, where we fix the Poisson ration 𝜈 = 0.495. Table 2 shows that the convergence
rates. As in e.g. the test for a single network from [34], the error for three different values of 𝑐0 shows optimal
decay. Furthermore, and in contrast with [34], here we also observe that the error magnitude remains unchanged,
where all errors are measured for each individual variable in its canonical norm. The linear solves were performed
using the BiCGStab method, and the implementation of the non-homogeneous Dirichlet conditions is done via
Nitsche’s approach.

www.trilinos.org
www.open-mpi.org
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Table 1. Test 1. Error history for the DFV-MFE scheme (3.1)–(3.4) approximating the four-
field poroelasticity equations for different values of the Poisson ratio.

DoF ℎ ‖𝑢− 𝑢ℎ‖0,Ω |||𝑢− 𝑢ℎ|||ℎ ‖𝜑− 𝜑ℎ‖0,Ω ‖𝜎 − 𝜎ℎ‖0,Ω ‖𝜎 − 𝜎ℎ‖div,Ω ‖𝑝− 𝑝ℎ‖0,Ω

error rate error rate error rate error rate error rate error rate

𝜈 = 0.4

80 0.78 0.0744 – 0.6926 – 3.6644 – 1.2167 – 2.3256 – 0.3773 –

177 0.52 0.0619 0.45 0.5504 0.57 2.2433 0.69 0.9013 0.74 1.6331 0.87 0.2476 1.04

485 0.31 0.0331 1.22 0.4091 0.58 1.1622 0.84 0.5755 0.88 0.9954 0.97 0.1456 1.04

1557 0.17 0.0133 1.55 0.2559 0.79 0.5785 0.94 0.3296 0.94 0.5581 0.98 0.0799 1.02

5525 0.09 0.0042 1.80 0.1409 0.94 0.3190 0.75 0.1767 0.98 0.2967 0.99 0.0421 1.01

20 757 0.04 0.0012 1.95 0.0734 0.98 0.1665 0.94 0.0914 0.99 0.1531 0.99 0.0217 1.00

80 405 0.02 0.0003 1.98 0.0374 0.99 0.0842 1.00 0.0465 0.99 0.0778 1.00 0.0110 1.00

316 437 0.01 0.0001 1.99 0.0189 1.00 0.0422 1.00 0.0234 1.00 0.0392 1.00 0.0055 1.00

𝜈 = 0.495

80 0.78 0.0834 – 0.6878 – 5.3694 – 1.2179 – 2.3261 – 0.3774 –

177 0.52 0.0832 0.42 0.5843 0.50 2.4471 0.90 0.9020 0.75 1.6322 0.87 0.2479 1.03

485 0.31 0.0466 1.53 0.4534 0.59 1.6185 0.64 0.5756 0.87 0.9938 0.97 0.1456 1.04

1557 0.17 0.0191 1.61 0.2892 0.76 1.0467 0.65 0.3296 0.94 0.5568 0.98 0.0799 1.02

5525 0.09 0.0062 1.77 0.1606 0.92 0.6353 0.79 0.1767 0.98 0.2959 0.99 0.0421 1.01

20 757 0.04 0.0017 1.96 0.0836 0.98 0.3675 0.83 0.0914 0.99 0.1526 0.99 0.0217 1.00

80 405 0.02 0.0004 2.05 0.0424 1.00 0.1955 0.93 0.0465 0.99 0.0775 1.00 0.0110 1.00

316 437 0.01 0.0001 1.94 0.0213 1.00 0.1051 0.95 0.0234 0.99 0.0391 1.00 0.0055 1.00

𝜈 = 0.49999

80 0.78 0.1243 – 0.6877 – 6.9456 – 1.2180 – 2.3262 – 0.3774 –

177 0.52 0.0855 0.33 0.5884 0.39 4.8192 0.84 0.9021 0.74 1.6323 0.87 0.2479 1.03

485 0.31 0.0480 1.12 0.4584 0.48 2.7653 0.93 0.5756 0.88 0.9938 0.97 0.1456 1.04

1557 0.17 0.0198 1.51 0.2928 0.76 1.7567 0.92 0.3296 0.95 0.5568 0.98 0.0799 1.02

5525 0.09 0.0065 1.74 0.1630 0.92 0.9291 0.75 0.1767 0.98 0.2959 0.99 0.0421 1.00

20 757 0.04 0.0019 1.91 0.0851 0.98 0.4892 0.86 0.0914 0.99 0.1526 0.99 0.0217 1.00

80 405 0.02 0.0005 2.01 0.0433 0.99 0.2657 0.86 0.0465 0.99 0.0775 1.00 0.0110 1.00

316 437 0.01 0.0001 2.01 0.0218 1.00 0.1632 0.74 0.0234 1.00 0.0391 1.00 0.0055 1.00

0.11 0.22 33.000.0

U Magnitude

0.00 0.68 1.35 27.189.0-

.

1.31 2.61 3.92 32.500.0 -0.31 0.36 1.04 17.199.0-

Figure 2. Test 1. Approximate displacement magnitude (a), total pressure (b), fluid flux (c),
and fluid pressure (c); computed for 𝜇 = 33.44, 𝜆 = 3311.04, on a mesh with 33 282 primal
elements.
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Table 2. Test 1. Error history for the DFV-MFE scheme (3.1)–(3.4) approximating the four-
field poroelasticity equations for different values of the specific storage coefficient.

DoF ℎ ‖𝑢− 𝑢ℎ‖0,Ω |||𝑢− 𝑢ℎ|||ℎ ‖𝜑− 𝜑ℎ‖0,Ω ‖𝜎 − 𝜎ℎ‖0,Ω ‖𝜎 − 𝜎ℎ‖div,Ω ‖𝑝− 𝑝ℎ‖0,Ω

error rate error rate error rate error rate error rate error rate

𝑐0 = 1

80 0.78 0.0768 – 0.7066 – 2.3261 – 1.2064 – 2.3230 – 0.3746 –

177 0.52 0.0525 0.93 0.5356 0.68 1.8007 0.43 0.8971 0.73 1.6308 0.87 0.2469 1.02

485 0.31 0.0281 1.22 0.3819 0.66 1.3222 0.61 0.5743 0.87 0.9934 0.97 0.1454 1.03

1557 0.17 0.0115 1.52 0.2318 0.84 0.8793 0.69 0.3294 0.94 0.5567 0.98 0.0799 1.01

5525 0.09 0.0036 1.81 0.1260 0.95 0.4183 1.16 0.1766 0.97 0.2959 0.99 0.0421 1.00

20 757 0.04 0.0010 1.95 0.0655 0.98 0.1715 1.34 0.0914 0.99 0.1526 0.99 0.0217 1.00

𝑐0 =1e-4

80 0.78 0.0768 – 0.7066 – 2.3261 – 1.2180 – 2.3261 – 0.3774 –

177 0.52 0.0525 0.94 0.5356 0.68 1.8007 0.43 0.9021 0.74 1.6323 0.87 0.2479 1.03

485 0.31 0.0281 1.22 0.3819 0.66 1.3221 0.61 0.5756 0.87 0.9938 0.97 0.1456 1.04

1557 0.17 0.0115 1.52 0.2318 0.84 0.8793 0.69 0.3296 0.94 0.5568 0.98 0.0799 1.02

5525 0.09 0.0036 1.81 0.1260 0.95 0.4183 1.16 0.1767 0.98 0.2959 0.99 0.0421 1.00

20 757 0.04 0.0010 1.95 0.0655 0.98 0.1715 1.34 0.0914 0.99 0.1526 0.99 0.0217 1.00

𝑐0 = 0

80 0.78 0.0768 – 0.7066 – 2.3261 – 1.2180 – 2.3261 – 0.3774 –

177 0.52 0.0525 0.93 0.5356 0.68 1.8007 0.43 0.9021 0.74 1.6323 0.87 0.2479 1.03

485 0.31 0.0281 1.22 0.3819 0.66 1.3221 0.61 0.5756 0.87 0.9938 0.97 0.1456 1.04

1557 0.17 0.0115 1.52 0.2318 0.84 0.8793 0.69 0.3296 0.94 0.5568 0.98 0.0799 1.02

5525 0.09 0.0036 1.81 0.1260 0.95 0.4183 1.16 0.1767 0.98 0.2959 0.99 0.0421 1.00

20 757 0.04 0.0010 1.94 0.0655 0.98 0.1715 1.34 0.0914 0.99 0.1526 0.99 0.0217 1.00

Example 2: Surface footing. We next address the numerical solution of a partial compression problem in
3D. One seeks to determine the deformation as well as the undrained response of the fluid (flux and pressure
distribution) of a porous material when subject to a distributed boundary load of magnitude 10 000. The
computational domain occupied by the porous medium is a box whose left, right, back and front faces are
defined by 𝑥 = −100, 𝑥 = 100, 𝑦 = 100, 𝑦 = −100, while the top and bottom surfaces are defined by the
parameterisation

𝑡 ↦→ 𝑧(𝑥, 𝑦, 𝑡) = 12 cos(0.01[𝑥+ 𝜋𝑦]) cos2(0.01[𝜋𝑥+ 𝑦]) +
1
4
𝑡+

1
12

(0.01𝑦 − 1), 𝑡 ∈ [−100, 100],

(as used for a related test in e.g. [32]). Its boundary is separated into ΩΓ𝑢
and ΩΓ𝑝

. The former contains
portions of the boundary corresponding to the faces 𝑦 = −100, 𝑦 = 100 and 𝑥 = 100, where we will prescribe
zero displacements 𝑢 = 0 and zero normal fluid flux 𝜎 ·𝑛 = 0. On the remainder of 𝜕Ω we set zero fluid pressure
𝑝Γ = 0, and assume a non-homogeneous total normal stress

ℎΓ =

{︃
(10 000, 0, 0)𝑇 if 𝑥 = −100 and − 50 ≤ 𝑦 ≤ 50,
0 otherwise,

imposed according to the condition (2𝜇𝜀(𝑢)−𝜑I) = ℎΓ, on ΩΓ𝑝
. In addition we consider a null source 𝑓 = 0, a

constant fluid source ℓ = 0.01, the gravity force 𝑔 = (0, 0,−9.8)𝑇 , Young and Poisson elastic moduli 𝐸 = 30 000,
𝜈 = 0.475, storage and Biot-Willis coefficients 𝑐0 = 0.001, 𝛼 = 0.1, permeability of the porous matrix 𝜅 = 0.0001,
fluid viscosity 𝜂 = 0.01, and fluid density 𝜌 = 500. The primal mesh contains 49 152 tetrahedral elements and we
take the penalisation parameters 𝛾𝑢 = 100, together with the symmetric version of the interior penalty method
(i.e. 𝜃 = 1).
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Figure 3. Test 2. Deformation and filtration response of a porous block subjected to a normal
boundary force at one end. Displacement magnitude (a), total pressure distribution (b), fluid
flux (c), and fluid pressure (d).

The obtained approximate solutions are depicted in Figure 3, and rendered on the deformed domain. We also
show the undeformed skeleton mesh in each panel. For this test (as well as for test 4 below) we have used a
GMRES solver with a tolerance of 10−6, and preconditioned by an ILU factorisation.

Example 3: Loading of a cylindrical shell. For this test we study a transient problem where (2.4) adopts
the form

𝜕

𝜕𝑡

[︂(︂
𝑐0 +

𝛼2

𝜆

)︂
𝑝− 𝛼

𝜆
𝜑

]︂
+ div 𝜎 = ℓ in Ω× (0, 𝑇final), (6.1)

where 𝑡 ∈ (0, 𝑇 ) denotes the time variable and 𝑇final = 10−5 is the final time. As in [1] we consider a 2D domain
(a ring of external radius 1 and internal radius 0.5) representing the cross-section of a cylindrical shell made of
a deformable porous material. The outer circle will be considered as Γ𝑢 so we impose the domain to be clamped
and the normal flux of the fluid pressure is zero. On the inner circle, Γ𝑝, we impose a fixed fluid pressure 𝑝Γ = 1
and an effective solid stress

[2𝜇𝜀(𝑢) + 𝜆(div 𝑢)I]𝑛 = −(cos(𝜃), sin(𝜃))𝑇 ,

where 𝜃 is the second polar coordinate. This implies that the total traction load to impose at Γ𝑝 is −(cos(𝜃),
sin(𝜃))− 𝑝Γ. We assume the absence of gravitational forces, 𝑔 = 0, and we take a zero specific storage 𝑐0 = 0.
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Figure 4. Test 3. Transient loading of a cylindrical shell. Snapshot taken at 𝑇final = 10∆𝑡. Ele-
vation plots according to the fluid pressure computed with: a primal conforming piecewise linear
approximation of solid displacement and pressure (a), adding a model stabilisation −𝛽∆

[︀
𝜕
𝜕𝑡𝑝
]︀

with 𝛽 = ℎ2/(4𝜆+ 8𝜇) (b), and with the proposed mixed-mixed formulation (c).

Such a configuration is of particular importance as low values of the specific storage have been reported to induce
volumetric locking. Even if our theoretical analysis does not support this limit case (see comment at the end of
Sect. 2), as we have seen in Table 2 and as will observe below, the proposed mixed-mixed formulation presents
no issues associated with 𝑐0 = 0. The remaining model parameters take on the following values 𝐸 = 105, 𝜈 = 0.2,
𝛼 = 1, 𝜅 = 10−7, 𝜂 = 10−3. The primal mesh contains 37 084 triangular elements, and the time discretisation
of the problem follows a classical backward Euler scheme with a fixed timestep ∆𝑡 = 10−6. The stabilisation
constant is set as 𝛾𝑢 = 10 and again we adopt a symmetric interior penalty method.

The model and methods in [1] suggest to incorporate a stabilisation term −𝛽∆
[︀
𝜕
𝜕𝑡𝑝
]︀

on the left hand side
of (6.1), with 𝛽 > 0 depending on the Lamé constants and the meshsize. We perform a comparison against a
conforming discretisation of the Biot consolidation problem formulated solely in terms of solid displacement and
fluid pressure, using piecewise linear and continuous Lagrange finite elements for 𝑢 and 𝑝, and incorporating
𝛽 = ℎ2/(4𝜆+8𝜇). We observe that such a stabilisation (targeted to eliminate oscillations near the inner boundary
Γ𝑝) generates a marked smoothing of the fluid pressure profile, which is not necessarily consistent with the
expected physical behaviour. We also mention that this stabilisation is actually not required in our mixed-
mixed method, due to the conservative character of the scheme and its suitability for handling discontinuities
and high gradients. The obtained results are displayed in Figure 4. Note that for this transient simulation
our theoretical analysis is not valid. Nevertheless the qualitative behaviour of the results indicates that all
computations remain stable.

Example 4: A two-layered porous material. We now simulate the drainage behaviour of a porous region
composed of two layers with different material properties determined by the discontinuous Lamé moduli of
dilation and shear, and the solid permeability

𝜆 = 𝜇 =

{︃
1𝑒4 in Ωbot,

1 in Ωtop,
, 𝜅 =

{︃
0.1 in Ωbot,

10−4 in Ωtop,

where Ω = (0, 1)3 = Ωbot∪Ωtop with the two subdomains being separated by the plane 𝑧 = 0.5. The solid matrix
in the upper domain is softer and less permeable than the material occupying the bottom layer (see a similar
test performed in [46]). The constants dictating the hydromechanical coupling (that is, the specific storage and
Biot-Willis parameter) are specified as 𝑐0 = 0.009, 𝛼 = 1, and the remaining data are 𝜂 = 1, 𝛾𝑢 = 100.
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As in Example 2 above, the onset of motion and flow is induced by applying a normal surface load on a part
of the boundary. We now use a load of magnitude 5 applied on a disk of centre (1/4, 1/4, 1) and radius 0.2, lying
on the top lid. The remainder of the top face, together with the whole bottom square and the faces 𝑥 = 0 and
𝑦 = 0 constitute Γ𝑝 (where the fluid pressure is set to zero and the fluid content is free to drain), whereas we
assume that the two remaining lateral walls, defined by 𝑥 = 1 and 𝑦 = 1, are completely rigid and impermeable
(on this boundary part, Γ𝑢, we impose zero displacements and zero normal fluid flux). The domain configuration
and the boundary labels are sketched in Figure 5. We took a uniform mesh having 345’600 tetrahedral elements
in the primal mesh, resulting in a linear system of 5′538′560 unknowns.

Snapshots of the solutions computed using the proposed DFV-MFE scheme are shown in Figure 5, exhibiting
a qualitative agreement with the results from [46]. In particular, the produced approximations do not present
spurious oscillations in the computed total and fluid pressures, nor unphysically small displacements. We can
also observe that the pressure distributions form an interior boundary layer, but these high gradients do not
pollute the numerical approximation.

Example 5: Filtration of cerebro-spinal fluid within brain tissue. We finalise the numerical tests by
simulating the filtration process of cerebro-spinal fluid (CSF) due to pressure differences in the brain. The
problem setting assumes that the parenchyma is a porous medium fully saturated with CSF, and that the
tissue is nearly incompressible, and that no gravitational effects influence the poromechanical dynamics. Model
parameters were taken from [40,58,60] and are as follows

𝜈 = 0.4999, 𝐸 = 1500 Pa, 𝑐0 = 3.9 e-4 Pa−1, 𝛼 = 0.49,
𝜅

𝜂
= 1.573 e-5 mm2 Pa−1 s−1.

The problem adopts again the time-dependent form (6.1) and we use the initial conditions 𝜑(0) = 0, 𝑝(0) =
5 mmHg. A backward Euler scheme is applied using a timestep ∆𝑡 = 0.025 s and the system is run for two
pulsating cycles, up to 𝑡 = 1 s. This model does not consider anisotropy of permeability nor inhomogeneity of
fluid content. The domain consists of an adult human brain atlas [26] and we employ a tetrahedral mesh having
29 037 vertices. The boundary conditions differ from (2.5). On Γ𝑠 (the outer surface of the brain which in contact
with the skull) we impose 𝑢 = 0 and a pulsating CSF pressure profile 𝑝𝑠(𝑡) = 𝑝(0) + 2 sin(2𝜋𝑡) mmHg. On the
remainder of the boundary (constituted by the ventricles), Γ𝑣 = 𝜕Ω ∖ Γ𝑠, we prescribe a different pulsating
pressure having a slightly larger amplitude 𝑝𝑣(𝑡) = 𝑝(0) + 2.016 sin(2𝜋𝑡) mmHg, together with a zero-traction
condition (2𝜇𝜀(𝑢) − 𝜑I)𝑛 = 0 (implying that the ventricles can deform freely). On the other hand, the total
pressure and the fluid flux are not constrained on the boundary. Note that initial and boundary conditions for
CSF pressure need to be rescaled from mmHg to Pa. The results collected in Figure 6 are shown after the first
cycle, at 𝑡 = 0.5 s and they show qualitative agreement with the displacement and extracellular pressure as
reported in Section 6 of [40], however the magnitudes do not match as the model in that reference is much more
complete than the one treated here.

7. Summary and concluding remarks

We have introduced a new mixed-mixed formulation for linear poroelasticity using the total pressure and the
fluid flux as additional mixed variables. The proposed discretisation consisted on a combined discontinuous finite
volume scheme for the displacement of the solid skeleton, and a mixed finite element method approximating
the remaining fields. The method features conservativity, absence of spurious pressure oscillations, and locking
free properties. We have derived theoretical error estimates and have confirmed them experimentally through a
series of numerical tests in 2D and 3D.

As an extension to this work we foresee the development of high-order discretisations for displacements
and total pressure. This is fairly standard for the mixed finite element components of the method, however
the discontinuous finite volume part would require much more care, since the structural connection between
discontinuous finite volumes and classical DG methods does no longer hold (see for instance the recent paper
[22] addressing second order finite volume element schemes for Stokes equations or [23] for Biot’s consolidation
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Figure 5. Test 4. Deformation and filtration response of a two-layered medium. Sketch of the
domain configuration and boundary conditions (a), displacement magnitude (b), fluid flux (c);
and snapshots of each scalar field on the slice 𝑥 = 0.25 (d–k).
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Figure 6. Test 5. Geometry from an adult human brain atlas (a), ventricle boundary Γ𝑣 and
skull boundary Γ𝑠 (b), and approximate solutions of the Biot equations visualised on slices
parallel to the 𝑦 and 𝑧 axes, corresponding to the time 𝑡 = 0.5 s. Displacement magnitude and
directions line integration contours (c), total pressure (d), magnitude of CSF flux (e), and CSF
pressure (f).

in primal formulation). Note that the optimal error estimates found in our analysis demand global regularity
of the exact solutions, which does not hold in many instances, including Example 4. Nevertheless, if the mesh
is compatible with the discontinuity one may achieve higher regularity, locally. Even if the method does seem
to perform well under these conditions, as evidenced by the results of Example 4 (where it can be seen that
the computed solutions do not show spurious oscillations); a more delicate theoretical analysis is required. A
further step would be to derive a posteriori error estimates, focusing on the zones of fluid singularities and
stress concentration [52]. Moreover, recent extensions of robust and efficient schemes for Biot equations have
been employed for the more sophisticated model of multiple network poroelasticity in e.g. [34,40,60], or to the
case of coupled poromechanics and advection–diffusion [48,49,51,56], and we are extending our formulation to
accommodate those cases as well. We would also like to investigate fractures and energy conservation aspects
as recently addressed in [16], as well as the generalisation of our theoretical and computational framework
(presently confined to the linear case) to the study of interface problems [4], also including the regime of finite
strains [11,20,61]. We finally mention that large scale problems will require the design of suitable preconditioners,
for which we can appeal to the recent developments in e.g. [9, 34,39].
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