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A POSTERIORI ERROR ESTIMATES FOR DARCY’S PROBLEM COUPLED
WITH THE HEAT EQUATION

Séréna Dib1,2, Vivette Girault1, Frédéric Hecht1 and Toni Sayah2,∗

Abstract. This work derives a posteriori error estimates, in two and three dimensions, for the heat
equation coupled with Darcy’s law by a nonlinear viscosity depending on the temperature. We intro-
duce two variational formulations and discretize them by finite element methods. We prove optimal
a posteriori errors with two types of computable error indicators. The first one is linked to the lin-
earization and the second one to the discretization. Then we prove upper and lower error bounds under
regularity assumptions on the solutions. Finally, numerical computations are performed to show the
effectiveness of the error indicators.
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1. Introduction

The present work investigates a posteriori error estimates of the finite element discretization of a heat
equation coupled with Darcy’s law by a nonlinear viscosity depending on the temperature in polygonal or
polyhedral domains. The a posteriori analysis controls the overall discretization error of a problem by providing
error indicators that are easy to compute. Once these error indicators are constructed, their efficiency can be
proven by bounding each indicator by the local error. A posteriori analysis was first introduced by Babuška
[3], developed by Verfürth [28], and has been the object of a large number of publications. A posteriori error
estimations have been studied for several types of partial differential equations. For the stationary Navier–Stokes
equations, we can refer for instance to [5,16,17,21,22]. For the stationary Boussinesq model, we refer to [14,15].
Many works have been established for the Darcy flow, see for instance [2, 8, 10, 23]. In [11], Chen and Wang
establish optimal a poteriori error estimates for the H(div,Ω) conforming mixed finite element method applied
to the coupled Darcy–Stokes system in two dimensions, but excludes the RT0 element that we shall study in
the present work. For the Darcy equations with pressure dependent viscosity, we refer to [18] and the references
therein.

In this article, we consider the heat equation coupled with Darcy’s law by a nonlinear viscosity depending on
the temperature. Let Ω ⊂ IRd, d = 2, 3, be a bounded simply-connected domain, with a Lipschitz-continuous
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boundary Γ. This work studies the temperature distribution of a fluid in a porous medium modelled by a
convection-diffusion equation coupled with Darcy’s law. The system of equations is the following:

(P )



ν(T )u +∇ p = f in Ω,

div u = 0 in Ω,

−α∆T + (u · ∇T ) = g in Ω,

u · n = 0 on Γ,

T = 0 on Γ,

where n is the unit outward normal vector on Γ. The unknowns are the velocity u, the pressure p and the
temperature T of the fluid. The function f represents an external density force and g an external heat source.
The parameter α is a positive constant that corresponds to the diffusion coefficient. The viscosity ν depends on
the temperature; it is a positive-valued function that satisfies the following assumptions:

Assumption 1.1. We assume that

– ν belongs to W 1,∞(IR). Therefore ν is a Lipschitz-continuous function with Lipschitz constant λ, i.e.,

∀s, t ∈ IR, |ν(s)− ν(t)| ≤ λ|s− t|. (1.1)

– There exist two positive constants ν1 and ν2 such that for any s ∈ IR

ν1 ≤ ν(s) ≤ ν2. (1.2)

In [7], the above problem was treated by using finite element methods combined with a Picard iterative
algorithm to solve for the nonlinearity. Two numerical schemes were analyzed and an optimal a priori error
estimate was established, together with convergence of the algorithm. In the present paper, we establish optimal
a posteriori error estimates including algorithmic effects as well as the influence of the nonlinear function ν.
The theory is validated by corresponding numerical experiments.

This article is organized as follows:

– Section 2 is devoted to the continuous problem.
– In Section 3, we introduce the discrete and iterative problems and recall their main properties.
– In Section 4, we introduce the error indicators and prove the upper and lower error a posteriori bounds for

the first approximation.
– In Section 5, we introduce the error indicators and prove the upper and lower a posteriori error bounds for

the second approximation.
– The theory is validated by numerical results in Section 6.

2. Variational formulations

In order to introduce the variational formulations, we recall some classical Sobolev spaces and their properties.
Let α = (α1, α2, . . . αd) be a d-uple of non negative integers, set |α| =

∑d
i=1 αi, and define the partial

derivative ∂α by

∂α =
∂|α|

∂xα1
1 ∂xα2

2 . . . ∂xαd

d

·

Then, for any positive integer m and number p ≥ 1, we recall the classical Sobolev space (Adams [1] or
Nečas [24])

Wm,p(Ω) = {v ∈ Lp(Ω); ∀ |α| ≤ m, ∂αv ∈ Lp(Ω)}, (2.1)
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equipped with the seminorm

|v|Wm,p(Ω) =

 ∑
|α|=m

∫
Ω

|∂αv|p dx


1
p

(2.2)

and the norm

‖v‖Wm,p(Ω) =

 ∑
0≤k≤m

|v|p
Wk,p(Ω)


1
p

. (2.3)

When p = 2, this space is the Hilbert space Hm(Ω). In particular, the scalar product of L2(Ω) is denoted
by (., .). The definitions of these spaces are extended straightforwardly to vectors, with the same notation, but
with the following modification for the norms in the non-Hilbert case. Let v be a vector valued function; we set

‖v‖Lp(Ω) =
(∫

Ω

|v|p dx
) 1

p

, (2.4)

where |.| denotes the Euclidean vector norm.
For vanishing boundary values, we define

H1
0 (Ω) = {v ∈ H1(Ω); v|Γ = 0}. (2.5)

We shall often use the following Sobolev imbeddings: for any real number p ≥ 1 when d = 2, or 1 ≤ p ≤ 6
when d = 3, there exist constants Sp and S0

p such that

∀ v ∈ H1(Ω), ‖v‖Lp(Ω) ≤ Sp‖v‖H1(Ω) (2.6)

and
∀ v ∈ H1

0 (Ω), ‖v‖Lp(Ω) ≤ S0
p |v|H1(Ω). (2.7)

When p = 2, (2.7) reduces to Poincaré’s inequality.
Recall the standard spaces for Darcy’s equations

L2
m(Ω) =

{
v ∈ L2(Ω);

∫
Ω

v dx = 0
}
, (2.8)

H(div,Ω) =
{
v ∈ L2(Ω)d; div v ∈ L2(Ω)

}
, (2.9)

H0(div,Ω) = {v ∈ H(div,Ω); (v · n)|Γ = 0}, (2.10)

equipped with the norm
‖v‖2H(div,Ω) = ‖v‖2L2(Ω)d + ‖div v‖2L2(Ω). (2.11)

We also define the kernel of the divergence in H0(div,Ω),

V = {v ∈ H0(div,Ω); div v = 0}. (2.12)

The spaces L2
m(Ω) and H0(div,Ω) (resp. H1(Ω)∩L2

m(Ω) and L2(Ω)d) satisfy the following inf-sup conditions:

inf
q∈L2

m(Ω)
sup

v∈H0(div,Ω)

∫
Ω

q div v dx

‖v‖H(div,Ω)‖q‖L2(Ω)
≥ β, (2.13)
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with a constant β > 0, and,

inf
q∈H1(Ω)∩L2

m(Ω)
sup

v∈L2(Ω)d

∫
Ω

v · ∇ q dx

‖v‖L2(Ω)d |q|H1(Ω)
≥ 1. (2.14)

For more details we refer to Bernardi et al. [7].
We introduce the two following variational problems equivalent to problem (P ):

(V1)



Find (u, p, T ) ∈ H0(div,Ω)× L2
m(Ω)×H1

0 (Ω) such that

∀v ∈ H0(div,Ω),
∫

Ω

ν(T )u · v dx −
∫

Ω

p div v dx =
∫

Ω

f · v dx,

∀ q ∈ L2
m(Ω),

∫
Ω

q div u dx = 0,

∀S ∈ H1
0 (Ω) ∩ L∞(Ω), α

∫
Ω

∇T · ∇S dx +
∫

Ω

(u · ∇T )S dx =
∫

Ω

g S dx,

and

(V2)



Find (u, p, T ) ∈ L2(Ω)d × (H1(Ω) ∩ L2
m(Ω))×H1

0 (Ω) such that

∀v ∈ L2(Ω)d,
∫

Ω

ν(T )u · v dx +
∫

Ω

∇ p · v dx =
∫

Ω

f · v dx,

∀ q ∈ H1(Ω) ∩ L2
m(Ω),

∫
Ω

∇ q · u dx = 0,

∀S ∈ H1
0 (Ω) ∩ L∞(Ω), α

∫
Ω

∇T · ∇S dx +
∫

Ω

(u · ∇T )S dx =
∫

Ω

g S dx.

The variational problem (V1) is well adapted to locally conservative discrete schemes while (V2) leads to
numerical schemes that are more easily implemented. For the existence and uniqueness of the solutions of
problems (V1) and (V2), and their equivalence to problem (P ), we refer to [7].

3. Discretization

From now on, we assume that Ω is a polygon when d = 2 or polyhedron when d = 3, so it can be completely
meshed. For the space discretization, we consider a regular (see Ciarlet [12]) family of triangulations (Th)h of
Ω which is a set of closed non degenerate triangles for d = 2 or tetrahedra for d = 3, called elements, satisfying,

– for each h, Ω̄ is the union of all elements of Th;
– the intersection of two distinct elements of Th is either empty, a common vertex, or an entire common edge

(or face when d = 3);
– the ratio of the diameter hK of an element K in Th to the diameter ρK of its inscribed circle when d = 2 or

ball when d = 3 is bounded by a constant independent of h: there exists a positive constant σ independent
of h such that,

max
K∈Th

hK
ρK
≤ σ. (3.1)

As usual, h denotes the maximal diameter of all elements of Th. To define the finite element functions, let r
be a non negative integer. For each K in Th, we denote by Pr(K) the space of restrictions to K of polynomials
in d variables and total degree at most r, with a similar notation on the faces or edges of K. For every edge
(when d = 2) or face (when d = 3) e of the mesh Th, we denote by he the diameter of e.

In what follows, c, c′, C, C ′, c1, . . . stand for generic constants which may vary from line to line but are always
independent of h.
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We shall use the following inverse inequalities: for any number p ≥ 2, for any dimension d, and for any non
negative integer r, there exist constants C0

I (p) and C1
I (p) such that for any polynomial function vh of degree r

on K,

‖vh‖Lp(K) ≤ C0
I (p)h

d
p−

d
2

K ‖vh‖L2(K) (3.2)

and
|vh|H1(K) ≤ C1

I (p)h
d
2−

d
p−1

K ‖vh‖Lp(K). (3.3)

The constants C0
I and C1

I depend also on the regularity parameter σ of (3.1), but for the sake of simplicity
this is not indicated.

For a given triangulation Th, we define the following finite dimensional spaces:

Zh = {Sh ∈ C0(Ω̄); ∀K ∈ Th, Sh|K ∈ P1(K)} and Xh = Zh ∩H1
0 (Ω). (3.4)

There exists an approximation operator (when d = 2, see Bernardi and Girault [4] or Clément [13]; when
d = 2 or d = 3, see Scott and Zhang [27]) Rh in L(W 1,p(Ω);Zh) and in L(W 1,p(Ω) ∩H1

0 (Ω);Xh) such that for
all K in Th, m = 0, 1, l = 0, 1, and all p ≥ 2,

∀S ∈W l+1,p(Ω), |S −Rh(S)|Wm,p(K) ≤ C(p,m, l)hl+1−m
K |S|W l+1,p(ωK), (3.5)

where ωK is the union of elements of Th that intersect K, including K itself.

3.1. Discrete schemes

3.1.1. First discrete scheme

The velocity is discretized by the Raviart–Thomas RT0 [25] elements. More precisely, the discrete spaces
(Wh,1,Mh,1) are defined as follows:

Wh = {vh ∈ H(div,Ω); vh(x)|K = aKx + bK , aK ∈ IR,bK ∈ IRd, ∀K ∈ Th},
Wh,1 =Wh ∩H0(div,Ω), (3.6)
Mh = {qh ∈ L2(Ω); ∀K ∈ Th, qh|K is constant} and Mh,1 = Mh ∩ L2

m(Ω). (3.7)

The kernel of the divergence in Wh,1 is denoted by Vh,1,

Vh,1 = {vh ∈ Wh,1; div vh = 0 in Ω}. (3.8)

The following discrete inf-sup condition holds (see Roberts and Thomas [26]):

∀ qh ∈Mh,1, sup
vh∈Wh,1

∫
Ω

qh div vh dx

‖vh‖H(div,Ω)
≥ β1‖qh‖L2(Ω), (3.9)

with a constant β1 > 0 independent of h.

We then consider the straightforward discretization of problem (V1):

(Vh,1)



Find (uh, ph, Th) ∈ Wh,1 ×Mh,1 ×Xh such that

∀vh ∈ Wh,1,

∫
Ω

ν(Th)uh · vh dx −
∫

Ω

ph div vh dx =
∫

Ω

f · vh dx,

∀ qh ∈Mh,1,

∫
Ω

qh div uh dx = 0,

∀Sh ∈ Xh, α

∫
Ω

∇Th · ∇Sh dx +
∫

Ω

(uh · ∇Th)Sh dx =
∫

Ω

g Sh dx.
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For the existence and uniqueness of the solution of problem (Vh,1), we refer to [7]. We recall the theorem of
a priori error estimates [7]:

Theorem 3.1. Let d = 3 and ν satisfy (1.1) and (1.2). We suppose that problem (V1) has a solution (u, p, T ) ∈
H1(Ω)3 ×H1(Ω)×W 2,3(Ω), such that

λ (S0
6)2 ‖u‖L3(Ω)3 |T |W 1,3(Ω) < αν1. (3.10)

Let the mesh satisfy (3.1). Then the following error inequality between the solutions of (V1) and (Vh,1) holds:

‖u− uh‖H(div,Ω) + ‖p− ph‖L2(Ω) + |T − Th|H1(Ω) ≤ C1 h
(
|u|H1(Ω)3 + |p|H1(Ω) + |T |W 2,3(Ω)

)
. (3.11)

3.1.2. Second discrete scheme

Let K be an element of Th with vertices ai, 1 ≤ i ≤ d+ 1, and corresponding barycentric coordinates λi. We
denote by ψK ∈ Pd+1(K) the basic bubble function

ψK(x) = λ1(x) . . . λd+1(x). (3.12)

We observe that ψK(x) = 0 on ∂K and that ψK(x) > 0 in the interior of K.
Let (Wh,2,Mh,2) be a pair of discrete spaces approximating L2(Ω)d ×

(
H1(Ω) ∩ L2

m(Ω)
)

defined by

Wh,2 =
{

vh ∈ C0(Ω̄)d; ∀K ∈ Th, vh|K ∈ P(K)d
}
, (3.13)

M̃h =
{
qh ∈ C0(Ω̄); ∀K ∈ Th, qh|K ∈ P1(K)

}
and Mh,2 = M̃h ∩ L2

m(Ω), (3.14)

where
P(K) = P1(K)⊕Vect{ψK}.

We approximate problem (V2) by the following discrete scheme:

(Vh,2)



Find (uh, ph, Th) ∈ Wh,2 ×Mh,2 ×Xh such that

∀vh ∈ Wh,2,

∫
Ω

ν(Th)uh · vh dx +
∫

Ω

∇ ph · vh dx =
∫

Ω

f · vh dx,

∀ qh ∈Mh,2,

∫
Ω

∇ qh · uh dx = 0,

∀Sh ∈ Xh, α

∫
Ω

∇Th · ∇Sh dx +
∫

Ω

(uh · ∇Th)Sh dx

+
1
2

∫
Ω

(div uh)Th Sh dx =
∫

Ω

g Sh dx.

For the existence and uniqueness of the solution of problem (Vh,2), we refer to [7]. In particular, the following
inf-sup condition, analogous to (3.9), is valid with another constant β2 > 0 independent of h, see [7]:

∀ qh ∈Mh,2, sup
vh∈Wh,2

∫
Ω

∇ qh · vh dx

‖vh‖L2(Ω)d

≥ β2 |qh|H1(Ω). (3.15)

We recall the theorem of a priori error estimates [7]:

Theorem 3.2. We retain the settings and assumptions of Theorem 3.1; in addition, we suppose that (p, T ) ∈
H2(Ω)×

(
W 1,∞(Ω) ∩W 2,3(Ω)

)
and

λS0
6 ‖u‖L3(Ω)3

(
S0

6 |T |W 1,3(Ω) + ‖T‖L∞(Ω)

)
< 2αν1. (3.16)

Then the following error inequality between the solutions of problems (V2) and (Vh,2) holds:

‖u− uh‖L2(Ω)3 + |p− ph|H1(Ω) + |T − Th|H1(Ω) ≤ C2 h
(
|u|H1(Ω)3 + |p|H2(Ω) + |T |W 2,3(Ω) + |T |W 1,∞(Ω)

)
. (3.17)
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3.2. Successive approximations

As the problem is nonlinear, we introduce a straightforward successive approximation algorithm which con-
verges to the discrete solution under suitable conditions. We present the following Picard iterative problems:

(Vh,i,1)



For given T ih ∈ Xh, find (ui+1
h , pi+1

h , T i+1
h ) ∈ Wh,1 ×Mh,1 ×Xh such that

∀vh ∈ Wh,1,

∫
Ω

ν(T ih)ui+1
h · vh dx −

∫
Ω

pi+1
h div vh dx =

∫
Ω

f · vh dx,

∀ qh ∈Mh,1,

∫
Ω

qh div ui+1
h dx = 0,

∀Sh ∈ Xh, α

∫
Ω

∇T i+1
h · ∇Sh dx +

∫
Ω

(ui+1
h · ∇T i+1

h )Sh dx =
∫

Ω

g Sh dx,

and

(Vh,i,2)



For given T ih ∈ Xh, find (ui+1
h , pi+1

h , T i+1
h ) ∈ Wh,2 ×Mh,2 ×Xh such that

∀vh ∈ Wh,2,

∫
Ω

ν(T ih)ui+1
h · vh dx +

∫
Ω

∇pi+1
h · vh dx =

∫
Ω

f · vh dx,

∀qh ∈Mh,2,

∫
Ω

∇qh · ui+1
h dx = 0,

∀Sh ∈ Xh, α

∫
Ω

∇T i+1
h · ∇Sh dx +

∫
Ω

(ui+1
h · ∇T i+1

h )Sh dx

+
1
2

∫
Ω

(div ui+1
h )T i+1

h Sh dx =
∫

Ω

g Sh dx.

The following stability bounds are proved for both problems in reference [7]:

‖uih‖L2(Ω)d ≤ 1
ν1
‖f‖L2(Ω)d ,

|T ih|H1(Ω) ≤
S0

2

α
‖g‖L2(Ω),

‖pih‖L2(Ω) ≤
1
βk
‖f‖L2(Ω)d

(
1 +

ν2

ν1

)
, k = 1, 2,

(3.18)

where βk refers to the inf-sup constant of the k-th discretization, k = 1, 2. The reader will also find convergence
of the algorithm to the solution of the continuous problem when i tends to +∞ and h tends to 0. We will
demonstrate in the following theorems the convergence of the iterative solution to the discrete solution when i
tends to +∞ for all h sufficiently small. This will be useful when studying the lower bounds of a posteriori error
estimates in Sections 4.2 and 5.2. To simplify, they are stated in three dimensions, but the two-dimensional
analogue is easily derived. In both cases, the regularity assumption (3.1) is not sufficient and is strengthened
by prescribing in addition some quasi-uniformity. In three dimensions, to simplify the exposition, we choose the
following sufficient condition: There exists a constant τ > 0, independent of h, such that

∀K ∈ Th, hK ≥ τ h. (3.19)

We refer to Remarks 3.4 and 4.10 below for a discussion on the quasi-uniformity condition.

Theorem 3.3. Let d = 3, let ν satisfy (1.1) and (1.2), and let (3.1) and (3.19) hold. We suppose that problem
(V1) has a solution (u, p, T ) ∈ H1(Ω)3 ×H1(Ω)×W 2,3(Ω) verifying

λ (S0
6)2‖u‖L3(Ω)3 |T |W 1,3(Ω) <

αν1

4
· (3.20)
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In addition, we denote by

h0 = C
min

(
‖u‖2L3(Ω)3 , |T |2W 1,3(Ω)

)(
|u|H1(Ω)3 + |p|H1(Ω) + |T |W 2,3(Ω)

)2 , (3.21)

where C = τ
C0

I (3)2C2
1

, C0
I (3) is the constant of (3.2), τ the constant of (3.19), and C1 that of (3.11). Then for

h < h0, the solution (ui+1
h , pi+1

h , T i+1
h ) of (Vh,i,1) converges, uniformly with respect to h, to the discrete solution

(uh, ph, Th) of (Vh,1), as i tends to infinity.

Proof. Let (uh, ph, Th) and (ui+1
h , pi+1

h , T i+1
h ) solve respectively (Vh,1) and (Vh,i,1).

To estimate the temperature error, we take the difference between the third equations of (Vh,1) and (Vh,i,1)
tested with Sh = Th − T i+1

h , and insert ∇Th and ∇T . We obtain by using the antisymmetry of the transport
term,

α|Th − T i+1
h |2H1(Ω) =

∫
Ω

((ui+1
h − uh) · ∇(Th − T ))(Th − T i+1

h ) dx

+
∫

Ω

((ui+1
h − uh) · ∇T )(Th − T i+1

h ) dx.
(3.22)

Owing to the regularity of T , the bound of the second term in the above right-hand side is straightforward,∣∣∣∣∫
Ω

((ui+1
h − uh) · ∇T )(Th − T i+1

h ) dx
∣∣∣∣ ≤ S0

6 |T |W 1,3(Ω)|Th − T i+1
h |H1(Ω)‖uh − ui+1

h ‖L2(Ω)3 .

To simplify, let A denote the first term and set

C(u, p, T ) = |u|H1(Ω)3 + |p|H1(Ω) + |T |W 2,3(Ω). (3.23)

By applying (3.2) and Hölder’s inequality, we find

|A| ≤ ‖Th − T i+1
h ‖L6(Ω)|T − Th|H1(Ω)

( ∑
K∈Th

(
C0
I (3)h−

1
2

K

)3‖uh − ui+1
h ‖

3
L2(K)3

) 1
3

.

Then Jensen’s and Sobolev’s inequalities, and the a priori error estimates (3.11) yield

|A| ≤ S0
6C

0
I (3)|Th − T i+1

h |H1(Ω)|T − Th|H1(Ω)

( ∑
K∈Th

h−1
K ‖uh − ui+1

h ‖
2
L2(K)3

) 1
2

≤ S0
6C1C

0
I (3)|Th − T i+1

h |H1(Ω)C(u, p, T )

( ∑
K∈Th

(h2h−1
K )‖uh − ui+1

h ‖
2
L2(K)3

) 1
2

. (3.24)

With the quasi-uniform regularity assumption (3.19), this becomes

|A| ≤
(
h

τ

) 1
2

S0
6C1C

0
I (3)C(u, p, T )|Th − T i+1

h |H1(Ω)‖uh − ui+1
h ‖L2(Ω)3 .

Thus by substituting into (3.22) these bounds for the two terms, we find

|Th − T i+1
h |H1(Ω) ≤

S0
6

α

[(
h

τ

) 1
2

C1C
0
I (3)C(u, p, T ) + |T |W 1,3(Ω)

]
‖uh − ui+1

h ‖L2(Ω)3 . (3.25)
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To bound the velocity error, let vh ∈ Vh,1. The difference between the first equations of (Vh,1) and (Vh,i,1)
leads to the following relation ∫

Ω

ν(Th)uh · vh dx =
∫

Ω

ν(T ih)ui+1
h · vh dx. (3.26)

By inserting uh and u, and testing with vh = uh − ui+1
h that belongs indeed to Vh,1, we easily derive

‖(ν(T ih))
1
2 (uh − ui+1

h )‖2L2(Ω)3 =
∫

Ω

(ν(Th)− ν(T ih))(uh − u) · (uh − ui+1
h ) dx

+
∫

Ω

(ν(Th)− ν(T ih))u · (uh − ui+1
h ) dx.

Then (1.2), (3.2), (3.19), (3.11), the Lipschitz continuity of ν, and the above argument yield

ν1‖uh − ui+1
h ‖2L2(Ω)3 ≤ λS0

6 |Th − T ih|H1(Ω)

×

‖u‖L3(Ω)3‖uh − ui+1
h ‖L2(Ω)3 + C0

I (3)‖u− uh‖L2(Ω)3

( ∑
K∈Th

h−1
K ‖uh − ui+1

h ‖
2
L2(K)3

) 1
2


≤ λS0
6 |Th − T ih|H1(Ω)

(
‖u‖L3(Ω)3 +

(
h
τ

) 1
2 C1C

0
I (3)C(u, p, T )

)
‖uh − ui+1

h ‖L2(Ω)3 .

By substituting (3.25) at level i into this inequality we obtain

‖uh − ui+1
h ‖L2(Ω)3 ≤ λ (S0

6)2

αν1

(
C ′ h

1
2C(u, p, T ) + ‖u‖L3(Ω)3

)(
C ′h

1
2C(u, p, T ) + |T |W 1,3(Ω)

)
‖uh − uih‖L2(Ω)3 ,

(3.27)
where C ′ = C0

I (3)C1

τ
1
2

. As h is sufficiently small (h < h0), we obtain by using (3.20) the bound

‖uh − ui+1
h ‖L2(Ω)3 ≤M‖uh − uih‖L2(Ω)3 ,

where M =
4λ (S0

6)2

αν1
(‖u‖L3(Ω)3 |T |W 1,3(Ω)) < 1. This implies

‖uh − ui+1
h ‖L2(Ω)3 ≤M i+1‖uh − u0

h‖L2(Ω)3 , (3.28)

which allows us to derive the uniform convergence of ui+1
h to uh, and owing to (3.25), that of T i+1

h to Th.
Finally, the proof of the error estimate for the pressure follows the same lines. By taking the difference

between the second equations of (Vh,1) and (Vh,i,1), inserting ν(T ih) and u, and testing with vh in Wh,1, we
obtain ∫

Ω

(pi+1
h − ph)div vh dx =

∫
Ω

ν(T ih)(ui+1
h − uh) · vh dx +

∫
Ω

(ν(T ih)− ν(Th))(uh − u) · vh dx

+
∫

Ω

(ν(T ih)− ν(Th))u · vh dx. (3.29)
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Hence∣∣∣∣∫
Ω

(pi+1
h − ph)div vh dx

∣∣∣∣ ≤ ν2‖uh − ui+1
h ‖L2(Ω)3‖vh‖L2(Ω)3

+ λS0
6 |Th − T ih|H1(Ω)

[
‖uh − u‖L2(Ω)3C0

I (3)

( ∑
K∈Th

h−1
K ‖vh‖

2
L2(K)3

) 1
2

+ ‖u‖L3(Ω)3‖vh‖L2(Ω)3

]
≤ ‖vh‖L2(Ω)3

(
ν2‖uh − ui+1

h ‖L2(Ω)3

+ λS0
6 |Th − T ih|H1(Ω)

(
C1C

0
I (3)

(
h

τ

) 1
2

C(u, p, T ) + ‖u‖L3(Ω)3

))
.

The uniform convergence of pi+1
h to ph follows from the inf-sup condition (3.9), the condition h < h0 with h0

given by (3.21), and the convergences of ui+1
h and T i+1

h . �

Remark 3.4. Condition (3.19) can be somewhat relaxed. Indeed, it stems from (3.24) and (3.27) that it suffices
to prescribe for some small δ > 0,

∀K ∈ Th, τh−1
K h2 ≤ hδ,

i.e.,
∀K ∈ Th, hK ≥ τ h2−δ, (3.30)

a condition less restrictive than (3.19). The situation in two dimensions is more favorable, owing to the wider
range of Sobolev’s imbeddings. It suffices that for some small δ > 0 and some p > 2, close to two,

∀K ∈ Th, hK ≥ τ h(1−δ) p
p−2 . (3.31)

Indeed, the contribution of uh − ui+1
h to the first line of (3.24) can be replaced by( ∑
K∈Th

h
2( 2

p−1)

K ‖uh − ui+1
h ‖

2
L2(K)2

) 1
2

,

for any p > 2, close to two. Therefore it suffices that for some small δ > 0,

∀K ∈ Th, τh
2
p−1

K h ≤ hδ,

i.e.,
∀K ∈ Th, hK ≥

(
τ h(1−δ)) p

p−2 .

Since p is a little above two, this brings hardly a restriction (provided of course that h < 1).

The convergence of the solution of (Vh,i,2), that holds under similar assumptions, is stated below. The proof
is a straightforward adaptation of the proof of Theorem 3.3.

Theorem 3.5. We retain the settings and assumptions of Theorem 3.3 and we suppose in addition that (p, T ) ∈
H2(Ω)×

(
W 1,∞(Ω) ∩W 2,3(Ω)

)
and

λS0
6‖u‖L3(Ω)3(‖T‖L∞(Ω) + S0

6 |T |W 1,3(Ω)) <
αν1

2
·

We replace (3.21) by

h0 = C
min

(
2 ‖u‖2L3(Ω)3 , (S0

6 |T |W 1,3(Ω) + ‖T‖L∞(Ω))2
)

2(|u|H1(Ω)3 + |p|H2(Ω) + |T |W 2,3(Ω))2
, (3.32)

where C = τ
C0

I (3)2C2
2

and C2 is the constant of (3.17). Then for h < h0, the solution (ui+1
h , pi+1

h , T i+1
h ) of (Vh,i,2)

converges, uniformly with respect to h, to the discrete solution (uh, ph, Th) of (Vh,2), as i tends to infinity.



A POSTERIORI ERROR ESTIMATES FOR DARCY’S PROBLEM COUPLED WITH THE HEAT EQUATION 2131

4. A POSTERIORI error estimates for the first approximation

As usual, for a posteriori error estimates, we introduce the following notation. For every element K in Th,
we denote by

– Γih the set of edges (when d = 2) or faces (when d = 3) of K that are not contained in ∂Ω;
– Γbh the set of edges (when d = 2) or faces (when d = 3) of K which are contained in ∂Ω.

For every edge (when d = 2) or face (when d = 3) e of the mesh Th, we denote by

– ωe the union of elements of Th adjacent to e;
– [·]e the jump through e on each edge e of Γih.

From now on, to simplify, we set d = 3. Again, the extension to two dimensions is straightforward and
simpler. In this and the next section, the a posteriori error estimates are established when the solution is
slightly smoother and the data are suitably restricted.

It is well known that by using the Raviart–Thomas finite element, the a posteriori error estimates corre-
sponding to the Darcy problem are not optimal [8], since we can not locally bound the indicator with the local
error. But when the data f is sufficiently smooth, optimality can be derived by adding an indicator obtained by
taking the curl of the first equation of problem (P ) [11],

curl(ν(T )u) = curl f. (4.1)

To specify the smoothness of f, let us recall the standard space

H(curl,Ω) =
{
v ∈ L2(Ω)3; curl v ∈ L2(Ω)3

}
, (4.2)

equipped with the norm
‖v‖2H(curl,Ω) = ‖v‖2L2(Ω)3 + ‖curl v‖2L2(Ω)3 , (4.3)

and Green’s formula, valid in any Lipschitz domain O,

∀ϕ ∈ H1(O)3,∀v ∈ H(curl,O), 〈v × n, ϕ〉∂O =
∫
O

v · curlϕdx−
∫
O
ϕ · curl v dx, (4.4)

where ∂O denotes the boundary of O and the duality 〈·, ·〉∂O reduces to the surface integral, when v is smoother,
e.g. v ∈ H1(O)3. In view of (4.1), the additional regularity f ∈ H(curl,Ω) would seem sufficient, but considering
that Green’s formula (4.4) will have to be applied below in each element, thus leading to jumps of tangential
components on each face, it is much simpler to assume that f ∈ H1(Ω)3.

The estimates below rely on the following fundamental result.

Lemma 4.1. Let Ω be a bounded simply-connected domain of IR3 with a Lipschitz-continuous boundary ∂Ω. To
each function v ∈ V , defined by (2.12), we can associate a unique function η ∈ H1

0 (Ω)3 such that

v = curl η, (4.5)

and there exists a constant C independent of v and η, such that

‖η‖H1(Ω)3 ≤ C‖v‖L2(Ω)3 . (4.6)

While the analogue of Lemma 4.1 in two dimensions is a straightforward and well-known result, see Girault
and Raviart [19], this is not so in three dimensions, and the reader will find a proof of Lemma 4.1 in the
appendix.
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4.1. Upper error bound for the first discretization

As usual, the choice of error indicators stems from suitable error equalities. The error equality for the tem-
perature is straightforward. Indeed, a standard argument shows that the solutions of problems (V1) and (Vh,i,1)
verify for all S in H1(Ω) ∩ L∞(Ω) and Sh in Xh,

α

∫
Ω

∇
(
T − T i+1

h

)
· ∇S dx +

∫
Ω

(u · ∇T )S dx−
∫

Ω

(ui+1
h · ∇T i+1

h )S dx

=
∑
K∈Th

[∫
K

(α∆T i+1
h − ui+1

h · ∇T i+1
h + gh)(S − Sh) dx

+
∫
K

(g − gh)(S − Sh) dx − α

2

∑
e∈∂K∩Γi

h

∫
e

[∇T i+1
h · n]e(S − Sh) ds

]
, (4.7)

where gh is a piecewise constant approximation of g in each K of Th.
But the error equality of Darcy’s system is less straightforward precisely because of the lack of optimality

of the Raviart–Thomas elements. In fact, it is convenient to use two equalities, one where the test functions
belong to H0(div,Ω) and one where the test functions have zero divergence. On the one hand, regarding the
first equality, the same arguments as with the temperature give for all v ∈ H0(div,Ω) and all vh ∈ Wh,1,∫

Ω

ν(T )u · v dx−
∫

Ω

p div v dx−
∫

Ω

ν(T ih)ui+1
h · v dx +

∫
Ω

pi+1
h div v dx

=
∑
K∈Th

∫
K

(f− fh) · (v− vh) dx +
∑
K∈Th

[∫
K

(fh − ν(T ih)ui+1
h −∇ pi+1

h ) · (v− vh) dx

+
1
2

∑
e∈∂K∩Γi

h

∫
e

[pi+1
h n]e · (v− vh) ds

]
, (4.8)

where fh is an approximation of f, which is a polynomial of degree l with l ≥ 1 in each element K of Th.
For the second equality, on the other hand, we apply Lemma 4.1 and we have for all v ∈ V and all ηh ∈ Xh,∫

Ω

ν(T )u · v dx −
∫

Ω

ν(T ih)ui+1
h · v dx

=
∑
K∈Th

∫
K

curl(f− fh) · (η − ηh) dx +
1
2

∑
e∈∂K∩Γi

h

∫
e

[(f− fh)× n]e · (η − ηh) ds


+
∑
K∈Th

[∫
K

curl
(
fh − ν(T ih)ui+1

h

)
· (η − ηh) dx

+
1
2

∑
e∈∂K∩Γi

h

∫
e

[(fh − ν(T ih)ui+1
h )× n]e · (η − ηh) ds

]
, (4.9)

where v = curl η, η ∈ H1
0 (Ω)3 associated to v by Lemma 4.1.

The error equalities (4.7)–(4.9) suggest the following temperature, pressure, and velocity error indicators in
each K ∈ Th:
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η
(D,1)
K,i,1 = hK

∥∥α∆T i+1
h − ui+1

h · ∇T i+1
h + gh

∥∥
L2(K)

+
1
2

∑
e∈∂K∩Γi

h

h
1
2
e

∥∥α [∇T i+1
h · n

]
e

∥∥
L2(e)

, (4.10)

η
(D,1)
K,i,2,1 = hK

∥∥−∇pi+1
h − ν(T ih)ui+1

h + fh
∥∥
L2(K)3 +

1
2

∑
e∈∂K∩Γi

h

h
1
2
e

∥∥[pi+1
h n]e

∥∥
L2(e)

, (4.11)

η
(D,1)
K,i,2,2 = hK

∥∥curl(−ν(T ih)ui+1
h + fh)

∥∥
L2(K)3 +

1
2

∑
e∈∂K∩Γi

h

h
1
2
e

∥∥[(−ν(T ih)ui+1
h + fh)× n]e

∥∥
L2(e)3 . (4.12)

In addition, we introduce an indicator for the algorithmic error, in each K ∈ Th,

η
(L,1)
K,i = |T i+1

h − T ih|H1(K). (4.13)

The next theorem proves an upper bound for the error in terms of these indicators.

Theorem 4.2. Let ν satisfy (1.1) and (1.2), let the mesh satisfy (3.1), and let f ∈ H1(Ω)3. We suppose that
problem (V1) has a solution (u, T ) ∈ L3(Ω)3 ×W 1,3(Ω) such that

λ (S0
6)2(‖u‖L3(Ω)3 |T |W 1,3(Ω)) < αν1.

Then the following error inequalities hold:

‖u− ui+1
h ‖L2(Ω)3 + |T − T i+1

h |H1(Ω) ≤ C

[ ∑
K∈Th

((
η

(D,1)
K,i,1

)2

+
(
η

(D,1)
K,i,2,2

)2

+ h2
K‖curl(f − fh)‖2L2(K)3 +

∑
e∈∂K∩Γi

h

he‖[(f − fh)× n]e‖2L2(e)3 + h2
K‖g − gh‖2L2(K)

)] 1
2

+ C ′

( ∑
K∈Th

(
η

(L,1)
K,i

)2
) 1

2

, (4.14)

‖p− pi+1
h ‖L2(Ω) ≤

C

β

( ∑
K∈Th

((
η

(D,1)
K,i,2,1

)2

+ h2
K‖f − fh‖2L2(K)3

)) 1
2

+
λ

β
S0

6‖u‖L3(Ω)3

|T − T i+1
h |H1(Ω) +

( ∑
K∈Th

(
η

(L,1)
K,i

)2
) 1

2
+

ν2

β
S0

2‖u− ui+1
h ‖L2(Ω)3 ,

(4.15)

where β is the constant of the inf-sup condition between H1
0 (Ω)d and L2

m(Ω), see [19].

Proof. Let us start with the temperature. Consider first the left-hand side of (4.7). By inserting∫
Ω

(u · ∇T i+1
h )S dx

into this left-hand side, by testing it with S = T −T i+1
h that is indeed an admissible test function, and by using

the antisymmetric property of the transport term we derive,

α|T − T i+1
h |2H1(Ω) = R(T − T i+1

h ) +
∫

Ω

((
ui+1
h − u

)
· ∇T i+1

h

)
(T − T i+1

h ) dx, (4.16)
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where R(T − T i+1
h ) denotes the right-hand side of (4.7) with S = T − T i+1

h . The last term of (4.16) becomes,
after inserting ∇T ,∫

Ω

((ui+1
h − u) · ∇T i+1

h )(T − T i+1
h ) dx

=
∫

Ω

((ui+1
h − u) · ∇(T i+1

h − T ))(T − T i+1
h ) dx +

∫
Ω

((ui+1
h − u) · ∇T )(T − T i+1

h ) dx,

and the Hölder inequality and the antisymmetry imply∣∣∣∣∫
Ω

((u− ui+1
h ) · ∇T i+1

h )(T − T i+1
h ) dx

∣∣∣∣ ≤ S0
6 |T |W 1,3(Ω)‖u− ui+1

h ‖L2(Ω)3 |T − T i+1
h |H1(Ω). (4.17)

Next, we turn to its right-hand side, R(S), for general S; it can be bounded as follows:

R(S) ≤
∑
K∈Th

[ (
‖α∆T i+1

h − ui+1
h · ∇T i+1

h + gh‖L2(K) + ‖g − gh‖L2(K)

)
‖S − Sh‖L2(K)

+
1
2

∑
e∈∂K∩Γi

h

‖α[∇T i+1
h · n]e‖L2(e)‖S − Sh‖L2(e)

]
.

The choice Sh = Rh(S), see (3.5) gives the following bound:

R(S) ≤ C2

∑
K∈Th

[
hK
(
‖α∆T i+1

h − ui+1
h · ∇T i+1

h + gh‖L2(K) + ‖g − gh‖L2(K)

)
|S|H1(ωK)

+
c2
2

∑
e∈∂K∩Γi

h

h
1
2
e ‖α[∇T i+1

h · n]e‖L2(e)|S|H1(ωK)

]
.

(4.18)

Then, by substituting (4.18) with S = T − T i+1
h and (4.17) into (4.16), and by applying the regularity of the

mesh, we conclude

α|T − T i+1
h |1,Ω ≤ C3

( ∑
K∈Th

((η(D,1)
K,i,1 )2 + h2

K‖g − gh‖2L2(K))

) 1
2

+ S0
6 |T |W 1,3(Ω)‖u− ui+1

h ‖L2(Ω)3 . (4.19)

Now, we examine the velocity. Consider first the left-hand side of (4.9) with v ∈ V . By inserting
∫

Ω

ν(T ih)u ·

v dx and
∫

Ω

ν(T i+1
h )u · v dx into this left-hand side, (4.9) becomes

∫
Ω

ν(T ih)(u− ui+1
h ) · v dx = R1(η) +

∫
Ω

(ν(T i+1
h )− ν(T ))u · v dx

+
∫

Ω

(ν(T ih)− ν(T i+1
h ))u · v dx, (4.20)

where R1(η) denotes the right-hand side of (4.9) and η ∈ H1
0 (Ω)3 is the vector potential of v constructed in

Lemma 4.1, see (4.5) and (4.6). We denote by I the sum of the second and third terms of the right-hand side
of (4.20). The Lipschitz continuity of ν and Hölder’s inequality yield

I ≤ λS0
6‖u‖L3(Ω)3(|T − T i+1

h |H1(Ω) + |T i+1
h − T ih|H1(Ω))‖v‖L2(Ω)3 .
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Regarding the right-hand side R1(η) for η ∈ H1
0 (Ω)3, we choose ηh = Rh(η), the degree one Scott and Zhang

interpolant of η that belongs to Xh, since η vanishes on Γ. By applying the approximation properties (3.5) of
Rh to the function η, we obtain

R1(η) ≤ C4

∑
K∈Th

[
hK
(
‖curl(−ν(T ih)ui+1

h + fh)‖L2(K)3 + ‖curl(f− fh)‖L2(K)3

)
|η|H1(ωK)3

+
1
2

∑
e∈∂K∩Γi

h

h
1
2
e

(
‖[(−ν(T ih)ui+1

h + fh)× n]e‖L2(e)3 + ‖[(f− fh)× n]e‖L2(e)3

)
|η|H1(ωK)3

]
. (4.21)

The choice v = u− ui+1
h in (4.20), the regularity of the mesh (3.1), and the estimate (4.6) relating η and v

give

ν1‖u− ui+1
h ‖L2(Ω)3 ≤ C5

 ∑
K∈Th

(η(D,1)
K,i,2,2

)2

+ h2
K‖curl(f− fh)‖2L2(K)3 +

∑
e∈∂K∩Γi

h

he‖[(f− fh)× n]e‖2L2(e)3

 1
2

+ λS0
6‖u‖L3(Ω)3 |T − T i+1

h |H1(Ω) + λS0
6‖u‖L3(Ω)3

( ∑
K∈Th

(η(L,1)
K,i )2

) 1
2

.

Hence (4.19) yields

ν1‖u− ui+1
h ‖L2(Ω)3 ≤ C6

[ ∑
K∈Th

((
η

(D,1)
K,i,1

)2

+
(
η

(D,1)
K,i,2,2

)2

+ h2
K‖g − gh‖2L2(K) + h2

K‖curl(f− fh)‖2L2(K)3

+
∑

e∈∂K∩Γi
h

he‖[(f− fh)× n]e‖2L2(e)3

)] 1
2

+
λ

α
(S0

6)2‖u‖L3(Ω)3 |T |W 1,3(Ω)‖u− ui+1
h ‖L2(Ω)3

+ λS0
6‖u‖L3(Ω)3

( ∑
K∈Th

(
η

(L,1)
K,i

)2
) 1

2

, (4.22)

thus proving (4.14).
Finally, to estimate the pressure error, we consider equation (4.8) with any v ∈ H0(div,Ω). By inserting∫

Ω

ν(T ih)u · v dx and
∫

Ω

ν(T i+1
h )u · v dx into its left-hand side, (4.8) becomes

∫
Ω

(pi+1
h − p)div v dx = R1(v) +

∫
Ω

(
ν(T i+1

h )− ν(T )
)
u · v dx

+
∫

Ω

(
ν(T ih)− ν(T i+1

h )
)
u · v dx −

∫
Ω

ν(T ih)(u− ui+1
h ) · v dx, (4.23)

whereR1(v) denotes its right-hand side. Since pi+1
h −p belongs to L2

m(Ω), owing to the inf-sup condition between
H1

0 (Ω)3 and L2
m(Ω) [19], there exists v ∈ H1

0 (Ω)3, such that∫
Ω

(pi+1
h − p)divv dx = ‖pi+1

h − p‖2L2(Ω), (4.24)

and
|v|H1(Ω)3 ≤ 1

β
‖pi+1
h − p‖L2(Ω). (4.25)
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We choose this v and vh = Πhv in (4.23), where Πh is the interpolation operator from H1(Ω)3 in Wh,1 (see
Brezzi and Fortin [9] or [26]) such that for all v ∈ H1(Ω)3

∀K ∈ Th, ‖v−Πhv‖L2(K)3 ≤ C5 hK |v|H1(K)3 , (4.26)

and
∀e ∈ Γih ∪ Γbh, ‖v−Πhv‖L2(e)3 ≤ C6h

1
2
e |v|H1(K)3 , (4.27)

where K is an element adjacent to e. With this choice, by applying (4.26) and (4.27), R1(v) is bounded as
follows:

R1(v) ≤
∑
K∈Th

[
C7

(
‖ − ∇pi+1

h − ν(T ih)ui+1
h + fh‖L2(K)3 + ‖f− fh‖L2(K)3

)
hK |v|H1(K)3

+
C8

2

∑
e∈∂K∩Γi

h

‖[pi+1
h n]e‖L2(e)3h

1
2
e |v|H1(K)3

]
. (4.28)

Then, by substituting (4.28) into (4.23), and applying (4.24), the regularity of the mesh (3.1), and (4.25), we
infer

‖p− pi+1
h ‖L2(Ω) ≤

C9

β

( ∑
K∈Th

((
η

(D,1)
K,i,2,1

)2

+ h2
K‖f− fh‖2L2(K)3

)) 1
2

+
λ

β
S0

6‖u‖L3(Ω)3

|T − T i+1
h |H1(Ω) +

( ∑
K∈Th

(η(L,1)
K,i )2

) 1
2
+

ν2

β
‖u− ui+1

h ‖L2(Ω)3 . (4.29)

This proves (4.15). �

4.2. Lower error bound for the first discretization

As is well known, lower bounds are established locally. This localization is achieved in each element K of Th
by means of the bubble function ψK defined by (3.12). The jump terms on edges e when d = 2 or faces e when
d = 3 are localized by means of similar bubble functions defined on e. For those jumps, we also need a lifting
operator Le from edges or faces e of Γih to the two elements K and K ′ sharing this edge or face. It acts on
polynomials that vanish on the boundary of e and produces a globally continuous function with element-wise
polynomial values defined individually on K and K ′ that vanish on ∂(K ∪K ′) \ e. The effect of these elements’
geometry on Le is controlled by first defining Lê on the reference edge or face ê shared by two reference elements
and passing to Le by a suitable piecewise affine transformation. We refer to Verfürth [28] for this construction
and the next results:

Property 4.3. For any positive integer r, there exist positive constants c and c′, independent of h, such that,
for all elements K,

∀v ∈ Pr(K), c‖v‖L2(K) ≤ ‖vψ
1
2
K‖L2(K) ≤ c′‖v‖L2(K). (4.30)

Property 4.4. For any positive integer r, there exist positive constants c, c′, and c′′, independent of h, such
that, for all faces or edges e, according to the dimension, we have

∀ v ∈ Pr(e), c‖v‖L2(e) ≤ ‖vψ
1
2
e ‖L2(e) ≤ c′‖v‖L2(e), (4.31)

and, for all polynomials v in Pr(e) vanishing on ∂e, if K is an element adjacent to e,

‖Lev‖L2(K) + he|Lev|H1(K) ≤ c′′h
1
2
e ‖v‖L2(e). (4.32)
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To establish lower bounds for this first discretization, as we need to work with polynomials for the application
of inverse inequalities, it is convenient to approximate ν(f) by a polynomial of degree one. For instance, we
choose νh : f ∈ H1(K) 7→ νh(f) ∈ P1(K) defined by

νh(f)|K =
1
|K|

∫
K

ν(f(y)) dy +
[

1
|K|

∫
K

(∇ν(f))(y) dy
]
· (x− c), (4.33)

where c is the center of the element K; thus |x− c| ≤ hK . Clearly, if ν(f)|K belongs to P1, then νh(f) = ν(f)
in K and it is easy to check that the mapping defined by (4.33) is invariant by affine transformations. In other
words, if K̂ is the reference element and K = FK(K̂), then

ν̂h(f)|K̂ =
1
|K̂|

∫
K̂

ν̂(f) dŷ +
[ 1
|K̂|

∫
K̂

(∇̂ν̂(f) dŷ
]
· (x̂− ĉ),

where the hat denotes composition with FK and ĉ is the center of K̂. As a consequence, for smooth enough ν
and f such that ν(f) belongs to W `,p(K) with ` = 1, 2, and a number p ≥ 2, we have

‖νh(f)− ν(f)‖Lp(K) + hK‖∇(νh(f)− ν(f))‖Lp(K) ≤ Ch`K |ν(f)|W `,p(K), (4.34)

with a constant C that depends on p but is independent of h and K. The term ‖νh(T ) − ν(T )‖W 1,3(K) will
appear in the subsequent lower bounds and will be treated as an error, considering (4.34).

When ν ∈W 2,∞(IR), so that its derivative ν′ is bounded by a real number denoted by ν′2 and is a Lipschitz-
continuous function with Lipschitz constant λ′, the polynomial function νh verifies from (1.2) and (3.1), for
every f ∈ H1(K),

‖νh(f)‖L∞(K) ≤ ν2 + ν′2 hK |K|−
1
2 ‖∇f‖0,K . (4.35)

Furthermore, by observing that for all numbers p ≥ 2,

‖x− c‖Lp(K)d ≤ C(p)|K|
1
phK , (4.36)

where C(p) depends only on p and the reference element, we readily derive that for every f1 and f2 in H1(K)
we have for each number p ≥ 2,

‖νh(f1)− νh(f2)‖Lp(K) ≤ λ|K|
1
p−

1
6 ‖f1 − f2‖L6(K)

+ C(p)hK |K|
1
p−1

(
ν′2|K|

1
2 |f1 − f2|H1(K) + λ′|K| 13 ‖f1 − f2‖L6(K)|f2|H1(K)

)
. (4.37)

In the remainder of this section, we assume that ν ∈W 2,∞(IR).
Let us start with the temperature error indicators (4.13) and (4.10).

Theorem 4.5. We retain the settings and assumptions of Theorem 3.3. Then for each h, there exists an integer
i0 (depending on h) such that for all i ≥ i0 and for all K ∈ Th, the following inequality holds:

η
(D,1)
K,i,1 ≤ C

‖u− ui+1
h ‖L2(ωe)3 + |T − T i+1

h |H1(ωe) +
∑
K̃⊂ωe

hK̃‖g − gh‖L2(K̃)

 , (4.38)

with a constant C independent of h and K. Moreover, without assumption, we have

η
(L,1)
K,i ≤ |T − T

i+1
h |H1(K) + |T − T ih|H1(K). (4.39)
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Proof. Clearly (4.39) follows by the triangle inequality.
Next, we bound the volume part of η(D,1)

K,i,1 . As usual, this is done by testing the error equation (4.7) with
Sh = 0 and S = SK , where SK is the localizing function defined by

SK =
{

(α∆T i+1
h − ui+1

h .∇T i+1
h + gh)ψK in K,

0 in Ω \K.

With this choice and after inserting
∫

Ω

(ui+1
h · ∇T )S dx , (4.7) reduces to∫

K

(
α∆T i+1

h − ui+1
h · ∇T i+1

h + gh
)2
ψK dx = α

∫
K

∇(T − T i+1
h ) · ∇SK dx

+
∫
K

((u− ui+1
h ) · ∇T )SK dx +

∫
K

(ui+1
h · ∇(T − T i+1

h ))SK dx

−
∫
K

(g − gh)SK dx. (4.40)

Now, we bound each term in the right hand side of (4.40). A bound for the last term is obvious; for the first
term, we use the inverse inequality (3.3). The second term can be bounded by using Hölder’s inequality and the
inverse inequality (3.2),∣∣∣ ∫

K

((u− ui+1
h ) · ∇T )SK dx

∣∣∣ ≤ C0
I (6)h−1

K |T |W 1,3(K)‖u− ui+1
h ‖L2(K)3‖SK‖L2(K).

For the third term, we insert first uh and next Rh(u) (that is well defined since u ∈ H1(Ω)3) to apply inverse
inequalities, ∣∣∣∣∫

K

(ui+1
h · ∇(T − T i+1

h ))SK dx
∣∣∣∣ =

∣∣∣∣∣
∫
K

((ui+1
h − uh) · ∇(T − T i+1

h ))SK dx

+
∫
K

((uh −Rh(u)) · ∇(T − T i+1
h ))SK dx

+
∫
K

(Rh(u) · ∇(T − T i+1
h ))SK dx

∣∣∣∣∣
≤ C0

I (6)h−1
K

(
C0
I (3)h−

1
2

K

(
‖ui+1

h − uh‖L2(K)3

+ ‖uh −Rh(u)‖L2(K)3

)
+ ‖Rh(u)‖L3(K)3

)
× |T − T i+1

h |H1(K)‖SK‖L2(K). (4.41)

According to Theorem 3.3, see (3.28), there exists h0 > 0 such that for any h < h0, we have

‖ui+1
h − uh‖L2(K)3 ≤ ci1‖u1

h − uh‖L2(Ω)3 ,

where c1 < 1. As ci1‖u1
h − uh‖L2(Ω)3 tends to 0 when i tends to +∞, then there exists i0 depending on h, such

that for any i ≥ i0,
‖ui+1

h − uh‖L2(K)3 ≤ c2 h. (4.42)

Using the a priori error estimates (3.11) and the approximation properties (3.5) of Rh, we obtain with the
constant C1 of (3.11) and interpolation constants C2 and C3 independent of h and K,∣∣∣ ∫

K

(ui+1
h · ∇(T − T i+1

h ))SK dx
∣∣∣ ≤ C0

I (6)h−1
K

(
C0
I (3)h−

1
2

K h
(
c2 + C1C(u, p, T ) + C2|u|H1(ωK)

)
+ C3‖u‖H1(ωK)

)
× |T − T i+1

h |H1(K)‖SK‖L2(K).



A POSTERIORI ERROR ESTIMATES FOR DARCY’S PROBLEM COUPLED WITH THE HEAT EQUATION 2139

Hence, by collecting these estimates and using (3.3), we infer

hK

∥∥∥(α∆T i+1
h − ui+1

h · ∇T i+1
h + gh)ψ

1
2
K

∥∥∥
L2(K)

≤ hK‖g − gh‖L2(K) + C0
I (6)|T |W 1,3(K)

∥∥u− ui+1
h

∥∥
L2(K)3

+ |T − T i+1
h |H1(K)

(
αC1

I (2) + C0
I (3)C0

I (6)
(
h

τ

) 1
2

×
(
c2 + C1C(u, p, T ) + C2|u|H1(ωK)

)
+ C3C

0
I (6)‖u‖H1(ωK)

)
, (4.43)

which yields the first part of (4.38).
Finally, we estimate the surface part of η(D,1)

K,i,1 by testing (4.7) with Sh = 0 and S = Se, where Se is the
localizing function defined by

Se =

{
Le(α[∇T i+1

h · n]eψe) on K ∪K ′,

0 on Ω \ (K ∪K ′),

and K and K ′ are the two elements adjacent to e. Then (4.7) reduces to

α

∫
e

[∇T i+1
h · n]2eψe ds =

∫
K∪K′

(α∆T i+1
h − ui+1

h · ∇T i+1
h + gh)Se dx

+ α

∫
K∪K′

∇(T i+1
h − T ) · ∇Se dx +

∫
K∪K′

((ui+1
h − u) · ∇T )Se dx

+
∫
K∪K′

(ui+1
h · ∇(T i+1

h − T ))Se dx +
∫
K∪K′

(g − gh)Se dx.

In view of the continuity properties of Le in (4.32), a bound for the above left-hand side is derived by the
same arguments; for instance, by combining it with (3.2), we have on the elements K sharing e

‖Le(v)‖L6(K) ≤ c′′C0
I (6)h−1

K h
1
2
e ‖v‖L2(e).

Thus, by applying (4.43), we obtain

h
1
2
e ‖α[∇T i+1

h · n]e‖L2(e) ≤ C
(
‖u− ui+1

h ‖L2(K∪K′)3 + |T − T i+1
h |H1(K∪K′) + he‖g − gh‖L2(K∪K′)

)
. (4.44)

This gives the second part of (4.38). �

Now, we turn to the first velocity error indicator (4.11). Beforehand, we establish the following preliminary
results.

Lemma 4.6. Let the mesh satisfy (3.1), ν ∈W 2,∞(IR) and u ∈ L6(Ω)3. Then

‖(ν(T ih)− νh(T ih))ui+1
h ‖L2(K)3 ≤

(
2ν2 + ν′2hK |K|−

1
2
S0

2

α
‖g‖L2(Ω)

)
‖ui+1

h − u‖L2(K)3

+ ‖νh(T )− ν(T )‖L3(K)‖u‖L6(K)3 + λ‖T − T ih‖L6(K)‖u‖L3(K)3

+
[
C(3)|K|− 2

3hK
(
ν′2|K|

1
2 |T ih − T |H1(K)

+ λ′|K| 13 ‖T ih − T‖L6(K)|T |H1(K)

)
+ λ|K| 16 ‖T ih − T‖L6(K)

]
‖u‖L6(K)3 , (4.45)

where C(3) is the constant of (4.36).
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Proof. The left-hand side of (4.45) can be split into

‖(ν(T ih)− νh(T ih))ui+1
h ‖L2(K)3 ≤ ‖(ν(T ih)− νh(T ih))(ui+1

h − u)‖L2(K)3 + ‖(ν(T ih)− νh(T ih))u‖L2(K)3 = I1 + I2.

The bound for I1 follows from (4.35), (1.2), and (3.18),

‖(ν(T ih)− νh(T ih))(ui+1
h − u)‖L2(K)3 ≤

(
2ν2 + ν′2hK |K|−

1
2
S0

2

α
‖g‖L2(Ω)

)
‖ui+1

h − u‖L2(K)3 . (4.46)

To bound I2, we split it in turn into three parts

I2 ≤ ‖(νh(T ih)− νh(T ))u‖L2(K)3 + ‖(νh(T )− ν(T ))u‖L2(K)3 + ‖(ν(T )− ν(T ih))u‖L2(K)3 .

The second and third terms have a straightforward bound

‖(νh(T )− ν(T ))u‖L2(K)3 ≤ ‖νh(T )− ν(T )‖L3(K)‖u‖L6(K)3 ,

‖(ν(T )− ν(T ih))u‖L2(K)3 ≤ λ‖T − T ih‖L6(K)‖u‖L3(K)3 .

Finally, we deal with the first term by a simple variant of (4.37)

‖(νh(T ih)− νh(T ))u‖L2(K)3 ≤
[
λ|K| 16 ‖T ih − T‖L6(K) + C(3)|K|− 2

3hK
(
ν′2|K|

1
2 |T ih − T |H1(K)

+ λ′|K| 13 ‖T ih − T‖L6(K)|T |H1(K)

)]
‖u‖L6(K)3 , (4.47)

where C(3) is the constant of (4.36). The result follows by collecting these inequalities. �

Lemma 4.7. Let the mesh satisfy (3.1), ν ∈ W 2,∞(IR), u ∈ L6(Ω)3, and T ∈ W 1,3(Ω). To simplify, the
constants arising from inverse inequalities are not specified. Then

‖∇(ν(T ih)− νh(T ih))ui+1
h ‖L2(K)3 ≤ ChK‖ν′′‖L∞(IR)

(
|K|−1|T ih −Rh(T )|2H1(K) + |K|− 2

3 |Rh(T )|2W 1,3(K)

)
× ‖ui+1

h − u‖L2(K)3 +
[
|νh(T )− ν(T )|W 1,3(K) + |K|− 1

3 |T ih −Rh(T )|H1(K)

× ‖T ih − T‖L6(K) + |K|− 1
6 |Rh(T )|W 1,3(K)‖T ih − T‖L6(K)

+ |K|− 1
6 |T ih − T |H1(K) + |Rh(T )− T |W 1,3(K)

]
‖u‖L6(K)3 . (4.48)

Proof. As previously,

‖∇
(
ν(T ih)− νh(T ih))× ui+1

h ‖L2(K)3 ≤ ‖∇
(
ν(T ih)− νh(T ih))× (ui+1

h − u)‖L2(K)3

+ ‖∇
(
ν(T ih)− νh(T ih))× u‖L2(K)3 = I1 + I2.

An application of (4.34) gives

I1 ≤ ‖∇
(
ν(T ih)− νh(T ih)

)
‖L∞(K)3‖ui+1

h − u‖L2(K)3 ≤ ChK‖∇(∇ ν(T ih))‖L∞(K)3×3‖ui+1
h − u‖L2(K)3 .

As T ih is a polynomial of degree one in K, we have

‖∇(∇ ν(T ih))‖L∞(K)3×3 ≤ ‖ν′′‖L∞(IR)‖∇T ih‖2L∞(K)3 .

But of course, since the W 1,∞ norm of T ih is very unfavorable, we insert the interpolant Rh(T ) and write

‖∇(∇ ν(T ih))‖L∞(K)3×3 ≤ 2‖ν′′‖L∞(IR)‖∇
(
T ih −Rh(T )

)
‖2L∞(K)3 + 2‖ν′′‖L∞(IR)‖∇Rh(T )‖2L∞(K)3 .



A POSTERIORI ERROR ESTIMATES FOR DARCY’S PROBLEM COUPLED WITH THE HEAT EQUATION 2141

Therefore, applying inverse inequalities (for simplicity, we do not specify the constants in the remainder of
the proof)

‖∇
(
ν(T ih)− νh(T ih)

)
‖L∞(K)3 ≤ ChK‖ν′′‖L∞(IR)

(
|K|−1|T ih −Rh(T )|2H1(K) + |K|− 2

3 |Rh(T )|2W 1,3(K)

)
.

Thus

I1 ≤ ChK‖ν′′‖L∞(IR)

(
|K|−1|T ih −Rh(T )|2H1(K) + |K|− 2

3 |Rh(T )|2W 1,3(K)

)
‖ui+1

h − u‖L2(K)3 . (4.49)

Next, the term I2 has the bound

I2 ≤ ‖∇
(
ν(T ih)− νh(T ih)

)
‖L3(K)3‖u‖L6(K)3 .

As previously, we split the factor involving ν,

‖∇
(
ν(T ih)− νh(T ih)

)
‖L3(K)3 ≤ ‖∇

(
νh(T ih)− νh(T )

)
‖L3(K)3 + ‖∇

(
νh(T )− ν(T )

)
‖L3(K)3

+‖∇
(
ν(T )− ν(T ih)

)
‖L3(K)3 .

We only need to bound the first and third terms since the second one is an error, see (4.34). By virtue of
(4.33), the first term has the expression

∥∥∇(νh(T ih)− νh(T )
)∥∥
L3(K)3 =

∥∥∥∥ 1
|K|

∫
K

∇
(
ν(T ih)− ν(T )

)
dx
∥∥∥∥
L3(K)3

≤ |K|− 2
3

∣∣∣∣∫
K

∇
(
ν(T ih)− ν(T )

)
dx
∣∣∣∣ . (4.50)

Now, by splitting as follows:

∇
(
ν(T ih)− ν(T )

)
= ν′(T ih)∇T ih − ν′(T )∇T =

(
ν′(T ih)− ν′(T )

)
∇T ih + ν′(T )∇(T ih − T )

=
(
ν′(T ih)− ν′(T )

)
∇(T ih −Rh(T )) +

(
ν′(T ih)− ν′(T )

)
∇Rh(T ) + ν′(T )∇(T ih − T ),

the first term is bounded by∥∥∇(νh(T ih)− νh(T )
)∥∥
L3(K)3 ≤ |K|−

2
3

(
λ′|T ih −Rh(T )|H1(K)‖T ih − T‖L2(K)

+ λ′|Rh(T )|H1(K)‖T ih − T‖L2(K) + ν′2|K|
1
2 |T ih − T |H1(K)

)
≤ |K|− 2

3

(
λ′|K| 13 |T ih −Rh(T )|H1(K)‖T ih − T‖L6(K)

+ λ′|K| 16 |Rh(T )|W 1,3(K)|K|
1
3 ‖T ih − T‖L6(K) + ν′2|K|

1
2 |T ih − T |H1(K)

)
.

There remains the third term. By recalling (4.50), we see that, we have to bound again ∇
(
ν(T ) − ν(T ih)

)
,

but now in L3 instead of L1, as was done above. The same splitting gives

‖∇
(
ν(T )− ν(T ih)

)
‖L3(K)3 ≤ ‖

(
ν′(T ih)− ν′(T )

)
∇(T ih −Rh(T ))‖L3(K)3 + ‖

(
ν′(T ih)− ν′(T )

)
∇Rh(T )‖L3(K)3

+ ‖ν′(T )∇(T ih − T )‖L3(K)3

≤ λ′‖T ih − T‖L6(K)

(
|T ih −Rh(T )|W 1,6(K) + |Rh(T )|W 1,6(K)

)
+ ν′2|T ih −Rh(T )|W 1,3(K) + ν′2|Rh(T )− T |W 1,3(K)

≤ λ′C‖T ih − T‖L6(K)

(
|K|− 1

3 |T ih −Rh(T )|H1(K) + |K|− 1
6 |Rh(T )|W 1,3(K)

)
+ ν′2

(
C|K|− 1

6 |T ih −Rh(T )|H1(K) + |Rh(T )− T |W 1,3(K)

)
.
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Summing up,

I2 ≤ C
[
|νh(T )− ν(T )|W 1,3(K) + |K|− 1

3 |T ih −Rh(T )|H1(K)‖T ih − T‖L6(K)

+ |K|− 1
6 |Rh(T )|W 1,3(K)‖T ih − T‖L6(K) + |K|− 1

6
(
|T ih − T |H1(K) + |T ih −Rh(T )|H1(K)

)
+ |Rh(T )− T |W 1,3(K)

]
‖u‖L6(K)3 . (4.51)

Then (4.48) follows from (4.49) and (4.51). �

Theorem 4.8. Let the mesh satisfy (3.1). In addition to (1.1) and (1.2), we suppose that u ∈ L6(Ω)3 and
ν ∈W 2,∞(IR). Then there exists a constant C, independent of h and K, such that

η
(D,1)
K,i,2,1 ≤ C

[∥∥p− pi+1
h

∥∥
L2(ωe)

+
∑
K̃⊂ωe

h
1
2

K̃

∥∥u− ui+1
h

∥∥
L2(K̃)3 +

∑
K̃⊂ωe

hK̃

(
‖f − fh‖L2(K̃)3

+ ‖T ih − T‖L6(K̃) + |T ih − T |H1(K̃) + ‖ν(T )− νh(T )‖L3(K̃)

)]
. (4.52)

Proof. We test the error equation (4.8) with vh = 0 and v = vK where each component of the localizing
function vK is defined by

(vK)j =

{
(−∇pi+1

h − νh(T ih)ui+1
h + fh)jψK in K,

0 in Ω \K.
(4.53)

After inserting
∫

Ω

ν(T )ui+1
h · vK dx and

∫
Ω

νh(T ih)ui+1
h · vK dx , (4.8) becomes,

∫
K

| − ∇pi+1
h − νh(T ih)ui+1

h + fh|2ψK dx =
∫
K

(ν(T )− ν(T ih))u · vK dx −
∫
K

ν(T ih)(ui+1
h − u) · vK dx

+
∫
K

(ν(T ih)− νh(T ih))ui+1
h · vK dx +

∫
K

(pi+1
h − p)div vK dx

−
∫
K

(f− fh) · vK dx. (4.54)

The bound for the last term in the right-hand side of (4.54) is obvious. The third term is bounded by applying
(4.45). The next to last term is easily handled by considering that vK vanishes on ∂K and by using (3.3),∣∣∣ ∫

K

(pi+1
h − p)div vK dx

∣∣∣ ≤ ‖pi+1
h − p‖L2(K)|vK |H1(K) ≤ C1

I (2)h−1
K ‖p

i+1
h − p‖L2(K)‖vK‖L2(K)3 .

The second term is bounded by∣∣∣ ∫
K

ν(T ih)(u− ui+1
h ) · vK

∣∣∣ ≤ ν2‖u− ui+1
h ‖L2(K)3‖vK‖L2(K)3 .

We have for the first term,∣∣∣ ∫
K

(ν(T )− ν(T ih))u · vK dx
∣∣∣ ≤ λ‖T − T ih‖L6(K)‖u‖L3(K)3‖vK‖L2(K)3 .
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By collecting the above bounds, we deduce

hK
∥∥| − ∇pi+1

h − νh(T ih)ui+1
h + fh|ψ

1
2
K

∥∥
L2(K)3 ≤ hK‖f − fh‖L2(K)3 + C1

I (2)‖p− pi+1
h ‖L2(K)

+ ‖u− ui+1
h ‖L2(K)3

(
3ν2hK + ν′2h

2
K |K|−

1
2
S0

2

α
‖g‖L2(Ω)

)
+ hK‖u‖L6(K)3‖ν(T )− νh(T )‖L3(K)

+ |T − T ih|H1(K)C(3)ν′2h
2
K |K|−

1
6 ‖u‖L6(K)3

+ ‖T − T ih‖L6(K)

[
λhK

(
2‖u‖L3(K)3 + |K| 16 ‖u‖L6(K)3

)
+ C(3)λ′h2

K |K|−
1
3 ‖u‖L6(K)3 |T |H1(K)

]
.

(4.55)

The estimate for the volume part of η(D,1)
K,i,2,1 follows from (4.55), (3.18), (4.30), and another application of

Lemma 4.6.
Regarding the surface part of η(D,1)

K,i,2,1, let e belong to Γih; by testing (4.8) with vh = 0 and v = ve, where
each component is defined by

(ve)j =

{
Le([pi+1

h nj ]eψe) on K ∪K ′,

0 on Ω \ (K ∪K ′),

we deduce∫
e

|[pi+1
h n]e|2ψe ds =

∫
K∪K′

(∇pi+1
h + ν(T ih)ui+1

h − fh) · ve dx +
∫
K∪K′

(ν(T )u− ν(T ih)ui+1
h ) · ve dx

+
∫
K∪K′

(pi+1
h − p)div ve dx −

∫
K∪K′

(f− fh) · ve dx.

A straightforward application of (4.32) gives∣∣∣∣∣
∫
K∪K′

(ν(T )u− ν(T ih)ui+1
h ) · ve dx

∣∣∣∣∣ =

∣∣∣∣∣
∫
K∪K′

(
ν(T ih)(ui+1

h − u) + (ν(T ih)− ν(T ))u
)
· ve dx

∣∣∣∣∣
≤ c′′ h

1
2
e

(
ν2‖ui+1

h − u‖L2(K∪K′)3

+ λ‖T ih − T‖L6(K∪K′)‖u‖L3(K∪K′)3

)
‖ve‖L2(e)3 .

Therefore ∫
e

|[pi+1
h n]e|2ψe ds ≤ c′′ h

1
2
e

(
‖∇pi+1

h + ν(T ih)ui+1
h − fh‖L2(K∪K′)3 + ‖f− fh‖L2(K∪K′)3

+ ν2‖ui+1
h − u‖L2(K∪K′)3 + λ‖T ih − T‖L6(K∪K′)‖u‖L3(K∪K′)3

+ h−1
e ‖pi+1

h − p‖L2(K∪K′)

)
‖ve‖L2(e)3 . (4.56)

The surface part of η(D,1)
K,i,2,1 follows readily from (4.56), (4.31), (4.32), and the volume part of η(D,1)

K,i,2,1. �

Next, we estimate the second velocity error indicator.

Theorem 4.9. In addition to the assumptions of Theorem 3.1, let the mesh satisfy (3.19), ν ∈ W 2,∞(IR) and
f ∈ H1(Ω)3. Then for each h, there exists an integer i0 (depending on h) such that for all i ≥ i0 and for all
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K ∈ Th, the following inequalities hold:

η
(D,1)
K,i,2,2 ≤C

′
(
‖u− ui+1

h ‖L2(ωe)3 +
∑
K̃⊂ωe

[
hK̃
(
‖curl(f − fh)‖L2(K̃)3 + |ν(T )− νh(T )|W 1,3(K̃)

)
+ ‖T ih − T‖L6(K̃) + h

1
2

K̃
|T ih − T |H1(K̃) + ‖ν(T )− νh(T )‖L3(K̃)

]
+

∑
e∈∂K∩Γi

h

h
1
2
e ‖[(f − fh)× n]e‖L2(e)3

)
.

(4.57)

Proof. To bound the volume part of η(D,1)
K,i,2,2, (4.9) is tested with ηh = 0 and η = ηK , with each component

defined by

(ηK)j =

{(
curl(−νh(T ih)ui+1

h + fh
)
j
ψK in K,

0 in Ω \K.

This gives∫
K

|curl(−νh(T ih)ui+1
h + fh)|2ψK dx =

∫
K

(ν(T )u− νh(T ih)ui+1
h ) · curl ηK dx −

∫
K

curl(f− fh) · ηK dx.

There does not seem to be much gain in applying Green’s formula to the first integral in the above right-hand
side. Hence, applying the inverse inequality (3.3), we have∫

K

|curl(−νh(T ih)ui+1
h + fh)|2ψK dx ≤ C1

I (2)h−1
K ‖ν(T )u− νh(T ih)ui+1

h ‖L2(K)3‖ηK‖L2(K)3

+ ‖curl(f− fh)‖L2(K)3‖ηK‖L2(K)3 ,

which means that a bound for the first factor cannot contain a negative power of hK . As usual, we expand

‖ν(T )u− νh(T ih)ui+1
h ‖L2(K)3 ≤ ‖(νh(T ih)− ν(T ih))ui+1

h ‖L2(K)3 + ‖ν(T ih)(ui+1
h − u)‖L2(K)3

+ ‖(ν(T ih)− ν(T ))u‖L2(K)3

≤ ‖(νh(T ih)− ν(T ih))ui+1
h ‖L2(K)3 + ν2‖ui+1

h

− u‖L2(K)3 + λ‖u‖L3(K)3‖T ih − T‖L6(K), (4.58)

and we treat the first term on the right hand side. The bound in (4.45) is not sharp enough here because the
factor multiplying ‖ui+1

h − u‖L2(K)3 does have a negative power of hK . Thus, we must sharpen (4.35). To this
end, we insert ∇T as follows:

‖νh(T ih)− ν(T ih)‖L∞(K) ≤ ν2 + ‖νh(T ih)‖L∞(K)

≤ 2ν2 + ν
′

2hK |K|−
1
2 (|T ih − T |H1(K) + |T |H1(K))

≤ 2ν2 + ν
′

2

(
hK |K|−

1
2 |T ih − T |H1(K) + hK |K|−

1
3 |T |W 1,3(K)

)
.

With this inequality, (4.46) is replaced by

‖(νh(T ih)− ν(T ih))(ui+1
h − u)‖L2(K)3 ≤

(
2ν2 + ν

′

2

(
hK |K|−

1
2 |T ih − T |H1(K) + hK |K|−

1
3 |T |W 1,3(K)

))
× ‖ui+1

h − u‖L2(K)3 . (4.59)
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By replacing the first line of (4.45) with (4.59) and substituting it into (4.58), we derive

‖ν(T )u− νh(T ih)ui+1
h ‖L2(K)3 ≤

[
3ν2 + ν′2

(
hK |K|−

1
2 |T − T ih|H1(K) + hK |K|−

1
3 |T |W 1,3(K)

)]
‖ui+1

h − u‖L2(K)3

+ ‖νh(T )− ν(T )‖L3(K)‖u‖L6(K)3 + 2λ‖T − T ih‖L6(K)‖u‖L3(K)3

+
[
C(3)hK |K|−

2
3
(
ν′2|K|

1
2 |T − T ih|H1(K) + λ′|K| 13 ‖T − T ih‖L6(K)|T |H1(K)

)
+ λ|K| 16 ‖T − T ih‖L6(K)

]
‖u‖L6(K)3 . (4.60)

By proceeding as in Theorem 4.5 and using the convergence of the iterates of Theorem 3.3 (see (3.28) and
(3.25)), we derive the volume part of η(D,1)

K,i,2,2.

Regarding the surface part of η(D,1)
K,i,2,2, let e ∈ Γih; by testing (4.9) with ηh = 0 and η = ηe, v = curl ηe, with

each component defined by

(ηe)j =

{
Le
(
([(−νh(T ih)ui+1

h + fh)× n]e
)
j
ψe
)

on K ∪K ′,

0 on Ω \ (K ∪K ′),

we deduce∫
e

∣∣[(fh − νh(T ih)ui+1
h )× n]e

∣∣2ψe ds = −
∫
K∪K′

curl
(
fh − ν(T ih)ui+1

h

)
· ηe dx −

∫
e

[(f− fh)× n]e · ηe ds

−
∫
K∪K′

curl(f− fh) · ηe dx +
∫
K∪K′

(ν(T )u− ν(T ih)ui+1
h ) · curl ηe dx

−
∫
e

[(νh(T ih)− ν(T ih))ui+1
h × n]e · ηe ds. (4.61)

On account of the last term in the above right-hand side, the estimate of the surface part is more complex
than that of the volume part. Indeed, by (4.4) and the fact that ηe vanishes on ∂(K ∪K ′), this term reads∫

e

[(ν(T ih)− νh(T ih))ui+1
h × n]e · ηe ds =

∫
K∪K′

(ν(T ih)− νh(T ih))ui+1
h · curl ηe

−
∫
K∪K′

curl
(
(ν(T ih)− νh(T ih))ui+1

h

)
· ηe dx.

(4.62)

The structure of the RT0 element implies that curl ui+1
h = 0 in each cell, and so∣∣curl

(
(ν(T ih)− νh(T ih))ui+1

h

)∣∣ =
∣∣∇(ν(T ih)− νh(T ih))× ui+1

h

∣∣.
Before applying (4.48), we substitute (4.62) into (4.61),∫
e

∣∣[(fh − νh(T ih)ui+1
h )× n]e

∣∣2ψe ds = −
∫
K∪K′

curl
(
fh − ν(T ih)ui+1

h

)
· ηe dx −

∫
e

[(f− fh)× n]e · ηe ds

−
∫
K∪K′

curl(f− fh) · ηe dx +
∫
K∪K′

(ν(T )u− νh(T ih)ui+1
h ) · curl ηe dx

−
∫
K∪K′

(
∇
(
ν(T ih)− νh(T ih))× ui+1

h

)
· ηe dx. (4.63)

Let us denote by T1 and T2 the last two terms in the right-hand side of (4.63). Then∫
e

∣∣[(fh − νh(T ih)ui+1
h )× n]e

∣∣2ψe ds ≤ c′′h
1
2
e

(
‖curl

(
fh − ν(T ih)ui+1

h

)
‖L2(K∪K′)3 + ‖[(f− fh)× n]‖L2(e)3

+ ‖curl(f− fh)‖L2(K∪K′)3

)
‖ηe‖L2(e)3 + T1 + T2. (4.64)
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The term T1 is bounded by (4.60) via

|T1| ≤ C1
I (2)

∑
K̃∈ωe

h−1

K̃
‖ν(T )u− νh(T ih)ui+1

h ‖L2(K̃)3‖ηe‖L2(K̃)3 ,

and the term T2 by (4.48) via

|T2| ≤
∑
K̃∈ωe

‖∇
(
ν(T ih)− νh(T ih)

)
ui+1
h ‖L2(K̃)3‖ηe‖L2(K̃)3 .

A comparison between (4.60) and (4.51) shows that the most unfavorable term here, which is the first term
in (4.49), has the same order as that in (4.60). As above, this is resolved by iterating sufficiently the algorithm,
and we readily derive the desired bound on the surface part of the indicator η(D,1)

K,i,2,2 by substituting (4.60),
(4.49), and (4.51) into (4.64), and by applying to the first term of (4.61) the bound for the volume part found
above. �

Remark 4.10. Condition (3.30) when d = 3 and (3.31) when d = 2, used in the efficiency bounds, are undesir-
able but also inevitable. They are caused by the discrepancy between the norms used in measuring the a priori
error estimates (including stability bounds) see for instance (3.11), and the norms used in measuring continuity
of the operators. Indeed, if the velocity is in L2 and the temperature in H1, the nonlinear convection term is
only in L1. This is why the test functions are taken in L∞ ∩H1. This difficulty is inherent to the model and
is independent of the choice of discretization or indicators. In addition, it is aggravated by the two following
factors:

(1) The analysis is performed on the sequence produced by a computing algorithm. If such algorithm had not
been taken into account, the parameter δ would not be necessary and (3.30) could be replaced by

∀K ∈ Th, hK ≥ τ h2.

(2) The analysis is done in three dimensions. In two dimensions, the relevant condition is (3.31) (with δ = 0,
when the algorithm is not considered), that is almost negligible.

The same observations apply also to the second approximation analyzed in the section below.
In any case, we suppose that (3.30) (or (3.31) when d = 2) is verified for all levels of the refinement iteration.

5. A POSTERIORI error estimates for the second approximation

5.1. Upper error bound for the second discretization

In order to establish upper bounds for the second variational formulation, we introduce, on every edge e of
the mesh, the function

φeh,1 =


1
2

[ui+1
h · n]e if e ∈ Γih,

ui+1
h · n if e ∈ Γbh.

(5.1)

A standard calculation shows that the solutions of problems (V2) and (Vh,i,2) verify for all (v, q, S) ∈ L2(Ω)3×
(H1(Ω) ∩ L2

m(Ω))× (H1(Ω) ∩ L∞(Ω)) and (vh, qh, Sh) ∈ Wh,2 ×Mh,2 ×Xh:

α

∫
Ω

∇(T − T i+1
h ) · ∇S dx +

∫
Ω

(u · ∇T )S dx−
∫

Ω

(ui+1
h · ∇T i+1

h )S dx − 1
2

∫
Ω

div ui+1
h T i+1

h S dx

=
∑
K∈Th

[∫
K

(α∆T i+1
h − ui+1

h · ∇T i+1
h − 1

2
div ui+1

h T i+1
h + gh)(S − Sh) dx

+
∫
K

(g − gh)(S − Sh) dx − α

2

∑
e∈∂K∩Γi

h

∫
e

[∇T i+1
h · n]e(S − Sh) ds

]
,

(5.2)
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∫
Ω

ν(T )u · v dx +
∫

Ω

∇(p− pi+1
h ) · v dx−

∫
Ω

ν(T ih)ui+1
h · v dx

=
∑
K∈Th

[∫
K

(−∇pi+1
h − ν(T ih)ui+1

h + fh) · (v− vh) dx +
∫
K

(f− fh) · (v− vh) dx
]
,

(5.3)

and ∫
Ω

∇q · (u− ui+1
h ) dx =

∑
K∈Th

[∫
K

(q − qh)div ui+1
h dx −

∑
e∈∂K

∫
e

φeh,1(q − qh) ds

]
, (5.4)

where gh and fh are an approximation of g and f which are constant on each element K of Th.

From these error equations we deduce the following error indicators for each K ∈ Th,

η
(L,2)
K,i = |T i+1

h − T ih|H1(K),

η
(D,2)
K,i,1 = hK‖α∆T i+1

h − ui+1
h · ∇T i+1

h − 1
2

div ui+1
h T i+1

h + gh‖L2(K)

+
1
2

∑
e∈∂K∩Γi

h

h
1
2
e ‖α[∇T i+1

h · n]e‖L2(e), (5.5)

η
(D,2)
K,i,2 = ‖ − ∇pi+1

h − ν(T ih)ui+1
h + fh‖L2(K)3 + hK‖div ui+1

h ‖L2(K) +
∑
e∈∂K

h
1
2
e ‖φeh,1‖L2(e). (5.6)

Theorem 5.1. Let d = 3, let the mesh satisfy (3.1), and ν satisfy (1.1) and (1.2). We suppose that problem
(V2) has a solution (u, T ) ∈ L3(Ω)3 × (W 1,3(Ω) ∩ L∞(Ω)) such that

λS0
6‖u‖L3(Ω)3(S0

6 |T |W 1,3(Ω) + ‖T‖L∞(Ω)) < 2αν1. (5.7)

Then the following error inequalities hold:

‖u− ui+1
h ‖L2(Ω)3 + |p− pi+1

h |H1(Ω) + |T − T i+1
h |H1(Ω) ≤ C

[ ∑
K∈Th

((
η

(D,2)
K,i,1

)2

+
(
η

(D,2)
K,i,2

)2

+ ‖f− fh‖2L2(K)3

+ h2
K‖g − gh‖2L2(K)

)] 1
2

+ C ′

( ∑
K∈Th

(
η

(L,2)
K,i

)2
) 1

2

.

(5.8)

Proof. Let us start with the temperature equation (5.2) tested with S = T − T i+1
h . Its left-hand side can be

written as

α|T − T i+1
h |2H1(Ω) +

∫
Ω

((u− ui+1
h ) · ∇T )(T − T i+1

h ) dx +
∫

Ω

(ui+1
h · ∇(T − T i+1

h ))(T − T i+1
h ) dx

−1
2

∫
Ω

(divui+1
h )T i+1

h (T − T i+1
h ) dx.
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By applying Green’s formula and the zero divergence of u, the sum of last two nonlinear terms has the
expression∫

Ω

(ui+1
h · ∇(T − T i+1

h ))(T − T i+1
h ) dx− 1

2

∫
Ω

(divui+1
h )T i+1

h (T − T i+1
h ) dx

= −1
2

∫
Ω

(divui+1
h )

(
T − T i+1

h + T i+1
h

)
(T − T i+1

h ) dx =
1
2

∫
Ω

div(u− ui+1
h )T (T − T i+1

h ) dx

= −1
2

∫
Ω

(u− ui+1
h ) ·

(
∇T (T − T i+1

h ) + T∇(T − T i+1
h )

)
dx.

Thus the sum of the three nonlinear terms is∫
Ω

((u− ui+1
h ) · ∇T )(T − T i+1

h ) dx +
∫

Ω

(ui+1
h · ∇(T − T i+1

h ))(T − T i+1
h ) dx− 1

2

∫
Ω

(divui+1
h )T i+1

h (T − T i+1
h ) dx

=
1
2

∫
Ω

(u− ui+1
h ) ·

(
∇T (T − T i+1

h )− T∇(T − T i+1
h )

)
dx

≤ 1
2
(
S0

6 |T |W 1,3(Ω) + ‖T‖L∞(Ω)

)
‖u− ui+1

h ‖L2(Ω)3 |T − T i+1
h |H1(Ω).

(5.9)

Now, the right-hand side of (5.2) is bounded straightforwardly by∑
K∈Th

[(
‖α∆T i+1

h − ui+1
h · ∇T i+1

h −1
2

div ui+1
h T i+1

h + gh‖L2(K) + ‖g − gh‖L2(K)

)
‖S − Sh‖L2(K)

+
1
2

∑
e∈∂K∩Γi

h

‖α[∇T i+1
h · n]e‖L2(e)‖S − Sh‖L2(e)

]
.

Then the choice Sh = Rh(S), (5.9), the approximation properties of Rh, and the regularity of Th yield

α|T − T i+1
h |H1(Ω) ≤ C1

( ∑
K∈Th

((
η

(D,2)
K,i,1

)2

+ h2
K‖g − gh‖2L2(K)

)) 1
2

+
1
2
(
S0

6 |T |W 1,3(Ω) + ‖T‖L∞(Ω)

)
‖u− ui+1

h ‖L2(Ω)3 . (5.10)

Next, we turn to the velocity and pressure errors. The velocity error equation (5.3) can be written as∫
Ω

((
ν(T )− ν(T ih)

)
u + ν(T ih)(u− ui+1

h )
)
· v dx +

∫
Ω

∇(p− pi+1
h ) · v dx

=
∑
K∈Th

[∫
K

(−∇pi+1
h − ν(T ih)ui+1

h + fh) · (v− vh) dx +
∫
K

(f− fh) · (v− vh) dx
]
.

(5.11)

As usual, a bound for the velocity is derived by eliminating the pressure from (5.11). This is obtained from the
divergence error equation (5.4). Indeed, it follows from the inf-sup condition (2.14) that there exists a velocity
vr in L2(Ω)3 that solves

∀q ∈ H1(Ω)∩L2
m(Ω),

∫
Ω

∇ q·vr dx =
∑
K∈Th

[∫
K

(q −Rh(q))div ui+1
h dx −

∑
e∈∂K

∫
e

φeh,1(q −Rh(q) ds

]
, (5.12)

and satisfies

‖vr‖L2(Ω)3 ≤ sup
q∈H1(Ω)∩L2

m(Ω)

1
|q|H1(Ω)

∣∣∣∣∣ ∑
K∈Th

[∫
K

(q −Rh(q))div ui+1
h dx −

∑
e∈∂K

∫
e

φeh,1(q −Rh(q) ds

]∣∣∣∣∣ .
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Thus, from the approximation properties of Rh, and the regularity of Th, we infer

‖vr‖L2(Ω)3 ≤ C2

( ∑
K∈Th

[
h2
K‖divui+1

h ‖
2
L2(K) +

∑
e∈∂K

he‖φeh,1‖2L2(e)

]) 1
2

. (5.13)

Now, to simplify we set z0 = u − ui+1
h − vr and we test (5.11) with v = z0 and vh = 0. By construction,

(5.12) and (5.4) with q = p− pi+1
h and qh = Rh(q), imply that∫

Ω

∇(p− pi+1
h ) · z0 dx = 0.

Hence (5.11) reduces to∫
Ω

(
ν(T )− ν(T ih)

)
u · z0 dx +

∫
Ω

ν(T ih)z0 · z0 dx +
∫

Ω

ν(T ih)vr · z0 dx

=
∑
K∈Th

[∫
K

(−∇pi+1
h − ν(T ih)ui+1

h + fh) · z0 dx +
∫
K

(f− fh) · z0 dx
]
.

This yields the bound

ν1‖z0‖L2(Ω)3 ≤
(
λS0

6 |T − T ih|H1(Ω)‖u‖L3(Ω)3 + ν2‖vr‖L2(Ω)3

)
+

( ∑
K∈Th

((
η

(D,2)
K,i,2

)2

+ ‖f− fh‖2L2(K)3

)) 1
2

.

With (5.13), and after inserting T i+1
h , this implies

‖u− ui+1
h ‖L2(Ω)3 ≤ C2(1 +

ν2

ν1
)
( ∑
K∈Th

[
h2
K‖divui+1

h ‖
2
L2(K) +

∑
e∈∂K

he‖φeh,1‖2L2(e)

]) 1
2

+
λ

ν1
S0

6 |T − T i+1
h |H1(Ω)‖u‖L3(Ω)3 +

λ

ν1
S0

6 |T i+1
h − T ih|H1(Ω)‖u‖L3(Ω)3

+
1
ν1

( ∑
K∈Th

((η(D,2)
K,i,2 )2 + ‖f− fh‖2L2(K)3)

) 1
2 .

(5.14)

When substituted into (5.10), this estimate for the velocity error gives(
2αν1 − λS0

6‖u‖L3(Ω)3(S0
6 |T |W 1,3(Ω) + ‖T‖L∞(Ω))

)
|T − T i+1

h |H1(Ω)

≤ C3

( ∑
K∈Th

((
η

(D,2)
K,i,1

)2

+ h2
K‖g − gh‖2L2(K)

)) 1
2

+ C4

( ∑
K∈Th

((
η

(D,2)
K,i,2

)2

+ ‖f− fh‖2L2(K)3

)) 1
2

+ C5

( ∑
K∈Th

[
h2
K‖divui+1

h ‖
2
L2(K) +

∑
e∈∂K

he‖φeh,1‖2L2(e)

]) 1
2

+ C6|T i+1
h − T ih|H1(Ω).

(5.15)

In view of (5.7), the temperature estimate in (5.8) follows from (5.15), and in turn, the velocity estimate
follows by substituting (5.15) into (5.14).

Finally, we obtain the pressure error by testing (5.11) with v = ∇(p− pi+1
h ) and vh = 0,

|p− pi+1
h |H1(Ω) ≤ λS0

6 |T − T ih|H1(Ω)‖u‖L3(Ω)3 + ν2‖u− ui+1
h ‖L2(Ω)3 +

( ∑
K∈Th

((
η

(D,2)
K,i,2

)2

+ ‖f− fh‖2L2(K)3

)) 1
2

,

(5.16)
and by substituting the temperature and velocity error bounds. �
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5.2. Lower error bound for the second discretization

Let us start with the temperature errors.

Theorem 5.2. We retain the settings and assumptions of Theorem 3.3. Then for each h, there exists an integer
i0 (depending on h) such that for all i ≥ i0 and for all K ∈ Th, the following inequality holds:

η
(D,2)
K,i,1 ≤ C

‖u− ui+1
h ‖L2(ωe)3 + |T − T i+1

h |H1(ωe) +
∑
K̃⊂ωe

hK̃‖g − gh‖L2(K̃)

 , (5.17)

with a constant C independent of h and K. Moreover, without assumption, we have

η
(L,2)
K,i ≤ |T − T

i+1
h |H1(K) + |T − T ih|H1(K). (5.18)

Proof. To derive an upper bound for the interior part of η(D,2)
K,i,1 , we test the error equation (5.2) with S = SK

and Sh = 0, where in each element K, SK is the localizing function

SK =
(
α∆T i+1

h − ui+1
h · ∇T i+1

h − 1
2

div ui+1
h T i+1

h + gh

)
ψK ,

extended by zero outside K. By arguing as in the proof of Lemma 4.5, we derive the analogue of (4.40)∫
K

(
α∆T i+1

h − ui+1
h · ∇T i+1

h − 1
2

div ui+1
h T i+1

h + gh

)2

ψK dx = α

∫
K

∇
(
T − T i+1

h

)
· ∇SK dx

+
∫
K

((
u− ui+1

h

)
· ∇T

)
SK dx +

∫
K

(
ui+1
h · ∇

(
T − T i+1

h

))
SK dx

−
∫
K

(g − gh)SK dx− 1
2

∫
K

div ui+1
h T i+1

h SK dx.

(5.19)

By comparing with (4.40), we see that all terms except the last one have been bounded in the proof of Theorem
4.5. This term can be written as

−1
2

∫
K

div(ui+1
h − u)T i+1

h SK dx

= −1
2

∫
K

div(ui+1
h − u)(T i+1

h −Rh(T ))SK dx− 1
2

∫
K

div(ui+1
h − u)Rh(T )SK dx

=
1
2

∫
K

(
(ui+1
h − u) · ∇(T i+1

h −Rh(T ))
)
SK dx +

1
2

∫
K

(
(ui+1
h − u) · ∇SK

)
(T i+1
h −Rh(T )) dx

+
1
2

∫
K

(ui+1
h − u) · ((∇Rh(T ))SK + (∇SK)Rh(T )) dx.

Thus∣∣∣1
2

∫
K

div(ui+1
h − u)T i+1

h SK dx
∣∣∣ ≤ 1

2
‖ui+1

h − u‖L2(K)3

[
C0
I (3)|K|− 1

6 |K|− 1
3 |T i+1

h −Rh(T )|H1(K)

+ C1
I (2)h−1

K |K|
− 1

6 ‖T i+1
h −Rh(T )‖L6(K) + |K|− 1

3 |Rh(T )|W 1,3(K)

+ C1
I (2)h−1

K ‖Rh(T )‖L∞(K)

]
‖SK‖L2(K).

By arguing as in the proof of Theorem 4.5, we deduce the interior bound in (5.17). The upper bound for the
surface part of η(D,2)

K,i,1 is treated in the same way. Finally, formula (5.18) is obvious.
�
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To establish the remaining lower bounds for the second variational formulation, since there is no need to take
the curl of the velocity equation, it suffices to approximate ν by a piecewise constant function, say ν0,h, defined
for every f ∈ L1(K) by

ν0,h(f)|K =
1
|K|

∫
K

ν(f(y)) dy. (5.20)

Clearly, ν0,h verifies the following properties:

– In view of (1.2), for any function f ∈ L1(K),

ν1 ≤ ν0,h(f)|K ≤ ν2. (5.21)

– In view of (1.1), ν0,h is Lipschitz-continuous with Lipschitz constant λ, i.e.,

∀f1, f2 ∈ Lp(K), ‖ν0,h(f1)− ν0,h(f2)‖Lp(K) ≤ λ‖f1 − f2‖Lp(K). (5.22)

Moreover, since ν belongs to W 1,∞(IR), the analogue of the first part of (4.34) holds for all numbers p ≥ 2
and functions f in W 1,p(K),

‖ν0,h(f)− ν(f)‖Lp(K) ≤ CλhK |f |W 1,p(K), (5.23)

with a constant C that depends on p but is independent of h and K. The term ‖ν0,h(f) − ν(f)‖L6(K) will be
treated as an error.

Theorem 5.3. Let d = 3 and ν satisfy (1.1) and (1.2). We suppose that the velocity solution u of problem (V2)
belongs to L3(Ω)3. Then

η
(D,2)
K,i,2 ≤ C

(
‖T − T ih‖L6(K) + ‖u− ui+1

h ‖L2(K)3 + |p− pi+1
h |H1(K) + ‖f− fh‖L2(K)3

+ ‖ν(T )− ν0,h(T )‖L6(K)

)
. (5.24)

Proof. To bound the interior part of η(D,2)
K,i,2 , we test (5.3) with vh = 0 and v = vK , where each component of

the localizing function vK is defined in each element K by

(vK)j =
(
−∇pi+1

h − ν0,h(T ih)ui+1
h + fh

)
j
ψK ,

extended by 0 outside K. As in the proof of Theorem 4.8 we obtain the analogue of (4.54)∫
K

| − ∇pi+1
h − ν0,h(T ih)ui+1

h + fh|2ψK dx =
∫
K

(ν(T )− ν(T ih))u · vK dx −
∫
K

ν(T ih)(ui+1
h − u) · vK dx

+
∫
K

(ν(T ih)− ν0,h(T ih))ui+1
h · vK dx

+
∫
K

∇(p− pi+1
h ) · vK dx −

∫
K

(f− fh) · vK dx. (5.25)

Owing to the Lipschitz continuity of ν and (5.21), the right-hand side of (5.25) has the straightforward bound

∫
K

| − ∇pi+1
h − ν0,h(T ih)ui+1

h + fh|2ψK dx ≤
[
λ‖T − T ih‖L6(K)‖u‖L3(K)3 + ν2‖u− ui+1

h ‖L2(K)3

+ ‖ui+1
h (ν(T ih)− ν0,h(T ih))‖L2(K)3 + |p− pi+1

h |H1(K) + ‖f− fh‖L2(K)3

]
‖vK‖L2(K)3 .

(5.26)
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The bound for the third term in the right-hand side is derived as in Lemma 4.6, but is made simpler by the
simpler structure of ν0,h. We have

‖ui+1
h (ν(T ih)− ν0,h(T ih))‖L2(K)3 ≤ ‖(ui+1

h − u)(ν(T ih)− ν0,h(T ih))‖L2(K)3 + ‖u‖L3(K)3

(
‖ν(T ih)− ν(T )‖L6(K)

+ ‖ν(T )− ν0,h(T )‖L6(K) + ‖ν0,h(T )− ν0,h(T ih)‖L6(K)

)
≤ 2ν2‖ui+1

h − u‖L2(K)3 + ‖u‖L3(K)3

(
2λ‖T − T ih‖L6(K) + ‖ν(T )

− ν0,h(T )‖L6(K)

)
. (5.27)

By substituting (5.27) into (5.26), we infer∫
K

| − ∇pi+1
h − ν0,h(T ih)ui+1

h + fh|2ψK dx ≤
[
3λ‖T − T ih‖L6(K)‖u‖L3(K)3 + 3ν2‖u− ui+1

h ‖L2(K)3

+ |p− pi+1
h |H1(K) + ‖f− fh‖L2(K)3 + ‖u‖L3(K)3‖ν(T )− ν0,h(T )‖L6(K)

]
‖vK‖L2(K)3 ,

and the equivalence of norms yields (to simplify, we do not specify the constants)

‖ − ∇pi+1
h − ν0,h(T ih)ui+1

h + fh‖L2(K)3 ≤ C
(
‖T − T ih‖L6(K)‖u‖L3(K)3 + ‖u− ui+1

h ‖L2(K)3

+ |p− pi+1
h |H1(K) + ‖f− fh‖L2(K)3 + ‖u‖L3(K)3‖ν(T )− ν0,h(T )‖L6(K)

)
.

(5.28)

In view of (5.27), this yields a similar bound for the first part of the indicator.
Regarding the divergence part of η(D,2)

K,i,2 , (5.4) is tested with qh = 0 and q = qK , where

qK = (div ui+1
h )ψK .

Then ∫
K

((div ui+1
h )2ψK dx =

∫
K

∇qK · (u− ui+1
h ) dx ≤ C1

I (2)h−1
K ‖u− ui+1

h ‖L2(K)3‖qK‖L2(K),

so that
hK

∫
K

((div ui+1
h )2ψK dx ≤ C1

I (2)‖u− ui+1
h ‖L2(K)3‖qK‖L2(K). (5.29)

The bound for the volume part of η(D,2)
K,i,2 follows from (5.28) and (5.29).

For the surface parts, (5.4) is tested with qh = 0 and q = qe, where

qe = L(φeh,1ψe), in K ∪K ′ or in K,

according that e is an interior face or a boundary face (see (5.1)). Then∫
e

(φeh,1)2ψe =
∫
K∪K′

qediv ui+1
h dx−

∫
K∪K′

∇ qe · (u− ui+1
h ) dx

≤
(
‖div ui+1

h ‖L2(K∪K′) + C1
I (2)h−1

K ‖u− ui+1
h ‖L2(K∪K′)

)
‖qe‖L2(K∪K′).

Hence
h

1
2
e ‖φeh,1‖L2(e) ≤ C

(
hK‖div ui+1

h ‖L2(K∪K′) + ‖u− ui+1
h ‖L2(K∪K′)

)
,

thus implying (5.24). �

Remark 5.4. The approximation error of ν is measured here in the L6 norm because u is assumed to be in
L3(Ω)3. If instead, we were to take u in L6(Ω)3, then the approximation error of ν would be measured in L3.
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6. Numerical results

The theory developed here is validated by numerical simulations using Freefem++ (see [20]). The domain
Ω is the unit square Ω =]0, 3[2 and all computations start on a uniform initial triangular mesh obtained by
dividing Ω into N2 equal squares, each one subdivided into 2 triangles, so that the initial triangulation consists
of 2N2 triangles.

The theory is tested by applying the numerical schemes (Vh,i,1) and (Vh,i,2) to the exact solution (u, p, T ) =
(curlψ, p, T ) where ψ, p, and T are given by

ψ(x, y) = e−γ((x−1)2+(y−1)2), (6.1)

p(x, y) = cos
(π

3
x
)

cos
(π

3
y
)
, (6.2)

and
T (x, y) = x2(x− 3)2y2(y − 3)2e−γ((x−1)2+(y−1)2), (6.3)

with the choice α = 10, γ = 50, N = 30, and different functions ν:

ν1(T ) = T + 1,
ν2(T ) = e−T + 1/10,
ν3(T ) = sin(T ) + 2.

(6.4)

For D = 1, 2, it is convenient to compute the following expression η
(D)
i for the indicators, equivalent to the

l2 norm,

η
(D)
i =

( ∑
K∈Th

((
η

(D)
K,i,1

)2

+
(
η

(D)
K,i,2

)2
) 1

2
)
,

where,

– for the first variational formulation (Vh,i,1):(
η

(D)
K,i,1

)2

= h2
K‖α∆T i+1

h − ui+1
h · ∇T i+1

h + gh‖2L2(K) +
∑

e∈∂K∩Γi
h

he‖[α∇T i+1
h · n]e‖2L2(e),

and (
η

(D)
K,i,2

)2

= h2
K‖ − ∇pi+1

h − ν(T ih)ui+1
h + fh‖2L2(K)2 + h2

K‖curl(−ν(T ih)ui+1
h + fh)‖2L2(K)2

+
∑

e∈∂K∩Γi
h

he‖[pi+1
h n]e‖2L2(e)2 +

∑
e∈∂K∩Γi

h

he‖[(−ν(T ih)ui+1
h + fh)× ne]e‖2L2(e)2 ;

– for the second variational formulation (Vh,i,2):(
η

(D)
K,i,1

)2

= h2
K‖α∆T i+1

h − ui+1
h · ∇T i+1

h − 1
2

div ui+1
h T i+1

h + gh‖2L2(K) +
∑

e∈∂K∩Γi
h

he‖[α∇T i+1
h · n]e‖2L2(e),

and (
η

(D)
K,i,2

)2

= ‖ − ∇pi+1
h − ν(T ih)ui+1

h + fh‖2L2(K)2 + h2
K‖div ui+1

h ‖
2
L2(K) +

∑
e∈∂K∩Γi

h

he‖φeh,1‖2L2(e).
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Figure 1. Evolution of the mesh for the first discrete scheme with ν1(T ) = T + 1.

Likewise, we compute the algorithmic error indicator η(L)
i by,

η
(L)
i =

( ∑
K∈Th

(
η

(L)
K,i

)2
) 1

2

,

where
η

(L)
K,i = |T i+1

h − T ih|H1(K).

These indicators are used for mesh adaptation by the adapted mesh algorithm introduced in [6]; the mesh is
adapted so as to satisfy the following criteria

η
(L)
i ≤ ε and η

(D)
i ≤ υ, (6.5)

with ε ≤ 10−7 and υ ≤ 10−8. For the adaptive mesh (refinement and coarsening), we use routines in FreeFem++.

In Figure 1, we present the evolution of the mesh during the iterations for the first discrete scheme (Vh,i,1)
with ν1(T ) = T + 1. We notice that the mesh is concentrated in the region where the solution needs to be well
described. Similar figures are obtained for the second numerical scheme (Vh,i,2) and for different values of the
viscosity (ν2 and ν3).

Next, we plot and study the error curves between the exact and numerical solutions corresponding to the
first and second schemes for different values of the viscosity ν.

Figure 2A (respectively 3A and 4A) plots the comparison of the global error curves versus the number of
vertices in logarithmic scales for the first discrete scheme and for ν1 (respectively ν2 and ν3); global in the sense
that they depict the sum of the velocity, pressure and temperature errors. For each case of ν, the left figure
shows the comparison of the adapt mesh method between the two proposed numerical schemes. We remark that
the errors corresponding to (Vh,i,2) are smaller than those corresponding to (Vh,i,1); this is expected because
the finite elements used for the second numerical scheme (Vh,i,2) contain much more of degrees of freedom than
(Vh,i,1).

In Figures 2B and 2C (respectively 3B and 3C, 4B and 4C), we present comparisons of the global error
versus the number of vertices in logarithmic scale for the adapt and uniform methods, for the three cases of
the viscosity and the two discrete schemes. We notice that the errors of the adaptive mesh method are much
smaller than those obtained with the uniform method, hence the efficiency of this method.

In Table 1, we present the effectivity index defined as

EI =

(
(η(L)
i )2 + (η(D)

i )2

‖uih − u‖2L2(Ω)2 + ‖pih − p‖2L2(Ω) + |T ih − T |2H1(Ω)

)1/2
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Figure 2. Comparison of the errors for ν1(T ) = T + 1.

Figure 3. Comparison of the errors for ν2(T ) = e−T + 1/10.

Figure 4. Comparison of the errors for ν3(T ) = sin(T ) + 2.

with respect to the number of vertices during the iterations (refinement levels) for the first discrete scheme and
for ν1. We remark that it decreases from 46.09 (refinement level 1) to 27.96 (refinement level 6).

Furthermore, we compare the CPU times between the uniform and the adaptive methods for the first and
second discrete schemes (Vh,i,1) and (Vh,i,2). Table 2 shows results corresponding to the viscosity ν1 for (Vh,i,1).
For example, a uniform mesh of 40401 vertices produces an error of 0.137 with a CPU time of 418.5 s while an
adaptive mesh of 14280 vertices gives an error of 0.051 with a CPU time of 48.7 s.

To complete this comparison, we plot in Figure 5A (respectively 6A and 7A) the comparison of the CPU time
of computation between the adapted first and second schemes for ν1 (respectively ν2 and ν3). The second scheme
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Table 1. EI with respect to the iterations for the first discrete scheme and for ν1.

Refinement level i = 1 i = 2 i = 3 i = 4 i = 5 i = 6
1681 5587 8198 14 280 26 314 38 381
vertices vertices vertices vertices vertices vertices

Effectivity index 46.09 45.52 44.07 28.46 28.23 27.96

Table 2. Comparison between the error and CPU time between the uniform mesh and adaptive
mesh for the first discrete scheme with ν1(T ) = T + 1.

Type
Uniform mesh Adaptive mesh

Nbr vertices Error Time (s) Nbr vertices Error Time (s)

6561 0.341 18.85 5587 0.247 12.3
14 641 0.228 81.7 14 280 0.051 48.7
25 921 0.171 204.1 26 314 0.038 94.4
40 401 0.137 418.5 38 381 0.028 162.7

Figure 5. Comparison of the CPU time for ν1(T ) = T + 1.

Figure 6. Comparison of the CPU time for ν2(T ) = e−T + 1/10.
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Figure 7. Comparison of the CPU time for ν3(T ) = sin(T ) + 2.

is more precise than the first one for the same reason indicated above. The other figures show comparisons of
the CPU time of computation versus the global error, for the uniform and adaptive methods and for the three
examples of viscosity. We deduce that for a given global error, the uniform method is much more expensive
than the adapted method for the two numerical schemes and for the three choices of viscosity.

7. Conclusion

In this article, we discretize a steady Darcy system coupled with a heat equation. We use two variational
formulations and for each one introduce error indicators and establish optimal a posteriori error estimates.
We perform several numerical simulations where these indicators are used for mesh adaptation, confirming the
efficiency of these adaptive methods.

Appendix A.

This section is devoted to the proof of Lemma 4.1. Let v be given in V . The idea is first to extend v by zero
to IR3 and construct η by Fourier transforms in the whole space. Since by construction curl η vanishes in the
exterior of Ω and since Ω is simply-connected, η is the gradient of a smoother function in this exterior. The fact
that it is a gradient will permit to suitably correct η so as to satisfy the desired boundary condition.

Thus, let ṽ denote the extended function. As v · n vanishes on ∂Ω, ṽ belongs to H(div, IR3) and div v = 0
in IR3. Since the support of v is bounded, it can be shown, cf. [19], that this construction produces a unique
function η in H1(O)3 on any bounded subset O of IR3, and

ṽ = curl η.

The function η has the desired regularity and it remains to correct it in order to satisfy the boundary condition.
Since this must not affect the curl of the resulting function, the correcting function must be a gradient. To this
end, let us pick a large enough bounded open ball B containing Ω̄ such that the distance between the boundary
of Ω̄ and B is strictly positive. Since div ṽ = 0 in IR3 and ṽ = 0 in B \ Ω, we have the following bound:

‖η‖H1(B)3 ≤ C‖ṽ‖H(div,IR3) = C‖v‖L2(Ω)3 . (A.1)

As ṽ = 0 in B \Ω, we have curl η = 0 in B \Ω and as B \Ω is also simply-connected, there exists a function
q in B \ Ω such that

η = ∇ q in B \ Ω, (A.2)
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and q ∈ H2(B \Ω) since η ∈ H1(B \Ω)3. The function q is determined by (A.2) up to a constant. Let us choose
this constant so that ∫

B\Ω
q dx = 0.

With this choice
‖q‖L2(B\Ω) ≤ C‖∇q‖L2(B\Ω)3 , (A.3)

and by (A.1)–(A.3),
‖q‖H2(B\Ω) ≤ C‖η‖H1(B\Ω)3 ≤ C‖v‖L2(Ω)3 . (A.4)

The function q can be extended continuously in Ω to a function q̃ ∈ H2(B) such that

‖q̃‖H2(B) ≤ C‖q‖H2(B\Ω) ≤ C‖v‖L2(Ω)3 . (A.5)

Finally, the function ∇q̃ is the required correction of η. Indeed, we define

η̃ = η −∇q̃, in B. (A.6)

As q̃ belongs to H2(B), the trace of ∇q̃ is continuous across ∂Ω. Therefore by (A.2), the trace of ∇q̃ on ∂Ω
coincides with that of η, i.e.,

η|∂Ω = ∇q̃|∂Ω.

Hence
η̃|∂Ω = 0.

Summing up, η̃ belongs to H1
0 (Ω)3,

curl η̃ = curl η = v in Ω,

and
‖η̃‖H1(Ω)3 ≤ C‖v‖L2(Ω)3 .
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