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A POSTERIORI ERROR ESTIMATES FOR DARCY’S PROBLEM COUPLED
WITH THE HEAT EQUATION

SERENA DiB'2, VIVETTE GIRAULT!, FREDERIC HECHT! AND TONI SAYAH?*

Abstract. This work derives a posteriori error estimates, in two and three dimensions, for the heat
equation coupled with Darcy’s law by a nonlinear viscosity depending on the temperature. We intro-
duce two variational formulations and discretize them by finite element methods. We prove optimal
a posteriori errors with two types of computable error indicators. The first one is linked to the lin-
earization and the second one to the discretization. Then we prove upper and lower error bounds under
regularity assumptions on the solutions. Finally, numerical computations are performed to show the
effectiveness of the error indicators.
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1. INTRODUCTION

The present work investigates a posteriori error estimates of the finite element discretization of a heat
equation coupled with Darcy’s law by a nonlinear viscosity depending on the temperature in polygonal or
polyhedral domains. The a posteriori analysis controls the overall discretization error of a problem by providing
error indicators that are easy to compute. Once these error indicators are constructed, their efficiency can be
proven by bounding each indicator by the local error. A posteriori analysis was first introduced by Babuska
[3], developed by Verfiirth [28], and has been the object of a large number of publications. A posteriori error
estimations have been studied for several types of partial differential equations. For the stationary Navier—Stokes
equations, we can refer for instance to [5,16,17,21,22]. For the stationary Boussinesq model, we refer to [14,15].
Many works have been established for the Darcy flow, see for instance [2,8,10,23]. In [11], Chen and Wang
establish optimal a poteriori error estimates for the H(div, {2) conforming mixed finite element method applied
to the coupled Darcy—Stokes system in two dimensions, but excludes the RTy element that we shall study in
the present work. For the Darcy equations with pressure dependent viscosity, we refer to [18] and the references
therein.

In this article, we consider the heat equation coupled with Darcy’s law by a nonlinear viscosity depending on
the temperature. Let Q2 C R%, d = 2, 3, be a bounded simply-connected domain, with a Lipschitz-continuous
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boundary I'. This work studies the temperature distribution of a fluid in a porous medium modelled by a
convection-diffusion equation coupled with Darcy’s law. The system of equations is the following:

v(Thu+Vp =f inQ,

diva =0 inQ,
(P){ —aAT+(u-VT)=g¢g inQ,
u-n =0 onl,

T =0 onl,

where n is the unit outward normal vector on I'. The unknowns are the velocity u, the pressure p and the
temperature T of the fluid. The function f represents an external density force and g an external heat source.
The parameter « is a positive constant that corresponds to the diffusion coefficient. The viscosity v depends on
the temperature; it is a positive-valued function that satisfies the following assumptions:

Assumption 1.1. We assume that

— v belongs to WH°(R). Therefore v is a Lipschitz-continuous function with Lipschitz constant X, i.e.,
Vs, t € R, |v(s) —v(t)| < Als —t|. (1.1)
— There ezist two positive constants v1 and vy such that for any s € IR

v <v(s) < vs. (1.2)
In [7], the above problem was treated by using finite element methods combined with a Picard iterative
algorithm to solve for the nonlinearity. Two numerical schemes were analyzed and an optimal a priori error
estimate was established, together with convergence of the algorithm. In the present paper, we establish optimal
a posteriori error estimates including algorithmic effects as well as the influence of the nonlinear function v.
The theory is validated by corresponding numerical experiments.
This article is organized as follows:

— Section 2 is devoted to the continuous problem.

In Section 3, we introduce the discrete and iterative problems and recall their main properties.

— In Section 4, we introduce the error indicators and prove the upper and lower error a posteriori bounds for
the first approximation.

— In Section 5, we introduce the error indicators and prove the upper and lower a posteriori error bounds for
the second approximation.

— The theory is validated by numerical results in Section 6.

2. VARIATIONAL FORMULATIONS

In order to introduce the variational formulations, we recall some classical Sobolev spaces and their properties.
Let @« = (a1,q9,...a4) be a d-uple of non negative integers, set |a| = ijl «;, and define the partial
derivative 9% by
o Hled .
0x 1 0xy? ... 0xy*

Then, for any positive integer m and number p > 1, we recall the classical Sobolev space (Adams [1] or
Necas [24])
WmP(Q) = {v e LP(Q); V]a| <m, 0% € LP(Q)}, (2.1)
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equipped with the seminorm
1
p

[vlywm.e @) = Z /Q|3av|pdx (2.2)
|a]=m

and the norm

[ollwme@ =3 D [vlyem) ¢ (2.3)
0<k<m

When p = 2, this space is the Hilbert space H™(f2). In particular, the scalar product of L?() is denoted
by (.,.). The definitions of these spaces are extended straightforwardly to vectors, with the same notation, but
with the following modification for the norms in the non-Hilbert case. Let v be a vector valued function; we set

1
P
IvllLe(o) = (/Q [v[? dX) ; (2.4)

where |.| denotes the Euclidean vector norm.
For vanishing boundary values, we define

H(Q) = {ve H' (Q); v, =0} (2.5)

We shall often use the following Sobolev imbeddings: for any real number p > 1 when d =2, 0or 1 < p <6
when d = 3, there exist constants S, and Sg such that

Vo e HI(Q)a ]| Lr ) < Spllvlla (o) (2.6)

and
Vv e H&(Q)7 ||'UHLp(Q) < SS|U‘H1(Q). (27)

When p = 2, (2.7) reduces to Poincaré’s inequality.
Recall the standard spaces for Darcy’s equations

L2(Q) = {v € L*(Q); /dex = 0}, (2.8)

H(div,Q) = {v e L*(Q)% divv € L*(Q)}, (2.9)
Hy(div,Q) = {v € H(div,); (v-n)|r = 0}, (2.10)

equipped with the norm
”VH%{(div,Q) = ”V”%z(ﬂ)d + HdiVV||2L2(Q)- (2.11)

We also define the kernel of the divergence in Hy(div, ),
V = {v € Hy(div,Q); divv = 0}. (2.12)
The spaces L2,(2) and Ho(div, Q) (resp. H(Q)NL2,(2) and L2(2)4) satisfy the following inf-sup conditions:

/ qdivvdx
inf sup v

4€L2,(Q) veHy(div,2) [VIa@iv.o)llalzz @)

> p, (2.13)
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with a constant § > 0, and,

/ v-Vqdx
u 2 > 1. (2.14)

1 S =
q€H (Q)NLZ,(Q) veL2(0)d HV||L2(Q)d|Q|H1(Q)

For more details we refer to Bernardi et al. [7].
We introduce the two following variational problems equivalent to problem (P):

Find (u,p,T) € Ho(div,Q) x L2, () x H(Q)such that

v(Thu-vdx —/

Vv e Ho(diV,Q), /
Q

pdivvdx :/f~vdx7
Q Q

VqeL?(Q), /qdivudx =0,
Q

V.S € HH Q)N L>(Q), a/VT-VSdX +/(u~VT)de:/ngx,
Q Q Q

and
Find (u,p,T) € L2(Q)? x (HY(Q)N L?

m

Vv e L2(Q)4, /V(T)u vdx +/Vp vdx —/f vdx,

(2)) x H(2)such that

Vge HY(Q)N L2 (Q /Vq udx =0,

V.S e HH Q)N L>®(Q), a/ VT -VSdx +/(u-VT)de:/ngx.
Q Q Q
The variational problem (V7) is well adapted to locally conservative discrete schemes while (V3) leads to
numerical schemes that are more easily implemented. For the existence and uniqueness of the solutions of

problems (V7) and (V3), and their equivalence to problem (P), we refer to [7].

3. DISCRETIZATION

From now on, we assume that €2 is a polygon when d = 2 or polyhedron when d = 3, so it can be completely
meshed. For the space discretization, we consider a regular (see Ciarlet [12]) family of triangulations (75)s of
) which is a set of closed non degenerate triangles for d = 2 or tetrahedra for d = 3, called elements, satisfying,

— for each h, Q is the union of all elements of Tj,;

— the intersection of two distinct elements of 7}, is either empty, a common vertex, or an entire common edge
(or face when d = 3);

— the ratio of the diameter hx of an element K in 7, to the diameter py of its inscribed circle when d = 2 or
ball when d = 3 is bounded by a constant independent of h: there exists a positive constant ¢ independent
of h such that,

h
max — < o. (3.1)

KeT, pr
As usual, h denotes the maximal diameter of all elements of 7,. To define the finite element functions, let r
be a non negative integer. For each K in 7}, we denote by P,.(K) the space of restrictions to K of polynomials
in d variables and total degree at most r, with a similar notation on the faces or edges of K. For every edge
(when d = 2) or face (when d = 3) e of the mesh 7},, we denote by h. the diameter of e.
In what follows, ¢,c¢’,C,C’, ¢y, ... stand for generic constants which may vary from line to line but are always
independent of h.
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We shall use the following inverse inequalities: for any number p > 2, for any dimension d, and for any non
negative integer r, there exist constants C9(p) and C}(p) such that for any polynomial function vy, of degree 7
on K,

d_d

[onll ey < CR D) * llonllze () (3:2)
and
1 g-d-1
lalmi ) < Cr(P)hge * lvnllie ) (3.3)
The constants C? and C} depend also on the regularity parameter o of (3.1), but for the sake of simplicity
this is not indicated.
For a given triangulation 7, we define the following finite dimensional spaces:

Zn ={S, €C%N); VK € Ty, Splx € P1(K)} and Xj, = Z, N Hy(Q). (3.4)

There exists an approximation operator (when d = 2, see Bernardi and Girault [4] or Clément [13]; when
d =2 or d =3, see Scott and Zhang [27]) R, in LWP(Q); Z;,) and in LW P () N HL(Q); X;,) such that for
all Kin7,, m=0,1,1=0,1, and all p > 2,

VS € WHLR(Q), 1S = Ra(S) ey < Cpym, 1) B =™ S s ore (3.5)
where wg is the union of elements of 7j, that intersect K, including K itself.

3.1. Discrete schemes

8.1.1. First discrete scheme

The velocity is discretized by the Raviart—Thomas RT [25] elements. More precisely, the discrete spaces
(Wh1, Mp, 1) are defined as follows:

Wi, = {vi, € H(div,Q); vi(x)|x = axx+bg,ax € R,bg € RY, VK € T},
Wh,l =W, N H()(div, 9)7 (3.6)
M, = {qn € L*(Q); VK € Ty, qn|k is constant} and Mp1=Mpn L2 (Q). (3.7)

The kernel of the divergence in W), ; is denoted by Vj 1,
Vit ={vh € Wh1; divv, =0 in Q}. (3-8)

The following discrete inf-sup condition holds (see Roberts and Thomas [26]):

qn div Vh dx

Van € My, sup H——— > filgnllL2(0), (3.9)
VhEWh 1 ||VhHH(div,Q)

with a constant 3; > 0 independent of h.

We then consider the straightforward discretization of problem (V7):

Find (up,pn, Th) € Wi X My 1 x X, such that

V(Th)uh *Vp dx — /

Vvp, € Wi, /
Q

pp, div vy dx :/f'vhdx7
Q

Q

v

(Vi) Van € Mp, /qhdivuhdx —0,
Q

VS, € X, Oz/VTh-VSth +/(uh'VTh)Sth :/gShdx.
Q Q Q
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For the existence and uniqueness of the solution of problem (V}, 1), we refer to [7]. We recall the theorem of
a priori error estimates [7]:

Theorem 3.1. Let d = 3 and v satisfy (1.1) and (1.2). We suppose that problem (V1) has a solution (u,p,T) €
HY(Q)? x HY () x W23(Q), such that

A (S Il sz | Tlwrs) < avr. (3.10)
Let the mesh satisfy (3.1). Then the following error inequality between the solutions of (V1) and (Vi,1) holds:

o — up |l geaiv,e) + 12 = Prllz) + 1T — Thla ) < Crh (ulmips + Iplae) + [Tlw2s@))- (3.11)
3.1.2. Second discrete scheme

Let K be an element of 7;, with vertices a;, 1 < i < d+ 1, and corresponding barycentric coordinates \;. We
denote by ¥ € Pyy1(K) the basic bubble function

Vi (x) = A (%) ... Agar (%). (3.12)

We observe that ¢x(x) = 0 on 0K and that 1k (x) > 0 in the interior of K.
Let (Wh,2, My 2) be a pair of discrete spaces approximating L?(Q)¢ x (H'(Q) N LZ2,(Q)) defined by

Wi = {vh e OV VK €T, valx € P(K)d} , (3.13)
My, ={g, €C*(Q); VK € T, qnlx € P1(K)} and My, = M, N L2 (Q), (3.14)

where
P(K) =P (K) & Vect{vk }.

We approximate problem (V3) by the following discrete scheme:
Find (up,pn, Th) € Wh2 X Mp 2 x Xj such that

vVhGW}L,Q, /V(Th)uh'vhdx +/Vph~vhdx :/f~Vth7
Q Q Q

(Vh,Q) VQh S Mh,Qa /Q \% gh - Up dx = 07

VS, € Xy, Oz/VTh'VSth +/(uh~VTh)Sth
Q Q

1
—l—f/(divuh)Th Sh dx :/gShdx.
2 Q Q

For the existence and uniqueness of the solution of problem (V}, 2), we refer to [7]. In particular, the following
inf-sup condition, analogous to (3.9), is valid with another constant 82 > 0 independent of h, see [7]:

Vaqn-vpdx

Yy € Mpa, sup L > B |qn| ). (3.15)
Vi EWh 2 ||Vh||L2(Q)d

We recall the theorem of a priori error estimates [7]:

Theorem 3.2. We retain the settings and assumptions of Theorem 3.1; in addition, we suppose that (p,T) €
H?(Q) x (Whee(Q) N W23(Q)) and

ASQ Il zs )3 (S6 [T Iwrs) + 1T Lo ) < 20w (3.16)
Then the following error inequality between the solutions of problems (Va) and (Vi 2) holds:
[u—=wnllr2) + P = prlar@) + 1T = Thlgr o) < Co b ([ulmi)y + plaz@) + | TIw2s@) + [ Tlwre(q). (3.17)
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3.2. Successive approximations

As the problem is nonlinear, we introduce a straightforward successive approximation algorithm which con-
verges to the discrete solution under suitable conditions. We present the following Picard iterative problems:

For given T} € X}, find (uzﬂ,pzﬂ,TiH) € Wi X Mp1 x Xpsuch that

Vv € Wi, / V(T,ﬁ)uffl cvpdx — / pfldivvh dx = / f-vy,dx,
Q Q Q

(Vh,i,l) vqh c Mh,l; / an div ul}';rl dx = 0,
Q

Vv Sy, GXh, a/

VTt VS, dx +/(u2+1'VTi“)Shdx :/gSh dx,
o Q

Q

and _ ) , .
For given T} € Xj, find (u}fl,p;fl,Tle) € Wh.2 X Mp, o x Xj, such that

Vv, € Wy 2, /IJ(T,’;)u;:rl - v dx +/ Vpitt . vy, dx :/f~vhdx7
Q Q Q
il g,
(Vi) Vaq; € My, /Qth u, " dx =0,

V Sp € X, a/ VTt VS, dx +/(u§j1~v7;’§+1)sh dx
Q Q

1 ) )
+5 / (divuitH Tt Sy, dx = / g Sy dx.
Q Q

The following stability bounds are proved for both problems in reference [7]:

IA

i 1
ILAIFERSE ;1||f||L2(Q)d7

SO
EQHQHLZ(Q% (3.18)

IA

Ty 1 o
- 1 120
l < —|If 14+ —= k=1,2
Iz < - Melincoye (14 2) k= 1.2

where [ refers to the inf-sup constant of the k-th discretization, k = 1,2. The reader will also find convergence
of the algorithm to the solution of the continuous problem when i tends to +o0o and h tends to 0. We will
demonstrate in the following theorems the convergence of the iterative solution to the discrete solution when
tends to +oo for all A sufficiently small. This will be useful when studying the lower bounds of a posteriori error
estimates in Sections 4.2 and 5.2. To simplify, they are stated in three dimensions, but the two-dimensional
analogue is easily derived. In both cases, the regularity assumption (3.1) is not sufficient and is strengthened
by prescribing in addition some quasi-uniformity. In three dimensions, to simplify the exposition, we choose the
following sufficient condition: There exists a constant 7 > 0, independent of h, such that

VK €T,, hg>r1h. (3.19)

We refer to Remarks 3.4 and 4.10 below for a discussion on the quasi-uniformity condition.

Theorem 3.3. Let d = 3, let v satisfy (1.1) and (1.2), and let (3.1) and (3.19) hold. We suppose that problem
(V1) has a solution (u,p,T) € H*(Q)3 x HY(Q) x W23(Q) verifying
(62 %1

)\(Sg)2||uHL3(Q)3|T|W1,3(Q) < e (3.20)
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In addition, we denote by

min (||UH%3(Q)37 |T‘2{/V1-,3(Q))

2
(Jul g0y + lplar@) + 1T lwzs @)

ho =C , (3.21)

where C = &oses CY(3) is the constant of (3.2), T the constant of (3.19), and Cy that of (3.11). Then for
I 1 . . .

h < hg, the solution (u}j‘l,pfl, Tﬁ'l) of (Vi,i,1) converges, uniformly with respect to h, to the discrete solution

(up,pn, Th) of (Vii1), as i tends to infinity.

Proof. Let (up,pp, Th) and (u}™, pit!, TiH) solve respectively (Vi 1) and (Vi 1)-

To estimate the temperature error, we take the difference between the third equations of (V1) and (Vi,i1)
tested with S, = T} — TfLH, and insert VT1}, and V7. We obtain by using the antisymmetry of the transport
term,

alTy = T i) = / (w™ —wy) - V(Th, = T))(Th, — Tp 1) dx

@ (3.22)

+ / (=) - V(T — T)H) dx.
Q

Owing to the regularity of T', the bound of the second term in the above right-hand side is straightforward,

/Q((UZ+1 — ) - VI)(T; = T;;7) dX‘ < SgITwrs@)|Th — T e oyl — w22 (q)e.
To simplify, let A denote the first term and set

C(u,p,T) = |u|gr(q)s + plar @) + T w230)- (3.23)

By applying (3.2) and Holder’s inequality, we find

ol

i —3\3 i
Al < 1T — T N 2oy T — Thl o) ( Z (CP3)hg?) [lun — uh+1||?i2(K)3>
KeTy,

Then Jensen’s and Sobolev’s inequalities, and the a priori error estimates (3.11) yield

Nl

Al < S§CY3)|Th = Ty 1 ()| T — Tl () ( > bt - uﬁ“”%?(zc)ﬁ)
KGEL

1

2

< SgC1CY(3)|Th — Ty, 1 () C(u, p, T) ( Z (W hH)[lay, — UZHH%%K)S) : (3.24)
KeTy,

With the quasi-uniform regularity assumption (3.19), this becomes
-
1< (1) S hECp T = T o lhun 5 e
Thus by substituting into (3.22) these bounds for the two terms, we find

S8

; A% ;
‘Th - Th+1‘H1(Q) < E (7’) CIC?(S)C’(u,p, T) + |T|W13(Q) ||uh - uh+1||L2(Q)3. (325)
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To bound the velocity error, let v, € V4 1. The difference between the first equations of (Vj, 1) and (V1)
leads to the following relation

/V(Th)uh-vthZ/u(T,i)u;’jl-vhdx. (3.26)
Q Q

By inserting uy and u, and testing with v, = u;, — u?‘l that belongs indeed to V1, we easily derive
o ; . ;
I (T3)) % (an — w122 (g :/Q(V(Th) —v(T}))(up —u) - (up —w;™) dx
+ / ((Th) — v(Ti)u- (u, —ujth) dx.
Q
Then (1.2), (3.2), (3.19), (3.11), the Lipschitz continuity of v, and the above argument yield

villun — uZHH%z(Q)S S ASYITH — T o)

1
2
X Hu||L3(Q)3 ||uh — u;1+1||L2(Q)3 + C?(S)Hu — uh”Lz(Q)s ( Z h;{1||uh — u2+1||%2(K)3>
KeTy,

. 1 .
<ASUTH = Tl o) (\|u||L3(Q)3 + (1) 01 CY(3)C(u, p, T)) [un = wi™ | pa oy

By substituting (3.25) at level ¢ into this inequality we obtain

. A SO 2 1 1 A
Huh — u;l+1||L2(Q)3 < éjl) (C’ hz C’(u,p, T) =+ ||u||L3(Q)3) (C/h2 C’(u,p, T) —+ |T|W1,3(Q)) ||11h — uhHL2(Q)3,
(3.27)
0
where C' = %fcl As h is sufficiently small (h < hg), we obtain by using (3.20) the bound
T2
||uh — u2+1||L2(Q)3 < M||uh — uz;-LHLz(Qp,
4)(S9)?
where M = 0571/6)(||UHL3(Q)3‘T|W13(Q)) < 1. This implies
1
Huh — U.;jIHLz(Q)S < Mi+1||uh — u?LHLz(Q)?,, (328)

which allows us to derive the uniform convergence of uZH to uy, and owing to (3.25), that of Ti“ to T},.

Finally, the proof of the error estimate for the pressure follows the same lines. By taking the difference
between the second equations of (V3,1) and (V},;.1), inserting v(7}) and u, and testing with vy, in Wy 1, we
obtain

/(pfrl — pp)div vy dx :/ I/(TZ)(UZJA —up) - vpdx + / (I/(T;l) —v(Th))(up —u) - v dx
Q Q Q

+ [ W) = v v dx (3.29)
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Hence

/(p?_l — ph)divvh dx| < 1/2||uh — u’;j_l”LQ(Q)S HVh”LQ(Q)S
Q

+ASSITh = Thl (o [Huh —ul[£2(0)sC1(3) ( > hl_(1||vh||2L2(K)3>
KeTy,

+[ull sy vallL2()s

< [[vallz2(o)s <V2||uh —up | L2 (o

1
; h\?
+ AS§ITh — Thl o) (C1C7(3) (7) C(u,p,T) + u||L3(Q)3)> :
The uniform convergence of pjt* to py, follows from the inf-sup condition (3.9), the condition h < ho with hg
given by (3.21), and the convergences of u;"" and T} . O

Remark 3.4. Condition (3.19) can be somewhat relaxed. Indeed, it stems from (3.24) and (3.27) that it suffices
to prescribe for some small § > 0,

VK €T, thg'h? <he,
i.e.,

VK € Tp, hg >7h*>°, (3.30)

a condition less restrictive than (3.19). The situation in two dimensions is more favorable, owing to the wider
range of Sobolev’s imbeddings. It suffices that for some small § > 0 and some p > 2, close to two,

VK €Ty, hg >7h179572, (3.31)
Indeed, the contribution of u; — u#l to the first line of (3.24) can be replaced by

1
2(2-1) ; :
( Z h [un — UZH”QL?(K)?) )

KeTy,

for any p > 2, close to two. Therefore it suffices that for some small § > 0,

2
VK €T, thi h<h,
i.€.,
P
VK €Ty, hg > (rh79)72,
Since p is a little above two, this brings hardly a restriction (provided of course that h < 1).

The convergence of the solution of (V4 2), that holds under similar assumptions, is stated below. The proof
is a straightforward adaptation of the proof of Theorem 3.3.

Theorem 3.5. We retain the settings and assumptions of Theorem 3.3 and we suppose in addition that (p,T) €
H2(Q) x (Whee(Q) nW23(Q)) and

[0 2%

ASSNull s s (1T )| o @) + SSIT|wrs(a)) < 5

We replace (3.21) by

o min 2 [l e (SBIT oo + [Tl ))) )
’ 2(ulm )2 + [plE2(0) + T w2s(0))? ’ .
where C = m and Cy is the constant of (3.17). Then for h < hg, the solution (uﬁj‘l,p;’j‘l,Ti“‘l) of (Vh,i2)
converges, uniformly with respect to h, to the discrete solution (up,ppn,Th) of (Vi2), as i tends to infinity.
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4. A POSTERIORI ERROR ESTIMATES FOR THE FIRST APPROXIMATION

As usual, for a posteriori error estimates, we introduce the following notation. For every element K in 7,
we denote by

— T the set of edges (when d = 2) or faces (when d = 3) of K that are not contained in 9;
— I'? the set of edges (when d = 2) or faces (when d = 3) of K which are contained in 9.

For every edge (when d = 2) or face (when d = 3) e of the mesh 7}, we denote by

— w, the union of elements of 7}, adjacent to e;
~ []e the jump through e on each edge e of T'.

From now on, to simplify, we set d = 3. Again, the extension to two dimensions is straightforward and
simpler. In this and the next section, the a posteriori error estimates are established when the solution is
slightly smoother and the data are suitably restricted.

It is well known that by using the Raviart—-Thomas finite element, the a posteriori error estimates corre-
sponding to the Darcy problem are not optimal [8], since we can not locally bound the indicator with the local
error. But when the data f is sufficiently smooth, optimality can be derived by adding an indicator obtained by
taking the curl of the first equation of problem (P) [11],

curl(v(T)u) = curlf. (4.1)
To specify the smoothness of f, let us recall the standard space
H(curl, Q) = {v € L*(Q)?; curlv € L*(Q)*}, (4.2)

equipped with the norm

|v||§-l(curl,Q) = ||VH%2(Q)3 + ||Cur1v||2L2(Q)37 (4.3)

and Green’s formula, valid in any Lipschitz domain O,

Vo € HY(0)3 Vv € H(curl, 0), (v x n, p)po = /

v - curl pdx —/ ¢ - curlv dx, (4.4)
o

(@

where 0O denotes the boundary of @ and the duality (-, )90 reduces to the surface integral, when v is smoother,
e.g. v € HY(0)3. In view of (4.1), the additional regularity f € H(curl, ) would seem sufficient, but considering
that Green’s formula (4.4) will have to be applied below in each element, thus leading to jumps of tangential
components on each face, it is much simpler to assume that f € H(Q)3.

The estimates below rely on the following fundamental result.

Lemma 4.1. Let Q be a bounded simply-connected domain of R® with a Lipschitz-continuous boundary 9. To
each function v € V, defined by (2.12), we can associate a unique function n € Hg(2)3 such that

v = curly, (4.5)
and there exists a constant C' independent of v and n, such that
71l (@) < ClivIiLz @) (4.6)

While the analogue of Lemma 4.1 in two dimensions is a straightforward and well-known result, see Girault
and Raviart [19], this is not so in three dimensions, and the reader will find a proof of Lemma 4.1 in the
appendix.
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4.1. Upper error bound for the first discretization

As usual, the choice of error indicators stems from suitable error equalities. The error equality for the tem-
perature is straightforward. Indeed, a standard argument shows that the solutions of problems (V1) and (Vj,;.1)
verify for all S in HY(Q) N L>(Q) and Sj, in Xy,

(u-VT)de—/( VTS dx
Q

a/v(T—Tg+1)-Vde+/
Q

Q

- Z [/(QAT;+1— LT + gy) (S — Sh) dx
K

KeT,

/(g gn)(S — Sh)dX—% > / VT n) (S — Sp)ds (4.7)

eeé)KﬁF’

where gj, is a piecewise constant approximation of g in each K of 7.

But the error equality of Darcy’s system is less straightforward precisely because of the lack of optimality
of the Raviart-Thomas elements. In fact, it is convenient to use two equalities, one where the test functions
belong to Hy(div, Q) and one where the test functions have zero divergence. On the one hand, regarding the
first equality, the same arguments as with the temperature give for all v € Hy(div, ) and all v, € W), 1,

/I/(T)U'VdX* /pdivvdxf/z/(Tf;)uj’j'Lvdx +/p2+1divvdx
Q Q Q Q

Z/ (f—1£,) (v—vp dx+z

KeTy, KeT,

—&-% Z /[p“r1 (v —wvp)ds ] (4.8)

e€OKNTY

l/ (£, — v(THu — Vpith) - (v — vy,) dx

where f}, is an approximation of f, which is a polynomial of degree [ with [ > 1 in each element K of 7j,.

For the second equality, on the other hand, we apply Lemma 4.1 and we have for all v € V and all n;, € X,
/ v(Thu-vdx — / v(Thupt - vdx
Q Q

— Z /Kcurl(f f,) - (n— nh)dx—i—% Z /f f,) x 0l - (n—nx)ds

KeTy, e€OKNI},
+ Z [/ curl(f, — v(TH)ujt) - (n —mp) dx
KeT, LVE

+* Z /fh_VTh ") x n]e'(ﬂ—ﬁh)dsla (4.9)

eeaKﬂF’

where v = curlyn, n € H}(Q)? associated to v by Lemma 4.1.

The error equalities (4.7)—(4.9) suggest the following temperature, pressure, and velocity error indicators in
each K € Tj,:
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i i ; 1 1 X
P = hy [|aATI — uit . Ui 4 Il ey + 5 S hd e VTt n] |l (4.10)
e€cdKNT)
. 1 1
Nein, = hi || -Vpit — v(ThHuit + Bl 12 rcys + 5 > hd ||t nl. Jell 2oy (4.11)
e€cOKNTY,
1 1 o
77§(Dz}2),2 = hi |[eurl(—v(T})ujt + fh)HLz(K)a +3 Z he |[(—(T)a) ™ + £3) x 1] HLQ( . (4.12)
e€cOKNT},

In addition, we introduce an indicator for the algorithmic error, in each K € 7p,,
L ;
77;( =T - Tyl (k- (4.13)
The next theorem proves an upper bound for the error in terms of these indicators.

Theorem 4.2. Let v satisfy (1.1) and (1.2), let the mesh satisfy (3.1), and let f € H'(Q)3. We suppose that
problem (V1) has a solution (u,T) € L3(Q)% x W13(Q) such that

A (S)2(Iall s (@) [T lwrs () < avr.
Then the following error inequalities hold:

2
% D D
= 2oy + 1T = T3t s o <C[Z ((n%ff) (i)
KeTy,

[N

hiclewrl(f = £)l[Za o+ D Aelll(f = £1) x mle] T2 + hicllg — ghlliamﬂ

e€cOKNT},
1
2
+ < > (nﬁff)) ) : (4.14)
Ke%l
1
c (D,1) 2 2 ’
=5t e < 5 ( 3 ((800) "+ el =l
KeT,

1

A | A

+ BSgHUHLE‘(QP T =T, o) + ( > (U%L?l)) ) + EQSSH — w2 e
KeTy,

(4.15)

where 3 is the constant of the inf-sup condition between H3(Q)? and L2 (), see [19].

Proof. Let us start with the temperature. Consider first the left-hand side of (4.7). By inserting
/ (w- VTS dx
Q

into this left-hand side, by testing it with S =T — TZH that is indeed an admissible test function, and by using
the antisymmetric property of the transport term we derive,

alT — Ty gy = RIT =T + /Q ((uit! —u) - VI (T — T3 dx, (4.16)
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where R(T — T; ') denotes the right-hand side of (4.7) with S = T — T;*'. The last term of (4.16) becomes,
after inserting VT,

/ (W = w) - VT)(T - Ti) dx
Q

- / (Wi = w) - V(T = T))(T - T dx + / (Wi —w) - VT)(T — T dx,
Q Q

and the Holder inequality and the antisymmetry imply

< SQITlwrsollu = w20 | T — T i o) (4.17)

/((u —uth) - VTEY(T - T dx
Q

Next, we turn to its right-hand side, R(S), for general S; it can be bounded as follows:

R(S) <

KeT,

(HaATZ+1 —utt vt + anllze) + 19 = gnllzzcx)) 1S — SullL2(x)

1 7
t3 Y e[VT nle] e 1S - Sh”L"’(e)] :
e€cOKNT},

The choice S, = Ry (S), see (3.5) gives the following bound:

R(S)<Cy > lhK(WATiH —w, VT gnll o) + g — gnllze ) 1S B )
KeT,
(4.18)

C2 1 .
+3 > hE e[Vt 'n]€|L2(e)S|H1(wK)]'
e€OKNT],

Then, by substituting (4.18) with S =T — TfLH and (4.17) into (4.16), and by applying the regularity of the
mesh, we conclude

2
alT =T o < Cs < > (i) + hicllg - ghlliz(K))> +Sg|Tlwra lu = w2y, (4.19)
KeTy,

Now, we examine the velocity. Consider first the left-hand side of (4.9) with v € V. By inserting / v(Ti)u-
Q

vdx and / v(Ty ) u - vdx into this left-hand side, (4.9) becomes
Q

/ (T (u—uit) - vdx = Ri(n) + / (T —v(T))u - vdx
Q Q
+/(V(Té) — (T} )u - vdx, (4.20)
Q
where R1(n) denotes the right-hand side of (4.9) and n € H}(Q)? is the vector potential of v constructed in

Lemma 4.1, see (4.5) and (4.6). We denote by I the sum of the second and third terms of the right-hand side
of (4.20). The Lipschitz continuity of v and Holder’s inequality yield

I<AS§I[ullse (1T — T m e + T = Ti i @) VI 22 @)
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Regarding the right-hand side Rq(n) for n € Hg(Q)3, we choose 1, = Ry, (n), the degree one Scott and Zhang
interpolant of n that belongs to X}, since 7 vanishes on I'. By applying the approximation properties (3.5) of
R}, to the function 7, we obtain

Rl(’ﬂ) < Cy Z hi (‘|CuI‘l(71/(’17;)112-~—1 + fh)||L2(K)3 + ||curl(ff fh)||L2(K)3) |77|H1(wK)3
KeTy,

1 3 iy,
+5 2 hE (AT + 8) < mlellzze + IE = ) X nlellzaes) Inla s |- (421)
e€OKNT},

The choice v = u — u};"" in (4.20), the regularity of the mesh (3.1), and the estimate (4.6) relating  and v

give

2
i D1
vl = e < Cs | 30 (W) + Hklleurl(f = B) e+ D Al £) X nFaqes
KeTn e€cdKNT},

2
+ ASgIllzs @3 1T = T ) + A Sgllull s ays ( > (Tlﬁé%l)f) .
KeTy,

Hence (4.19) yields

viflu— w2 ) < Cs

D1 2 D1 2
> ((nfm,f) + (n0r8) "+ hkllg = gnl3e o) + Pk lowrl(E = £) 32 s

KeTy,
: A
+ Z hell[(f — fr) x n]fi”%z(e)?’) + E(SS)QHHHL?’(Q)B|T|W1»3(Q)”u - uZ“HL?(Q)?»
e€OKNT,

5\ 2
+ A Sglall s ays ( > (nﬁégl)) ) ; (4.22)

KeTy,

thus proving (4.14).
Finally, to estimate the pressure error, we consider equation (4.8) with any v € Hy(div,€2). By inserting

/ v(Ti)u-vdx and / v(T7 1 )u - vdx into its left-hand side, (4.8) becomes
Q Q

[0 = paivvax =R+ [ (T (D) u-vax
Q Q

+/Q (v(Ty) —v(T; ) u- vdx — /Q v(Ti)(u—ujth) - vdx, (4.23)

where R1(v) denotes its right-hand side. Since pZH —p belongs to L2,(Q2), owing to the inf-sup condition between
HY(Q)? and L2, (Q) [19], there exists v € H} ()2, such that

/Q (b — p)divvdx = 5 — pl2a 0, (4.24)

and

1 i
Vis@e < lIPE™ — Pl (4.25)
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We choose this v and vj, = I, v in (4.23), where I, is the interpolation operator from H!(Q)? in Wj, 1 (see
Brezzi and Fortin [9] or [26]) such that for all ve H'(Q)3

VK € 'Th, ||V - Hhv||L2(K)3 < 05 h}(|V|Hl(K)37 (426)

and
Ve € ].—‘2 @] PZ, ||V — HhV”L2(e)3 < Cﬁh§|v|Hl(K)37 (427)

where K is an element adjacent to e. With this choice, by applying (4.26) and (4.27), R1(v) is bounded as
follows:

Rl(V) < Z lC7 (H - Vpﬁfl - I/(T}i)u;;rl + thLZ(K)S + ||f— fh||L2(K)3) hK‘V|H1(K)3

KeTy,
Cs i+1 3
+7 Z Py nlellz2e)shé [vIm (ks |- (4.28)
e€cOKNTY

Then, by substituting (4.28) into (4.23), and applying (4.24), the regularity of the mesh (3.1), and (4.25), we
infer

; Coy D) \?
Ip - 2 s <ﬂ(2 ((422) +h%(f—fh||%2<ms)>

KeTy,

1
2

1

A . AN .

+ 5 Silullzs@p | 1T =T e + ( ) <n§£;”>2> S LR RS CR )
KeTy,

This proves (4.15). O

4.2. Lower error bound for the first discretization

As is well known, lower bounds are established locally. This localization is achieved in each element K of 7j,
by means of the bubble function ¥ defined by (3.12). The jump terms on edges e when d = 2 or faces e when
d = 3 are localized by means of similar bubble functions defined on e. For those jumps, we also need a lifting
operator L. from edges or faces e of I} to the two elements K and K’ sharing this edge or face. It acts on
polynomials that vanish on the boundary of e and produces a globally continuous function with element-wise
polynomial values defined individually on K and K’ that vanish on O(K U K’) \ e. The effect of these elements’
geometry on L. is controlled by first defining £s on the reference edge or face é shared by two reference elements
and passing to £, by a suitable piecewise affine transformation. We refer to Verfiirth [28] for this construction
and the next results:

Property 4.3. For any positive integer r, there exist positive constants ¢ and ¢, independent of h, such that,
for all elements K,

1
Vo e Pr(K),  clvllrax) < lveillez ) < Ellvllzzg- (4.30)

Property 4.4. For any positive integer r, there exist positive constants ¢, ¢, and ¢, independent of h, such
that, for all faces or edges e, according to the dimension, we have

1
VvePq(e), clvllzze) < vibéllrze) < llvllrzce, (4.31)
and, for all polynomials v in P,.(e) vanishing on Oe, if K is an element adjacent to e,

”‘CSUHLZ(K) + he|£ev|H1(K) < c"h? ||'U||L2(e). (432)
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To establish lower bounds for this first discretization, as we need to work with polynomials for the application
of inverse inequalities, it is convenient to approximate v(f) by a polynomial of degree one. For instance, we
choose vy, : f € HY(K) — v,(f) € P1(K) defined by

e = [0 ay + | [ @mmay] - x-o. (4.3

where c is the center of the element K; thus |x — c| < hg. Clearly, if v(f)|x belongs to Py, then v, (f) = v(f)
in K and it is easy to check that the mapping deﬁned by (4.33) is invariant by affine transformations. In other
words, if K is the reference element and K = Fi (K), then

— 1 —_ 1 A R R
uh<f>|kz|m/ku<f>dy 4 [W/K(Vv(f)dy] (% -@),

where the hat denotes composition with Fx and ¢ is the center of K. Asa consequence, for smooth enough v
and f such that v(f) belongs to WP(K) with £ = 1,2, and a number p > 2, we have

lvn(F) = V() Loy + b1V () = v(F)llr) < CRG v (H)lwe i), (4.34)

with a constant C' that depends on p but is independent of h and K. The term |lv,(T) — v(T')||w1.3(x) will
appear in the subsequent lower bounds and will be treated as an error, considering (4.34).

When v € W2°°(IR), so that its derivative v/ is bounded by a real number denoted by v4 and is a Lipschitz-
continuous function with Lipschitz constant ', the polynomial function v, verifies from (1.2) and (3.1), for
every f € HY(K),

ln (Pl ey < va+ 5 b K72V S llo s (4.35)
Furthermore, by observing that for all numbers p > 2,
1
1% = cllLo(rya < C(P)|K|? i, (4.36)

where C(p) depends only on p and the reference element, we readily derive that for every f; and fo in H*(K)
we have for each number p > 2,

1_1
lvn(f1) — vn(f)lloexy < MK[P 75| f1 — foll Lo (k)
1_ 1 1
Cp)hxc K137 (VIR B = falm ey + N Ky = Fallzogo folmi ) - (4:37)

In the remainder of this section, we assume that v € W2 (R).
Let us start with the temperature error indicators (4.13) and (4.10).

Theorem 4.5. We retain the settings and assumptions of Theorem 3.3. Then for each h, there exists an integer
1o (depending on h) such that for all i > iy and for all K € Ty, the following inequality holds:

ead <O\ lu—uptres 1T = T mwy + Y hglle = anlliaz) | - (4.38)
f(Cwe

with a constant C independent of h and K. Moreover, without assumption, we have

nKz V< T = T iy + T = Tl ). (4.39)
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Proof. Clearly (4.39) follows by the triangle inequality.
Next, we bound the volume part of 77&517711). As usual, this is done by testing the error equation (4.7) with
Sp =0 and S = Sk, where Sk is the localizing function defined by

g _ [ (AT —w LV 4 gy in K,
70 in Q\ K.

With this choice and after inserting / (uit! . vT)Sdx, (4.7) reduces to
Q

/ (AT — i VT 4 ) o dx = a/ V(T - T/ - VS dx
K K

+/ (a—ujt) - VT)Sk dx +/ (Wit V(T — T} 1)) Sk dx
K K

- / (9 — gn)Sk dx. (4.40)
K

Now, we bound each term in the right hand side of (4.40). A bound for the last term is obvious; for the first

term, we use the inverse inequality (3.3). The second term can be bounded by using Holder’s inequality and the
inverse inequality (3.2),

‘/ u u;fl VT)SKdX‘ SC?<6)h;(1|T‘W113(K)Hu_u2+1|‘L2(K)3||SK“L2(K)~

For the third term, we insert first u; and next Rj(u) (that is well defined since u € H'(Q)3) to apply inverse
inequalities,

’/ (uj - V(T — Tj+)) S dx
K

/K(<u};+1 —uy) - V(T = T;)) Sk dx

+ / ((up, — Rp(n)) - V(T — T ) Sk dx
K

+/ (Ra(u) - V(T = Ti*1)) Sy dx

< CPORE (CFBhs (lay™ = il e
+ l[wn = Ru(w)lz2qa0y2) + 1R (W)l 320 )
T = T3 (a0) 19K Ml 22 ) (4.41)
According to Theorem 3.3, see (3.28), there exists hg > 0 such that for any h < hg, we have
[ui,™ = wnllr2(rys < ctllug, — a2,

where ¢; < 1. As ¢} |luj, —up||f2(0)s tends to 0 when i tends to 4oco, then there exists i depending on h, such
that for any i > i,

HUZ—H — uhHL2(K)3 S C2o ]’L (442)

Using the a priori error estimates (3.11) and the approximation properties (3.5) of Ry, we obtain with the
constant C of (3.11) and interpolation constants Cs and C3 independent of h and K,

)/K(u;'jl V(T — TiH1)) Sk dx| < OV (6)hy! (C?(S)h;fh(cz + C1C(u,p,T) + Calul g (wy)) +Cg\|u||H1(wK))

X T — T i ) 1Sk | 2 o)
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Hence, by collecting these estimates and using (3.3), we infer

. . . 1
hic[|(eATH —wi - VT 4 gy

< hicllg = gnllzzcaey + CROIT ey [0 = 057 | ey

L2(K) —
+ 1|7 - T;i+1|H1(K) (04011(2) +C?(3)C1(6) (i) '
x (c2 + C1C(u,p,T) + Colu| 1 ()
+ cgc?<6>||u||mw>>, (4.43)

which yields the first part of (4.38).
Finally, we estimate the surface part of 775{[’)1.”11) by testing (4.7) with S, = 0 and S = S., where S, is the
localizing function defined by

S Lo (a[VT n)p.) on KUK/,
o on Q\ (KUK,

and K and K’ are the two elements adjacent to e. Then (4.7) reduces to
oz/[VTZJr1 ‘0%, ds = / (AT —uftt - VT 4 g)) S, dx
e KUK’

+ a/ V(T —T)- VS, dx +/ (ujft —u) - VT)S, dx
KUK’ KUK’

+ / (uitt . v(T —T))S, dx —|—/ (9 — gn)Se dx.
KUK’ KUK’

In view of the continuity properties of £, in (4.32), a bound for the above left-hand side is derived by the
same arguments; for instance, by combining it with (3.2), we have on the elements K sharing e

I£e(@)llzox) < €"CP(6)h h [|vll 2 e)-
Thus, by applying (4.43), we obtain
1 . . .
hg ||O¢[VT;L+1 . n]e||L2(e) S C (Hu — u2+1||L2(KuK/)3 + ‘T — T}ZL+1|H1(KUK’) + heHg — thLZ(KUK’)) . (444)
This gives the second part of (4.38). O

Now, we turn to the first velocity error indicator (4.11). Beforehand, we establish the following preliminary
results.

Lemma 4.6. Let the mesh satisfy (3.1), v € W?°(R) and u € L5(Q2)3. Then
AN i i+1 / —lig i+l .
1(AT5) = va(T)uy" llzzcrys < | 2v2 + w2l K72 == lgllz() | lw,™ — ullzzs

+va(T) = (D) llzs ol s zeys + AT = Thl 2o () 1l a0y

2

+ [CONKTE hac (K 3T = Tlirs )
+ XIK I = Tl pogao | Tl ) + MK T = Tllzogo | Iullzegos, (4.45)

where C(3) is the constant of (4.36).
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Proof. The left-hand side of (4.45) can be split into

1(A(T3) = v (TR 2 crye < N(TR) = va(Ti)) (" = w2y + 1((T5) = va(Ti))ull2grye = 1 + L.

The bound for I; follows from (4.35), (1.2), and (3.18),

i i i _1 89 i
1(A(T3) = vn(T3)) (it = )| 2xys < (202 + vohic| K| ™2 Z2||g||L2(Q))||uh+1 —ullr2(x)e (4.46)
To bound I», we split it in turn into three parts

I < | (un(T3) = va(T)ull L2y + [ (wn(T) = v(T))ull2rye + [|((T) = v(T)ullz2s-

The second and third terms have a straightforward bound

[(vn(T) —v(T))ullL2(x)z < [va(T) — v(T)| L3y 1all o (53,
[((T) = v(Tp))ul L2y < AT = Tyl oy 1l 23 ()3 -

Finally, we deal with the first term by a simple variant of (4.37)
; 1 i _2 1 i
[(vn(T3,) = vn(T))ull L2 (xys < [AIKIG ITh = Tllcecre) + CBIE]™ 3 hue (val K12 [T}, — Tl e
1
+ N K[} |IT3 = Tllzo o Tl o) | 1l oy, (4.47)
where C'(3) is the constant of (4.36). The result follows by collecting these inequalities. (]

Lemma 4.7. Let the mesh satisfy (3.1), v € W?>*(R), u € L(Q)3, and T € W13(Q). To simplify, the
constants arising from inverse inequalities are not specified. Then

, L L 2
IV (W(Th) = vn(Ti))ug L2 xys < Chicllv” | oe ory (1K~ T3 = Ba(T) ey + KI5 [RR(T) i1 ()
x Ny =l 205 + [|Vh(T) = (D) |wrs(xcy + K| 3|T = Ba(T)] 0
X T3, = Tl s ey + K178 [Ra(T)lwrs )| Th — Tllzs i)
+ KI8T = Tl a0y + [BA(T) = Thwoogae ) Il ooy (4.48)
Proof. As previously,
IV ((T3) = vn(T3)) % i,  lz2ys < IV ((Th) = va(Th) x (w,™ =)z (s
=+ ||V<V(T,Zl) — Vh(T}’i)) X uHL2(K)3 =1 + 5.
An application of (4.34) gives
L <V ((T3) = vn(Ti) = s llug™ = ull2(xys < Chic [V (Vu(Th)) | Lo sy [0y = w2 x)s.
As T} is a polynomial of degree one in K, we have
IV (Y v (Ti) | oo rcysxs < 19" Lo ) IV Thll oo (165

But of course, since the W1 norm of T} is very unfavorable, we insert the interpolant Ry (7T") and write

IV (Y o(Tp)) e (xeypxs < 200" | zoe vy IV (Th = B (D)) 7w sy + 200" | oo o) [V B (D)L (16s-
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Therefore, applying inverse inequalities (for simplicity, we do not specify the constants in the remainder of
the proof)

% 0 — i _2
IV ((T8) = va(Ti)) | 1o (r0ys < Chicl|V"|| ooy (| K| 71T — Rh(T)ﬁJl(K) + K75 |Rh(T)|%/V1’3(K))'
Thus
- " _2 i
Iy < Chacll | e oy (KT~ B ey + KT IR Bsgao)) lg ™~ wlzaen. (4.49)
Next, the term I5 has the bound

I < |V (v (T3) = vn(Tp)) Lo | oo

As previously, we split the factor involving v,

IV ((T3,) = vn(Ti) zecxye < IV (va(Ty) = va(D) e ys + IV (v (T) = v(T) |23y
HIV@AT) = v(Ti) | s (e

We only need to bound the first and third terms since the second one is an error, see (4.34). By virtue of
(4.33), the first term has the expression

iy _ g, = i v(TH) — v X
IV (vn(T5) = v (D) s 5 H|K/KV( (Th) —v(D)) d L3(K)? (4.50)

/K V(u(T}) — v(T)) dx‘ :

< |K|7#

Now, by splitting as follows:
V(T —v(T) =V (THV T, =V (T)VT = (V(T}) —V'(T))V T}, + V' (T)V(T}, — T)
= (V(T}) —V'(D))V(T} — Ru(T)) + (V(T}) — V'(T))V Rp(T) + V' (T)V (T}, — T),
the first term is bounded by

|V (va(T3) = va(T)) HLS(K)S < K|35 (X|TZ — Ru(D) | (1) I T5, = Tl 22k

+ X|Bu(T) a6y 1Ty, = Tllzqae) + 4K 1A ITi = Tlars o))

< K3 (VIK T = Ba(T) 00 1T = Tl
+ XK R (Dlwrs o) KT = Tl ) + 41K 13 T = Tlin ) ).

There remains the third term. By recalling (4.50), we see that, we have to bound again V(V(T) —v(T})),
but now in L3 instead of L', as was done above. The same splitting gives
19 (AT) = (T s < I (T5) = ¥/ (T) V(T = Ra(TDllwogaeys + 1 (T5) — v/ (T)) T BTl sy
+ [V (D)V(T, = T)llzs(xys
S NNTy = Tllzs ) (1T — Ru(D)lws o) + [Ba(T)lwrs ()
+ 05| T}, = Ru(T)lwrs (i) + V5| RR(T) — Tl (k)
S NO|TE = Tl pocey (1K1 3|1} — Ri(T) (i) + K75 [ R (T) oo i)
+ 15 (CIK|™# T}, = Ru(T) | x) + |Ru(T) = Thwra(xc))-
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Summing up,
I < C [n(T) = v(T) lwroqaey + K173 T = RalT) 1 20 IT5 = Tlzoe
+ K178 | R (D)l (1) I T = Tl oy + KI5 (1T = Tl gaey + 1T = Ba(T)] 2 x0))
+Br(T) = Tlwrar | [l Loz (4.51)
Then (4.48) follows from (4.49) and (4.51). O

Theorem 4.8. Let the mesh satisfy (3.1). In addition to (1.1) and (1.2), we suppose that u € L°(Q)3 and
v € W2°(R). Then there exists a constant C, independent of h and K, such that

77%3112)1 Hp pZHHLz(wE) + Z h%} Hu_ “2+1"L2(k)3 + Z hf(<”f — Bl 2 is

RCwE f(Cwe

T3 = Tl oy + |1 Th = Tl iy + I(T) = Vh(T)|L3(R')>‘| . (4.52)

Proof. We test the error equation (4.8) with v;, = 0 and v = v where each component of the localizing
function v is defined by

(vie); = {(—VPZH — v (Tt + £) 0k in K, (453)

0 in Q\ K.

After inserting / v

(T)uit' - v dx and / vn(Ti)ult - v dx, (4.8) becomes,
Q

Q

/ | — Vp”l — Vh(T,i)uffl + fh|2wK dx = / (w(T) — V(Tf;))u v dx — / V(T,i)(uﬁfl —u) - vigdx
K K
+/ (v (Th) — uh(Th)) v dx —|—/ (pffl — p)divvg dx
K K
- / (f—1p) vk dx. (4.54)
K

The bound for the last term in the right-hand side of (4.54) is obvious. The third term is bounded by applying
(4.45). The next to last term is easily handled by considering that vy vanishes on 0K and by using (3.3),

|| @3 = pidivvicdx] < 195 = pllasgo Vil < CHORR 19 = plliagon Vi 2(a0s
The second term is bounded by
’/ v(T}) (u—upft) - VK’ < vallu— w2 s Vil L2 ()
We have for the first term,

| [ A7) = (T vic x| < AT = sl Ve 00
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By collecting the above bounds, we deduce
1
hicl|| = Vot = vn(Thujtt + fth(HLz(K)s < hillf = fullr2crys + CHR)llp — P 2o

0
+ lu = w2y (Brohe + vph% | K| 2 2H9||L2(Q))+h11<||11||L6(K)3||V(T)—Vh(T)||L3(K)
+ [T = T 111, (1) C(B)Wa % K |75 [[ul| o e
+ T = Tjll s (x {)\hK(2HU||L3(K)3 + K |F]|ull o sy2) + CBN B3 NK] 5 [l o2 | T (i) |-
(4.55)

The estimate for the volume part of 77K1 2 , follows from (4.55), (3.18), (4.30), and another application of
Lemma 4.6.

Regarding the surface part of 77%?{,12),1’ let e belong to Fﬁl; by testing (4.8) with v;, = 0 and v = v., where
each component is defined by

ﬁe([pﬁj_lnj]ed}e) on KU K/,
(Ve)j = ,
0 on Q\ (KUK,

we deduce

/ [P} ]y ds = / (Vo + v(Thup™ — £,) - vedx + / (w(T)u - v(T)uptt) - vedx
KUK’ KUK’

s paivvede - [ (E-n) vede
KUK’ KUK’

A straightforward application of (4.32) gives

/ (W(T)u — v(THuit) - v, dx / (T (W = w) + ((TF) — w(T))u) - v, dx
KUK’ KUK’

1 )
< C” hez (UQHU.;;H — U-HL2(KUK’)3
+ )\HT;ZL — T||L6(KuK/)Hu||L3(KuK/)3) ||Ve||L2(e)3~

Therefore

/Hp;j_ln] | we ds < CH h2 (vaz—‘rl + V(Ti)u;j_l — fh||L2(KUK’)3 + ||f* fh||L2(KUK’)3

+volluptt =l g2 kurns + AT = Tl oure all s urys
Mk = pllaageorn ) Vel zeep- (4.56)
The surface part of ng( 15,1 follows readily from (4.56), (4.31), (4.32), and the volume part of ’71(KD,{,12),1- a

Next, we estimate the second velocity error indicator.

Theorem 4.9. In addition to the assumptions of Theorem 3.1, let the mesh satisfy (3.19), v € W?*°(RR) and
f € HY(Q)3. Then for each h, there exists an integer i (depending on h) such that for all i > ig and for all
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K €Ty, the following inequalities hold:

D, i
nieise <O (= o + 3 [ (lewrll = )l g2 s + (T) = va (Dl )

kac
T =Tl o ey + R EITE = Tl iy + 1AT) = (D)l iy (4.57)
1
30 REIE ) x nlellaes ).
e€cOKNIY,
(D71)

Proof. To bound the volume part of 7,55, (4.9) is tested with 7, = 0 and n = g, with each component
defined by

(15) {(curl(—uh(T,i)u§L+1+fh)j¢K in K,
K)j =

in Q\K.

This gives

/ leurl(—vp, (T} )ult + ) P dx = / (V(T)u — vy, (T} )it - curl g dx — / curl(f — f},) - nx dx.
K K K

There does not seem to be much gain in applying Green’s formula to the first integral in the above right-hand
side. Hence, applying the inverse inequality (3.3), we have

[ leurl(-mn (@ + 8P dx < CHEME T ) v (T s e 2000
K
+ lleurl(f — £3) (| L2 (x)2 K | 22 ()2
which means that a bound for the first factor cannot contain a negative power of hx. As usual, we expand
[V(T)a = v (T g e cys < 1 Wa(Th) = v(Tp))wg ey + [ (Th) (wy,™ — )22 (s
+ 1 (T5) = v(T)ullL2 (k)

< [(wn(T3) = (T L2 sy + vl lup™

— uHL2(K)3 + )\||uHL3(K)3HTfL — T”LG(K); (458)

and we treat the first term on the right hand side. The bound in (4.45) is not sharp enough here because the
factor multiplying Huﬁj‘l —u|z2(k)3 does have a negative power of hy. Thus, we must sharpen (4.35). To this
end, we insert VT as follows:

v (T7) = v(TE) | e () < va + lvn(T}) || Lo (k)
’ _1 i
< 2o + vohi|K| 72 (T, — Tl () + T (k)
< 2wy + vy (hic| K| 72T} — T sy + b | K| 73 |T s x0)) -

With this inequality, (4.46) is replaced by

| n(T) = (T (™ = W)l z2qaeys < (202 + v (Al K| 3T = Thans ey + e K3 Tl o))

X ||u2+1 — uHLz(K)s. (4.59)



A POSTERIORI ERROR ESTIMATES FOR DARCY’S PROBLEM COUPLED WITH THE HEAT EQUATION 2145
By replacing the first line of (4.45) with (4.59) and substituting it into (4.58), we derive
. i _1 i _1 7
AT = v (T )ul r2gaeys < [3va + v (R KT T = Tl sy + e KT8 T )| I = w2y

+ |vn(T) = v(T) || 2o (rey ull o ()2 + 2AT = Th || 2o oy 1l 2o (i)
+ [CORIKIF (41K IT = Tl ey + N KT = Tl oo | T )

+ AT = Tl o) | 1l oy (4.60)

By proceeding as in Theorem 4.5 and using the convergence of the iterates of Theorem 3.3 (see (3.28) and

(3.25)), we derive the volume part of 77K 112)2

Regarding the surface part of nK ; 2)2, let e € I'}; by testing (4.9) with 1, = 0 and 1 = 1., v = curly,, with

each component defined by
) Ce(([(—uh(T}’;‘)uﬁl +f,) x n]e)jwe) on KUK/,
Tle)j =
0 on Q\ (KUK,

we deduce

/’ (£ — va(TE)ujth) x n}e|2¢e ds = — / curl(f;, — V(T,’;)uﬁ'l) ‘M dx — /[(f— f,) x n], - n.ds
KUK’

€

- / curl(f —f,) - n.dx + / (W(T)u — v(T})uj) - curly, dx
KUK’ KUK’

- /[(l/h(T;ZL) — Z/(Tf;))ufj'l X nle + Ne ds. (4.61)

On account of the last term in the above right-hand side, the estimate of the surface part is more complex
than that of the volume part. Indeed, by (4.4) and the fact that 7. vanishes on (K U K’), this term reads

[0 — i s = [ ) T - eur,

UK (4.62)
- / curl((v(T}) — v (TE)uj™) - ne dx.
KUK’
The structure of the RTj element 1mphes that curl uerl = 0 in each cell, and so

Before applying (4.48), we substitute (4.62) into (4.61)7
AW 2 AW
/|[(fh — Vh(Th)uﬁj'l) X n]e| Yods = — / curl(fh — V(Th)uﬁfl) “Medx — /[(f— 1) x n]. - neds
e KUK’ e
— / curl(f— ;) - n.dx + / (V(T)u — vy, (T} )uj™) - curly, dx
KUK’ KUK’
- / (V((T}) — vn(T})) x uptt) - e dx. (4.63)
KUK’
Let us denote by T} and T the last two terms in the right-hand side of (4.63). Then

/’ fh — I/h(Tl) H_l >< Il ‘ ’L/}e s < Cl/h (||cur1(fh - Z/(Th) H_l)”Lz(KuKz)s + ||[(f— fh) X n]||L2(e)3

+ leurl(f — £,)|| 2o )||ne||Lz o + T+ T, (4.64)
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The term T} is bounded by (4.60) via

IT1| < CI Z hz 1|| Ju — Vh(T}i) Z+1||L2 K)3||77e||L2 K)3
KEwe

and the term T by (4.48) via

IT>| < Z IV (U(T3) = v (Ti)) W, 2 iy el L2 iy
KEL:.)e

A comparison between (4.60) and (4.51) shows that the most unfavorable term here, which is the first term
n (4.49), has the same order as that in (4.60). As above, this is resolved by iterating sufficiently the algorithm,
and we readily derive the desired bound on the surface part of the indicator nﬁﬁ 2) o by substituting (4.60),
(4.49), and (4.51) into (4.64), and by applying to the first term of (4.61) the bound for the volume part found
above. ]

Remark 4.10. Condition (3.30) when d = 3 and (3.31) when d = 2, used in the efficiency bounds, are undesir-
able but also inevitable. They are caused by the discrepancy between the norms used in measuring the a priori
error estimates (including stability bounds) see for instance (3.11), and the norms used in measuring continuity
of the operators. Indeed, if the velocity is in L? and the temperature in H', the nonlinear convection term is
only in L. This is why the test functions are taken in L® N H'. This difficulty is inherent to the model and
is independent of the choice of discretization or indicators. In addition, it is aggravated by the two following
factors:

(1) The analysis is performed on the sequence produced by a computing algorithm. If such algorithm had not
been taken into account, the parameter § would not be necessary and (3.30) could be replaced by

VK €Ty, hix >71h’
(2) The analysis is done in three dimensions. In two dimensions, the relevant condition is (3.31) (with § = 0,
when the algorithm is not considered), that is almost negligible.

The same observations apply also to the second approximation analyzed in the section below.
In any case, we suppose that (3.30) (or (3.31) when d = 2) is verified for all levels of the refinement iteration.

5. A POSTERIORI ERROR ESTIMATES FOR THE SECOND APPROXIMATION

5.1. Upper error bound for the second discretization

In order to establish upper bounds for the second variational formulation, we introduce, on every edge e of
the mesh, the function
1., A
—[ujft n],  if eeTY,
Phy = 2
’ wit!
h

(5.1)
‘n if eeT?.
A standard calculation shows that the solutions of problems (V) and (V}, ; 2) verify for all (v, ¢, S) € L*(Q)? x
(Hl(Q) N L%(Q)) X (Hl(Q) N LOO(Q)) and (V}“qh, Sh) S Wh’g X M}LQ X Xp:

a/QV(T—T,i“)-Vde +/(u~VT)de—/

) ) 1 . .
i Q(u;“-v:r,;“)de — 5/Qdivu;“:r;flde

) ) ) 1 ) )
=> l/ (AT —uptt vt — Zdiv wy T+ gy)(S — Sh) dx
KeT, K

+/(g gn)(S — Sh)dx—— > /VT+1 n.(S — Sy)ds

e€cOKNT},
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/V(T)u~vdx +/Vp JARE vdx—/u(T,ﬁ)uﬁl-vdx
Q Q Q

- 3 [[ ot v ) v (060 (- ax].
Ker, LK K
and
/ Vg (u— uﬁlﬂ)dx = Z l/ (¢ — qh)divuzﬂ dx — Z bh.1(q — qh)dS] , (5.4)
Q KeT, L7K ccok /¢
where g, and f;, are an approximation of ¢ and f which are constant on each element K of 7},.
From these error equations we deduce the following error indicators for each K € 7p,,
L2 i i
ng{l ) = |Th+1 Th‘Hl(K)a
. i 1. .
77%3@21 = hillaAT =yt - VT — §dlv w P T 4 gl e
1 1 .
t5 2 RellalVT nl), (55)
e€OKNT},
D, 2 z 7 . 7 1 e
Ny = I = Vot — (T + £l 2o + hiclldiv g™ | e + > hE (1651l e)- (5.6)
e€cOK

Theorem 5.1. Let d = 3, let the mesh satisfy (3.1), and v satisfy (1.1) and (1.2). We suppose that problem
(Vo) has a solution (u,T) € L3(Q)® x (WLH3(Q) N L*°(Q)) such that

XSSl s e)s (ST | wrs) + 1T (o) < 2a . (5.7)

Then the following error inequalities hold:

lw—u | r2) + o — 25 ) + 1T — T+1|H1 o <C

D,2)\ 2 D2
> ((n%,i,f) (022 17 e

h e 3 ())

KeT,

W=
N

+ hillg - gh|%2(K)>
(5.8)

Proof. Let us start with the temperature equation (5.2) tested with S = T — T,i“. Its left-hand side can be
written as

a|T—T,§+1|§{1(Q)+/Q((u—u;+1) vT)(T T”l)dx—k/Q( wt V(T - TN (T - T dx
—% /Q (diva PO TN (T — 1)) dx.
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By applying Green’s formula and the zero divergence of u, the sum of last two nonlinear terms has the
expression

) ) 1 . . )
/Q( utt V(T - TY)N(T — T dx — 3 /Q(divu;jl)T,j“(T — Tt dx

1 , , 1 )
=3 / (divu, ™) (T — T, + T (T - T} dx =5 / div(u — )t T(T — T/) dx
Q Q

f%/g(u u,™)  (VI(T - T +TV(T - T;)) dx.

Thus the sum of the three nonlinear terms is

/Q((u uthy . VT)(T—T;L“)dx—F/Q(u;fl-V(T—T,’l“))(T—T,’l“)dx— 5/Q(divu;“)Tg“(T—T;fl)dx

:%/(u witl) - (VT(T - T — TV(T — Tj+1)) dx
Q

1 7 )
<3 (SeIT w3 (0) + [T oo y) la = w203 | T — T 1 o)

(5.9)
Now, the right-hand side of (5.2) is bounded straightforwardly by
i i i |y
> [(HOZAThH -t VThH—§d1V W T 4+ gull 2oy + 19 — gnllzz o) 1S = Sull2x)
KEIJ—’L
1 i
+5 2 VT mlla IS = Sullea |
e€OKNT}
Then the choice Sy, = Ry (5), (5.9), the approximation properties of R, and the regularity of 7, yield
; (D.2))? :
alT =T, gy <1 < > ((W,i;) +hillg — gh||2L2(K)>
KeTy,
1 i
t3 (S8IT wrse) + 1Tl Lo () ln = w2 s (5.10)
Next, we turn to the velocity and pressure errors. The velocity error equation (5.3) can be written as
/ ((V(T) —v(T}))u+ v(Ti)(u — uﬁl cvdx + / V(p—pitt) - vdx
Q
(5.11)

=> [/K(—Vpﬁfl—u(TfL) W) - (vi— v dx +/K(f—fh)'(V—Vh)dX}

KeTy,

As usual, a bound for the velocity is derived by eliminating the pressure from (5.11). This is obtained from the
divergence error equation (5.4). Indeed, it follows from the inf-sup condition (2.14) that there exists a velocity
v, in L?(Q)3 that solves

Vg € HY(Q)NL2,(Q /qu,dX* Z [/}((th( ))divujtdx — Z /gbhl q— Rn(q )ds], (5.12)

KeTy, ecOK
/¢h1 q— Ru(qg)d ]

and satisfies

1
[vrllz(@)s < sup —
geEH (Q)NL2, () \CI|H ()

Z [/K(q — Ry(q))div uZ‘H dx —

KeT,

ecOK
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Thus, from the approximation properties of Ry, and the regularity of 7j, we infer

1
3
[VrllLz)ps < Co ( > [hilldivuwl%z(x) + ) hellcbi,l%z(e)D : (5.13)
KeTy, ecOK
Now, to simplify we set zg = u — uﬁfl — v, and we test (5.11) with v = zg and v, = 0. By construction,

5.12) and (5.4) with ¢ = p — pt™' and ¢, = Rx(q), imply that
h
/V p— p}fl -zZgdx = 0.

Hence (5.11) reduces to
/ (v(T) — v(T}))u- zodx + / v(T})zo - 2o dx + / (T, - 7o dx
Q Q Q
= Z {/ (— Vp”l (Tﬁ)u;'fl +£) - zpdx +/ (f—1£5) - 20 dx] .
K K

KeTy,

This yields the bound

1
2

7 D2
vi||zoll2(0)s < (ASGIT — Thl oy lullzs(ys + vallvell2(o)s) + ( > ((Ufm 2)) + £ - fh||%2(K)3>>
KeTy,

With (5.13), and after inserting 7)™, this implies

1
=t | L2 < Ca(1+ Vl)( 7 [hldivay ey + D helldhillZ20])

KeT, e€OK
+ 17158|T = Ty oy all s s + 7158|Th+1 = Tl o lhalls o) (5.14)
1 D2 3
(3 (i) + 1= FllTaae0)) -
! ke,

When substituted into (5.10), this estimate for the velocity error gives

(2av = ASglullLss (SgITIwrs @) + 1T L @) IT = Ty o

2

, 3
§03<Z ((422) +h%(||g—gh||im)) +C4<Z (02)° +f‘fh"%2<f<>3>> (515)

KeTy, KeTy,

+Cs ( Z [h%(||divul+1||L2(K) + Z hellp, 1||L2(e)

KeT, e€OK

) + G| = T o)

In view of (5.7), the temperature estimate in (5.8) follows from (5.15), and in turn, the velocity estimate
follows by substituting (5.15) into (5.14).
Finally, we obtain the pressure error by testing (5.11) with v = V(p — pﬁfl) and vy, = 0,

2
|p ph |H1(Q <)\SG|T Th|H1(Q ||uHL3(Q3—|-l/2Hu uh ||L2 )3+<Z ((77;([222) +Hf thLZ(K )) ,

KeTn
(5.16)
and by substituting the temperature and velocity error bounds. (I
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5.2. Lower error bound for the second discretization
Let us start with the temperature errors.

Theorem 5.2. We retain the settings and assumptions of Theorem 3.53. Then for each h, there exists an integer
o (depending on h) such that for all it > iy and for all K € Ty, the following inequality holds:

D,2 ; ;
it < C | llu— M e + 1T = T mwn) + > hillo = onll i | - (5.17)
f{Cwe
with a constant C independent of h and K. Moreover, without assumption, we have

L2 i ;
e <IT = T ey + 1T = Til i ) (5.18)
Proof. To derive an upper bound for the interior part of 7]1(,5{721), we test the error equation (5.2) with S = Sk
and Sj, = 0, where in each element K, Sk is the localizing function

Sk = (aAT,i+1 — u}fl . VT,ELJr1 — %div uﬁflTZH +gh> YK,
extended by zero outside K. By arguing as in the proof of Lemma 4.5, we derive the analogue of (4.40)
/K (m:r;ﬁl —utt vt - %div uw Tt gh>2 Vi dx = a/K V(T -T;)  VSk dx
+ /K ((u—ui) - VT) Sy dx + /K (it - v (T — Ti*)) S dx (5.19)
- /K(g — gn)Sk dx — % / div w7, S dx.

K

By comparing with (4.40), we see that all terms except the last one have been bounded in the proof of Theorem
4.5. This term can be written as

7% /K div(ul*! — u)Ti+ Sy dx
_ 7% /K div(uj™ — u)(T — Ry (T))Sk dx — % /K div(uyt — u) Ry (T) Sk dx
o /K (w7~ w) - V(T — Ba(T)Sic dx + /K (™ =)V S5) (T — Ra(T)) dx
n %/K(u;jl — ) - ((V Rp(T))Sk + (V Sk ) Rn(T)) dx.

Thus
1 . . . 1 . 1 a1
‘5 /de(u;jl —u)TiH Sk dx| < §\|u§j1 —ul|r2(x) [C?(3)|K| §IK| 73T — Ry (T)| i oy
+ CHRR K| ST = Ru(T)l| o) + K175 [Ru(T) lwas (x0)
+ CHBEMIBA(D) || (0 |18k 2 50

By arguing as in the proof of Theorem 4.5, we deduce the interior bound in (5.17). The upper bound for the

surface part of nﬁ(D’i’i) is treated in the same way. Finally, formula (5.18) is obvious.

O



A POSTERIORI ERROR ESTIMATES FOR DARCY’S PROBLEM COUPLED WITH THE HEAT EQUATION 2151

To establish the remaining lower bounds for the second variational formulation, since there is no need to take
the curl of the velocity equation, it suffices to approximate v by a piecewise constant function, say vy 5, defined

for every f € LY(K) by
vl Pl = g / (5.20)

Clearly, vy j, verifies the following properties:

— In view of (1.2), for any function f € L'(K),
vi <von(f)lx < ve. (5.21)
— In view of (1.1), vy, is Lipschitz-continuous with Lipschitz constant A, i.e.,

Vfi, fo € LP(K), [lvon(f1) —von(f)llzexy < Alfi = fallor (k) (5.22)

Moreover, since v belongs to W1>°(IR), the analogue of the first part of (4.34) holds for all numbers p > 2
and functions f in WHP(K),

0, (f) = v(F)llLr () < CARK| flwrs () (5.23)

with a constant C' that depends on p but is independent of h and K. The term [|von(f) — v(f)[lze(x) will be
treated as an error.

Theorem 5.3. Let d = 3 and v satisfy (1.1) and (1.2). We suppose that the velocity solution w of problem (V3)
belongs to L3(Q)3. Then

D,2 7 1
7h(m ) < C(HT — Tillzor) + llw— w2y + o — i ey + 1F = Full L2y

+ AT = von (Tl zocae) ) (5.24)

Proof. To bound the interior part of 77K1’2), we test (5.3) with v;, = 0 and v = vk, where each component of

the localizing function v is defined in each element K by
(vi); = (= Vo —von(Ti)uy + fh) Wr,

extended by 0 outside K. As in the proof of Theorem 4.8 we obtain the analogue of (4.54)

/ | = Vot = von(Th)up™ + £, dx = / (W(T) = v(T},))u - v dx _/ v(TE)(up™ —u) - v dx
K K

= [ )~ T vicax

/Vp p;:rl VKdX—/(f—fh)-dex. (5.25)
K

Owing to the Lipschitz continuity of v and (5.21), the right-hand side of (5.25) has the straightforward bound

/ | — Vp’;'l"rl _ VO,h(T;i) i+1 +fh| 1/JK dx < |:)\||T ThHLG(K ||uHL3(K 3 + 1/2”11 — uh HLQ(K ( )
K 5.26

+ [ ((TE) = von(Ti) lp2croys + 12— P i ) + I1E = all 2oy | IV | p2 (s
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The bound for the third term in the right-hand side is derived as in Lemma 4.6, but is made simpler by the
simpler structure of vy . We have

W (T} = von(TiN L2y < (i = @)W (TE) = vo u(Ti)) || 2(xys + 1l Lo aeys (1(TE) = v(T) | Lo )
+ [(T) = vo,n(T) || Loy + V0,1 (T) — vo.n (Tl Lo ()
< 2v[luy™ —ullz2(xys + [[ull s (rs (AT = Tl o ey + w(T)
— o (T) Lo (x))- (5.27)

By substituting (5.27) into (5.26), we infer
/ | = Vo™ = vo (T, ™ + £ Pk dx < [3>\HT — Ty llzs ey lall s reys + Bvaflu — wi™ L2 (e
K
+ P =2y ) + I1E = Eullr2creys + ull el (T) — Vo,h(T)HLG(K)] villLz(x)2,
and the equivalence of norms yields (to simplify, we do not specify the constants)

| = Vot = von(Th)up™ + full p2(rys < C(HT — Thll sy lull e crys + [lu— w2y

, (5.28)
+|p = Py M ) + I = Bull L2y + Il Laays [v(T) — VOJL(T)”LS(K))-
In view of (5.27), this yields a similar bound for the first part of the indicator.
Regarding the divergence part of 7]&5{722), (5.4) is tested with g, = 0 and ¢ = qx, where
qr = (divul ™).
Then
/ ((divuy™) g dx = / Var - (u—wt) dx < CH2)hg [u = wy| L2 oy llaxc [l 22 ()
K K
so that
hk / ((divuth) e dx < C7(2)[lw = w28 g | 2 i) - (5.29)
K
The bound for the volume part of 77%?{,22) follows from (5.28) and (5.29).
For the surface parts, (5.4) is tested with ¢, = 0 and ¢ = ¢., where
ge = L(¢h1%c), in KUK orin K,
according that e is an interior face or a boundary face (see (5.1)). Then
/(¢Z e = / gediv uﬁj‘l dx — / Ve (u— uﬁ{“) dx
e KUK’ KUK’
< (ldiv w2 ok + CT2)AE = w2 eurey) e | 2 eurcy-
Hence ) ) )
he |5 1llr2ce) < C(hxlldivay™ 2oy + lla—a) | L2 (kurer)) s
thus implying (5.24). O

Remark 5.4. The approximation error of v is measured here in the L% norm because u is assumed to be in
L3(Q)3. If instead, we were to take u in L%()3, then the approximation error of v would be measured in L3.
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6. NUMERICAL RESULTS

The theory developed here is validated by numerical simulations using Freefem++ (see [20]). The domain
Q is the unit square =0, 3[?> and all computations start on a uniform initial triangular mesh obtained by
dividing Q into N? equal squares, each one subdivided into 2 triangles, so that the initial triangulation consists
of 2N? triangles.

The theory is tested by applying the numerical schemes (V}, ;1) and (V4,;.2) to the exact solution (u,p,T) =
(curley,p, T) where ¢, p, and T are given by

P(x,y) = 6*7((I*1)2+(y*1)2)7 (6.1)
7r 7r
p(z,y) = cos (gx) cos (§y> , (6.2)
and
T(z,y) = 2*(x = 3%y (y — 3)%e (=D H D), (6.3)
with the choice o = 10, v = 50, N = 30, and different functions v:
%1 (T) = T + 1,
vo(T) = e~ T +1/10, (6.4)

v3(T) = sin(T) + 2.

For D = 1,2, it is convenient to compute the following expression nz(D) for the indicators, equivalent to the

12 norm,
2= (32 () (2)) ),

KeTy,

where,

— for the first variational formulation (V4 ;1):

D % z 7 T
(n;(z)l) h%{HO‘AThH +1 VT}LH Jr9h||L2 () T Z he||[aVTy, AR ]8||2L2(e)7

eE@KﬂFZ’
and
D 7 %
(12,)" = Wl = Vb — (T e + B lleurl(—o (T w4 6)[2 g0
+ >0 el Ml + D AT 4 ) X nlelFae

e€OKNT} e€OKNT;,

— for the second variational formulation (V},;2):

. 1 ) ) .
(12))" = MloATI —uf VI — v T gl B+ D0 RelfaV T ml e,
eGBKﬂFi/

and

(D) \? i+l iy il i+1 e |2
(m0)2) = I = Vo™ = v @ + £l + PR NV ey + D helldhallfa
e€OKNTY,
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FIGURE 1. Evolution of the mesh for the first discrete scheme with v4(T) =T + 1.

Likewise, we compute the algorithmic error indicator ni(L) by,

2 2
W= (3 ()
KeTy,
where
77%2 = [T = T g i),
These indicators are used for mesh adaptation by the adapted mesh algorithm introduced in [6]; the mesh is
adapted so as to satisfy the following criteria

(L)

n;,  <e and n(D

%

) <, (6.5)

with e <1077 and v < 1078, For the adaptive mesh (refinement and coarsening), we use routines in FreeFem++.

In Figure 1, we present the evolution of the mesh during the iterations for the first discrete scheme (V}, ;1)
with v1(T) = T + 1. We notice that the mesh is concentrated in the region where the solution needs to be well
described. Similar figures are obtained for the second numerical scheme (V},;2) and for different values of the
viscosity (vo and v3).

Next, we plot and study the error curves between the exact and numerical solutions corresponding to the
first and second schemes for different values of the viscosity v.

Figure 2A (respectively 3A and 4A) plots the comparison of the global error curves versus the number of
vertices in logarithmic scales for the first discrete scheme and for vy (respectively vo and v3); global in the sense
that they depict the sum of the velocity, pressure and temperature errors. For each case of v, the left figure
shows the comparison of the adapt mesh method between the two proposed numerical schemes. We remark that
the errors corresponding to (V},;2) are smaller than those corresponding to (V};.1); this is expected because
the finite elements used for the second numerical scheme (V4 ; 2) contain much more of degrees of freedom than
(Vh,i1)-

In Figures 2B and 2C (respectively 3B and 3C, 4B and 4C), we present comparisons of the global error
versus the number of vertices in logarithmic scale for the adapt and uniform methods, for the three cases of
the viscosity and the two discrete schemes. We notice that the errors of the adaptive mesh method are much
smaller than those obtained with the uniform method, hence the efficiency of this method.

In Table 1, we present the effectivity index defined as

(i) + ()2
Juj, — u||2L2(Q)2 + [Iph, — p||2L2(Q) + T, - Tﬁ{l(@)

1/2
El =
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FIGURE 4. Comparison of the errors for v3(T") = sin(T') + 2.
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with respect to the number of vertices during the iterations (refinement levels) for the first discrete scheme and
for 1. We remark that it decreases from 46.09 (refinement level 1) to 27.96 (refinement level 6).

Furthermore, we compare the CPU times between the uniform and the adaptive methods for the first and
second discrete schemes (V}, ;1) and (V3 ;.2). Table 2 shows results corresponding to the viscosity 14 for (V3 ;1).
For example, a uniform mesh of 40401 vertices produces an error of 0.137 with a CPU time of 418.5s while an
adaptive mesh of 14280 vertices gives an error of 0.051 with a CPU time of 48.7s.

To complete this comparison, we plot in Figure 5A (respectively 6A and 7A) the comparison of the CPU time
of computation between the adapted first and second schemes for 14 (respectively v5 and v3). The second scheme
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TABLE 1. EI with respect to the iterations for the first discrete scheme and for vy .

Refinement level =1 1 =2 1 =3 1=4 1=5 1=06
1681 5587 8198 14280 26314 38 381
vertices vertices vertices vertices vertices vertices

Effectivity index  46.09 45.52 44.07 28.46 28.23 27.96

TABLE 2. Comparison between the error and CPU time between the uniform mesh and adaptive
mesh for the first discrete scheme with v1(T) =T + 1.

Type
Uniform mesh Adaptive mesh

Nbr vertices Error Time (s) Nbr vertices Error Time (s)
6561 0.341  18.85 5587 0.247 123

14641 0.228 81.7 14280 0.051 48.7

25921 0.171  204.1 26 314 0.038 944

40401 0.137 4185 38381 0.028  162.7

04 k 04 \\\ ~_ _ 1 06 \\\\\\\\
0.5 1 1 5Time © 2 25 " os 1 1 5Time © 2 25 3 0 0.5 1 Time () 15 2 25

(A) Comparison of the error curve.

Error

(B) First discrete scheme.

(c) Second discrete scheme.

FIGURE 5. Comparison of the CPU time for 11 (T) =T + 1.
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FIGURE 6. Comparison of the CPU time for v5(T) = e~7 4 1/10.
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FIGURE 7. Comparison of the CPU time for v3(T) = sin(T') + 2.

is more precise than the first one for the same reason indicated above. The other figures show comparisons of
the CPU time of computation versus the global error, for the uniform and adaptive methods and for the three
examples of viscosity. We deduce that for a given global error, the uniform method is much more expensive
than the adapted method for the two numerical schemes and for the three choices of viscosity.

7. CONCLUSION

In this article, we discretize a steady Darcy system coupled with a heat equation. We use two variational
formulations and for each one introduce error indicators and establish optimal a posteriori error estimates.
We perform several numerical simulations where these indicators are used for mesh adaptation, confirming the
efficiency of these adaptive methods.

APPENDIX A.

This section is devoted to the proof of Lemma 4.1. Let v be given in V. The idea is first to extend v by zero
to R? and construct 1 by Fourier transforms in the whole space. Since by construction curln vanishes in the
exterior of 2 and since (2 is simply-connected, 7 is the gradient of a smoother function in this exterior. The fact
that it is a gradient will permit to suitably correct 1 so as to satisfy the desired boundary condition.

Thus, let v denote the extended function. As v - n vanishes on 92, v belongs to H(div, ]R3) and divv =0
in R®. Since the support of v is bounded, it can be shown, cf. [19], that this construction produces a unique
function 7 in H'(0)? on any bounded subset O of R®, and

v = curly.

The function n has the desired regularity and it remains to correct it in order to satisfy the boundary condition.
Since this must not affect the curl of the resulting function, the correcting function must be a gradient. To this
end, let us pick a large enough bounded open ball B containing Q such that the distance between the boundary
of Q and B is strictly positive. Since divv =0 in R® and v =0 in B \ Q, we have the following bound:

Iz )z < ClV (aiv,r?) = CllVIIL2(0)3- (A1)

As Vv =01n B\, we have curly = 0 in B\ Q and as B\ Q is also simply-connected, there exists a function
g in B\ Q such that

n=Vgq inB\Q, (A.2)
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and ¢ € H*(B\ Q) since n € H'(B\ Q)3. The function ¢ is determined by (A.2) up to a constant. Let us choose
this constant so that

/ qgdx = 0.
B\Q

lgllz2m\0) < ClIVAlL2 B\, (A-3)

With this choice

and by (A.1)—(A.3),

lqllz2B\0) < Clinllar(zvays < ClvliLz s (A4)

The function ¢ can be extended continuously in  to a function ¢ € H?(B) such that
4l z2(5) < Cllallazmr0) < ClIVIiL2(@)e- (A.5)
Finally, the function V§ is the required correction of 7. Indeed, we define
1=n-—Vq, inB. (A.6)

As § belongs to H?(B), the trace of V§ is continuous across 9. Therefore by (A.2), the trace of V§ on 99

coincides with that of 7, i.e.,

nlea = Vilaq.
Hence
fllaq = 0.
Summing up, 7 belongs to H} ()3,

curlj=curly=v in (),

and

7]l 71 ()3 < ClIvlL2()s-
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