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NEW VOLUME CONSISTENT APPROXIMATION FOR BINARY BREAKAGE
POPULATION BALANCE EQUATION AND ITS CONVERGENCE ANALYSIS

Mehakpreet Singh1,∗, Themis Matsoukas2, Ahmad B. Albadarin1

and Gavin Walker1

Abstract. This work is focused on developing a numerical approximation based on finite volume
scheme to solve a binary breakage population balance equation (PBE). The mathematical convergence
analysis of the proposed scheme is discussed in detail for different grids. The proposed scheme is
mathematical simple and can be implemented easily on general grids. The numerical results and findings
are validated against the existing scheme over different benchmark problems. All numerical predictions
demonstrate that the proposed scheme is highly accurate and efficient as compared to the existing
method. Moreover, the theoretical observations concerning order of convergence are verified with the
numerical order of convergence which shows second order convergence irrespective of grid chosen for
discretization. The proposed scheme will be the first ever numerical approximation for a binary breakage
PBE free from that the particles are concentrated on the representative of the cell.
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1. Introduction

Breakage process is a size reduction mechanism in particle technology which plays very important role in
many applications of engineering and sciences [2,4,11,22,28]. The importance of this process lies in those systems
where particles continuously change with respect to size (linear dimension, mass or volume). During this process,
the total mass remains constant whereas the the total number of the particles in the system gradually increases
with time. Breakage is characterized by two functions, the rate of breakage, and the distribution of fragments
as shown in Figure 1. Many systems of practical interest are described by a breakage rate that is first order
in the concentration of particles. This mechanism represents the disintegration of a cluster or granule during
its interaction with its environment, and also serves as a model of polymer degradation (depolymerization)
[8, 23,34].

In this work, we mainly focused on binary breakage process which is mathematically classified as a linear
intergo-partial differential equation described by Ziff and McGrady [34] is given as follows:
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Figure 1. Schematic representation of binary and k-nary breakage processes.

∂G(x, t)
∂t

= 2
∫ ∞

x

F (x, y − x)G(y, t)dy −G(x, t)
∫ x

0

F (x− y, y)dy, (1.1)

subject to a initial condition

G(x, 0) = G0(t) ∀ x ∈ (0,∞). (1.2)

In the equation (1.1), G(x, t) expresses the number density function of volume x > 0 at a given time t ≥ 0,
that is, the number of particles in the infinitesimal range [x, x+dx] at any time t is given by G(x, t)dx (we take
x to refer to the volume of the particle). The breakage kernel F (x, y) describes the rate of breakage of parent
particles of volume x + y into fragments of volume x and y and is symmetric and non-negative function of its
arguments. The first integral in equation (1.1) accounts for the birth of particles of volume x in the system
due to the fragmentation of bigger particles. The second integral accounts for the disappearance of particles of
volume x due to formation of the fragments of volume x− y and y. Due to the symmetric property of F , either
of the resulting fragments in first integral can form a particle of volume x which needs the factor 2 to account
for those formation of the particles. Without loss of generality, the quantities defined in equation (1.1) are taken
in dimensionless form [28].

Various other properties such as total number of particles and total mass in the system also play significant
role in determining the average particle size and the width of its distribution as described in Omar and Rohani
[27] and Kaur et al. [12]. These properties defined by moments can be estimated mathematically using the
relation given below:

µj(t) =
∫ ∞

0

xjG(x, t)dx, (1.3)

where µj(t) signifies zeroth order moment (total number of particles) for j = 0 and represents first order
moment (total mass) for j = 1. The binary breakage equation (1.1) can be translated into moment equation by
multiplying it with xj , taking integral from 0 to ∞ and changing the order of the integration:

dµj(t)
dt

=
∫ ∞

0

G(x, t)
∫ x

0

(2yj − xj)F (x− y, y)dydx. (1.4)

Another form of the equation (1.1), known as volume conservative formulation, is [3, 26]

x
∂G(x, t)
∂t

=
∂

∂x

[ ∫ x

0

∫ x−u

0

uF (u, v)G(u+ v)dvdu
]
. (1.5)

Using the definition of Leibnitz’s rule for differentiation under the integral sign and symmetric property of
F , it can be easily shown that both relations (1.1) and (1.5) are equivalent.
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Many numerical schemes for approximating the equations (1.1) and (1.5) have been proposed in the literature.
They include sectional methods [9, 13, 16], finite element methods [7, 25, 33], finite volume schemes [3, 17, 18,
26, 30, 32] and stochastic schemes [19, 20, 24]. Sectional methods are well known for their accuracy but their
formulation is complex. However, a sectional technique developed by Attarakih et al. [1] is simpler than the
existing sectional fixed pivot technique but based on the assumption that particles are concentrated at the
representative of the cell. Stochastic methods are also highly accurate but also computationally very expensive.
Finite volume schemes are mathematically straightforward and computationally less expensive. These numerical
methods also have the ability to compute the number density function and various order moments accurately.
Both sectional and finite volume methods assume particles to be concentrated at the representative of the cell.
In general, however, the possibility of formation of new particles of different sizes in a given cell is high. To
overcome this issue, sectional methods redistribute the particle properties to the neighboring nodes in order
to predict the integral moments accurately, whereas finite volume schemes introduce weights to conserve the
required properties.

A recent finite volume method by Forestier-Coste and Mancini [6] was built on the basis of allowing over-
lapping between cells so that particles are no longer required to be concentrated at the representative of the
cell. The overview of the numerical scheme developed by Forestier-Coste and Mancini [6] is given as: Suppose
merging of cells j and k is denoted by a new cell (j+k) with the lower and upper boundaries as xj−1/2 + xk−1/2

and xj+1/2 + xk+1/2, respectively. In the case of a nonuniform mesh, for given cells j and k, there does not, in
general, exist a cell i such that i = j+k. This shows that cell i will intersect with more than one cell. Therefore,
to introduce the notion of overlapping, Forestier-Coste and Mancini [6] added a proportionality constant into
the discrete equation (refer to Eq. (A.5) in Appendix A). Their priority was to conserve only the total mass in
the system by modifying the aggregation kernel. However, the major drawback of this numerical method is that
they restricted (or stopped) the simulations when 2% of the mass leave the system. The detailed description of
the method can be found in Appendix A.

This motivates our development of a new mass conserving numerical tool for approximating a binary breakage
PBE using the notion of the overlapping of the cells and overcoming the issues of existing method [6]. For the
conservation of mass property, some weights are added to the mathematical formulation and no constraints
will be imposed on the simulations. In contrast to the numerical scheme of Forestier-Coste and Mancini [6], no
modification in binary breakage kernel will be done, however, the important property such as mass conservation
law is accomplished by adding weights to the formulation.

The rest of the article is structured as follows: Section 2 deals with the derivation of the proposed scheme.
In Section 3, the complete mathematical analysis of the new proposed scheme is discussed. Section 4 is devoted
to testing the accuracy of the new scheme against existing scheme. Finally, Section 5 provides the conclusions
of the study.

2. New formulation

The concept of overlapping of the cells was first introduced by Forestier-Coste and Mancini [6] to solve a
pure aggregation PBE. In this work, we are adapting this concept to derive the mathematical formulation of the
new finite volume scheme for approximating a binary breakage PBE which also overcome some issues related
to the aggregation PBE discussed earlier. Before the derivation, it is important to note that the volume range
x in equation (1.1) contains ∞ in the upper limit which is not appropriate to derive the formulation. So, we fix
the computational domain and replace the upper limit with a big positive, say xmax and hence, the truncated
equation takes the following form:

∂G(x, t)
∂t

= 2
∫ xmax

x

F (x, y − x)G(y, t)dy −G(x, t)
∫ x

0

F (x− y, y)dy, (2.1)

with changed initial condition

G(x, t) = G0(t) ∀ x ∈ (0, xmax]. (2.2)
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Figure 2. One dimensional domain discretization.

We discretize the continuous computational domain D := (0, xmax] into I number of cells as shown in Figure 2.

The mean and step size of the ith cell are xi =
xi+1/2 + xi−1/2

2
and ∆xi = xi+1/2 − xi−1/2, respectively.

The number of particles in ith cell is denoted by Ni(t) is

Ni(t) =
∫ xi+1/2

xi−1/2

G(x, t)dx. (2.3)

By integration of equation (2.1) over the boundaries of the ith cell we obtain the set of ordinary differential
equations:

dNi

dt
= Bi −Di, (2.4)

with initial condition

N in
i = Ni(0) =

∫ xi+1/2

xi−1/2

G(x, 0)dx.

The birth and death terms are defined as

Bi =
∫ xi+1/2

xi−1/2

∫ xi+1/2

x

F (x, y − x)G(y, t)dydx, (2.5)

and

Di =
∫ xi+1/2

xi−1/2

G(x, t)
∫ x

0

F (x− y, y)dydx. (2.6)

First, simplify the birth term (2.5) by changing the order of integration:

Bi = 2
∫ xi+1/2

xi−1/2

∫ y

xi−1/2

F (x, y − x)G(y, t)dxdy + 2
∫ xmax

xi+1/2

∫ xmax

xi−1/2

F (x, y − x)G(y, t)dxdy,

= 2
∫ xi+1/2

xi−1/2

∫ y

xi−1/2

F (x, y − x)G(y, t)dxdy + 2
I∑

k=i+1

∫ xk+1/2

xk−1/2

∫ xmax

xi−1/2

F (x, y − x)G(y, t)dxdy,

and apply the quadrature approximation to the outer integrals leads to the following expression:

Bi = 2Ni

∫ xi

xi−1/2

F (xi − x, x)dx+ 2
I∑

k=i+1

Nk

∫ pk
i

xi−1/2

F (xk − x, x)dx+O(∆x3),

= 2
I∑

k=i

Nk

∫ pk
i

xi−1/2

F (xk − x, x)dx+O(∆x3). (2.7)



NEW VOLUME CONSISTENT APPROXIMATION 1699

Here

pk
i =

{
xi, when k = i,

xi+1/2, otherwise.

Similarly, by application of the quadrature approximation to the death term (2.6), we obtain

Di = Ni

∫ xi

0

F (xi − y, y)dy +O(∆x3). (2.8)

The formulation (2.4) as written does not conserve the volume conservative law [29]. This issue is easily
resolved by adding two weights to the formulation. Then the equation takes the following form:

dN̂i

dt
= 2

I∑
k=i

N̂kϕ
b
k

∫ pk
i

xi−1/2

F (xk − x, x)dx− N̂iϕ
d
i

∫ xi

0

F (xi − y, y)dy, (2.9)

where

ϕb
k =

1
2Φk

i

, (2.10)

and

ϕd
i =


∑k

i=1 xi

∫ pk
i

xi−1/2
F (xk − x, x)dx

xi

∫ xi

0
F (xi − x, x)dx

, if
∫ xi

0
F (xi − x, x)dx 6= 0,

1, otherwise.

. (2.11)

Here N̂i denotes the number of particles in ith cell calculated numerically and Φk
i depicts the proportionally

constant which accounts for the overlapping of the cells after the binary breakage mechanism takes place.
To understand the concept of overlapping of the cells for a binary breakage process, suppose a particle of

volume xk of kth cell is broken in two particles of volumes xi and xk−i. Then the lower and upper bounds of the
newly formed cell becomes xk−1/2 − x(k−i)−1/2 and xk+1/2 − x(k−i)+1/2, respectively. In general, it is unlikely
that boundaries of a new particle will fall entirely in one cell, as it will partially overlap with more than one
cells. Three possibilities of overlapping of the cells arise and are given below:

– The lower boundary of a cell of newly born particle falls inside the ith cell and upper boundary is outside
the ith cell. That is, xi−1/2 < xk−1/2 − x(k−i)−1/2 and xk+1/2 − x(k−i)+1/2 > xi+1/2.

– The upper boundary of a cell of newly born particle falls inside the ith cell and lower boundary is outside
the ith cell. That is, xi−1/2 > xk−1/2 − x(k−i)−1/2 and xk+1/2 − x(k−i)+1/2 < xi+1/2.

– The domain of newly born particle of size xk − xk−i completely falls inside the ith cell. That is, xi−1/2 ≤
xk−1/2 − x(k−i)−1/2 and xk+1/2 − x(k−i)+1/2 ≤ xi+1/2.

The graphical representation of all possible cases of overlapping of the cells is shown in Figure 3. Mathemat-
ically, the overlapping factor Φk

i can be calculated by defining the following relation:

Φk
i =

ηk
i − ηk

i

∆xk −∆xk−i
, (2.12)

where ηk
i = min(xi+1/2, xk+1/2 − x(k−i)+1/2) and ηk

i = max(xi−1/2, xk−1/2 − x(k−i)−1/2). Here the terms ηk
i

and ηk
i define the bounds of the intersection of the cells k and (k − i) with cell i. The overlapping constant Φk

i

describes the extent of overlapping of the newly formed cell with the ith cell and its value lies between 0 and 1,
that is, 0 ≤ Φk

i ≤ 1. The equality holds when the newly formed cell falls completely outside (Φk
i = 0) or inside

(Φk
i = 1) the ith cell.
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Figure 3. Graphical representation of three basic possibilities for overlap.

With the help of aforementioned notations and by adding the proportionality constant corresponding to the
overlapping of the cells in equation (2.4), the final expression for a proposed scheme to approximate a binary
breakage PBE can be written as

dN̂i

dt
= 2

I∑
k=i

N̂kΦk
i ϕ

b
k

∫ pk
i

xi−1/2

F (xk − x, x)dx− N̂iϕ
d
i

∫ xi

0

F (xi − y, y)dy. (2.13)

Here, the weights ϕb
k and ϕd

i are responsible for volume conservative law and the factor Φk
i account for the

notion of the overlapping of the cells. It is important to observe that our main aim is to conserve the total
volume in the system and no measure has been taken care for the preservation of the zeroth order moment
(total number of particles). Therefore, it will be interesting to see to what extent the new scheme predict the
zeroth order moment accurately. The theoretical proof the non preservation of the zeroth order moment is
provided in Appendix B.

The numerical scheme holds the volume conservative law when it satisfies the following condition:

d
dt

I∑
i=1

N̂ixi = 0. (2.14)

Proposition 2.1. The proposed numerical scheme (2.13) satisfies the volume conservative law.

Proof. For proving the volume conservation property, multiply the equation (2.13) by xi which gives

d
dt

I∑
i=1

N̂ixi = 2
I∑

i=1

xiN̂k

I∑
k=i

Φk
i ϕ

b
k

∫ pk
i

xi−1/2

F (xk − x, x)dx−
I∑

i=1

xiN̂iϕ
d
i

∫ xi

0

F (xi − x, x)dx. (2.15)

Change the order of the summation in the first term and after simplification, we obtain

d
dt

I∑
i=1

N̂ixi = 2
I∑

k=1

N̂k

k∑
i=1

xiΦk
i ϕ

b
k

∫ pk
i

xi−1/2

F (xk − x, x)dx−
I∑

k=1

xkN̂kϕ
d
k

∫ xk

0

F (xk − x, x)dx,

=
I∑

k=1

N̂k

[ k∑
i=1

2xiΦk
i ϕ

b
k

∫ pk
i

xi−1/2

F (xk − x, x)dx− xkϕ
d
k

∫ xk

0

F (xk − x, x)dx
]
,
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=
I∑

k=1

N̂k

[ k∑
i=1

(2xiΦk
i ϕ

b
k − xkϕ

d
k)
∫ pk

i

xi−1/2

F (xk − x, x)dx
]
. (2.16)

Using the relation
∑I

j=1

∫ pk
j

xj−1/2
F (xk − x, x)dx =

∫ xk

0
F (xk − x, x)dx (refer to [31] for detail) and substitute

the values of ϕb
k and ϕd

k in equation (2.16), the following can be obtained

d
dt

I∑
i=1

N̂ixi =
I∑

k=1

N̂k

[ k∑
i=1

(
2xiΦk

i

1
2Φk

i

− xk

xi

∫ pk
i

xi−1/2
F (xk − x, x)dx

xk

∫ xk

0
F (xk − x, x)dx

)∫ pk
i

xi−1/2

F (xk − x, x)dx
]
. (2.17)

After cancellation of terms on the right hand side, it can be seen that the coefficient of N̂k becomes zero,
which implies

d
dt

I∑
i=1

N̂ixi = 0.

Hence, the proposed scheme holds the volume conservative law. �

3. Convergence analysis

In this section we use a vector notation to represent the number concentration of particles. Consider the
vectors N = {N1, N2, · · · , NI} and N̂ = {N̂1, N̂2, · · · , N̂I} to represent the exact and numerical values of the
number of particles in the system, respectively. The vector form of the discrete equation (2.13) can be written as

∂N̂
∂t

= J(N̂), N̂(0) = N(0). (3.1)

Here, J ∈ RI are the functions of N̂ with the components

B̂i(N̂) = 2
I∑

k=i

NkΦk
i ϕ

b
k

∫ pk
i

xi−1/2

F (xk − x, x)dx, (3.2)

D̂i(N̂) = Niϕ
d
i

∫ xi

0

F (xi − y, y)dy. (3.3)

Therefore, the final form of equation is

Ji(N̂) = B̂i(N̂)− D̂i(N̂). (3.4)

The convergence of the discrete system will be shown applying a theorem which will be given further. Firstly,
the define the norm L1 considered for convergence as

‖N(t)‖ =
I∑

i=1

|Ni(t)|∆xi. (3.5)

In order to perform the mathematical analysis of the proposed scheme, some definitions and theorems provided
by Linz [21], Hundsdorfer and Verwer [10] and Kumar et al. [18] will be used.

Definition 3.1. The residual left by substituting the exact solution N in the discrete system of equations is
known as Spatial Truncation Error. The mathematical expression for the spatial truncation error is given by

σ(t) =
dN(t)

dt
− J(N).
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The numerical scheme is said to be consistent of order p, if ∆x→ 0

‖σ(t)‖ = O(∆xp), uniformly for all t, 0 ≤ t ≤ T.

Definition 3.2. The global discretization error for the numerical scheme is the difference between the exact
and numerical solution ε(t) = G(t) − Ĝ(t). The numerical scheme is said to be convergent of order p if, for
∆x→ 0,

‖ε(t)‖ = O(∆xp), uniformly for all t, 0 ≤ t ≤ T. (3.6)

Theorem 3.3. Let us consider that J is continuous and satisfies the Lipschitz condition

‖J(f)− J(h)‖ ≤ L‖f − h‖ for all f ,h ∈ RI , L <∞.

Then the solution of the semidiscrete system N′ = J(N) is nonnegative iff for any vector N ∈ RI and all
i = 1, 2, . . . , L, and t ≥ 0,

N ≥ 0, Ni = 0⇒ Ji(N) ≥ 0.

Proof. The generalized proof of the above theorem can be seen in Hundsdorfer and Verwer [10] (Thm 7.1 in
Chap. 1). �

Theorem 3.4. Let us suppose that a Lipschitz condition on J(N) is satisfied for 0 ≤ t ≤ T and for all
N, N̂ ∈ RI . That is, J satisfies

‖J(N)− J(N̂)‖ ≤ L‖N− N̂‖, L <∞. (3.7)

Then a consistent discretization scheme is also convergent and the order of convergence is the same as the
order of consistency.

Proof. The detailed proof of this theorem is given in Linz [21]. �

Theorem 3.4 is the main supporting result of this section. Therefore, our aim is to prove that Ĵ(N) satisfies
the Lipschitz condition (3.7) with respect to the argument N and that the system given by expression (3.1) is
consistent. This result will be followed by the convergence results along with the rate of convergence.

Proposition 3.5. Let us assume that the F (x, y) ∈ C2(]0, xmax]×]0, xmax]/0, respectively. Then for all N, N̂
∈ <I , there exist a constant positive constant β <∞ such that Ĵ(N) satisfy the Lipschitz condition (3.7).

Proof. Let us consider

‖J(N)− J(N̂)‖L1 =
I∑

i=1

I∑
k=i

|Nk − 2N̂kΦk
i ϕ

b
k|
∫ pk

i

xi−1/2

F (xk − x, x)dx+
I∑

i=1

|Nk − N̂kϕ
d
i |
∫ xi

0

F (xi − y, y)dy.

Substitute the values of weights and interchange the sum order, we obtain the following:

‖J(N)− J(N̂)‖L1 =
I∑

i=1

I∑
k=i

|Nk − N̂k|
∫ pk

i

xi−1/2

F (xk − x, x)dx

+
I∑

i=1

∣∣∣Nk − N̂k

∑k
i=1 xi

∫ pk
i

xi−1/2
F (xk − x, x)dx

xi

∫ xi

0
F (xi − x, x)dx

∣∣∣ ∫ xi

0

F (xi − y, y)dy. (3.8)
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Further, for all i ≤ j, we have xk ≤ xi and thus the weight ϕd
i

ϕd
i =

∑k
i=1 xi

∫ pk
i

xi−1/2
F (xk − x, x)dx

xi

∫ xi

0
F (xi − x, x)dx

≤
xi

∫ xi

0
F (xi − x, x)dx

xi

∫ xi

0
F (xi − x, x)dx

≤ 1. (3.9)

Now chose a number β in such a way that β = maxx∈[0,xmax]

∫ x

0
F (x − y, y)dy and rearrange the indices of

the second term of equation (3.8) will lead to the following:

‖J(N)− J(N̂)‖L1 ≤ β
I∑

k=1

|Nk − N̂k| = β‖Nk − N̂k‖L1 .

�

Now, our next aim is to prove the main theorem of convergence.

Theorem 3.6. Suppose that the functions S and b are twice continuously differentiable functions over (0, xmax]
and (0, xmax]× (0, xmax], respectively. Then,

– N̂ is non-negative, that is, N̂ ≥ 0.
– the formulation (2.13) is second order consistent, and
– the order of convergence of the proposed scheme (2.13) is 2, the independently of the type of grids.

Proof. For establishing the above theorem, it is necessary to prove the nonnegativity, consistency, and conver-
gence of the solution to the system (2.13). The non-negativity of the numerical scheme is given below:

Non-negativity. For any non-negative number density N̂ ∈ RI , (for all N̂ ≥ 0 whose ith component is zero).
So, equations (3.2), and (3.3) give

B̂i(N̂) ≥ 0 and D̂i(N̂) = 0.

Equation (3.4) implies Ji(N̂) = B̂i(N̂)− D̂i(N̂) ≥ 0. Moreover, the Theorem 3.3 and Proposition 3.4 imply
the non-negativity of the solution for any i = 1, 2, . . . , L.

Consistency. From definition 3.1, the ith component of the spatial truncation error can be written as follows:

σi(t) =
dNi(t)

dt
− Ji(Ni(t)).

Using (2.4) and (3.4), the above equation becomes

σi(t) = Bi − B̂i︸ ︷︷ ︸
T1

− (Di − D̂i)︸ ︷︷ ︸
T2

. (3.10)

Now consider the first term T1 by recalling the relations (3.1) and (3.2) and substituting the value of weight
ϕb

k, it is easy to show that

Bi − B̂i = O(∆x3). (3.11)

Now let us discuss the order of consistency of term T2 similar to the birth term.

Di − D̂i = Ni(1− ϕd
i )
∫ xi

0

F (xi − x, x)dx+O(∆x3). (3.12)
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Now let us simplify the term 1− ϕd
i ,

1− ϕd
i = 1−

∑k
i=1 xi

∫ pk
i

xi−1/2
F (xk − x, x)dx

xi

∫ xi

0
F (xi − x, x)dx

=
xi

∫ xi

0
F (xi − x, x)dx−

∑k
i=1 xi

∫ pk
i

xi−1/2
F (xk − x, x)dx

xi

∫ xi

0
F (xi − x, x)dx

·

(3.13)

Further suppose,

I1 =
∫ xi

0

xF (xi − x, x)dx. (3.14)

Replace xi − x = v and using the definition of symmetry of F , we have

I1 =
∫ xi

0

(xi − v)F (v, xi − v)(−dv) =xi

∫ xi

0

F (xi − x, x)− I1 (3.15)

which further simplifies to

xi

∫ xi

0

F (xi − x, x) = 2
∫ xi

0

xF (xi − x, x)dx. (3.16)

Using the above relations in equation (3.12) and the rearrangement of terms lead us to the following
expression:

Di − D̂i =
1
xi

[ ∫ xi

0

xF (xi − x, x)dx−
k∑

i=1

xi

∫ pi
k

xi−1/2

F (xi − x, x)dx
]

=
1
xi

k∑
i=1

∫ pi
k

xi−1/2

(x− xi)F (xi − x, x)dx.

Now apply the mid-point rule for i < k, right-end quadrature for i = k and use the fact that F (0, .) = 0, we
have

Di − D̂i =
Θ

xi

k∑
i=1

∆x3
j ,

where Θ <∞ is a finite number. This implies

Di − D̂i ≤
Θ

xi
∆x2

k∑
i=1

∆xi =
Θ

xi
∆x2xi+1/2

xi
,

= Θ∆x2
[xi + xi+1/2

xi

]
= Θ∆x2

[xi−1/2 + xi+1/2

xi−1/2 + xi+1/2

]
≤ 2Θ∆x2 = O(∆x3). (3.17)

Hence,

Di − D̂i = O(∆x3). (3.18)

Finally, combining the equations (3.11) and (3.18), we get

σi(t) = O(∆x3),

that is,

‖σ(t)‖L1 = O(∆x2).

Convergence. The consistency result and Proposition 3.5 together provide all the necessary conditions of The-
orem 3.4. Therefore, as a result of Theorem 3.4, the formulation (2.13) is second order convergent independently
of the type of grid chosen for the discretization. �
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4. Numerical comparisons

In this section we verify the accuracy and efficiency of the proposed scheme by comaring with the recently
developed finite volume scheme [29] against three different benchmark problems. The comparison is conducted
in terms of number density function and integral properties such as zeroth and first order moments. The
importance of choosing this particular existing scheme is due to fact that the numerical scheme proposed by
Saha et al. [29] shows higher accuracy in terms of moments and number density function than the finite volume
scheme developed by Bourgade and Filbet [3]. The thorough comparison of the numerical results can be found
in Saha et al. [29]. It is also important to observe that the numerical results in terms of moments and number
density functions were compared only for the exponential initial condition [29]. However, the comparison for our
study is demonstrated corresponding to exponential G(x, 0) = e−x as well as monodisperse G(x, 0) = δ(x− 1)
initial conditions. The exact solutions for these conditions are available in Dubovskii et al. [5] and Ziff and
McGrady [34].

The errors in the number density function is quantified by estimating the weighted sectional error using the
following expression:

σi(t) =

∑I
j=1 |Gexc

j −Gnum
j |xi

j∆xi
j∑I

j=1G
exc
j xi

j∆xi
j

, (4.1)

where σi(t) for i = 0 computes the relative error in the number density function over the given computational
domain. Similarly, other order relative sectional errors for the number density function can be calculated.
These errors are evaluated for those problems whose exact solutions are available in literature. These errors are
calculated at the end of the simulation. The system of discrete set of ODE’s are solved using inbuilt MATLAB
function ode15s solver. The numerical simulations are run on machine with specifications i5 CPU with 2.40 GHz
and 8 GB RAM.

The comparison between the numerical and exact results is enhanced by calculating the convergence of the
numerical scheme known as Experimental Order of Convergence (EOC) for analytically tractable kernels using
the following expression [14,15]:

EOC = ln
( EI

E2I

)
/ln(2), (4.2)

where EI and E2I describes the L1 error norm calculated by

I∑
j=1

|Gexc
j −Gnum

j |∆xi
j .

Here, Gexc
j and Gnum

j describe the number density obtained exactly and numerically, respectively and the
symbols I and 2I correspond to the number of degrees of freedom.

4.1. Test case I

We begin the comparison of the new and existing numerical schemes with the exact results by considering
size independent fragmentation kernel, that is, F (x, y) = 1, with initial condition G(x, 0) = δ(x − 1). The
numerical simulation are run on computational volume domain with xmin = 10−9 and xmax = 1.5. The given
domain is divided into 35 nonuniform grids. The simulations are run till time t = 1000 at which the extent of

fragmentation is
µ(t)
µ(0)

≈ 52.61, where µ(t) is the zeroth moment at time t.

Figure 4 demonstrates the comparison of the numerical results predicted by the proposed (NFVS) and existing
(EFVS) schemes against the exact results. It can be observed that the zeroth order moment is in very good
agreement with the exact result when computed using the NFVS, whereas, the EFVS shows underprediction
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Figure 4. Comparison of normalized moments and number density function corresponding
F (x, y) = 1 for monodisperse initial condition.

Table 1. Weighted error of number distribution for F (x, y) = 1 corresponding to monodisperse
initial condition.

σ EFVS NFVS EFVS NFVS
35 cells 35 cells 70 cells 70 cells

σ0 0.16484 0.11079 0.11849 0.02159
σ1 0.19995 0.19995 0.12827 0.04275

from the exact results (see Fig. 4a). It is important to note that no measure has been taken for the accurate
prediction of zeroth order moment. However, still the proposed scheme has the tendency to track the zeroth
order moment with higher precision on a coarse grid of 35 nonuniform cells. As expected, the first order moments
approximated by both schemes show excellent agreement with the exact result as shown in Figure 4a, that is,
the volume conservative law holds for both schemes. In addition, the qualitative behavior of number density
function (in semilog scale) is analyzed by plotting it against the volume of the representative (in logarithmic
scale) in Figure 4b. It reveals that the number density function calculated by the new proposed matches well
with the exact results and in contrast to the new scheme, the existing scheme shows under prediction for the
number density function.

In order to quantify the errors in the number density function, the weighted sectional errors (4.1) are calculated
for a computational domain having 35 as well as 70 nonuniform cells and listed in Table 1. It can be seen from
Table that the proposed scheme is highly accurate as it shows approximately 50% less error as compared to the
existing scheme. Moreover, these errors are further reduced when both numerical schemes are treated with a
refine grid of 70 nonuniform cells, however, still the proposed scheme performs better than the existing scheme.
Additionally, Table 2 shows the experimental order of convergence calculated numerically for both uniform
and nonuniform grids. It reveals that the proposed scheme shows second order convergence rate similar to the
existing scheme irrespective of the type of grid chosen for partitioning the given computational domain. In terms
of computational efficiency, the proposed scheme computed all numerical results by consuming lesser CPU time
than the existing scheme as shown in Table 3.
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Table 2. EOC for Test Case I for F (x, y) = 1 corresponding to monodisperse initial condition.

Grid Uniform Nonuniform
points grid grid

30 – –
60 1.8905 1.9057
120 1.8891 1.9726
240 1.9135 1.9929

Table 3. Computational time taken by numerical schemes for F (x, y) = 1 corresponding to
monodisperse initial condition.

Scheme Number Time taken Number Time taken
of cells (in s) of cells (in s)

EFVS 35 1.2827 70 4.7762
NFVS 35 0.7760 70 1.9669

4.2. Test case II

Similar to the previous test case, the comparison is conducted for size dependent fragmentation kernel, that
is, F (x, y) = x + y using monodisperse initial condition. For running the simulations, the same computational
and time domain as in the previous case are considered. However, in this case, the extent of fragmentation

attained is
µ(t)
µ(0)

≈ 62.271.

Figure 5a shows that the zeroth order moment is computed with higher precision by the proposed scheme,
however, the same moment is deviating far from the exact result than the one approximated by the existing
scheme. Moreover, the first order moment computed by both numerical scheme show equal accuracy, that is,
the total volume in the system is conserved in time. Additionally, the qualitative comparison of number density
function vs. volume of the representative obtained by both numerical method is illustrated in Figure 5b. It
shows that the number density function is more accurately approximated by the proposed scheme than the
existing scheme which similar to the previous case shows underpredcition from the exact result . The deviation
in the number density function is estimated by quantifying the weighted sectional errors in the number density
function for different size grids (see Tab. 4). Again, the proposed scheme shows approximately 50% better
accuracy than the existing scheme for both coarse (35 cells) and refined grids (70 cells). The efficiency of the
proposed method is also tested in terms of CPU time taken by the numerical methods to obtained all numerical
results. Table 5 reveals that the proposed scheme is highly efficient than the existing method as it took lesser
time compute the results.

Furthermore, the numerically calculated experimental order of convergence using both uniform and nonuni-
form grids are listed in Table 6. Similar to the previous case, the proposed scheme shows the convergence rate
to be approximately 2 independent of the grids.

4.3. Test case III

In this test problem, the comparison of numerical and exact result is illustrated for the exponential initial
condition corresponding to the size dependent fragmentation kernel, that is, F (x, y) = x+y. The computational
domain begins with xmin = 10−9 and xmax = 1.5 is divided into 35 nonuniform grids. The time domain is
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Figure 5. Comparison of normalized moments and number density for F (x, y) = x+ y corre-
sponding to monodisperse initial condition.

Table 4. Weighted sectional errors for F (x, y) = x+ y corresponding to monodisperse initial
condition.

σ EFVS NFVS EFVS NFVS
35 cells 35 cells 70 cells 70 cells

σ0 0.11100 0.08323 0.06193 0.02585
σ1 0.11486 0.11485 0.05430 0.05185

Table 5. Computational time taken by numerical schemes for F (x, y) = x+ y corresponding
to monodisperse initial condition.

Scheme Number Time taken Number Time taken
of cells (in s) of cells (in s)

EFVS 35 1.1240 70 4.5123
NFVS 35 0.7689 70 2.0618

Table 6. EOC for Test Case II using F (x, y) = x + y corresponding to monodisperse initial
condition.

Grid Uniform Nonuniform
points grid grid

30 – –
60 1.8910 1.8163
120 1.9361 1.9437
240 1.9501 1.9853
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Figure 6. Comparison of normalized moments and number density for F (x, y) = x+ y corre-
sponding to exponential initial condition.

Table 7. Weighted sectional errors for F (x, y) = x + y corresponding to exponential initial
condition.

σ EFVS NFVS EFVS NFVS
35 cells 35 cells 70 cells 70 cells

σ0 0.17806 0.05237 0.05211 0.01455
σ1 0.17717 0.06736 0.05045 0.01957

considered to be the same as in earlier cases, however, the extent of fragmentation attained in this case is
µ(t)
µ(0)

≈ 20.665.

The comparison of the number density function and various order moments obtained numerically and exactly
are plotted in Figure 6. Once again it can be seen that the time evolution of the zeroth order moment is more
accurately captured by the proposed scheme than the existing scheme which shows large deviation from the
exact results (see Fig. 6a). However, the prediction of first order moments by both numerical schemes exhibits
equal accuracy, that is, the total volume is well captured by both schemes. Moreover, Figure 6b reveals that the
number density function plotted against its volume of the representative is estimated with more precision by
the proposed scheme than the existing scheme which shows a large deviation from the exact result. Additionally,
the quantification of the deviations in the number density functions is captured by calculating the weights
sectional errors (4.1) in Table 7. The observations in this case are quite similar to the previous cases as the
proposed scheme estimated these errors with higher accuracy than the existing scheme. Moreover, the errors
also decrease as the numerical schemes are implemented on a refined grid of 70 nonuniform cells.

In order to check the computational performance of the numerical schemes, the CPU time taken by both
schemes to approximate this problem is compared in Table 8. It can be observed that the proposed scheme took
less computational time to calculate all numerical results whereas, the existing scheme is consuming more time.
Furthermore, the EOC calculated using the proposed scheme is listed in Table 9 corresponding to the both
uniform and nonuniform grids. The results reveal that the proposed scheme is second order convergent similar
to the cases discussed earlier for monodisperse initial condition.
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Table 8. Computational time taken by numerical schemes for F (x, y) = x+ y corresponding
to exponential initial condition.

Scheme Number Time taken Number Time taken
of cells (in s) of cells (in s)

EFVS 35 1.2273 70 2.9669
NFVS 35 0.8035 70 1.5305

Table 9. EOC for Test Case III using F (x, y) = x + y corresponding to exponential initial
condition

Grid Uniform Nonuniform
points grid grid

30 – –
60 1.9057 1.9130
120 1.9726 1.9559
240 1.9929 1.9768

5. Conclusions

In this article, a new approach based on the finite volume scheme is developed for approximating a binary
breakage PBE on nonuniform grids. The formulation of the proposed scheme is easy to code, faster to run,
and more accurate than the existing scheme. A thorough mathematical analysis is discussed to prove that the
proposed scheme is second order convergent. It has been also shown that the proposed scheme is highly accurate
in computing the first order moment and the evolution of zeroth order moment with time is captured very well
by the proposed scheme. The proposed scheme also presented an improvement with respect to the existing
scheme in approximating the number density function. Moreover, the weighted sectional errors estimated by the
proposed scheme show approximately 50% more accuracy than the existing scheme. Furthermore, the theoretical
observations have been confirmed with the numerical order of convergence to prove that the proposed scheme
is second order convergent independently of the type of grid used.

Appendix A. Finite volume scheme for aggregation PBE

This section outlines the mathematical formulation of the existing finite volume scheme [6] for aggregation
PBE on non-uniform meshes. The merging of cells i and k is denoted by a new cell (i + k) having lower and
upper boundaries as xi−1/2 + xk−1/2 and xi+1/2 + xk+1/2, respectively. In the case of a non-uniform mesh, the
probability that the merged cells (i+ k) exactly falls inside any cell j is very low. This implies that the new cell
that is formed after merging can intersect with more than one cell.

We define the following set of indices:

Sj = {(i, k) ∈ N× N : (i+ k) ∩ j 6= ∅}, (A.1)

and
Ri,k = {j ∈ N : j ∩ (i+ k) 6= ∅}. (A.2)

Set Si expresses mesh couples (i, k) such that their sum intersects the mesh j, whereas set Ri,k represents
the intersection of the set of meshes j and the sum of the meshes i and k are non-empty.
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Further, the time domain is discretized into tp+1 = tp + ∆t for p ∈ {0, . . . , N − 1}. Now let us consider np
j is

average value of n at time tp in the cell j, which is an approximation of the number density function n(x, tp)
given by

nj
p =

1
∆xj

∫ xj+1/2

xj−1/2

n(x, tp) dx, j ∈ {1, . . . , I}. (A.3)

Using the above notations, the finite volume approximation provided by Forestier-Coste and Mancini [6] can
be written as

np+1
j = np

j + ∆t

1
2

∑
(i,k)∈Sj

K̂i,k n
p
i n

p
k λ

j
i,k

∆xi∆xk

∆xj
−

I∑
j=0

Kj,i n
p
j n

p
i ∆xi

 , (A.4)

where the aggregation kernel Ki,k denotes Ki,k= K(xi, xk) and λj
i,k is a correction factor considered in such a

way that it takes the overlapping into account, defined by:

λj
i,k =

(mj
i,k −m

j
i,k

∆xi + ∆xk

)
· (A.5)

Here mj
i,k and mj

i,k indicates the maximum and minimum bounds of the intersection of the cell i+ k with a
given cell j:

mj
i,k = min(xj+1/2, xi+1/2 + xk+1/2),

mj
i,k = max(xj−1/2, xi−1/2 + xk−1/2).

The formulation derived in equation (A.4) is not volume conserving. In order to achieve the mass conservation
property, Forestier-Coste and Mancini [6] have modified the aggregation kernel defined in the first term of the
right hand side of equation (A.4) which is given as follows:

K̂i,k = Ki,k
2(xi + xk)∑

j∈Ri,k
xj(λj

i,k + λj
k,i)
· (A.6)

The modified aggregation kernel ensures that mass conservation law is satisfied. The detailed proof of the
mass conservation property and its complete formulation can be found in Forestier-Coste and Mancini [6].

Appendix B. Theoretical proof of non preservation of Zeorth moment

The zeroth order moment is preserved if the following condition is satisfied:

d
dt

I∑
k=1

N̂k =
I∑

k=1

N̂k

∫ xk

0

F (xk − x, x)dx. (B.1)

Take summation on both side of equation (2.13):

d
dt

I∑
i=1

N̂i = 2
I∑

i=1

N̂k

I∑
k=i

Φk
i ϕ

b
k

∫ pk
i

xi−1/2

F (xk − x, x)dx−
I∑

i=1

N̂iϕ
d
i

∫ xi

0

F (xi − x, x)dx. (B.2)



1712 M. SINGH ET AL.

Change the order of the integration in the first term and after simplification to obtain

d
dt

I∑
i=1

N̂i = 2
I∑

k=1

N̂k

k∑
i=1

Φk
i ϕ

b
k

∫ pk
i

xi−1/2

F (xk − x, x)dx−
I∑

k=1

N̂kϕ
d
i

∫ xk

0

F (xk − x, x)dx,

=
I∑

k=1

N̂k

[ k∑
i=1

2Φk
i ϕ

b
k

∫ pk
i

xi−1/2

F (xk − x, x)dx− ϕd
i

∫ uk

0

F (xk − x, x)dx
]
. (B.3)

Using the relation
∑I

i=1

∫ pk
i

xi−1/2
F (xk − x, x)dx =

∫ xk

0
F (xk − x, x)dx, we get

d
dt

I∑
i=1

N̂i =
I∑

k=1

N̂k

k∑
i=1

(2Φk
i ϕ

b
k − ϕd

k)
∫ xk

0

F (xk − x, x). (B.4)

In order to show the preservation of the zeroth order moment, it is necessary to show that 2Φk
i ϕ

b
k − ϕd

k = 1,
which is not possible. Hence, this proposed scheme does not preserve the zeroth order moment.
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