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ON A CLASS OF DERIVATIVE NONLINEAR SCHRÖDINGER-TYPE
EQUATIONS IN TWO SPATIAL DIMENSIONS

Jack Arbunich1,∗, Christian Klein2 and Christof Sparber1

Abstract. We present analytical results and numerical simulations for a class of nonlinear dispersive
equations in two spatial dimensions. These equations are of (derivative) nonlinear Schrödinger type and
have recently been obtained by Dumas et al. in the context of nonlinear optics. In contrast to the usual
nonlinear Schrödinger equation, this new model incorporates the additional effects of self-steepening
and partial off-axis variations of the group velocity of the laser pulse. We prove global-in-time existence
of the corresponding solution for various choices of parameters. In addition, we present a series of
careful numerical simulations concerning the (in-)stability of stationary states and the possibility of
finite-time blow-up.
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1. Introduction

This work is devoted to the analysis and numerical simulations for the following class of nonlinear dispersive
equations in two spatial dimensions:

iPε∂tu+ ∆u+ (1 + iδ · ∇)
(
|u|2σu

)
= 0, u|t=0 = u0(x), (1.1)

where x = (x1, x2) ∈ R2, δ = (δ1, δ2)> ∈ R2 is a given vector with |δ| 6 1, and σ > 0 is a parameter describing
the strength of the nonlinearity. In addition, for 0 < ε 6 1, we denote by Pε the following linear differential
operator,

Pε = 1− ε2
k∑
j=1

∂2
xj , k 6 2. (1.2)

Indeed, we shall mainly be concerned with (1.1) rewritten in its evolutionary form:

i∂tu+ P−1
ε ∆u+ P−1

ε (1 + iδ · ∇)
(
|u|2σu

)
= 0, u|t=0 = u0(x1, x2). (1.3)
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Here and in the following, P sε , for any s ∈ R, is the non-local operator defined through multiplication in
Fourier space using the symbol

P̂ sε (ξ) =
(

1 + ε2
k∑
j=1

ξ2
j

)s
, k 6 2,

where ξ = (ξ1, ξ2) ∈ R2 is the Fourier variable dual to x = (x1, x2). For s = −1 this obviously yields a bounded
operator P−1

ε : L2(R2
x) → L2(R2

x). In addition, Pε is seen to be uniformly elliptic provided k = 2. Moreover
when ε = 1 and k = 2, note we can define the L2(R2

x)-based Sobolev spaces for s ∈ R via the norm

‖f‖Hsx =
∥∥P s/21 f

∥∥
L2
x

:=
(∫

R2
|P̂ s/21 f̂(ξ)|2 dξ

) 1
2

.

The inclusion of Pε implies that (1.1), or equivalently (1.3), shares a formal similarity with the well-known
Benjamin-Bona-Mahoney equation for uni-directional shallow water waves [3,4]. However, the physical context
for (1.1) is rather different. Equations of the form (1.1) have recently been derived in [11] as an effective
description for the propagation of high intensity laser beams. This was part of an effort to remedy some of
the shortcomings of the classical (focusing) nonlinear Schrödinger equation (NLS), which is obtained from (1.1)
when ε = δ1 = δ2 = 0, i.e.

i∂tu+ ∆u+ |u|2σu = 0, u|t=0 = u0(x1, x2). (1.4)

The NLS is a canonical model for slowly modulated, self-focusing wave propagation in a weakly nonlinear
dispersive medium. The choice of σ = 1 thereby corresponds to the physically most relevant case of a Kerr
nonlinearity, cf. [12, 35]. Equation (1.4) is known to conserve, among other quantities, the total mass

M(t) ≡ ‖u(t, ·)‖2L2
x

= ‖u0‖2L2
x
.

A scaling consideration then indicates that (1.4) is L2-critical for σ = 1 and L2-super-critical for σ > 1. It
is well known that in these regimes, solutions to (1.4) may not exist for all t ∈ R, due to the possibility of
finite-time blow-up. The latter means that there exists a time T < ∞, depending on the initial data u0, such
that

lim
t→T−

‖∇u(t, ·)‖L2
x

= +∞.

In the physics literature this is referred to as optical collapse, see [12].
In the L2-critical case, there is a sharp dichotomy characterizing the possibility of this blow-up: Indeed, one

can prove that the solution u to (1.4) with σ = 1 exists for all t ∈ R, provided its total mass is below that of
the nonlinear ground state, i.e. the least energy (nonzero) solution of the form

u(t, x) = eitQ(x).

Solutions u whose L2-norm exceeds the norm of Q, however, will in general exhibit a self-similar blow-up
with a profile given by Q (up to symmetries), see [30,31]. In turn, this also implies that stationary states of the
form eitQ(x) are strongly unstable. For more details on all this we refer the reader to [6, 12, 35] and references
therein.

In comparison to (1.4), the new model (1.3) includes two additional physical effects. Firstly, there is an
additional nonlinearity of derivative type which describes the possibility of self-steepening of the laser pulse in
the direction δ ∈ R2. Secondly, the operator Pε describes off-axis variations of the group velocity of the beam.
The case k = 2 is thereby referred to as full off-axis dependence, whereas for k = 1 the model incorporates only
a partial off-axis variation. Both of these effects become more pronounced for high beam intensities (see [11])
and both are expected to have a significant influence on the possibility of finite-time blow-up. In this context,
it is important to note that (1.3) does not admit a simple scaling invariance analogous to (1.4). Hence, there is
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no clear indication of sub- or super-critical regimes for equation (1.3). At least formally, though, equation (1.3)
admits the following conservation law,

Mε(t) ≡ ‖P 1/2
ε u(t, ·)‖2L2

x
= ‖P 1/2

ε u0‖2L2
x
, (1.5)

generalizing the usual mass conservation. In the case of full-off axis dependence, equation (1.5) yields an a priori
bound on the H1-norm of u, ruling out the possibility of finite-time blow-up. However, the situation is more
complicated in the case with only a partial off-axis variation.

The latter was studied analytically in the recent work [2], but only for the much simpler case without self-
steepening, i.e. only for δ1 = δ2 = 0. It was rigorously shown that in this case, even a partial off-axis variation
(mediated by Pε with k = 1) can arrest the blow-up for all σ < 2. In particular, this allows for nonlinearities
larger than the L2-critical case, cf. Section 6 for more details. One motivation for the present work is to give
numerical evidence for the fact that these results are indeed sharp, and that one can expect finite-time blow-up
as soon as σ > 2.

The current work aims to extend the analysis of [2] to situations with additional self-steepening, i.e. δ 6= 0,
and to provide further insight into the qualitative interplay between this effect and the one stemming from
Pε. From a mathematical point of view, the addition of a derivative nonlinearity makes the question of global
well-posedness versus finite-time blow-up much more involved. Derivative NLS and their corresponding ground
states are usually studied in one spatial dimension only, see e.g. [1,8,13,14,27,28,36,37] and references therein.
For σ = 1, the classical one-dimensional derivative NLS is known to be completely integrable. Furthermore,
there has only very recently been a breakthrough in the proof of global-in-time existence for this case, see [15,16].
In contrast to that, [28] gives strong numerical indications for a self-similar finite-time blow-up in derivative
NLS with σ > 1. The blow-up thereby seems to be a result of the self-steepening effect in the density ρ = |u|2,
which generically undergoes a time evolution similar to a dispersive shock wave formation in Burgers’ equation.
To our knowledge, however, no rigorous proof of this phenomenon is currently available.

In two and higher dimensions, even the local-in-time existence of solutions to derivative NLS type equations
seems to be largely unknown, let alone any further qualitative properties of their solutions. In view of this, the
present paper aims to shine some light on the specific variant of two-dimensional derivative NLS given by (1.3).
Except for its physical significance, this class of models also has the advantage that the inclusion of (partial)
off-axis variations via Pε are expected to have a strong regularizing effect on the solution, and thus allow for
several stable situations without blow-up.

The organization of our paper is then as follows:

– In Section 2, we shall numerically construct nonlinear stationary states to (1.1), or equivalently (1.3). These
also include the well-known ground states for the classical NLS. For the sake of illustration, we shall also
derive explicit formulas for the one-dimensional case and compare them with the well-known formulas for
the classical (derivative) NLS.

– Certain perturbations of these stationary states will form the class of initial data considered in the numerical
time-integration of (1.3). The numerical algorithm used to perform the respective simulations is detailed
in Section 3. In it, we also include several basic numerical tests which compare the new model (1.3) to the
classical (derivative) NLS.

– Analytical results yielding global well-posedness of (1.3) with either full or partial off-axis variations are
given in Sections 4 and 6, respectively.

– In the former case, the picture is much more complete, which allows us to perform a numerical study of the
(in-)stability properties of the corresponding stationary states, see Section 5.

– In the case with only partial off-axis variations, the problem of global existence is more complicated and
one needs to distinguish between the cases where the action of Pε is either parallel or orthogonal to the
self-steepening. Analytically, only the former case can be treated so far (see Sect. 6). Numerically, however,
we shall present simulations for both of these cases in Section 7.
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2. Stationary states

In this section, we focus on stationary states, i.e. time-periodic solutions to (1.1) given in the following form:

u(t, x1, x2) = eitQ(x1, x2). (2.1)

The function Q then solves
PεQ = ∆Q+ (1 + iδ · ∇)(|Q|2σQ), (2.2)

subject to the requirement that Q(x)→ 0 as |x| → ∞. Every non-zero solution Q(x) ∈ C gives rise to a solitary
wave solution (with speed zero) to (1.1). These solitary waves will be an important benchmark for our numerical
simulations later on. Note that in (2.1) we only allow for a simple time-dependence exp(iωt) with ω = 1 in
(2.1). This is not a restriction for the usual 2D NLS, given its scaling invariance, but it is a restriction for our
model in which this invariance is broken (see also [13,27] for the connection between ω and the speed of stable
solitary waves).

For the classical NLS, i.e. ε = 0 and | δ | = 0, there exists a particular solution Q, called the nonlinear
ground state, which is the unique radial and positive solution to (2.2), cf. [12, 35]. Recall that in dimensions
d = 2 the NLS is already L2-critical and thus, ground states, in general, cannot be obtained as minimizers of
the associated energy functional (which is the same for both ε = 0 and ε > 0, see [11]). As we shall see below
for ε > 0, the regularization via Pε yields a natural modification of the ground state Q by smoothly widening
its profile (while conserving positivity). We shall thus also refer to these solutions Q as the ground states for
(2.2) with | δ | = 0 and ε > 0. At present, there are unfortunately no analytical results on the existence and
uniqueness of such modified ground states available. However, our numerical algorithm indicates that they exist
and are indeed unique (although, in general no longer radially symmetric).

The situation with derivative nonlinearity | δ | 6= 0 is somewhat more complicated, since in this case, solutions
Q to (2.2) are always complex-valued and hence the notion of a ground state does not directly extend to this
case (recall that uniqueness is only known for positive solutions). At least in d = 1, however, explicit calculations
(see below) show, that there is a class of smooth δ-dependent stationary solutions to (2.2), which for | δ | = 0
yield the family of ε-ground states.

2.1. Explicit solutions in 1D

In one spatial dimension, equation (2.2) allows for explicit formulas, which will serve as a basic illustration
for the combined effects of self-steepening and off-axis variations. Indeed, in one spatial dimension, equation
(1.1) simplifies to

i(1− ε2∂2
x)∂tu+ ∂2

xu+ (1 + iδ∂x)(|u|2σu) = 0. (2.3)

Seeking a solution of the form (2.1) thus yields the following ordinary differential equation:

(1 + ε2)Q′′ + (|Q|2σ − 1)Q+ iδ(|Q|2σQ)′ = 0. (2.4)

To solve this equation, we shall use the polar representation for Q(x) ∈ C

Q(x) = A(x)eiθ(x), A(x), θ(x) ∈ R

where we impose the requirement that A(x) > 0 and limx→±∞A(x) = 0. Plugging this ansatz into (2.4),
factoring eiθ out and isolating the real and imaginary part yields the following coupled system:(

1 + ε2
)
A′′ + (A2σ − 1)A−Aθ′

(
(1 + ε2)θ′ + δA2σ

)
= 0,(

1 + ε2
)(
Aθ′′ + 2θ′A′

)
+ (2σ + 1)δA2σA′ = 0.
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Multiplying the second equation by A and integrating from −∞ to x gives

(1 + ε2)θ′ = − (2σ + 1)δA2σ

2(σ + 1)
,

where here we implicitly assume that A2θ′ vanishes at infinity. Using the above, we infer that the amplitude
solves (

1 + ε2
)
A′′ + (A2σ − 1)A+

(2σ + 1)δ2

4(1 + ε2)(σ + 1)2
A4σ+1 = 0, (2.5)

while the phase is given a posteriori through

θ(x) = − (2σ + 1)δ
2(1 + ε2)(σ + 1)

∫ x

−∞
A2σ(y) dy. (2.6)

After some lengthy computation, similar to what is done for the usual NLS, cf. [12], the solution to (2.5) can
be written in the form

A(x) =

 2(σ + 1)

1 +Kε,δ cosh
(

2σx√
1+ε2

)
1/(2σ)

, (2.7)

where Kε,δ =
√

1 + δ2

1+ε2 > 0. In view of (2.6), this implies that the phase function θ is given by

θ(x) = −sgn(δ)(2σ + 1) arctan

(√
1 + ε2

|δ|

(
1 + Kε,δe

2σx√
1+ε2

))
, (2.8)

where we omitted a physically irrelevant constant in the phase (clearly, Q is only unique up to multiplication
by a constant phase).

Note that in the case with no self-steepening δ = 0, the phase θ is zero. Thus, Q(x) ≡ A(x) and we find

Q(x) = (σ + 1)1/(2σ) sech1/σ

(
σx√

1 + ε2

)
·

For ε = 0, this is the well-known ground state solution to (1.4) in one spatial dimension, cf. [12,35]. We notice
that adding the off-axis dispersion (ε > 0) widens the profile, causing it to decay more slowly as x → ±∞ as
can be seen in Figure 1 on the left. On the right of Figure 1, it is shown that the maximum of the ground state
decreases with σ but that the peak becomes more compressed.

Remark 2.1. The (σ-generalized) one-dimensional derivative NLS can be obtained from (2.3) by putting ε = 0,
rescaling

u(t, x) = δ−1/(2σ)ũ(t, x),

and letting δ →∞. Note that ũ solves

i∂tũ+ ∂2
xũ+ (δ−1 + i∂x)(|ũ|2σũ) = 0.

Denoting Q̃ = Ãeiθ̃(x), we get from (2.7) and (2.8) the well-known zero-speed solitary wave solution of the
derivative NLS, i.e.

Ã(x) =
(
2(σ + 1) sech(2σx)

)1/(2σ)
, θ̃(x) = −(2σ + 1) arctan(e2σx).

The stability of these states has been studied in, e.g. [8, 13,27].
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Figure 1. Ground state solution to (2.7) with δ = 0: On the left for σ = 1 and ε = 0 (blue),
ε = 0.5 (green) and ε = 1 (red). On the right for ε = 1 and σ = 1 (blue), σ = 2 (green) and
σ = 3 (red) (Color online).

2.2. Numerical construction of stationary states

In more than one spatial dimension, no explicit formula is known for Q. Instead, we shall numerically construct
Q by following an approach similar to those in [22,24]. Since we can expect Q to be rapidly decreasing, we use
a Fourier spectral method and approximate

F(Q) ≡ Q̂(ξ1, ξ2) =
1

2π

∫∫
R2
Q(x1, x2)e−ix1ξ1e−ix2ξ2 dx1dx2,

by a discrete Fourier transform which can be efficiently computed via the Fast Fourier Transform (FFT). In
an abuse of notation, we shall in the following use the same symbols for the discrete and continuous Fourier
transform. To apply FFTs, we will use a computational domain of the form

Ω = [−π, π]Lx1 × [−π, π]Lx2 , (2.9)

and choose Lx1 , Lx2 > 0 sufficiently large so that the obtained Fourier coefficients of Q decrease to machine
precision, roughly 10−16, which in practice is slightly larger due to unavoidable rounding errors.

Now, recall that for a solution of the form (2.1) to satisfy (1.1), the function Q needs to solve (2.2). In Fourier
space, this equation takes the simple form

Q̂(ξ1, ξ2) = Γ̂εF(|Q|2σQ)(ξ1, ξ2),

where

Γ̂ε(ξ1, ξ2) =
(1− δ1ξ1 − δ2ξ2)

1 + ξ2
1 + ξ2

2 + ε2
∑k
i=1 ξ

2
i

·

For δ1 = δ2 = 0, the solution Q can be chosen to be real, but this will no longer be true for δ1,2 6= 0. In the
latter situation, we will decompose

Q(x1, x2) = α(x1, x2) + iβ(x1, x2),
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Figure 2. Ground state solution to equation (1.1) with σ = 1 and δ = 0: On the left for ε = 0,
in the middle for ε = 1 and k = 1 (partial off-axis dependence), on the right for ε = 1 and
k = 2 (full off-axis dependence).

and separate (2.2) into its real and imaginary part, yielding a coupled nonlinear system for α, β. By using FFTs,
this is equivalent to the following system for α̂ and β̂: α̂(ξ1, ξ2)− Γ̂εF

((
α2 + β2

)σ
α
)

(ξ1, ξ2) = 0,

β̂(ξ1, ξ2)− Γ̂εF
((
α2 + β2

)σ
β
)

(ξ1, ξ2) = 0.

Formally, the system can be written as M(q̂) = 0 where q̂ = (α̂, β̂)> and solved via a Newton iteration. One
thereby starts from an initial iterate q̂(0) and computes the n-th iterate via the well known formula

q̂(n) = q̂(n−1) − J
(
q̂(n−1)

)−1

M
(
q̂(n−1)

)
n ∈ N, (2.10)

where J is the Jacobian of M with respect to q̂. Since our required numerical resolution makes it impossible
to directly compute the action of the inverse Jacobian, we instead employ a Krylov subspace approach as in
[34]. Numerical experiments show that when the initial iterate q̂(0) is sufficiently close to the final solution, we
obtain the expected quadratic convergence of our scheme and reach a precision of order 10−10 after only 4–8
iterations.

As a basic test case, we compute the ground state of the standard two-dimensional focusing NLS with σ = 1,
using the initial iterate

q(0)(x1, x2) = sech2
(√

x2
1 + x2

2

)
on the computational domain (2.9) with Lx1 = Lx2 = 5. By choosing Nx1 = Nx2 = 29 many Fourier modes, we
have after seven iterations of (2.10) a residual smaller than 10−12. The obtained solution is given on the left of
Figure 2. As expected, the solution is radially symmetric.

The numerical ground state solution hereby obtained will then be used as an initial iterate for the situation
with non-vanishing ε and δ, as follows:

Step 1: In the case without self-steepening δ1 = δ2 = 0, the iteration is straightforward even for relatively
large values such as ε = 1. It can be seen in the middle of Figure 2, that the ground state for ε = 1 and
k = 1 is no longer radially symmetric. As an effect of the partial off-axis variation, the solution is elongated in
the x1-direction. In the case of full off-axis dependence, the ground state for the same value of ε = 1 can be
seen in Figure 2 on the right. The solution is again radially symmetric, but as expected less localized than the
ground state of the classical standard NLS. This is consistent with the explicit formulas for Q found in the one
dimensional case above.

Step 2: In the case with self-steeping δ1 = δ2 = 1, smaller intermediate steps have to be used in the iterations:
We increment δ, by first varying only δ2 in steps of 0.2, always using the last computed value for Q as an initial
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Figure 3. The stationary state solution Q to equation (1.1) with σ = 1, ε = δ1 = 0 and δ2 = 1:
On the left, the real part of Q, on the right its imaginary part.

iterate for the slightly larger δ. The resulting solution Q can be seen in Figure 3. Note that the imaginary part
of Q is of the same order of magnitude as the real part.

Step 3: In order to combine both effects within the same model, we shall use the (zero speed) solitary obtained
for ε = 0 and δ 6= 0 as an initial iterate for the case of non-vanishing ε. In Figure 4 we show on the left the
stationary state for ε = 1, k = 1, δ1 = 0 and δ2 = 1, when the action of Pε is orthogonal to the self-steepening.
When compared to the case with ε = 0, the solution is seen to be elongated in the x1-direction. Next, we
simulate when Pε acts parallel to the self-steepening, that is when ε = 1, k = 1, δ1 = 1 and δ2 = 0. The result
is shown in the middle of Figure 4. In comparison to the former case, the imaginary part of the solution is
essentially rotated clockwise by 90◦. The elongation effect in the x1-direction is still visible but less pronounced.

Step 4: For σ > 1 stationary states become increasingly peaked, as is seen from the 1D picture in Figure 1.
Hence, to construct stationary states for higher nonlinear powers in 2D, we will consequently require more
Fourier coefficients to effectively resolve these solutions. To this end, we work on the numerical domain (2.9)
with Lx1 = Lx2 = 3 and Nx1 = Nx2 = 210 Fourier modes. We use the ground state obtained for σ = 1 as an
initial iterate for the case σ = 2, 3, and follow the same program as outlined above.

3. Numerical method for the time evolution

3.1. A Fourier spectral method

In this section, we briefly describe the numerical algorithm used to integrate our model equation in its
evolutionary form (1.3). After a Fourier transformation, this equation becomes

∂tû = −iP̂−1
ε (ξ)

(
|ξ|2û− (1− δ · ξ) ̂(|u|2σu)

)
, ξ ∈ R2.

Approximating the above by a discrete Fourier transform (via FFT) on a computational domain Ω given by
(2.9), yields a finite dimensional system of ordinary differential equations, which formally reads

∂tû = Lεû+Nε(û). (3.1)

Here Lε = −iP−1
ε |ξ|2 is a linear, diagonal operator in Fourier space, and Nε(û) has a nonlinear and nonlocal

dependence on û. Since ‖Lε‖ can be large, equation (3.1) belongs to a family of stiff ODEs, for which several
efficient numerical schemes have been developed, cf. [17,21] where the particular situation of semi-classical NLS
is considered. Driscoll’s composite Runge–Kutta (RK) method [10] has proven to be particularly efficient and
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Figure 4. Real and imaginary parts of the stationary state Q to equation (1.1) with σ = 1:
On the left for ε = 1, k = 1, δ1 = 0 and δ2 = 1, in the middle for ε = 1, k = 1, δ1 = 1 and
δ2 = 0, and on the right for ε = 1, k = 2, δ1 = 0 and δ2 = 1.

thus will also be applied in the present work. This method uses a stiffly stable third order RK method for the
high wave numbers of Lε and combines it with a standard explicit fourth order RK method for the low wave
numbers of Lε and the nonlinear part Nε(û). Despite combining a third order and a fourth order method, this
approach yields fourth order in-time convergence in many applications. Moreover, it provides an explicit method
with much larger time steps than allowed by the usual fourth order stability conditions in stiff regimes.

Remark 3.1. The evolutionary form of our model (1.3) is in many aspects similar to the well-known Davey–
Stewartson (DS) system, which is a non-local NLS type equation in two spatial dimensions, cf. [9, 35]. In
[21,23,25], the possibility of self-similar blow-up in DS is studied, using a numerical approach similar to ours.

As a first basic test of consistency, we apply our numerical code to the cubic NLS in 2D i.e. equation (1.4)
with σ = 1. As initial data u0 we take the ground state Q, obtained numerically as outlined in Section 2 above.
We use Nt = 1000 time-steps for times 0 6 t 6 1. In this case, we know that the exact time-dependent solution u
is simply given by u = Qeit. Comparing this to the numerical solution obtained at t = 1 yields an L∞-difference
of the order of 10−10. This verifies both the code for the time evolution and the one for the ground state Q
which in itself is obtained with an accuracy of order 10−10. Thus, the time evolution algorithm evolves the
ground state with the same precision as with which it is known.

For general initial data u0, we shall control the accuracy of our code in two ways: On the one hand, the
resolution in space is controlled via the decrease of the Fourier coefficients within (the finite approximation
of) û. The coefficients of the highest wave-numbers thereby indicate the order of magnitude of the numerical
error made in approximating the function via a truncated Fourier series. On the other hand, the quality of the
time-integration is controlled via the conserved quantity Mε(t) defined in (1.5). Due to unavoidable numerical
errors, the latter will numerically depend on time. For sufficient spatial resolution, the relative conservation of
Mε(t) will overestimate the accuracy in the time-integration by 1–2 orders of magnitude.
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Figure 5. Solution to the classical NLS (1.4) with σ = 1 and initial data (3.2): on the left |u|
at t = 5, and on the right the L∞-norm of the solution as a function of t.

3.2. Reproducing known results for the classical NLS

As already discussed in the introduction of this paper, the cubic NLS in two spatial dimensions is L2-critical
and its ground state solution Q is strongly unstable. Indeed, any perturbation of Q which lowers the L2-norm
of the initial data below that of Q itself, is known to produce purely dispersive, global-in-time solutions which
behave like the free time evolution for large |t| � 1. However, perturbations that increase the L2-norm of the
initial data above that of Q are expected to generically produce a (self-similar) blow-up in finite time. This
behavior can be reproduced in our simulations.

To do so, we first take initial data of the form

u0(x1, x2) = Q(x1, x2)− 0.1e−x
2
1−x

2
2 , (3.2)

and work on the numerical domain Ω given by (2.9) with Lx1 = Lx2 = 3. We will use Nt = 5000 time-steps
within 0 6 t 6 5. We can see on the right of Figure 5 that the L∞-norm of the solution decreases monotonically,
indicating purely dispersive behavior. The plotted absolute value of the solution at t = 5 confirms this behavior.
In addition, the mass M(t) ≡ M0(t) is conserved to better than 10−13, indicating that the problem is indeed
well resolved in time.

Remark 3.2. Note that we effectively run our simulations on Ω ' T2, instead of R2. As a consequence, the
periodicity will after some time induce radiation effects appearing on the opposite side of Ω. The treatment of
(large) times t > 5 therefore requires a larger computational domain to suppress these unwanted effects.

Next, for initial data of the form

u0(x1, x2) = Q(x1, x2) + 0.1e−x
2
1−x

2
2 , (3.3)

we again use Nt = 5000 time steps for 0 6 t 6 2. As can be seen in Figure 6 on the right, there is numerical
indication for finite-time blow-up. The code is stopped at t = 1.89 when the relative error in the conservation of
mass M(t) drops below 10−3. The solution for t = 1.88 can be seen on the left of Figure 6. This is in accordance
with the self-similar blow-up established by Merle and Raphaël, cf. [30,31]. In particular, we note that the result
does not change notably if a higher resolution in both x and t is used.

Remark 3.3. We want to point out that there are certainly more sophisticated methods available to numerically
study self-similar blow-up, see for instance [24,28,35] for the case of NLS type models, as well as [19,20] for the
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Figure 6. Solution to the classical NLS (1.4) with σ = 1 and initial data (3.3): on the left |u|
at t = 1.88 and on the right the L∞-norm of the solution as a function of t.

analogous problem in KdV type equations. However, these methods will not be useful for the present work, since
as noted before, the model (1.1) does not admit a simple scaling invariance, which is the underlying reason for
self-similar blow-up in NLS and KdV type models. As a result, all our numerical findings concerning finite-time
blow-up have to be taken with a grain of salt. An apparent divergence of certain norms of the solution or
overflow errors produced by the code can indicate a blow-up, but might also just indicate that one has run out
of resolution. The results reported in this paper therefore need to be understood as being stated with respect
to the given numerical resolution. However, we have checked that they remain stable under changes of the
resolution within the accessible limits of the computers used to run the simulations.

3.3. Time-dependent change of variables in the case with self-steepening

In the case of self-steepening, the ability to produce an accurate numerical time-integration in the presence
of a derivative nonlinearity (δ 6= 0) becomes slightly more complicated. The inclusion of such a nonlinearity can
lead to localized initial data moving (relatively fast) in the direction chosen by δ. In turn, this might cause the
numerical solution to “hit” the boundary of our computational domain Ω.

To avoid this issue, we shall instead perform our numerical computations in a moving reference frame, chosen
such that the maximum of |u(t, x)| remains fixed at the origin. More precisely, we consider the transformation

x 7→ x− y(t),

and denote v(t) = ẏ(t). The new unknown u(t, x− y(t)) solves

i∂tu− iv · ∇u+ P−1
ε ∆u+ P−1

ε (1 + iδ · ∇)
(
|u|2σu

)
= 0. (3.4)

The quantity v(t) = (v1(t), v2(t)) is then determined by the condition that the density ρ = |u|2 has a
maximum at (x1, x2) = (0, 0) for all t > 0. We get from (3.4) the following equation for ρ:

∂tρ = v · ∇ρ+ i
(
ūP−1

ε ∆u− uP−1
ε ∆ū

)
+ i
(
ūP−1

ε (ρσu)− uP−1
ε (ρσū)

)
− ūP−1

ε δ · ∇(ρσu)− uP−1
ε δ · ∇(ρσū).

Differentiating this equation with respect to x1 and x2 respectively, and setting x1 = x2 = 0 yields the desired
conditions for v1 and v2.

Note that the computation of the additional derivatives appearing in this approach is expensive, since in
practice it needs to be enforced in every step of the Runge–Kutta scheme. Hence, we shall restrict this approach
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Figure 7. Real and imaginary part of the solution to (3.5) with δ2 = 1 at time t = 5 corre-
sponding to u0 = Q+ 0.1e−x

2
1−x

2
2 , where Q is the stationary state in Figure 3.

solely to cases where the numerical results appear to be strongly affected by the boundary of Ω. In addition,
we may always choose a reference frame such that one of the two components of δ is zero, which consequently
allows us to set either v1, or v2 equal to zero.

3.4. Basic numerical tests for a derivative NLS in 2D

As an example, we consider the case of a cubic nonlinear, two-dimensional derivative NLS of the following
form

i∂tu+ ∆u+ (1 + iδ2∂x2)
(
|u|2u

)
= 0, u|t=0 = u0(x1, x2). (3.5)

which is obtained from our general model (1.3) for ε = 0 and δ1 = 0. We take initial data u0 given by (3.3).
Here, Q is the ground state computed earlier for this particular choice of parameters, see Figure 3. We work on
the computational domain (2.9) with Lx1 = Lx2 = 3, using Nx1 = Nx2 = 210 Fourier modes and 105 time-steps
for 0 6 t 6 5. We also apply a Krasny filter [26], which sets all Fourier coefficients smaller than 10−10 equal to
zero. For δ2 = 1 the real and imaginary part of the solution u at the final time t = 5 can be seen in Figure 7
below. Note that they are both much more localized and peaked when compared to the ground state Q shown
in Figure 3, indicating a self-focusing behavior within u. Moreover, the real part of u is no longer positive due
to phase modulations.

Surprisingly, however, there is no indication of a finite-time blow-up, in contrast to the analogous situation
without derivative nonlinearity (recall Fig. 6 above). Indeed, the Fourier coefficients of |u| at t = 5 are seen
in Figure 8 to decrease to the order of the Krasny filter. In addition, the L∞-norm of the solution, plotted in
the middle of the same figure, appears to exhibit a turning point shortly before t ≈ 4. Finally, the velocity
component v2 plotted on the right in Figure 8 seems to slowly converge to a some limiting value v2 ≈ 2. The
latter would indicate the appearance of a stable moving soliton, but it is difficult to decide such questions
numerically. All of these numerical findings are obtained with Mε(t) conserved up to errors of the order 10−11.

It might seem extremely surprising that the addition of a derivative nonlinearity is able to suppress the
appearance of finite-time blow-up. Note however, that in all the examples above we have used only (a special
case of) perturbed ground states Q as initial data. For more general initial data, the situation is radically
different, as can be illustrated numerically in the following example: We solve (3.5) with purely Gaussian initial
data of the form

u0(x1, x2) = 4e−(x2
1+x2

2) (3.6)

on a numerical domain Ω with Lx1 = Lx2 = 2, using Nx1 = Nx2 = 210 Fourier coefficients and Nt = 105

time steps for 0 6 t 6 0.25. This case appears to exhibit finite-time blow-up, as is illustrated in Figure 9. The
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Figure 8. Solution to (3.5) with δ2 = 1 and perturbed stationary state initial data: The Fourier
coefficients of |u| at t = 5 on the left; the L∞-norm of the solution as a function of time in the
middle, and the time evolution of its velocity v2 on the right.
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Figure 9. The modulus of the solution to (3.5) with δ2 = 1 for Gaussian initial data u0 =
4e−x
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2
2 , at time t = 0.195. On the right, the L∞-norm of the solution as a function of time.

conservation of the numerically computed quantity M(t) drops below 10−3 at t ≈ T = 0.1955 which indicates
that plotting accuracy is no longer guaranteed. Consequently we ignore data taken for later times, but note
that the code stops with an overflow error for t ≈ 0.202.

Remark 3.4. These numerical findings are consistent with analytical results for derivative NLS in one spatial
dimension. For certain values of σ > 1 and certain velocities v, the corresponding solitary wave solutions are
found to be orbitally stable, see [8,13,27]. However, for general initial data and σ > 1 large enough, one expects
finite-time blow-up, see [28].

4. Global well-posedness with full off-axis variation

In this section we will analyze the Cauchy problem corresponding to (1.3) in the case of full off-axis depen-
dence, i.e. k = 2, so that

Pε = 1− ε2∆.

In this context, we expect the solution u of (1.3) to be very well behaved due to the strong regularizing effect
of the elliptic operator Pε acting in both spatial directions.
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To prove a global-in-time existence result, we rewrite (1.3), using Duhamel’s formula,

u(t) = Sε(t)u0 + i

∫ t

0

Sε(t− s)P−1
ε (1 + iδ · ∇)

(
|u|2σu

)
(s) ds ≡ Φ(u)(t). (4.1)

Here, and in the following, we denote by

Sε(t) = eitP
−1
ε ∆

the corresponding linear propagator, which is easily seen (via Plancherel’s theorem) to be an isometry on Hs

for any s ∈ R. It is known that in the case with full off-axis variation, Sε(t) does not allow for any Strichartz
estimates, see [5]. However, the action of P−1

ε allows us to “gain” two derivatives and offset the action of the
gradient term in the nonlinearity of (4.1). Using a fixed point argument, we can therefore prove the following
result.

Theorem 4.1 (Full off-axis variations). Let ε > 0, k = 2 and σ > 1
4 . Then for any δ ∈ R2 and any u0 ∈

H1(R2
x), there exists a unique global-in-time solution u ∈ C(Rt;H1(R2

x)) to (1.3), depending continuously on
the initial data. Moreover,

‖u(t, ·)‖H1
x
6 C(ε, ‖u0‖H1

x
), ∀ t ∈ R.

Proof. Let T,M > 0. We aim to show that u 7→ Φ(u) is a contraction on the ball

XT,M = {u ∈ L∞([0, T );H1(R2
x)) : ‖u‖L∞t H1

x
6M}.

To this end, let us shortly denote

Φ(u)(t) = Sε(t)u0 +N (u)(t), (4.2)

where for g(u) = |u|2σu, we write

N (u)(t) := i

∫ t

0

Sε(t− s)P−1
ε (1 + iδ · ∇)g(u(s)) ds.

Now, let u, u′ ∈ XT,M . Using Minkowski’s inequality and recalling that Sε(t) is an isometry on H1(R2) yields

∥∥(N (u)(t)−N (u′)(t)
)∥∥
H1
x
6 ε−2(1 + | δ |)

∫ t

0

‖g(u)− g(u′)‖L2
x
(s) ds.

To bound the integrand, we first note that

|g(u)− g(u′)| 6 Cσ(|u|2σ + |u′|2σ)|u− u′|. (4.3)

If we impose σ > 1
4 , then we have by Sobolev’s embedding that

H1(R2) ⊂ H
(4σ−1)

4σ (R2) ↪→ L8σ(R2) and H
1
2 (R2) ↪→ L4(R2).

This allows us to estimate further after using (4.3) and Hölder’s inequality in space to give

‖g(u)− g(u′)‖L2
x
6
(
‖u‖2σL8σ

x
+ ‖u′‖2σL8σ

x

)
‖u− u′‖L4

x

6
(
‖u‖2σH1

x
+ ‖u′‖2σH1

x

)
‖u− u′‖H1

x
.

Together with Hölder’s inequality in t, we can consequently bound∥∥N (u)−N (u′)
∥∥
L∞t H

1
x
6 2ε−2(1 + | δ |)TM2σ‖u− u′‖L∞t H1

x
.
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By choosing T > 0 sufficiently small, Banach’s fixed point theorem directly yields a unique local-in-time
solution u ∈ C([0, T ], H1(R2

x)). Standard arguments (see, e.g. [33]) then allow us to extend this solution up to
a maximal time of existence Tmax = Tmax(‖u0‖H1

x
) > 0 and we also infer continuous dependence on the initial

data.
Next, we shall prove that

‖P 1/2
ε u(t)‖L2

x
= ‖P 1/2

ε u0‖L2
x
, for all t ∈ [0, T ] and T < Tmax. (4.4)

For ε > 0, this conservation law yields a uniform bound on the H1-norm of u, since

cε‖P 1/2
ε ϕ‖L2

x
6 ‖ϕ‖H1

x
6 Cε‖P 1/2

ε ϕ‖L2
x
, Cε, cε > 0.

We consequently can re-apply the fixed point argument as many times as we wish, thereby preserving the
length of the maximal interval in each iteration, to yield Tmax = +∞. Since the equation is time-reversible
modulo complex conjugation, we obtain a global H1-solution for all t ∈ R, provided (4.4) holds.

To prove (4.4), we adapt and (slightly) modify an elegant argument given in [32], which has the advantage that
it does not require an approximation procedure via a sequence of sufficiently smooth solutions (as is classically
done, see e.g. [6]): Let t ∈ [0, T ] for T < Tmax. We first rewrite Duhamel’s formula (4.1), using the continuity of
the semigroup Sε to propagate backwards in time

Sε(−t)u(t) = u0 + Sε(−t)N (u)(t). (4.5)

As Sε(·) is unitary in L2, we have ‖P 1/2
ε u(t)‖L2

x
= ‖Sε(−t)P 1/2

ε u(t)‖L2
x
. The latter can be expressed using

the above identity:

‖P 1/2
ε u(t)‖L2

x
= ‖P 1/2

ε u0‖L2
x

+ 2Re
〈
Sε(−t)P 1/2

ε N (u)(t), P 1/2
ε u0

〉
L2
x

+ ‖Sε(−t)P 1/2
ε N (u)(t)‖2L2

x

≡ ‖P 1/2
ε u0‖L2

x
+ I1 + I2.

We want to show that I1 + I2 = 0. In view of (4.2) we can rewrite

I1 = −2Im
〈∫ t

0

Sε(−s)P−1/2
ε (1 + iδ · ∇)g(u)(s) ds, P 1/2

ε u0

〉
L2
x

ds

= −2Im
∫ t

0

〈
(1 + iδ · ∇)g(u)(s), Sε(s)u0

〉
L2
x

ds.

By the Cauchy–Schwarz inequality we find that this quantity is indeed finite, since

|I1| 6 2T‖(1 + iδ · ∇)g(u)‖L∞t L2
x
‖Sε(·)u0‖L∞t L2

x
<∞.

Denoting for simplicity Gε(·) = P−1
ε (1 + iδ · ∇)g(u)(·), we find after a lengthy computation (see [2] for more

details) that the integral

I2 = 2Re
∫ t

0

〈
PεGε(s),−iN (u)(s)

〉
L2
x

ds.

We can express −iN (u)(s) using the integral formulation (4.5) and write

I2 = 2Re
(∫ t

0

〈
PεGε(s), iSε(s)u0

〉
L2
x

ds+
∫ t

0

〈
PεGε(s),−iu(s)

〉
L2
x

ds
)
. (4.6)
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Next, we note that the particular form of our nonlinearity implies

Re
〈
PεGε,−iu

〉
L2 = Im

〈
(1 + iδ · ∇)g(u), u

〉
L2
x

= Im ‖u‖2σ+2

L2σ+2
x
− Re

〈
g(u), (δ · ∇)u

〉
L2
x
.

Here, the first expression in the last line is obviously zero, whereas for the second term we compute

Re
〈
g(u), (δ · ∇)u

〉
L2
x

=
∫

R2
|u|2σRe

(
u(δ · ∇)u

)
dx

=
1

2(σ + 1)

∫
R2

(δ · ∇)(|u|2σ+2) dx = 0,

for H1-solutions u. In summary, the second term on the right-hand side of (4.6) simply vanishes and we find

I2 = 2Im
∫ t

0

〈
(1 + iδ · ∇)g(u)(s), Sε(s)u0

〉
L2
x

ds = −I1.

This finishes the proof of (4.4). �

5. (In-)stability properties of stationary states with full off-axis variation

In this section, we shall perform numerical simulations to study the orbital stability or instability properties
of the (zero speed) solitary wave Qeit in the case with self-steepening | δ | 6= 0 and full off-axis variation k = 2.
In view of Theorem 4.1, we know that there cannot be any strong instability, i.e. instability due to finite-time
blow-up. Nevertheless, we shall see that there is a wealth of possible scenarios, depending on the precise choice
of parameters, σ, δ, and on the way we perturb the initial data.

To be more precise, we shall consider initial data to equation (1.3) with k = 2, given by

u0(x1, x2) = Q(x1, x2)± 0.1e−x
2
1−x

2
2 , (5.1)

where Q is again the stationary state constructed numerically as described in Section 2. We will use Nx1 =
Nx2 = 210 Fourier modes, a numerical domain Ω of the form (2.9) with Lx1 = Lx2 = 3, and a time step of
∆t = 10−2.

Recall that in a stable regime, the time-dependent solution u typically oscillates around some time-periodic
state plus a (small) remainder which radiates away as t → ±∞ (see, e.g. [35], Sect. 4.5.1 for more details). In
our simulations, however, we work on T2 instead of R2 which implies that radiation cannot escape to infinity.
Thus, we will not be able to numerically verify the precise behavior of u for large times. Having this in mind, we
take it as numerical evidence for (orbital) stability, if both perturbations (5.1) of Q generate stable oscillations
of ‖u(t, ·)‖L∞ , see also [22,24] for similar studies.

5.1. The case without self-steepening

Let us first address the case δ1 = δ2 = 0 for nonlinear strengths σ = 1, 2, 3.
For σ = 1, we find that the perturbed ground state is unstable, and that the initial pulse disperses towards

infinity as can be seen in Figure 10. The modulus of the solution at t = 10 in the same figure on the right
shows that the initial pulse disperses with an annular profile. A “ − ” perturbation in (5.1) leads to the same
qualitative behavior and a corresponding figure is omitted.

The situation is found to be different for σ = 2, where Q appears to be stable, see Figure 11. The L∞-norm
of the solution thereby oscillates for both signs of the perturbation.

Finally, for σ = 3 we find that the behavior depends on how we perturb the initial ground state Q. Perturba-
tions with a “ + ” sign in (5.1) again exhibit an oscillatory behavior of the L∞-norm, see the right of Figure 12.
However, a “ − ” perturbation yields a monotonically decreasing L∞-norm of the solution. The latter is again
dispersed with an annular profile.
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Figure 10. Solution to equation (1.3) with σ = 1, ε = 1, k = 2, δ = 0, and initial data (5.1)
with the “ + ” sign: On the left the L∞-norm of the solution as a function of t, and on the right
the modulus of the solution for t = 10.
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Figure 11. L∞-norm of the solution to equation (1.3) with σ = 2, ε = 1, k = 2, δ = 0, and
initial data (5.1): On the left for the “− ” sign, and on the right for the “ + ” sign.

5.2. The case with self-steepening

In this subsection, we shall perform the same numerical study in the case with self-steepening, i.e. δ1,2 6= 0.
For σ = 1, the corresponding stationary state Q seems to remain stable, since both types of perturbations yield
an oscillatory behavior of the L∞-norm in time, see Figure 13. This is in sharp contrast to the σ = 1 case
without self-steepening depicted in Figure 10 above. In addition, we see that the solution no longer displays
an annular profile.

This stable behavior is lost in the case of higher nonlinearities. More precisely, for both σ = 2 and 3 we find
that the behavior of the solution u depends on the sign of the considered Gaussian perturbation. On the one
hand, for the “+” perturbation in (5.1), both σ = 2 and σ = 3 yield an oscillatory behavior of the L∞-norm, see
Figure 14. On the other hand, the “− ” perturbation for both nonlinearities produce a solution with decreasing
L∞-norm in time (although for σ = 2 this decrease is no longer monotonically).
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Figure 12. L∞-norm of the solution to equation (1.3) with ε = 1, k = 2, σ = 3, δ = 0 and
initial data (5.1): On the left for the “− ” sign, on the right for the “ + ” sign.
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Figure 13. Solution to equation (1.3) with ε = 1, k = 2, σ = 1, δ1 = 0, δ2 = 1, and initial
data (5.1): On the left the L∞-norm for the “ − ” sign, in the middle |u| plotted at the final
time, and on the right the L∞-norm for the solution with the “ + ” sign.
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Figure 14. Solution to equation (1.3) with ε = 1, k = 2, σ = 3, δ1 = 0, δ2 = 0.1, and initial
data (5.1): On the left, the L∞-norm for the “ − ” perturbation, in the middle |u| plotted at
the final time, and on the right the L∞-norm for the solution with the “ + ” sign.
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Remark 5.1. Our numerical findings are reminiscent of recent results for the (generalized) BBM equation, see
[4]. In there, it is found that for p > 5, the regime where the underlying KdV equation is expected to exhibit
blow-up, solitary waves can be both stable and unstable and are sensitive to the type of perturbation considered.
The main difference to our case is of course that these earlier studies are done in only one spatial dimension.

6. Well-posedness results for the case with partial off-axis variation

From a mathematical point of view, the most interesting situation arises in the case where there is only a
partial off-axis variation. To study such a situation, we shall without loss of generality assume that Pε acts only
in the x1−direction, i.e.

Pε = 1− ε2∂2
x1
.

In this case (1.1) becomes

i(1− ε2∂2
x1

)∂tu+ ∆u+ (1 + iδ · ∇)(|u|2σu) = 0, u|t=0 = u0(x1, x2). (6.1)

When δ = (δ, 0)> and σ = 1, this is precisely the model proposed in Section 4.3 of [11]. Motivated by this,
we shall in our analysis only consider the case where the regularization Pε and the derivative nonlinearity act
in the same direction. Numerically, however, we shall also treat the orthogonal case where, instead, δ = (0, δ)>,
see below.

6.1. Change of unknown and Strichartz estimates

In [2], which treats the case without self-steepening, the following change of unknown is proposed in order to
streamline the analysis:

v(t, x1, x2) := P 1/2
ε u(t, x1, x2). (6.2)

Rewriting the evolutionary form of (6.1) with δ = (δ, 0)> in terms of v yields

i∂tv + P−1
ε ∆v + (1 + iδ∂x1)P−1/2

ε (|P−1/2
ε v|2σP−1/2

ε v) = 0, (6.3)

subject to initial data
v|t=0 = v0(x1, x2) ≡ P 1/2

ε u0(x1, x2).

Instead of (1.5), one finds the new conservation law

‖v(t, ·)‖2L2
x

= ‖P 1/2
ε u(t, ·), ‖2L2

x
= ‖P 1/2

ε u0‖2L2
x

= ‖v0‖2L2
x
, (6.4)

where we recall that P 1/2
ε only acts in the x1-direction, via its Fourier symbol

P̂
s/2
1 (ξ) = (1 + ξ2

1)s/2, ξ1 ∈ R.

This suggests to work in the mixed Sobolev-type spaces Lp(Rx2 ;Hs(Rx1)), which for any s ∈ R are defined
through the following norm:

‖f‖Lpx2Hsx1 :=
∥∥P s/21 f

∥∥
Lpx2L

2
x1

:=

(∫
R

(∫
R
|P s/21 f(x1, x2)|2 dx1

) p
2

dx2

) 1
p

.

We will also make use of the mixed space-time spaces LqtLpx2
Hs
x1

(I) for some time interval I (or simply
LqtL

p
x2
Hs
x1

when the interval is clear from context), which we shall equip with the norm

‖F‖LqtLpx2Hsx1 (I) :=
(∫

I

‖F (t)‖q
Lpx2H

s
x1

dt
) 1
q

.
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The proof of (global) existence of solutions to (6.3) will require us to use the dispersive properties of the
associated linear propagator Sε(t) = eitP

−1
ε ∆, which in contrast to the case k = 2 allows for Strichartz estimates.

However, in comparison to the usual Schrödinger group eit∆, these dispersive properties are considerably weaker.
In the following, we say that a pair (q, r) is Strichartz admissible, if

2
q

=
1
2
− 1
r
, for 2 6 r 6∞, 4 6 q 6∞. (6.5)

Now, let (q, r), (γ, ρ) be two arbitrary admissible pairs. It is proved in Proposition 3.4 of [2] that there exist
constants C1, C2 > 0 independent of ε, such that

‖Sε(·)f‖
LqtL

r
x2
H
− 2
γ

x1

6 C1‖f‖L2
x
, (6.6)

as well as ∥∥∥∥∫ t

0

Sε(· − s)F (s) ds
∥∥∥∥
LqtL

r
x2
H
− 2
q

x1

6 C2‖F‖
Lγ
′
t L

ρ′
x2H

2
γ
x1

. (6.7)

Here, one should note the loss of derivatives in the x1-direction.

6.2. Global existence results

Using the Strichartz estimates stated above, we shall now prove some L2-based global existence results for
the solution v to (6.3). In turn, this will yield global existence results (in mixed spaces) for the original equation
(6.1) via the transformation v = P

1/2
ε u.

To this end, we first recall that in the case without self-steepening δ = 0, the results of [2] directly give:

Proposition 6.1 (Partial off-axis variation without self-steepening). Let σ < 2. Then for any initial data
u0 ∈ L2(Rx2 ;H1(Rx1)) there exists a unique global-in-time solution u ∈ C(Rt;L2(Rx2 ;H1(Rx1))) to

i(1− ε2∂2
x1

)∂tu+ ∆u+ |u|2σu = 0, u|t=0 = u0(x1, x2). (6.8)

Our numerical findings in the next section indicate that this result is indeed sharp, i.e. that for σ > 2 global
existence in general no longer holds.

Next, we shall take into account the effect of self-steepening, and rewrite (6.3) using Duhamel’s formula:

v(t) =Sε(t)v0 + i

∫ t

0

Sε(t− s)P−1/2
ε (1 + iδ∂x1)(|P−1/2

ε v|2σP−1/2
ε v)(s) ds

≡Φ(v)(t).
(6.9)

To prove that Φ is a contraction mapping, the following lemma is key.

Lemma 6.2. Let g(z) = |z|2σz with σ ∈ N. For t ∈ [0, T ] denote

N (v)(t) := i

∫ t

0

Sε(t− s)P−1/2
ε (1 + iδ∂x1)g(P−1/2

ε v(s)) ds, (6.10)

and choose the admissible pair (γ, ρ) =
( 4(σ+1)

σ , 2(σ + 1)
)
. Then for ε, δ > 0, it holds:∥∥N (v)−N (v′)

∥∥
Lγt L

ρ
x2H

− 2
γ

x1

. ε−2(σ+1)(1 + δ)T 1−σ2
(
‖v‖2σ

Lγt L
ρ
x2H

− 2
γ

x1

+ ‖v′‖2σ
Lγt L

ρ
x2H

− 2
γ

x1

)
‖v − v′‖

Lγt L
ρ
x2H

− 2
γ

x1

.
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Proof. First it is easy to check that

(γ, ρ) =
(4(σ + 1)

σ
, 2(σ + 1)

)
is admissible in the sense of (6.5). Moreover, since γ > 4 we have 2

γ <
1
2 , from which we infer that H1− 2

γ (R) is
indeed a normed Banach algebra, a fact to be used below. Using the Strichartz estimate (6.7) we have∥∥N (v)−N (v′)

∥∥
Lγt L

ρ
x2H

− 2
γ

x1

6 C2

∥∥P−1/2
ε

(
1 + iδ∂x1

)(
g(P−1/2

ε v)− g(P−1/2
ε v′)

)∥∥
Lγ
′
t L

ρ′
x2H

2
γ
x1

.

For simplicity we shall in the following denote u = P
−1/2
ε v, u′ = P

−1/2
ε v′ in view of (6.2). Keeping t and x2

fixed we can estimate ∥∥P−1/2
ε

(
1 + iδ∂x1

)(
g(P−1/2

ε v)− g(P−1/2
ε v′)

)∥∥
H

2
γ
x1

6 ε−1‖
(
1 + iδ∂x1

)(
g(u)− g(u′)

)∥∥
H

2
γ
−1

x1

6 ε−1(1 + δ)‖g(u)− g(u′)‖
H

1− 2
γ

x1

,

where in the last inequality we have used the fact that H1− 2
γ (R) ⊂ H

2
γ (R). Next, use again (4.3) which together

with the algebra property of H1− 2
γ (R) for σ ∈ N implies

‖g(u)− g(u′)‖
H

1− 2
γ

x1

.
(
‖u‖2σ

H
1− 2

γ
x1

+ ‖u′‖2σ
H

1− 2
γ

x1

)
‖u− u′‖

H
1− 2

γ
x1

. ε−2(σ+1)
(
‖v‖2σ

H
− 2
γ

x1

+ ‖v′‖2σ
H
− 2
γ

x1

)
‖v − v′‖

H
− 2
γ

x1

.

It consequently follows after Hölder’s inequality in x2, that we obtain∥∥N (v)−N (v′)
∥∥
Lρx2H

− 2
γ

x1

. ε−(2σ+1)(1 + δ)
(
‖v‖2σ

Lρx2H
− 2
γ

x1

+ ‖v′‖2σ
Lρx2H

− 2
γ

x1

)
‖v − v′‖

Lρx2H
− 2
γ

x1

.

The result then follows after applying yet another Hölder’s inequality in t. �

This lemma allows us to prove the following global existence result for (6.1).

Theorem 6.3 (Partial off-axis variation with parallel self-steepening). Let σ = 1 and δ = (δ, 0)> for δ ∈ R.
Then for any u0 ∈ L2(Rx2 ;H1(Rx1)) there exists a unique global solution u ∈ C(Rt;L2(Rx2 ;H1(Rx1))) to (6.1).

Here, the restriction σ = 1 is due to the fact that this is the only σ ∈ N (required for the normed algebra
property above) for which the problem is subcritical. Indeed, in view of the estimate in Lemma 6.2, the exponent
1− σ

2 > 0 yields a contraction for small times.

Proof. We seek to show that v 7→ Φ(v) is a contraction mapping in a suitable space. To this end, we denote, as
before,

Φ(v)(t) = Sε(t)v0 +N (v)(t),
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where N (v) is given by (6.10). Let T,M > 0 and denote

YT,M = {v ∈ L∞([0, T );L2(R2
x)) ∩ L8([0, T );L4(Rx2 ;H−

1
4 (Rx1))) :

‖v‖L∞t L2
x

+ ‖v‖
L8
tL

4
x2
H
− 1

4
x1

6M}.

The Strichartz estimates (6.6) and (6.7) together with Lemma 6.2 imply that for any admissible pair (q, r)
and solutions v, v′ ∈ YT,M that

‖Φ(v)− Φ(v′)‖
LqtL

r
x2
H
− 2
q

x1

6 ‖Sε(t)(v0 − v′0)‖
LqtL

r
x2
H
− 2
q

x1

+ ‖N (v)−N (v′)‖
LqtL

r
x2
H
− 2
q

x1

6 C1‖v0 − v′0‖L2
x

+ C2

∥∥P−1/2
ε

(
1 + iδ∂x1

)(
g(P−1/2

ε v)− g(P−1/2
ε v′)

)∥∥
L

8
7
t L

4
3
x2H

1
4
x1

6 Cσ,ε
(
‖v0 − v′0‖L2

x
+ T 1/2M2‖v − v′‖

L8
tL

4
x2
H
− 1

4
x1

)
.

Choosing M = M(‖v0‖L2
x
) and T sufficiently small, it is clear that Φ is a contraction on YT,M . Banach’s

fixed point theorem and a standard continuity argument thus yield the existence of a unique maximal solution
v ∈ C([0, Tmax), L2(R2

x)) where Tmax = Tmax(‖v0‖L2
x
). Continuous dependence on the initial data follows by

classical arguments.
The conservation property (6.4) for v follows similarly as in the proof of Proposition 4.2 in [2] and we shall

therefore only sketch its main steps below. By the unitary of Sε(·) in L2 we obtain

‖v(t)‖L2
x

= ‖v0‖L2
x

+ 2Re
〈
Sε(−t)N (v)(t), v0

〉
L2
x

+ ‖Sε(−t)N (v)(t)‖2L2
x

=: ‖v0‖L2
x

+ I1 + I2.

To show that I1 + I2 = 0, we use (4.2) and rewrite

I1 = −2Im
∫ t

0

〈
P−1/2
ε (1 + iδ∂x1)g(P−1/2

ε v)(s), Sε(s)v0

〉
L2
x

ds.

By duality in x1 and Hölder’s inequality in t and x2 we find that this quantity is indeed finite, since

|I1| 6 2‖P−1/2
ε (1 + iδ∂x1)g(P−1/2

ε v)‖
Lγ
′
t L

ρ′
x2H

2
γ
x1

‖Sε(·)v0‖
Lγt L

ρ
x2H

− 2
γ

x1

<∞.

Once again we find, after a lengthy computation (see [2] for more details), that

I2 = 2Re
∫ t

0

〈
P−1/2
ε (1 + iδ∂x1)g(P−1/2

ε v)(s),−iN (u)(s)
〉
L2
x

ds.

We express −iN (u)(s) using the integral formulation (6.9) and write

I2 = 2Re
∫ t

0

〈
P−1/2
ε (1 + iδ∂x1)g(P−1/2

ε v)(s), iSε(s)u0

〉
L2
x

ds

+
∫ t

0

Im ‖P−1/2
ε v(s)‖2σ+2

L2σ+2
x
− δRe

〈
g(P−1/2

ε v), ∂x1P
−1/2
ε v

〉
L2
x
(s) ds.

Here the second time integral vanishes entirely, and, as in the full off-axis case, the latter term in the integrand
vanishes due to

Re
〈
g(P−1/2

ε v), ∂x1P
−1/2
ε v

〉
L2
x

=
2

(σ + 1)

∫
R

∫
R
∂x1(|P−1/2

ε v|2σ+2) dx1dx2 = 0.
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Figure 15. L∞-norm of the solution to (6.1) with σ = 1, δ = (0, 0.1), and initial data
u0 = 4 exp−x

2
1−x

2
2 : On the left for ε = 0, on the right for ε = 0.1.

In summary, we find that

I2 = 2Im
∫ t

0

〈
P−1/2
ε g(P−1/2

ε v)(s), Sε(s)u0

〉
L2
x

ds = −I1,

which finishes the proof of (6.4). We can thus extend v to become a global solution by repeated iterations to
conclude Tmax = +∞.

Finally, we use the fact that v = P
1/2
ε u to obtain a unique global-in-time solution u ∈ C(Rt;L2(Rx2 ;H1(Rx1)))

which finishes the proof. �

Remark 6.4. It is possible to treat the critical case σ = 2 using the same type of arguments as in [7] (see also
[2]). Unfortunately, this will only yield local-in-time solutions up to some time T = T (u0) > 0, which depends
on the initial profile u0 (and not only its norm). Only for sufficiently small initial data ‖u0‖L2

x2
H1
x1
< 1, does one

obtain a global-in-time solution. But since it is hard to detect small nonlinear effects numerically, we won’t be
concerned with this case in the following. We also mention the possibility of obtaining (not necessarily unique)
global weak solutions for derivative NLS, which has been done in [1] in one spatial dimension.

Theorem 6.3 covers the situation in which a partial off-axis regularization acts parallel to the self-steepening.
At present, no analytical result for the case where the two effects act orthogonal to each other is available.
Numerically, however, it is possible to study such a scenario: To this end, we recall that from the physics point
of view, both ε and | δ | have to be considered as (very) small parameters. With this in mind, we study the
time-evolution of (6.1) with σ = 1, Gaussian initial data of the form (3.6), and a relatively small self-steepening,
furnished by δ1 = 0 and δ2 = 0.1. In the case where ε = 0, it can be seen on the left of Figure 15 that the
L∞-norm of the solution indicates a finite-time blow-up at t ≈ T = 0.1445. In the same situation with a small,
but nonzero ε = 0.1, one can see that, instead, oscillations appear within the L∞-norm of the solution for t > T .

Note that these oscillations appear to decrease in amplitude, which indicates the possibility of an asymptot-
ically stable final state as t→ +∞. A similar behavior can be seen for different choices of parameters and also
for a full, two-dimensional off-axis variation (not shown here).

7. Numerical studies for the case with partial off-axis variation

In this section we present numerical studies for the model (6.1) with ε = 1 and different values of the self-
steepening parameter δ, as well as σ > 0. We will always use Nx1 = Nx2 = 210, Fourier coefficients on the
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Figure 16. Solution to (6.8) with ε = 1, σ = 1, and initial data (5.1) with a “ + ” sign: On
the left the L∞-norm in dependence of time, on the right the modulus of u at t = 2.5.
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Figure 17. Time-dependence of the L∞-norm of the solution to (6.8) with ε = 1, σ = 2, and
initial data (5.1): On the left, the case with a “ − ” perturbation; on the right the case with
“ + ” sign.

numerical domain Ω given by (2.9) with Lx1 = Lx2 = 3. The time step is ∆t = 10−2 unless otherwise noted.
The initial data is the same as in (5.1), i.e. a numerically constructed stationary state Q perturbed by adding
and subtracting small Gaussians, respectively.

7.1. The case without self-steepening

We shall first study the particular situation furnished by equation (6.8) with ε = 1. It is obtained from the
general model (1.1) in the case without self-steepening δ1 = δ2 = 0:

In the case σ = 1, the ground state perturbation in (5.1) with a “ + ” sign is unstable and results in a
purely dispersive solution with monotonically decreasing L∞-norm, see Figure 16. The modulus of the solution
at time t = 2.5 is shown on the right of the same figure. Interestingly, the initial hump appears to separate into
four smaller humps and we thus lose radial symmetry of the solution. The situation is qualitatively similar for
perturbations corresponding to the “− ” sign in (5.1) and we thus omit a corresponding figure.
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Figure 18. Solution to (6.8) for ε = 1, σ = 2 and initial data (5.1) with the “ + ” sign: On
the left the modulus of the solution at the last recorded time t = 0.6045; on the right the
corresponding Fourier coefficients of u given by û.
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Figure 19. Solution to (6.1) with ε = 1, σ = 2, and δ = (0.3, 0)>: On the left, the L∞-norm
of the solution obtained for initial data (5.1) with the “− ” sign, on the right for the “ + ”, and
in the middle |u| at t = 5 for the “− ” sign perturbation.

The situation changes significantly for σ = 2, as can be seen in Figure 17. While the L∞-norm of the solution
obtained from initial data (5.1) with the “ − ” sign is again decreasing, the “ + ” sign yields a monotonically
increasing L∞-norm indicating a blow-up at t ≈ 0.64.

The modulus of the solution at the last recorded time t = 0.6405 is shown in Figure 18 on the left. It can be
seen that it is strongly compressed in the x2-direction. The corresponding Fourier coefficients are shown on the
right of the same figure. They also indicate the appearance of a singularity in the x2-direction.

These numerical findings indicate that the global existence result stated in Theorem 6.3 is indeed sharp. It
also shows that the two-dimensional model with partial off-axis variation essentially behaves like the classical
one-dimensional focusing NLS in the unmodified x2-direction (i.e. the direction in which Pε does not act). Recall
that for the classical one-dimensional (focusing) NLS, finite-time blow-up is known to appear as soon as σ > 2.

7.2. The case with self-steepening parallel to the off-axis variation

In this subsection, we include the effect of self-steepening and consider equation (6.1) with ε = 1, δ2 = 0, and
δ1 > 0.
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Figure 20. L∞-norm of the solution to (6.1) with ε = 1, σ = 3, δ1 = (0.1, 0)>, and initial data
(5.1) with the “ + ” sign. On the right the modulus of the Fourier coefficients of the solution
at time t = 0.155.

Figure 21. The modulus of the solution to equation (6.1) with ε = 1, σ = 3, δ1 = (0.1, 0),
and initial data (5.1) with the “ + ” sign, plotted at time t = 0.155.

For σ = 1, the stationary state Qeit appears to be stable against all studied perturbations. Indeed, the
situation is found to be qualitatively similar to the case with full off-axis perturbations (except for a loss of
radial symmetry) and we therefore omit a corresponding figure.

When σ = 2, the stationary state no longer appears to be stable. However, we also do not have any indication
of finite-time blow-up in this case. Indeed, given a “− ” perturbation in the initial data (5.1), it can be seen on
the left of Figure 19 that the L∞-norm of the solution simply decreases monotonically in time.

Notice, that there is still an effect of self-steepening visible in the modulus of the solution |u|, depicted in the
middle of the same figure. The behavior of the L∞-norm in the case of a “ + ” perturbation is shown on the
right of Figure 19. It is no longer monotonically decreasing but still converges to zero.
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Figure 22. Solution to (6.1) with ε = 1, σ = 1, and δ1 = (0, 1)>. On the left the L∞-norm of
the solution for initial data (5.1) with the “− ” sign, on the right for the one with “ + ” sign,
and in the middle |u| at time t = 20 for the “− ” sign.
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Figure 23. Solution to (6.1) with ε = 1, σ = 3, δ1 = (0, 0.1)>, and initial data (5.1) with
the “ + ” sign: On the left the L∞-norm of u as a function of time, on the right the Fourier
coefficients û at t = 0.25.

For σ = 3, a “−” perturbation of (5.1) is found to be qualitatively similar to the case σ = 2 and we therefore
omit a figure illustrating this behavior. However, the situation radically changes if we consider a perturbation
with the “ + ” sign, see Figure 20. The L∞-norm of the solution indicates a blow-up for t ≈ 0.1555, where the
code stops with an overflow error.

In this particular simulation we have used 104 time steps for t ∈ [0, 0.17] and Nx1 = 210, Nx2 = 211 Fourier
modes (since the maximum of the solution hardly moved, it was not necessary to use a co-moving frame). The
solution is still well resolved in time at t = 0.155 since Mε(t) remains numerically conserved up to the order of
10−11. But despite the higher resolution in x2 used for this simulation, the Fourier coefficients indicate a loss
of resolution in the x2-direction. The modulus of the solution at the last recorded time is plotted in Figure 21.
Note that |u| is still regular in the x1-direction in which P−1

ε acts, but it has become strongly compressed in
the x2-direction.

7.3. The case with self-steepening orthogonal to the off-axis variation

Finally, we shall consider the same model equation (6.1) with ε = 1, but this time we let δ1 = 0 for non-
vanishing δ2 > 0. This is the only case, for which we do not have any analytical existence results at present.
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Figure 24. The modulus of the solution to (6.1) with ε = 1, σ = 3, δ1 = (0, 0.1)>, and initial
data (5.1) with the “ + ” sign, plotted at t = 0.5.

For σ = 1, it can be seen that a “ − ” sign in the initial data (5.1) yields a purely dispersive solution with
monotonically decreasing L∞-norm, see Figure 22 which also shows a picture of |u| at t = 20. The “ + ” sign
again leads to oscillations of the L∞-norm in time, indicating stability of the ground state. The situation for
σ = 2 is qualitatively very similar and hence we omit the corresponding figure.

For σ = 3 and a “− ” sign in the initial data (5.1), we again find a purely dispersive solution. However, the
behavior of the solution obtained from a perturbation of Q with the “ + ” sign is less clear. As one can see in
Figure 23, the solution is initially focused up to a certain point after which its L∞-norm decreases again.

This simulation is done with Nx1 = 210, Nx2 = 211 Fourier modes and Nt = 104 time steps for t ∈ [0, 0.5].
The relative conservation of the numerically computed quantity Mε(t) is better than 10−10 during the whole
computation indicating an excellent resolution in time. The spatial resolution is indicated by the Fourier coeffi-
cients of the solution near the maximum of the L∞-norm as shown on the right of Figure 23. Obviously, a much
higher resolution is needed in the x2-direction, but even near the maximum of the L∞-norm the modulus of the
Fourier coefficients decreases to the order of 10−5. The modulus of the solution at time t = 0.5 can be seen in
Figure 24. It shows a strong compression in the x2-direction but nevertheless remains regular for all times. This
is in stark contrast to the analogous situation with parallel self-steepening and off-axis variations, cf. Figures 20
and 21 above.
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