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ON A CLASS OF DERIVATIVE NONLINEAR SCHRODINGER-TYPE
EQUATIONS IN TWO SPATIAL DIMENSIONS

JACK ARBUNICH'*, CHRISTIAN KLEIN? AND CHRISTOF SPARBER!

Abstract. We present analytical results and numerical simulations for a class of nonlinear dispersive
equations in two spatial dimensions. These equations are of (derivative) nonlinear Schrédinger type and
have recently been obtained by Dumas et al. in the context of nonlinear optics. In contrast to the usual
nonlinear Schrédinger equation, this new model incorporates the additional effects of self-steepening
and partial off-axis variations of the group velocity of the laser pulse. We prove global-in-time existence
of the corresponding solution for various choices of parameters. In addition, we present a series of
careful numerical simulations concerning the (in-)stability of stationary states and the possibility of
finite-time blow-up.
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1. INTRODUCTION

This work is devoted to the analysis and numerical simulations for the following class of nonlinear dispersive
equations in two spatial dimensions:

iP.Oyu+ Au+ (1+i6 - V) ([ul*u) =0, wp—o = uo(z), (1.1)

where x = (z1,22) € R?, § = (61,02) " € R? is a given vector with |§| < 1, and ¢ > 0 is a parameter describing
the strength of the nonlinearity. In addition, for 0 < ¢ < 1, we denote by P. the following linear differential
operator,

k
Po=1-¢")"02, k<2 (1.2)
j=1

Indeed, we shall mainly be concerned with (1.1) rewritten in its evolutionary form:
iOu+ P Au+ P (1 +46 - V) (Jul*u) =0, wjy—o = ug(z1, 22). (1.3)
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Here and in the following, P?, for any s € R, is the non-local operator defined through multiplication in
Fourier space using the symbol

k
P = (1423 8), k<2,
j=1

where & = (£1, &) € R? is the Fourier variable dual to # = (21, 22). For s = —1 this obviously yields a bounded
operator P-! 1 L?(R2) — L?(R2). In addition, P. is seen to be uniformly elliptic provided k = 2. Moreover

g
when ¢ = 1 and k = 2, note we can define the L?(R2)-based Sobolev spaces for s € R via the norm

1

1l = | P21, = ( JRLEGE dg) "

The inclusion of P. implies that (1.1), or equivalently (1.3), shares a formal similarity with the well-known
Benjamin-Bona-Mahoney equation for uni-directional shallow water waves [3,4]. However, the physical context
for (1.1) is rather different. Equations of the form (1.1) have recently been derived in [11] as an effective
description for the propagation of high intensity laser beams. This was part of an effort to remedy some of
the shortcomings of the classical (focusing) nonlinear Schriodinger equation (NLS), which is obtained from (1.1)
when € = 61 =62 =0, i.e.

i0pu + Au + |u|*7u = 0, Ujg—o = Uo (71, T2). (1.4)

The NLS is a canonical model for slowly modulated, self-focusing wave propagation in a weakly nonlinear
dispersive medium. The choice of ¢ = 1 thereby corresponds to the physically most relevant case of a Kerr
nonlinearity, cf. [12,35]. Equation (1.4) is known to conserve, among other quantities, the total mass

M(t) = [lult, )72 = lluollZs-

A scaling consideration then indicates that (1.4) is L2-critical for 0 = 1 and L?-super-critical for o > 1. It
is well known that in these regimes, solutions to (1.4) may not exist for all ¢ € R, due to the possibility of
finite-time blow-up. The latter means that there exists a time T" < oo, depending on the initial data wug, such
that

li Vu(t, - = .
Jim [Vt )|z = +oo

In the physics literature this is referred to as optical collapse, see [12].

In the L?-critical case, there is a sharp dichotomy characterizing the possibility of this blow-up: Indeed, one
can prove that the solution u to (1.4) with o = 1 exists for all ¢ € R, provided its total mass is below that of
the nonlinear ground state, i.e. the least energy (nonzero) solution of the form

u(t,z) = e"Q(w).

Solutions « whose L%-norm exceeds the norm of @), however, will in general exhibit a self-similar blow-up
with a profile given by @ (up to symmetries), see [30,31]. In turn, this also implies that stationary states of the
form e Q(z) are strongly unstable. For more details on all this we refer the reader to [6,12,35] and references
therein.

In comparison to (1.4), the new model (1.3) includes two additional physical effects. Firstly, there is an
additional nonlinearity of derivative type which describes the possibility of self-steepening of the laser pulse in
the direction § € R2. Secondly, the operator P. describes off-azis variations of the group velocity of the beam.
The case k = 2 is thereby referred to as full off-axis dependence, whereas for k = 1 the model incorporates only
a partial off-axis variation. Both of these effects become more pronounced for high beam intensities (see [11])
and both are expected to have a significant influence on the possibility of finite-time blow-up. In this context,
it is important to note that (1.3) does not admit a simple scaling invariance analogous to (1.4). Hence, there is
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no clear indication of sub- or super-critical regimes for equation (1.3). At least formally, though, equation (1.3)
admits the following conservation law,

Mc(t) = [|P2?u(t, )72 = 1P uollZ:. (1.5)

generalizing the usual mass conservation. In the case of full-off axis dependence, equation (1.5) yields an a priori
bound on the H'-norm of u, ruling out the possibility of finite-time blow-up. However, the situation is more
complicated in the case with only a partial off-axis variation.

The latter was studied analytically in the recent work [2], but only for the much simpler case without self-
steepening, i.e. only for §; = d2 = 0. It was rigorously shown that in this case, even a partial off-axis variation
(mediated by P. with & = 1) can arrest the blow-up for all o < 2. In particular, this allows for nonlinearities
larger than the L2-critical case, cf. Section 6 for more details. One motivation for the present work is to give
numerical evidence for the fact that these results are indeed sharp, and that one can expect finite-time blow-up
as soon as o = 2.

The current work aims to extend the analysis of [2] to situations with additional self-steepening, i.e. § # 0,
and to provide further insight into the qualitative interplay between this effect and the one stemming from
P.. From a mathematical point of view, the addition of a derivative nonlinearity makes the question of global
well-posedness versus finite-time blow-up much more involved. Derivative NLS and their corresponding ground
states are usually studied in one spatial dimension only, see e.g. [1,8,13,14,27,28,36,37] and references therein.
For ¢ = 1, the classical one-dimensional derivative NLS is known to be completely integrable. Furthermore,
there has only very recently been a breakthrough in the proof of global-in-time existence for this case, see [15,16].
In contrast to that, [28] gives strong numerical indications for a self-similar finite-time blow-up in derivative
NLS with ¢ > 1. The blow-up thereby seems to be a result of the self-steepening effect in the density p = |u|?,
which generically undergoes a time evolution similar to a dispersive shock wave formation in Burgers’ equation.
To our knowledge, however, no rigorous proof of this phenomenon is currently available.

In two and higher dimensions, even the local-in-time existence of solutions to derivative NLS type equations
seems to be largely unknown, let alone any further qualitative properties of their solutions. In view of this, the
present paper aims to shine some light on the specific variant of two-dimensional derivative NLS given by (1.3).
Except for its physical significance, this class of models also has the advantage that the inclusion of (partial)
off-axis variations via P- are expected to have a strong regularizing effect on the solution, and thus allow for
several stable situations without blow-up.

The organization of our paper is then as follows:

— In Section 2, we shall numerically construct nonlinear stationary states to (1.1), or equivalently (1.3). These
also include the well-known ground states for the classical NLS. For the sake of illustration, we shall also
derive explicit formulas for the one-dimensional case and compare them with the well-known formulas for
the classical (derivative) NLS.

— Certain perturbations of these stationary states will form the class of initial data considered in the numerical
time-integration of (1.3). The numerical algorithm used to perform the respective simulations is detailed
in Section 3. In it, we also include several basic numerical tests which compare the new model (1.3) to the
classical (derivative) NLS.

— Analytical results yielding global well-posedness of (1.3) with either full or partial off-axis variations are
given in Sections 4 and 6, respectively.

— In the former case, the picture is much more complete, which allows us to perform a numerical study of the
(in-)stability properties of the corresponding stationary states, see Section 5.

— In the case with only partial off-axis variations, the problem of global existence is more complicated and
one needs to distinguish between the cases where the action of P. is either parallel or orthogonal to the
self-steepening. Analytically, only the former case can be treated so far (see Sect. 6). Numerically, however,
we shall present simulations for both of these cases in Section 7.
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2. STATIONARY STATES

In this section, we focus on stationary states, i.e. time-periodic solutions to (1.1) given in the following form:

u(t, 1, 29) = e Q(x1, 12). (2.1)

The function @ then solves

P.Q=AQ+(1+id-V)(IQ*Q), (2.2)

subject to the requirement that Q(x) — 0 as |z| — co. Every non-zero solution Q(x) € C gives rise to a solitary
wave solution (with speed zero) to (1.1). These solitary waves will be an important benchmark for our numerical
simulations later on. Note that in (2.1) we only allow for a simple time-dependence exp(iwt) with w = 1 in
(2.1). This is not a restriction for the usual 2D NLS, given its scaling invariance, but it is a restriction for our
model in which this invariance is broken (see also [13,27] for the connection between w and the speed of stable
solitary waves).

For the classical NLS, i.e. ¢ = 0 and |d| = 0, there exists a particular solution @, called the nonlinear
ground state, which is the unique radial and positive solution to (2.2), ¢f. [12,35]. Recall that in dimensions
d = 2 the NLS is already L2-critical and thus, ground states, in general, cannot be obtained as minimizers of
the associated energy functional (which is the same for both e = 0 and € > 0, see [11]). As we shall see below
for £ > 0, the regularization via P. yields a natural modification of the ground state ) by smoothly widening
its profile (while conserving positivity). We shall thus also refer to these solutions @ as the ground states for
(2.2) with |0| = 0 and € > 0. At present, there are unfortunately no analytical results on the existence and
uniqueness of such modified ground states available. However, our numerical algorithm indicates that they exist
and are indeed unique (although, in general no longer radially symmetric).

The situation with derivative nonlinearity | § | # 0 is somewhat more complicated, since in this case, solutions
Q@ to (2.2) are always complex-valued and hence the notion of a ground state does not directly extend to this
case (recall that uniqueness is only known for positive solutions). At least in d = 1, however, explicit calculations
(see below) show, that there is a class of smooth d-dependent stationary solutions to (2.2), which for |§] =0
yield the family of e-ground states.

2.1. Explicit solutions in 1D

In one spatial dimension, equation (2.2) allows for explicit formulas, which will serve as a basic illustration
for the combined effects of self-steepening and off-axis variations. Indeed, in one spatial dimension, equation
(1.1) simplifies to

i(1 — €202)0pu + 0%u + (1 + 60, (Jul*u) = 0. (2.3)

Seeking a solution of the form (2.1) thus yields the following ordinary differential equation:
(1+e)Q" + (1QF - )Q +i3(1Q Q)" = 0. (2.4)
To solve this equation, we shall use the polar representation for Q(z) € C
Qz) = A(z)e™),  A(z),0(z) € R

where we impose the requirement that A(z) > 0 and lim,_ 1., A(x) = 0. Plugging this ansatz into (2.4),
factoring e out and isolating the real and imaginary part yields the following coupled system:

(14e2) A" + (A% —1)A - Ae’((1 +e2)0 + 6A2") =0,
(14¢e2)(A0" +20'A) + (20 + 1)5A*7 A’ = 0.
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Multiplying the second equation by A and integrating from —oo to = gives

20 +1)6 A%

1 2 o = 7(

(L = -0

where here we implicitly assume that A20’ vanishes at infinity. Using the above, we infer that the amplitude
solves

(20 + 1)62

(L5 A" + (4% 1)+ 4(1+e?)(o +1)?

Atet =, (2.5)

while the phase is given a posteriori through

o(z) = — (j"gj 2“ / A% (y (2.6)

After some lengthy computation, similar to what is done for the usual NLS, ¢f. [12], the solution to (2.5) can
be written in the form
1/(20)
2 1
A = o+ 1) , (2.7)

1+ K. s cosh (\/%)

where K. 5 =4/1+ 1+52 > 0. In view of (2.6), this implies that the phase function 8 is given by

5 1+ K, se v+ (2.8)

8(x) = —sgn(5)(20 + 1) arctan <\/1+7 ( )) ,

where we omitted a physically irrelevant constant in the phase (clearly, @ is only unique up to multiplication
by a constant phase).
Note that in the case with no self-steepening § = 0, the phase 6 is zero. Thus, Q(z) = A(z) and we find

— (o + 1@ goent/o [ 2.
Q(z)=(c+1) sech <m>

For e = 0, this is the well-known ground state solution to (1.4) in one spatial dimension, cf. [12,35]. We notice
that adding the off-axis dispersion (¢ > 0) widens the profile, causing it to decay more slowly as © — +oo as
can be seen in Figure 1 on the left. On the right of Figure 1, it is shown that the maximum of the ground state
decreases with o but that the peak becomes more compressed.

Remark 2.1. The (o-generalized) one-dimensional derivative NLS can be obtained from (2.3) by putting e = 0,
rescaling
u(t,x) = 6~ a(t, ),

and letting § — oco. Note that @ solves
10yt + 020 + (071 +40,)(|a|*7a) = 0.

Denoting Q = fleié(l'), we get from (2.7) and (2.8) the well-known zero-speed solitary wave solution of the
derivative NLS, 7.e.

Az) = (2(c+1) sech(2aa:))1/(2a)7 0(z) = —(20 + 1) arctan(e?7®).

The stability of these states has been studied in, e.g. [8,13,27].



1482 J. ARBUNICH ET AL.

1.5 i i i 1.5

051

10

FIGURE 1. Ground state solution to (2.7) with § = 0: On the left for 0 = 1 and € = 0 (blue),
e = 0.5 (green) and € = 1 (red). On the right for e = 1 and o = 1 (blue), o = 2 (green) and
o = 3 (red) (Color online).

2.2. Numerical construction of stationary states

In more than one spatial dimension, no explicit formula is known for Q). Instead, we shall numerically construct
Q@ by following an approach similar to those in [22,24]. Since we can expect @ to be rapidly decreasing, we use
a Fourier spectral method and approximate

F(Q) = 6,6) = 5 / /R QU w)e T drydas,

by a discrete Fourier transform which can be efficiently computed via the Fast Fourier Transform (FFT). In
an abuse of notation, we shall in the following use the same symbols for the discrete and continuous Fourier
transform. To apply FFTs, we will use a computational domain of the form

O =[—m,m Ly, X [-7,7|Ly,, (2.9)

and choose Ly,, L, > 0 sufficiently large so that the obtained Fourier coefficients of ) decrease to machine
precision, roughly 10716, which in practice is slightly larger due to unavoidable rounding errors.

Now, recall that for a solution of the form (2.1) to satisfy (1.1), the function @) needs to solve (2.2). In Fourier
space, this equation takes the simple form

Q&1,&) = T.F(1QP7Q) (&1, &),
where
(1 —01&1 — 62&2) _
1+&2 +§%+522f:1£z‘2

For §; = 2 = 0, the solution @) can be chosen to be real, but this will no longer be true for 6; » # 0. In the
latter situation, we will decompose

T.(61,&) =

Q(z1,x2) = afx1,x2) +if(x1, z2),
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FIGURE 2. Ground state solution to equation (1.1) with o = 1 and § = 0: On the left for e = 0,
in the middle for e = 1 and k = 1 (partial off-axis dependence), on the right for ¢ = 1 and
k = 2 (full off-axis dependence).

and separate (2.2) into its real and imaginary part, yielding a coupled nonlinear system for «, 8. By using FFTs,
this is equivalent to the following system for & and 3:

a(&1,&) —T.F( (a2 +8%)a)(61,&) =0,
A1, &) —T.F((a? +52)°B) (61, 62) = 0.

Formally, the system can be written as M (g) = 0 where ¢ = (@, 3)" and solved via a Newton iteration. One
thereby starts from an initial iterate ¢(°) and computes the n-th iterate via the well known formula

g = gD J(Zﬂ”_l))_lM(Zﬂ”‘l)) neN, (2.10)

where J is the Jacobian of M with respect to ¢. Since our required numerical resolution makes it impossible
to directly compute the action of the inverse Jacobian, we instead employ a Krylov subspace approach as in
[34]. Numerical experiments show that when the initial iterate 79 is sufficiently close to the final solution, we
obtain the expected quadratic convergence of our scheme and reach a precision of order 107 !0 after only 4-8
iterations.

As a basic test case, we compute the ground state of the standard two-dimensional focusing NLS with o = 1,

using the initial iterate
¢ (21, x3) = sech? (\/x% + x%)

on the computational domain (2.9) with L,, = L., = 5. By choosing N,,, = N,, = 2° many Fourier modes, we
have after seven iterations of (2.10) a residual smaller than 10712, The obtained solution is given on the left of
Figure 2. As expected, the solution is radially symmetric.

The numerical ground state solution hereby obtained will then be used as an initial iterate for the situation
with non-vanishing ¢ and 8, as follows:

Step I: In the case without self-steepening §; = d2 = 0, the iteration is straightforward even for relatively
large values such as € = 1. It can be seen in the middle of Figure 2, that the ground state for ¢ = 1 and
k =1 is no longer radially symmetric. As an effect of the partial off-axis variation, the solution is elongated in
the zi-direction. In the case of full off-axis dependence, the ground state for the same value of ¢ = 1 can be
seen in Figure 2 on the right. The solution is again radially symmetric, but as expected less localized than the
ground state of the classical standard NLS. This is consistent with the explicit formulas for @ found in the one
dimensional case above.

Step 2: In the case with self-steeping d; = do = 1, smaller intermediate steps have to be used in the iterations:
We increment 6, by first varying only ds in steps of 0.2, always using the last computed value for @ as an initial
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X 5 .5 X

FIGURE 3. The stationary state solution @ to equation (1.1) witho =1, e = ¢; = 0 and d9 = 1:
On the left, the real part of @, on the right its imaginary part.

iterate for the slightly larger 8. The resulting solution @) can be seen in Figure 3. Note that the imaginary part
of @ is of the same order of magnitude as the real part.

Step 3: In order to combine both effects within the same model, we shall use the (zero speed) solitary obtained
for ¢ = 0 and § # 0 as an initial iterate for the case of non-vanishing €. In Figure 4 we show on the left the
stationary state for e =1, k =1, §; = 0 and d> = 1, when the action of P. is orthogonal to the self-steepening.
When compared to the case with ¢ = 0, the solution is seen to be elongated in the x;-direction. Next, we
simulate when P. acts parallel to the self-steepening, that is when ¢ =1, k =1, §; = 1 and é3 = 0. The result
is shown in the middle of Figure 4. In comparison to the former case, the imaginary part of the solution is
essentially rotated clockwise by 90°. The elongation effect in the x;-direction is still visible but less pronounced.

Step 4: For o > 1 stationary states become increasingly peaked, as is seen from the 1D picture in Figure 1.
Hence, to construct stationary states for higher nonlinear powers in 2D, we will consequently require more
Fourier coefficients to effectively resolve these solutions. To this end, we work on the numerical domain (2.9)
with L,, = L., = 3 and N,, = N,, = 2'° Fourier modes. We use the ground state obtained for ¢ = 1 as an
initial iterate for the case o = 2,3, and follow the same program as outlined above.

3. NUMERICAL METHOD FOR THE TIME EVOLUTION

3.1. A Fourier spectral method

In this section, we briefly describe the numerical algorithm used to integrate our model equation in its
evolutionary form (1.3). After a Fourier transformation, this equation becomes

ot = —iP () (16T~ (1= 8- ) (uPrw)), € € B2

Approximating the above by a discrete Fourier transform (via FFT) on a computational domain ) given by
(2.9), yields a finite dimensional system of ordinary differential equations, which formally reads

8t = L. + N-(7). (3.1)

Here L. = —iP1[£]? is a linear, diagonal operator in Fourier space, and N.(u) has a nonlinear and nonlocal
dependence on @. Since ||L.|| can be large, equation (3.1) belongs to a family of stiff ODEs, for which several
efficient numerical schemes have been developed, cf. [17,21] where the particular situation of semi-classical NLS
is considered. Driscoll’s composite Runge-Kutta (RK) method [10] has proven to be particularly efficient and
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FIGURE 4. Real and imaginary parts of the stationary state @ to equation (1.1) with o = 1:
On the left for e =1, k =1, 01 = 0 and d = 1, in the middle for e = 1, k =1, §; = 1 and
d2 = 0, and on the right fore =1, k=2, §; =0 and Jp = 1.

thus will also be applied in the present work. This method uses a stiffly stable third order RK method for the
high wave numbers of L. and combines it with a standard explicit fourth order RK method for the low wave
numbers of L. and the nonlinear part N, (@). Despite combining a third order and a fourth order method, this
approach yields fourth order in-time convergence in many applications. Moreover, it provides an explicit method
with much larger time steps than allowed by the usual fourth order stability conditions in stiff regimes.

Remark 3.1. The evolutionary form of our model (1.3) is in many aspects similar to the well-known Davey—
Stewartson (DS) system, which is a non-local NLS type equation in two spatial dimensions, c¢f. [9,35]. In
[21,23,25], the possibility of self-similar blow-up in DS is studied, using a numerical approach similar to ours.

As a first basic test of consistency, we apply our numerical code to the cubic NLS in 2D i.e. equation (1.4)
with 0 = 1. As initial data ug we take the ground state @), obtained numerically as outlined in Section 2 above.
We use Ny = 1000 time-steps for times 0 < ¢ < 1. In this case, we know that the exact time-dependent solution u
is simply given by v = Qe®*. Comparing this to the numerical solution obtained at ¢t = 1 yields an L>°-difference
of the order of 10710, This verifies both the code for the time evolution and the one for the ground state Q
which in itself is obtained with an accuracy of order 107!°. Thus, the time evolution algorithm evolves the
ground state with the same precision as with which it is known.

For general initial data ug, we shall control the accuracy of our code in two ways: On the one hand, the
resolution in space is controlled wvia the decrease of the Fourier coefficients within (the finite approximation
of) u. The coefficients of the highest wave-numbers thereby indicate the order of magnitude of the numerical
error made in approximating the function via a truncated Fourier series. On the other hand, the quality of the
time-integration is controlled via the conserved quantity M. (t) defined in (1.5). Due to unavoidable numerical
errors, the latter will numerically depend on time. For sufficient spatial resolution, the relative conservation of
M, (t) will overestimate the accuracy in the time-integration by 1-2 orders of magnitude.
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FIGURE 5. Solution to the classical NLS (1.4) with o = 1 and initial data (3.2): on the left |u|
at t = 5, and on the right the L°°-norm of the solution as a function of ¢.

3.2. Reproducing known results for the classical NLS

As already discussed in the introduction of this paper, the cubic NLS in two spatial dimensions is L?-critical
and its ground state solution @ is strongly unstable. Indeed, any perturbation of @ which lowers the L?-norm
of the initial data below that of @ itself, is known to produce purely dispersive, global-in-time solutions which
behave like the free time evolution for large |t| > 1. However, perturbations that increase the L?-norm of the
initial data above that of @) are expected to generically produce a (self-similar) blow-up in finite time. This
behavior can be reproduced in our simulations.

To do so, we first take initial data of the form

uo(x1,22) = Q(z1,22) — 0.1e~"i 3, (3.2)

and work on the numerical domain Q given by (2.9) with L,, = L, = 3. We will use N; = 5000 time-steps
within 0 < ¢ < 5. We can see on the right of Figure 5 that the L°°-norm of the solution decreases monotonically,
indicating purely dispersive behavior. The plotted absolute value of the solution at t = 5 confirms this behavior.
In addition, the mass M (t) = My(t) is conserved to better than 10713, indicating that the problem is indeed
well resolved in time.

Remark 3.2. Note that we effectively run our simulations on Q ~ T2, instead of R?. As a consequence, the
periodicity will after some time induce radiation effects appearing on the opposite side of 2. The treatment of
(large) times t > 5 therefore requires a larger computational domain to suppress these unwanted effects.

Next, for initial data of the form
2 2
uo(x1,x2) = Q(x1,22) + 0.1e7"17%2, (3.3)

we again use N; = 5000 time steps for 0 < ¢ < 2. As can be seen in Figure 6 on the right, there is numerical
indication for finite-time blow-up. The code is stopped at ¢ = 1.89 when the relative error in the conservation of
mass M (t) drops below 1073. The solution for ¢ = 1.88 can be seen on the left of Figure 6. This is in accordance
with the self-similar blow-up established by Merle and Raphaél, cf. [30,31]. In particular, we note that the result
does not change notably if a higher resolution in both x and ¢ is used.

Remark 3.3. We want to point out that there are certainly more sophisticated methods available to numerically
study self-similar blow-up, see for instance [24,28,35] for the case of NLS type models, as well as [19,20] for the
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FIGURE 6. Solution to the classical NLS (1.4) with ¢ = 1 and initial data (3.3): on the left |u]
at ¢t = 1.88 and on the right the L°°-norm of the solution as a function of ¢.

analogous problem in KdV type equations. However, these methods will not be useful for the present work, since
as noted before, the model (1.1) does not admit a simple scaling invariance, which is the underlying reason for
self-similar blow-up in NLS and KdV type models. As a result, all our numerical findings concerning finite-time
blow-up have to be taken with a grain of salt. An apparent divergence of certain norms of the solution or
overflow errors produced by the code can indicate a blow-up, but might also just indicate that one has run out
of resolution. The results reported in this paper therefore need to be understood as being stated with respect
to the given numerical resolution. However, we have checked that they remain stable under changes of the
resolution within the accessible limits of the computers used to run the simulations.

3.3. Time-dependent change of variables in the case with self-steepening

In the case of self-steepening, the ability to produce an accurate numerical time-integration in the presence
of a derivative nonlinearity (§ # 0) becomes slightly more complicated. The inclusion of such a nonlinearity can
lead to localized initial data moving (relatively fast) in the direction chosen by 4. In turn, this might cause the
numerical solution to “hit” the boundary of our computational domain 2.

To avoid this issue, we shall instead perform our numerical computations in a moving reference frame, chosen
such that the maximum of |u(t, z)| remains fixed at the origin. More precisely, we consider the transformation

z =z —y(t),
and denote v(t) = ¢(t). The new unknown u(t,x — y(t)) solves
iOpu—iv - Vu+ P Au+ PN (1436 - V) (Jul*7u) = 0. (3.4)

The quantity v(t) = (v1(t),v2(t)) is then determined by the condition that the density p = |u|? has a
maximum at (z1,z2) = (0,0) for all ¢ > 0. We get from (3.4) the following equation for p:

Op=v Vp+i(uP " Au—uP " Au) +i(aP " (p7u) — uP= (p70))
—aP- '8 -V (pu) —uP 1 - V(p7a).

Differentiating this equation with respect to x; and x5 respectively, and setting x; = xo = 0 yields the desired
conditions for v; and wvs.

Note that the computation of the additional derivatives appearing in this approach is expensive, since in
practice it needs to be enforced in every step of the Runge-Kutta scheme. Hence, we shall restrict this approach
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FIGURE 7. Real and imaginary part of the solution to (3.5) with do = 1 at time t = 5 corre-
sponding to ug = @ + O.le*m%*mg, where @ is the stationary state in Figure 3.

solely to cases where the numerical results appear to be strongly affected by the boundary of €. In addition,
we may always choose a reference frame such that one of the two components of § is zero, which consequently
allows us to set either vy, or v9 equal to zero.

3.4. Basic numerical tests for a derivative NLS in 2D

As an example, we consider the case of a cubic nonlinear, two-dimensional derivative NLS of the following
form
iOu+ Au+ (14 i020,,) (Julu) =0,  up—o = uo(z1,22). (3.5)

which is obtained from our general model (1.3) for ¢ = 0 and 6; = 0. We take initial data ug given by (3.3).
Here, @ is the ground state computed earlier for this particular choice of parameters, see Figure 3. We work on
the computational domain (2.9) with L,, = L., = 3, using N, = N,, = 210 Fourier modes and 10° time-steps
for 0 <t < 5. We also apply a Krasny filter [26], which sets all Fourier coefficients smaller than 1071° equal to
zero. For §; = 1 the real and imaginary part of the solution w at the final time ¢ = 5 can be seen in Figure 7
below. Note that they are both much more localized and peaked when compared to the ground state @) shown
in Figure 3, indicating a self-focusing behavior within u. Moreover, the real part of u is no longer positive due
to phase modulations.

Surprisingly, however, there is no indication of a finite-time blow-up, in contrast to the analogous situation
without derivative nonlinearity (recall Fig. 6 above). Indeed, the Fourier coefficients of |u| at ¢ = 5 are seen
in Figure 8 to decrease to the order of the Krasny filter. In addition, the L°°-norm of the solution, plotted in
the middle of the same figure, appears to exhibit a turning point shortly before ¢ ~ 4. Finally, the velocity
component vy plotted on the right in Figure 8 seems to slowly converge to a some limiting value vy = 2. The
latter would indicate the appearance of a stable moving soliton, but it is difficult to decide such questions
numerically. All of these numerical findings are obtained with M, (t) conserved up to errors of the order 10711,

It might seem extremely surprising that the addition of a derivative nonlinearity is able to suppress the
appearance of finite-time blow-up. Note however, that in all the examples above we have used only (a special
case of) perturbed ground states @ as initial data. For more general initial data, the situation is radically
different, as can be illustrated numerically in the following example: We solve (3.5) with purely Gaussian initial
data of the form

o (1, To) = de~ (@i +23) (3.6)

on a numerical domain Q with L,, = L,, = 2, using N, = N,, = 210 Fourier coefficients and N, = 10°
time steps for 0 < ¢ < 0.25. This case appears to exhibit finite-time blow-up, as is illustrated in Figure 9. The
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FIGURE 8. Solution to (3.5) with d; = 1 and perturbed stationary state initial data: The Fourier
coefficients of |u| at t = 5 on the left; the L>°-norm of the solution as a function of time in the
middle, and the time evolution of its velocity vs on the right.
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FIGURE 9. The modulus of the solution to (3.5) with d; = 1 for Gaussian initial data ug =
4e_w%_w§, at time ¢ = 0.195. On the right, the L>°-norm of the solution as a function of time.

conservation of the numerically computed quantity M (¢) drops below 1072 at t ~ T = 0.1955 which indicates
that plotting accuracy is no longer guaranteed. Consequently we ignore data taken for later times, but note
that the code stops with an overflow error for ¢ ~ 0.202.

Remark 3.4. These numerical findings are consistent with analytical results for derivative NLS in one spatial
dimension. For certain values of 0 > 1 and certain velocities v, the corresponding solitary wave solutions are
found to be orbitally stable, see [8,13,27]. However, for general initial data and o > 1 large enough, one expects
finite-time blow-up, see [28].

4. GLOBAL WELL-POSEDNESS WITH FULL OFF-AXIS VARIATION

In this section we will analyze the Cauchy problem corresponding to (1.3) in the case of full off-axis depen-
dence, i.e. k = 2, so that
P.=1-¢2A.

In this context, we expect the solution u of (1.3) to be very well behaved due to the strong regularizing effect
of the elliptic operator P. acting in both spatial directions.
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To prove a global-in-time existence result, we rewrite (1.3), using Duhamel’s formula,

t
u(t) = Se(t)uo —|—i/ Se(t—s)P7 M (14146 - V) (Jul* u)(s) ds = @(u)(t). (4.1)
0
Here, and in the following, we denote by
Ss(t) _ eitPE’lA

the corresponding linear propagator, which is easily seen (via Plancherel’s theorem) to be an isometry on H*
for any s € R. It is known that in the case with full off-axis variation, Sc(t) does not allow for any Strichartz
estimates, see [5]. However, the action of P! allows us to “gain” two derivatives and offset the action of the
gradient term in the nonlinearity of (4.1). Using a fixed point argument, we can therefore prove the following
result.

Theorem 4.1 (Full off-axis variations). Let e > 0, k = 2 and o > L. Then for any § € R? and any uy €

HY(R2), there exists a unique global-in-time solution u € C(Ry; HY(R2)) to (1.3), depending continuously on
the initial data. Moreover,

[ut, My < Cle fluollay), VEeR.
Proof. Let T, M > 0. We aim to show that u +— ®(u) is a contraction on the ball
X ={u € Lo([0,T); H'(R?)) : [lull ey < M}
To this end, let us shortly denote
O(u)(t) = Se(t)uo + N (u)(®), (4.2)

where for g(u) = |u|*?u, we write
t
N@)(t) = z/ S.(t—s)P1 (1 +i6 - V)g(u(s)) ds.
0

Now, let u, v’ € Xr . Using Minkowski’s inequality and recalling that S.(¢) is an isometry on H'(R?) yields

t
700 = N0 |y < 20 +16D [ ) = 0)12(5) ds
To bound the integrand, we first note that
l9(u) = g(u')] < Co(Jul*® + [/ [*7)|u —u']. (4.3)

If we impose o > %, then we have by Sobolev’s embedding that

(45—1)

HY(R?) Cc H 3 (R?) — L% (R?) and H?(R?) — L*(R?).

This allows us to estimate further after using (4.3) and Holder’s inequality in space to give

x

< (Il + 1035, ) s = 'y

lg(w) = g(u)llzz < (lull%e + 1173 ) lu — o] s

Together with Holder’s inequality in ¢, we can consequently bound
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By choosing T > 0 sufficiently small, Banach’s fixed point theorem directly yields a unique local-in-time
solution u € C([0,T], H'(R2)). Standard arguments (see, e.g. [33]) then allow us to extend this solution up to
a maximal time of existence Tiax = Tmax(||tol/zr1) > 0 and we also infer continuous dependence on the initial
data.

Next, we shall prove that

\|P81/2u(t)||L§ = |\P;/2u0||Lg, for all t € [0,7] and T < Tipax- (4.4)
For € > 0, this conservation law yields a uniform bound on the H'-norm of u, since
cllP2lliz < llellay < CllP2?llnz,  Ceyee > 0.

We consequently can re-apply the fixed point argument as many times as we wish, thereby preserving the
length of the maximal interval in each iteration, to yield T .x = +00. Since the equation is time-reversible
modulo complex conjugation, we obtain a global H!-solution for all ¢+ € R, provided (4.4) holds.

To prove (4.4), we adapt and (slightly) modify an elegant argument given in [32], which has the advantage that
it does not require an approximation procedure via a sequence of sufficiently smooth solutions (as is classically
done, see e.g. [6]): Let t € [0,T] for T' < Tyax. We first rewrite Duhamel’s formula (4.1), using the continuity of
the semigroup S. to propagate backwards in time

Se(—t)u(t) = ug + Se(—t)N (u)(t). (4.5)

As S.(+) is unitary in L2, we have HP;/Qu(t)HLi = ||Se(ft)P51/2u(t)HLi. The latter can be expressed using
the above identity:

1P u(®) 22 = [P Puollzz + 2Re (Sc(—t)P2/2N (w) (1), P/ 2ug) 1, + [I1S-(—t) P2/ 2N (w) (1)1 2
= HP51/2UO||L§ +71; + L.
We want to show that Z; + Zo = 0. In view of (4.2) we can rewrite

¢
I, = —2Im </ S.(=s)P7Y2(1 +1id - V)g(u)(s) ds, Pal/2u0> ds
0 L2

x

= —2Im ; <(1 +1i6 - V)g(u)(s), Ss(s)u0> ds.

L3
By the Cauchy—Schwarz inequality we find that this quantity is indeed finite, since
|Z1] < 2T'[|(1 +i6 - V)g(u)l|zsep2 [|Se()uo |l gLz < oo.
Denoting for simplicity G.(-) = P=1(1 +146 - V)g(u)(-), we find after a lengthy computation (see [2] for more

details) that the integral

I, = 2Re/0 (P.G.(s), _ZN(u)(S)>Li ds.

We can express —iN (u)(s) using the integral formulation (4.5) and write

t

Io = 2Re (/Ot (P.G.(s), Z'SE(s)uo>Li ds —|—/0 (P.Gc(s), —iu(s)) ds). (4.6)

x
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Next, we note that the particular form of our nonlinearity implies
Re (P.G., —iu>L2 =Im((1+id-V)g(u), u>L2
=1Im Hu”i%jfz —Re <g(u), (6 : V)U>Li

Here, the first expression in the last line is obviously zero, whereas for the second term we compute

Re (g(u), (8 - V)u>L% = /]R2 [ul*’Re (u(é - V)u) dz

1

_ . u20'+2 T =
~ 5 L6 P ar =0,

for H'-solutions u. In summary, the second term on the right-hand side of (4.6) simply vanishes and we find

t
Iy = 2Im/ (1416 - V)g(u)(s), Sc(s)uo) ., ds = —TI;.
0 x
This finishes the proof of (4.4). O

. (IN—)STABILITY PROPERTIES OF STATIONARY STATES WITH FULL OFF-AXIS VARIATION

In this section, we shall perform numerical simulations to study the orbital stability or instability properties
of the (zero speed) solitary wave Qe in the case with self-steepening | & | # 0 and full off-axis variation k = 2.
In view of Theorem 4.1, we know that there cannot be any strong instability, i.e. instability due to finite-time
blow-up. Nevertheless, we shall see that there is a wealth of possible scenarios, depending on the precise choice
of parameters, o, §, and on the way we perturb the initial data.

To be more precise, we shall consider initial data to equation (1.3) with k = 2, given by

uo(z1,22) = Q(x1,22) £ 0.1e™ %173, (5.1)

where () is again the stationary state constructed numerically as described in Section 2. We will use N,, =
N,, = 2! Fourier modes, a numerical domain Q of the form (2.9) with L,, = L,, = 3, and a time step of
At =102

Recall that in a stable regime, the time-dependent solution w typically oscillates around some time-periodic
state plus a (small) remainder which radiates away as t — +oo (see, e.g. [35], Sect. 4.5.1 for more details). In
our simulations, however, we work on T? instead of R? which implies that radiation cannot escape to infinity.
Thus, we will not be able to numerically verify the precise behavior of u for large times. Having this in mind, we
take it as numerical evidence for (orbital) stability, if both perturbations (5.1) of @ generate stable oscillations
of |lu(t, )|, see also [22,24] for similar studies.

5.1. The case without self-steepening

Let us first address the case d; = d3 = 0 for nonlinear strengths ¢ = 1,2, 3.

For o = 1, we find that the perturbed ground state is unstable, and that the initial pulse disperses towards
infinity as can be seen in Figure 10. The modulus of the solution at ¢ = 10 in the same figure on the right
shows that the initial pulse disperses with an annular profile. A “ —” perturbation in (5.1) leads to the same
qualitative behavior and a corresponding figure is omitted.

The situation is found to be different for o = 2, where ) appears to be stable, see Figure 11. The L°°-norm
of the solution thereby oscillates for both signs of the perturbation.

Finally, for o = 3 we find that the behavior depends on how we perturb the initial ground state Q). Perturba-
tions with a “+” sign in (5.1) again exhibit an oscillatory behavior of the L°°-norm, see the right of Figure 12.
However, a “ —” perturbation yields a monotonically decreasing L°°-norm of the solution. The latter is again
dispersed with an annular profile.
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FIGURE 10. Solution to equation (1.3) with 0 =1, e =1, k = 2, § = 0, and initial data (5.1)
with the “+7 sign: On the left the L°°-norm of the solution as a function of ¢, and on the right
the modulus of the solution for ¢ = 10.
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FIGURE 11. L°-norm of the solution to equation (1.3) with 0 =2,e =1,k =2, =0, and
initial data (5.1): On the left for the “ —” sign, and on the right for the “ 47 sign.

5.2. The case with self-steepening

1493

In this subsection, we shall perform the same numerical study in the case with self-steepening, i.e. 419 # 0.
For o0 = 1, the corresponding stationary state ) seems to remain stable, since both types of perturbations yield
an oscillatory behavior of the L°-norm in time, see Figure 13. This is in sharp contrast to the o = 1 case
without self-steepening depicted in Figure 10 above. In addition, we see that the solution no longer displays
an annular profile.

This stable behavior is lost in the case of higher nonlinearities. More precisely, for both ¢ = 2 and 3 we find
that the behavior of the solution u depends on the sign of the considered Gaussian perturbation. On the one
hand, for the “+” perturbation in (5.1), both o = 2 and ¢ = 3 yield an oscillatory behavior of the L>*-norm, see
Figure 14. On the other hand, the “—" perturbation for both nonlinearities produce a solution with decreasing
L*°-norm in time (although for ¢ = 2 this decrease is no longer monotonically).
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initial data (5.1): On the left for the “ —” sign, on the right for the “+” sign.
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Remark 5.1. Our numerical findings are reminiscent of recent results for the (generalized) BBM equation, see
[4]. In there, it is found that for p > 5, the regime where the underlying KdV equation is expected to exhibit
blow-up, solitary waves can be both stable and unstable and are sensitive to the type of perturbation considered.
The main difference to our case is of course that these earlier studies are done in only one spatial dimension.

6. WELL-POSEDNESS RESULTS FOR THE CASE WITH PARTIAL OFF-AXIS VARIATION

From a mathematical point of view, the most interesting situation arises in the case where there is only a
partial off-axis variation. To study such a situation, we shall without loss of generality assume that P. acts only
in the z;—direction, i.e.

P.=1-¢%02.
In this case (1.1) becomes
i(1— %02 )Ou+ Au+ (1+i6 - V) (Jul*u) =0, up—o = uo(z1,22). (6.1)

When & = (4,0)T and o = 1, this is precisely the model proposed in Section 4.3 of [11]. Motivated by this,
we shall in our analysis only consider the case where the regularization P. and the derivative nonlinearity act
in the same direction. Numerically, however, we shall also treat the orthogonal case where, instead, § = (0,4) T,
see below.

6.1. Change of unknown and Strichartz estimates

In [2], which treats the case without self-steepening, the following change of unknown is proposed in order to

streamline the analysis:
v(t, z1,z9) := Pel/zu(t, x1,T2). (6.2)

Rewriting the evolutionary form of (6.1) with & = (6,0)" in terms of v yields
100 4+ P Av 4 (14068, PV 2(|P7Y 20|27 P71/20) = 0, (6.3)

subject to initial data
Vje=o = vo(71,22) = P} ?ug(a1, 32).

Instead of (1.5), one finds the new conservation law
lo(t, )IZ2 = 1P 2ult, ), 172 = 1P *uollZ2 = [lvollz, (6.4)

/2

where we recall that P2 only acts in the x-direction, via its Fourier symbol

PP = (1+€)*% & eR

This suggests to work in the mixed Sobolev-type spaces LP(R,,; H*(R,,)), which for any s € R are defined

through the following norm:
» 1
s/2 2 P
LB, L2, = </R (/]R |P1/ f(x1,22)? dx1) dx2> )

We will also make use of the mixed space-time spaces L{LP H? (I) for some time interval I (or simply
L{L? H3 when the interval is clear from context), which we shall equip with the norm

1 llze, 1y, = 1P

1
Plsgoz,m, o = ([ IO, at)"
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The proof of (global) existence of solutions to (6.3) will require us to use the dispersive properties of the
associated linear propagator S.(t) = e’ eﬁlA, which in contrast to the case k = 2 allows for Strichartz estimates.
However, in comparison to the usual Schrédinger group e**2, these dispersive properties are considerably weaker.

In the following, we say that a pair (q,r) is Strichartz admissible, if

2 1 1
q 2 r

, for2<r<oo0,4<q<o0. (6.5)

Now, let (q,7), (7, p) be two arbitrary admissible pairs. It is proved in Proposition 3.4 of [2] that there exist
constants C1,Cy > 0 independent of ¢, such that

HSs(‘)f”Lq -2 < Oiflf e, (6.6)
t T xo Ty
as well as .
‘/ S.(- — $)F(s) ds L<GIFl L s (6.7)
0 LiLy, H,," Ly Ley Ha)

Here, one should note the loss of derivatives in the x-direction.

6.2. Global existence results

Using the Strichartz estimates stated above, we shall now prove some L2-based global existence results for
the solution v to (6.3). In turn, this will yield global existence results (in mixed spaces) for the original equation

(6.1) via the transformation v = Pgl/Qu.
To this end, we first recall that in the case without self-steepening § = 0, the results of [2] directly give:

Proposition 6.1 (Partial off-axis variation without self-steepening). Let o < 2. Then for any initial data
ug € L*(Ryy; H'(Ry,)) there exists a unique global-in-time solution u € C(Ry; L?(R,,; HY(R,,))) to

i(1— %02 )0u+ Au+ [ul*u=0, wuyu—p=uo(z1, ). (6.8)

Our numerical findings in the next section indicate that this result is indeed sharp, i.e. that for o > 2 global
existence in general no longer holds.
Next, we shall take into account the effect of self-steepening, and rewrite (6.3) using Duhamel’s formula:

t
v(t) = S.(t)vg + z/ S.(t — s)P7Y2(1 + 060y, ) (|P7 Y 20]? P71V 20)(s) ds
0

(6.9)
=d(v)(t).
To prove that ® is a contraction mapping, the following lemma is key.
Lemma 6.2. Let g(z) = |2|?°2 with o € N. For t € [0,T] denote
t
N@)(t) =i / S.(t — $)PY2(1 4 i60,. )g(P=/2u(s)) ds, (6.10)
0

and choose the admissible pair (v, p) = (@7 2(c +1)). Then fore,d > 0, it holds:

[N () = N 2

LYLS, Hy "

<N T E (ol

t Hxg ey t Haxg ey

P S | LR
L} LYLS, Hy”
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Proof. First it is easy to check that

(o0 = (7Y 90 4 1))

is admissible in the sense of (6.5). Moreover, since v > 4 we have % < &, from which we infer that Hlf%(R) is
indeed a normed Banach algebra, a fact to be used below. Using the Strichartz estimate (6.7) we have

IN@) =N e
LyLL,Hy,
< Co|| P72 (1460, ) (g(P7P0) — g(P20))| 2.

!’ ’ ~
Yy 14 y
Ly Lo, HY,

For simplicity we shall in the following denote u = pY 2ol = P2y in view of (6.2). Keeping t and x5
fixed we can estimate

[P=472 (1 4 0605, ) (g (P71 /20) — g(P=H20)) |

8
S

H,
< e Y|(1+ 60, ) (9(u) — g(u))]|

<e ' (1 +9)llg(u) — gl -z,

5

2_3
2
H),

@

where in the last inequality we have used the fact that H -3 (R)yc H 5 (R). Next, use again (4.3) which together
with the algebra property of H -3 (R) for o € N implies

lg(u) = g(u)]]

Y (e i s | R
H,, 7 Hy, 7 Hyy 7

1—
Hml xq Tq 1

S e ()75 + /)25 Yllo = Il .
H, " H," H,. "

xq xq r1

It consequently follows after Holder’s inequality in zs, that we obtain

|V (v) = N ()| 2
L8, H,"
S R (L P ey | PR
Lo, H,," Lo, H,," Ly Ho”
The result then follows after applying yet another Holder’s inequality in t. O

This lemma allows us to prove the following global existence result for (6.1).

Theorem 6.3 (Partial off-axis variation with parallel self-steepening). Let ¢ = 1 and & = (5,0)T for § € R.
Then for any ug € L2(R,,; HY(Ry,)) there exists a unique global solution u € C(Ry; L?(R,.,; H*(R,,))) to (6.1).

Here, the restriction o = 1 is due to the fact that this is the only o € N (required for the normed algebra
property above) for which the problem is subcritical. Indeed, in view of the estimate in Lemma 6.2, the exponent
1 — g > 0 yields a contraction for small times.

Proof. We seek to show that v — ®(v) is a contraction mapping in a suitable space. To this end, we denote, as
before,

P(v)(t) = Se(t)vo + N (v)(¢),
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where N(v) is given by (6.10). Let T, M > 0 and denote

Yo = {v € L2([0,7); L*(R})) N L¥([0, T); L* (Ryps H™ % (Ry,))) :

Iollzgors + ol - < M)

thzy

The Strichartz estimates (6.6) and (6.7) together with Lemma 6.2 imply that for any admissible pair (g, )
and solutions v,v" € Yy pr that

jo@) — o)l
L{Ly, H,,
IS0 -l . 2+ IN@ =N
Ly zg 1z LtL£2H21
< Chillvo — vhllLz + Cal [ P72 (1 +i60,,) (9(P7Y/20) — g(P;”%’))HL;L; i
. /20721,
< oo = elzz + M0 ) )

Choosing M = M (||vo]|z2) and T sufficiently small, it is clear that ® is a contraction on Y7 ps. Banach’s
fixed point theorem and a standard continuity argument thus yield the existence of a unique maximal solution
v € C([0, Thnax), L*(R2)) where Tinax = Tmax(|[vo][z2). Continuous dependence on the initial data follows by
classical arguments. '

The conservation property (6.4) for v follows similarly as in the proof of Proposition 4.2 in [2] and we shall
therefore only sketch its main steps below. By the unitary of S.(-) in L? we obtain

lo(®)llzz = llvollLz + 2Re (Se(=H)N (v)(2), vo) 1 + IS (N (W) (D) L2
=: ||’U0||Li —|—Il —|—IQ

To show that Z; + Zo = 0, we use (4.2) and rewrite

| = —2Im / V21400, )g(P M P0)(5), Se(s)vo) s ds.

By duality in z; and Holder’s inequality in ¢ and o we find that this quantity is indeed finite, since

71| < 20| P7(1+ 60, )g (P ?0)] 2 [|S(-)woll < o0.

e Yre w
tLH LI211

Once again we find, after a lengthy computation (see [2] for more details), that
I, = 2Re/ (P21 4005, )g(P=20)(s), —iN (w)(s)) ., ds.
0

x

We express —iN (u)(s) using the integral formulation (6.9) and write
¢
7, = 2Re / (P=V2(1 460, )g (P Y/20)(s), iS-(s)up),  ds
o g

12 (8) ds.

x

t
+/O Im||PE_1/2v(s)|2L%jf2 — 0Re (g(P'%0),0,, P7?v)

Here the second time integral vanishes entirely, and, as in the full off-axis case, the latter term in the integrand
vanishes due to

2
Re (g(P71/%0), 04, P YP0) , = o o, (|P7Y20[2772) dyday = 0.
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FIGURE 15. L*-norm of the solution to (6.1) with o = 1, § = (0,0.1), and initial data
ug = 4exp’“”§’1§: On the left for € = 0, on the right for ¢ = 0.1.

In summary, we find that
t
Iy = 21m/ <P€_1/2g(P€_1/2v)(s), Ss(s)u0>L2 ds = -1,
0

which finishes the proof of (6.4). We can thus extend v to become a global solution by repeated iterations to
conclude T, = +00.

Finally, we use the fact that v = P2/?u to obtain a unique global-in-time solution u € C (Ry; L2(R,,; HY(R,,)))
which finishes the proof. O

Remark 6.4. It is possible to treat the critical case o = 2 using the same type of arguments as in [7] (see also
[2]). Unfortunately, this will only yield local-in-time solutions up to some time T' = T'(ug) > 0, which depends
on the initial profile ug (and not only its norm). Only for sufficiently small initial data ||ug|| 2, my <1, does one
obtain a global-in-time solution. But since it is hard to detect small nonlinear effects numerically, we won’t be
concerned with this case in the following. We also mention the possibility of obtaining (not necessarily unique)
global weak solutions for derivative NLS, which has been done in [1] in one spatial dimension.

Theorem 6.3 covers the situation in which a partial off-axis regularization acts parallel to the self-steepening.
At present, no analytical result for the case where the two effects act orthogonal to each other is available.
Numerically, however, it is possible to study such a scenario: To this end, we recall that from the physics point
of view, both £ and |d| have to be considered as (very) small parameters. With this in mind, we study the
time-evolution of (6.1) with o = 1, Gaussian initial data of the form (3.6), and a relatively small self-steepening,
furnished by d; = 0 and 2 = 0.1. In the case where ¢ = 0, it can be seen on the left of Figure 15 that the
L*-norm of the solution indicates a finite-time blow-up at t &~ T" = 0.1445. In the same situation with a small,
but nonzero ¢ = 0.1, one can see that, instead, oscillations appear within the L>-norm of the solution for ¢t > T

Note that these oscillations appear to decrease in amplitude, which indicates the possibility of an asymptot-
ically stable final state as t — +oo. A similar behavior can be seen for different choices of parameters and also
for a full, two-dimensional off-axis variation (not shown here).

7. NUMERICAL STUDIES FOR THE CASE WITH PARTIAL OFF-AXIS VARIATION

In this section we present numerical studies for the model (6.1) with ¢ = 1 and different values of the self-
steepening parameter §, as well as o > 0. We will always use N,, = N,, = 2! Fourier coefficients on the



1500 J. ARBUNICH ET AL.

2.5
ol 0.4.
= 0.2
_38
5 151 0.
- 10
1 \\
~ s,
~— _ 10
0.5 L L L L
0 0.5 1 1.5 2 25

FIGURE 16. Solution to (6.8) with ¢ = 1, ¢ = 1, and initial data (5.1) with a “+” sign: On
the left the L°°-norm in dependence of time, on the right the modulus of u at t = 2.5.
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FIGURE 17. Time-dependence of the L>-norm of the solution to (6.8) with e =1, 0 = 2, and
initial data (5.1): On the left, the case with a “ —” perturbation; on the right the case with
«“ +77 Sign.

numerical domain €2 given by (2.9) with L,, = L,, = 3. The time step is At = 1072 unless otherwise noted.
The initial data is the same as in (5.1), i.e. a numerically constructed stationary state @ perturbed by adding
and subtracting small Gaussians, respectively.

7.1. The case without self-steepening

We shall first study the particular situation furnished by equation (6.8) with e = 1. It is obtained from the
general model (1.1) in the case without self-steepening §; = d2 = 0:

In the case ¢ = 1, the ground state perturbation in (5.1) with a “ 4 ” sign is unstable and results in a
purely dispersive solution with monotonically decreasing L*°-norm, see Figure 16. The modulus of the solution
at time t = 2.5 is shown on the right of the same figure. Interestingly, the initial hump appears to separate into
four smaller humps and we thus lose radial symmetry of the solution. The situation is qualitatively similar for
perturbations corresponding to the “—" sign in (5.1) and we thus omit a corresponding figure.
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FIGURE 18. Solution to (6.8) for ¢ = 1, 0 = 2 and initial data (5.1) with the “+” sign: On
the left the modulus of the solution at the last recorded time ¢ = 0.6045; on the right the
corresponding Fourier coefficients of u given by .
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FIGURE 19. Solution to (6.1) with e =1, 0 = 2, and § = (0.3,0) ": On the left, the L>-norm
of the solution obtained for initial data (5.1) with the “—7 sign, on the right for the “+ 7, and
in the middle |u| at ¢ =5 for the “ —” sign perturbation.

The situation changes significantly for o = 2, as can be seen in Figure 17. While the L°°-norm of the solution
obtained from initial data (5.1) with the “ —” sign is again decreasing, the “+” sign yields a monotonically
increasing L°°-norm indicating a blow-up at ¢ ~ 0.64.

The modulus of the solution at the last recorded time ¢ = 0.6405 is shown in Figure 18 on the left. It can be
seen that it is strongly compressed in the xo-direction. The corresponding Fourier coefficients are shown on the
right of the same figure. They also indicate the appearance of a singularity in the xs-direction.

These numerical findings indicate that the global existence result stated in Theorem 6.3 is indeed sharp. It
also shows that the two-dimensional model with partial off-axis variation essentially behaves like the classical
one-dimensional focusing NLS in the unmodified zs-direction (i.e. the direction in which P. does not act). Recall
that for the classical one-dimensional (focusing) NLS, finite-time blow-up is known to appear as soon as o > 2.

7.2. The case with self-steepening parallel to the off-axis variation

In this subsection, we include the effect of self-steepening and consider equation (6.1) with ¢ = 1, d2 = 0, and
61 > 0.
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FIGURE 20. L>-norm of the solution to (6.1) with e = 1, 0 = 3, §; = (0.1,0) T, and initial data
(5.1) with the “+ 7 sign. On the right the modulus of the Fourier coefficients of the solution

at time ¢ = 0.155.

FIcure 21. The modulus of the solution to equation (6.1) with ¢ =1, ¢ = 3, §; = (0.1,0),
and initial data (5.1) with the “+” sign, plotted at time ¢ = 0.155.

For ¢ = 1, the stationary state Qe appears to be stable against all studied perturbations. Indeed, the
situation is found to be qualitatively similar to the case with full off-axis perturbations (except for a loss of
radial symmetry) and we therefore omit a corresponding figure.

When o = 2, the stationary state no longer appears to be stable. However, we also do not have any indication
of finite-time blow-up in this case. Indeed, given a “—” perturbation in the initial data (5.1), it can be seen on
the left of Figure 19 that the L°°-norm of the solution simply decreases monotonically in time.

Notice, that there is still an effect of self-steepening visible in the modulus of the solution |u|, depicted in the
middle of the same figure. The behavior of the L°°-norm in the case of a “ + 7 perturbation is shown on the
right of Figure 19. It is no longer monotonically decreasing but still converges to zero.
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FIGURE 22. Solution to (6.1) withe =1, 0 =1, and §; = (0,1)". On the left the L>-norm of
the solution for initial data (5.1) with the “ —” sign, on the right for the one with “+ 7 sign,
and in the middle |u| at time ¢ = 20 for the “— 7 sign.
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FIGURE 23. Solution to (6.1) with ¢ = 1, ¢ = 3, §; = (0,0.1)7, and initial data (5.1) with
the “+ 7 sign: On the left the L>°-norm of u as a function of time, on the right the Fourier
coefficients w at ¢ = 0.25.

For o = 3, a “—" perturbation of (5.1) is found to be qualitatively similar to the case 0 = 2 and we therefore
omit a figure illustrating this behavior. However, the situation radically changes if we consider a perturbation
with the “+ 7 sign, see Figure 20. The L°°-norm of the solution indicates a blow-up for ¢ ~ 0.1555, where the
code stops with an overflow error.

In this particular simulation we have used 10* time steps for ¢ € [0,0.17] and N,, = 21, N,, = 2!! Fourier
modes (since the maximum of the solution hardly moved, it was not necessary to use a co-moving frame). The
solution is still well resolved in time at ¢ = 0.155 since M, (¢) remains numerically conserved up to the order of
10~''. But despite the higher resolution in x5 used for this simulation, the Fourier coefficients indicate a loss
of resolution in the xs-direction. The modulus of the solution at the last recorded time is plotted in Figure 21.
Note that |u| is still regular in the z;-direction in which P! acts, but it has become strongly compressed in
the xo-direction.

7.3. The case with self-steepening orthogonal to the off-axis variation

Finally, we shall consider the same model equation (6.1) with e = 1, but this time we let §; = 0 for non-
vanishing J, > 0. This is the only case, for which we do not have any analytical existence results at present.
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15.

FIGURE 24. The modulus of the solution to (6.1) with e =1, 0 = 3, §; = (0,0.1) ", and initial
data (5.1) with the “+ 7 sign, plotted at ¢t = 0.5.

For ¢ = 1, it can be seen that a “ —” sign in the initial data (5.1) yields a purely dispersive solution with
monotonically decreasing L*°-norm, see Figure 22 which also shows a picture of |u| at ¢ = 20. The “ 47 sign
again leads to oscillations of the L°°-norm in time, indicating stability of the ground state. The situation for
o = 2 is qualitatively very similar and hence we omit the corresponding figure.

For 0 =3 and a “ —” sign in the initial data (5.1), we again find a purely dispersive solution. However, the
behavior of the solution obtained from a perturbation of @) with the “+ 7 sign is less clear. As one can see in
Figure 23, the solution is initially focused up to a certain point after which its L°°-norm decreases again.

This simulation is done with N, = 210, N, = 2 Fourier modes and N; = 10* time steps for t € [0,0.5].
The relative conservation of the numerically computed quantity M_(¢) is better than 107!° during the whole
computation indicating an excellent resolution in time. The spatial resolution is indicated by the Fourier coeffi-
cients of the solution near the maximum of the L°>°-norm as shown on the right of Figure 23. Obviously, a much
higher resolution is needed in the xo-direction, but even near the maximum of the L*°-norm the modulus of the
Fourier coefficients decreases to the order of 1075, The modulus of the solution at time ¢ = 0.5 can be seen in
Figure 24. It shows a strong compression in the xs-direction but nevertheless remains regular for all times. This
is in stark contrast to the analogous situation with parallel self-steepening and off-axis variations, cf. Figures 20
and 21 above.
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