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MULTILEVEL QUASI-MONTE CARLO INTEGRATION WITH PRODUCT
WEIGHTS FOR ELLIPTIC PDES WITH LOGNORMAL COEFFICIENTS ?

Lukas Herrmann1,∗ and Christoph Schwab1

Abstract. We analyze the convergence rate of a multilevel quasi-Monte Carlo (MLQMC) Finite
Element Method (FEM) for a scalar diffusion equation with log-Gaussian, isotropic coefficients in a
bounded, polytopal domain D ⊂ Rd. The multilevel algorithm Q∗

L which we analyze here was first
proposed, in the case of parametric PDEs with sequences of independent, uniformly distributed param-
eters in Kuo et al. (Found. Comput. Math. 15 (2015) 411–449). The random coefficient is assumed to
admit a representation with locally supported coefficient functions, as arise for example in spline- or
multiresolution representations of the input random field. The present analysis builds on and generalizes
our single-level analysis in Herrmann and Schwab (Numer. Math. 141 (2019) 63–102). It also extends
the MLQMC error analysis in Kuo et al. (Math. Comput. 86 (2017) 2827–2860), to locally supported
basis functions in the representation of the Gaussian random field (GRF) in D, and to product weights
in QMC integration. In particular, in polytopal domains D ⊂ Rd, d = 2, 3, our analysis is based on
weighted function spaces to describe solution regularity with respect to the spatial coordinates. These
spaces allow GRFs and PDE solutions whose realizations become singular at edges and vertices of D.
This allows for non-stationary GRFs whose covariance operators and associated precision operator are
fractional powers of elliptic differential operators in D with boundary conditions on ∂D. In the weighted
function spaces in D, first order, Lagrangian Finite Elements on regular, locally refined, simplicial tri-
angulations of D yield optimal asymptotic convergence rates. Comparison of the ε-complexity for a
class of Matérn-like GRF inputs indicates, for input GRFs with low sample regularity, superior perfor-
mance of the present MLQMC-FEM with locally supported representation functions over alternative
representations, e.g. of Karhunen–Loève type. Our analysis yields general bounds for the ε-complexity
of the MLQMC algorithm, uniformly with respect to the dimension of the parameter space.
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1. Introduction

The numerical analysis of solution methods for partial differential equations (PDEs) and more general oper-
ator equations with random input data has received increasing attention in recent years, in particular with the
development of computational uncertainty quantification and computational science and engineering. There,
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particular models of randomness in the PDEs’ input entail particular requirements to efficient computational
uncertainty quantification algorithms. A basic case arises when there are a finite (possibly large) number s of
random variables whose densities have bounded support and which parametrize uncertain input from function
spaces, such as diffusion coefficients or source terms in the forward PDE model: computation of statistical
moments of “responses” being (functionals of) solution families of these PDEs. Numerical Bayesian inversion
then amounts to numerical integration over a parameter domain of finite parameter space dimension s, which
itself is a discretization parameter. Statistical independence and scaling reduces this task to numerical inte-
gration over the unit cube [0, 1]s, against a product probability measure. In the context of PDEs, so-called
distributed random inputs such as spatially heterogeneous diffusion coefficients, uncertain physical domains, etc.
imply, via uncertainty parametrizations (such as Fourier-, Karhunen–Loève , B-spline or wavelet expansions)
in physical domains D, a countably-infinite number of random parameters (being, for example, Fourier- or
wavelet coefficients). This, in turn, renders the problem of numerical estimation of response statistics of PDE
solutions a problem of infinite-dimensional numerical integration. Assuming statistical independence of the sys-
tem of (countably many) random input parameters results in the problem of numerical integration against a
product probability measure. The case of the uncertain PDE input being a Gaussian random field (GRF) is
particularly important in applications, and the numerical analysis has received considerable attention in recent
years. Here, the numerical estimation of statistical moments of PDE solutions amounts to integrating parametric
PDE solutions against Gaussian measures on function spaces of admissible input data. Adopting uncertainty
parametrizations of the input GRFs renders the domain Ω of integration a countable product of real lines
RN, endowed with the Gaussian product measure (GM) µ and with the product sigma algebra obtained by
completing the finite dimensional cylinders of Borel sets on R (we refer to [10] for details on GMs on RN).

Here, as in [26, 36] and the references there, we analyze the combined discretization by quasi-Monte Carlo
(QMC) quadratures and by the Finite Element Method (FEM) of linear, second order elliptic PDEs in a
bounded, polytopal domain D ⊂ Rd, d = 2, 3. Unlike the applications in [26, 36] and the references there, and
in [28], where stationarity enters the algorithms and the error analysis in an essential way, here we consider
isotropic (i.e. scalar), log-Gaussian diffusion coefficient a = exp(Z), where Z is a possibly non-stationary GRF
in D.

We place the present work in perspective with other recent work on the numerical analysis of PDEs with
GRF inputs. In [26,36], an error analysis of single- and multilevel algorithms was developed for Karhunen–Loève
type representations of the GRF Z. Except for rather special settings where Karhunen–Loève eigenfunctions are
explicitly known (when D is a torus or a sphere [32]), Karhunen–Loève type representations of GRFs are not
explicitly available but must be computed numerically. This entails the accurate numerical approximation of a
large number of eigenpairs of the covariance operator of the GRF Z in the domain D, a significant computational
overhead.

Moreover, the covariance eigenfunctions in Karhunen–Loève representations of GRFs in domains or mani-
folds D typically have global support in D. This was shown in [26, 36] to imply in the error analysis of QMC
quadrature rules so-called product-and-order dependent (POD) weights. Constructing QMC points with POD
weights introduces, via the corresponding fast component-by-component (CBC) algorithm, a quadratic scaling
w.r. to the QMC integration dimension s of the construction cost for QMC rules, see [14,41] and the references
there. For this reason, the QMC construction cost is not explicitly accounted for in recent complexity estimates
of QMC-Finite Element (FE) algorithms for PDEs.

To bypass the need for numerical Karhunen–Loève eigenfunction computation, under (strong) assumptions
on stationarity of the GRF Z, fast Fourier transform (FFT)-based numerical methods have been proposed for
efficient numerical realization of stationary GRFs. We refer to [16] and the references there for details. FFT
based techniques have recently been used in conjunction with QMC and FEM for elliptic PDEs with coefficients
given by (exponentials of) stationary GRFs Z in [28]. While allowing essentially linear scaling w.r. to the number
of FE degrees of freedom in the domain D, stationarity of the GRF Z is a key condition for the applicability of
FFT-based, so-called “circulant embedding” methods. Being essentially Fourier-based techniques, the QMC-FE
error analysis in [28] involves QMC weight sequences with POD structure and, hence, quadratic w.r. to QMC
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integration dimension s scaling of the cost for QMC rule construction via the fast CBC construction (see [28],
Eq. (3.16), Rem. 9).

In recent years, computational modeling of noisy spatial data has increasingly employed non-stationary GRFs
in bounded domains D. We mention recently used random field models in spatial statistics (see [18, 38] and
the references there), GRFs on manifolds such as the sphere (see [32] and the references there), and deep
Gaussian processes (see [17] and the references there). As proposed in [38], rather general non-stationary GRFs
Z in bounded domains or on manifolds D can be modeled and sampled as solutions of stochastic (integro)
PDEs (SPDEs). A widely used equation which generalizes the classical Whittle–Matérn [39, 48] covariances of
stationary Gaussian random fields reads as

(−∇ · (A(x)∇) + κ2(x))α/2Z =W in D. (1.1)

Here W denotes spatial white noise on D, and α > 0 is suitably chosen. If D = Rd, A(x) ≡ Id, and
κ(x) ≡ const, the solution Z to (1.1) (we assume Z to be centered throughout this paper) is stationary with
so-called Matérn-type covariance, cf. [47, 48]. For a variable coefficient matrix A(x) and variable κ(x), or in
bounded domains D with homogeneous Dirichlet or Neumann boundary conditions, equation (1.1) results
in non-stationary, “Matérn-like” Gaussian random fields. On bounded domains D, boundary conditions for
Z are mandatory for the unique solvability of the SPDE (1.1). Imposition of boundary conditions on ∂D
generally entails non-stationarity of the GRF Z, cf. Section A.4 of [38]. Then, FFT-based methods are generally
not available, and computation of Karhunen–Loève eigenbases for (1.1) will entail, again, prohibitive cost.
Alternative, covariance independent representations of GRFs via multiresolution systems in D allow us to
circumvent the numerical solution of Karhunen–Loève eigenproblems, the classical example being the Brownian
bridge in D = (0, 1), going back to P. Lévy and Z. Ciesielski. The basis functions in corresponding representation
systems are well-localized in D (either compactly supported or exponentially decaying) and allow for fast
evaluation of the GRF in D, similar to FFTs. While retaining linear scaling w.r. to the spatial resolution of the
approximate GRF in D, the hierarchical nature of multiresolution analyses (MRAs) naturally enables multilevel
QMC (MLQMC) algorithms with a discretization level dependent resolution of GRF and QMC integration. In
addition, as observed by us recently in [20, 31], the localization of the supports of the representation system
in D allows us to use QMC quadrature with product weights. This, in turn, is known to afford linear scaling
of the work with respect to the parameter dimension s to compute the QMC generating vectors (see [14, 42]
and the references there). To provide a complete error vs. work analysis of a MLQMC-FE algorithm for the
numerical solution of a linear, second order elliptic PDE with GRF input and locally supported basis functions
in a bounded, polytopal domain D ⊂ Rd, d = 2, 3, where the GRF satisfies (1.1) with suitable boundary
conditions on ∂D is the purpose of the present paper. Recently, independent of the present work, in [33] a
combined QMC and wavelet-based discretization of log-Gaussian random fields was proposed and error bounds
were presented. The present results go in several respects beyond those in [33]. We consider, in particular,
MLQMC-FE discretizations, and use sharper bounds than those in [33] on the error caused by truncating
the expansion of the GRF, from our single-level analysis in [31]. We also generalize, based on [31], the QMC
error analysis by admitting Gaussian type weight functions in the anisotropic QMC norms, as opposed to the
exponential weights used in [26,36]. We prove that this extends the summability range of Karhunen–Loève and
wavelet expansions of the admissible GRFs for the applicability of QMC with product weights, in addition to
obviating stationarity, as compared to [26, 36]. Furthermore, in the present paper, we provide a full regularity
analysis of the PDE as required for MLQMC-FEM. As is well-known, this requires a form of “mixed regularity”
analysis, with possibly sharp, quantitative bounds of the sensitivities of the parametric integrand functions with
respect to the coordinates in the GRF Z, in weighted H2(D) norms. In the present paper, we also develop these
norm bounds.

We confine QMC integration error analysis to first order, randomly shifted lattice rules proposed originally
in [34], and to continuous, piecewise linear “Courant” FEM in D. We adopt the setting of our analysis [31] of
the single-level QMC-FE algorithm: in a bounded, polytopal domain D ⊂ Rd, d = 2, 3, we consider a model
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Dirichlet problem
−∇ · (a∇u) = f, u

∣∣∣
∂D

= 0. (1.2)

As in [31], we assume that the GRF Z = log(a) : Ω→ L∞(D) is (formally) represented as

Z :=
∑
j≥1

yjψj , (1.3)

where (ψj)j≥1 is a sequence of real-valued, bounded, and measurable functions in D. In particular, with respect
to the GM µ, the terms in the sequence y = (yj)j≥1 in (1.3) are i.i.d standard normal, yj ∼ N (0, 1), i.i.d. for
j ∈ N. The lognormal coefficient a in (1.2) is given by

a := exp(Z). (1.4)

Here, (1.3) converges in Lq(Ω;L∞(D)), q ∈ [1,∞), under the assumption that there exists a positive sequence
(bj)j≥1 ∈ `p(N) for some p ∈ (0,∞) such that

K0 :=

∥∥∥∥∥∥
∑
j≥1

|ψj |
bj

∥∥∥∥∥∥
L∞(D)

<∞. (A1)

In the setting of (1.3) and (1.4), the expectation with respect to the GM µ of the solution to (1.2) can
be computed with QMC by randomly shifted lattice rules and product weights with dimension-independent
convergence rates under the assumption (A1) with p < 2, cf. [31]. The assumption in (A1) can account for
locality in the support of the functions ψj . This may also be achieved by exponentially decaying ψj , which are
not compactly supported, see [8]. An assumption of the type of (A1) in the case of so called affine-parametric
coefficients in conjunction with the application of QMC with product weights was already discussed by us
in [20]. In the present work, we extend our analysis of [31] to a MLQMC-FE algorithm with log-Gaussian
inputs to reduce the overall work. The perspective of MLQMC integration with product weights for random
inputs represented by ψj with localized supports was originally introduced in [19] for the case of so-called
affine-parametric coefficients. Multilevel QMC for elliptic PDEs with affine coefficients was first introduced
in [35] (there for globally supported Karhunen–Loève eigenfunctions and with POD weights). As we showed
there, localization of supports allows to obtain in certain cases estimates for the work of the evaluation of the
MLQMC quadrature, which are asymptotically equal to the work to solve one instance of the corresponding
deterministic PDE with the same error tolerance also in the case that the FE convergence rate is higher than
1/2 with respect to the number of FE degrees of freedom. The convergence rate of first order FEM is higher
than 1/d if, for example, the spatial error is considered in a weaker Sobolev norm for d = 2, 3. In contrast to [36],
the present complexity analysis does account for the cost of the CBC algorithm of [42,43] for the computation
of the generating vector of the QMC points. This is due to product weights affording CBC construction cost
with linear scaling in terms of the dimension s of the integration domain. The work estimates of MLQMC
quadrature obtained here are compared to previous results from [36] for the same underlying GRF. For locally
supported representations of the random field inputs, MLQMC with product weights requires asymptotically
less work to obtain a certain accuracy than global supports and POD weights. To facilitate comparison with [36]
(where a Karhunen–Loève expansion is truncated to a fixed number of terms on all FE mesh levels and analyzed
assuming the cost to evaluate one Karhunen–Loève function is O(1)), in the present paper the error analysis
from Section 5 of [36] is sharpened in Appendices A and B. There, novel parametric regularity and error vs.
work estimates are proved that also cover variable Karhunen–Loève truncation dimensions and fast (e.g. FFT)
methods to sample the GRF in the case of globally supported representation systems with QMC POD weights
accounting for the cost of the CBC algorithm. As a byproduct, we show that MLQMC with global supports and
POD weights requires in certain cases asymptotically the same work as the corresponding deterministic PDE,
which constitutes an extension of the theory in [36] on MLQMC with global supports and POD weights.
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The outline of this paper is as follows. In Section 2, we recapitulate known results on the well-posedness
of problem (1.2)–(1.4) under assumption (A1), and on the integrability of random solution with respect to
the GM. We also present bounds on the error incurred in the random solution when the expansion (1.3) is
truncated to a finite number of s terms. As we combine QMC quadrature approximation of the GM with
continuous, piecewise linear FE discretization of (1.2) of the random solution in polytopal domains D ⊂ Rd,
d = 2, 3, we also review in Section 2 elements of elliptic regularity theory and FE approximation theory in D;
notably, handling corner and (in space dimension d = 3) edge singularities induced by D we review weighted
Sobolev spaces in D in which (1.2) admits a full regularity shift. Corresponding weighted spaces also appear
in our convergence rate analysis of the expansion (1.3) of the GRF. In Section 3, we review QMC convergence
theory from [31,41]. Suitable (weighted) spaces on Rs of integrand functions with mixed first derivatives which
ensure (nearly) first order convergence with dimension-independent constants are introduced. Section 4 presents
the key mathematical results: parametric regularity analysis for the integrand functions which arise from the
dimensionally truncated, FE discretized problem, generalizing the single-level QMC analysis in [31] by admitting
locally supported functions ψj in the representation (1.3) of the GRF; while similar in spirit to the multilevel
analysis in [26], there are significant technical differences due to accounting for local supports of ψj , analogous
to the recent polynomial chaos N -term approximation rate analysis in [7]. The error bounds are then combined
in Section 5 to a novel, MLQMC convergence rate bound in terms of the (sequences of) truncation dimensions
(s`)`=0,...,L, numbers (M`)`≥0 of FE degrees of freedom and of QMC sample numbers (N`)`=0,...,L, where L
denotes the number of discretization levels. Judicious choices of these parameters for concrete MLQMC-FE
algorithms are derived in Section 6.1 by the “usual” error vs. work analysis through optimization, of the error
bounds in Section 5, derived analogously to [35,36]. Several cases of these error vs. work estimates are discussed in
Section 6.2 and compared to error vs. work estimates for multilevel QMC with global supports and POD weights
in Section 6.3. Numerical experiments of this MLQMC algorithm for non-stationary GRF input represented by
a multiresolution function system are presented in the univariate case in Section 7.

2. Well-posedness and spatial approximation

2.1. Well-posedness

We consider the variational formulation of the PDE (1.2) with lognormal coefficient a = exp(Z), i.e., to find
u : Ω→ V such that ∫

D

a∇u · ∇vdx = f(v), v ∈ V, (2.1)

where V := H1
0 (D) with dual space V ∗. Throughout, we identify L2(D) with its dual space L2(D)∗, i.e.,

V ⊂ L2(D) ' L2(D)∗ ⊂ V ∗. Under the assumption that for some p0 ∈ (0,∞), (bj)j≥1 ∈ `p0(N) it holds that
Z ∈ Lq(Ω;L∞(D)) for every q ∈ [1,∞), cf. Theorem 2 of [31]. Hence, 0 < ess infx∈D{a(x)} ≤ ‖a‖L∞(D) < ∞,
µ-a.s.. As in previous works [26,31,36], in the ensuing error analysis, the quantities

amin := ess inf
x∈D

{a(x)} and amax := ‖a‖L∞(D)

will play an important role. Under assumption (A1), amin and amax are random variables on the probability
space (Ω,

⊗
j≥1 B(R), µ) (see e.g., [10], Example 2.3.5). Therefore, continuity and coercivity of the random

bilinear form (w, v) 7→
∫
D
a∇w · ∇vdx in (2.1) on V × V holds with coercivity constant amin and continuity

constant amax, µ-a.s. By the Lax–Milgram Lemma, a unique solution u to (2.1) exists µ-a.s. By Proposition 3
of [31] (see also [12]), for every q ∈ [1,∞),

‖u‖Lq(Ω;V ) ≤ ‖1/amin‖Lq(Ω)‖f‖V ∗ <∞,

where the strong measurability of u : Ω → V follows, since the V -valued random solution u of (2.1) depends
continuously on the L∞(D)-valued coefficent a (via a Strang type argument).
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Numerical approximation of (functionals of) the random solution by QMC quadratures requires a finite dimen-
sional domain of integration. To this end, the expansion of the GRF Z in (1.3) is truncated to a finite number
s of terms: the s-term truncated lognormal random field as is defined by as := exp(Zs) = exp(

∑s
j=1 yjψj), for

every s ∈ N. With as, we associate the random variables

asmin := ess inf
x∈D

{as(x)} and asmax := ‖as‖L∞(D).

By us we denote the solution of the variational formulation (2.1) with the s-term truncated, parametric
coefficient as in place of a, i.e.,

us : Ω→ V s.t.
∫
D

as∇us · ∇vdx = f(v), v ∈ V. (2.2)

The truncation error can be controlled if the sequence (bj)j≥1 is p-summable. Specifically, if (bj)j≥1 ∈ `p0(N)
for some p0 ∈ (0,∞), Proposition 7 of [31] implies that for every ε > 0 there exists a constant Cε > 0 such that
for every G(·) ∈ V ∗ and for every s ∈ N

|E(G(u))− E(G(us))| ≤ Cε‖G(·)‖V ∗‖f‖V ∗
{

supj>s{b1−εj } if p0 > 2,
supj>s{b

2−p0/2
j } if p0 ≤ 2.

(2.3)

2.2. Sample regularity in D. Weighted function spaces

Approximations of second order, elliptic PDEs with regular, simplicial FEs in a Lipschitz polytope D ⊂ Rd,
d = 2, 3, on regular, simplicial families of uniformly refined triangulations may produce suboptimal convergence
rates, due to the occurrence of singularities in the parametric solutions u and us at vertices and, in space
dimension d = 3, also at edges of ∂D. In such domains, linear elliptic PDEs admit regularity shifts in certain
weighted Sobolev spaces, cf. [5,40], which we now recapitulate as we require the precise definition of the weighted
norms in D in the ensuing QMC error analysis. We assume the polygon resp. polyhedron D to have straight
edges resp. plane faces and J corners C := {c1, . . . , cJ} ⊂ ∂D.

For d = 2, let β = (β1, . . . , βJ) be a J-tuple of weight exponents. We define the corner weight function

Φβ(x) :=
J∏
i=1

|x− ci|βi , x ∈ D,

where βi ∈ [0, 1), i = 1, . . . , J . Here and in the following, the Euclidean norm in Rd is denoted by | · |. The
weighted function spaces Lqβ(D) and H2

β(D) are defined as closures of C∞(D) with respect to the norms

‖v‖Lqβ(D) := ‖vΦβ‖Lq(D), q ∈ [1,∞],

and
‖v‖2H2

β(D) := ‖v‖2H1(D) +
∑
|α|=2

‖|∂αx v|Φβ‖2L2(D).

For d = 3, let the polyhedron D have J ′ straight edges E := {e1, . . . , eJ′} ⊂ ∂D and define Xj := {k : cj ∈ ek}
as the index set of edges that meet at corner cj , j = 1, . . . , J . Let rk denote the distance to the edge ek and let
ρj denote the distance to the corner cj . Let (Vj : j = 1, . . . , J) be a finite, open covering of D such that

D ⊂
J⋃
j=1

Vj , ci /∈ V j , if i 6= j, and V j ∩ ek = ∅ if k /∈ Xj .
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For a real-valued J-tuple β ∈ [0, 1)J and a real-valued J ′-tuple δ ∈ [0, 1)J
′
, define the corner-edge weight

function

Φ(β,δ)(x) :=
J∑
j=1

ρ
βj
j (x)

∏
k∈Xj

(
rk(x)
ρj(x)

)δk
1Vj (x), x ∈ D. (2.4)

With this weight, we associate the weighted Sobolev spaces L2
(β,δ)(D) and H2

(β,δ)(D), cf. Section 4.1.2 of [40]
as closures of C∞0 (D\(C ∪ E)) with respect to the norms

‖v‖L2
(β,δ)(D) := ‖vΦβ,δ‖L2(D)

and for ι = 0, 1, 2,

‖v‖Hι(β,δ)(D) :=

 J∑
j=1

∑
|α|≤ι

∫
D∩Vj

ρ
2(βj−ι+|α|)
j (x)

∏
k∈Xj

(
rk(x)
ρj(x)

)2(δj−ι+|α|)

|∂αx v|2dx

1/2

.

We note that the spaces L2
(β,δ)(D) and H2

(β,δ)(D) are isomorphic with equivalent norms: for every x ∈ D,

J∑
j=1

ρ
2βj
j (x)

∏
k∈Xj

(
rk(x)
ρj(x)

)2δk

1Vj (x) ≤ (Φ(β,δ)(x))2 ≤ J
J∑
j=1

ρ
2βj
j (x)

∏
k∈Xj

(
rk(x)
ρj(x)

)2δk

1Vj (x),

Also, we define the weighted seminorm

|v|H2
(β,δ)(D) :=

 J∑
j=1

∑
|α|=2

∫
D∩Vj

ρ
2βj
j (x)

∏
k∈Xj

(
rk(x)
ρj(x)

)2δj

|∂αx v|2dx

1/2

.

Lemma 2.1. For a polygon D (i.e. in spatial dimension d = 2), there exists a constant C > 0 such that for
every f ∈ L2

β(D),
‖f‖V ∗ ≤ C‖f‖L2

β(D).

For a polyhedron D (i.e. in spatial dimension d = 3), there exists a constant C > 0 such that for every
f ∈ L2

(β,δ)(D),
‖f‖V ∗ ≤ C‖f‖L2

(β,δ)(D).

Proof. The case d = 2 is proven in Lemma 1 from [30]. The case d = 3 follows by Lemma 4.1.4 of [40]. Specifically,
in the notation of [40] the assertion of this lemma reads that the embedding V 0,2

β,δ (D) ⊂ V −1,2
0,0 (D) is continuous,

if βj < 1 and δk < 1, j = 1, . . . , J , k = 1, . . . , J ′. We note that here the space V 0,2
β,δ (D) of [40] coincides with our

spaces H0
(β,δ)(D) = L2

(β,δ)(D) and the space V −1,2
0,0 (D) is isomorphic to V ∗. In the definition of the weighted

space L2
(β,δ)(D) = H0

(β,δ)(D), it has been assumed that βj < 1 and δk < 1, j = 1, . . . , J , k = 1, . . . , J ′. �

In polygons D in space dimension d = 2 and for functions in H2
β(D), a full regularity shift for the Laplacian

is available, cf. for example Theorem 3.2 of [5]: there exists a constant C > 0 such that for every w ∈ V with
∆w ∈ L2

β(D),
‖w‖H2

β(D) ≤ C‖∆w‖L2
β(D), (2.5)

where we assume that the weight exponent sequence β satisfies max{0, 1−π/ωi} < βi < 1, i = 1, . . . , J . Here, ωi
denotes the interior angle of the polygon D at corner ci, i = 1, . . . , J . Since [5] considers the Poisson boundary
value problem with a zero order term, i.e., −∆u + u = f , we note that Lemma 2.1 implies that there exists a
constant C such that for every w ∈ V ∩H2

β(D), ‖w‖L2
β(D) ≤ C‖∆w‖L2

β(D).
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In space dimension d = 3, when D is a polyhedral domain with plane sides and for functions in H2
(β,δ)(D)∩V ,

there holds a corresponding regularity shift of the Dirichlet Laplacian by Lemma 4.3.1 of [40] and by the inverse
mapping theorem, cf. [13], Theorem 5.6.2: there exists a constant C > 0 such that for every w ∈ H2

(β,δ)(D)∩ V
holds

‖w‖H2
(β,δ)(D) ≤ C‖∆w‖L2

(β,δ)(D), (2.6)

where we assume that
1
2
− λj < βj < 1, j = 1, . . . , J, and 1− π

ωk
< δk < 1, k = 1, . . . , J ′,

where ωk is the interior angle between two faces meeting at edge ek and λj is given by

λj := −1
2

+

√
Λj +

1
4
,

where Λj is the smallest, strictly positive eigenvalue of the Dirichlet Laplace–Beltrami operator on the intersec-
tion of the unit sphere centered at cj and the infinite, interior polyhedral tangent cone to ∂D with vertex cj ,
cf. Section 4.3.1 of [40].

2.3. FE convergence theory

Let {T`}`≥0 denote a sequence of regular, simplicial triangulations of D with proper mesh refinements near
vertices and, if d = 3, also near edges of D. Let further P1(K) denote the affine functions on a subset K of
Rd, i.e., the polynomial degree r = 1. In FE spaces V` := {v ∈ V : v|K ∈ P1(K),K ∈ T`} of continuous,
piecewise affine functions on {T`}`≥0, optimal asymptotic convergence rates are achievable, also in the presence
of singularities. We state these for subsequent reference, recapitulating from [2,4,5,21] approximation properties
in H1(D) of the FE spaces V`.

Specifically, there exists C > 0 such that for every w ∈ H2
β(D)∩V for d = 2, resp. for every w ∈ H2

(β,δ)(D)∩V
for d = 3, and for every ` ≥ 0 there exists w` ∈ V` such that, with M` := dim(V`),

‖w − w`‖V ≤ CM−1/d
`

{
‖w‖H2

β(D) if d = 2,
‖w‖H2

(β,δ)(D) if d = 3.
(2.7)

For d = 2, the convergence rate bound (2.7) is due to Lemmas 4.1 and 4.5 of [5] for regular, graded simplicial
meshes, resp. due to [21] for simplicial bisection tree meshes. In polyhedral domains D in space dimension d = 3,
this estimate follows by Theorem 4.6 of [4] for every w ∈ H2

(β,δ)(D) (in [4] denoted by W 2,2
β,δ(D)). Specifically, in

the proof of Theorem 4.6 from [4] an interpolation error bound on H1(D) for functions in H2
(β,δ)(D) is obtained

for an interpolant Zh` defined on page 1212 of [4] based on Lemma 4.4 of [4]. Inspecting the proof of Lemma 4.4
from [4], for every v ∈ H2

(β,δ)(D), v|∂D = 0 implies Zh`(v)|∂D = 0, Zh` : H2
(β,δ)(D) ∩ V → V`, i.e., the

interpolant in ([4], Lem. 4.4) preserves homogeneous boundary values. We also assume βj < 2/3, j = 1, . . . , J ,
and δk < 2/3, k = 1, . . . , J ′. Since 1/2−λj ≤ 1/2, j = 1, . . . , J , and 1−π/ωk ≤ 1/2, k = 1, . . . , J ′, this does not
restrict generality. See also [3, 37] for further approximation results of FEM on anisotropically refined meshes
in a polyhedral domain.

In the case of quasi-uniform mesh refinement, the convergence rates are well-known to be limited by the
strongest singularity. For example for d = 2, the FE approximation wh of the solution w to the diffusion
equation −∇ · (exp(Ẑ)∇w) = f , w|∂D = 0, with deterministic Ẑ ∈ Ct(D) and f ∈ C∞(D) satisfies

‖w − wh‖V ≤ CM−min{τ,r}/d
h ,

where r ∈ N is the polynomial degree of the FE space with dimension Mh and τ ∈ (0,min{t, π/βmax}),
βmax := max{ω1, . . . , ωJ}2. The Hölder spaces Ct(D), t ∈ [0,∞), are sometimes also denoted by Cbtc,t−btc(D).

2Please note a misprint in Proposition 15 and Theorem 17 from [31], max{t, π/βmax} should be replaced by min{t, π/βmax}
which is inconsequential for the preceding derivations and conclusions of [31].
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2.4. Combined dimension truncation FE error bound

We now derive an error bound for the combined effect of truncating the GRF Z to a finite number of
parameters s, and to FE discretization in D of the resulting s-parametric problem (2.2).

Let accordingly us,T` : Ω→ V` denote the FE solution, i.e.,∫
D

as∇us,T` · ∇vdx = f(v), ∀v ∈ V`. (2.8)

For notational convenience, we introduce

β :=

{
β if d = 2,
(β, δ) if d = 3.

(2.9)

The Banach space W 1,∞
β

(D) is the space of all measurable functions v : D → R that have finite W 1,∞
β

(D)-
norm, where

‖v‖W 1,∞
β

(D) := max{‖v‖L∞(D), ‖|∇v|Φβ‖L∞(D)}.

In order for the multilevel algorithm Q∗L to yield improved (w.r. to the single-level algorithm) error vs. work
bounds, we require stronger assumptions than in the single-level analyses of [26, 31] on the function system
(ψj)j≥1. This corresponds to what was found for uniform random parameters in [35] and in the lognormal
case for ψj with global supports in [36]. The “local support” condition (A1) is, in the MLQMC-FE algorithm,
strengthened as follows: there exist a constant K1 > 0 and a positive sequence (b̄j)j≥1 such that

K1 :=

∥∥∥∥∥∥
∑
j≥1

max{|∇ψj |Φβ, |ψj |}
b̄j

∥∥∥∥∥∥
L∞(D)

<∞. (A2)

Remark 2.2. When the precision operator of Z is a positive power of a shifted Dirichlet Laplacian on D
the Karhunen–Loève eigenfunctions vj are, by the spectral mapping theorem, eigenfunctions of the Dirichlet
Laplacian on D: −∆vj = νjvj , vj |∂D = 0, j ∈ N. Here, the eigenvalues νj are related to the ones appearing in
the Karhunen–Loève expansion of the GRF Z by the spectral mapping theorem. Elliptic regularity shifts for
the Dirichlet Laplacian are also known in certain weighted Hölder spaces in D: for d = 3, Lemma 4.3.1.2 of [40],
implies that vj ∈W 1,∞

(β,δ)(D) provided that 1− λj < βj < 1, j = 1, . . . , J , and 1− π/θk < δk < 1, k = 1, . . . , J ′,

where we used here that the weighted C1+ε(D)-type space N1,ε
β,δ(D) (in the notation of [40], Sects. 4.2 and 4.3)

embeds continuously into W 1,∞
(β,δ)(D). Note that this condition on β for the KL eigenfunctions is stronger than

in assumption (A2). Similar statements hold for d = 2. Here, singularities at corners and (for d = 3) along
edges of the Karhunen–Loève eigenfunctions appear as a consequence of regularity shifts for the Dirichlet
Laplacian in weighted Hölder spaces. The structure of the weight functions Φβ (which depend only on D and
on the (Dirichlet) Laplacian) in the assumption (A2) on the Karhunen–Loève eigenfunctions is identical to
the weights in the elliptic regularity shift (2.6). In the case of Matérn-type covariance functions, as induced by
solutions to (1.1), there is neither dependence of the functional form of the weight functions on the regularity
nor on the positive correlation length of the respective GRF. Note, however, that in general, Karhunen–Loève
eigenfunctions have global support in D.

Assumption (A2) implies W 1,∞
β

(D)-regularity of the GRF Z and strong approximation by its truncated
expansion. This is made precise in the following proposition. Its proof is completely analogous to Theorem 2 of
[31] and therefore not detailed.
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Proposition 2.3. Let the assumption in (A2) be satisfied for some sequence (b̄j)j≥1 such that (b̄j)j≥1 ∈ `p0(N)
for some p0 ∈ (0,∞). For every ε > 0 and q ∈ [1,∞) there exists a constant C > 0 such that for every s ∈ N,

‖Z − Zs‖Lq(Ω:W 1,∞
β

(D)) ≤ C sup
j>s
{b̄1−εj }.

Since (∇a)Φβ = (a∇Z)Φβ holds in L∞(D)d, µ-a.s., Proposition 2.3 and Corollary 6 of [31] imply with the
Cauchy–Schwarz inequality that for every q ∈ [1,∞) there exists a constant C > 0 such that for every s ∈ N,

‖a‖Lq(Ω;W 1,∞
β

(D)) <∞ and ‖as‖Lq(Ω;W 1,∞
β

(D)) ≤ C <∞. (2.10)

To obtain an estimate of the Laplacian of u, we note that in any compact subset D̃ ⊂⊂ D it holds −a∆u =
f − ∇a · ∇u, µ-a.s., where we assume that f ∈ L2

β
(D). This equation may be tested with −∆uΦ2

β
/a, which

implies with Lemma 2.1

‖∆u‖L2
β

(D) ≤
‖f‖L2

β
(D)

amin
+ ‖Z‖W 1,∞

β
(D)‖u‖V ≤ C

‖f‖L2
β

(D)

amin
(1 + ‖Z‖W 1,∞

β
(D)). (2.11)

An Aubin–Nitsche duality argument, (2.3), (2.5), (2.7), Proposition 2.3, (2.10), and (2.11) imply that for
every ε > 0, there exists a constant C > 0 such that for every s ∈ N, ` ∈ N0

|E(G(u))− E(G(us,T`))| ≤ C
(

sup
j>s
{btj}+M

−2/d
`

)
‖f‖L2

β
(D)‖G‖L2

β
(D), (2.12)

where t = 2− p0/2 if p0 ≤ 2 and t = 1− ε otherwise. Recall that (bj)j≥1 ∈ `p0(N) for some p0 ∈ (0,∞). In this
setting, p0 ∈ (0, 2) is the range of applicability of QMC, cf. Theorem 11 of [31].

Remark 2.4. By interpolation, the error estimate in (2.12) extends to the case that f ∈ (V ∗, L2
β

(D))t,∞ and

G(·) ∈ (V ∗, L2
β

(D))t′,∞ for some t, t′ ∈ [0, 1]. Then the estimate in (2.12) holds with the term M
−2/d
` replaced by

M
−(t+t′)/d
` . To see this, we observe that the real method of interpolation can be applied to the regularity shifts

in (2.5) and in (2.11). Specifically, the linear operator relating the solution u ∈ V to its approximation error
with a V -bounded, and quasioptimal projector Π` : V → V`, where Π` is, for example, the H1

0 (D)-projection.
From the approximation property in (2.7), the interpolation couple L2

β
(D) ⊂ V ∗ then yields the fractional

convergence order. Here and throughout what follows, interpolation spaces shall be understood with respect to
the real method of interpolation; we refer to Chapter 1 of [45].

3. QMC integration

With convergence rate bounds on the dimension truncation and the FE discretization error at hand, we
address the numerical approximation of the expectations in (2.12) with respect to the GM µ. Due to dimension
truncation, we evaluate its s-variate section, i.e. we integrate w.r. to the GM on Rs. As in [26], we approximate
the s-variate integrals by so-called randomly shifted lattice rules proposed in [41]. Accordingly, we review QMC
error estimates of randomly shifted lattice rules for high-dimensional integrals with respect to the s-variate
normal distribution. The construction of generating vectors for such QMC rules in particular with respect to
Gaussian and exponentially decaying weight functions with a fast CBC construction have been found in [41].
There, concrete error estimates of the resulting QMC rules in the mean-square sense (with respect to the random
shift) have been derived, cf. Theorem 8 of [41]. See also Examples 4 and 5 of [34] for the estimation of constants
appearing in the error bound of Theorem 8 from [41] for Gaussian and exponential weight functions, respectively.
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The error analysis of randomly shifted lattice rules requires, for sequences of positive weights γ = (γu)u⊂N,
indexed by all finite subsets u ⊂ N, the weighted Sobolev space Wγ(Rs) of mixed first order derivatives, which
is defined by the following norm

‖F‖Wγ(Rs) :=

 ∑
u⊂{1:s}

γ−1
u

∫
R|u|

∣∣∣∣∣∣
∫

Rs−|u|
∂uF (y)

∏
j∈{1:s}\u

φ(yj)dy{1:s}\u

∣∣∣∣∣∣
2∏
j∈u

w2
j (yj)dyu


1/2

, (3.1)

where {1 : s} := {1, . . . , s}.
Here, φ denotes the univariate normal density

φ(y) :=
1√
2π
e−

y2

2 , y ∈ R.

The norm in (3.1) is considered with respect to Gaussian and exponential weight functions

w2
g,j(y) := e

− y2

2αg,j , y ∈ R, j ∈ N, and w2
exp,j(y) := e−αexp,j |y|, y ∈ R, j ∈ N. (3.2)

The parameters αg,j > 1 and αexp,j > 0 will be determined in the ensuing error analysis. If the parameters
αg,j or αexp,j are constant with respect to j, we omit j for ease of presentation. In the following we consider the
case αg,j = αg > 1 and αexp,j = αexp > 0 for every j ∈ N. In this work, we consider in (3.1) product weights
γ = (γu)u⊂N, determined by a positive QMC weight sequence (γj)j≥1, i.e.,

γu =
∏
j∈u

γj , u ⊂ N, |u| <∞.

We will denote the QMC approximation in s dimensions with N points by Qs,N (·). It shall approximate
integrals with respect to the multivariate normal distribution which we denote for every integrand F ∈ L1(Rs, µ)
by

Is(F ) :=
∫

Rs
F (y)

∏
j∈{1:s}

φ(yj)dy.

For a sequence of dimension truncations (s`)`=0,...,L and a sequence (N`)`=0,...,L, L ∈ N0, the MLQMC
quadrature algorithm of [35] is defined by

Q∗L(G(uL)) :=
L∑
`=0

Qs`,N`(G(u`)−G(u`−1)), L ≥ 0, (3.3)

with the understanding that G(u−1) := 0. We used the notation that u` := us`,T` , ` ≥ 0. Multilevel QMC
algorithms stemming from randomly shifted lattice rules have been considered in [35, 36]. The following error
estimate (see [35], Eq. (23) or [36], Eq. (3.2)) holds due to the independence of the random shifts on the different
levels

E∆(|Is(G(uL))−Q∗L(G(uL))|2) =
L∑
`=0

E∆(|Is(G(u` − u`−1))−Qs`,N`(G(u` − u`−1))|2), (3.4)

where we apply a randomly shifted lattice rule with respect to (possibly) a different QMC weight sequence on
the PDE discretization level ` = 0. The expectation with respect to the random shifts is denoted by E∆(·).

In [31], convergence of randomly shifted lattice rules with product weights is investigated, which relies on
parametric regularity estimates of a particular form. We summarize the QMC convergence theory in the following
theorem.
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Theorem 3.1. Let (̃bj)j≥1 be a positive sequence and κ > 0 such that for some F : RN → R there exists a
constant C > 0 and a positive function H(y) such that for every y ∈ {y ∈ RN : ∃s ∈ N, yj = 0 : ∀j > s},

∑
u⊂N,|u|<∞

|∂uF (y)|2
∏
j∈u

(
κ

b̃j

)2

≤ CH(y)2.

(1) Let (̃bj)j≥1 ∈ `p(N) for some p ∈ (2/3, 2). For ε ∈ (0, 3/4 − 1/(2p)), set p′ = p/4 + 1/2 − εp ∈ (0, 1).
Consider the Gaussian weight functions (wg,j)j≥1 with parameter αg and QMC integration weight sequence

αg ∈
(

p

2(p− p′)
,

p

p− 2(1− p′)

)
and γj = b̃2p

′

j , j ≥ 1.

Then, there exists a constant C (independent of F ) such that for q0 = 2qq′/(q′− q), where q = p/(2(1−p′))
and q′ ∈ (q, αg/(αg − 1)),√

E∆(|Is(F )−Qs,N (F )|2) ≤ C(ϕ(N))−1/(2p)−1/4+ε‖H‖Lq0 (Rs,µ).

(2) Let (̃bj)j≥1 ∈ `p(N) for some p ∈ (2/3, 1]. Assume that H(y) ≤ η1 exp(η2

∑
j≥1 b̃j |yj |) for some η1, η2 > 0.

Set p′ = 1 − p/2. Consider the exponential weight functions (wexp,j)j≥1 with parameter αexp and QMC
integration weight sequence

αexp > 2η2 sup
j≥1
{b̃j} and γj = b̃2p

′

j , j ≥ 1.

Then, there exists a positive constant C (independent of η1) such that√
E∆(|Is(F )−Qs,N (F )|2) ≤ C (ϕ(N))−1/p+1/2 η1.

The Euler totient function is denoted by ϕ(·).

This theorem was, in the case of Gaussian weight functions, obtained in Theorems 9 and 11 of [31] and in
the case of exponential weight functions in Theorems 9 and 12 of [31]. The main ingredient of the proof of
Theorem 9 from [31] is a parametric regularity estimate of the form assumed in Theorem 3.1. The parametric
regularity estimates derived in [26, 36] for globally supported ψj afforded bounds for each partial derivative
separately. In [31], we used the bound from Theorem 4.1 of [7] which does account for local supports and affords
control of “bulk” sums of (norms of) solution derivatives with respect to the parameters yj . We also note that
in applications, the sequence (̃bj)j≥1 may be arbitrarily scaled by a factor κ in order to satisfy such a regularity
estimate.

4. Parametric regularity

In this section we derive parametric regularity estimates that allow to prove dimension independent con-
vergence rates of MLQMC. We extend the argument that results in the estimate in Theorem 4.1 of [7] to
dimensionally truncated and FE differences. The estimate in Theorem 4.1 of [7] was used in our single-level
QMC analysis in [31] to prove dimension independent convergence rates of QMC with product weights in the
case of local supports. In view of the parametric regularity estimate of an integrand F , which is the condi-
tion to apply Theorem 3.1, we seek to prove suitable estimates in the case that F (y) = G(u(y)) − G(us(y))
and F (y) = G(u(y)) − G(uT`(y)). To be suitable for MLQMC, the quantitative approximation properties of
us(y) ≈ u(y) and uT`(y) ≈ u(y) shall be contained in these estimates; see ahead Theorems 4.3 and 4.10.
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For every finite s ∈ N, the truncated fields Zs, as, and us, are well-defined regardless of assumption (A1). In
particular, Zs =

∑s
j=1 yjψj is well-defined for every y ∈ Ω = RN. We may therefore interpret Zs as a mapping

from Rs to L∞(D) such that pointwise evaluation is well-defined for every y ∈ Rs. Similarly, as and us may be
interpreted as mappings from Rs to L∞(D) and to V , respectively. In the same way Z, a, and u are mappings
with pointwise evaluation from the set

U := {y ∈ Ω : ∃s ∈ N, yj = 0, j > s}

to L∞(D) and V , respectively. Note that Rs × {0} ⊂ U =
⋃
s∈N Rs × {0} for every s ∈ N, where 0 ∈ RN\{1:s}.

Hence, the set U of admissible parameters y is sufficiently rich for the ensuing QMC convergence analysis. The
mappings Zs, as, and us extend naturally to mappings from U to L∞(D) and to V , respectively. For the ensuing
analysis, let us introduce the parametric energy norm

‖v‖a(y) :=
(∫

D

a(y)|∇v|2dx
)1/2

, ∀v ∈ V,y ∈ U.

4.1. Dimension truncation

For every y ∈ U , the difference u(y)− us(y) satisfies the variational formulation∫
D

a(y)∇(u(y)− us(y)) · ∇vdx = −
∫
D

(a(y)− as(y))∇us(y) · ∇vdx, ∀v ∈ V. (4.1)

We will mostly (in the proofs) omit the y dependence in the following. Set F := {τ ∈ NN
0 : |τ | < ∞}. For

every real-valued sequence ρ = (ρj)j≥1 and τ ∈ F , we shall use the notation ρτ =
∏
j≥1 ρ

τj
j . For every τ ∈ F

and a positive sequence (ρj)j≥1, let us define

κ0(τ ,ν) :=

√
τ !√
ν!
ρτ−ν |ψ|τ−ν

(τ − ν)!
, ν ≤ τ .

Also, for given k, r ∈ N introduce the set Λk := {τ ∈ F : |τ | = k, ‖τ‖`∞ ≤ r} and for any integer ` ≤ k − 1
and for ν ∈ Λ`, introduce

Rν,k := {τ ∈ Λk : τ ≥ ν},

where r denotes the maximal order of differentiability to be considered. The following lemma will be useful in
the ensuing analysis.

Lemma 4.1. Assume that there exists a positive sequence (ρj)j≥1 such that, for some r ∈ N,

K̃0 :=

∥∥∥∥∥∥
∑
j≥1

ρj |ψj |

∥∥∥∥∥∥
L∞(D)

<
log(2)√

r
· (4.2)

Then, for every τ ∈ F such that ‖τ‖`∞ ≤ r,∑
ν≤τ ,ν 6=τ

κ0(τ ,ν) ≤ e
√
rK̃0 − 1 < 1

and for every positive integer ` ≤ k − 1 and multi-index ν ∈ Λ`,∑
τ∈Rν,k

κ0(τ ,ν) ≤ (
√
rK̃0)k−`

(k − `)!
·
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The estimates in this lemma are given in equations (4.12) and (4.14) from [7]. The second estimate of
Lemma 4.1 holds even if the smallness assumption in (4.2) is not guaranteed. We note that the condition (4.2)
is implied by (A1) with ρ−1

j = bjK̄
√
r/ log(2) provided that K̄ > ‖

∑
j≥1 |ψj |/bj‖L∞(D). For every s ∈ N,

integers ` ≤ k − 1, and ν ∈ Λ`, introduce the set

Rsν,k := {τ ∈ Rν,k : ∃j > s such that τj > νj}.

Lemma 4.2. Let the assumptions of Lemma 4.1 hold for positive weights (ρj)j≥1 such that c :=
‖(ρ−1

j )j≥1‖`∞(N) <∞. Further assume that for some η > 0

K̃η :=

∥∥∥∥∥∥
∑
j≥1

ρ1+η
j |ψj |

∥∥∥∥∥∥
L∞(D)

<∞.

Then, for s ∈ N and every τ ∈ F such that ‖τ‖`∞ ≤ r and τj > 0 for some j > s,∑
ν≤τ ,νj=0 ∀j>s

κ0(τ ,ν) ≤ 2(e
√
rK̃ηc

η

− 1)c−η sup
j>s
{ρ−ηj }.

For s ∈ N, positive integers ` ≤ k − 1, and ν ∈ Λ` such that νj = 0, j > s,

∑
τ∈Rsν,k

κ0(τ ,ν) ≤ (
√
rK̃ηc

η)k−`

(k − `)!
c−η sup

j>s
{ρ−ηj }.

Proof. There is j > s such that τj > 0. Since κ0 is a product, by Lemma 4.1,

∑
ν≤τ ,νj=0 ∀j>s

κ0(τ ,ν) =

 ∑
ν{1:s}≤τ{1:s}

κ0(τ {1:s},ν{1:s})

κ0(τN\{1:s},0N\{1:s})

≤ 2κ0(τN\{1:s},0N\{1:s}),

where we used the notation that for every u ⊂ N, τu is a multi-index that satisfies (τu)j = τj , j ∈ u, and
(τu)j = 0 otherwise. With c = ‖(ρ−1

j )j≥1‖`∞(N), we obtain

κ0(τN\{1:s},0N\{1:s}) ≤
ρτN\{1:s}√
τN\{1:s}!

|ψ|τN\{1:s} ≤ exp

√r∑
j>s

ρj |ψj |

− 1

≤ (e
√
rK̃ηc

η

− 1)c−η sup
j>s
{ρ−ηj }.

For the proof of the second inequality, we observe that∑
τ∈Rsν,k

κ0(τ ,ν) ≤
∑

τ∈Rsν,k

√
τ !√
ν!

(ρ1+ηcη)(τ−ν)|ψ|τ−ν

(τ − ν)!
c−η sup

j>s
{ρ−ηj },

where we used that for every τ ∈ Rsν,k there exists j > s such that τj − νj > 0 and that ρ−1
j /c ≤ 1, j ≥ 1. By

the first statement of Lemma 4.1,∑
τ∈Rsν,k

√
τ !√
ν!

(ρ1+ηcη)(τ−ν)|ψ|τ−ν

(τ − ν)!
≤

∑
τ∈Rν,k

√
τ !√
ν!

(ρ1+ηcη)(τ−ν)|ψ|τ−ν

(τ − ν)!
≤ (
√
rK̃ηc

η)k−`

(k − `)!
,

which implies the assertion of the lemma. �
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Theorem 4.3. Let the assumptions of Lemmas 4.1 and 4.2 be satisfied for a positive sequence (ρj)j≥1 and
η > 0. There exists a constant C > 0 such that for every s ∈ N and every y ∈ U

∑
τ∈F,‖τ‖`∞≤r

ρ2τ

τ !
‖∂τ (u(y)− us(y))‖2a(y) ≤ C

(∥∥∥∥a(y)− as(y)
a(y)

∥∥∥∥2

L∞(D)

+ sup
j>s
{ρ−2η
j }

)
‖us(y)‖2a(y).

Proof. We divide the index set Fr := {τ ∈ F : τj ≤ r, j ∈ N} into Fs1 := {τ ∈ Fr : τj = 0∀j > s} and
Fs2 := {τ ∈ Fr : ∃j > s s.t. τj > 0}. Obviously, Fr = Fs1 ∪ Fs2 .

Let 0 6= τ ∈ Fs1 be arbitrary. We observe that for every v ∈ V ,∫
D

a∇∂τ (u− us) · ∇vdx = −
∑

ν≤τ ,ν 6=τ

(
τ

ν

)∫
D

ψτ−νa∇∂ν(u− us) · ∇vdx

−
∑
ν≤τ

(
τ

ν

)∫
D

ψτ−ν(a− as)∇∂νus · ∇vdx.

Set

σk :=
∑

τ∈Λk∩Fs1

ρ2τ

τ !
‖∂τ (u− us)‖2a

and take v = ∂τ (u− us). By a twofold application of the Cauchy–Schwarz inequality and by Lemma 4.1

σk ≤
∫
D

∑
τ∈Λk∩Fs1

∑
ν≤τ ,ν 6=τ

aκ0(τ ,ν)
ρν√
ν!
|∇∂ν(u− us)| ρ

τ

√
τ !
|∇∂τ (u− us)|dx

+
∫
D

∑
τ∈Λk∩Fs1

∑
ν≤τ

|a− as|κ0(τ ,ν)
ρν√
ν!
|∇∂νus| ρ

τ

√
τ !
|∇∂τ (u− us)|dx

≤
∫
D

 ∑
τ∈Λk∩Fs1

∑
ν≤τ ,ν 6=τ

aκ0(τ ,ν)
ρ2ν

ν!
|∇∂ν(u− us)|2

1/2a ∑
τ∈Λk∩Fs1

ρ2τ

ν!
|∇∂τ (u− us)|2

1/2

dx

+
∫
D

 ∑
τ∈Λk∩Fs1

∑
ν≤τ

|a− as|κ0(τ ,ν)
ρ2ν

ν!
|∇∂νus|2

1/22
∑

τ∈Λk∩Fs1

|a− as|ρ
2τ

τ !
|∇∂τ (u− us)|2

1/2

dx

Further, we apply the Cauchy–Schwarz inequality on the integral and obtain that

σk ≤

∫
D

∑
τ∈Λk∩Fs1

∑
ν≤τ ,ν 6=τ

aκ0(τ ,ν)
ρ2ν

ν!
|∇∂ν(u− us)|2

1/2

√
σk

+

∫
D

∑
τ∈Λk∩Fs1

∑
ν≤τ

|a− as|κ0(τ ,ν)
ρ2ν

ν!
|∇∂νus|2

1/2√
2
∥∥∥∥a− asa

∥∥∥∥
L∞(D)

√
σk.

By equation (4.18) of [7] in the proof of Theorem 4.1 from [7], for any δ ∈ [
√
rK̃0/ log(2), 1) and for every

` ∈ N, ∑
τ∈Λ`

ρ2τ

τ !
‖∂τus‖2a ≤ ‖us‖2a δ`. (4.3)
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We change the order of summation in order to apply the second estimate in Lemma 4.1 and insert (4.3) to
obtain with Young’s inequality that for any ε > 0

σk ≤ (1 + ε)
k−1∑
`=0

(
√
rK̃0)k−`

(k − `)!
σ` +

(
1 +

1
ε

)
2
∥∥∥∥a− asa

∥∥∥∥2

L∞(D)

k∑
`=0

(
√
rK̃0)k−`

(k − `)!
∑
τ∈Λ`

ρ2τ

τ !
‖∂τus‖2a

≤ (1 + ε)
k−1∑
`=0

(
√
rK̃0)k−`

(k − `)!
σ` +

(
1 +

1
ε

)
2
∥∥∥∥a− asa

∥∥∥∥2

L∞(D)

‖us‖2a
k∑
`=0

(
√
rK̃0)k−`

(k − `)!
δ`

≤ (1 + ε)
k−1∑
`=0

(
√
rK̃0)k−`

(k − `)!
σ` +

(
1 +

1
ε

)
4
∥∥∥∥a− asa

∥∥∥∥2

L∞(D)

‖us‖2a δk.

By a change of the order of summation, we obtain that

∑
k≥1

k−1∑
`=0

(
√
rK̃0)k−`

(k − `)!
σ` =

∑
`≥0

( ∞∑
k=`+1

(
√
rK̃0)k−`

(k − `)!

)
σ` ≤ (e

√
rK̃0 − 1)

∑
`≥0

σ`. (4.4)

Let us choose ε > 0 such that ε < (2−e
√
rK̃0)/(e

√
rK̃0−1), which implies that (1+ε)(e

√
rK̃0−1) < 1. Denote

C∗ := (1− (1 + ε)(e
√
rK̃0 − 1))−1. We sum σk over k ≥ 1 and obtain that

∑
k≥1

σk ≤ (1 + ε)(e
√
rK̃0 − 1)

∑
`≥0

σ` +
(

1 +
1
ε

)
4
∥∥∥∥a− asa

∥∥∥∥2

L∞(D)

‖us‖2a
δ

1− δ
·

Since (1 + ε)(e
√
rK̃0 − 1) < 1, we conclude that

∑
k≥1

σk ≤ C∗σ0 + C∗
(

1 +
1
ε

)
4
∥∥∥∥a− asa

∥∥∥∥2

L∞(D)

‖us‖2a
δ

1− δ
,

which implies ∑
τ∈Fs1

ρ2τ

τ !
‖∂τ (u− us)‖2a ≤ C

(
‖u− us‖2a +

∥∥∥∥a− asa

∥∥∥∥2

L∞(D)

‖us‖2a

)
.

In the other case τ ∈ Fs2 , we observe that for arbitrary 0 6= τ ∈ Fs2 ,∫
D

a∇∂τ (u− us) · ∇vdx = −
∑

ν≤τ ,ν 6=τ

(
τ

ν

)∫
D

ψτ−νa∇∂ν(u− us) · ∇vdx

−
∑
ν≤τ

(
τ

ν

)∫
D

ψτ−νa∇∂νus · ∇vdx, ∀v ∈ V.
(4.5)

We used that there is j > s such that τj > 0, which implies that for ν 6= τ such that ν ≤ τ , either τj−νj > 0
yielding ∂τ−νas = 0 or τj = νj > 0 yielding ∂νus = 0. Moreover, in the second sum above, we can restrict the
index set to those ν satisfying νj = 0 for every j > s. In particular, always ν 6= τ . The estimate of the sum
over τ ∈ Fs2 follows with a similar argument using Lemma 4.1 for the first sum and Lemma 4.2 for the second
sum of the right hand side of equality (4.5), where we crucially use that ν 6= τ , which yields that the sum runs
only over ` ∈ {0, . . . , k − 1}. Specifically,∑

τ∈Fs2

ρ2τ

τ !
‖∂τ (u− us)‖2a ≤ C

(
‖u− us‖2a + max

j>s
{ρ−2η
j }‖us‖2a

)
.
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Since by (4.1) and by the Cauchy–Schwarz inequality

‖u− us‖a ≤
∥∥∥∥a− asa

∥∥∥∥
L∞(D)

‖us‖a,

the assertion of the theorem follows. �

Remark 4.4. The statement of Theorem 4.3 also holds true for the FE solution uT` and us,T` for every trun-
cation dimension s ∈ N.

4.2. Discretization

First we show parametric regularity estimates of the solution u. Thus, we bound weighted sums over sensi-
tivities of u in the norm of the smoothness space. For every τ ∈ F , we define the quantities

κ1(τ ,ν) :=

√
τ !√
ν!

ρτ−ν |∇ψτ−ν |Φβ
(τ − ν)!

, ν ≤ τ .

Lemma 4.5. Assume that for r ∈ N

K̃1 :=

∥∥∥∥∥∥
∑
j≥1

ρj max{|∇ψj |Φβ, |ψj |}

∥∥∥∥∥∥
L∞(D)

< Cr := sup
{
c > 0 :

√
rc e
√
rc ≤ 1

}
. (4.6)

Then for every τ ∈ NN
0 such that ‖τ‖`∞ ≤ r∑

ν≤τ ,ν 6=τ

κ1(τ ,ν) ≤
√
rK̃1e

√
rK̃1 < 1

and for every ` ≤ k − 1 and ν ∈ Λ`, ∑
τ∈Rν,k

κ1(τ ,ν) ≤ (k − `) (
√
rK̃1)k−`

(k − `)!
·

Proof. We set k = |τ | and observe with the multinomial theorem

∑
ν≤τ ,ν 6=τ

κ1(τ ,ν) =
k∑
`=1

∑
ν≤τ ,|τ−ν|=`

κ1(τ ,ν)

≤
k∑
`=1

r`/2
∑

ν≤τ ,|τ−ν|=`

`
ρτ−ν max{|∇ψ|Φβ, |ψ|}τ−ν

(τ − ν)!

≤
k∑
`=1

r`/2`
∑
|m|=`

ρmmax{|∇ψ|Φβ, |ψ|}m

m!

=
k∑
`=1

r`/2

(`− 1)!

∑
j≥1

ρj max{|∇ψj |Φβ, |ψj |}

`

≤
√
rK̃1e

√
rK̃1 < 1,

where we applied that

|∇ψτ−ν |Φβ ≤
∑
j≥1

(τj − νj)|ψj |τj−νj−1|∇ψj |Φβ
∏
i 6=j

|ψi|τi−νi ≤ |τ − ν|max{|∇ψ|Φβ, |ψ|}
τ−ν .

The second estimate follows similarly. �
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Theorem 4.6. Let the assumption of Lemma 4.5 be satisfied for a positive sequence (ρj)j≥1, and assume that
r ∈ N and K̃1 < Cr. There exists a constant C > 0 such that for every y ∈ U

∑
τ∈F,‖τ‖`∞≤r

ρ2τ

τ !
‖∆∂τu(y))‖2L2

β
(D) ≤ C

(
1

amin(y)
(1 + ‖|∇Z(y)|Φβ‖

2
L∞(D))‖u(y)‖2a(y) + ‖∆u(y)‖2L2

β
(D)

)
.

Proof. Let 0 6= τ ∈ F be given such that ‖τ‖`∞ ≤ r. We observe that for every v ∈ C∞0 (D),

−
∫
D

av∆∂τudx =
∫
D

∇a · ∇∂τu+
∑

ν≤τ ,ν 6=τ

(
τ

ν

)
(∇∂τ−νa · ∇∂νu+ ∂τ−νa∆∂νu)

 vdx.

Using the density of C∞0 (D) in L2
β

(D), we choose the test function v = −Φ2
β
/a∆∂τu, multiply by ρ2τ/τ !,

and apply the Young inequality for arbitrary ε > 0 to obtain

ρ2τ

τ !
‖∆∂τu‖2L2

β
(D) = −ρ

2τ

τ !

∫
D

∇a
a
· ∇∂τu+

∑
ν≤τ ,ν 6=τ

(
τ

ν

)
∇∂τ−νa

a
· ∇∂νu

∆∂τuΦ2
β

dx

− ρ2τ

τ !

∫
D

 ∑
ν≤τ ,ν 6=τ

(
τ

ν

)
∂τ−νa

a
∆∂νu

∆∂τuΦ2
β

dx

≤ ερ
2τ

τ !
‖∆∂τu‖2L2

β
(D) +

1
4ε

∫
D

|∇Z|Φβ ρτ |∇∂τu|√
τ !

+
∑

ν≤τ ,ν 6=τ

κ1(τ ,ν)
ρν |∇∂νu|√

ν!

2

dx

+
∫
D

∑
ν≤τ ,ν 6=τ

κ0(τ ,ν)
ρν |∆∂νu|Φβ√

ν!

ρτ |∆∂τu|Φβ√
τ !

dx.

(4.7)

Note that ∇((∂τ−νa)/a) = ∇ψτ−ν . Note also the change of the order of summation: for any sequence
(κ′(τ ,ν)) and for any k ∈ N

∑
τ∈Λk

∑
ν≤τ ,ν 6=τ

κ′(τ ,ν) =
k−1∑
`=0

∑
ν∈Λ`

∑
τ∈Rν,k

κ′(τ ,ν), (4.8)

which implies with Lemma 4.1 and with the elementary estimate xy ≤ (x2 + y2)/2, x, y > 0, that for any k ≥ 1,

∑
τ∈Λk

∫
D

∑
ν≤τ ,ν 6=τ

κ0(τ ,ν)
ρν |∆∂νu|Φβ√

ν!

ρτ |∆∂τu|Φβ√
τ !

dx

≤ 1
2

k−1∑
`=0

(
√
rK̃1)k−`

(k − `)!
∑
ν∈Λ`

ρ2ν

ν!
‖∆∂νu‖2L2

β
(D) +

1
2

(e
√
rK̃1 − 1)

∑
τ∈Λk

ρ2τ

τ !
‖∆∂τu‖2L2

β
(D).

(4.9)
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Note that the assumptions of Lemma 4.1 are weaker than those of Lemma 4.5 and K̃0 ≤ K̃1. Similarly, we
obtain with Lemma 4.5

∑
τ∈Λk

1
4ε

∫
D

|∇Z|Φβ ρτ |∇∂τu|√
τ !

+
∑

ν≤τ ,ν 6=τ

κ1(τ ,ν)
ρν |∇∂νu|√

ν!

2

dx

≤ 1
2ε

‖|∇Z|Φβ‖2L∞(D)

amin

∑
τ∈Λk

ρ2τ

τ !
‖∂τu‖2a +

1
2ε

∑
τ∈Λk

∫
D

 ∑
ν≤τ ,ν 6=τ

κ1(τ ,ν)
ρν |∇∂νu|√

ν!

2

dx

≤ 1
2ε

1
amin

(
‖|∇Z|Φβ‖

2
L∞(D)

∑
τ∈Λk

ρ2τ

τ !
‖∂τu‖2a +

k−1∑
`=0

(
√
rK̃1)k−`

(k − `− 1)!

∑
ν∈Λ`

ρ2ν

ν!
‖∂νu‖2a

)
.

(4.10)

As before by the proof of Theorem 4.1 and equation (4.18) of [7], for any δ ∈ [
√
rK̃1/ log(2), 1) and for every

` ∈ N0, ∑
ν∈Λ`

ρ2ν

ν!
‖∂νu‖2a ≤ δ`‖u‖2a. (4.11)

Hence,
k−1∑
`=0

(
√
rK̃1)k−`

(k − `− 1)!

∑
ν∈Λ`

ρ2ν

ν!
‖∂νu‖2a ≤

k−1∑
`=0

(
√
rK̃1)k−`

(k − `− 1)!
δ`‖u‖2a ≤ δk

k−1∑
`=0

log(2)
(log(2))k−`−1

(k − `− 1)!
‖u‖2a

≤ δk log(2)2‖u‖2a = δk log(4)‖u‖2a.

(4.12)

We choose 0 < ε < 1− e
√
rK̃1/2, which implies that Cε := (1− ε− (e

√
rK̃1 − 1)/2)−1 < 2. This allows us to

subtract ∆∂τu-terms summed over Λk in (4.7) and (4.9) while obtaining a constant C−1
ε > 1/2 which is shifted

to the left hand side, i.e.,∑
τ∈Λk

ρ2τ

τ !
‖∆∂τu‖2L2

β
(D) ≤

Cε
2ε

1
amin

(
‖|∇Z|Φβ‖

2
L∞(D) + log(4)

)
δk‖u‖2a

+
Cε
2

k−1∑
`=0

(
√
rK̃1)k−`

(k − `)!
∑
ν∈Λ`

ρ2ν

ν!
‖∆∂νu‖2L2

β
(D),

where we have also inserted (4.10), (4.11) and (4.12). We sum over k ≥ 1 and obtain with (4.4)∑
k≥1

∑
τ∈Λk

ρ2τ

τ !
‖∆∂τu‖2L2

β
(D) ≤

Cε
2ε

1
amin

(
‖|∇Z|Φβ‖

2
L∞(D) + log(4)

) δ

1− δ
‖u‖2a

+
Cε
2

(e
√
rK̃1 − 1)

∑
`≥0

∑
ν∈Λ`

ρ2ν

ν!
‖∆∂νu‖2L2

β
(D),

which implies the assertion as at the end of the proof of Theorem 4.3, since (Cε/2)(e
√
rK̃1 − 1) < 1. �

We remark that a related estimate to Theorem 4.6 has been derived in Theorem 6.1 of [6] without taking
into account the spatial weight function.

Theorem 4.7. Let the assumption of Lemma 4.5 be satisfied for a positive sequence (ρj)j≥1, r ∈ N, and
K̃1 < Cr. There exists a constant C > 0 such that for every y ∈ U∑

τ∈F,‖τ‖`∞≤r

ρ2τ

τ !
‖∂τ (u(y)− uT`(y))‖2a(y) ≤ C

(
(amax(y))
(amin(y))2

(1 + ‖∇Z(y)|Φβ‖
2
L∞(D))

)
‖f‖2L2

β
(D)M

−2/d
` .
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Proof. To simplify notation, we do not indicate in this proof the dependence of quantities on the parameters y.
Define the Galerkin projection Ph : V → V` for every w ∈ V by∫

D

a∇(w − Phw) · ∇vdx = 0, ∀v ∈ V`.

Since (I − Ph)v = 0 for every v ∈ V`, it holds that for every τ ∈ F ,

‖∂τ (u− uT`)‖a ≤ ‖Ph∂τ (u− uT`)‖a + ‖(I − Ph)∂τu‖a. (4.13)

Let τ ∈ F be such that ‖τ‖`∞(N) ≤ r and |τ | = k for some k ∈ N. We observe that

ρ2τ

τ !

∫
D

a|∇Ph∂τ (u− uT`)|2dx ≤
∫
D

∑
ν≤τ ,ν 6=τ

κ0(τ ,ν)a
ρν |∇∂ν(u− uT`)|√

ν!
ρτ |∇Ph∂τ (u− uT`)|√

τ !
dx.

A twofold application of the Cauchy–Schwarz inequality using that by the first estimate of Lemma 4.1 for
fixed τ ∈ F such that ‖τ‖`∞(N) ≤ r the sum of (κ0(τ ,ν))ν≤τ ,ν 6=τ is less than one implies with the change of
the order of summation in (4.8) and the second estimate in Lemma 4.1 the bound

∑
|τ |=k

ρ2τ

τ !
‖Ph∂τ (u− uT`)‖2a ≤

k−1∑
`=0

(
√
rK̃1)k−`

(k − `)!
∑
|ν|=`

ρ2ν

ν!
‖∂ν(u− uT`)‖2a. (4.14)

By the approximation property in (2.7), by (4.13), (4.14), the Young inequality for any ε > 0, and by the
change of the order of summation that implied (4.4)∑
k≥1

∑
|τ |=k

ρ2τ

τ !
‖∂τ (u− uT`)‖2a

≤ (1 + ε)
∑
k≥1

k−1∑
`=0

(
√
rK̃1)k−`

(k − `)!
∑
|ν|=`

ρ2ν

ν!
‖∂ν(u− uT`)‖2a +

(
1 +

1
ε

)∑
k≥1

∑
|τ |=k

ρ2τ

τ !
‖(I − Ph)∂τu‖2a

≤ (1 + ε)(e
√
rK̃1 − 1)

∑
`≥0

∑
|ν|=`

ρ2ν

ν!
‖∂ν(u− uT`)‖2a +

(
1 +

1
ε

)
C‖a‖L∞(D)M

−2/d
`

∑
k≥1

∑
|τ |=k

ρ2τ

τ !
‖∆∂τu‖2L2

β
(D).

Hence, we choose ε < (2− e
√
rK̃1)/(e

√
rK̃1 − 1) and conclude with Theorem 4.6 and (2.11) that there exists

a constant C > 0 such that∑
τ∈F,‖τ‖`∞≤r

ρ2τ

τ !
‖∂τ (u− uT`)‖2a ≤ C

(
(amax)
(amin)2

(1 + ‖∇Z|Φβ‖
2
L∞(D))

)
‖f‖2L2

β
(D)M

−2/d
` .

�

Remark 4.8. The parametric regularity estimate in Theorem 4.7 also holds if f ∈ (V ∗, L2
β

(D))t,∞ for some

t ∈ [0, 1] with the FE error bounded by an absolute constant times M−2t/d
` . This can be shown by interpolation

applied in the last and next to last step of the proof of Theorem 4.7, see also Remark 2.4.

Let G(·) ∈ L2
β

(D) denote a solution functional of interest which is deterministic, i.e., which does not depend

on y. To analyze the parametric regularity of G(u − uT`), we introduce vG and vT`G to be the solution and
respective FE solution to the adjoint problem with right hand side G(·). It holds that

G(u− uT`) =
∫
D

a∇(u− uT`) · ∇(vG − vT`G )dx.
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Proposition 4.9. For (ρ̃)j≥1 defined by ρ̃j :=
√

2ρj, j ∈ N, assume that (ρ̃)j≥1 satisfies the sparsity assumption
in (4.2) of Lemma 4.1. Then, for every y ∈ U , there holds

∑
τ∈F,‖τ‖`∞≤r

ρ2τ

τ !
|∂τG(u(y)− uT`(y))|2 ≤ 4

 ∑
‖τ‖`∞≤r

ρ̃2τ

τ !
‖∂τ (u(y)− uT`(y))‖2a(y)


×

 ∑
‖τ‖`∞≤r

ρ̃2τ

τ !
‖∂τ (vG(y)− vT`G (y))‖2a(y)

 .

Proof. We observe that for every τ ∈ F

ρτ√
τ !
∂τG(u− uT`) =

ρτ√
τ !

∫
D

∑
ν≤τ

(
τ

ν

)∑
m≤ν

(
ν

m

)
ψν−m(

√
a∇∂m(u− uT`))

 (
√
a∇∂τ−ν(vG − vT`G ))dx

=
∫
D

∑
ν≤τ

√(
τ

ν

)∑
m≤ν

κ0(ν,m)
(
ρm√
m!

√
a∇∂m(u− uT`)

)
×

(
ρτ−ν√
(τ − ν)!

√
a∇∂τ−ν(vG − vT`G )

)
dx.

It holds that
∑
ν≤τ

(
τ
ν

)
= 2τ . By a twofold application of the Cauchy–Schwarz inequality

ρ2τ

τ !
|∂τG(u− uT`)|2 ≤

∑
ν≤τ

√(
τ

ν

)
‖[. . . ]‖L2(D)

ρτ−ν√
(τ − ν)!

‖∂τ−ν(vG − vT`G )‖a

2

≤ 2τ
∑
ν≤τ

‖[. . . ]‖2L2(D)

ρ2(τ−ν)

(τ − ν)!
‖∂τ−ν(vG − vT`G )‖2a.

We define the sequence (ρ̃)j≥1 by ρ̃j :=
√

2ρj , j ∈ N. By a change of the order of summation∑
‖τ‖`∞≤r

ρ2τ

τ !
|∂τG(u− uT`)|2 ≤

∑
‖ν‖`∞≤r

2ν‖[. . . ]‖2L2(D)

∑
‖τ‖`∞≤r,τ≥ν

ρ̃2(τ−ν)

(τ − ν)!
‖∂τ−ν(vG − vT`G )‖2a.

Since
∑
m≤ν κ̃0(ν,m) ≤ 2 due to Lemma 4.1, where κ̃0 is w.r. to (b̃j)j≥1, by the Cauchy–Schwarz inequality

and (4.8)

∑
k≥0

∑
ν∈Λk

∫
D

∑
m≤ν

κ̃0(ν,m)
ρ̃m√
m!

√
a|∇∂m(u− uT`)|

2

dx ≤ 2
∑
k≥0

∑
ν∈Λk

∑
m≤ν

κ̃0(ν,m)
ρ̃2m

m!
‖∂m(u− uT`)‖2a

≤ 2
∑
k≥0

k∑
`=0

(
√
rK̃0)k−`

(k − `)!
∑
m∈Λ`

ρ̃2m

m!
‖∂m(u− uT`)‖2a

= 2
∑
`≥0

∑
k≥`

(
√
rK̃0)k−`

(k − `)!
∑
m∈Λ`

ρ̃2m

m!
‖∂m(u− uT`)‖2a

≤ 4
∑

‖m‖`∞≤r

ρ̃2m

m!
‖∂m(u− uT`)‖2a,

which proves the assertion together with the previous inequality. �
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The following theorem is directly implied by Theorem 4.7 and Proposition 4.9.

Theorem 4.10. Let the assumption of Lemma 4.5 be satisfied for a positive sequence (ρj)j≥1, and let r ∈ N
and assume that K̃1 < Cr/

√
2. Then there exists a constant C > 0 such that for every y ∈ U∑

τ∈F,‖τ‖`∞≤r

ρ2τ

τ !
|∂τG(u(y)− uT`(y))|2

≤ C
(

(amax(y))
(amin(y))2

(1 + ‖|∇Z(y)|Φβ‖
2
L∞(D))

)2

M
−4/d
` ‖f‖2L2

β
(D)‖G‖

2
L2

β
(D).

Remark 4.11. The statement of Theorem 4.10 also holds true for the dimensionally truncated solutions us

and us,T` , for every truncation dimension s ∈ N. In particular, the constant C which appears in the error bound
is independent of s.

Remark 4.12. The parametric regularity estimate in Theorem 4.10 also holds if f ∈ (V ∗, L2
β

(D))t,∞ and
G(·) ∈ (V ∗, L2

β
(D))t′,∞ for t, t′ ∈ [0, 1]. Then, the FE discretization error contribution to the overall error is

bounded by a constant times M−2(t+t′)/d
` . This follows from Remark 4.8.

5. Multilevel QMC convergence analysis

The sequences (bj)j≥1 and (b̄j)j≥1 in the assumptions in (A1) and (A2) will be the input for the QMC weight
sequence (γj)j≥1 of product weights. In the MLQMC quadrature algorithm Q∗L in (3.3), we apply a randomly
shifted lattice rule on level ` = 0 with respect to the QMC weight sequence

γj = b2p
′

j , j ≥ 1, (5.1)

for some p′ ∈ (0, 1) and on the levels ` = 1, . . . , L with respect to the QMC weight sequence

γ̄j = (b1−θj ∨ b̄j)2p̄′ , j ≥ 1 (5.2)

for some p′ ∈ (0, 1) and some θ ∈ (0, 1). Here, for c1, c2 ∈ R, c1 ∨ c2 := max{c1, c2}.

Theorem 5.1. For every L ∈ N0 and sequences (s`)`=0,...,L and (N`)`=0,...,L, the ensuing error estimate holds
under the following conditions:

(1) Gaussian weight functions: (bj)j≥1 ∈ `p(N) for some p ∈ (2/3, 2) and (b1−θj ∨ b̄j)j≥1 ∈ `p̄(N) for some
p̄ ∈ [p, 2) with χ = 1/(2p) + 1/4− ε and χ̄ = 1/(2p̄) + 1/4− ε̄. The QMC weight sequence in (5.1) is applied
with p′ = p/4 + 1/2− εp on the level ` = 0 for ε ∈ (0, 3/4− 1/(2p)). The QMC weight sequence in (5.2) is
applied with p̄′ = p̄/4 + 1/2− ε̄p̄ on the levels ` = 1, . . . , L for ε̄ ∈ (0, 3/4− 1/(2p̄)).

(2) Exponential weight functions: (bj)j≥1 ∈ `p(N) for some p ∈ (2/3, 1] and for (b1−θj ∨ b̄j)j≥1 ∈ `p̄(N) for
some p̄ ∈ [p, 1] with χ = 1/p− 1/2 and χ̄ = 1/p̄− 1/2. The QMC weight sequence in (5.1) is applied with
p′ = 1−p/2 on the level ` = 0. The QMC weight sequence in (5.2) is applied with p̄′ = 1− p̄/2 on the levels
` = 1, . . . , L.

There exists a constant C > 0 that is in particular independent of (M`)`≥0, (s`)`=0,...,L, (N`)`=0,...,L, and of
L ∈ N0, such that√

E∆(|E(G(u))−Q∗L(G(uL))|2) ≤ C

(
sup
j>sL

{b4−pj }+M
−4/d
L + (ϕ(N0))−2χ

+
L∑
`=1

(ϕ(N`))−2χ̄

(
ξ`,`−1 sup

j>s`−1

{b2θj }+M
−4/d
`−1

))1/2

,

where ξ`,`−1 := 0 if s` = s`−1 and ξ`,`−1 := 1 otherwise.
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Proof. By the triangle inequality, for ` = 1, . . . , L,

|(Is` −Qs`,N`)(G(u`)−G(u`−1))|
≤ |(Is` −Qs`,N`)(G(us`,T`)−G(us`,T`−1))|+ |(Is` −Qs`,N`)(G(us`,T`−1)−G(us`−1,T`−1))|

and
|(Is` −Qs`,N`)(G(us`,T`)−G(us`,T`−1))|

≤ |(Is` −Qs`,N`)(G(us`)−G(us`,T`))|+ |(Is` −Qs`,N`)(G(us`)−G(us`,T`−1))|,

where we recall that u` := us`,T` , ` = 0, . . . , L. We wish to show the conditions of Theorem 3.1 for integrands
y 7→ G(us`(y))−G(us`,T`(y)) and y 7→ G(us`,T`−1(y))−G(us`−1,T`−1(y)).

Recall

K1 :=

∥∥∥∥∥∥
∑
j≥1

max{|∇ψj |Φβ, |ψj |}
b̄j

∥∥∥∥∥∥
L∞(D)

<∞, (5.3)

the conditions of Theorem 3.1 are satisfied for the integrand y 7→ G(us`(y)) − G(us`,T`(y)) with the sequence
(b̄j)j≥1 and κ < Cr/(

√
2K1) by Theorem 4.10 and Remark 4.11 with r = 1. Specifically, we apply Theorem 4.10

and Remark 4.11 with ρj = κ/b̄j , j ≥ 1.
For the integrand y 7→ G(us`,T`−1(y)) − G(us`−1,T`−1(y)), we apply Theorem 4.3 with ρj = κ/b1−θj , j ≥ 1.

Then, the condition of Theorem 4.3 is satisfied for η = θ/(1 − θ) and κ < log(2)/K0, where K0 is as in
assumption (A1). Hence, the conditions of Theorem 3.1 are satisfied for the integrand y 7→ G(us`,T`−1(y)) −
G(us`−1,T`−1(y)). Since the sequence (b1−θj ∨ b̄j)j≥1 dominates (b1−θj )j≥1 and (b̄j)j≥1, Theorem 3.1 can be applied

with b̃j = b1−θj ∨ b̄j , j ≥ 1. For the exponential weight functions, we note that η1 = C(maxj>s`−1{bθj}+M
−2/d
`−1 )

for a constant C > 0 (independent of `), and with η2 = 5 in the notation of the second item of Theorem 3.1.
On discretization level ` = 0, the parametric integrand is y 7→ G(us0,T0). The conditions of Theorem 3.1 are

satisfied with b̃j = bj , j ≥ 1 (see also [31], Thms. 11 and 13). The assertion follows with (2.12) and (3.4). �

Remark 5.2. If f ∈ (V ∗, L2
β

(D))t,∞ and G(·) ∈ (V ∗, L2
β

(D))t′,∞ for some t, t′ ∈ [0, 1], then the error estimate

in Theorem 5.1 also holds with an error bounded by an absolute multiple of M−2(t+t′)/d
` on mesh level `.

Remark 5.3. When the GRF Z is stationary in D ⊂ Rd, the covariance kernel k(x, x′) := E(Z(x)Z(x′)) of Z
depends only on x−x′, cf. [1]. A widely used parametric family of covariances for stationary GRFs was proposed
by B. Matérn [39]. Here, the covariance kernel depends on two parameters ν, λ > 0, where λ is referred to as
correlation length and Z ∈ Ct(D), µ-a.s., for every positive real number t < ν. Wavelet type function systems
exist which allow to represent the GRF Z in terms of a sequence (yj)j≥1 of independent, standard normally
distributed yj , that satisfy assumption (A1) with bj ∼ j−β̂/d, j ≥ 1, for every β̂ < ν, cf. e.g. Corollary 4.3 of
[8]. In [8], the random field Z in D is constructed by restriction of a GRF defined on suitable product domain
that depends on the correlation length λ and which is a superset of D. For a constructive approach to obtain
function systems of expansions with i.i.d. coefficients, we refer for example to [23] and the references there.
For a discussion of the Hölder regularity and Lq(Ω) integrability of GRFs expanded in generic wavelets, we
refer to Section 9 of [31]. There, also if Ct(D)-regularity of the respective GRF Z holds as an implication by
Proposition 18 of [31], the generic wavelets satisfy assumption (A1) with bj ∼ j−β̂/d, j ≥ 1, for every β̂ < t.

Remark 5.4. In the case of single-level QMC, also fractional Hölder regularity of the lognormal coefficent
a = exp(Z) is covered by our theory in [31]. The GRF of the model function system of generic wavelets
discussed in Section 9 from [31] is for d = 1 and for wavelets that are scaled to decay as ‖ψj‖L∞(D) ∼ j−1/2−ε,
j ≥ 1, a member of Lq(Ω;C1/2+ε′(D)), for every q ∈ [1,∞) and for every ε > ε′ > 0, cf. Proposition 19 of
[31]. The sequence (bj)j≥1 may be chosen such that bj ∼ j−1/2−ε′ , for every j ≥ 1 and for some ε′ ∈ (0, ε).
For every p > 2/(1 + 2ε′), this sequence (bj)j≥1 ∈ `p(N) is admissible with Gaussian weight functions for every
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ε′ > 0, cf. Theorem 11 of [31] and therefore QMC with Gaussian weight functions and product weights is
applicable for every ε > 0. However, for 1/2 > ε > 0, the convergence theory for QMC with product weights in
Theorem 13 from [31] does not seem to be applicable with exponential weight functions in this case. Numerical
experiments in Section 11 from [31] for Z being the Brownian bridge and Gaussian QMC weight functions
reported convergence rates slightly larger than 1/2. The Brownian bridge Z is a borderline case of our theory
in [31]; then, Z ∈ C1/2−ε(D) µ-a.s. for every 0 < ε ≤ 1/2 and bj ∼ j−1/2 using the Lévy–Ciesielski decomposition
of Z.

6. Error vs. work analysis

We discuss concrete choices of algorithmic steering parameters in the preceding error bounds to obtain
asymptotic error vs. work estimates. We elaborate the widely used case of GRFs Z with Matérn-like covariances,
and compare the present results to previous work [26,36] and the references there.

6.1. Error vs. work for local supports and product weights

In the estimate of Theorem 5.1, the error contributions of the QMC quadrature and the spatial approximation
by FE and dimension truncation are coupled on the different levels. The number N` of QMC points at level
` = 0, 1, . . ., L should minimize the error estimate subject to a prescribed work measure. We consider functions
(ψj)j≥1 which are compactly supported in D, as for example certain MRA. Note that this will only affect the
choice of the work measure for the assembly of stiffness matrices.

Let us assume that the MRA (ψλ)λ∈5 results from a finite number of generating (or “mother”) wavelets by
scaling and translation, i.e.,

ψλ(x) := ψ(2|λ|x− k), k ∈ 5|λ|, x ∈ D. (6.1)

We use notation that is standard for MRA, i.e., the function system is indexed by λ = (|λ|, k) ∈ 5, where
|λ| ∈ N0 refers to the level and k ∈ 5|λ| to the translation. The index set 5` has cardinality | 5` | = O(2d`),
` ∈ N0. Let j : 5 → N be a suitable enumeration. The overlap on every level |λ| = ` ∈ N0 is assumed to be
uniformly bounded, i.e., there exists K > 0 such that for every ` ∈ N0 and every x ∈ D,

|{λ ∈ 5 : |λ| = `, ψλ(x) 6= 0}| ≤ K.

Additionally, for constants σ, α̂ > 0 we introduce the scaling

‖ψλ‖L∞(D) ≤ σ2−α̂|λ|, λ ∈ 5. (6.2)

Under this assumption, the work to assemble one sample of the stiffness matrix (i.e. for one QMC point) on
discretization level ` ∈ N0 scales for large ` as O(M`|j−1(s`)|) = O(M` log(s`)).

Proposition 6.1. For d = 1, the work to solve the linear system that corresponds to (2.8) for one sample is
O(M`), ` ∈ N0.

Proof. The parametric stiffness matrix is tridiagonal and symmetric, positive definite with probability one.
Therefore both, Cholesky decomposition and backsubstitution, can be performed in O(M`) work and memory
(see, e.g., [24], Chap. 4.3.6). �

Due to Proposition 6.1 and Remark 6.2, we stipulate availability of a PDE solver with work

workPDEsolve = O(M1+η
` ) (A3)

for some η ≥ 0 with implied constants independent of ` ∈ N0 and, in particular, of the realization of the PDE
coefficients. For D = (0, 1)2 and a sparse direct solver based on nested dissection it is known that η = 1/2,
cf. [22]. Note that η = 0 corresponds to linear complexity as is afforded by multigrid or multilevel preconditioned
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iterative solvers for elliptic PDEs in the deterministic setting; see, e.g., [11,49]. The results in [29] on convergence
of these methods for log-Gaussian coefficients in the Lq(Ω;V )-norm, q ∈ [1,∞), and d = 2, 3 suggest that η = 0
may not be admissible for MLQMC and d = 2, 3.

Remark 6.2. The uniformity w.r. to the coefficient realizations of the work estimate (A3) is, for the presently
considered log-Gaussian diffusion coefficient models, by no means to be taken for granted [29]. Since for d = 2, 3
stiffness matrices will not be tridiagonal, usually iterative solvers are used. In [29], strong convergence (in the
Lq(Ω;V )-norm) for iterative methods is shown for every η > 0 in the general framework of [49], which is nearly
optimal complexity (w.r. to the degrees of freedom) of a PDE solver. This is sufficient for single-level QMC
and multilevel Monte Carlo (MLMC). Applicability to MLQMC does not seem to be a direct consequence. In
practice also direct solvers have been used for d = 2 with observed η < 1/2 using different sparse direct solvers
than in [22], e.g., in Figure 5 from [36] for D = (0, 1)2, ηobserved ≈ 0 and in Figure 3 from [32], ηobserved ≈ 0.3
for D = S2 (the two dimensional sphere).

Under (A3) the model for the computational work for the MLQMC quadrature reads, for every L ∈ N0, as

workL = O

(
L∑
`=0

s`N` log(N`) +
L∑
`=0

N`(M` log(s`) +M1+η
` )

)
, (6.3)

where the first sum in (6.3) is the work of the generation of the QMC points which includes the work to obtain
the generating vectors by the fast CBC construction, cf. [42,43]. The work model in (6.3) depends on the choices
for (s`)`=0,...,L, (N`)`=0,...,L, and (M`)`≥0, which we shall not indicate explicitly in our notation and simply write
“workL”. The second sum in (6.3) is the work of the evaluation of the MLQMC quadrature. The sequence

bj(λ) = bλ := c2−β̂|λ|, λ ∈ 5, (6.4)

together with (ψλ)λ∈5 defined in (6.1) and (6.2) satisfies the assumption in (A1) for max{1, d/2} < β̂ < α̂
and some c > 0. Since ‖|∇ψλ|‖L∞(D) ≤ σ2−(α̂−1)|λ|‖|∇ψ|‖L∞(D), (assuming ‖|∇ψ|‖L∞(D) < ∞) λ ∈ 5, the
sequence

b̄j := b
(β̂−1)/β̂
j , j ∈ N, (6.5)

and (ψj)j≥1 defined in (6.1) and (6.2) satisfy the assumption (A2). In this section we assume that

f ∈ (V ∗, L2
β

(D))t,∞ and G(·) ∈ (V ∗, L2
β

(D))t′,∞, t, t′ ∈ [0, 1], (A4)

and define τ := t+ t′. In the following, we assume that

M` ∼ 2d`, ` ≥ 0. (A5)

The ensuing analysis is inspired by [35], Section 3.7 (see also [19, 36]). We will restrict the analysis to one
QMC rule with respect to the QMC weight sequence (5.2) on all levels ` = 0, . . . , L, but remark that in some
cases it might be beneficial to use a second one with respect to the QMC weight sequence (5.1) on the level ` = 0.
The MLQMC quadrature depends on the algorithmic steering parameters (N`)`=0,...,L, (s`)`=0,...,L, (M`)`≥0,
and also on θ ∈ (0, 1). The number of degrees of freedom (M`)`≥0 of the FE discretization in D are assumed to
be given. The parameter θ ∈ (0, 1) is for now left arbitrary. According to the estimate in Theorem 5.1, θ can
be used to balance the truncation error with the FE error on the levels ` = 0, . . . , L. We will use this feature to
discuss two possible strategies to choose the truncation dimensions (s`)`=0,...,L.

Strategy 1: The contributions in the QMC weight sequence in (5.2) are equilibrated, i.e., we choose θ = 1/β̂,
which implies that b1−θ = b̄j , j ∈ N. The truncation dimension sL is also chosen to equilibrate the respective
truncation and FE error in the estimate of Theorem 5.1. We choose

sL ∼ 2ddLτ/β̃e



1532 L. HERRMANN AND C. SCHWAB

for some
1 < β̃ < 2β̂ − d

2
(6.6)

close to 2β̂ − d/2, where we use that M` = O(2d`), ` = 0, . . . , L, and (bj)j≥1 ∈ `p(N) for every p > d/β̂. On the
levels ` = 0, . . . , L− 1, we either increase s` or leave it constant. We choose

s` ∼ min{2ddτ`e, sL}, ` = 0, . . . , L− 1.

Strategy 2: For particular (ψλ)λ∈5 and meshes, it may be interesting to align the level structure (ψλ)λ∈5 and
the used FE meshes. Therefore, we choose

s` ∼M`, ` = 0, . . . , L.

The choice θ = τ/β̂ equilibrates the truncation and FE error in the estimate of Theorem 5.1 on the levels
` = 0, . . . , L assuming that β̂ > τ . Then, (b1−θj ∨ b̄j)j≥1 ∈ `p̄(N) for every p̄ > d/(min{β̂ − τ, β̂ − 1}).

For either of the strategies and for every L ∈ N0, by Theorem 5.1 we obtain the error estimate

error2
L = O

(
M
−2τ/d
L +

L∑
`=0

(ϕ(N`))−2χ̄M
−2τ/d
`

)
. (6.7)

Since the Euler totient function satisfies that (ϕ(N))−1 ≤ N−1(eγ̂ log logN + 3/ log log(N)) for every N ≥ 3,
where γ̂ ≈ 0.5772 is the Euler–Mascheroni constant, (ϕ(N))−1 ≤ 9/N for every N = 3, . . . , 1030. We will
for simplicity restrict in our analysis the range of N to N ≤ 1030 and use the bound (ϕ(N))−1 ≤ 9/N . In
Strategies 1 and 2, the p̄-summability of the sequence (b1−θj ∨ b̄j)j≥1 holds with a strict inequality condition on p̄,
i.e., (b1−θj ∨ b̄j)j≥1 ∈ `p̄(N), for every p̄ > d/(β̂−1) in the case of Strategy 1 and for every p̄ > d/min{β̂−τ, β̂−1}
in the case of Strategy 2. Since the QMC convergence rate χ̄ depends on the exponent p̄, there exists ε > 0
such that χ̄(1 + ε) is also admissible in (6.7) due to Theorem 5.1. Using log(N) ≤ Nε/(εe) for every N ∈ N, the
factor N` log(N`) in (6.3) may be estimated by N1+ε

` . Since N1+ε
` appears then in the estimate of the work (6.3)

and in the error estimate (6.7), it can be substituted by N`, using the strict inequalities in the above bounds
for the admissible indices, and choosing ε > 0 sufficiently small.

We obtain with the choices for (s`)`=0,...,L in Strategies 1 and 2

workL =

O
(∑L

`=0N`(M` log(M`) + max{M1+η
` ,min{Mτ

` ,M
τ/β̃
L }})

)
, for Strategy 1,

O
(∑L

`=0N`(M` log(M`) +M1+η
` )

)
, for Strategy 2.

and

error2
L = O

(
M
−2τ/d
L +

L∑
`=0

N−2χ̄
` M

−2τ/d
`

)
.

We will distinguish between the cases that η = 0 and η > 0 in (A3). We treat Strategy 2 and the case
η > 0 first. As above, log(M) ≤ Mη/(ηe) for every M ∈ N. To obtain optimal choices for the sample numbers
(N`)`=0,...,L, we search for a stationary point of the function

g(ξ) := M
−2τ/d
L +

L∑
`=0

N−2χ̄
` M

−2τ/d
` + ξ

L∑
`=0

N`M
1+η
`

with respect to N`, i.e., we solve the first order necessary condition ∂g/∂N` = 0 (see also [35], Sect. 3.7). This
gives

N` =
⌈
N0M

−(2τ/d+1+η)/(1+2χ̄)
`

⌉
, ` = 1, . . . , L, (6.8)
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and with setting E` = M
(1+η−τ/(dχ̄))2χ̄/(1+2χ̄)
` , ` = 0, . . . , L,

error2
L = O

(
M
−2τ/d
L +N−2χ̄

0

L∑
`=0

E`

)
and work = O

(
N0

L∑
`=0

E`

)
, (6.9)

where
L∑
`=0

E` =


O(1) if 1 + η < τ/(dχ̄),
O(L) if 1 + η = τ/(dχ̄),
O(2(2χ̄d(1+η)−2τ)L/(1+2χ̄)) if 1 + η > τ/(dχ̄).

(6.10)

The parameter N0 is chosen to balance the error contributions, i.e., N−2χ̄
0

∑L
`=0E` = O(M−2τ/d

L ), which
implies

N0 =


d2τL/χ̄e if 1 + η < τ/(dχ̄),
d2τL/χ̄L1/(2χ̄)e if 1 + η = τ/(dχ̄),
d2(2τ+d(1+η))L/(1+2χ̄)e if 1 + η > τ/(dχ̄).

(6.11)

We conclude that error2
L = O(M−2τ/d

L ) can be achieved with

workL =


O(2τL/χ̄) if 1 + η < τ/(dχ̄),
O(2τL/χ̄L(1+2χ̄)/(2χ̄)) if 1 + η = τ/(dχ̄),
O(2dL(1+η)) if 1 + η > τ/(dχ̄).

In the case that η = 0, the resulting work measure is considered in Section 3.7 from [35]. In particular, we
obtain by equations (74) and (77) of [35]

N` =
⌈
N0

(
M
−1−2τ/d
` log(s`)−1

)1/(1+2χ̄)
⌉
, ` = 1, . . . , L, (6.12)

and

N0 =


d2τL/χ̄e if d < τ/χ̄,

d2τL/χ̄L(1+4χ̄)/(χ̄(2+4χ̄))e if d = τ/χ̄,

d2(d+2τ)L/(1+2χ̄)L1/(1+2χ̄)e if d > τ/χ̄.

(6.13)

Note that the corresponding work estimates are given on page 443 of [35]. We summarize this analysis as
ε-complexity bounds in the following theorem.

Theorem 6.3 (Error vs. work for Strategy 2). Let the truncation dimensions (s`)`=0,...,L be chosen according
to Strategy 2 assuming β̂ > max{τ, 1}. Let the assumptions (A5) and (A3) be satisfied for η ≥ 0. If η > 0, the
sample numbers for Q∗L(·) are given by (6.11) and (6.8), L ∈ N0. If η = 0, the sample numbers for Q∗L(·) are
given by (6.13) and (6.12), L ∈ N0. Let f and G(·) satisfy (A4).

1. Gaussian weight functions: for p̄ ∈ (max{2/3, d/(β̂ − τ), d/(β̂ − 1)}, 2), χ̄ = 1/(2p̄) + 1/4 − ε′ for ε′ > 0
sufficiently small assuming d/min{β̂ − τ, β̂ − 1} < 2.

2. Exponential weight functions: for p̄ ∈ (max{2/3, d/(β̂−τ), d/(β̂−1)}, 1], χ̄ = 1/p̄−1/2 assuming d/min{β̂−
τ, β̂ − 1} < 1.

For an error threshold 1 > ε > 0, we obtain√
E∆(|E(G(u))−Q∗L(G(uL))|2) = O(ε)
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is achieved with

workL =



O(ε−1/χ̄) if 1 + η < τ/(dχ̄),
O(ε−1/χ̄ log(ε−1)(1+2χ̄)/(2χ̄)) if 1 + η = τ/(dχ̄), η > 0,
O(ε−1/χ̄ log(ε−1)(1+4χ̄)/(2χ̄)) if d = τ/χ̄, η = 0,
O(ε−d/τ(1+η)) if 1 + η > τ/(dχ̄), η > 0,
O(ε−d/τ log(ε−1)) if d > τ/χ̄, η = 0.

Here, the implied constants are independent of L, (s`)`=0,...,L, (N`)`=0,...,L, and of (M`)`≥0.

Remark 6.4. In Strategy 2, there is one parameter respectively one dimension of integration, per spatial degree
of freedom, so that s` ∼ M`, ` ≥ 0. This coupling occurs, for example, when circulant embedding is applied
to evaluate a GRF on uniformly spaced spatial grid points such that each element of the FE mesh contains
at least one of these points to perform a one point quadrature for computing the stiffness matrix. Numerical
experiments with a QMC rule using a circulant embedding are presented in [25] and the references there.

For Strategy 1, we may restrict the analysis to the case τ > 1, since for τ ≤ 1 the additional restriction
β̂ > τ for Strategy 2 is redundant and Strategy 2 can be applied. For η > 0, we obtain following the same line
of argument as applied in the analysis of Strategy 2

N` =
⌈
N0

(
M

2τ/d
` max{M1+η

` ,min{Mτ
` ,M

τ/β̃
L }}

)−1/(1+2χ̄)
⌉
, ` = 1, . . . , L, (6.14)

where also (6.9) holds with

E` =
(
M
−τ/(dχ̄)
` max{M1+η

` ,min{Mτ
` ,M

τ/β̃
L }}

)2χ̄/(1+2χ̄)

, ` = 0, . . . , L.

We observe that
L∑
`=0

(
M
−τ/(dχ̄)
` max{M1+η

` ,M
τ/β̃
L }

)2χ̄/(1+2χ̄)

=

{
O(2dL(τ/β̃)2χ̄/(1+2χ̄)) if 1 + η ≤ τ/(dχ̄),
O(2dLmax{1+η−τ/(dχ̄),τ/β̃}2χ̄/(1+2χ̄)) if 1 + η > τ/(dχ̄),

where we used that max{x, y} ≤ x + y for every x, y ∈ [0,∞). The respective estimate for the sum
over (M−τ/(dχ̄)

` max{M1+η
` ,Mτ

` })2χ̄/(1+2χ̄) is given in (6.10) with max{1 + η, τ} in place of 1 + η (also in
the conditions of the three cases). To estimate

∑L
`=0E`, we use the identity that max{x,min{y, z}} =

min{max{x, y},max{x, z}} for every x, y, z ∈ R, and apply the superadditivity of the minimum to obtain
that

L∑
`=0

E` =


O(1) if max{τ, 1 + η} < τ/(dχ̄),
O(L) if max{τ, 1 + η} = τ/(dχ̄),
O(2dL(1+η−τ/(dχ̄))2χ̄/(1+2χ̄)) if 1 + η ≥ τ, 1 + η > τ/(dχ̄),
O(2dLmin{τ−τ/(dχ̄),max{(1+η−τ/(dχ̄)),τ/β̃}}2χ̄/(1+2χ̄)) if 1 + η < τ, 1 < dχ̄.

As above, N0 is chosen to balance the error, i.e., N0 ∼Mτ/(dχ̄)
L (

∑L
`=0E`)

1/(2χ̄). Specifically,

N0 =


d2Lτ/χ̄e if max{τ, 1 + η} < τ/(dχ̄),
d2Lτ/χ̄L1/(2χ̄)e if max{τ, 1 + η} = τ/(dχ̄),
d2(2τ+d(1+η))L/(1+2χ̄)e if 1 + η ≥ τ, 1 + η > τ/(dχ̄),
d2dLmin{τ−τ/(dχ̄),max{(1+η−τ/(dχ̄)),τ/β̃}}/(1+2χ̄)+Lτ/χ̄e if 1 + η < τ, 1 < dχ̄.

(6.15)

For η = 0,

N` =
⌈
N0

(
M

2τ/d
` max{M` log(M`),min{Mτ

` ,M
τ/β̃
L }}

)−1/(1+2χ̄)
⌉
, ` = 1, . . . , L, (6.16)
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and E` = (M−τ/(dχ̄)
` max{M` log(M`),min{Mτ

` ,M
τ/β̃
L }})2χ̄/(1+2χ̄), ` = 0, . . . , L. We obtain similarly using

τ > 1,

L∑
`=0

E` =



O(1) if 1 < 1/(dχ̄),
O(L) if 1 = 1/(dχ̄),
O(2(d−τ/χ̄)L2χ̄/(1+2χ̄)L2χ̄/(1+2χ̄)) if d− τ/χ̄ ≥ dτ/β̃,
O(2d(τ/β̃)L2χ̄/(1+2χ̄)) if d− τ/χ̄ < dτ/β̃ < τ(d− 1/χ̄),
O(2τ(d−1/χ̄)L2χ̄/(1+2χ̄)) if d− τ/χ̄ < dτ/β̃, τ(d− 1/χ̄) ≤ dτ/β̃.

Again by N0 ∼Mτ/(dχ̄)
L (

∑L
`=0E`)

1/(2χ̄),

N0 =



d2Lτ/χ̄e if 1 < 1/(dχ̄),
d2Lτ/χ̄L1/(2χ̄)e if 1 = 1/(dχ̄),
d2(2τ+d)L/(1+2χ̄)L1/(1+2χ̄)e if d− τ/χ̄ ≥ dτ/β̃,
d2(τ/χ̄+dτ/(β̃(1+2χ̄))Le if 0 < d− τ/χ̄ < dτ/β̃ < τ(d− 1/χ̄),
d2(2τ+dτ)L/(1+2χ̄)e if 0 < d− τ/χ̄ < dτ/β̃, τ(d− 1/χ̄) ≤ dτ/β̃.

(6.17)

Explicit error vs. work estimates are summarized as ε-complexity bounds in the following theorem, where we
recall that work = N0

∑L
`=0E` = M

τ/(dχ̄)
L (

∑L
`=0E`)

(1+2χ̄)/(2χ̄).

Theorem 6.5 (Error vs. work for Strategy 1). Let the truncation dimension (s`)`≥1 be chosen according to
Strategy 1 assuming β̂ > 1 and τ > 1. Let the assumptions (A5) and (A3) be satisfied for η ≥ 0. The sample
numbers for Q∗L(·) are given by (6.15) and (6.14) for η > 0 and by (6.17) and (6.16) for η = 0, L ∈ N0. Let f
and G(·) satisfy (A4).

1. Gaussian weight functions: for p̄ ∈ (max{2/3, d/(β̂ − 1)}, 2), χ̄ = 1/(2p̄) + 1/4 − ε′ for ε′ > 0 sufficiently
small assuming d/(β̂ − 1) < 2.

2. Exponential weight functions: for p̄ ∈ (max{2/3, d/(β̂ − 1)}, 1], χ̄ = 1/p̄− 1/2 assuming d/(β̂ − 1) < 1.

For an error threshold ε > 0, we obtain√
E∆(|E(G(u))−Q∗L(G(uL))|2) = O(ε)

is achieved with

workL =



O(ε−1/χ̄) if max{τ, 1 + η} < τ/(dχ̄),
O(ε−1/χ̄ log(ε−1)(1+2χ̄)/(2χ̄)) if max{τ, 1 + η} = τ/(dχ̄),
O(ε−d/τ(1+η)) if 1 + η ≥ τ, 1 + η > τ/(dχ̄), η > 0,
O(ε−d/τ log(ε−1)) if d− τ/χ̄ ≥ dτ/β̃, η = 0,
O(ε−dmin{1,max{(1+η)/τ,1/β̃+1/(dχ̄}}) if 1 + η < τ, 1 < dχ̄, η > 0,
O(ε−(1/χ̄+d/β̃)) if d− τ/χ̄ < dτ/β̃ < τ(d− 1/χ̄), η = 0,
O(ε−d) if d− τ/χ̄ < dτ/β̃, τ(d− 1/χ̄) ≤ dτ/β̃, η = 0.

Here, β̃ is as in (6.6) chosen close to 0 < 2β̂ − d/2 such that β̃ < 2β̂ − d/2 and all implied constants are
independent of L, (s`)`=0,...,L, (N`)`=0,...,L, and (M`)`≥0.

6.2. Application of error vs. work estimates: Matérn-like covariance

In practical applications, GRFs may be parametrized by MRAs, such that assumptions (A1) and (A2) are
satisfied. A class of such GRFs represented by plain wavelets has been discussed in Section 6.1. The assump-
tion (A2) is on the gradients of the function system and implies first order differentiability of the GRF. However,
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if the function system is sufficiently regular, also higher spatial regularity of realizations of the GRF may be
deduced, which has been analyzed by the authors in Section 9 from [31]. Specifically, in the setting of Section 6.1,
if the function system is able to characterize Besov norms (i.e., [31], assumption (A4) holds), then by Proposi-
tion 18 of [31], the realizations of the GRF are µ-a.s. Hölder regular with exponent ν − ε > 0 for any ν > ε > 0
and ν = α̂. In this section, we aim to discuss the error vs. work estimates of Theorems 6.3 and 6.5 in dependence
of the parameter ν (the smoothness of the GRF) or respectively the parameter α̂ from Section 6.1 and d, η for
a larger class of GRFs.

Solutions Z to the SPDE (1.1) may be represented by various function systems. If it is posed on D and also
boundary conditions are prescribed certain wavelet bases may be used to solve (1.1). The function system that
results by rearranging terms suitably for an expansion of Z with i.i.d. coefficients is generally not compactly
supported, but decays exponentially, which means it is well-localized and may satisfy the bound (6.2) with
α̂ ≈ ν = α − d/2 (recall the parameter α from (1.1)), see ahead Section 7 for a particular choice and in
particular Figures 1a and 1b. Wavelet bases on polytopal domains are available which also satisfy boundary
conditions (see, e.g. [44] and the references there). If (1.1) is posed on Rd with A(x) = Id and κ(x) = κ̄,
x ∈ Rd, then function systems to represent the GRF Z have been proposed in [8] by studying the covariance
operator of Z. In this case it is well-known that the GRF Z has so called Matérn covariance [38] with smoothness
parameter ν = α−d/2. The function system proposed in [8] is based on so-called Meyer wavelets and is globally
supported, but well-localized in D. By Corollary 4.3 of [8], it satisfies assumption (A1) with (bj)j≥1 ∈ `p(N) for
every p > d/ν. The statement of Corollary 4.3 from [8] may be extended to gradients of the function system,
which would imply that assumption (A2) could be satisfied with (b̄j)j≥1 ∈ `p̄(N) for every p̄ > d/(ν − 1).
We suppose that τ > 1 and let assumption (A3) be satisfied for η > 0. The error vs. work estimates for the
truncation Strategy 2 given in Theorem 6.3 may be applied using the borderline cases ε′ = 0 and p̄ = d/(ν − τ)
in our error bounds. It follows that accuracy ε > 0 may be achieved using Gaussian weight functions with

work =

{
O(ε−2d/(ν−τ+d/2)−δ) if 1 + η < 2τ/(ν − τ + d/2),
O(ε−d/τ(1+η)) if 1 + η > 2τ/(ν − τ + d/2),

for any δ > 0, provided that
d

2
+ τ < ν <

3d
2

+ τ.

In case that ν ≥ 3d/2 + τ , the work is also O(ε−d/τ(1+η)), which is the complexity of the Poisson problem
under the assumption that (A3) is satisfied for η > 0. Note that the case 1 + η = 2τ/(ν − τ + d/2) is not
considered, since the formal value p̄ = d/(ν − τ) was used instead of p̄ + ε′ = d/(ν − τ) for some 0 < ε′ � 1,
which renders this case unimportant.

Suppose that 1 + η < τ . The error vs. work estimates for the truncation Strategy 1 given in Theorem 6.5 are
applied using the borderline case ε′ = 0 and p̄ = d/(ν − 1) and β̃ = 2ν − d/2. It follows that accuracy ε > 0
may be achieved (based on QMC error bounds with the norm (3.1) and with Gaussian weight functions wg,j in
(3.2)) with

work =


O(ε−2d/(ν−1+d/2)−δ) if ν + d/2 < 3,
O(ε−dmin{1,1/(2ν−d/2)+2/(ν−1+d/2)}−δ) if ν + d/2 > 3, (1 + η)/τ < 1/(2ν − d/2) + 2/(ν − 1 + d/2),
O(ε−d/τ(1+η)) if ν + d/2 > 3, (1 + η)/τ > 1/(2ν − d/2) + 2/(ν − 1 + d/2),

for any δ > 0, provided that the Matérn parameter ν satisfies

d

2
+ 1 < ν <

3d
2

+ 1. (6.18)

For 3d/2 + 1 ≤ ν < 3d/2 + τ , intermediate cases hold according to Theorem 6.5 with χ̄ ≈ 1. If ν ≥ 3d/2 + τ ,
Strategy 2 is applicable as mentioned above.
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We discuss the cases ν ∈ {d+ 1, 3d/2 + 1}, which allow error bounds with both, Strategy 1 and Strategy 2.
We suppose maximal regularity τ = 2, which is for example the case if f,G(·) ∈ L2(D). For ν = 3d/2 + 1,
accuracy ε > 0 is achievable with Strategy 1 with work O(ε−9/7−δ) (for d = 2) and O(ε−d/τ(1+η)) (for d = 3).
With Strategy 2, work O(ε−4/3−δ) (for d = 2) and O(ε−d/τ(1+η)) (for d = 3) is needed. In the case ν = d + 1,
accuracy ε > 0 is achievable using Strategy 1 with work O(ε−26/15−δ) (for d = 2) and O(ε−210/117−δ) (for
d = 3). With Strategy 2, work O(ε−2−δ) (for d = 2) and O(ε−12/7−δ) (for d = 3) is needed. Note that
1.71 ≈ 12/7 < 210/117 ≈ 1.79. We assumed that η > 0 in (A3) is sufficiently small (the theory in [29] implies
that η > 0 may be chosen arbitrarily small for MLMC-FEM).

6.3. Local supports and product weights vs. global supports and POD weights

We suppose that the GRF Z can be represented with a Karhunen–Loève expansion given by the eigenpairs
(λj , ψKL

j )j≥1 of the covariance operator of Z normalized in L2(D). Thus, Z =
∑
j≥1 yjψ

gl
j , where ψgl

j =
√
λjψ

KL
j ,

j ≥ 1. In the case that Z has Matérn covariance, Corollary 5 of [26] implies that there exists c > 0 such
that

√
λj ≤ cj−(1/2+ν/d), j ≥ 1. By the proof of Proposition 9 from [26], generally in the Matérn case for

any δ > 0 there is c > 0 such that ‖ψKL
j ‖L∞(D) ≤ cj1/2+δ and ‖|∇ψKL

j |‖L∞(D) ≤ cj1/2+1/d+δ, j ≥ 1. As
observed in Remark 10 from [36], this implies (‖|∇ψgl

j |‖L∞(D))j≥1 ∈ `p̄POD(N) for any p̄POD > d/(ν − 1). Also,
(‖ψgl

j ‖L∞(D))j≥1 ∈ `pPOD(N) for any pPOD > d/ν. For the MLQMC error analysis in [36] to be applicable, it is
required that p̄POD < 1. The regime that p̄POD ∈ (2/3, 1) is equivalent to

d+ 1 < ν <
3d
2

+ 1, (6.19)

which is a more restrictive condition than what was required in (6.18) for Strategy 1 of the local support theory
with product weights to be applicable. Under this assumption, Corollary 2 of [36] implies that an accuracy ε > 0
may be achieved (excluding the computational cost of the CBC algorithm) using MLQMC with POD weights
with

work =

{
O(ε−d/(ν−1−d/2)−1/α′−δ) if τ > ν − 1− d/2,
O(ε−d/τ−1/α′) if τ < ν − 1− d/2,

(6.20)

for any δ > 0. If ν ≥ 3d/2 + 1, the work is also O(ε−d/τ−1/α′). The value of the parameter α′ has been shown
in Proposition 9 from [26] to be at least ν/d − 1/2 − δ for any δ > 0. In the setting of Corollary 2 from [36]
s` = sL for all levels ` = 0, . . . , L− 1, where L ∈ N is the maximal level.

Remark 6.6. Consider a convex polygon D ⊂ R2, i.e., d = 2, and f,G(·) ∈ L2(D). This implies that τ = 2. In
the borderline case ν = 3d/2 + 1 = 4 of the estimate (6.20), accuracy ε > 0 may be achieved using MLQMC-
FEM with (ψgl

j )j≥1 and POD weights with work O(ε−5/3−δ). In the same situation accuracy ε > 0 may be
achieved using Strategy 1 of MLQMC-FEM with locally supported ψj and QMC with product weights in work
O(ε−9/7−δ). In this comparison we assumed that η > 0 in (A3) is sufficiently small (the theory in [29] implies
that η > 0 may be chosen arbitrarily small for MLMC-FEM). Multilevel QMC with local supports and product
weights requires here less work to achieve target accuracy ε > 0 than MLQMC-FEM with globally supported
ψj and POD QMC weights as presented in [36], even when the cost of the CBC construction of the QMC
generating vector for POD weights is excluded from the work estimates as in [36], where this (excluded) work
depends quadratically on the truncation dimension. Also, the work estimates from [36] assumed the cost of
evaluating ψKL

j to be O(1) for every j ≥ 1.

Remark 6.7. The parameter α′ increases linearly with respect to the parameter ν. The work estimate in (6.20)
includes always the term 1/α′. This is a consequence of the work model that the cost of assembling instances
of stiffness matrices has cost proportional to the number of FE degrees of freedom multiplied by the truncation
dimension sL. If ν � 1, then 1/α′ � 1 and this term becomes insignificant and since sL ∼ h−τ/α

′

L the uncertainty
quantification problem is then of moderate effective dimension. The resulting work would still be O(ε−d/τ−1/α′)
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and τ is at most two, since first order FE is used in the MLQMC algorithm. Another restriction is the rate
of the QMC quadrature, which is of essentially first order for randomly shifted lattice rules. In the case that
a higher order QMC rule were available (which is the case for bounded parameter vectors, cf. [15]) and is
used (for simplicity) as single-level QMC in combination with the function system (ψgl

j )j≥1 stemming from the
Karhunen–Loève expansion and QMC with POD weights, then the order of convergence that could be achieved
is only restricted by the value of ν given that proper mesh refinement is available. Approximation rates of
Z by function systems based on spline wavelets are generally restricted by their maximal order, which limits
corresponding complexity estimates of single-level QMC with local supports.

In certain cases the Karhunen–Loève functions may have stronger properties concerning their decay in the
sup-norm and the computational cost to compute linear combinations of them efficiently. One of these cases
should also be discussed in order to provide a more thorough comparison of locally supported ψj and QMC
product weights to globally supported and QMC POD weights. As discussed in Section 10 from [31], if the GRF
Z is computed on a product domain D and A(x) = Id, κ(x) = const > 0 in (1.1) (which is solved on Rd in this
case), the Karhunen–Loève functions may take the form of products of trigonometric functions and are thus
uniformly bounded in the sup-norm. I.e., there exists c > 0 such that for all j ≥ 1 holds ‖|∇ψKL

j |‖L∞(D) ≤ cj1/d.
Thus, (‖|∇ψgl

j |‖L∞(D))j≥1 ∈ `p̄POD(N) for any p̄POD > d/(ν−1+d/2). Also the truncated GRF may be computed
efficiently with FFT techniques. To also accommodate these cases with variable truncation dimension (s` not
necessarily equal to sL), in Appendix A the MLQMC error analysis from [36] is suitably extended. In Appendix B
we take into account the cost of the CBC algorithm, which in the POD weight case grows quadratically with
respect to the truncation dimensions. The error analysis there applies to Matérn GRFs with Matérn parameter
ν > d/2 + 1. To illustrate the results, consider a convex polygon or polyhedron D ⊂ Rd with d = 2, 3. Then, the
Dirichlet Laplacian is boundedly invertible from H2(D)∩V to L2(D) and f,G(·) ∈ L2(D). This implies the FE
convergence rate τ = 2 for FE on quasiuniform meshes in D. For ν = 3d/2+1, Theorem B.1 may be applied with
the borderline cases pPOD = (2 + 1/d)−1 and p̄POD = 3/2. Note that the parameter α = (1/pPOD − 1/p̄POD)−1

in Theorem B.1 is then α = 2d/(2+d). The accuracy ε > 0 may be achieved using MLQMC-FEM with (ψgl
j )j≥1

and POD weights with work O(ε−4d/(3d+2)−1−δ) taking into account the cost of the CBC algorithm. Note that
4d/(3d+ 2) + 1 = 2 for d = 2 and 4d/(3d+ 2) + 1 = 1 + 12/11 for d = 3. In the same situation, MLQMC-FEM
with local support and product weights achieves accuracy ε with work O(ε−9/7−δ) for d = 2 and Strategy 1 and
O(ε−4/3−δ) for d = 2 and Strategy 2. For d = 3, the corresponding required work for MLQMC-FEM with local
support and product weights is O(ε−d/τ(1+η)) for either of Strategy 1 and 2. In this comparison we assumed
the larger value α′ ≈ ν/d for the truncation error with respect to the globally supported function system
(ψgl
j )j≥1, which was shown in this case in Proposition 20 from [31]. In Figure 1 of [36], the value α′ has been

investigated empirically for d = 1 and ν = 1, the functional G(·) being point evaluation. The shown empirical
data suggests the higher value of ≈ 2ν/d in this case. Assuming this stronger decay of the truncation error with
respect to sL and (ψgl

j )j≥1, the required work for MLQMC with (ψgl
j )j≥1 and POD weights is O(ε−3/2−δ) for

d = 2 and O(ε−1−6/11−δ) for d = 3. Throughout this paragraph, δ > 0 was an arbitrarily small number and
the constants hidden in the O(·) depend on δ. In these cases MLQMC with local support and product weights
achieves prescribed accuracy ε with an asymptotically smaller work compared to MLQMC with (ψgl

j )j≥1 and
POD weights.

In the case that ν is sufficiently large also MLQMC with (ψgl
j )j≥1 and POD weights is able to achieve accuracy

ε > 0 with work O(ε−d/τ(1+η)). This is the work to solve one instance of the FE method on the finest mesh level.
For example for d = 2, τ = 2, and ν = 6, Theorem B.1 is applicable with the borderline values pPOD = 2/7,
p̄POD = 2/3, and α = 1/2 in the case that the Karhunen–Loève functions are uniformly bounded. Due to the
term 1/α′ in the work estimate in Corollary 2 of [36], this situation was not achievable with the theory presented
in [36]. Note again that we assumed that η > 0 in (A3) is sufficiently small (the theory in [29] implies that
η > 0 may be chosen arbitrarily small for MLMC-FEM).
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7. Numerical experiments

We illustrate the complexity estimates and algorithmic details on GRF generation in locally supported rep-
resentation systems with numerical tests. To this end, we consider the following class of GRFs. We admit GRFs
Z which are sample-wise, weak solutions to the SPDE (1.1), where W denotes spatial white noise on D. See
e.g. [1] for details on this. In (1.1), we assume that A(x) ∈ Rd×d is symmetric for a.e. x ∈ D and there exists
A > 0 such that

ess inf
x∈D

ξ>A(x)ξ ≥ Aξ>ξ, ∀ξ ∈ Rd,

and ess infx∈D κ(x) > 0.
We recall from Section 1 that if D = Rd, A(x) ≡ Id, and if also κ(x) ≡ const, then the stationary solution

Z to (1.1) is well-known to have Matérn covariance. As proposed in [38], the SPDE (1.1) can be used to
define and numerically sample non-stationary GRFs in bounded domains and for general coefficients κ and A,
which accommodates non-stationary GRFs Z. As in [38], both in stationary and non-stationary cases (see [38],
Sect. 3.2), we shall refer to solutions to (1.1) as Matérn fields.

We choose D = (0, 1) with periodic boundary conditions, which can be identified with the one-dimensional
sphere or the one-dimensional torus T1. To obtain a series expansion of Z with i.i.d. standard normally dis-
tributed coefficients, i.e., the form of (1.3), we discretize (1.1) by biorthogonal and continuous, piecewise linear
spline prewavelets as in [46]. Let (V`)`≥0 be a sequence of FE spaces of piecewise affine functions on uniformly
refined meshes with mesh width h` = 2−`−2 and dim(V`) = 2`+2. Each FE space is spanned by continuous,
piecewise affine functions, i.e., V` = span{ϕ`1, . . . , ϕ`2`+2}, ` ≥ 0, where ϕ`1, . . . , ϕ

`
2`+2 are the “hat” function basis.

We shall use the following representation system for the GRF in D: for every ` ∈ N, define the spline-prewavelets
as in equation (4.7) from [46] by

φ`,k :=
5∑
ι=1

aιϕ
`
2k−4+ι, k = 1, . . . , N`, a = (1/2,−3, 5,−3, 1/2), (7.1)

where N` = 2`+1 and subscript indices of ϕ`k are taken modulo 2`+2 plus 1. The barycenter of the support of
the prewavelet φ`,k is x`,k = (2k − 1)2−`−2. We define the wavelet spaces W ` := span{φ`,1, . . . , φ`,N`}, ` ≥ 1,
with the understanding that W 0 := V0. For ` = 0, we define φ`,k = ϕ`k, k = 1, . . . , N0 := 4. These spaces are
L2-orthogonal across levels, i.e.,

∫
D
w1w2dx = 0 for all w1 ∈W `1 , w2 ∈W `2 s.t. `1, `2 ∈ N0 and `1 6= `2. Hence,

we obtain the multilevel splitting

V ` = W 0 ⊕W 1 ⊕ . . .⊕W `, ` ≥ 1.

We note that {φ`,k : ` ≥ 0, k = 1, . . . , N`} is a Riesz basis of L2(T1) and of H1(T1). Upon proper scaling,
there hold stable norm equivalences in scale of spaces Ht(T1) for t ∈ [0, 3/2), cf. Proposition 4.1 of [46]. There
are constants C1, C2 such that for every L ≥ 0 and for every v =

∑L
`=0

∑N`
k=1 v`,kφ`,k

C1

L∑
`=0

22(t−1/2)`
N∑̀
k=1

|v`,k|2 ≤ ‖v‖2Ht(T1) ≤ C2

L∑
`=0

22(t−1/2)`
N∑̀
k=1

|v`,k|2.

Let us define the sequence space `21 := {c ∈ RN :
∑
`≥0 2`

∑N`
k=1 |c`,k|2 < ∞} that corresponds to

H1(T1). The white noise W, applied to the prewavelets (7.1), results in a random vector W with compo-
nents that are normally distributed with zero mean and covariance determined by the “mass matrix” M , i.e.,
cov(W(φ`2,k2),W(φ`1,k1)) =

∫
D
φ`2,k2φ`1,k1dx =: M `1,k1,`2,k2 , `1, `2 ≥ 0, k1 ∈ {1, . . . , N`1}, k2 ∈ {1, . . . , N`2}.

Due to the orthogonality of the prewavelets across levels the bi-infinite mass matrix M is block diagonal with
diagonal blocks given by the mass matrices of W `: there is no correlation between the different levels. This will
be convenient in sampling realizations of W with a block Cholesky algorithm; its complexity is O(N`) on every
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block. Note that the random vectors W and Ly have the same distribution for an i.i.d. standard normally
distributed y and any operator L that satisfies LL> = M . For example, L can be the operator that results
by applying the Cholesky algorithm to every block of M . For α = 2, the operator in (1.1) is local and reads
(−div(A(x)∇) + κ2(x)) It can be equivalently represented as a bi-infinite matrix in a prewavelet basis. We
denote the resulting (bi-infinite) matrix by A, where A`1,k1,`2,k2 =

∫
D

(∇φ`2,k2)>A∇φ`1,k1 + κ2φ`2,k2φ`1,k1dx,
`1, `2 ≥ 0, k1 ∈ {1, . . . , N`1}, k2 ∈ {1, . . . , N`2}.

For α = 2, the variational formulation of (1.1) with respect to this prewavelet basis is: for a given parameter
vector y, find Z(y) ∈ `21 such that

AZ(y) = Ly,

where the parametric coefficients Z(y) and the GRF Z are related by

Z(y) =
∑
`≥0

N∑̀
k=1

Z(y)`,kφ`,k

Let us define e(`, k) by e(`, k)`′,k′ := 1 if ` = `′ and j = k′ and zero otherwise. A piecewise linear multiresolu-
tion representation of the Matérn field Z with i.i.d. coefficients and a function system (ψα/2`,k )`≥0,k=1,...,N` (here
α/2 = 1) is now obtained by

Z(y) =
∑
`≥0

N∑̀
k=1

y`,kψ
1
`,k, with ψ1

`,k =
∑
`′≥0

N`′∑
k′=1

(A−1Le(`, k))`′,k′φ`′,k′ , (7.2)

where ` ≥ 0 is the level or dilation index and k the translation. For α > 2, let {α/2} be the fractional part of
α/2 and bα/2c = α/2− {α/2}. The SPDE (1.1) is rewritten recursively as

(−div(A(x)∇) + κ2(x)){α/2}Z = Zi

(−div(A(x)∇) + κ2(x))Zi = Zi−1, i = 1, . . . , bα/2c,
(7.3)

where Z0 := W. If {α/2} = 0, (−div(A(x)∇) + κ2(x))0 is understood as the identity operator. For α ∈ 2N,
there is no fractional PDE to be solved in (7.3) and by standard Galerkin techniques

ψ
α/2
`,k =

∑
`′≥0

N`′∑
k′=1

((A−1M)α/2−1A−1Le(`, k))`′,k′φ`′,k′ , ` ≥ 0, k = 1, . . . , N`. (7.4)

Generally, for α ≥ 2,
ψ
α/2
`,k = A−1

{α/2}Mψ
bα/2c
`,k ` ≥ 0, k = 1, . . . , N`,

where A{α/2} is the wavelet representation of the fractional operator (−div(A(x)∇) + κ2(x)){α/2}. In the case
that {α/2} > 0, a fractional PDE with a non-local operator needs to be discretized. Efficient FE methods for
the numerical solution of this problem have been recently analyzed in [9]. We remark that the application of
first order prewavelets is sufficient here, since the convergence rate of randomly shifted lattice rules is limited
by one and also first order FE is considered to discretize (1.2) in space.

Remark 7.1. The application of the sparse operator L introduces a weight sequence (2−(1/2)`)`≥0,j=1,...,N`

and the application of the inverse of A introduces an additional weight sequence (2−`)`≥0,k=1,...,N` on the
parameter vector y or e(`, j). The theory of pseudodifferential operators and wavelet compression suggests
that (ψα/2`,k )`≥0,k=1,...,N` satisfies assumptions (A1) and (A2) with b`,k = 2−β̂` and b̄`,k = 2−(β̂−1)`, ` ≥ 1,

k = 1, . . . , N`, for all 1 < β̂ < α − 1/2. See Figures 1a and 1b ahead for an illustration of this property. In
practical implementations the infinite series in (7.2) needs to be truncated. A detailed analysis of these aspects
in a more general setting will be presented in a forthcoming work.
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For a scaling parameter θ > 0 to be specified, the parametric PDE (1.2) with log-Matérn input a = exp(θZ)
and right hand side f ∈ L2(T1) such that

∫
T1 fdx = 0 is discretized by the FE spaces (V`)`≥0, which are spanned

by the standard hat functions. We recall the variational formulation: for all ` ≥ 0, find uh` : Ω→ V` such that∫
T1
a (uh`)′v′dx =

∫
T1
fvdx, ∀v ∈ V`, and

∫
T1
uh`dx = 0. (7.5)

Due to periodicity, no essential boundary conditions enter the variational formulation (7.5). The vanishing
mean condition on the solution is sufficient to ensure well-posedness, since the kernel of the differential operator
[w 7→ −(aw′)′] comprises exactly the constant functions.

We will adopt Strategy 2 from Section 6.1, which means that on every discretization level ` ≥ 0 we set
s` = M`. We also truncate the expansion of the ψ1

`,k’s in (7.2) and (7.4) and the infinite matrices A to M`

terms. Note that the bi-infinite matrices M and L do not need to be truncated as they are block-diagonal. The
work to compute Zs`(y) for a given y in a continuous, piecewise linear representation is O(M` log(M`)), since
it amounts to the solution of a PDE discretized by prewavelets and the application of the Cholesky algorithm
to sparse band matrices. The work for the approximate solution of the PDE discretized with the hat functions
on mesh-level ` scales as O(M`).

In our numerical tests, D = (0, 1), f(x) = sin(2πx) with periodic boundary conditions and

κ2(x) = κ2

(
1 +

1
2

sin(2πx)
)
, A(x) = Id, α ∈ {2, 4}. (7.6)

The parameter ν such that α = ν + d/2 determines the sample regularity of realizations of the Matérn field.
We test the cases ν ∈ {3/2, 7/2} with the correlation length scale parameter

λ =
2
√
ν

κ
,

which then determines the value of κ̄ in (7.6). For κ(x) ≡ κ this corresponds to the correlation length parameter
used in numerical experiments in Section 4 from [36]. We aim at testing for different values of λ without greatly
affecting the variance of Z. Thus, we set the scaling θ of the (non-stationary) GRF Z to

θ =
σ0

σ(α, κ)

with σ0 > 0 still at our disposal. In the stationary (“Matérn”) case, i.e., when A(x) ≡ Id and κ(x) ≡ κ > 0,
elementary Fourier analysis reveals that the marginal variance is given by

σ2(α, κ) :=
1
κ2α +

∑
i≥1

2
((2πi)2 + κ2)α

·

The function systems (ψα/2`,k : ` ≥ 0, k = 1, . . . , N`) are well localized and satisfy a decay condition which
suits our MLQMC analysis with product weights. To illustrate this numerically, we define

bref := (2−(3/2)`)`≥0,k=1,....N` .

In Figure 1a, we plot this reference sequence and ‖ψ1
`,k‖L∞(T1) for several choices of the correlation length

λ > 0, indexed by j(`, k). Figure 1b shows plots of |ψ`,k| for several values of ` and k in log-scale. For the
illustrations in both figures, the expansion in (7.2) has been truncated to the maximal level L = 11. For α = 2,
Figures 1a and 1b suggest that (ψ1

`,k)`≥0,k=1,...,N` satisfies assumptions (A1) and (A2) with weight sequence
b1−εref for every ε > 0 and (b̄`,k)`≥0,k=1,....N` defined according to (6.5) with β̂ ≈ 3/2, respectively.



1542 L. HERRMANN AND C. SCHWAB

Figure 1. Quantitative properties of (ψα/2`,k )`≥0,k=1,...,N` for σ0 = 1.0, λ ∈ {0.1, 0.05, 0.01},
α = 2 (ν = 3/2). Left panel: decay of ‖ψ1

`,k‖L∞(T1) vs. j. Onset of asymptotic decay appears
for j ∼ λ−1. Right panel: localization of ψ1

`,k. Semi-logarithmic plot of the modulus of ψ1
`,k(x).

Exponential decay away from barycenter x`,k of φ`,k.

Remark 7.2. For stationary GRFs, translation invariance implies that the Karhunen–Loève basis is trigono-
metric, and QMC error bounds from [26,36] with globally supported Karhunen–Loève basis functions and QMC
integration with POD weights are applicable. When A(x) ≡ Id and κ(x) ≡ const and periodic boundary con-
ditions are imposed on ∂D, the GRF Z is stationary. The SPDE (1.1) can be numerically solved by Fourier
methods. We refer to [16, 27] for details on this. Unlike the product weights for QMC integration which were
derived in the present work, the appearance of QMC weights with POD structure in [26, 36] implies that the
construction cost for these QMC integration methods scales as O(s2N + sN log(N)) [41].

In our numerical tests, we consider the functional G(v) := v(x0) with x0 = 0.7, which is not a node in any
of our FE meshes for all levels ` ≥ 0. Note that G(·) ∈ H−1/2−ε(T1) for every ε > 0. Since the QMC rate χ̄ is
restricted to [1/2, 1) the complexity estimate in Theorem 6.3 in the regime 1 < τ/χ̄ (here d = 1, η = 0) does
not seem to benefit from τ > 1. Thus, QMC sample numbers are chosen according to (6.12) and (6.13) with
τ = 1 and χ̄ to be specified, i.e.,

N` =
⌈

2(τ/χ̄)(L+1)
(

2−(2τ+1)(`+1)(`+ 1)−1
)1/(2χ̄+1)

⌉
, ` = 1, . . . , L, N0 =

⌈
2(τ/χ̄)(L+1)

⌉
. (7.7)

They are rounded up to the next odd prime number. We compute the generating vectors by the fast CBC
algorithm, Gaussian weight functions, and product weights according to Theorem 3.1 and the sequence

b̄
α/2
ref = (c2−(ν−1)`)`≥0,k=1,...,N`

for some c > 0 (see Rem. 7.1 and Fig. 1a). According to Theorem 3.1, also the value p′ is needed for the product
weights, which in turn are an input in the CBC algorithm to construct the generating vectors for the QMC
lattice points. For α = 2, we use the borderline values p′ = 1 and ε = 0 in Theorem 3.1. We note that ν = 3/2
is the borderline parameter for our MLQMC convergence theory in Theorem 6.3. We expect a convergence rate
χ̄ ≈ 1/2. In our single-level QMC experiments, we observed in Figure 1 from [31] that the QMC rate for a
borderline case of applicability (i.e. (bj)j≥1 /∈ `p(N) for every p ∈ (0, 2), but (bj)j≥1 ∈ `2(N)) was always larger
than 0.65. So for α = 2 (ν = 3/2), we use QMC sample numbers (7.7) with χ̄ = 0.65. For α = 4, b̄α/2ref ∈ `2/3(N).
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Figure 2. MLQMC convergence with ν = 3/2, αg = 1.05, c = 0.1, λ ∈ {0.1, 0.05, 0.01}. Left
panel: σ0 = 0.5. Right panel: σ0 = 1.0.

Thus, we use p′ = 2/3 = p and the boundary value ε = 0 in Theorem 3.1. For α = 4, the sample numbers are
chosen with χ̄ = 0.9.

In Figures 2a and 2b, we display error vs. work for α = 2, i.e., ν = 3/2, L = 2, . . . , 11 with reference solution
on level Lref = 12. For L = 11, there are sL = 8192 stochastic parameters on the finest mesh level L and for the
reference solution the highest occurring dimension was sLref = 16384. Here, and in the following, the asymptotic
work model is according to Theorem 6.3

workL = 2(τ/χ̄)L.

In all numerical tests, the mean square error is approximated by the empirical variance of R samples of Qj
corresponding to R i.i.d. realizations of the random shift, with the unbiased estimator√√√√ 1

R− 1

R∑
j=1

(Qj − Q̄)2 ≈
√

E∆(|E(G(u))−Q∗L(G(uL))|2).

The reference value Q̄ is the average over R i.i.d. random shifts of Q∗Lref
(G(uLref )) with Lref = 12. In all

numerical tests we use R = 20. For α = 2, this is the borderline case p̄ = 2 of the error bounds in Theorem 6.3
and we expect a convergence rate of the error as a function of the work of ≈ 1/2. The empirically observed rate
is a least squares fit taking into account the four data pairs corresponding to finer resolution. The MLQMC
algorithms converge even for very small correlation length λ > 0, which is presented in Figures 2a and 2b for
two choices of σ0. Specifically, we observe that for correlation length λ ∈ {0.1, 0.05, 0.01}, there seems to be a
pre-asymptotic regime until the (non-dimensional) correlation length λ can be resolved by the FE discretization
in D.

In Figure 3a, we study the error vs. the variance of the Matérn field Z. We control this variance by the
parameter σ0, and monitor the convergence rate of the error as a function of the work. The test is carried out
for α = 4, i.e., ν = 7/2, fixed correlation length λ = 0.1, and L = 2, . . . , 11 with reference solution on level
Lref = 12. Thus, s11 = 8192 dimensions on the highest considered level and sLref = 16384 dimensions of the
reference solution. The empirically observed rate is a least squares fit taking into account the six data pairs
corresponding to higher resolution. We observe that the convergence rate seems to be influenced by the variance
of Z, the size of the fluctuations. This was also observed in previous numerical experiments in [26,30,31,36].
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Figure 3. MLQMC convergence with ν ∈ {3/2, 7/2} and c = 0.1. Left panel: ν = 7/2, λ = 0.1,
and σ0 ∈ {0.1, 0.25, 0.5}. Right panel: ν = 3/2, σ0 = 1.0, and λ ∈ {0.1, 0.05, 0.01} with informed
QMC generating vectors.

All numerical tests in Figures 2a and 2b were performed with generating vectors that do not depend on
the correlation length. However, Figure 1a suggests that the pre-asymptotic spatial decay of the functions ψ1

`,k

depends on the correlation length λ > 0, which shall be reflected in the decay of the respective QMC integration
weight sequence corresponding to the coefficients (b̄`,k)`≥0,k=1,...,N` to be defined below.

In Figure 3b, we present numerical results with QMC generating vectors that are informed by the pre-
asymptotic decay of the b̄`,k. The test is carried out for α = 2, i.e., ν = 3/2, σ0 = 1.0, and L = 2, . . . , 9 with
reference solution on level Lref = 10. The empirically observed rate is a least squares fit taking into account the
four data pairs corresponding to higher resolution. Specifically, we compute the QMC generating vector with
the sequence

b̄`,k = cb
(β̂−1)/β̂
`,k .

Here, the value of c is (as specified in the caption of the figure) c = 0.1 (according to (6.5)) for β̂ = 3/2 and
with

b`,k = ‖ψ`,k‖L∞(D), ` ≥ 0, k = 1, . . . , N`.

In Figure 3b, we observe a very similar behavior compared to Figure 2b. We thus conclude that the observed
pre-asymptotic regime is indeed due to the inability of the FE method to resolve the small correlation length
until the MLQMC algorithm accesses discretization levels which resolve the spatial correlation length.

8. Conclusions

For linear, second order diffusion equations (1.2) in a polygonal or polyhedral domain D, and with diffusion
coefficient a = exp(Z), where the GRF Z in D is represented in terms of a series expansion in a representation
system with supports which are “localized in D” in the sense that (A1) and (A2) hold and with the GRF Z
taking values in weighted Hölder spaces in D, we extended the convergence rate and error vs. work analysis of
combined QMC quadratures and multilevel FE approximation from [26,36] in several directions. We considered
randomly shifted lattice QMC rules introduced in [41] for numerical integration of PDE outputs against a
dimension-truncated Gaussian measure. The present work extends previous results to possibly non-stationary
GRFs Z, accounts explicitly for a discretization-level dependent truncation of the representation of the GRF,
and accounts for possibly low sample regularity of Z and of the random solution u in a polytopal physical domain
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D. In particular, Z and u are admitted in weighted Hölder and Sobolev spaces in the polytope D ⊂ Rd, the
weights allowing singularities in realizations of Z and of u due to corners (and edges in dimension d = 3) of D.
This allows, in particular, GRFs Z whose covariance is non-stationary, with associated Matérn SPDE (1.1) in
D with Dirichlet or Neumann boundary conditions, as proposed recently in [38]. Whereas in [26,35,36], globally
(in D) supported φj ’s were admitted (implying QMC quadratures with so-called “POD” weights), the present
analysis shows that for multilevel representation systems (ψj)j≥1 with localized supports, QMC quadratures
with product weights are admissible and, in a sense, natural. We also provided a novel QMC error analysis
with Gaussian weighted function spaces for QMC integration on the unbounded integration domain. It extends
the range of summability exponents from p ∈ (0, 1] obtained by exponential weight function as considered in
[26, 36] to p ∈ (2/3, 2) (Thm. 3.1, item 1.), while still retaining dimension independent convergence rate up to
1/(2p)+1/4. For GRFs Z whose spatial variation is parametrized by a representation system (ψj)j≥1 of functions
ψj(x) defined in D with “localized supports” we proved that QMC combined with continuous, piecewise linear
FE in D on families of regular, simplicial triangulations of D with suitable mesh refinement near vertices and
(in space dimension d = 3) edges of D allows for parameter-dimension independent error vs. work bounds.
Full elliptic regularity in function spaces in D without spatial weights and uniform truncation dimension, i.e.
s` = sL, ` = 0, . . . , L, as considered in Corollary 2 and Section 5 from [36] is a particular case of our results.
Here, we admitted bounded, polytopal domains D where ∂D consists of straight lines (in space dimension d = 2)
or of plane faces (in space dimension d = 3) which require weighted spaces for the spatial coordinate, and we
consider truncation dimensions s` of the input GRF that depend on the discretization level. The discretization
level dependent truncations of the GRF allow, for elliptic PDEs with log-Gaussian coefficients, in certain cases
an ε-complexity of MLQMC-FEM with product weights that is asymptotically equivalent to the ε-complexity
of QMC in the case that integrand evaluation would be available at unit cost. The parametric regularity results
in weighted function spaces in D hold also for polytopal D with piecewise smoothly curved boundaries as
considered in [40].

Since the assumed localization of the supports of the ψj in D was shown to allow for QMC integration
rules with so-called product weights, the present model of the computational work (6.3) includes the cost of
the generation of the QMC points. This cost is dominated by the cost of the fast CBC construction of QMC
generating vectors. It was considered an “off-line”, pre-computation in [35, 36] and the (quadratic w.r. to the
parameter dimensions s`) work count for the (precomputed) CBC construction for globally supported ψj (as
e.g. in Karhunen–Loève expansions) was omitted from the work counts in [35, 36]. We also note that the same
generating vectors can be used for different right hand sides f . However, if the representation system (ψj)j≥1 of
the GRF is altered due to modeling considerations of the lognormal diffusion coefficent, then the QMC generating
vectors need in general to be recomputed. In the present QMC error analysis, being based on product weights,
the work of the fast CBC construction of generating vectors due to Nuyens and Cools [42] and the generation of
QMC points scales linearly with respect to the parameter dimensions s`. We conclude in certain cases the same
asymptotic error vs. work bounds of the presently proposed MLQMC algorithm as for the numerical solution of
(one instance of) the respective deterministic, elliptic PDE. The error vs. work estimates for local supports and
product weights derived in this paper are in certain cases superior to corresponding error vs. work estimates for
representations of the GRFs with global supports (such as Karhunen–Loève expansions) and QMC with POD
weights as discussed in Section 6.3.

We considered only homogeneous Dirichlet boundary conditions on all of ∂D in (1.2) and, in the numer-
ical experiments section, only even integer order precision operators. This was for ease of exposition only:
the parametric regularity analysis of Section 4 and the elliptic regularity results in Section 2.2 remain
valid verbatim for problems with Neumann or mixed boundary conditions provided that suitable regular-
ity shifts of the Laplacian with these boundary conditions are available as well as FE spaces with suitable
interpolants. In particular, an analogous structure of the corner- and edge-weights in (2.4) can be used to
characterize elliptic regularity shifts in scales of weighted Sobolev- and Hölder spaces in D for these bound-
ary conditions. Precision operators of fractional and odd integer order in (1.1), i.e. when α ∈ R\(2N),
can be treated in exactly the same fashion, using recently developed methods for the efficient numerical
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solution of the SPDE (1.1). We refer to [9] and the references there for details of the corresponding
algorithms.

Appendix A. Error estimates of multilevel QMC with level dependent
truncation dimensions: global supports and POD weights

In this appendix, we augment the parametric regularity estimates in Section 5 from [36] in order to allow to
truncate the dimension of the MLQMC algorithm depending on the FE mesh level ` also for globally supported
functions ψgl

j in (1.3) as arises e.g. in Karhunen–Loève expansions; MLQMC-FEM was considered in [36], with
fixed truncation sL on all mesh levels ` = 0, 1, . . ., L.

Suppose that the GRF Z is represented as in (1.3) with ψgl
j and define the sequence (υj)j≥1 by υj := ‖ψgl

j ‖L∞ .
Assume the summability (υj)j≥1 ∈ `pPOD(N) for some pPOD ∈ (0, 1) and that (υj)j≥1 is decreasing. The
corresponding parametric solutions are denoted by usgl, u

s,T
gl , and u`gl = us`,T`gl , respectively.

Proposition A.1. Let s ∈ N. For every τ ∈ F , such that τj = 0 for every j > s, and for every y ∈ U ,

‖∂τ (u(y)− usgl(y))‖a(y) ≤
2|τ |+1|τ |!
log(2)|τ |

υτ
∥∥∥∥a(y)− asgl(y)

a(y)

∥∥∥∥
L∞(D)

‖usgl(y)‖a(y).

For every τ ∈ F such that there exists j > s with τj > 0, and every y ∈ U , there holds

‖∂τ (u(y)− usgl(y))‖a(y) ≤
|τ |!

log(2)|τ |
‖u(y)‖a(y).

Proof. The dependence on the parameter vector y is omitted in the proof for notational convenience. Introduce
the index sets F1 := {τ ∈ F : ∀j > s, τj = 0} and F2 := {τ ∈ F : ∃j > s, τj > 0}. For any τ ∈ F1,∫

D

a∇∂τ (u− usgl) · ∇vdx = −
∑

ν≤τ ,ν 6=τ

(
τ

ν

)∫
D

ψτ−νa∇∂ν(u− usgl) · ∇vdx

−
∑
ν≤τ

(
τ

ν

)∫
D

ψτ−ν(a− asgl)∇∂νusgl · ∇vdx.

The choice v = ∂τ (u− usgl) implies with the Cauchy–Schwarz inequality and equation (3.10) of [26]

‖∂τ (u− usgl)‖a ≤
∑

ν≤τ ,ν 6=τ

(
τ

ν

)
υτ−ν‖∂ν(u− usgl)‖a +

∑
ν≤τ

(
τ

ν

)
υτ−ν

∥∥∥∥a− asgl

a

∥∥∥∥
L∞(D)

‖∂νusgl‖a

≤
∑

ν≤τ ,ν 6=τ

(
τ

ν

)
υτ−ν‖∂ν(u− usgl)‖a +

∑
ν≤τ

(
τ

ν

)
υτ

|ν|!
log(2)|ν|

∥∥∥∥a− asgl

a

∥∥∥∥
L∞(D)

‖usgl‖a.

Since the previous estimate holds for every τ ∈ F1, Lemma 5 of [36] is applicable and thus for every τ ∈ F1,

‖∂τ (u− usgl)‖a ≤
∑
ν≤τ

(
τ

ν

)
|ν|!

log(2)|ν|
2|τ−ν||τ − ν|!

log(2)|τ−ν|
υτ
∥∥∥∥a− asgl

a

∥∥∥∥
L∞(D)

‖usgl‖a.

From the identity
∑
ν≤τ ,|ν|=`

(
τ
ν

)
=
(|τ |
`

)
(see e.g. [36], Eq. (5.25)),

∑
ν≤τ

(
τ

ν

)
|ν|!|τ − ν|!2|τ−ν| =

|τ |∑
`=0

∑
ν≤τ ,|ν|=`

(
τ

ν

)
|ν|!|τ − ν|!2|τ−ν| =

|τ |∑
`=0

|τ |!2|τ |−` ≤ 2|τ |+1|τ |!.
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Thus, for every τ ∈ F1,

‖∂τ (u− usgl)‖a ≤
2|τ |+1|τ |!
log(2)|τ |

υτ
∥∥∥∥a− asgl

a

∥∥∥∥
L∞(D)

‖usgl‖a.

The second assertion follows by equation (3.10) of [26] since for every τ ∈ F2 holds ∂τusgl = 0. �

Consider the spaceWγ(Rs) defined in (3.1) with respect to exponential weight functions w2
exp,j(y) = e−αexp|y|,

j ≥ 1. For L ∈ N, let the sequence (s`)`=0,...,L ⊂ N of truncation dimensions be non-decreasing and the sequence
(N`)`=0,...,L ⊂ N of numbers of QMC points at discretization level ` be non-increasing.

Theorem A.2. Suppose that (υj)j≥1 ∈ `pPOD(N) for some 0 < pPOD < 1. Let q ∈ (pPOD, 1]. Let αexp >
2 supj≥1{υj}. For any n ∈ N0, u ⊂ N with |u| <∞ and c1, c2 > 0, define

γPOD
u :=

c1(|u|+ n)!
∏
j∈u

υ
pPOD/q
j

c2

2−q

. (A.1)

There exists a constant C > 0 which does not depend on T`, s`, ` ≥ 1, such that for every ` ≥ 0

‖G(us`,T`gl )−G(us`−1,T`
gl )‖WγPOD (Rs` ) ≤ C‖G‖V ∗‖f‖V ∗s

−1/pPOD+1/q
`−1 .

Proof. We observe that ‖us`−1
gl ‖V ≤ ‖f‖V ∗ exp(

∑s`−1
j=1 |yj |υj) and that

∥∥∥∥∥a
s`
gl − a

s`−1
gl

as`gl

∥∥∥∥∥
L∞(D)

≤

∥∥∥∥∥∥1 + exp

 s∑̀
j=s`−1

−yjψj

∥∥∥∥∥∥
L∞(D)

∥∥∥∥∥∥
s∑̀

j=s`−1

yjψj

∥∥∥∥∥∥
L∞(D)

≤ 2 exp

 s∑̀
j=s`−1

|yj |υj

 s∑̀
j=s`−1

|yj |υj

depends only on yj , j ≥ s`−1. By Proposition A.1 and the Cauchy–Schwarz inequality for any u ⊂ {1 : s`−1},∫
Rs`−|u|

|∂uG(us`,T`gl (y)− us`−1,T`
gl (y))|

∏
j∈{1:s`}\u

φ(yj)dyj

≤ 2‖G‖V ∗‖f‖V ∗
2|u|+1|u|!
log(2)|u|

υu exp

∑
j∈u

|yj |υj


×
∫

Rs`−|u|
exp

2
∑

j∈{1:s`}\u

|yj |υj

 s∑̀
j=s`−1

|yj |υj
∏

j∈{1:s`}\u

φ(yj)dyj

≤ 2‖G‖V ∗‖f‖V ∗
2|u|+1|u|!
log(2)|u|

υu exp

∑
j∈u

|yj |υj +
∑

j∈{1:s`}\u

(
4υ2
j +

4υj√
2π

) s∑̀
j=s`−1

υj ,
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where we used that for any c > 0,
∫

R e
c|y|φ(y)dy ≤ exp(c2/2 + 2c/

√
2π), cf. Equation (4.15) of [26], and∫ c

−∞ φ(y)dy ≤ exp(2c/
√

2π)/2 (see e.g. [26], p. 355). Thus,

∫
R|u|

∫
Rs`−|u|

∂uG(us`,T`gl (y)− us`−1,T`
gl (y))

∏
j∈{1:s`}\u

φ(yj)dyj

2∏
j∈u

w2
exp,j(yj)dyj

≤ 4‖G‖2V ∗‖f‖2V ∗
(

2|u|+1|u|!
log(2)|u|

)2∏
j∈u

8υ2
j

αexp − 2υj
exp

16
∑

j∈{1:s`}\u

(
υ2
j +

υj√
2π

) s∑̀
j=s`−1

υj

2

.

(A.2)

Similarly, we obtain using Proposition A.1 that for u ⊂ {1 : s`} such that u ∩ {s`−1 + 1 : s`} 6= ∅,∫
R|u|

∫
Rs`−|u|

∂uG(us`,T`gl (y)− us`−1,T`
gl (y))

∏
j∈{1:s`}\u

φ(yj)dyj

2∏
j∈u

w2
exp,j(yj)dyj

≤ ‖G‖2V ∗‖f‖2V ∗
(
|u|!

log(2)|u|

)2∏
j∈u

2υ2
j

αexp − 2υj
exp

 ∑
j∈{1:s`}\u

υ2
j +

4υj√
2π

 ·
(A.3)

By Theorem 11 of [35], there exists a constant C > 0 such that∑
u⊂{1:s`},u∩{s`−1+1:s`}6=∅

(|u|!)2
∏
j∈u υ

2
j

γPOD
u

≤ Cs−2/pPOD+2/q
`−1

∑
u⊂{1:s`}

((|u|+ n)!)2

γPOD
u

·

Since
∑
j>s`−1

υj ≤ min{pPOD/(1 − pPOD), 1}‖(υj)j≥1‖`pPOD (N)s
−1/pPOD+1
`−1 (see e.g. [35], Eq. (14)), (A.2)

and (A.3) imply

‖G(us`,T`gl )−G(us`−1,T`
gl )‖2WγPOD (Rs` ) ≤ Cs

−2/pPOD+2/q
`−1

∑
u⊂{1:s`}

∏
j∈u

2υ2
j

αexp − 2υj
((|u|+ n)!)2

γPOD
u log(2)2u

,

where

C = C‖G‖2V ∗‖f‖2V ∗
(
1 + ‖(υj)j≥1‖`pPOD (N)

)
exp

16
∑
j≥1

(
υ2
j +

υj√
2π

) <∞

and C is independent of f , and the parameter dimension. Boundedness of the quantity∑
u⊂{1:s`}

∏
j∈u

2υ2
j

αexp − 2υj
((|u|+ n)!)2

γPOD
u log(2)2u

independently of the parameter dimension s` may be checked following the same arguments as in the proofs
of Theorem 20 and Corollary 21 from [26]. �

To state the error estimate of the MLQMC algorithm with POD weights and global supports, we assume
that f,G(·) ∈ L2(D), and that the Dirichlet Laplacian is boundedly invertible from H2(D) ∩ V to L2(D). In
this case the FE spaces V`, ` ≥ 0, result by uniformly refining an initial triangulation. They have mesh width
h` and dimension O(h−d` ), ` ≥ 0. Define

ῡj := max{υj , ‖|∇ψj |‖L∞(D)}, j ≥ 1.

The following corollary generalizes Theorem 9 of [36] to the case that also the truncation dimensions s` may
differ from sL.
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Corollary A.3. Suppose that (υj)j≥1 ∈ `pPOD(N) and (ῡj)j≥1 ∈ `p̄POD(N) for pPOD ∈ (0, 1) and p̄POD ∈
(max{2/3, pPOD}, 1). Let q ∈ (pPOD, 1). Consider the POD weights in (A.1) with υ

pPOD/q
j replaced by βj :=

max{ῡj , υpPOD/q
j }, j ≥ 1, and n = 5. Let αexp > 2 supj≥1{2υj , 9ῡj}.

Then, QMC randomly shifted lattice rules with N` points in dimension s` may be constructed in O(s2
`N` +

s`N` log(N`)), ` = 0, . . . , L, with the fast CBC algorithm from Section 5.2 of [41], so that the MLQMC algorithm
Q∗L in (3.3) satisfies, for χ̄ = 1/max{q, p̄POD} − 1/2,

√
E∆(|IsL(G(uLgl))−Q∗L(G(uLgl)))|2) ≤ C

(
L∑
`=0

ϕ(N`)−2χ̄(ξ`,`−1s
−2/pPOD+2/q
`−1 + h4

`−1)

)1/2

,

where ξ`,`−1 := 0 if s` = s`−1 and ξ`,`−1 := 1 otherwise.

Proof. The assertion follows by Theorem A.2, (3.4), and Theorem 9 and Corollary 8 of [36]. �

Remark A.4. Standard error bounds for FE discretizations imply that Theorem 9 of [36] may be extended to
f ∈ H−1+t(D), G(·) ∈ H−1+t′(D), t, t′ ∈ [0, 1]. Applying interpolation in the appropriate places in the proof of
Theorem 9 from [36]. Corollary A.3 remains valid with h

2(t+t′)
`−1 in place of h4

`−1.

Appendix B. Error vs. work analysis: global supports and POD weights

For the discussion of the required work to obtain a target accuracy in the case of global supports and POD
weights, we suppose that there are fast methods available for the evaluation of

∑s`
j=1 yjψ

gl
j (xk) for nodes xk,

which is necessary to assemble the stiffness matrix for a given QMC point y. Assume that the computational
work for mesh width h` ∈ (0, 1] is O(h−d` log(h−1

` ) + s` log(s`)), where #T = O(h−d` ). Then, for L ∈ N, the
computational work of Q∗L(G(uLgl)) is

workL = O

(
L∑
`=0

N`(s2
` + s` log(N`) + h

−d(1+η)
` + s` log(s`))

)
= O

(
L∑
`=0

N`(s2
` + h

−d(1+η)
` )

)
,

where we assume that s` asymptotically dominates log(N`) and that the PDE may be solved in O(h−d(1+η)
` )

for some η > 0 (see the assumption in (A3)). In contrast to the discussion in Section 3 from [36], we also take
into account the computational cost of the CBC construction, which is required to realize the QMC points. As
in Theorem 1 from [36], we suppose that for α′ > 0, there exists a constant C > 0 such that for every L ∈ N

|E(G(u))− E(G(uLgl))| ≤ C(hτL + s−α
′

L ).

As in Remark A.4, we assume f ∈ H−1+t(D) and G(·) ∈ H−1+t′(D), t, t′ ∈ [0, 1], and set τ = t + t′. Set
sL ∼ h−τ/α

′

L to equilibrate the error contributions. Furthermore, we choose

s` ∼ min{ch−τpPODp̄POD/(p̄POD−pPOD)
l , sL}, ` = 0, . . . , L− 1.

As a result by Corollary A.3 (with q = p̄POD) and Remark A.4 the following error estimate holds

error2
L = O

(
hτL +

L∑
`=0

N−2χ̄
` hτ`−1

)
,

where we used that the Euler totient function satisfies that ϕ(N)−1 ≤ 9/N for every N ≤ 1030. Corresponding
work estimates may be obtained along the line of the error vs. work analysis from Section 6.1 in the case of
Strategy 1. The QMC sample numbers are given by

N` =
⌈
N0

(
h−2τ
` max{h−d(1+η)

` ,min{h−2τα
` , h

−2τ/α′

L }}
)−1/(1+2χ̄)

⌉
, ` = 1, . . . , L, (B.1)
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and

N0 =


d2Lτ/χ̄e if max{2τα/d, 1 + η} < τ/(dχ̄),
d2Lτ/χ̄L1/(2χ̄)e if max{2τα/d, 1 + η} = τ/(dχ̄),
d2(2τ+d(1+η))L/(1+2χ̄)e if 1 + η ≥ 2τα/d, 1 + η > τ/(dχ̄),
d2Lmin{2τα−τ/χ̄,max{(d(1+η)−τ/χ̄),2τ/α′}}/(1+2χ̄)+Lτ/χ̄e if 1 + η < 2τα/d, 2α > 1/χ̄,

(B.2)

where we have set α = pPODp̄POD/(p̄POD − pPOD).

Theorem B.1. Let the QMC sample numbers for Q∗L(·) be given by (B.2) and (B.1). Suppose that
(υj)j≥1 ∈ `pPOD(N) and (ῡj)j≥1 ∈ `p̄POD(N) for pPOD ∈ (0, 1) and p̄POD ∈ (max{2/3, pPOD}, 1). Set
α = pPODp̄POD/(p̄POD − pPOD).

Then the error threshold ε > 0, i.e.,√
E∆(|E(G(u))−Q∗L(G(uLgl))|2) = O(ε),

may be achieved with

workL =


O(ε−1/χ̄) if max{2τα/d, 1 + η} < τ/(dχ̄),
O(ε−1/χ̄ log(ε−1)(1+2χ̄)/(2χ̄)) if max{2τα/d, 1 + η} = τ/(dχ̄),
O(ε−d/τ(1+η)) if 1 + η ≥ 2τα/d, 1 + η > τ/(dχ̄),
O(ε−dmin{2α/d,max{(1+η)/τ,2/(dα′)+1/(dχ̄}}) if 1 + η < 2τα/d, 2α > 1/χ̄,

where χ̄ = 1/p̄POD − 1/2.
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