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MODELING AND OPTIMIZING A ROAD DE-ICING DEVICE BY A
NONLINEAR HEATING

Frederic Bernardin1 and Arnaud Munch2,∗

Abstract. In order to design a road de-icing device by heating, we consider in the one dimensional
setting the optimal control of a parabolic equation with a nonlinear boundary condition of the Stefan–
Boltzmann type. Both the punctual control and the corresponding state are subjected to a unilateral
constraint. This control problem models the heating of a road during a winter period to keep the road
surface temperature above a given threshold. The one-dimensional modeling used in this work is a
first step of the modeling of a road heating device through the circulation of a coolant in a porous
layer of the road. We first prove, under realistic physical assumptions, the well-posedness of the direct
problem and the optimal control problem. We then perform some numerical experiments using real
data obtained from experimental measurements. This model and the corresponding numerical results
allow to quantify the minimal energy to be provided to keep the road surface without frost or snow.
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1. Introduction

De-icing a road pavement is an important issue in many countries subjected to winter weather conditions
that have a strong impact on road maintenance and road safety. The use of salt spreader to ensure the de-icing
of pavements can affect the environment close to the road. Also, devices have been implemented to heat the
road: electric heating, infrared lamps above the road surface, circulation of a heat transfer fluid in pipes inserted
in the road [10, 11, 14, 20–23]. The concept of heated pavement is not new. One of the most notable is the
Serso project built in Switzerland, with a surface of 1300 m2: a heat transfer fluid, which draws its energy in
the ground, circulates in pipes inserted in the wearing layer pavement [10]. Due to the energy issue being an
important concern in all the world, the concept of a positive energy road has emerged since few years. By way of
illustration, considering a mean solar energy on the French territory of 1400 kWh m−2 yr−1, the French national
road network captures 196 billion kWh yr−1, seven times more energy than needed to ensure for example its
surface de-icing by heating.

Under the impulse of the European project R5G (Road of 5th generation), recent research [3, 18] has been
undertaken on heating the road by circulating a heat transfer fluid within a porous layer of the road. In
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Figure 1. The Egletons demonstrator.

these works, the pavement structure studied is composed of three asphalt layers where the central one is a
highly porous draining asphalt through which circulates a fluid (water) via gravitational flow under slant effect.
A demonstrator is developed by Cerema (Centre for expertise and engineering on risks, urban and country
planning, environment and mobility), EATP (French school of public works) and IFSTTAR (French institute of
science and technology for transport, development and networks). This is an experimental roadway constructed
in 2014 at Egletons, France. The road with 50 m in length and 4 m in width is composed of three layers: a
wearing course layer of semi-phaneritic asphalt concrete 0.06 m thick; a bonding course layer of 0/14 porous
asphalt 0.08 m thick; and a base layer of asphalt concrete with a thickness of 0.05 m. The transversal slope
is around 2% with no longitudinal slope. The demonstrator consists of two parts: a control road and a road
in which a fluid (water) circulates through the porous asphalt layer (see Fig. 1). The second one is equipped
with two tanks for the supply and recovery of fluid circulating in the bonding course layer. A pump is used to
remove fluid from the downstream tank and re-inject it into the upstream tank. Fluid circulation is maintained
in the porous asphalt layer by a watertight seal between it and the underlying layer (see Fig. 2). The weather
is known on the site thanks to meteorological sensors delivering time-real data on humidity and temperature of
the air, radiation fluxes (solar and infrared), wind speed, rainfall and snow. Temperature sensors are inserted in
the road from surface until one meter deep in each part of the road (the control one and the one circulated by
coolant). To address the energy issue in an experimental way, a heat storage in the granitic soil will be studied
by implanting 3 vertical geothermal probes of depth 50 m, allowing to take energy from the ground to heat the

Figure 2. Scheme of the demonstrator (case of heating).
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road in winter, and to store in the ground the heat coming from the road in summer. The demonstrator was
presented in a French TV show in 2016 [19].
Whatever the technique used (electrical heating, pipes, porous asphalt), the design of the devices needs to
quantify the minimal energy to be provided to keep the road surface without frost or snow, for a given winter
meteorological scenario. In order to address this question, we consider in this work the optimal control of a
generic heating road model. We are interested in heating during the time interval by a punctual heating source
inserted in the road, which is modeled according to its vertical dimension [2, 5, 8, 12]. The optimization of the
heating through the punctual source leads to an optimal control associated to a one dimensional heat type
equation. The underlying functional to minimize represents the energy expended by the positive source over the
time period. On a mathematical viewpoint, we then face an optimal control problem, subjected to constraints
both on the punctual source and on the temperature state, this latter being solution of a partial differential
equation with a nonlinear boundary condition of the Stefan–Boltzmann type.

This paper is organized as follows. In Section 2, we describe respectively the bi-dimensional road heating model
and its longitudinal one dimensional reduction leading to the aforementioned nonlinear optimal control problem.
Sections 3 and 4 then study the mathematical properties of the one dimensional model and its associated control
problem respectively. Section 5 describes the finite dimensional approximation used to solve the control problem
then discusses some numerical experiments. Section 6 provides three extensions and perspectives while Section 7
concludes the study.

2. Modeling of the road heating and optimal control

We first describe the modeling of the heating thanks to the circulation of a coolant in a bonding porous layer
of the road described in Figure 2. Space variables are x along the sub-horizontal transversal axis of the pavement
with slant angle β and y along the upwards sub-vertical axis, perpendicular to x: we refer to Figure 3 which
depicts a transversal two dimensional view of the road. The road is assumed to have no longitudinal slant and to
be infinite in its third dimension. he and L denote the height of the road structure and its length, respectively.
The hydraulic regime is assumed stationary with hydraulic parameters independent of temperature θ, expressed
in Kelvin. Denoting by 1 ≤ i ≤ 4 the subscripts of the road layers, the thermo-hydraulic model is as follows.
For t > 0, 0 ≤ x ≤ L and 0 ≤ y ≤ he:

Ci
∂θ

∂t
(x, y, t)− λi∆θ (x, y, t) = 0, i ∈ {1, 3, 4},

C2
∂θ

∂t
(x, y, t) + Cfv

∂θ

∂x
(x, y, t)− (λ2 + φ2λf )∆θ (x, y, t) = 0,

v = −KH2 −H1

L
,

(2.1)

where Ci, λi, φi, Cf , λf , v and K denote specific heat, thermal conductivity and porosity of layer i, specific
heat and thermal conductivity of the fluid, Darcy fluid velocity along x axis (here supposed to be uniform
with respect to x and y) and hydraulic conductivity of the porous asphalt, respectively. H1 and H2 represent
hydraulic heads imposed upstream and downstream of the fluid circulating in porous draining asphalt layer.
The assumption of a saturated fluid circulation corresponds to H1 − H2 ≥ βL. As mentioned in Figure 3,
boundary conditions for problem (2.1) are homogeneous Neumann except for the upstream condition of porous
asphalt layer (x = 0, e1 ≤ y ≤ e1 + e2) and the road surface condition (y = 0). For the first one, the injection
temperature of the fluid is imposed:

∀ e1 ≤ y ≤ e1 + e2, ∀ t ≥ 0, θ(0, y, t) = θf (t). (2.2)

The second one, that is the road surface boundary condition expresses the energy balance between road and
atmosphere

λ1
∂θ

∂y
(x, 0, t) = σε(t)θ4(x, 0, t) +Hv(t)(θ(x, 0, t)− θa(t))−Ratm(t)− (1−A(t))Rg(t) + LfI(t) (2.3)
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Figure 3. Scheme of pavement structure with its limit conditions (θf , θa are the injection
temperature of the fluid and the air temperature respectively).

where the following notations are used:

ε,A : emissivity and albedo of the road surface,
σ : Stefan–Boltzmann constant (5.67× 10−8 W m−2K−4),

Ratm, Rg : atmospheric and global radiation (W m−2),
θa : air temperature (K),
Hv : convection heat transfer coefficient (W m−2K),
I : snow rate (mm s−1),

Lf : latent heat of fusion of the ice per kg (J kg−1).

According to [2], the convection coefficient is defined by Hv = Cpa × ρa(VwindCd +Cd1) where the following
notations are used:

Cpa : thermal capacity (J kg K−1) of the air, ρa : density of the air (kg m−3),
Vwind : wind velocity (m s−1), Cd, Cd1 : two convection coefficients (–).

In a first step, we use and study here a one dimensional reduced model obtained by fixing the sub-horizontal
axis x. The injection temperature term θf supported on the boundary {0} × (e1, e1 + e2) is replaced by a
punctual heating source q inserted in the road (localized at y = y0 ∈ (0, he)). For any T > 0, we denote
QT := (0, he)× (0, T ). The evolution of the temperature along the road, now modeled according to its vertical
dimension (as explained and used in [2, 5, 8]) satisfies the following boundary value system:

c(y)θt(y, t)−
(
k(y)θy(y, t)

)
y

= q(t)δ(y0), (y, t) ∈ QT ,
−k(0)θy(0, t) = f1(t)− f2(t)θ(0, t)− σε(t)θ4(0, t), θy(he, t) = 0, t ∈ (0, T ),
θ(y, 0) = θ0(y), y ∈ (0, he),

(2.4)

where θ = θ(y, t) denotes the temperature in Kelvin at the point y and at time t and where the following
notations are used:

c(y) : volumic heat capacity of the road material at point y (J K−1 m−3),
k(y) : thermal conductivity of the road material at point y (W K−1 m−1).

(2.5)
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Here and in the sequel, θt and θy stand for the partial derivative of the function θ = θ(y, t) with respect to
the space variable y and the time t, respectively. The time positive functions f1 and f2 which appear in the
nonlinear boundary conditions at y = 0 are defined by:

f1(t) := (1−A(t))Rg(t) +Ratm(t) +Hv(t)θa(t)− LfI(t), f2(t) := Hv(t). (2.6)

The optimization of the heating through the punctual source q localized at y = y0 ∈ (0, he) leads to the
following optimal control problem:{

inf
q∈L1(0,T )

J(q) :=
∫ T

0
q(t)dt,

subjected to q(t) ≥ 0, θ(0, t) ≥ θ, ∀t ∈ (0, T ), θ = θ(q) solves (2.4)
(2.7)

for some positive value θ, which represents the minimal temperature required. The functional J represents
the energy expended by the power q over the period [0, T ]. Equation (2.7) is thus an optimal control problem
subjected to inequality contraints both on the control variable and the temperature state, this latter being
solution of a partial differential equation with a nonlinear boundary condition of the Stefan–Boltzmann type.
The constraint condition θ(0, t) ≥ θ on the state is not frequent in the optimal control literature as it involves
technical developments and is reminiscent of Signorini type conditions (see [9] and also Sect. 6.1). We mention
[17] which addresses the controllability of the one dimensional linear heat equation subjected to the boundary
condition θy(0, t) = θ4(0, t) + u(t), u being the control. We also mention [1] which addresses the controllability
of a linear string submitted to a unilateral obstacle at one extremity.

3. Analysis of the one dimensional model

Let H = L2(0, he), V = H1(0, he) and denote by V ′ the dual of V . We consider the following boundary value
problem: find a solution θ of

c(y)θt(y, t)−
(
k(y)θy(y, t)

)
y

= q(t)δ(y0), (y, t) ∈ QT ,
−k(0)θy(0, t) = f1(t)− f2(t)θ(0, t)− σε(t)θ(0, t)3|θ(0, t)|, θy(he, t) = 0, t ∈ (0, T ),
θ(y, 0) = θ0(y), y ∈ (0, he).

(3.1)

With respect to the system (2.4) introduced in Section 2, the nonlinear term σε(t)θ4(0, t) on the boundary is
replaced by the term σε(t)θ3(0, t)|θ(0, t)|, which is monotone w.r.t. θ(0, t). Actually, we will show in Corollary 3.6
that θ ≥ 0.

The weak formulation associated to (3.1) is as follows: find θ ∈ L2(0, T, V ) such that θt ∈ L2(0, T, V ′) and

(c θt(t), φ)H + a(t, θ(t), φ)+σε(t)θ(0, t)3|θ(0, t)|φ(0)
= q(t)φ(y0) + f1(t)φ(0), ∀φ ∈ V, a.e.t ∈ (0, T )

(3.2)

and
θ(0) = θ0. (3.3)

(, )H denotes the inner product over H while the form a : R+ × V × V → R is defined as follows

∀ (ψ, φ) ∈ V 2, a(t, ψ, φ) =
∫ he

0

k(y)ψyφydy + f2(t)ψ(0)φ(0).

In order to simplify the notation, we introduce, for almost all t ∈ (0, T ) and g ∈ V , the element Φ(g) =
g(0)3|g(0)|δ0 which can be identified with an element in V ′ so that

σε(t)
(
Φ(θ(t)), φ

)
V ′,V

= σε(t)θ(0, t)3|θ(0, t)|φ(0), t ∈ (0, T ). (3.4)

Using that ‖φ‖ := (‖φy‖2H + φ(0)2)1/2 defines a norm equivalent to ‖φ‖V , the following holds true.
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Lemma 3.1. Let us assume that there exists k0 > 0 such that k(y) ≥ k0 for all y ∈ [0, he]. The bilinear form
a defines a norm equivalent to ‖ · ‖V and

a(t, ψ, ψ) ≥ α(t)‖ψ‖2V , a(t, ψ, φ) ≤ β(t)‖ψ‖V ‖φ‖V ∀ψ, φ ∈ V,∀t ∈ (0, T )

with
α(t) := min(k0, f2(t)), β(t) := max(‖k‖L∞(0,he), f2(t)). (3.5)

Let us then introduce the following regularity assumptions:

(H)


q, f1 ∈ H1(0, T ), θ0 ∈ V, (k(θ0)y)y ∈ V ′,
c, k ∈ L∞(0, he),
ε ∈ H1(0, T ), ε−1εt ∈ L∞(0, T ), ε(t) ≥ 0,∀t ∈ (0, T ),
f2 ∈ H1(0, T ), f2,t ∈ L∞(0, T ).

Theorem 3.2. Assume the hypothesis (H). Assume moreover that the control q satisfies q(0) = 0 and that the
initial condition θ0 satisfies the compatibility condition

−k(0)(θ0)y(0) = f1(0)− f2(0)θ0(0)− σε(0)θ3
0(0)|θ0(0)|, (θ0)y(he) = 0, (3.6)

at the point y = 0 and y = he, respectively. Then, there exists a unique solution θ of (3.2) and (3.3) such that

θ, θt ∈ L2(0, T, V ) ∩ L∞(0, T,H).

Moreover, there exists a constant C1 = C(he,miny∈[0,he] k(y),mint∈[0,T ] f2(t)) > 0 such that

‖
√
c θ‖L∞(0,T,H) + ‖θ‖L2(0,T,V ) ≤ C1(‖θ0‖H + ‖q‖L2(0,T ) + ‖f1‖L2(0,T )),

and a constant C2 = C(C1, ‖f2‖H1(0,T ), ‖ε−1εt‖L∞(0,T ), ‖f2,t‖L∞(0,T )) > 0 such that

‖
√
c θt‖L∞(0,T,H) + ‖θt‖L2(0,T,V ) ≤ C2(‖k(θ0)y‖H + ‖q‖H1(0,T ) + ‖f1‖H1(0,T )).

In particular, this implies that the solution belongs to C([0, T ], V ) ⊂ C(QT ).

Proof. The proof follows the arguments developed in [9], Chapter 1, Section 5, based on the monotony of Φ,
that is

(Φ(g), g)V ′,V = g(0)4|g(0)| ≥ 0, ∀g ∈ V. (3.7)

The dependence of the emissivity function ε in (3.2) with respect to the time variable requires however
additional developments.
Step 1: Galerkin approximation. We introduce an orthonormal basis {wk}k≥1 of the separable space V and
define, for any integer m, by Vm the subspace of V generated by {wk}1≤k≤m. Moreover, for simplicity, we choose
w1 in order that θ0 = w1. Then, we define the solution θm(t) ∈ Vm of the following finite differential system:

(c θm,t(t), wk)H + a(t, θm(t), wk) + σε(t)
(
Φ(θm(t)), wk

)
V ′,V

= q(t)wk(y0) + f1(t)wk(0), 1 ≤ k ≤ m (3.8)

and
θm(0) = θ0. (3.9)

Consequently, the function θm : [0, tm] → V is given by θm(t) =
∑m
k=1 gk(t)wk where the time function

{gk}1≤k≤m solves a differential system for some time tm. The following a priori estimates show that tm > 0 is
independent of m.
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Step 2: First a priori estimates. The sum over k = 1, . . . ,m of (3.8) first leads to

(c θm,t(t), θm(t))H + a(t, θm(t), θm(t)) + σε(t)
(
Φ(θm(t)), θm(t)

)
V ′,V

= q(t)θm(y0, t) + f1(t)θm(0, t)

leading, in view of (3.7), to

1
2

d
dt
‖
√
c θm(t)‖2H + a(t, θm(t), θm(t)) ≤ q(t)θm(y0), t) + f1(t)θm(0, t).

Lemma 3.1 implies

1
2

d
dt
‖
√
c θm(t)‖2H + α(t)‖θm(t)‖2V ≤ q(t)θm(y0, t) + f1(t)θm(0, t).

Using that supy∈[0,he] |θm(t, y)| ≤ Che‖θm(t)‖V for some constant Che > 0, we get

1
2

d
dt
‖
√
c θm(t)‖2H + α(t)‖θm(t)‖2V ≤ Che

(|q(t)|+ |f1(t)|)‖θm(t)‖V .

The inequality (|q(t)|+ |f1(t)|)‖θm(t)‖V ≤ 1
2α2

(|q(t)|+ |f1(t)|)2 + α2
2 ‖θm(t)‖2V for some α2 ∈ (0, 1) leads to

1
2

d
dt
‖
√
c θm(t)‖2H +

(
α(t)− Che

α2

2

)
‖θm(t)‖2V ≤

Che

2α2
(|q(t)|2 + |f1(t)|2).

Taking α2 small enough so that α(t)− CLα2
2 ≥ 0, we obtain that

1
2
‖
√
c θm(t)‖2H + α

∫ t

0

‖θm(τ)‖2V dτ ≤ 1
2
‖
√
c θm(0)‖2H +

Che

2α2

∫ t

0

(|q(τ)|2 + |f1(τ)|2)dτ

with α := inft∈(0,T )

(
α(t)− Che

α2
2

)
. Finally, we get

‖
√
c θm‖L∞(0,T,H) + ‖θm‖L2(0,T ;V ) ≤ C

(
‖θm(0)‖H + ‖q‖L2(0,T ) + ‖f1‖L2(0,T )

)
(3.10)

for some positive constant C = C(miny∈[0,he] k(y),mint∈[0,T ] f2(t),miny∈[0,he] c(y), he).
Step 3: Second a priori estimates. Taking t = 0 in (3.8), we obtain

(c θm,t(·, 0), wk)H = −a(t, θm(·, 0), wk)− σε(t)
(
Φ(θm(·, 0)), wk

)
+ q(0)wk(y0) + f1(0)wk, 1 ≤ k ≤ m. (3.11)

From (3.6) and the property q(0) = 0, (3.11) leads to

(c θm,t(·, 0), wk)H = ((k(y)(θ0)y)y, wk)V ′,V , ∀wk ∈ V,

from which we deduce, following [9], the bound

‖c θm,t(·, 0)‖H ≤ ‖(k(y)(θ0)y)y‖V ′ . (3.12)

Then, by differentiating (3.8) with respect to time, we get, for all 1 ≤ k ≤ m

(c θm,tt(t), wk)H + a(t, θm,t(t), wk) + f2,t(t)θm(0, t)wk(0)

+ σ
d
dt
(
ε(t)(Φ(θm(t)), wk)

)
= qt(t)wk(y0) + f1,t(t)wk(0),

(3.13)

with
d
dt
(
ε(t)(Φ(θm(t)), wk)

)
= σεt(t)

(
θm(0, t)3|θm(0, t)|wk(0)

)
+ σε(t)

(
θm(0, t)3|θm(0, t)|

)
t
wk(0).
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Using again (3.7), we have
(
θm(0, t)3|θm(0, t)|

)
t
θm,t(0, t) ≥ 0 leading to the inequality (recall that σε(t) ≥ 0)

(c θm,tt(t), θm,t(t)) + a(t, θm,t(t), θm,t(t)) + σεt(t)θm(0, t)3|θm(0, t)|θm,t(0, t)
≤ qt(t)θm,t(y0, t) + f1,t(t)θm,t(0, t)− f2,t(t)θm(0, t)θm,t(0, t)

and then to

1
2

d
dt
‖
√
c θm,t(t)‖2H + α(t)‖θm,t(t)‖2V ≤ −σεt(t)

(
θm(0, t)3|θm(0, t)|θm,t(0, t)

)
+ (|qt(t)|+ |f1,t(t)|)‖θm,t(t)‖V + |f2,t(t)|‖θm(t)‖V ‖θm,t(t)‖V

with α defined in (3.5). To estimate the remaining boundary term, we multiply (3.8) by gk,t and sum over k
leading to the equality

σε(t)(Φ(θm(t)), θm,t(t)) = −(c θm,t(t), θm,t(t))H − a(t, θm(t), θm,t(t)) + q(t)θm,t(y0, t) + f1(t)θm,t(0, t)

and therefore to

−σεt(t)θm(0, t)3|θm(0, t)|θm,t(0, t) = −εt(t)
ε(t)

(Φ(θm(t)), θm,t)V ′,V

=
εt(t)
ε(t)

(
(c θm,t(t), θm,t(t))H + a(t, θm(t), θm,t(t))

− q(t)θm,t(y0, t)− f1(t)θm,t(0, t)
)
.

Using Lemma 3.1, we write

−σεt(t)θm(0, t)3|θm(0, t)|θm,t(0, t) ≤
∣∣∣∣εt(t)ε(t)

∣∣∣∣(‖√c θm,t(t)‖2H + β(t)‖θm(t)‖V ‖θm,t(t)‖V

+ Che
(|q(t)|+ |f1(t)|)‖θm,t(t)‖V

)
,

where β is defined in (3.5). Using again several times the Young inequality, we obtain the inequality

1
2

d
dt
‖
√
c θm,t(t)‖2H+

(
α(t)− α1

2
− α2

2
− α3

2
− α4

2

)
‖θm,t(t)‖2V

≤
∣∣∣∣εt(t)ε(t)

∣∣∣∣‖√c θm,t(t)‖2H +
1

2α1
(|qt(t)|+ |f1,t(t)|)2 +

1
2α2
|f2,t(t)|2‖θm(t)‖2V

+
1

2α3

∣∣∣∣εt(t)ε(t)

∣∣∣∣2β2(t)‖θm(t)‖2V +
1

2α4

∣∣∣∣εt(t)ε(t)

∣∣∣∣2(|q(t)|+ |f1(t)|)2

for any α1, α2, α3, α4 > 0 small enough, from which we deduce that

1
2
‖
√
c θm,t(t)‖2H + α

∫ t

0

‖θm,t(τ)‖2V dτ ≤ 1
2
‖
√
c θm,t(0)‖2H +

∫ t

0

∣∣∣∣εt(τ)
ε(τ)

∣∣∣∣‖√c θm,t(τ)‖2Hdτ

+ α5‖θm‖2L2(0,T,V ) + α6 (3.14)

with

α := inf
t∈(0,T )

(
α(t)− 1

2
(α1 + α2 + α3 + α4)

)
, α5 :=

‖f2,t‖2L∞(0,T )

2α2
+

1
2α3

∥∥∥∥εtε β
∥∥∥∥2

L∞(0,T )

,

α6 :=
1

2α1
(‖qt‖2L2(0,T ) + ‖f1,t‖2L2(0,T )) +

1
2α4

∥∥∥∥εtε
∥∥∥∥2

L∞(0,T )

(‖q‖2L2(0,T ) + ‖f1‖2L2(0,T )).
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A Gronwall type lemma allows to deduce that, for all t ∈ (0, T ),

‖
√
c θm,t(t)‖2H ≤

(
‖
√
c θm,t(0)‖2H + α5‖θm‖2L2(0,T,V ) + α6

)(
1 + 2‖ε−1εt‖L∞(0,T )e

t‖ε−1εt‖L∞(0,T )

)
.

Uniform estimates (3.10) and (3.12) then imply that
√
cθm,t is uniformly bounded in L∞(0, T,H) with respect

to the parameter m. Inequality (3.14) then implies that θm,t is uniformly bounded in L2(0, T, V ) as well, and
that there exists a constant C > 0 such that

‖
√
c θm,t‖L∞(0,T,H) + ‖θm,t‖L2(0,T,V ) ≤ C

(
‖(k(y)(θ0)y)y‖V ′ + ‖q‖H1(0,T ) + ‖f1‖H1(0,T )

)
. (3.15)

Step 4: Limit as m → ∞. From (3.12) and (3.15), θm is bounded uniformly in L∞(0, T, V ) and therefore,
from (3.8), Φ(θm) is bounded in L∞(0, T, V ′). We can extract a subsequence {θµ}µ>0 such that, as µ→∞,

θµ → θ weakly star inL∞(0, T, V ),
θµ,t → θt weakly star inL2(0, T, V ) and weakly star inL∞(0, T,H),

Φ′(θµ)→ Q weakly star inL∞(0, T, V ′),
(3.16)

and
‖θ‖L∞(0,T,V ) + ‖θt‖L∞(0,T,V ) + ‖θt‖L∞(0,T,H) ≤ C.

The previous convergences imply notably that θµ(0) ⇀ θ0 as µ→∞ in V separable so that θ0 = θ(0).
Writing (3.8) for the subsequence θµ and using (3.16), we obtain that θ and Q satisfy the equality

(c θt(t), wk)H + a(t, θ(t), wk) + (Q,wk)V ′,V = q(t)wk(y0) + f1(t)wk(0), 1 ≤ k ≤ m

leading to (using that Vm is dense in V )

(θt(t), v)H + a(t, θ(t), v) + (Q, v)V ′,V = q(t)v(y0) + f1(t)v(0), ∀v ∈ V. (3.17)

It remains to pass to the limit in the nonlinear term in order to show the equality Q = Φ(θ) in L∞(0, T, V ′).
To do that, we use the equality (3.8): precisely, let φ ∈ L2(0, T, V ) and let

Uµ :=
∫ T

0

(Φ(θµ)− Φ(φ), θµ − φ)V ′,V dt

so that from (3.8),

Uµ =−
∫ T

0

(
(c θ′µ(t), θµ(t))H + a(t, θµ(t), θµ(t))− q(t)θµ(y0, t)− f1(t)θµ(0, t)

)
dt

−
∫ T

0

(Φ(θµ), φ)dt−
∫ T

0

(Φ(φ), θµ − φ)dt.

The monotony of Φ implies that Uµ ≥ 0. Moreover, the equality −
∫ T

0
(c θ′µ(t), θµ(t))Hdt = − 1

2‖
√
c θµ(T )‖2H +

1
2‖
√
c θ0‖2H and the weak star convergence of θµ in L∞(0, T, V ) (and so in L∞(0, T,H)) allows to take the lim

sup of Uµ. Precisely, from the upper semi-continuity of v → −‖v‖2H , we write that lim sup(−‖
√
c θµ(t)‖2H) ≤

−‖
√
c θ(t)‖2H for all t ∈ (0, T ) and therefore,

0 ≤ lim supUµ ≤ −
1
2
‖
√
c θ(T )‖2H +

1
2
‖
√
c θ0‖2H

−
∫ T

0

(
a(t, θ(t), θ(t))− q(t)θ(y0, t)− f1(t)θ(0, t)

)
dt−

∫ T

0

(Q,φ)dt−
∫ T

0

(Φ′(φ), θ − φ)dt.
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On the other hand, the integration over (0, T ) of (3.17) with v = θ(t) ∈ V leads to

−1
2
‖
√
c θ(T )‖2H +

1
2
‖
√
c θ0‖2H −

∫ T

0

(
a(t, θ(t), θ(t))− q(t)θ(y0, t)− f1(t)θ(0, t)

)
dt =

∫ T

0

(Q, θ(t))V ′,V dt.

The sum of the two previous relations implies that
∫ T

0
(Q − Φ(θ), θ − φ)dt ≥ 0 for all φ; in particular, for

φ = θ − λψ, λ ∈ R, θ ∈ L2(0, T, V ), the previous inequality gives
∫ T

0
(Q − Φ(θ − λψ), λψ)dt ≥ 0 and then by

making λ→ 0+ and λ→ 0− ∫ T

0

(Q− Φ(θ), ψ)V ′,V dt = 0 ∀ψ ∈ L2(0, T, V )

which allows to write Q = Φ(θ) in L∞(0, T, V ′).
Step 5: Uniqueness. By contradiction, let θ, θ? be two distinct solutions of (3.2) and let w = θ − θ?. Taking

φ = w(t) ∈ V in (3.2), we obtain

(cwt(t), w(t))H + a(t, w(t), w(t)) = −
(
Φ(θ(t))− Φ(θ?(t)), w

)
H
≤ 0, a.e. t ∈ (0, T )

by the monotony of Φ. Since c > 0, we deduce that (cw′(t), w(t))H ≤ 0 then ‖
√
cw(t)‖H ≤ ‖√

cw(0)‖H = 0. �

Remark 3.3. The arguments of step 5 allow to show that if θ1 and θ2 are solution of (3.2) and (3.3) associated
to q1 and q2, respectively, the other data being equals, then there exists a constant C > 0 such that

‖θ1 − θ2‖L∞(0,t,H) + ‖θ1 − θ2‖L2(0,t,V ) ≤ C‖q1 − q2‖L2(0,t), ∀t > 0. (3.18)

Remark 3.4. A similar well-posedness result holds true if the Neumann boundary condition at y = he is
replaced by a non homogenous Dirichlet boundary θ(he, ·) = θd ∈ R. This latter, which is physically relevant if
the height he is large enough, will be used in the numerical Section 5.

Moreover, the solution enjoys the following comparison principle.

Proposition 3.5. Assume the hypothesis of Theorem 3.2. Let θ and θ̂ the solutions of (3.2) and (3.3) associated
to the pair (q, θ0) and (q̂, θ̂0), respectively. If q ≥ q̂ in [0, T ] and θ0 ≥ θ̂0 in [0, L], then θ ≥ θ̂ in QT .

Proof. Let m = θ̂ − θ ∈ V and m+ = max(0,m) the positive part of m. Taking φ = m+(t) ∈ V in (3.2), we
obtain

−(cmt(t),m+(t))H − a(t,m(t),m+(t)) +
(
Φ(θ(t))− Φ(θ̂(t)),m+

)
V ′,V

= (q(t)− q̂(t))m+(y0), a.e.t ∈ (0, T ).

The right hand side is positive, while, in view of the monotony of Φ, the term
(
Φ(θ(t))−Φ(θ̂(t)),m+

)
V ′,V

is
negative. Therefore,

(cmt(t),m+(t))H + a(t,m(t),m+(t)) ≤ 0, a.e.t ∈ (0, T )

and using that a(t,m(t),m+(t)) = a(t,m+(t),m+(t)) and that (cmt(t),m+(t))H = (c (m+(t))t,m+(t))H , we
have

(c (m+)t(t),m+(t))H + a(t,m+(t),m+(t)) ≤ 0, a.e.t ∈ (0, T ).

leading to d
dt‖
√
cm+(t)‖2H ≤ 0 and ‖

√
cm+(t)‖2H ≤ ‖

√
cm+(0)‖2H = 0 since m(0) = θ̂(0)− θ(0) ≤ 0. �

In particular, since the time function f1 is nonnegative, we deduce the following property.

Corollary 3.6. Assume the hypothesis of Theorem 3.2. Let θ the solution of (3.2) and (3.3) associated to the
pair (q, θ0). If q ≥ 0 in [0, T ] and θ0 ≥ 0 in [0, he], then θ ≥ 0 in QT .

It results that if the source term and if the initial condition are nonnegative, then the boundary value problem
(3.1) coincides with the initial one (2.4).
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4. Analysis of the optimal control problem

4.1. Well-posedness of the optimal control problem

Let α > 0 and θ > 0. We assume that the initial condition θ0 is nonnegative a.e. in [0, he]. In view of the
regularity assumption on q in Theorem 3.2, we introduce the following Tychonov regularization of the optimal
control problem (2.7):

inf
(θ,q)∈C

Jα(θ, q) :=
1
2
(
‖q‖2L1(0,T ) + α‖q‖2H1(0,T )

)
(4.1)

where the constraint set is given by

C :=
{
q ∈ H1(0, T ), q(0) = 0, q(t) ≥ 0, θ(0, t) ≥ θ,∀t ∈ [0, T ], θ = θ(q) solves (2.4)

}
.

Consequently, if the control function q belongs to C, then from Corollary 3.6, the weak formulation of (2.4)
coincides with the weak formulation of (3.1) and is well-posed. We relax the second inequality constraint from
C and introduce the equivalent extremal problem:

(Pψ) : inf
q∈D

Jα(q) :=
1
2
(
‖q‖2L1(0,T ) + α‖q‖2H1(0,T )

)
+ ψK(q)

where ψK is the indicator function of K, that is ψK(q) = 0 if q ∈ K and ψK(q) = +∞ else with K = {q ∈
H1(0, T ) s.t.

∫ T
0

((θ(0, t)− θ)−)2dt = 0 where θ = θ(q) solves (2.4)} and

D = {q ∈ H1(0, T ), q(0) = 0, q(t) ≥ 0, ∀t ∈ (0, T )}. (4.2)

Lemma 4.1. Let us assume that θ0 ≥ θ on (0, he). If one of the following hypotheses holds true,

(H1) y0 = 0; (H2) f1(t)− f2(t)θ − σε(t)θ4 ≥ 0, ∀t ∈ (0, T ),

then K is not empty.

Proof. Let Z := θ − θ where θ solves (3.2) and let Z− = min(0, Z) be the negative part of Z. We have for a.e.
t ∈ (0, T ),

(c θt(t), Z−(t))H + a(t, θ(t), Z−(t)) +
(
Φ(θ(t)), Z−(t)

)
V ′,V

= q(t)Z−(y0, t) + f1(t)Z−(0, t),

equivalently,

(cZ−t (t), Z−(t))H + a(t, Z−(t), Z−(t)) = −σε(t)θ(0, t)4Z−(0, t)

+ q(t)Z−(y0, t) +
(
f1(t)− f2(t)θ

)
Z−(0, t),

a.e. in (0, T ). We now claim that

−σε(t)θ(0, t)4Z−(0, t) ≤ −σε(t)θ4Z−(0, t), a.e. t ∈ (0, T ).

This is clear if Z−(0, t) = 0. If Z−(0, t) < 0, then 0 < θ(0, t) < θ and then θ(0, t)4 < θ4 leading to the result
since −σε(t)Z−(0, t) > 0. Consequently, a.e. in (0, T ),

(cZ−t (t), Z−(t))H+a(t, Z−(t), Z−(t)) ≤ q(t)Z−(y0, t) +
(
f1(t)− f2(t)θ − σε(t)θ4

)
Z−(0, t)

≤q(t)
(
Z−(y0, t)− Z−(0, t)

)
+
(
q(t) + f1(t)− f2(t)θ − σε(t)θ4

)
Z−(0, t).

(4.3)
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If hypothesis (H2) holds true, the right hand side is negative and we conclude that ‖
√
cZ−(t)‖H ≤

‖
√
cZ−(0)‖H = 0 for all t ≥ 0, since q ≥ 0. Remark in particular that (H2) holds true if θ ≤ 0 and we

re-obtain the maximum principle, Corollary 3.6. On the other hand, if y0 = 0, we get the same conclusion as
soon as q(t) + f1(t)− f2(t)θ − σε(t)θ4 ≥ 0 for all t, that is, if q is large enough. �

According to the physical intuition, if the heat source is located on the surface, then the temperature can
be maintained as large as requested. In view of the continuity of the temperature θ(y, t) with respect to the
longitudinal axis y, the same result holds true if y0 is negative but closed enough to 0. Actually, we believe that
the same result holds true if the heat source, located on any y0 < 0, is large enough, the temperature θ being a
continuous and monotonous function of q, see Proposition 3.5.

Lemma 4.2. K is a closed convex subset of H1(0, T ) and so ψK is convex and lower semi-continuous.

Proof. Let q, q ∈ K and check that for any λ ∈ (0, 1), λq + (1 − λ)q belongs to K. q ∈ K implies that for all
t ∈ [0, T ], θq(t) ≥ θ where θq solves (2.4) associated to the source q. Similarly, θq(t) ≥ θ. Let θλ be the solution
associated to the control function λq+(1−λ)q and let [θ] := λθq+(1−λ)θq. From (3.2), θλ and [θ], respectively
solves

(θλ,t(t), φ)H + a(t, θλ(t), φ) +
(
Φ(θλ(t)), φ

)
V ′,V

= (λq(t) + (1− λ)q(t))φ(y0) + f1(t)φ(0), ∀φ ∈ V, a.e. t ∈ (0, T )

and

([θ]t(t), φ)H + a(t, [θ](t), φ) +
(
λΦ(θq(t)) + (1− λ)Φ(θq(t)), φ

)
V ′,V

= (λq(t) + (1− λ)q(t))φ(y0) + f1(t)φ(0), ∀φ ∈ V, a.e. t ∈ (0, T ).

The difference W := θλ − [θ] solves

(Wt(t), φ)H + a(t,W, φ) +
(

Φ(θλ(t))− λΦ(θq(t))− (1− λ)Φ(θq(t)), φ
)
V ′,V

= 0, ∀φ ∈ V, a.e.t ∈ (0, T ).

Taking φ = W (t), integrating over (0, t) and using that W (0) = 0, we arrive at

1
2
‖W (t)‖2H +

∫ t

0

a(s,W (s),W (s))ds

+
∫ t

0

(
Φ(θλ(s))− λΦ(θq(s))− (1− λ)Φ(θq(s)), φ

)
V ′,V

ds = 0, ∀t ≥ 0

leading to
1
2
‖W (t)‖2H +

∫ t

0

(
Φ(θλ(s))− λΦ(θq(s))− (1− λ)Φ(θq(s)), φ

)
V ′,V

ds

= −
∫ t

0

a(s,W (s),W (s))ds, ∀λ ∈ (0, 1),∀t > 0.

(4.4)

If
∫ t?

0
a(s,W (s),W (s))ds = 0 for some t? > 0, then W (s) = 0 for all s ∈ [0, t?] and then [θ](0, s) =

λθq(0, s) + (1− λ)θq(0, s) ≥ θ for all s ∈ [0, t?]. The discussion is then reduced to the interval (t?, T ). Without
loss of generality, let us then assume that

∫ t
0
a(s,W (s),W (s))ds > 0 for all t > 0 so that∫ t

0

(
Φ(θλ(s))− λΦ(θq(s))− (1− λ)Φ(θq(s)),W (s)

)
V ′,V

ds < 0, ∀t > 0. (4.5)
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Suppose now that for all s ∈ (0, t), W (0, s) = θλ(0, s) − [θ](0, s) ≤ 0. The convexity of x → x4 leads to
[θ]4(0, s) ≤ λθ4

q(0, s) + (1− λ)θ4
q(0, s), then to

θ4
λ(0, s)− [θ]4(0, s) ≥ θ4

λ(0, s)− λθ4
q(0, s)− (1− λ)θ4

q(0, s),

and eventually to

W (0, s)
(
θ4
λ(0, s)− λθ4

q(0, s)− (1− λ)θ4
q(0, s)

)
≥W (0, s)

(
θ4
λ(0, s)− [θ]4(0, s)

)
.

But, the right-hand side is exactly (α− β)(α4 − β4) = (α− β)2(α2 + β2)(α+ β) with

α = θλ(0, s) ≥ θ > 0, β = λθq(0, s) + (1− λ)θq(0, s) ≥ θ > 0

and is therefore positive since β = [θ](0, s) ≥ θ by assumption and since α = θλ(0, s) ≥ 0 (in view of the
maximum principle). Consequently,∫ t

0

(
Φ(θλ(s))− λΦ(θq(s))− (1− λ)Φ(θq(s)),W (s)

)
V ′,V

ds

=
∫ t

0

σε(t)W (0, s)
(
θ4
λ(0, s)− λθ4

q(0, s)− (1− λ)θ4
q(0, s)

)
ds ≥ 0

(recall that σε(t) > 0) in contradiction with (4.5). We conclude that, for all t ∈ (0, T ), there exists at least one
s ∈ (0, t) such that W (0, s) > 0. Taking t > 0 arbitrarily small, we conclude that the function t→ W (y = 0, t)
increases in a neighborhood of zero. Then, since W (y = 0, t) ∈ C([0, T ]), there exists a time t1 > 0 such that
W (0, s) > 0 for all s ∈ (0, t1). If t1 = T , the proof is finished. If t1 < T , there exists a time t+1 > t1 such that
W (t+1 ) = 0. Then repeating the previous argument on the interval [t+1 , t] for any t ∈ (t+1 , T ), we conclude that in
the neighborhood of t+1 , the function W (0, ·) is strictly positive. Consequently, the points in [0, T ] where W (0, ·)
vanishes correspond to global minimum: for all t ∈ [0, T ], W (0, t) ≥ 0 and the convexity of K follows. �

Theorem 4.3. The extremal problem (Pψ) admits a unique solution in D.

Proof. This results from the fact that function Jψ is lower semi-continuous, strictly convex, over the closed
convex set D. �

It results that the equivalent optimal control problem (4.1) is well-posed as well. From a practical viewpoint,
it is convenient to address this problem with a penalty method. For any parameter ε > 0, we introduce the
penalized extremal problem:

(Pε) : inf
q∈D

Jα,ε(q) :=
1
2
‖q‖2L1(0,T ) +

α

2
‖q‖2H1(0,T ) +

ε−1

2

∥∥∥∥(θ(0, ·)− θ)−
∥∥∥∥2

L2(0,T )

where D is defined in (4.2).

Theorem 4.4. For all ε > 0, Problem (Pε) admits a unique solution qε. Moreover, as ε → 0, qε strongly
converges in H1(0, T ) to q, the solution of (4.1).

Proof. The functional Jα,ε is strictly convex, satisfies the property lim‖q‖H1(0,T )→+∞ Jα,ε(q) = +∞ and is
continuous over H1(0, T ) in view of remark (3.3). Moreover, the set D is a closed convex set of H1(0, T ) which
gives the existence and uniqueness of a solution qε of Problem (Pε). The strong convergence of qε with respect
to ε is the consequence of the strict convexity of Jα,ε. In view of Theorem (3.2), this strong convergence implies
the convergence of the corresponding solution θε = θ(qε) toward the solution θ(q) in C([0, T ], V ). �
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4.2. Optimality system for the penalized extremal problem

We derive in this section the optimality condition associated to the extremal problem (Pε). This allows to
determine the first order variation of the cost Jα,ε and define a minimizing sequence.

Let H1
0,0(0, T ) = {q ∈ H1(0, T ), q(0) = 0}.

Theorem 4.5. For any α > 0, ε > 0, the functional Jα,ε is Gâteaux differentiable on the set D and its derivative
at q ∈ D in the admissible direction q (i.e. q ∈ H1

0,0(0, T ) such that q + ηq ∈ D for all η 6= 0 small) is given by

< J ′α,ε(q), q > := lim
η→0

Jα,ε(q + ηq)− Jα,ε(q)
η

=
∫ T

0

(
‖q‖L1(0,T ) − p(y0, ·)

)
q dt+ α

∫ T

0

(qq + qtqt)dt
(4.6)

where p solves the adjoint problem
−c(y)pt(y, t)−

(
k(y)py(y, t)

)
y

= 0, (y, t) ∈ QT ,
−k(0)py(0, t) = −f2(t)p(0, t)− 4σε(t)θq(0, t)3p(0, t)− ε−1(θq(0, t)− θ)−, t ∈ (0, T ),
py(he, t) = 0, t ∈ (0, T ),
p(y, T ) = 0, y ∈ (0, he),

(4.7)

and θq solves (2.4). As a consequence, the unique minimizer qε in the convex set D of the convex functional Jα,ε
is characterized by the optimality condition

< J ′α,ε(qε), q − qε > ≥ 0, ∀q ∈ D.

Proof. Let θq+ηq be the solution associated to the control function q+ηq. Using that the function x→ (x− θ)−
is 1-Lipschitz on R, we write that∫ T

0

(
(θq+ηq(0, t)− θ)−

)2

dt−
∫ T

0

(
(θq(0, t)− θ)−

)2

dt =
∫ T

0

(
(θq+ηq(0, t)− θ)− − (θq(0, t)− θ)−

)
×
(

(θq+ηq(0, t)− θ)− + (θqs(0, t)− θ)−
)

dt

≤
∫ T

0

∣∣∣∣θq+ηq(0, t)− θq(0, t)∣∣∣∣((θq+ηq(0, t)− θ)− + (θq(0, t)− θ)−
)

dt

≤ ‖θq+ηq(0, ·)− θq(0, ·)‖L2(0,T )

(
‖(θq+ηq(0, ·)− θ)−‖L2(0,T )

+ ‖(θq(0, ·)− θ)−‖L2(0,T )

)
.

Estimate (3.18) implies that ‖θq+ηq(0, ·)− θq(0, ·)‖L2(0,T ) ≤ ‖θq+ηq − θq‖L2(0,T,V ) ≤ η‖q‖L2(0,T ) and that

lim
η→0

∫ T
0

(
(θq+ηq(0, t)− θ)−

)2

dt−
∫ T

0

(
(θq(0, t)− θ)−

)2

dt

η
≤ 2‖q‖L2(0,T )‖(θq(0, ·)− θ)−‖L2(0,T ).

Let us now expand the solution θq+ηq as follows θq+ηq = θq + ηθη where θq solves (2.4) and θη solves
c(y)θη,t(y, t)−

(
k(y)θη,y(y, t)

)
y

= q(t)δy0(y), (y, t) ∈ QT ,
−k(0)θη,y(0, t) = −f2(t)θη(0, t)− 4σε(t)θq(0, t)3θη(0, t)− ησε(t)f(t, η, θq, θη), t ∈ (0, T ),
θη,y(he, t) = 0, t ∈ (0, T ),
θη(y, 0) = 0, y ∈ (0, he)

(4.8)
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with f(t, η, θq, θη) := 6θ2
q(0, t)θ

2
η(0, t) + 4ηθq(0, t)θ3

η(0, t) + η2θ4
η(0, t). In particular, (3.18) implies the uniform

estimate ‖θη‖L2(0,T,V ) ≤ C‖q‖L2(0,T ). The compact injection of V in C([0, he]) then allows to show that the
term ‖θη(0, ·)− θ̂q(0, ·)‖L2(0,T ) converges to 0 as η → 0 where θ̂q solves the linear boundary value problem

c(y)θ̂q,t(y, t)−
(
k(y)θq,y(y, t)

)
y

= q(t)δy0(y), (y, t) ∈ QT ,
−k(0)θ̂q,y(0, t) = −f2(t)θ̂q(0, t)− 4σε(t)θq(0, t)3θ̂q(0, t), t ∈ (0, T ),
θ̂q,y(he, t) = 0, t ∈ (0, T ),
θ̂q(y, 0) = 0, y ∈ (0, he).

(4.9)

Altogether, we obtain that

lim
η→0

Jα,ε(q + ηq)− Jα,ε(q)
η

= ‖q‖L1(0,T )

∫ T

0

qdt

+ α

∫ T

0

(qq + qtqt)dt+ ε−1

∫ T

0

(θq(0, ·)− θ)−θ̂q(0, t)dt.

Eventually, using that the adjoint solution p defined by (4.7) solves equivalently the variational formulation

−(cpt(t), φ)H + a(t, p(t), φ) + 4σε(t)θq(0, t)3p(0, t)φ(0)
= −ε−1(θq(0, t)− θ)−φ(0) ∀φ ∈ V, a.e.t ∈ (0, T ),

(4.10)

and
p(T ) = 0, (4.11)

we obtain, taking φ = θ̂q(·, t) in (4.10) and φ = p(·, t) in (3.2) that

ε−1

∫ T

0

(θq(0, ·)− θ)−θ̂q(0, ·)dt = −
∫ T

0

p(y0, ·)q dt

leading to (4.6). �

Remark 4.6. Writing that σε(·)θq(0, ·)3 ∈ L∞(0, T ) and that −ε−1(θq(0, ·) − θ)− ∈ L2(0, T ), we obtain,
following the steps 1 and 2 of the proof of Theorem 3.2, that the adjoint variable p solution of the linear weak
formulation (4.10) and (4.11) is unique and satisfies the regularity p ∈ L∞(0, T ;H)∩L2(0, T ;V ). Consequently,
p(y0, ·) is in L2(0, T ) and the first integral in (4.6) is well-defined.

We now define the function q̂ ∈ H1
0,0(0, T ) as the unique solution of the formulation:∫ T

0

(
‖q̂‖L1(0,T )q + α

(
q̂q + q̂tqt

))
dt =< J ′α,ε(q), q >, ∀q ∈ H1

0,0(0, T )

so that < J ′α,ε(q), q̂ >= ‖q̂‖2L1(0,T ) + α‖q̂‖2
H1

0 (0,T )
is nonnegative. This property allows to set up a fixed step

gradient projection algorithm: given q0 ∈ D, η > 0 small enough, compute iteratively with respect to k the
sequence qk ∈ D as follows

qk+1 = PR+(qk − ηJ ′(qk)), k ≥ 0 (4.12)

so that (qk)k∈N is a minimizing sequence for Jα,ε. Equation (4.12) can be decomposed into the following steps:
given qk ∈ D,

• Compute q̂k ∈ H1
0,0(0, T ) unique solution of∫ T

0

(
‖q̂k‖L1(0,T )q + α

(
q̂kq + (q̂k)tqt

))
dt =< J ′α,ε(q

k), q >, ∀q ∈ H1
0,0(0, T ); (4.13)
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• Set qk+1/2 := qk − ηq̂k ∈ H1
0,0(0, T ) and then qk+1 := max(0, qk+1/2) ∈ D.

Remark 4.7. Equation (4.13) is equivalent to non local differential equation{
α(q̂ − q̂tt) + ‖q̂‖L1(0,T ) = α(q − qtt) + ‖q‖L1(0,T ) − p(y0, ·), t ∈ (0, T ),
q̂(0) = 0, q̂t(T ) = qt(T ).

Remark that actually we may drop the L1-norm in the left hand side: since H1(0, T ) ⊂ L1(0, T ), the resulting
sequence is still in D. Moreover, we may impose the Dirichlet assumption q̂n(T ) = 0; (4.13) is unchanged except
that the space for the test functions q is then H1

0 (0, T ).

5. Approximation of the optimal control problem and experiments

5.1. Numerical approximation

The resolution of the variational formulations (3.2) and (4.10) is performed using a finite element approx-
imation with respect to the space variable y and a finite difference approximation with respect to the time
variable t. For convenience, we replace the Neumann boundary condition at y = he by a Dirichlet condition
(see Rem. 3.4). Let Ny a positive integer and (xi)i=1,...,Ny

a subdivision of the interval [0, he] such that y0 = 0,
yNy

= he and yi < yi+1 for all i and [0, he] = ∪Ny−1
i=0 [yi, yi+1]. We note h = maxi |yi+1 − yi|. We then introduce

the following conformal finite element approximation Vh of V :

Vh = {θh ∈ C1([0, he]), θh|[xi,xi+1]
∈ P1 ∀i = 1, . . . , Ny − 1}

where P1 denotes the space of polynomial functions of order one. We also consider, for some θd ∈ R the
space V dh = {θh ∈ Vh, (θh)(he) = θd}. The weak formulation associated to (2.4) (see (3.2) and (3.3)) is then
approximated as follows: find θh ∈ L2(0, T, V dh ) such that

(c θh,t(t), φh)H + a(t, θh(t), φh) + σε(t)θh(0, t)4φh(0)
= q(t)φh(y0) + f1(t)φh(0), ∀φh ∈ Vh, a.e.t ∈ (0, T )

(5.1)

and
θh(0) = πh(θ0) (5.2)

where πh : V → Vh is the projection operator over Vh. Similarly, let Nt be a positive integer and (tn)n=1,...,Nt

a uniform subdivision of the time interval [0, T ] such that t0 = 0, tNt = T and tn = n∆t for all n and
[0, T ] = ∪Nt−1

n=0 [tn, tn+1]. We note by (θnh) an approximation of θh(·, tn) the solution of the following implicit
Euler type scheme:


θ0
h = πh(θ0),(
c
θn+1
h − θnh

∆t
, φh

)
H

+ a(tn+1, θ
n+1
h , φh) + 4σε(tn+1)(θnh(0))3θn+1

h (0)φh(0)

− 3σε(tn)(θnh(0))4φh(0) = q(tn+1)φh(y0) + f1(tn+1)φh(0), ∀φh ∈ Vh, n ≥ 0.

(5.3)

In particular, the nonlinear term θ4
h(tn+1) is approximated as follows:

θ4
h(tn+1) = 4θ3

h(tn)θh(tn+1)− 3θ4
h(tn) +O(∆t), ∀n.

In the sequel, we define Θh = {θnh}n=0,...,Nt ∈ (Vh)Nt+1. The extremal problem (Pε) is then approximated by
the following one:

(Pε,h,∆t) : inf
q∆t∈D∆t

Jα,ε(q∆t) :=
1
2
‖q∆t‖2L1(0,T ) +

α

2
‖q∆t‖2H1(0,T ) +

ε−1

2

∥∥∥∥(π∆t(Θh(0))(t)− θ)−
∥∥∥∥2

L2(0,T )

.
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Here, Π∆t(Θh(0))(t) is the piecewise affine function such that Π∆t(Θh(0))(tn) = θnh(0) for all n where (θnh)
solves (5.3) and

D∆t :=
{
q∆t ∈ H1(0, T ), qs,∆t(0) = 0, q∆t|[tn,tn+1]

∈ P1, q∆t(tn) ≥ 0,∀n ≥ 0
}
.

The extremal point of the functional Jα,ε in D∆t is determined by using the gradient projection algorithm
described in the previous section. In particular, the adjoint problems (4.10) and (4.11) is approximated as
follows: 

pNt

h = 0,

−
(
c
pn+1
h − pnh

∆t
, φh

)
H

+ a(tn, pnh, φh) + 4σε(tn)(θnh(0))3pnh(0)φh(0)

= −ε−1(θnh(0)− θ)−φh(0), ∀φh ∈ Vh, n ≥ 0.

(5.4)

5.2. Presentation of the experimental data and initial condition

We use real data obtained from measurements on the French highway A75 in Cantal (1100 m altitude) from
october 2009 to march 2010. Measurements are made each hour and allow to compute the time functions f1

and f2 defined in (2.6). Figure 4 depicts these functions.
For the other parameters, we use numerical values obtained from experimental validations described in [2]:

precisely, the albedo of the road surface is A = 0.08 (used in f1), while for the emissivity function of the road,
we use the constant value ε(t) = 0.92. Although the measurements of ε show a time variability and a sensitivity
of the road surface temperature θ(0, ·) w.r.t. ε (see Fig. 5), the lack of emissivity measurements over a long
period requires to identify and use a constant value ε = 0.92. As discussed in [2], this identification leads to
a good agreement between simulated and measured temperatures. From a theoretical viewpoint, remark that
Theorem 3.2 is valid for a time-dependent emissivity function.

As described in Figure 3, the road is composed of 4 layers of depth e1 = 0.06 m, e2 = 0.08 m, e3 = 0.05 m and
e4 = he − e1 + e2 + e3 = 14.81 m, respectively. The total height of the road structure is he = 15 m. The specific
heat function c and the thermal conductivity function k are constant on each layer and takes the following
values [2]:

(c(y), k(y)) =


(c1, k1) = (2144309, 2.34), y ∈ (0, e1),
(c2, k2) = (1769723, 1.56), y ∈ (e1, e1 + e2),
(c3, k3) = (2676728, 1.76), y ∈ (e1 + e2, e1 + e2 + e3),
(c4, k4) = (1947505, 2.08), y ∈ (e1 + e2 + e3, he).

Moreover, the initial condition θ0 is a priori not determined by experiments. We define the initial condition
as the solution of the stationary model and satisfying the compatibility conditions (3.6) of Theorem 3.2: more
precisely, we consider the solution of the boundary value problem:{

−
(
k(y)θ0,y(y)

)
y

= 0, y ∈ (0, he),
−k(0)θ0,y(0) = f1(0)− f2(0)θ0(0)− σε(0)θ0(0)4, θ0(he) = θd.

(5.5)

Here, we have replaced the homogeneous Neumann boundary condition θ0,y(he) = 0 by a Dirichlet condition
θ(L) = θd; the reason is that the temperature, at the height he = 15 m under the road surface, is time
independent and close to a value equal to 15◦C (equivalently 273.15 + 15◦K). The resolution of the nonlinear
boundary value problem with θd = 288.15, using a Newton type algorithm and a finite element discretization as
above, leads to a continuous function, affine on each layers, and increasing from the value θ0(y = 0) ≈ K+6.29 K
at the road surface to θ0(y = he) = θd K. Moreover, by definition, this solution θ0 satisfies the assumption
(k(θ0)y)y ∈ V ′ (see H), that is the jump [k(θ0)y · ν] is equal to zero at y = e1, e1 + e2 and at y = e1 + e2 + e3.
Eventually, we observe that the value θ0(y = 0) ≈ 279.43 K as the initial temperature at the road surface is
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Figure 4. The time functions f1 (top) and f2 (bottom) defined in (2.6).

in agreement with typical measurements in october (we recall that our study is based on measurements from
october 2009 to march 2010).

5.3. Numerical experiments: optimal control minimizing Jα,ε

We now discuss some numerical experiments associated to the optimal problem (Pε): precisely, we minimize
over D the functional

Jα,ε(q) :=
1
2
‖q‖2L1(0,T ) +

α

2

(
T‖q‖2L2(0,T ) +

T 3

4π2
‖qt‖2L2(0,T )

)
+
ε−1

2

∥∥∥∥(θq(0, ·)− θ)−
∥∥∥∥2

L2(0,T )

. (5.6)

It is necessary to adjust the constants in front of the norms in term of the value of the time interval T ,
which, expressed in seconds, is large: precisely T = 1 549 4400 s (equivalently 4304 h). We use for that the
inequality ‖q‖L1(0,T ) ≤

√
T‖q‖L2(0,T ) and the Wirtinger inequality ‖q‖L2(0,T ) ≤ T/(2π)‖qt‖L2(0,T ) (taking

q(0) = q(T ) = 0). For the same reasons, coefficients must be properly chosen in the computation of the descent
direction (see (4.13)): we use here∫ T

0

(
q̂kq + T (q̂k)tqt

)
dt =< J ′α,ε(q

k), q >, ∀q ∈ H1
0,0(0, T ). (5.7)
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Figure 5. Measurements over one month of the emissivity ε (top) and the road surface tem-
perature θ(0, ·) for the time-dependent ε, and constant ε’s respectively fixed to the minimal
and maximal values (bottom).

Similarly, the penalty parameter ε is adjusted so that the optimal control leads to values of the same order
for the norm ‖(θq(0, ·)− θ)−‖L2(0,T ), independently of the value of the parameter α, the value of the height y0

(punctual support of the control q) and of the minimal temperature required θ.
The time discretization parameter ∆t is given by the data: ∆t = one hour over a period of 4304 h. Scaled

to a time interval of length one, ∆t = 1/4304 ≈ 2.32 × 10−4. Concerning the approximation with respect to
y, we use a nonuniform discretization of the interval [0, he]: precisely, we use 50 finite elements in each layers
of height 0.06, 0.08, 0.05 and 14.81 m, respectively. In the sequel, all iterative algorithms used to approximate
the optimal controls are initialized with a zero source q0 = 0 and stopped at iterate k with the criterion
|J(qk)− J(qk−1)|/J(q0) ≤ 10−10, where J is the minimized function and qk is the kth iterate of the control.

In order to analyse the specific effect of the L1-norm minimization in (5.6), we start by the standard mini-
mization of the L2-norm:

inf
q∈L2(0,T ), q≥0

J̃ε(q) (5.8)

where

J̃ε(q) :=
1
2
‖q‖2L2(0,T ) +

ε−1

2

∥∥∥∥(θq(0, ·)− θ)−
∥∥∥∥2

L2(0,T )

. (5.9)
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Table 1. Numerical norms of the optimal control of problem (5.8) with respect to the parameter
ε ∈ {10−6, 10−4} − y0 = 0.1.

ε 10−6 4.10−6 10−5 5.10−5 10−4

‖q‖L2(0,T ) 2.68× 105 2.66× 105 2.62× 105 2.48× 105 2.35× 105

‖q‖L1(0,T ) 5.83× 108 5.79× 108 5.73× 108 5.46× 108 5.23× 108

‖q‖L∞(0,T ) 4.14× 102 4.00× 102 3.89× 102 3.54× 102 3.18× 102

‖(θ(0, ·)− θ)−‖L2(0,T ) 1.47× 101 5.40× 101 1.23× 102 4.71× 102 8.10× 102

‖(θ(0, ·)− θ)−‖L∞(0,T ) 6.03× 10−2 1.90× 10−1 4.01× 10−1 1.11× 100 1.72× 100

] iterates 183 234 130 64 56

Table 2. Numerical norms of the optimal control minimizing (5.6) with respect to the param-
eter α ∈ {10−7, 10−3} − y0 = 0.1.

α 10−7 10−6 10−5 10−4 10−3

ε 10−12 7.10−13 5.10−13 3.10−13 2.10−13

‖q‖L2(0,T ) 2.97× 105 2.86× 105 2.81× 105 2.93× 105 3.17× 105

‖q‖L1(0,T ) 4.46× 108 4.65× 108 5.26× 108 6.20× 108 7.67× 108

|q|H1(0,T ) 2.85× 101 1.61× 101 7.40× 100 3.10× 100 1.49× 100

‖q‖L∞(0,T ) 5.06× 102 4.06× 102 3.58× 102 3.18× 102 2.85× 102

‖(θ(0, ·)− θ)−‖L2(0,T ) 4.09× 101 3.88× 101 4.32× 101 4.52× 101 6.07× 101

‖(θ(0, ·)− θ)−‖L∞(0,T ) 9.33× 10−2 9.30× 10−2 1.35× 10−1 2.11× 10−1 4.32× 10−1

] iterates 2 201 1 345 1 779 2 441 12 455

We gather in Table 1 some numerical norms of the optimal control q of (5.8) with respect to the penalty
parameter ε. The punctual control q is located on the middle of the porous layer, i.e. at y0 = 0.1 m.

The minimal temperature required along the six months period is θ = 275.15 K: we therefore consider a
slightly larger value than 273.15 (corresponding to the 0◦C) in order to account for the possible errors in the
experimental measurements and models. Remark that the initial condition θ0, solution of (5.5), satisfies this
property. As expected, ‖q‖L2(0,T ), ‖q‖L1(0,T ) and ‖q‖L∞(0,T ) increase and ‖(θ(0, ·)−θ)−‖L∞(0,T ) decreases when
ε decreases.

Table 2 collects some numerical norms of the optimal control q (minimizer of the functional Jα,ε) with
respect to the regularizing parameter α. The penalty parameter ε is chosen so that, for each α, the L2-norm
‖(θ(0, ·)− θ)−‖L2(0,T ) takes approximatively the value 5× 101, leading to a violation of the constraint θ(0, t) ≥
K + 2 of the order 10−1 degree (see ‖(θ(0, ·)− θ)−‖L∞(0,T ) in Tab. 2).

As we can see in Figure 6, small values of α lead to sparse controls, with smaller L1-norm and larger L∞-norm
(see [6]). On the contrary, large values of α lead to more regular controls (see Tab. 2).

In order to avoid large punctual values for the optimal L1-control, which may be not physical or unrealistic
at the practical level, we may constrain its values in a given interval [0, λ]. Results in Section 4 may be easily
adapted to this new situation. Figure 7 displays some optimal controls satisfying the additional condition
‖q‖L∞ ≤ λ for λ = 200 and 285 (the unbounded case λ = +∞ is plotted as well for comparison).

We notice the effect of such boundedness on the sparsity of the control, which tends to decrease when λ
decreases, as we can see especially for λ = 200. However, in this latter case, ‖q‖L1(0,T ) = 5.78 × 108, which
is much higher than 4.63 × 108 or 4.46 × 108 corresponding respectively to λ = 285 and λ = +∞. Moreover,
the value λ = 200 is not large enough to satisfy the constraint at the surface of the road, since we obtain
‖(θ(0, ·) − θ)−‖L∞(0,T ) of order 2.0, much larger to that corresponding to λ = 285 and λ = +∞ (lower than
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Figure 6. Optimal controls q on [0, 1600] corresponding to the minimization of Jα,ε and J̃ε.
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Figure 7. Optimal controls q on [0, 1600] corresponding to the minimization of Jα,ε under the
additional constraint ‖q‖∞ ≤ λ for λ = 200 and 285.

0.2), as we can see in Figure 8. A minimal value of ‖q‖L∞(0,T ) is thus necessary to maintain the road out of
frost or snow (see Sect. 5.4 on bang–bang controls).

It is also interesting to study the local effect of control. As can be seen in Figure 9, the more the control is
regular, the less it reacts instantaneously with respect to the uncontrolled surface temperature θq=0(0, ·).

5.4. Bang–bang control

We are now looking for so-called bang–bang controls: there are more convenient on a practical viewpoint as
they take only a finite number of distinct values. Precisely, we assume that controls q take the form

q(t) = λs(t), λ ≥ 0, s(t) ∈ {0, 1},

so that the control q takes only two values, 0 or λ. Remark that such controls are only in L∞(0, T ) and therefore
do not fall in the framework of Theorem 3.2. The sequel of this section is thus formal. For any L ∈ (0, 1), we
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Figure 8. Surface temperature θ(0, ·) on [0, 1600] corresponding to the minimization of Jα,ε
for different bounds of ‖q‖∞.
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Figure 9. Surface temperature θq=0(0, ·), and sources q represented on [0, 500] corresponding
to the minimization of Jα,ε with α = 10−3 and ε = 2.10−13, α = 10−7 and ε = 10−12 and J̃ε
with ε = 4.10−6.

therefore consider formally the extremal problem
inf

(λ,s)∈SL

J(λ, s) =
1
2
λ2,

SL :=
{
λ ∈ R+, s ∈ L∞([0, T ], {0, 1}), ‖s‖L1(0,T ) = LT, θ = θ(q = λs) solves (2.4)

} (5.10)

and minimize the amplitude λ of the control q, assumed piecewise constant. A volume constraint through the
parameter L is introduced here to prevent the optimal control to be constant q(t) = λ (i.e. s(t) = 1) for all t.
Adapting [16], we introduce two penalty parameters ε and ε1 for the constraints s ∈ {0, 1} and θ(0, t)− θ > 0,
t ∈ (0, T ), respectively and a scalar Lagrange multiplier µ for the L1-constraint on the density function s. This
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Table 3. Characteristics of the bang–bang controls with respect to L.

L 1/10 1/5 1/4 1/3 1

‖q‖L1(0,T ) = λLT 4.57× 108 7.33× 108 9.05× 108 1.21× 109 3.63× 109

‖q‖L∞(0,T ) = λ 2.95× 102 2.37× 102 2.34× 10−2 2.34× 102 2.34× 102

‖(θ(0, ·)− θ)−‖L2(0,T ) 2.98× 10−1 2.21× 10−2 3.03× 10−3 1.74× 10−4 1.93× 10−3

‖(θ(0, ·)− θ)−‖L∞(0,T ) 3.65× 10−1 4.66× 10−2 2.16× 10−2 3.56× 10−6 4.01× 10−5

] iterates 456 361 312 197 102
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Figure 10. Optimal bang–bang control q on [0, T ] corresponding to L = 1/4. q(t) = λs(t)
with λ ≈ 2.34× 102.

leads to the saddle-point problem
sup
µ∈R

inf
(λ,s)∈R+×L∞([0,T ])

L(s, λ, µ) := Jε,ε1(s, λ) + µ

∫ T

0

(s(t)− L)dt,

Jε,ε1(s, λ) :=
λ2

2
+
ε−1

2

∫ T

0

(
(θ(0, t)− θ)−

)2 dt+ ε−1
1

∫ T

0

s(t)(1− s(t))dt
(5.11)

and then to the gradient projection algorithm: given λ0 ≥ 0 and s0 ∈ L∞([0, T ], {0, 1}) satisfying the constraint
‖s0‖L1([0,T ]) = LT , compute iteratively the sequence (sk, λk)(k>0):

λk+1 = PR+

(
λk − η

(
λk −

∫ T

0

sk(t)pk(y0, t)dt
))

,

sk+1(t) = P[0,1]

(
sk(t)− η

(
ε−1
1 (1− 2sk(t))− λkpk(y0, t) + µk

))
,

(5.12)

with η > 0 small enough and µk ∈ R, the multiplier (determined by a line search algorithm) so that
‖sk+1‖L1(0,T ) = LT . In (5.12), pk is the solution of the adjoint problem (4.7) associated to the control function
qk = λksk.

With the data and discretization used in Section 5.3, Table 3 provides some characteristics of the bang–bang
controls with respect to the parameter L ∈ [0, 1]. We use the numerical values (ε, ε1) = (10−6, 10−4). The
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Figure 11. Temperature θ(0, ·) at the road surface on [0, T ] in the controlled (red full line)
and uncontrolled case (dot blue line).

Table 4. Characteristics of the temperature θ associated to the source (5.13).

δ 0 50 54 55

‖q‖L1(0,T ) 4.01× 108 7.2× 108 7.52× 108 7.60× 108

‖q‖L∞(0,T ) 2.72× 102 3.22× 102 3.26× 102 3.27× 102

‖(θ(0, ·)− θ)−‖L2(0,T ) 5.49× 102 1.29× 101 1.71 0.
‖(θ(0, ·)− θ)−‖L∞(0,T ) 1.91 1.74× 10−1 2.92× 10−2 0.

projection algorithm is initialized with λ0 = 0 and s0 = L. The variation of the bound λ with respect to L is
small. Beyond L = 1/4, the optimal λ is almost constant. Actually, the amplitude of the control is driven by
the data at the beginning of the time interval (corresponding to the colder period) where a large enough control
is required, independently of the value of L. Figure 10 depicts the optimal control corresponding to L = 1/4
while Figure 11 depicts the associated temperature θ(0, ·) at the road surface. Lower values of L lead to larger
amplitudes λ and to an increasing number of switching points. We observe L1-norm values of the same order as
in the previous section (e.g. ‖q‖L1(0,T ) ≈ 4.57 × 108 for L = 1/10). Actually, for small values of L, we observe
that the structure of the bang–bang control is similar to the optimal L1 norm control (see Fig. 6 for small α,
e.g. α = 10−7). The extreme value L = 1 (for which the control is active on the whole time period) leads to a
value λ = 2.34× 102: this value is in agreement with the result of the previous section which indicates that the
optimal L1 control satisfying the additional bound ‖q‖L∞ ≤ 200 does not allow to maintain the temperature
greater than θ.

5.5. Command law

A priori, the optimal control we obtain in the previous section is nonlocal in the sense that its value q(t)
at the time t ∈ (0, T ) depends on the values of the data functions f1, f2, ε on the full time interval. This may
not be realistic from a practical point of view. A first way to circumvent, in the spirit of [4] is to split the time
interval into a finite number of sub-intervals and then to compute optimal control on each subinterval.

A second way is to consider a source q which depends explicitly on the data. According to (4.3), for y0 = 0, if
the source q satisfies the condition q + f1(t)− f2(t)θ− σε(t)θ4 ≥ 0, then the corresponding variable θq satisfies
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Figure 12. Source q defined by (5.14) for t ∈ [0, 1000] (Top) and corresponding temperature
θ(0, ·) at the road surface.

θq(0, t)−θ ≥ 0 for all t ∈ (0, T ). This suggests to consider, in our context where y0 is close to zero, the following
explicit source

q(t) = max
(

0,−
(
f1(t)− f2(t)θ − σε(t)θ4

)
+ δ

)
(5.13)

for some real δ ≥ 0 large enough, dependent of y0. Table 4 gives the L1-norm of q and the corresponding value
of min((θ(0, ·)−θ)−) for some values of δ. The value δ = 55 is large enough to satisfy the condition θ(0, ·) ≥ 2oC
at the road surface. The corresponding L1-norm ‖q‖L1(0,T ) ≈ 7.52× 108 is of the same order as in the previous
section.

Nevertheless, we observe that source of the form (5.13) is active on some period where the value of θ(0, ·) is
(significantly) above θ. This is due to the large variations of the functions f1 and f2. A third way is therefore
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to consider source term q which depends explicitly on the variable θq, for instance as follows:

q(t) =


0 if θ(0, t− δ) ≥ θm,
0 if θ ≤ θ(0, t− δ) ≤ θm and θ′(0, t− δ) > 0,

f(t, θ)
(
θ(0, t− δ)− θm

)−
else

(5.14)

for some reals θm > θ, δ ∈ (0, T ) and a negative function f which depends only at time t on the temperature
θ(s), s ∈ (0, t). Such source is active at time t ≥ δ if and only if two situations occur: either when the value of
θ(0, t− δ) is below θ, either when the value of θ(0, t− δ) is slightly above θ (precisely, in the range [θ, θm]) but
decreases with respect to the time variable. Figure 12 depicts the source (5.14) associated to θm = 273.15 + 3,
δ = 1 h and to the corresponding temperature θ(0, ·). We take here simply for f a large enough constant so
that ‖(θ(0, ·) − θ)−‖L∞(0,T ) ≈ 0.08 leading to ‖q‖L1(0,T ) ≈ 1.01 × 109 and ‖q‖L∞(0,T ) ≈ 8.48 × 102. Although
larger than for the optimal controls computed earlier, these values, associated to the source q given by (5.14)
explicitly in term of the history of the temperature, lead to promising results.

6. Perspectives

6.1. Control by a road surface heating source: a different mathematical approach

If the source q is located at the road surface (i.e. y0 = 0), we can construct a control by introducing a Signorini
boundary condition as follows. For y0 = 0, the right-hand side term of the first equation of (2.4) vanishes and
the boundary condition at y = 0 becomes:

−k(0)θy(0, t) = f1(t)− f2(t)θ(0, t)− σε(t)θ4(0, t) + q(t), t ∈ (0, T ). (6.1)

Denoting f(t, u) = −f1(t) + f2(t)u − σε(t)u4, we can eliminate q and replace (6.1) by the Signorini type
conditions:

f(t, θ(0, t))− θy(0, t) ≥ 0, θ(0, t)− θ ≥ 0,
(
f(t, θ(0, t))− θy(0, t)

)
(θ(0, t)− θ) = 0, (6.2)

which are equivalent to θy(0, t)− f(t, θ(0, t)) ∈ γ(θ(0, t)) where γ : R→ P(R) is the following multivalued and
maximal monotone operator:

γ(z) = ∅ if z < θ, γ(z) ∈]−∞, 0] if z = θ, γ(z) = {0} if z > θ.

The formal variational problem under conditions (6.2) is: find θ with θ(0, ·) ≥ θ such that for all v ∈ H1(0, he),∫ he

0

(
c(y)θt(y, t)v(y) + k(y)θy(y, t)vy(y)

)
dy + f(t, θ(0, t))v(0) + γ(θ(0, t))v(0) 3 0, (6.3)

which is an extension of (3.2) with a multivalued and monotone term γ(θ) added to θ3|θ|.
Results of Section 3 may be extended to this variational inclusion as done in [9], leading to an existence and

uniqueness result for (6.3), and then to a control q = −k(0)θy(0, t) − f1(t) + f2(t)θ(0, t) + σε(t)θ4(0, t). From
a mathematical viewpoint, it would be interesting to study the link between this control of Signorini type and
the L1-optimal control exhibited in Section 4.

6.2. Optimal heating for the 2D diffusion-convection model

We are interested in the 2D model described in (2.1)–(2.3) and in Figure 3. In this context, the energy lost
by the fluid is expressed as follows:

J2(θf ) = ve2Cf

∫ T

0

∫ e1+e2

e1

(
θf (t)− θθf

(L, y, t)
)

dydt, (6.4)
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and then the optimal control problem is:{ inf
θf∈L1(0,T )

J2(θf ), subjected to:

θf (t) ≥ 0, θθf
(x, 0, t) ≥ θ, ∀(x, t) ∈ (0, L)× (0, T ), θθf

solves (2.1)−(2.3).
(6.5)

For wider applications, it will be interesting to address this problem for a 3D model, allowing to take into
account a longitudinal slant of the road.

6.3. Storage problem

Once the minimal energy has been estimated, there is the question of its origin. Indeed, in a context of
energy transition, we must seek a renewable energy to heat the road. In an urban site, one can imagine using
for example a heat network. In the case of an isolated road, one can seek to produce energy during the summer
period, store it, and use it during winter. In this case, it is necessary to design a heat storage in an optimal
way. Let us denote by C the thermal capacity of the storage and denote by θs its temperature. Considering
the thermal losses of the storage and taking energy in this storage, we can express the time evolution of θs as
follows:

C
dθs
dt

(t) = −A(t)λs(θs(t)− θ(y0, t))− p(t, θs(t)), (6.6)

where λs is the heat exchange coefficient between the storage (at temperature θs) and the road (at temperature
θ(y0, ·)), A is a 0− 1 function modeling the heat exchange activation and p denotes a law (assumed known) of
thermal losses of the storage. In the one dimensional case, we can then consider the following system:

c(y)
∂θ

∂t
(y, t)− ∂

∂y

(
k(y)

∂θ

∂y
(y, t)

)
= (q(t) +A(t)λs(θs(t)− θ(y0, t))) δ(y0), (y, t) ∈ QT ,

− k(0)
∂θ

∂y
(0, t) = f1(t)− f2(t)θ(0, t)− σε(t)θ4(0, t),

∂θ

∂y
(he, t) = 0, t ∈ (0, T ),

θ(y, 0) = θ0(y), y ∈ (0, he),

C
dθs
dt

(t) = −A(t)λs(θs(t)− θ(y0, t))− p(t, θs(t)), t ∈ (0, T ).

(6.7)

The optimization of the capacity and the source q then leads to the following optimization problem:
infC,A,q

(
ε1 C + (1− ε1)

∫ T
0
q(t)dt

)
subjected to:

C > 0, A(t) ∈ {0, 1}, q(t) ≥ 0, θC,A,q(0, t) ≥ θ, ∀t ∈ (0, T ),
|θs(T )− θs(0)| ≤ d, θC,A,q solves (6.7)

(6.8)

where ε1 > 0 and where d ≥ 0 is a given (small) real allowing to maintain the storage at its initial temper-
ature after one year (T ). This storage problem could be adapted as well to the 2D dimensional problem of
Section 6.2.

7. Conclusion

We have presented in this work an original approach to evaluate the minimal energy for heating a road
in order to keep its surface frost free. With the help of a transient one dimensional thermal road model,
we look for a heat source inserted in the pavement that allows to maintain the surface temperature above
a threshold value. Theoretical results are established for the uniqueness and existence of a solution to the
direct problem and to the optimal control problem. For these results, we take into account the nonlinear
term due to the Stefan–Boltzmann law for which an emissivity can depend on time. We analyze the different
controls obtained numerically according to the L1, L2 and H1 norm. The L1-norm has the most relevant
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physical meaning since it corresponds to the energy for heating the road and that we want to minimize. On
the other hand, the control is sparse and leads to L∞-norm higher than controls corresponding to the L2 and
H1 minimization. Furthermore, for a better application, we study a bang–bang control taking only two values
and allowing then to bound the control (the heat power). Some estimates of the optimal energy are given
in Section 5: the total energy needed to keep the road surface temperature over 2◦C during a winter with
snow is about 5.108 J ' 139 kWh m2 of road, with minimal and maximal values per m2 respectively equal to
124 kWh and 213 kWh. Moreover, the L∞-norm of the optimal power q ranges in 240–500 W m−2. In [15], some
experiments of heating roads by electric heating cables show needed power and energy equal respectively to
500–750 W m−2 and 100–170 kWh m−2. In [7,10] needed power and energy are experimentally evaluated around
400–500 W m−2 and 130–350 kWh m−2 for de-icing obtained by the circulation of a coolant in pipes inserted in
the road. Although the meteorology data are not the same with respect to the above mentioned studies, one
notices that the power and energy provided by our simulations have the same order of magnitude than those
obtained experimentally for systems based on electric heating or coolant circulation in pipes. As mentioned in
Section 6, we plan to extend our works to the heating system by circulation of a coolant in a bonding porous layer
of the road. We will be able to compare our numerical results with experimental measurements collected on the
Egletons demonstrator described in Section 1. Following [13], it is also interesting to analyze in our nonlinear
setting, the influence on the optimal controls of the perturbation of the data f1, f2 and ε, due notably to
measurements.
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