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HYBRID DISCONTINUOUS GALERKIN METHODS WITH RELAXED
H(DIV)-CONFORMITY FOR INCOMPRESSIBLE FLOWS. PART II

Philip L. Lederer1, Christoph Lehrenfeld2,∗ and Joachim Schöberl1

Abstract. The present work is the second part of a pair of papers, considering Hybrid Discontinuous
Galerkin methods with relaxed H(div)-conformity. The first part mainly dealt with presenting a robust
analysis with respect to the mesh size h and the introduction of a reconstruction operator to restore
divergence-conformity and pressure robustness (pressure independent velocity error estimates) using a
modified force discretization. The aim of this part is the presentation of a high order polynomial robust
analysis for the relaxed H(div )-conforming Hybrid Discontinuous Galerkin discretization of the two
dimensional Stokes problem. It is based on the recently proven polynomial robust LBB-condition for
BDM elements, Lederer and Schöberl (IMA J. Numer. Anal. (2017)) and is derived by a direct approach
instead of using a best approximation Céa like result. We further treat the impact of the reconstruction
operator on the hp analysis and present a numerical investigation considering polynomial robustness.
We conclude the paper presenting an efficient operator splitting time integration scheme for the Navier–
Stokes equations which is based on the methods recently presented in Lehrenfeld and Schöberl (Comp.
Methods Appl. Mech. Eng. 307 (2016) 339–361) and includes the ideas of the reconstruction operator.
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1. Introduction and structure of the paper

We consider the numerical solution of the unsteady incompressible Navier–Stokes equations in a velocity-
pressure formulation: {

∂
∂tu+ div (−ν∇u+ u⊗ u+ pI) = f in Ω,

div (u) = 0 in Ω, (1.1)

with boundary conditions u = 0 on ΓD ⊂ ∂Ω and (ν∇u− pI) · n = 0 on Γout = ∂Ω \ ΓD. Here, ν = const is the
kinematic viscosity, u the velocity, p the pressure, and f is an external body force. For the spatial discretization
of (1.1) we use a relaxed H(div )-conforming Hybrid Discontinuous Galerkin (HDG) finite element method which
was introduced in part I, see [18]. The relaxed H(div )-conformity leads to an increased optimality comparable
to the superconvergence effect of HDG methods which is explained in the following.

Keywords and phrases. Stokes equations, Hybrid Discontinuous Galerkin methods, H(div )-conforming finite elements, pressure
robustness, high order methods.

1 Institute for Analysis and Scientific Computing, TU Wien, Austria.
2 Institute for Numerical and Applied Mathematics, University of Göttingen, Germany.
∗Corresponding author: lehrenfeld@math.uni-goettingen.de

Article published by EDP Sciences c© EDP Sciences, SMAI 2019

https://doi.org/10.1051/m2an/2018054
http://www.esaim-m2an.org
mailto:lehrenfeld@math.uni-goettingen.de
http://www.edpsciences.org


504 P.L. LEDERER ET AL.

For a superconvergent HDG method one would hope for an accurate order kT polynomial approximation
on the elements (possibly after a post-processing step) when order kF = kT − 1 polynomials are involved in
the inter-element communication. However, in H(div )-conforming methods the order kT on each element is
directly determining the polynomial approximation kF = kT on the element interfaces (at least for the normal
component). In [18] we analyzed an HDG method where the H(div )-conformity is relaxed to allow for the
HDG superconvergence property. Therein we analyzed the method with respect to the meshsize h and intro-
duced a cheap reconstruction operator to re-establish H(div )-conformity in a separate step yielding pointwise
divergence-free velocity solutions. The same reconstruction operator can be used to modify the discretization
of r.h.s. forces in order to re-establish another discretization property the importance of which has been rec-
ognized only recently: pressure robustness. A discretization method is called pressure robust if the velocity
error is independent of the pressure approximation error, cf. [16, 21] for further details on pressure robust
discretizations.

In recent years several HDG discretizations for incompressible flow problems have been proposed. We
mention a few important hybrid and hybridized methods for the Stokes problem. However, for a more de-
tailed discussion on (relaxed) H(div )-conformity, the impact of pressure robustness and the use of discon-
tinuous Galerkin methods we want to refer to the literature overviews in Section 1 of [18] and Section 1.2
of [20].

Based on different approaches to formulate the Stokes problem different HDG formulations have been derived
in the literature, e.g. using a rotation formulation for the viscosity as in [5,6], a vorticity-velocity formulation as
in [3], a gradient-velocity-pressure formulation in [7, 14] or a velocity-pressure formulation in [11, 20, 25]. Some
of those methods yield pointwise divergence-free velocity solutions by introducing proper degrees of freedom
to enforce normal-continuity strongly [3, 5, 6, 14, 20, 25]. Others, obtain these after a local postprocessing step
[7]. Only rarely an hp-version error analysis has been considered for HDG methods for Stokes; in [11] this has
been done yielding however a slight suboptimality in the polynomial degree. Among these HDG methods, the
only superconvergent velocity solutions are obtained in [7, 14] after a postprocessing step. However, the post-
processed solution in [14] does not provide solenoidal velocities and the solution in [7] is not pressure robust.
Let us also mention that for Hybrid High Order (HHO) methods – a class of discretization methods that is
very closely related to HDG methods – a superconvergent and pressure-robust Stokes discretization has been
presented in [10].

For the time discretization we use efficient operator splitting methods which are based on the methods pre-
sented in [20] and result in a sequence of different sub problems. The computationally most important part is
the solution of a Stokes-type problem. The main contribution of this work is a detailed high order polynomial
robust analysis of the relaxed H(div )-conforming discretization for the Stokes problem. It is based on the re-
cently proven polynomial robust LBB-condition for BDM elements, see [19]. As a byproduct of the analysis we
prove that the H(div )-conforming discretization [20] is also polynomial robust, cf. Remark 4.9. To the best of our
knowledge this is the first HDG method which is proven to be hp-optimal for the Stokes problem. We also discuss
the reconstruction operator presented in [18] with respect to its dependence on the polynomial degree k. Together
with the convection sub problem in the operator splitting this finally leads to several different discretizations
for the Navier–Stokes equations using a relaxed H(div )-conforming approach. In order to validate the quali-
tative and quantitative aspects of the varying methods we conclude this work with several different numerical
examples.

Structure of the paper. After introducing some basic notation in Section 2, we present the finite element
method for the Stokes problem introduced in [18] in Section 3 and provide a high order polynomial robust
analysis in the following Section 4. Section 5 then treats reconstruction operators. Several assumptions are
defined and again a high order error analysis for a pressure robust Stokes discretization is discussed. We continue
with Section 6 and present the techniques for solving the unsteady Navier–Stokes equations. Finally we conclude
the paper in Section 7 with several numerical examples.
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2. Preliminaries and notation

We begin by introducing some preliminary notation and assumptions. Let Th be a shape-regular triangulation
of an open bounded two dimensional domain Ω in R2 with a Lipschitz boundary Γ. By h we denote a characteristic
mesh size. h can be understood as a local quantity, i.e. it can be different in different parts of the mesh due
to a change in the local mesh size. The local character of h will, however, not be reflected in the notation.
The element interfaces and element boundaries coinciding with the domain boundary are denoted as facets.
The set of those facets F is denoted by Fh and there holds

⋃
T∈Th

∂T =
⋃
F∈Fh

F . We separate facets at the
domain boundary, exterior facets and interior facets by the sets Fext

h , F int
h , respectively. For sufficiently smooth

quantities we denote by [·]F and {·}F the usual jump and averaging operators across the facet F ∈ F int
h . For

F ∈ Fext
h we define [·]F and {·}F as the identity. Let us stress that [·]F describes the difference of the traces of

functions from two adjacent elements in the triangulation. Below, we will also introduce a second type of jump
operator, denoted by [[·]]F which describes the jump between quantities on the boundary of only one element
and an aligned facet.

In this work we only consider triangulations which consists of triangular elements T with straight edges,
thus we do not assume the case of curved boundary approximations. Further, in the analysis we consider only
the case of homogeneous Dirichlet boundary conditions to simplify the presentation. By Pm(F ) and Pm(T )
we denote the space of polynomials up to degree m on a facet F ∈ Fh and an element T ∈ Th, respectively.
By Hm(Ω) we denote the usual Sobolev space on Ω, whereas Hm(Th) denotes its broken version on the mesh,
Hm(Th) := {v ∈ L2(Ω) : v|T ∈ Hm(T ) ∀ T ∈ Th}.

In the discretization we introduce element functions which are supported on elements (in the volume) and
different functions which are supported only on facets. We indicate this relation with a subscript F for functions
supported on facets and a subscript T for functions that are only supported on volume elements, thus we have
uh = (uT , uF ). The restriction of a (volume) function uT to an arbitrary element T ∈ Th is simply denoted
by uT := uT |T . In a similar manner we also introduce the local restriction of a facet function to a given face
F ∈ Fh by uF := uF |F .

At several occasions we further distinguish tangential and normal directions of vector-valued functions. We
therefore introduce the notation with a superscript t to denote the tangential projection on a facet, vt =
v − (v · n)n ∈ R2, where n is the normal vector to a facet. The index k which describes the polynomial degree
of the finite element approximation at many places through out the paper is an arbitrary but fixed positive
integer number.

3. Relaxed H(div )-conforming HDG formulation of the Stokes problem

In this paper our main focus lies on the discretization of the viscous forces of the Navier–Stokes equations
(1.1). The corresponding reduced model problem, the steady Stokes equations, reads as{

−ν∆u +∇p = f in Ω,
div (u) = 0 in Ω. (3.1)

The well-posed weak formulation of (3.1) is : Find (u, p) ∈ [H1
0 (Ω)]2 × L2

0(Ω), s.t.
∫

Ω

ν∇u : ∇v dx −
∫

Ω

div (v)pdx = 〈f, v〉 ∀ v ∈ [H1
0 (Ω)]2,

−
∫

Ω

div (u)q dx = 0 ∀ q ∈ L2
0(Ω).

(3.2)

Here, we have L2
0(Ω) := {q ∈ L2(Ω) :

∫
Ω
q dx = 0}. In the discretization we take special care about the

treatment of the incompressibility condition which is closely related to the choice of finite element spaces. In
the sequel of this section we summarize the discretization and refer to [18] for more details. Later, in Section 6
we discuss the extension to discretizations of the Navier–Stokes equations based on operator splitting methods.



506 P.L. LEDERER ET AL.

3.1. Finite element spaces

3.1.1. The velocity space

Although the velocity solution of the Stokes problem (3.1) will typically be at least H1(Ω)-regular, we do not
consider H1(Ω)-conforming finite elements. Instead, we base our discretization on a “relaxed H(div )-conforming
space”, i.e. almost normal-continuous, finite elements. We recall the definition of H(div ,Ω) := {v ∈ [L2(Ω)]2 :
div (v) ∈ L2(Ω)}. We then have the well-known BDMk space and its relaxed counterpart given by

Wh :=

{
uT ∈

∏
T∈Th

[Pk(T )]2 : [uT ·n]F = 0, ∀F ∈ Fh
}
⊂ H(div ,Ω), (3.3a)

W−h :=

{
uT ∈

∏
T∈Th

[Pk(T )]2 : Πk−1
F [(uT ·n)n]F = 0, ∀ F ∈ Fh

}
6⊂ H(div ,Ω), (3.3b)

where for F ∈ Fh, Πk−1
F : [L2(F )]2 → [Pk−1(F )]2 is the L2(F ) projection into Pk−1(F ):∫

F

(
Πk−1
F w

)
· vh ds =

∫
F

w · vh ds ∀ vh ∈ [Pk−1(F )]2. (3.4)

Details on the construction of the finite element space W−h are given in Section 3 of [18]. As the space W−h
is not H1-conforming, the tangential continuity has to be imposed weakly through a DG formulation for the
viscosity terms, for instance as in [9]. We use a hybridized version to decouple element unknowns and decrease
the costs for solving the linear systems as in the case of a DG formulation. To this end we introduce the space
for the facet unknowns

Fh :=

{
uF ∈

∏
F∈Fh

[Pk−1(F )]2 : uF · n = 0, ∀F ∈ F int
h , uF = 0 on ∂Ω

}
, (3.5)

which is used for an approximation of the tangential trace of the velocity on the facets. Note that we only
consider polynomials up to degree k − 1 in Fh whereas we have order k polynomials in W−h . Further, functions
in Fh have normal component zero and the tangential part of the Dirichlet boundary conditions are implemented
through Fh. For the discretization of the velocity field we use the composite space

Uh := W−h × Fh, (3.6)

and define the tangential restriction (·)t = (·)−((·) ·n)n where n is the outer normal to a facet and further define
the jump operator [[uth]]F := utT |F − uF , F ∈ F int

h , T ∈ Th. We notice that the jump [[uth]]F is element-sided
that means that it can take different values for different sides of the same facet. Further, note that due to the
homogeneous Dirichlet boundary condition imposed in Fh we have [[uth]]F = utT |F on F ∈ Fext

h .

3.1.2. The pressure space

For the pressure, the appropriate finite element space to the velocity space W−h is the space of piecewise
polynomials which are discontinuous and of one degree less:

Qh :=
∏
T∈Th

Pk−1(T ). (3.7)

While the pair Wh/Qh has the property Qh = div (Wh), the pair W−h /Qh only has the local property
div (W−h |T ) = div (Wh|T ) = Qh|T ∀ T ∈ Th. Functions in W−h are only “almost normal-continuous”, but can be
normal-discontinuous in the highest polynomial order modes. If a velocity uT ∈W−h is weakly incompressible, i.e.∫

Ω

div (uT ) qh dx = 0 ∀qh ∈ Qh, (3.8)
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we have
div (uT ) = 0 in T ∈ Th and Πk−1[(uT · n)n]F = 0, ∀ T ∈ Th, (3.9)

thus a missing normal continuity in the higher order moments. In order to obtain mass conservative velocity fields
a reconstruction is presented in Section 5. We recall that the purpose of the relaxation of the H(div )-conformity
is computational efficiency in view of arising linear systems. This has been elaborated on in [18].

3.2. Variational formulation

We recall the Hybrid DG formulation presented in [18] which leads to an order-optimal method with a reduced
number of globally coupled unknowns. The (“basic”) discretization is as follows: Find uh = (uT , uF ) ∈ Uh and
ph ∈ Qh, s.t. {

Ah(uh, vh) + Bh(vh, ph) = 〈f, vh〉 ∀ vh ∈ Uh,
Bh(uh, qh) = 0 ∀ qh ∈ Qh, (B|3.10)

with the bilinear forms corresponding to viscosity (Ah), pressure and incompressibility (Bh) defined in the
following. For the viscosity we introduce the bilinear form Ah for uh, vh ∈ Uh as

Ah(uh, vh) :=
∑
T∈Th

∫
T

ν∇uT :∇vT dx−
∫
∂T

ν
∂uT
∂n

Πk−1
F [[vth]]F ds (3.11)

−
∫
∂T

ν
∂vT
∂n

Πk−1
F [[uth]]F ds+

∫
∂T

ν
λk2

h
Πk−1
F [[uth]]FΠk−1

F [[vth]]F ds,

where λ is chosen, such that the bilinear form is coercive w.r.t. to a discrete energy norm ||| · |||1 on Uh, intro-
duced below. The L2(F )-projection Πk−1

F , cf. (3.4), realizes a reduced stabilization ([20], Section 2.2.1), i.e. a
sufficient stabilization with a reduced amount of global couplings. The bilinear form for the pressure part and
the incompressibility constraint is

Bh(uh, ph) :=
∑
T∈Th

−
∫
T

phdiv (uT ) dx for uh ∈ Uh, ph ∈ Qh. (3.12)

We notice that in (B|3.10) only tangential continuity is treated by an HDG formulation. Below, we will see
that the highest order normal discontinuity that is neither directly controlled by the finite element spaces nor
the DG formulation introduces a consistency error in (B|3.10) which has to be considered in the analysis.

4. Polynomial robust analysis for the Stokes equations

In order to compare discrete velocity functions uh = (uT , uF ) ∈ Uh with functions u ∈ Ureg := [H1
0 (Ω) ∩

H2(Th)]2 we identify (with abuse of notation) u with the tuple (u|T , u|F ) for every element T ∈ Th, F ∈ ∂T
where u|F is to be understood in the usual trace sense (which is unique due to the H1(Ω) regularity). For the
purpose of the analysis it is convenient to introduce the bilinear form for the saddle point problem in (B|3.10)
for (u, p), (v, q) ∈ (Uh + Ureg)× L2(Ω):

Kh((u, p), (v, q)) := Ah(u, v) + Bh(u, q) + Bh(v, p). (4.1)

A suitable discrete norm on Uh which mimics the H1(Ω) norm and a suitable norm for the velocity pressure
space Uh ×Qh are

|||uh|||21 :=
∑
T∈Th

{
‖∇uT ‖2T +

k2

h
‖Πk−1

F [[ut]]F ‖2∂T
}
, |||(uh, ph)|||1 :=

√
ν|||uh|||1+

1√
ν
‖ph‖L2(Ω). (4.2)

At several occasions in the analysis we use the notation a . b for a, b ∈ R to express a ≤ cb for a constant c
that is independent of h and k.
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Remark 4.1. In contrast to Definition 2.10 in [18] the norms in (4.2) use a proper scaling with respect to the
polynomial order k. This is important for the polynomial robustness proven in the following.

Where standard hp-error estimates for continuous finite element approximations normally use a Céa-like best
approximation result this does not work in the case of discontinuous Galerkin approximations as the introduced
bilinear forms are only continuous with respect to ||| · |||1 on the discrete spaces. We follow a different approach
which leads to optimal error estimates with resprect to the meshsize h and the polynomial order k. We start
with the introduction of some appropriate interpolation operators and recall some interpolation estimates in
the following lemma. Similar to (3.4), we define the element-wise L2 projection Πk

T : [L2(T )]2 → [Pk(T )]2:∫
T

Πk
Tu · vh dx =

∫
T

u · vh dx ∀vh ∈ [Pk(T )]2, T ∈ Th. (4.3)

Lemma 4.2 (Interpolation error estimates). Let T ∈ Th and u ∈ [H1(Ω) ∩Hm(Th)]2. Let Πk
T and Πk

F be the
interpolation operators defined by (4.3) and (3.4), respectively. There holds for s ≤ min(k,m− 1)

‖u−Πk
Tu‖T +

√
h

k
(‖u−Πk

Tu‖∂T + ‖u−Πk
Fu‖∂T ) .

(
h

k

)s
‖u‖Hs(T ). (4.4a)

Further, there exists a continuous operator ΠCT in to the space W−h ∩H1(Ω) with

‖∇(u−ΠCTu)‖T .
(
h

k

)s
‖u‖H1+s(T ). (4.4b)

Proof. The estimate of the volume term of (4.4a) can be found in [2] and Remark 4.74 of [30]. The estimate of
the boundary term follows from Corollary 1.2 of [23] and [4] and a scaling argument. Estimate (4.4b) is given
in Theorem 3.32 of [24] and uses a standard scaling argument. Similar results have already been achieved using
the techniques in [2] and proper lifting operators [1] in order to adapt results on quads for triangles. �

Note that by ΠCT we can further also introduce a continuous interpolation into Uh by ΠCu = (ΠCTu,ΠCFu)
with ΠCFu := (ΠCTu)t on F ∈ Fh.

Lemma 4.3 (Consistency). Let (u, p) ∈ [H2(Ω)]2 ×H1(Ω) be the solution to the Stokes equation (3.1). There
holds for (vh, qh) ∈ Uh ×Qh

Kh((u, p), (vh, qh)) = 〈f, vT 〉 − Ec(u, p, vh), (4.5)

where
Ec(u, p, vh) :=

∑
T∈Th

∫
∂T

(id−Πk−1
F )(−ν ∂u

∂n
+ pn) · (id−Πk−1

F )vT ds.

For (u, p) ∈ [H1(Ω)]2 ∩ [H l(Th)]2 ×H l−1(Th), l ≥ 2 and m = min(k, l − 1) we further get

Ec(u, p, vh) ≤
(
h

k

)m (
ν‖u‖Hm+1(Th) + ‖p‖Hm(Th)

)
|||vh|||1. (4.6)

Proof. With the same arguments as in the proof of Lemma 4.1 in [18] we arrive at∫
∂T

(id−Πk−1
F )(−ν ∂u

∂n
+ pn) · (id−Πk−1

F )vT ds

≤
(
ν‖(id−Πk−1

F )∇u · n‖∂T + ‖(id−Πk−1
F )pn‖∂T

)
‖(id−Πk−1

F )vT ‖∂T

.

(
h

k

)m−1/2 (
ν‖∇u‖Hm(T ) + ‖p‖Hm(T )

) (h
k

) 1
2

‖∇vt‖T .

�
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Remark 4.4 (Consistency analysis). We notice that on Uh the bilinear form Ah(·, ·) is unchanged if the pro-
jection Πk−1

F is removed in the second and the third integral. This has been exploited in the analysis for
H(div )-conforming HDG discretizations of Biot’s consolidation model and a coupled Darcy–Stokes problem in
[13,15]. For the relaxed H(div )-conforming HDG method, one could similarly replace the bilinear form Kh(·, ·)
with a different bilinear form K∗h(·, ·) that is defined on (Uh + Ureg) × L2(Ω) with the following two proper-
ties. On the one hand it has – instead of (4.5) – the consistency property K∗h((u, p), (vh, qh)) = 〈f, vT 〉 for all
(vh, qh) ∈ Uh ×Qh, where (u, p) ∈ [H2(Ω)]2 ×H1(Ω) is the solution to the Stokes equation (3.1). On the other
hand the restriction of K∗h(·, ·) to Uh ×Qh coincides with Kh(·, ·). We decided not to introduce this additional
bilinear form K∗h(·, ·) in the analysis here as it is rather artificial in view of the definition of the method and its
implementation. We however mention that although the analysis with K∗h(·, ·) results in an improved consistency
property, the final error bound, cf. Theorem 4.8 below, would remain unaffected.

Lemma 4.5 (Coercivity). There exists a positive stabilization parameter λ > 0 such that

Ah(uh, uh) & c
CO
ν|||uh|||21 ∀uh ∈ Uh,

where c
CO

> 0 with c
CO
6= c

CO
(h, k).

Proof. The proof follows with the same steps as in [18] with the proper k scaling of the inverse inequality. �

Lemma 4.6 (LBB). There exists a constant cLBB > 0 with cLBB 6= cLBB(h, k) such that

sup
vh∈Uh

Bh(vh, ph)
|||vh|||1

≥ sup
vh∈Wh×Fh

Bh(vh, ph)
|||vh|||1

≥ cLBB‖ph‖L2 , ∀ ph ∈ Qh. (4.7)

Proof. The proof is deduced from the key result in [19]. Due to that result we know that there exists a constant
cLBB so that to every ph ∈ Qh there is an H(div )-conforming uT ∈Wh which provides the estimate∫

Ω

div (uT )ph dx ≥ cLBB ‖p‖L2(Ω) |||uT |||DG1 (4.8)

with

|||uT |||DG1 :=
∑
T∈Th

‖∇uT ‖2T +
∑

F∈F int
h

k2

h
‖[utT ]F ‖2F +

∑
F∈Fext

h

k2

h
‖utT ‖2F .

We now choose uh = (uT , uF ) with uF = Πk−1
F {utT }F on interior facets and uF = 0 on exterior facets. Note

that this can be done as uT ∈ Wh ⊂ W−h . Let T (F ) be the set of the two neighboring elements to an interior
facet. Then, we have

∑
F∈F int

h

k2

h
‖[utT ]F ‖2F +

∑
F∈Fext

h

k2

h
‖utT ‖2F ≥

∑
F∈F int

h

∑
T∈T (F )

2k2

h
‖[[utT ]]F ‖2F +

∑
F∈Fext

h

k2

h
‖[[utT ]]F ‖2F

≥
∑
T∈Th

k2

h
‖[[utT ]]F ‖2∂T ≥

∑
T∈Th

k2

h
‖Πk−1

F [[utT ]]F ‖2∂T

and thus |||uT |||DG1 ≥ |||(uT , uF )|||1 = |||uh|||1. Hence, there holds

sup
vh∈Uh

Bh(vh, ph)
|||vh|||1

≥ sup
vh∈Wh×Fh

Bh(vh, ph)
|||vh|||1

≥ Bh(uh, ph)
|||uh|||1

≥
∫

Ω
div (uT ) ph dx
|||uT |||DG1

≥ cLBB‖ph‖L2 , ∀ ph ∈ Qh.

�
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Corollary 4.7 (inf-sup of Kh ). There exists a constant cIS > 0 with cIS 6= cIS(h, k) such that

inf
(uh,ph)∈Uh×Qh

(uh,ph)6=0

sup
(vh,qh)∈Uh×Qh

(vh,qh) 6=0

Kh((uh, ph), (vh, qh))
|||(uh, ph)|||1|||(vh, qh)|||1

≥ cIS .

Proof. This follows from Lemmas 4.5 and 4.6. �

Theorem 4.8 (Error bound). Let (u, p) ∈ [H1(Ω)]2∩ [H l(Th)]2×H l−1(Th), l ≥ 2 be the exact solution of (3.1)
and (uh, ph) ∈ Uh ×Qh be the solution of the discrete problem (B|3.10). For m = min(k, l − 1) there holds the
error estimate

ν|||u− uh|||1 + ‖p− ph‖0 . ν
(
h

k

)m
‖u‖Hm+1(Th) +

(
h

k

)m
‖p‖Hm(Th).

Proof. We start by inserting a continuous interpolation of the exact solution ΠCu ∈ Uh and an element-wise L2

projection Πk−1
T p ∈ Qh and use the triangle inequality

ν|||u− uh|||1 + ‖p− ph‖L2 ≤ ν|||u−ΠCu|||1 + ‖p−Πk−1
T p‖L2 + ν|||ΠCu− uh|||1 + ‖Πk−1

T p− ph‖L2 .

Using the properties of the interpolation operators, see Lemma 4.2, the first two terms can already be
estimated with the proper order

ν|||u−ΠCu|||1 + ‖p−Πk−1
T p‖L2 ≤ ν

(
h

k

)m
‖u‖Hm+1(Th) +

(
h

k

)m
‖p‖Hm(Th). (4.9)

For the other two terms we use (4.2)

ν|||ΠCu− uh|||1 + ‖Πk−1
T p− ph‖L2 =

√
ν|||(ΠCu− uh,Πk−1

T p− ph)|||1.

Using Corollary 4.7 and (4.1) yields

|||(ΠCu− uh,Πk−1
T p− ph)|||1 . sup

(vh,qh)∈Uh×Qh

(vh,qh) 6=0

Kh((ΠCu− uh,Πk−1
T p− ph), (vh, qh))

|||(vh, qh)|||1

= sup
(vh,qh)∈Uh×Qh

(vh,qh) 6=0

Kh((ΠCu,Πk−1
T p), (vh, qh))− 〈f, vh〉
|||(vh, qh)|||1

.

Using the consistency Lemma 4.3 and the definition of Kh we further get

|||(ΠCu− uh,Πk−1
T p− ph)|||1

≤ sup
(vh,qh)∈Uh×Qh

(vh,qh) 6=0

Kh((ΠCu− u,Πk−1
T p− p), (vh, qh)) + Ec(u, p, vh)
|||(vh, qh)|||1

= sup
(vh,qh)∈Uh×Qh

(vh,qh) 6=0

Ah(ΠCu− u, vh) + Bh(ΠCu− u, qh) + Bh(vh,Πk−1
T p− p) + Ec(u, p, vh)

|||(vh, qh)|||1

= sup
(vh,qh)∈Uh×Qh

(vh,qh) 6=0

Ah(ΠCu− u, vh) + Bh(ΠCu− u, qh) + Ec(u, p, vh)
|||(vh, qh)|||1

,
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where we used div (W−h ) ⊥L2(Ω) (id−Πk−1
T )L2(Ω) in the last step. We start with the estimate of the first term

Ah(ΠCu− u, vh). Note that ΠCu is a continuous interpolation, thus we have [[ΠCu]]F = [[ut]]F = 0, and by this

Ah(ΠCu− u, vh) =
∑
T∈Th

∫
T

ν∇(ΠCTu− u) :∇vT dx−
∫
∂T

ν
∂(ΠCTu− u)

∂n
Πk−1
F [[vt]]F ds.

Applying the Cauchy Schwarz inequality we get

Ah(ΠCu− u, vh) ≤
∑
T∈Th

ν‖∇(ΠCTu− u)‖T ‖∇vT ‖T + ν

√
h

k
‖∇(ΠCTu− u) · n‖∂T

k√
h
‖Πk−1

F [[vht]]F ‖∂T

≤
√∑
T∈Th

ν‖∇(ΠCTu− u)‖2T
√∑
T∈Th

ν‖∇vT ‖2T

+

√∑
T∈Th

ν
h

k2
‖∇(ΠCTu− u) · n‖2∂T

√√√√∑
T∈Th

ν
k2

h
‖Πk−1

F [[vht]]F ‖2∂T .

Using estimate (4.4b) we can bound the first term of the right sum by√∑
T∈Th

ν‖∇(ΠCTu− u)‖2T
√∑
T∈Th

ν‖∇vT ‖2T . ν
(
h

k

)m
‖u‖Hm+1(Th)|||vh|||1.

For the other term we proceed similar as in [31] by inserting an L2 interpolation of the gradient of the exact
solution, thus we get

√
h

k
‖∇(ΠCTu− u) · n‖∂T ≤

√
h

k
‖(∇ΠCTu−Πk

T∇u) · n‖∂T + k−
1
2

√
h

k
‖(Πk

T∇u−∇u) · n‖∂T .

As ∇ΠCTu−Πk
T∇u is a polynomial we can use an inverse inequality and with (4.4b) and (4.4a) we get

√
h

k
‖(∇ΠCTu−Πk

T∇u) · n‖∂T . ‖∇ΠCTu−Πk
T∇u‖T

≤ ‖∇ΠCTu−∇u‖T + ‖∇u−Πk
T∇u‖T ≤

(
h

k

)m
‖u‖Hm+1(T ).

For the other term we use k−
1
2 ≤ 1 and equation (4.4a) to get ‖(Πk

T∇u − ∇u) · n‖∂T ≤
(
h
k

)m ‖u‖Hm+1(T ).
Those two estimates lead to√∑

T∈Th

ν
h

k2
‖∇(ΠCTu− u) · n‖2∂T

√√√√∑
T∈Th

ν
k2

h
‖Πk−1

F [[vth]]F ‖2∂T . ν
(
h

k

)m
‖u‖Hm+1(Th)|||vh|||1.

We finally conclude Ah(ΠCu− u, vh) . ν
(
h
k

)m ‖u‖Hm+1(Th)|||vh|||1. Using the Cauchy Schwarz inequality and
(4.4b) we also get Bh(ΠCu − u, qh) .

(
h
k

)m ‖u‖Hm+1(Th)‖qh‖L2 . Together with the estimate of the consistency
error (4.6) and the estimate of the first part (4.9) we finally derive the result. �

Remark 4.9 (hp-optimal error bounds for the H(div )-conforming HDG method). Let us comment on the
H(div )-conforming HDG method that is obtained when replacing Uh with Wh × Fh in (B|3.10), cf. [20]. As a
byproduct of our analysis, we can deduce the error estimate from Theorem 4.8 also for the H(div )-conforming
HDG method. We notice that the coercivity result in Lemma 4.5 and the LBB-stability in Lemma 4.6 already
apply for the velocity space Wh × Fh and thus also Corollary 4.7 holds on Wh × Fh. Finally, the proof of
Theorem 4.8 goes through with only very minor changes.
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5. A reconstruction operator for relaxed H(div )-conforming velocities

In Section 2.4 in [18] we introduced a velocity reconstruction operator to restore H(div )-conformity. We
denote such a reconstruction operator as RW : W−h →Wh and define the canonical extension to U+

h := Wh×Fh
as

RU : Uh → U+
h , RUuh := (RWuT , uF ). (5.1)

The definition and implementation of such an operator highly depends on the basis of the finite element
space. Where a DG-like BDM interpolation could be used in general, a simple averaging of the highest order
face type basis functions could be used in the case of a proper L2 orthogonality on the faces. Both versions are
discussed in [18]. Nevertheless we make the following assumptions on such a reconstruction operator.

Assumption 5.1. We assume that the reconstruction operators RW and RU , respectively, fulfill the following
conditions:

RW vT ∈Wh for all vT ∈W−h , (5.2a)

(RW vT ·n, ϕ)L2(F ) = (vT ·n, ϕ)L2(F ) for all ϕ ∈ Pk−1(F ), vT ∈W−h , F ∈ Fh, (5.2b)

(RW vT , ϕ)L2(T ) = (vT , ϕ)L2(T ) for all ϕ ∈ [Pk−2(T )]d, vT ∈W−h , T ∈ Th, (5.2c)
|||RUvh|||1 . |||vh|||1 for all vh ∈ Uh. (5.2d)

We notice that this assumption has been (analytically) verified for the reconstruction operators discussed in
[18] (except for the k-robustness of (5.2d)). Now we define the pressure robust method as{

Ah(uh, vh) + Bh(vh, ph) = 〈f,RUvh〉 ∀ vh ∈ Uh,
Bh(uh, qh) = 0 ∀ qh ∈ Qh. (PR|5.3)

There holds the following polynomial robust error estimate for the pressure robust discretization (PR|5.3).

Theorem 5.2. Let u ∈ [H1
0 (Ω) ∩H l(Th)]2, l ≥ 2 be the velocity solution of (3.1) and uh ∈ Uh be the velocity

solution of (PR|5.3) where RU fulfills Assumption 5.1. Then there holds RWuh ∈ H(div ,Ω), div (RWuh) = 0
and for m = min{k, l − 1} we have

|||u− uh|||1 ≤
(
h

k

)m
‖u‖Hm+1(Th). (5.4)

Proof. Let u+
h ∈ U+

h and p+
h ∈ Qh be the solution of the pressure robust H(div )-conforming HDG method as

introduced in [20]. There holds

Ah(u+
h , vh) + Bh(vh, p+

h ) = 〈f, vh〉 ∀ vh ∈ U+
h ,

Bh(u+
h , qh) = 0 ∀ qh ∈ Qh, (5.5)

and with similar estimates as in the proof of Theorem 2.3 from [19] also

|||u− u+
h |||1 ≤

(
h

k

)m
‖u‖Hm+1(Th). (5.6)

For an arbitrary vh ∈ Uh with Bh(vh, qh) = 0 for all qh ∈ Qh we have

Ah(u+
h − uh, vh) = Ah(u+

h , vh)−Ah(uh, vh) = Ah(u+
h , vh)− 〈f,RUvh〉

= Ah(u+
h , vh −RUvh) +Ah(u+

h ,RUvh)− 〈f,RUvh〉.
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As RUvh ∈ U+
h we have Ah(u+

h ,RUvh) = 〈f,RUvh〉 and so

Ah(uh − u+
h , vh) = Ah(u+

h , vh −RUvh) =
∑
T∈Th

∫
T

ν∇u+
T :∇(vT −RW vT ) dx

−
∫
∂T

ν
∂u+
T

∂n
Πk−1
F [[(vh −RUvh)t]]F ds−

∫
∂T

ν
∂(vh −RUvh)

∂n
Πk−1
F [[(u+

h )t]]F ds

+
∫
∂T

ν
λk2

h
Πk−1
F [[(u+

h )t]]FΠk−1
F [[(vh −RUvh)t]]F ds.

Using integration by parts on each element we get∑
T∈Th

∫
T

ν∇u+
T :∇(vT −RW vT ) dx =

∑
T∈Th

∫
T

−ν∆u+
T (vT −RW vT ) dx+

∫
∂T

ν
∂u+
T

∂n
Πk−1
F (vT −RW vT ) ds

On the element boundaries we split the difference in a tangential and a normal part

(vh −RUvh) = (vh −RUvh)t + ((vh −RUvh) · n) · n,
and as vh −RUvh = (vT −RW vT , 0) we can write

(vh −RUvh) = [[(vh −RUvh)t]]F + ((vh −RUvh) · n) · n.
By this it follows

Ah(uh − u+
h , vh) =

∑
T∈Th

∫
T

−ν∆u+
T (vT −RW vT ) dx−

∫
∂T

ν
∂u+
T

∂n
Πk−1
F ((vh −RUvh) · n) · n ds

−
∫
∂T

ν
∂(vh −RUvh)

∂n
Πk−1
F [[(u+

h )t]]F ds+
∫
∂T

ν
λk2

h
Πk−1
F [[(u+

h )t]]FΠk−1
F [[(vh −RUvh)t]]F ds.

Due to (5.2c) the first term vanishes. Further note that the difference of the normal part ((vh −RUvh) · n) · n
is a polynomial of order k which is orthogonal on polynomials of order k − 1, see Lemma 3.1 in [18] which
implies that also the second term vanishes. Using the Cauchy Schwarz inequality, an inverse trace inequality for
polynomials and Πk−1

F [[(u+
h )t]]F = Πk−1

F [[(u+
h − u)t]]F we bound the third term

∑
T∈Th

∫
∂T

ν
∂(vh −RUvh)

∂n
Πk−1
F [[(u+

h )t]]F ds ≤ ν
√√√√∑
T∈Th

k2

h
‖Πk−1

F [[(u+
h )t]]F ‖2∂T

√∑
T∈Th

h

k2
‖∇(vh −RUvh) · n‖2∂T

≤ ν|||u− u+
h |||1|||vh −RUvh|||1,

and similarly the last term∑
T∈Th

∫
∂T

ν
λk2

h
Πk−1
F [[(u+

h )t]]FΠk−1
F [[(vh −RUvh)t]]F ds ≤ ν|||u− u+

h |||1|||vh −RUvh|||1.

All together this leads to

ν|||u+
h − uh|||1 ≤ sup

vh∈Uh

Bh(vh,qh)=0 ∀qh∈Qh

Ah(u+
h − uh, vh)
|||vh|||1

≤ sup
vh∈Uh

Bh(vh,qh)=0 ∀qh∈Qh

Ah(u+
h , vh −RUvh)
|||vh|||1

.
ν|||u− u+

h |||1|||vh −RUvh|||1
|||vh|||1

≤ ν|||u− u+
h |||1.

where we used (5.2d) in the last step. We conclude the proof by using the triangle inequality and
estimate (5.6). �
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Remark 5.3. The crucial part of the proof of Theorem 5.2 was the usage of the polynomial robust stability
estimate of the reconstruction, equation (5.2d), in the last steps. It is an open question if this assumption
holds true. Nevertheless numerical indication is given in Section 7.1 that the assumption is true at least for
approximate velocity solutions.

6. Solving unsteady incompressible Navier–Stokes equations with operator
splitting

We now turn over to the solution of the unsteady incompressible Navier–Stokes equations. As in [20] detailed
described, we use operator splitting methods which treat the convection only explicit so that linear systems
that need to be solved involve only (symmetric) Stokes-like operators. Thereby the benefits of the hybridization
and the reduction of the facet unknowns have a full effect on the efficiency of the method.

6.1. Semi-discretization

As convection is only treated explicitly, there is no point in using a Hybrid (or hybridized) DG formulation
for it. Instead we use a standard Upwind DG formulation. We therefore introduce the convection trilinear form

Ch(uT ;w, z) :=
∑
T

−
∫
T

w ⊗ uT :∇z dx+
∫
∂T

uT ·n ŵ z ds, uT ∈Wh, w, z ∈ Vh. (6.1)

where ŵ denotes the upwind value ŵ = limε↘0 w(x − εuT (x)) and Vh is the standard DG space Vh := {w ∈∏
T∈Th

[Pk(T )]2}. Note that the first argument of Ch has to be in Wh, so that uT · n is unique on every facet.
Further, we have Wh ⊂ W−h ⊂ Vh so that Ch is well defined for functions in W−h . For w, z ∈ Uh = W−h × Fh
we define, with abuse of notation, Ch(uT ;w, z) := Ch(uT ;wT , zT ), i.e. we ignore the facet unknowns. Below,
step-by-step we state different semi-discretizations for the unsteady Navier–Stokes equations. For simplicity of
presentation we assume that the r.h.s. forcing term f is zero. In analogy to the Stokes problem we denote a
semi-discretization as pressure robust iff Ch(·; ·, v) – which takes the roles of the r.h.s. force of the Stokes problem
– vanishes for every weakly divergence-free function v ∈ Uh, i.e. v ∈ Vh Bh(v, q) = 0 ∀q ∈ Qh.

Basic semi-discretization. We start with a straight-forward version. Given initial values for the velocity
u0 ∈ [L2(Ω)]2, find (uh(t), ph(t)) ∈ Uh ×Qh, t ∈ [0, T ] that solve{

( ∂∂tuh, vh)Ω +Ah(uh, vh)+Dh(vh, ph) =Ch(uT ;uh, vh)∀ vh ∈ Uh, t ∈ [0, T ],
Dh(uh, qh) = 0 ∀ qh ∈ Qh, t ∈ [0, T ]. (6.2)

With the definition of the bilinear form Kh, see (4.1), we can also write: Find (uh(t), ph(t)) ∈ Uh × Qh,
t ∈ [0, T ] with uh(0) = Πu0 so that for all vh ∈ Uh, qh ∈ Qh and almost all t ∈ [0, T ] there holds(

∂

∂t
uh, vh

)
Ω +Kh((uh, ph), (vh, qh)) = Ch(uT ;uh, vh). (6.3a)

Here, we moved the convection to the r.h.s. to emphasize the explicit treatment of this term in the full
discretization below. The formulation in (6.3a) is neither pressure robust nor energy stable nor does it provide
solenoidal solutions.

Pressure-robust semi-discretization. To obtain a pressure robust formulation, we proceed as in [18] and replace
vh with RU (vh) where RU is the reconstruction operator introduced in Section 5. Hence, we replace (6.3a) with(

∂

∂t
uh, vh

)
Ω +Kh((uh, ph), (vh, qh)) = Ch(uT ;uh,RU (vh)). (6.3b)

Note that the consistency error introduced by the reconstruction operator has been analyzed for the Stokes
problem in [18].
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Energy-stable semi-discretization. To obtain an energy-stable formulation we would like to have that the
convection trilinear form is non-negative if the second and third argument coincide. For this to be true, it is
mandatory that the advective velocity (first argument in the trilinear form) is pointwise divergence free, cf. [8].
To achieve this, we replace the uT which can be normal-discontinuous (in the highest order moments) with its
reconstructed counterpart RU (uT ) which is pointwise divergence free. We notice that this perturbation has also
been analyzed in [18] and has been found to be of higher order. Applying this modification to (6.3a) we obtain
the energy-stable formulation(

∂

∂t
uh, vh

)
Ω +Kh((uh, ph), (vh, qh)) = Ch(RW (uT );uh, vh). (6.3c)

Energy-stable and prossure-robust semi-discretization. If we combine the pressure-robust and the energy-
stable formulations, we apply the reconstruction operator on the advective velocity (first argument) and the
test function (third argument of Ch). However, to obtain an energy-stability result we require a symmetry in the
reconstruction of the second and the third argument so that we finally apply the reconstruction on all arguments
of Ch which leads to(

∂

∂t
uh, vh

)
Ω +Kh((uh, ph), (vh, qh)) = Ch(RW (uT );RU (uh),RU (vh)). (6.3d)

Pointwise divergence free solutions. Solutions uh obtained by any of the variants (6.3a)–(6.3d) can be post-
processed by the reconstruction operator to obtain a pointwise divergence free solution at any time in [0, T ]. If
this is done after every time step in a time stepping method, see also next Section, the reconstruction steps for
the first two arguments in (6.3c) and (6.3d) become unnecessary.

6.2. Full discretization with a first order IMEX scheme

To obtain a full discretization we combine the semi-discretization from the last Section with operator splitting
type time integration. The operator splitting methods that we consider are of convection-diffusion type, i.e. that
the Stokes operator is treated implicitly and the convection operator only explicitly. Different possibilities exist
to derive time integration schemes of this type. Here, we only present a very simple prototype method, the first
order IMEX scheme. For further details and different suitable schemes we refer to Section 3 from [20].

The idea of the first order IMEX scheme is to apply an Euler discretization to any of the semi-discretizations
(6.3a)–(6.3d) where we use an implicit treatment for the Stokes operator and an explicit treatment for the
convection. Taking (6.3a) as a basis, setting ∆t := tn+1 − tn for tn, tn+1 ∈ [0, T ], this results in the following
scheme:

Given unh ≈ uh(tn) ∈ Uh we define

(un+1
h , pn+1

h ) = (ūn+1
h , pn+1

h ) ≈ (uh(tn), ph(tn)) ∈ Uh ×Qh,

where (ūn+1
h , p̄n+1

h ) is the solution to

(ūn+1
h , vh)Ω +∆t Kh((ūn+1

h , pn+1
h ), (vh, qh))

= (unh, vh)Ω +∆t Ch(unT ;unh, vh), ∀(vh, qh) ∈ Uh ×Qh.
(6.4)

Corresponding pressure-robust and/or energy-stable versions are easily obtained by introducing corresponding
reconstruction operators in Ch(unT ;unh, vh). If the solution to every time step should be divergence free, we can
simply set un+1

h = RU (ūn+1
h ). The full-featured version which is energy-stable, pressure-robust and has pointwise

divergence free solutions is the following:
Given unh ≈ uh(tn) ∈ Uh we define

(un+1
h , pn+1

h ) := (RU (ūn+1
h ), pn+1

h ) ≈ (uh(tn), ph(tn)) ∈ Uh ×Qh,
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where (ūn+1
h , p̄n+1

h ) is the solution to

(ūn+1
h , vh)Ω +∆t Kh((ūn+1

h , pn+1
h ), (vh, qh))

= (unh, vh)Ω +∆t Ch(RW (unT )︸ ︷︷ ︸
=un
T

;RU (unh)︸ ︷︷ ︸
=un

h

,RU (vh)), ∀(vh, qh) ∈ Uh ×Qh. (6.5)

We notice that with this version, we preserve all the desirable properties of an H(div )-conforming method,
i.e. energy-stability, pressure-robustness and solenoidal solutions while keeping the linear systems in a structure
which allows for an efficient solution.

7. Numerical examples

In this section we present several numerical problems. Besides the different steady Stokes discretizations
defined in this work we also consider the different semi-discretizations as defined in Section 6.1 to solve the
unsteady Navier–Stokes equations. In order to make it easier to distinguish between the different versions
(6.3a)–(6.3d) we denote solutions of the corresponding problems as ua

h, ub
h,uc

h and ud
h respectively. Further we

also consider the discretization presented in [20]. It is an H(div )-conforming method with unknowns of order k
(instead of k − 1 as for the relaxed methods) involved for the normal-continuity and also unknowns of order k
for the (weak) tangential continuity. Solutions using this type of spatial discretization are denoted by un,t

h . Note
that we also used this discretization for a comparison of the computational costs in Section 5.2 from [18]. All
implementations of the numerical examples were performed within the finite element library Netgen/NGSolve,
see [27,28].

7.1. Polynomial robustness of problem (PR|5.3)

In this section we study the convergence rate with respect to the polynomial order k on the Kovasznay flow
as in [17]. Let Ω = [− 1

2 , 1]× [− 1
2 ,

3
2 ] and ν = 1/40. The exact solution of the steady (∂u/∂t = 0) Navier–Stokes

flow is given by

u := (1− eλx cos(2πy),
λ

2π
eλx sin(2πy)) and p := −1

2
e2λx + p (7.1)

with λ = 1
2ν −

√
1

4ν2 + 4π2 and p ∈ R such that p ∈ L2
0(Ω), see also Figure 1. We solve a steady Stokes flow

and choose f := −(u · ∇)u as right hand side such that (7.1) can be used as reference solution. We used a
fixed mesh with |T | = 20 and the polynomial order k ∈ {2, . . . , 14}. There are several observations to make.
In Table 1 we compare the broken H1 semi norm errors for several solutions of the given steady Stokes flow.
The first column represents the error of the solution uh of the variational formulation given by (B|3.10). The
same error is also given in Figure 2. We can clearly see an exponential convergence of the error as proven in
Theorem 4.8. The third column of Table 1 shows the error of uPR

h , the solution of the pressure robust variational
formulation given by (PR|5.3). Theorem 5.2 predicts an exponential convergence if Assumption 5.2, especially
equation (5.2d) holds true, see Remark 5.3. Comparing the error with the first column, we can clearly see no
difference, so Theorem 5.2 seems to hold true. For a further investigation of the polynomial robustness of the
reconstruction (5.2d), the errors of the solutions with a subsequent application of RU are given in Figure 2
and columns two and four of Table 1. Again one can see no significant difference which we can interprete at
least as a good numerical indication of (5.2d). We want to mention that this problem was chosen such that the
irrotational part and the divergence free part of the right hand side are of the same magnitude. By this the
comparison of the velocity errors of uh and uPR

h is more reliable as we do not see the impact of such imbalance
as discussed in Section 5.1 from [18].
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Figure 1. Absolute value |u| (left) of the velocity and the pressure p (right) of the Kovasznay flow.

Table 1. Comparison of the broken H1 (semi) norm error for the Kovasznay flow and different
orders k = 2, . . . , 14.

k ||∇u−∇uh||0 ||∇u−∇RUuh||0 ||∇u−∇uPR
h ||0 ||∇u−∇RUuPR

h ||0
2 2.658 2.830 2.698 2.936
3 8.074× 10−1 8.416× 10−1 8.209× 10−1 8.540× 10−1

4 2.002× 10−1 2.186× 10−1 2.024× 10−1 2.251× 10−1

5 4.093× 10−2 4.195× 10−2 4.120× 10−2 4.239× 10−2

6 6.614× 10−3 7.033× 10−3 6.654× 10−3 7.218× 10−3

7 1.016× 10−3 1.037× 10−3 1.018× 10−3 1.041× 10−3

8 1.204× 10−4 1.258× 10−4 1.207× 10−4 1.278× 10−4

9 1.477× 10−5 1.511× 10−5 1.478× 10−5 1.514× 10−5

10 1.385× 10−6 1.433× 10−6 1.386× 10−6 1.446× 10−6

11 1.411× 10−7 1.449× 10−7 1.411× 10−7 1.451× 10−7

12 1.097× 10−8 1.131× 10−8 1.097× 10−8 1.137× 10−8

13 9.706× 10−10 1.005× 10−9 9.711× 10−10 1.006× 10−9

14 2.849× 10−10 2.846× 10−10 2.843× 10−10 2.841× 10−10

7.2. 2D Schäfer–Turek Navier–Stokes example (k-convergence)

We consider the two dimensional benchmark problem “2D–2Z” given in [26] where a laminar flow around a
cylinder is described. The domain is given by

Ω := [0, 2.2]× [0, 0.41] \ {||(x, y)− (0.2, 0.2)||2 ≤ 0.05}.
The boundary is decomposed into Γin,Γout,Γw describing the inflow, outflow and wall boundary respectively.

On Γin := {x = 0} we assume non homogeneous Dirichlet boundary conditions in normal direction given by

u(0, y, t) = uin = 6y(0.41− y)ex,

where ex is the unit vector in x-direction. On Γout := {x = 2.2} we prescribe natural boundary conditions
(−ν∇u− pI) · n = 0, and on Γw := ∂Ω \ (Γin ∪ Γout) homogeneous Dirichlet, thus no slip boundary conditions.
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Figure 2. The broken H1 (semi) norm error for the Kovasznay flow and different orders
k = 2, . . . , 14.

Figure 3. Absolute value |u| of the velocity solution of problem “2D–2Z” in [26] at t = 8.

Table 2. Drag coefficients for an H(div )-conforming method and the discretizations (6.3a),
(6.3c), (6.3d).

un,t
h ua

h uc
h ud

h

k max cD min cD max cD min cD max cD min cD max cD min cD

1 3.27235 3.17333 – – 3.04275 3.04238 2.39217 2.39203
2 3.27049 3.19328 3.16567 3.12686 3.18840 3.14446 3.13262 3.09619
3 3.21889 3.15947 3.21964 3.16195 3.20991 3.15367 3.21151 3.15384
4 3.22534 3.16296 3.21833 3.15877 3.22313 3.16178 3.22521 3.16283
5 3.22739 3.16430 3.22763 3.16450 3.22700 3.16415 3.22701 3.16403
6 3.22768 3.16445 3.22741 3.16435 3.22755 3.16441 3.22751 3.16433
7 3.22775 3.16447 3.22787 3.16456 3.22777 3.16450 3.22771 3.16445

The viscosity is fixed to ν = 10−3 resulting in a moderate Reynolds number Re = 100. In Figure 3 we see
a numerical solution at t = 8 where we can observe the unsteady vortex street behind the cylinder. For the
discretizations we use a fixed mesh with |T | = 550 elements and different polynomial orders. In order to compare
our results we consider the convergence of the (maximal and minimal) drag and lift coefficients on the cylinder
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Table 3. Lift coefficients for the discretizations (6.3a), (6.3c), (6.3d) and anH(div )-conforming
method.

un,t
h ua

h uc
h ud

h

k max cL min cL max cL min cL max cL min cL max cL min cL

1 1.24278 −1.28070 – – 0 −0.03436 0 −0.08916
2 1.06915 −1.12091 0.67282 −0.78535 0.74117 −0.84198 0.75239 −0.77702
3 0.96102 −0.99119 0.92727 −0.96789 0.93729 −0.96388 0.94502 −0.97126
4 0.97993 −1.01412 0.95490 −0.98584 0.97330 −1.00620 0.98144 −1.01491
5 0.98490 −1.01971 0.98540 −1.01952 0.98403 −1.01831 0.98405 −1.01870
6 0.98622 −1.02080 0.98528 −1.01924 0.98586 −1.02019 0.98586 −1.02032
7 0.98641 −1.02112 0.98675 −1.02136 0.98648 −1.02115 0.98631 −1.02101

Figure 4. Absolute value of the initial velocity |u0|.

Γ◦ := ∂{||(x1, x2)− (0.2, 0.2)||2 ≤ 0.05} given by

cD :=
∫

Γ◦

(
ν
∂u

∂n
− pn

)
· ex ds, cL :=

∫
Γ◦

(
ν
∂u

∂n
− pn

)
· ey ds.

For the time discretization we used a second order diagonal Runge Kutta IMEX scheme similar to the first
order version described in Section 6.2 with a time step ∆t = 5 × 10−4. Looking at Tables 2 and 3 we can
make several observations. In the first two columns the drag and lift coefficients are given for a fully H(div )-
conforming discretization un,t

h (see introduction of Sect. 7). All values show a rapid convergence with respect to
the polynomial order and are as accurate as the values presented in [12] (where a lot more degrees of freedom
are used). In the third and fourth columns the values for the discretization (6.3a) are presented. In the lowest
order case this method led to a blow up after some simulation time. However, increasing the polynomial order
induces a proper convergence and a high accuracy is achieved. For the discretization (6.3c) we can make similar
conclusions as with discretization (6.3a). The last two columns presents the values of discretization (6.3d). This
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Figure 5. Time evolution of the L2 norm for the lattice flow problem.

method shows a similar behavior as the previous ones. When we compare for example max cD for k = 4 we
only see a difference of 10−4, achieved with a method that was just as expensive, with respect to computational
costs of the linear solver, as the H(div )-conforming method with order k = 3 (see [18], Sect. 5.2). Finally
we want to mention that discretization (6.3b) led to a blow up of the solution after short simulation time.
An obvious possible explanation may be the missing energy-stability of the method. A sufficient criteria for
energy-stability follows from two conditions: The first argument of Ch(·; ·, ·) is pointwise divergence-free and the
second and the third argument coincide. Then, one easily checks Ch(·; ·, ·) ≤ 0. While both conditions are only
fulfilled for (6.3c) and (6.3d), the discretization (6.3b) violates both. We note that (6.3a) also violates the first
condition and is in general not energy stable. However, in this example the impact seems to be less important
(for k > 1).

7.3. A Navier–Stokes example: “Planar lattice flow”

In this example we want to make a qualitative comparison between different numerical solutions of a Navier–
Stokes problem. We consider a “planar lattice flow” given by four vortices which are rotating in opposite
directions on fixed positions on Ω = [0, 1]2. We assume periodic boundary conditions, a zero right hand side
f = 0, and an initial velocity
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u(x, y, t = 0) = u0(x, y) =
(

sin(2πx) sin(2πy)
cos(2πx) cos(2πy)

)
.

The exact solution is given by u(x, y, t) = u0(x, y)e−8π2νt. We choose a small viscosity of ν = 10−6 such
that the convective terms are dominating. In Figure 4 the initial velocity is plotted. This problem is interesting
because small perturbations result in very chaotic flow fields due to the periodic boundary conditions and the
saddle point character of the start values, see [22]. In Figure 5 we compare the time evolution of the L2 norm of
the resulting flow fields for the discretizations (6.3a)–(6.3d) using the same second order diagonal Runge Kutta
IMEX scheme as in Section 7.2 with a time step ∆t = 1 × 10−4, polynomial orders k = 4, 6 and two different
meshes with mesh size h ≈ 0.1 resulting in |T | = 212 and h ≈ 0.05 resulting in |T | = 924. Note that we have
chosen such a small time step to neglect errors caused by the time discretization. To validate this behavior
several tests with smaller time steps were performed and lead to (essentially) the same results. Further note
that we used unstructered meshes, thus we do not exploit the saddle-point structure of the flow. Similar to
Example 7.2, the semi-discrete method (6.3d) is the most accurate compared to the fully H(div )-conforming
method. Methods (6.3a), (6.3b) and (6.3c) are stable but result in big errors quite early in time. The behavior
of the error is consistent with the observations in [29].

Acknowledgements. Philip L. Lederer was funded by the Austrian Sicence Fund (FWF) research programm “Taming
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References
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