RAIRO-Theor. Inf. Appl. 56 (2022) 9 RAIRO - Theoretical Informatics and Applications
https://doi.org/10.1051 /ita/2022009 Www.rairo-ita.org

ALMOST ALL CLASSICAL THEOREMS ARE INTUITIONISTIC

PIERRE LESCANNE®

Abstract. Canonical expressions represent the implicative propositions (i.e., the propositions with
only implications) up-to renaming of variables. Using a Monte-Carlo approach, we explore the model
of canonical expressions in order to confirm the paradox that says that asymptotically almost all clas-
sical theorems are intuitionistic. Actually we found that more than 96.6% of classical theorems are
intuitionistic among propositions of size 100.

Mathematics Subject Classification. 11B73, 03F55, 06E30, 05-04, 05-08

Received May 9, 2022. Accepted October 7, 2022.

1. INTRODUCTION

In 2007, Marek Zaionc coauthored two papers [6, 8], corresponding to two models of the calculus of implicative
propositions and presenting the following paradox, namely that asymptotically almost all classical theorems are
intuitionistic, which we call, in short, Zaionc paradozx. This says that when the size of the propositions grows,
the ratio of the number of intuitionistic theorems over the number of classical theorems goes up to one.

Usually people believe that there is a gap between intuitionistic and classical theorems. For instance, if
you interview mathematicians whether there are much more classical theorems that intuitionistic ones, they
would say that yes, classical theorems are more than intuitionistic ones and that if you pick at random big
theorems, you will easily find one which is classical not intuitionistic. This difference is important, because
simple methods for checking membership to one class or the other in the calculus of propositions are different,
in one case providing a proof (or a Kripke model) and in the other case exhibiting a Boolean assignment.
Perhaps the present contribution starts a new discipline, which I propose to call experimental logic.

In the current paper, we focus on the model of [8], which we call canonical expressions. They have been
introduced by Genitrini, Kozik and Zaionc [8] and more recently by Tarau and de Paiva [16, 17]. A canonical
expression is a representative of a class of implicative propositions (propositions that contain only implication
—) which differ only by the name assigned to the variables. Whereas Genitrini, Kozik and Zaionc addressed the
mathematical aspect of this model, Tarau and de Paiva tried to explicitly generate all the canonical expressions
of a given size and faced up to combinatorial explosion, because canonical expressions grow super exponentially
in size when the number on variables increases. In this paper, I check experimentally Zaionc paradox, adopting
a Monte-Carlo approach to observe how this paradox emerges. Indeed I designed a linear algorithm to randomly
generate canonical expressions. Therefore I can consider large samples of random (for a uniform distribution)

Keywords and phrases: Intuitionistic logic, classical logic, combinatorics, asymptotic, random generation, Bell number, Catalan
number, Monte-Carlo method.

Ecole Normale Supérieure de Lyon, LIP (UMR 5668 CNRS ENS Lyon UCBL), 46 allée d’Italie, 69364 Lyon, France.

* Corresponding author: pierre.lescanne@ens-1lyon.fr

© The authors. Published by EDP Sciences, 2022

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

https://doi.org/10.1051/ita/2022009
https://www.rairo-ita.org
https://orcid.org/0000-0001-9512-5276
mailto:pierre.lescanne@ens-lyon.fr
https://creativecommons.org/licenses/by/4.0

2 P. LESCANNE

canonical expressions and count how many canonical expressions in that samples are intuitionistic theorems or
classical theorems. The experiments, centered around canonical expressions of size 100, show that the numbers
we get for both sets (classical and intuitionistic) are very close confirming experimentally the paradox, with a
ratio 96.6% much better than this obtained on the model of Genitrini et al., which yields 36% for canonical
expressions of size 100. As a by-product we obtain programs generating large random canonical expressions,
large random intuitionistic theorems or large random classical theorems.

The programs used in this paper can be found on GitHub.

2. INTUITIONISTIC VS CLASSICAL THEOREMS

In this paper, we deal only with implicative propositions. An implicative proposition is a binary expression
with propositional variables, which has only one binary operator namely the implication written —. This can
be seen as the type of a function in functional programming or in A-calculus [1, 12]. Among the implicative
propositions, some can be proven, using a proof system, the so called natural deduction [9]. Let us consider
natural deduction. There are three rules used to prove intuitionistic theorems.

''Fa—p I'kFa a, ' g

Axiom ——— -Eli - TF
xiom — —-Elim TF 3 %IntroFFa%ﬂ

Classical theorems are proved by adding the axiom:

pi
T (@=B) > a) = a

which is called Peirce law. Usually one uses valuations, which assign booleans to variables. Let p be an assignment

of booleans to variables. Valuations of expressions are defined by:

[21, = p(2)

[e = €T, =[€], \/W

where b — b is the negation and by V by = 1 except when by = by = 0 is or. An expression e is a classical theorem
or a tautology, if for all valuation p, [e], = True.

Notice that, with the Curry Howard correspondence [1, 12], the results of this paper apply also to types.
Indeed, according to this correspondence, intuitionistic theorems are types of terms, in the A-calculus, whereas
classical terms are types of terms, in a A-calculus extended with a control operator. According the Curry-
Howard correspondence, types are propositions, terms are proofs and computations are proof normalization.
The actual computation of those terms in the extended A-calculus involves a kind of backtracking. Therefore,
our result suggests that most (if one takes the size of the type as the measure of terms) computations (of proof
nomalizations) do not require such a mechanism.

3. THE MODEL OF CANONICAL EXPRESSIONS

We call canonical expression the representative of an equivalence class of binary expressions up-to renaming
of variables. In other words, a canonical expression can be seen as a binary expression, in which variables are
named canonically, from right to left. That means that the rightmost variable is xg, then if processing to the left,
the next new variable is x1, then the next new variable, which is neither xzy nor z; is x5 etc. Recall that in an
expression, a variable corresponds to a position into the expression. In other words a variable in an equivalence
class of positions. Therefore naming canonically a variable corresponds to naming canonically an equivalence
class in the set of position. Therefore if a variable belongs to the ith class it will be named «; and vice-versa,
if a class is the class of «;, it is the ith class. In canonical expressions, the classes are numbered from right to
left. It is called restricted growth string by Knuth [10] (fascicle 3, Sect. 7.2.1.5, p. 62) and érregular staircase by
Flajolet and Sedgewick [5] (p. 62-63). In this paper, we consider classes from right to left wherever the cited
authors consider them from left to right, but this is a detail. Intuitively, a restricted growth string is a string

https://github.com/PierreLescanne/CanonicalExpression

ALMOST ALL CLASSICAL THEOREMS ARE INTUITIONISTIC 3

whose last item is 0 and when one progresses to the left, one meets items that have been met already or if not
the new item is just the successor of the largest item met until this point. Here [0...7]* is the set of strings made
of integers k such that 0 < k < 4.

Definition 3.1 (Restricted growth string). The set W, of n-restricted right to left growth strings is defined as
follows

— Wy = [0...0]%,
Wt = [0(n + D] (n+1) Wy

For instance W = [0...2]* 2W; = [0...2]* 2[0...1]* 1 W, = [0...2]* 2[0...1]* 1 [0...0]* One sees that 0220201000 €
W, where items larger than those on the right are put in brown.

Once the variables are chosen, how operators — are associated has to be done. Here we are interested in
parenthesized expressions with the only binary operator —. For instance, for an expression of size 10, we look
for a binary tree with 10 external leaves like:

(O-0)=(((O-D0)—0)-0O0)—»(O—-D0)—0)—0)))

which can be drawn as the tree:

— o o O
/

] (]

e
AN
To get a canonical expression one matches a restricted growth string and a binary tree. In our case, we get by
matching the above restricted tree and the above parenthesized expression, the following canonical expression

((OZO — 042) — ((((O{Q — Olo) — 052) — OLQ) — (((Otl — 050) — OLQ) — Oéo)))

which corresponds to the tree:

— — T~ —
VRN / AN
(%)) (65)
| T~
— (75}
RN AN
— oy — Q0
RN VRN
— Qo O [e7s)
N
(65) (%))

Canonical expressions are therefore pairs of binary trees and restricted left to right growth strings, counted
by K, = Cp—1wn, where C,, are Catalan numbers (counting binary trees) and w, are Bell numbers (count-
ing restricted growth strings). This corresponds to sequence A289679 in the Online encyclopedia of integer
sequences [14].

https://oeis.org/A289679

4 P. LESCANNE

We may wonder how numbers behave when n goes to infinity. Asymptotically, when n — oo,

4n—1
Cpno1 ~ —F———x
m(n—1)3

See Flajolet and Sedgewick [5] p. 64. This approximations can be obtained using the asymptotic theory
Chapter VII (pp. 452-482) of [5].

r
e’ —1

r/2mr(r + 1)e”

wy, ~ 1!

where r = r(n) is the positive root of the equation re” = n 4+ 1. Knuth [10] p. 68 gives this approximation and
shows how it can be obtained using the saddle point method, a method based on an examination of the behavior
of an analytic function of complex variable, near a specific location of the complex plan called the saddle point.
Bell numbers are precisely the example he takes for introducing this method. Therefore

4nfleerfl

m/2(n — 1)3r(r + 1)e”

K, ~n!

The first values of K,, are 1,2,10, 75,728, 8526,115764, 1776060, 30240210, ...
whereas K1gg ~ 9.62 10'%8 and Koo ~ 1.51 10889,

4. RANDOM CANONICAL EXPRESSIONS

Since canonical expressions are pairs of well-known combinatorial objects, namely binary trees and congruence
classes, we can use well-known algorithm to generate each constituents of the pairs.

4.1. Random binary trees

For generating random binary trees, I use Rémy algorithm [13] which is linear. This algorithm is described
by Knuth in [10] Section 7.2.1.6 (pp. 18-19). I have taken his implementation. The idea of the algorithm is
that a random binary tree can be built by iteratively and randomly picking an internal node or a leaf in a
random binary tree and inserting a new internal node and a new leaf either on the left or on the right. A
binary tree of size n has n — 1 internal nodes and n leaves. Inserting a node in a binary tree of size n requires
throwing randomly a number between 1 and 4n — 2 (a random number between 0 and 4n — 3 in my Haskell
implementation). This process can be optimized by representing a binary tree as a list (a vector in Haskell), an
idea sketched by Rémy and described by Knuth. In this vector, even locations are for internal nodes and odd
locations are for leaves. Here is a vector representing a binary tree with 10 leaves and its drawing.

indices || 0| 12|34 |5|6|7 8| 9|10 |11 12 13|14 |15|16| 17|18
values (|1 (130|259 |7 (8|4 |11 |17(12]10|15| 3|16| 14|18 | 6

ALMOST ALL CLASSICAL THEOREMS ARE INTUITIONISTIC 5

This tree was built by inserting the node 17 together with the leaf 18 in the following tree.

indices || 0| 1|2 |34 |5|6|7|8| 9|10|11 12|13 |14 |15 |16
values || 1130|259 |7 |8|4|11| 6|12|10|15| 3|16 |14

coding the tree

This was done by picking a node (internal node or leaf, here the node with label 6) and a direction (here right)
and by inserting above this node a new internal node (labeled 17) and, below the new inserted internal node, a
new leaf of the left (labeled 18). This double action (inserting the internal node and attaching the leaf) is done
by choosing a number in the interval [0..33] (in general, in the interval [0...(4n — 3)]). Assume that in this case
the random generator returns 21. 21 contains two informations: its parity (a boolean) and its half. Half of 21 is
10, which tells that the new node 17 must be inserted above the 10th (in the array) node namely 6. Since 21 is
odd, the rest of the tree (here reduced to the leaf 6) is inserted on the right (otherwise it would be inserted on
the left). A new leaf 18 is inserted on the left (otherwise it would be inserted on the right).

6 P. LESCANNE

Consider same tree and suppose that the random value is 8. Half of 8 is 4. Hence the new leaves are inserted
above the node labeled by 5

The algorithm works as follows. If n = 0, Rémy’s algorithm returns the vector starting at 0 and filled with
anything, since the whole algorithm works on the same vector with the same size. In general, say that, for n — 1,
Rémy’s algorithm returns a vector v. One picks a random integer x between 0 and 4n — 3. Let k be half of x.
In the vector v one replaces the kth position by 2n — 1 and one appends two elements, namely the kth item of
v followed by 2n if x is even and 2n followed by the kth item of v if x is odd.

If we admit that given a seed and a positive integer n, randForRemy seed n returns a random integer
between 0 and 4n — 3 inclusive, the program in Haskell of the function rbtV which yields a random binary tree
of size n coded as a vector of length 2n is given in Figure 1.

4.2. Random restricted growth string

For generating random partitions or random restricted growth strings an algorithm due to A. J. Stam [15]
and described by Knuth in [11] Section 7.2.1.3 (p. 74) was implemented. The implementation requires, for each
value of n (the size of the underlying set —for us, this is the number of variables or the size of the expression—),
a preliminary construction of a table of reals in which indices are looked up (the number M of classes). Those

ALMOST ALL CLASSICAL THEOREMS ARE INTUITIONISTIC 7

rbtV :: Int —> Int —> Vector Int
rbtV seed 0 = Data.Vector.replicate sizeOfVector (—1) // [(0,0)]

rbtV seed n =
let x = randForRemy seed n —— a random value between 0 and 4n—3 inclusive
v = rbtV seed (n—1)
k =x'div' 2

in case even x of
True —> v // [(k,2¥n—1),(2*n—1,v!k),(2%n,2%n)]
False —> v // [(k,2*n—1),(2%¥n—1,2%n),(2*n,v!k)]

F1GURE 1. Haskell program for Rémy’s algorithm.

reals are probabilities

m n

Pn = !
em!lw,

that an n-partition has m classes. Thus in my program, I implemented the algorithm for size n = 10, 25, 50 100,
500 and 1000. In order to get accurate values, the p,,’s for those integers were computed elsewhere in a dedicated
computer algebra software namely Sagemath [18]. From this table and a randomly chosen number between 0
and 1, one gets a random number M of equivalence classes. Thereafter, for each element in [0...n] one picks
up randomly uniformly and independently individuals in [0...(M — 1)]. This method yields class descriptions
(classes are a priori numbered from 0 to M — 1 and the elements 0,..., n — 1 are distributed in those classes), but
one wants restricted growth strings as described in Section 3. So a function that transforms a class description
into a restricted growth string was implemented.

Putting together those two algorithms, namely binary tree random generation and restricted growth string
random generation, produces an algorithm for canonical expression random generation.

5. SELECTING INTUITIONISTIC THEOREMS

Once a canonical expression is randomly generated, one has to check whether it is an intuitionistic theorem,
a classical theorem, or not a proposition of those sorts

The program selects two kinds of trivial intuitionistic expressions. At first glance this selection looks coarse,
but from experience, the first one (simple theorems) collects a large majority of the expressions and the second
selects (arrowElim theorems) most of the others, because it is associated with a trick which consists in cleaning
expressions by removing recursively trivial subexpressions that are theorems. Indeed a “cleaned” sub-expression
can become trivial and be removed in turn. This might allow cleaning an expression where a trivial premise
appears, which might be removed in turn. Therefore this section lists six methods for selecting more and more
intuitionistic theorems. Except “simple”, these adjectives are mine.

5.1. Simple intuitionistic theorems

A simple intuitionistic theorem (see [8] Def. 1) is a theorem, in which the goal is among the premises. In
other words, this is a theorem of the form:

A 7 iy S N6 7]

8 P. LESCANNE

5.2. MP intuitionistic theorems

Let us call MP intuitionistic theorem (for modus ponens theorem), a theorem which is a direct application of
the modus ponens. This is a theorem with goal o; and two premises o; and a; — o;. Therefore it has the form:

o= (a2) =y
or
ooy () o

During the experiments I met, for instance, the term, which is not a canonical expression, but obtained by
cleaning:

(z28 = ((z22 = ((z26 = (14 = 22) = (T11 = 28))) = x28)) — ((z28 = (T9 = 13)) — (214 = ((T28 = T0) = 0)))))

which can be drawn as the labeled binary tree:

%
PN
28 —
/ \
— —
/ AN e
29 — —
RN VRN
— Tog To8 —
VRN AN
T26 *)\ T9 13 —
yd
—>/ — 14 \—)
PN VRN RN
T14 T2 T11 g — To
PN
T28 Zo
which can be written
%
VRN
T8 —
VRN
P —
RN
P2 —
VRN
p3 —
RN
— Zo
N
T28 Zo

It is clearly an intuitionistic theorem and isMP checks it.

5.3. Easy intuitionistic theorems

Let us call easy intuitionistic theorems, expressions that are simple or mp.

ALMOST ALL CLASSICAL THEOREMS ARE INTUITIONISTIC 9

5.4. Removing easy premises

In intuitionistic logic if a premise is a theorem, it can be removed. Consider the predicate - p that says that
p is a theorem. Clearly under the assumption F p, the two statements - p — ¢ and g are equivalent. Note
that p is not necessarily the first premise of the implication. Hence if an expression becomes easy after removing
easy premises, it is an intuitionistic theorem.

In the process of “cleaning” expressions, expressions that are easy are removed inside-out. This way easy
expressions that can be removed recursively are detected.

5.5. Minor intuitionistic theorems

A minor theorem is a theorem of the form ... — p — ... — p, whatever p is. Simple propositions are minor,
but minor propositions are not always simple. For instance, x — (y — z) — y — 2z is minor, but is not simple.
Detecting such expressions has a cost, I decided to not detect minor intuitionistic theorem recursively, but only
after easy subexpressions have been removed recursively.

5.6. Cheap intuitionistic theorems

Let us call cheap intuitionistic theorems, expressions that are minor or easy after removing (recursively) easy
premises. Actually, my experiments lead naturally to the statement that 96.6% of classical theorems with 100
variables are cheap intuitionistic (see Sect. 7).

6. CLASSICAL TAUTOLOGIES

The selection of classical tautologies is by valuations. If all the valuations of an expression yield True this
expression is a classical tautology. But this method is obviously intractable [4]. It should be applied only to
expressions on which other more efficient methods do not work and with a limitation on the number of variables
in expressions

6.1. Simple antilogies

Trivial non classical propositional theorems are eliminated before applying valuations. The predicate sim-
pAntilogy finds in quadratic time a large set of propositions which are not tautologies and which we call simple
antilogies. Thereafter, Boolean valuations are checked only on the positions that are not simple antilogies. For
more efficiency, the predicate simpAntilogy is applied on expressions in which easy premises have been recursively
removed, like for intuitionistic expressions.

An expression is a simple antilogy if it is of the form ... — e; — ... — x¢ where the premises e; are of one of
the following forms:

(i) »..—z; witha; #x9 i.e, with a goal which is not z
(ii) ... > 29 — ... >y t.e., are simple with goal x.

One sees easily that applying the valuation p such that p(xo) = False and p(x;) = True for i # 0 to simple
antilogies yields False. Therefore simple antilogies are not classical theorems.

In [8], Genitrini, Kozik and Zaionc consider only the first case, namely the case where the premises have a
goal which is note xy. They call such expressions, simple non tautologies.

6.2. Expressions with too many variables

Assume we recursively remove simple antilogies, there are still expressions intractable by the valuation
method, because they have too many variables, i.e., they have a too large index. In my experiment with
expressions of size 100, an index is too large if it is larger than 31. Fortunately those expressions are rare and
one may expect that there is a valuation that rejects them. For this, I rename all the too large indices as
they would be the same as the bound. The valuations are checked on this renamed expression. If the renamed

10 P. LESCANNE

expression is not a tautology, then the given expression is not a tautology. In the experiment of Section 7 this
trick works and eliminates expressions with too large indices which need not to be checked further.

7. RESULTS

7.1. Ratio cheap vs classical

My Haskell program was run on a sample of 20 000 randomly generated canonical expressions of size 100 and
I found 759 classical tautologies, among which 733 were cheap expressions, hence guaranteed to be intuitionistic
theorems. Therefore the ratio of cheap theorems over classical theorems is 96.6%. Said otherwise, less than 3.4%
of the classical theorems are not cheap, i.e., are not intuitionistic. Are these 3.4% classical non cheap theorems
still intuitionistic? The experience cannot tell. I presume that there are likely more than 733 intuitionistic theo-
rems and therefore among propositions of size 100, more than 96.6% of classical theorems that are intuitionistic,
or less than 3.4% of intuitionistic classical propositions that are not intuitionistic.

7.2. Simple intuitionistic theorems vs not simple non tautologies

In [8], Genitrini, Kozik and Zaionc take the ratio of the number of simple intuitionistic theorems over the
number of non simple non tautologies as the quantity that goes to 1 and is a lower bound of the ratio of
the number of intuitionistic theorems over the number of classical theorems. Among 10000 random canonical
expressions of size 100, I found 238 simple intuitionistic theorems and 685 non simple non tautologies, for a
ratio closed to 36%, a ratio largely smaller than the above one.

7.3. Simple intuitionistic theorems

Besides, another number of interest is the ratio R, of simple intuitionistic theorems over all canonical

expressions of size n. In the next array, this is compared with the formula %.

(o] =T (R
25| 0,128755033 | 0.2214
50 | 0,07824046 | 0.1248

100 | 0,046051702 | 0.0506

500 | 0,012429216 | 0.0119

1000 | 0,006907755 | 0.006

Genitrini, Kozik and Zaionc [8] gave “OTg(") in Lemma 2, for the same quantity, but after viewing my results

Genitrini [7] found a mistake and corrected the formula to Lo9(m) ‘\yhich now corresponds to what I found. Notice

n
that this does not affect their other results.

8. CONCLUSION

Algorithms for random generation presented in The Art of Computer Programming [10, 11] allow imple-
menting Monte-Carlo methods that confirm experimentally Zaionc paradox and show that the convergence
(as the size of the expressions grows) of the set of intuitionistic theorems toward this of classical theorems is
faster than expected from the asymptotic approximations proposed by the analytic combinatorial theory [8].
Indeed, whereas I compare the set of cheap intuitionistic theorems (Sect. 5.6) with this of classical theorems,
Genitrini, Kozik and Zaionc compare the set of simple intuitionistic theorems (see Sect. 5.1) with the set of
non-simple non tautologies (Sect. 6.1). This is a too rough approximation and this suggests to complete the
analytic development to justify this faster convergence.

https://github.com/PierreLescanne/CanonicalExpression

ALMOST ALL CLASSICAL THEOREMS ARE INTUITIONISTIC 11

Notice that Tarau and de Paiva [17] looked at a phenomenon similar to Zaionc paradox for linear logic.
Therefore, it should be interesting to extend my approach to this case. Likewise, it would be interesting to
investigate experimentally other models of expressions, for both traditional logic and linear logic. Currently I
am exploring expressions made of a binary operator, like A, V or —.

It seems that this result on the distribution of propositions has to do with the amazing efficiency of SAT-
solvers [2, 3]. The fact that most of the classical theorems can be solved as “cheap” intuitionistic propositions
may explain why SAT-solvers are so efficient and the connection should be further investigated. Likely, the
remaining true classical propositions contribute to the hardness of SAT for the worst case analysis.

Acknowledgements. 1 thank Valeria De Paiva for an interesting interaction and the incentive to address this problem,
Jean-Luc Rémy for discussions on binary tree generation and Antoine Genitrini for discussions on Zaionc paradox.

REFERENCES

[1] H.P. Barendregt, W. Dekkers and R. Statman, Lambda Calculus with Types. Perspectives in Logic. Cambridge University
Press (2013).

[2] A. Biere, M.J.H. Heule, H. van Maaren and T. Walsh (Eds.), Handbook of satisfiability. Vol. 185 of Frontiers in Artificial
Intelligence and Applications. I0S Press (2009).

[3] C. Bright, J. Gerhard, 1.S. Kotsireas and V. Ganesh, Effective problem solving using SAT solvers, in edited by J. Gerhard
and I.S. Kotsireas Maple in Mathematics Education and Research — Third Maple Conference, MC 2019, Waterloo, Ontario,
Canada, October 15-17, 2019, Proceedings, Vol. 1125 of Communications in Computer and Information Science (Springer
2019) 205-219.

[4] S.A. Cook, The complexity of theorem-proving procedures. in Proceedings of the 3rd Annual ACM Symposium on Theory of
Computing, May 3-5, 1971, Shaker Heights, Ohio, USA, edited by M.A. Harrison, R.B. Banerji and J.D. Ullman. ACM (1971)
151-158.

[5] P. Flajolet and R. Sedgewick, Analytic Combinatorics. Cambridge University Press (2008).

[6] H. Fournier, et al., Classical and intuitionistic logic are asymptotically identical. edited by Jacques Duparc and Thomas A.
Henzinger, CSL, Vol. 4646 of Lecture Notes in Computer Science. Springer, (2007) 177-193.

[7] A. Genitrini. Erratum for the paper Intuitionistic vs Classical Tautologies, Quantitative Comparisons. Personal communica-
tion, April 2021.

[8] A. Genitrini, J. Kozik and M. Zaionc. Intuitionistic vs. classical tautologies, quantitative comparison, in Types for Proofs and
Programs, International Conference, TYPES 2007, Cividale del Friuli, Italy, May 2-5, 2007, Revised Selected Papers, edited
by M. Miculan, I. Scagnetto and F. Honsell. Vol. 4941 of Lecture Notes in Computer Science. Springer (2007) 100-109.

[9] G. Gentzen. Untersuchungen iiber das logische schliefen. i. Math. Zeitsch. 39 (1934) 176-210.

[10] D. E. Knuth. The art of computer programming, Vol. 4 of Fascicle 8: Generating All Combinations and Partitions. Addison-
Wesley Publishing Company (2005).

[11] D.E. Knuth, The art of computer programming, Vol. 4 of Fascicle 4: Generating All Trees, History of Combinatorial
Generation. Addison-Wesley Publishing Company (2006).

[12] S. Mimram. PROGRAM = PROOF. Independently published (2020). URL: https://www.amazon.fr/dp/B08C97TDIG/.

[13] J.-L. Rémy. Un procédé itératif de dénombrement d’arbres binaires et son application & leur génération aléatoire. RAIRO
Theor. Informatics Appl. 19 (1985) 179-195.

[14] N.J.A. Sloane, The on-line encyclopedia of integer sequences. Published electronically at https://oeis.org/ (2021).

[15] A.J. Stam, Generation of a random partition of a finite set by an urn model. J. Comb. Theory, Ser. A 35 (1983) 231-240.

[16] P. Tarau, A hiking trip through the orders of magnitude: deriving efficient generators for closed simply-typed lambda terms
and normal forms, in Logic-Based Program Synthesis and Transformation — 26th International Symposium, LOPSTR 2016,
Edinburgh, UK, September 6-8, edited by 2016, Revised Selected Papers, M.V. Hermenegildo and P.Lépez-Garcia, Vol. 10184
of Lecture Notes in Computer Science. Springer (2016) 240-255.

[17] P. Tarau and V. de Paiva, Deriving theorems in implicational linear logic, declaratively. Proceedings 36th International
Conference on Logic Programming (Technical Communications), ICLP Technical Communications 2020, (Technical Com-
munications) UNICAL, Rende (CS), Italy, 18-24th September 2020, edited by in F. Ricca, et al. Vol. 325 of EPTCS (2020)
110-123.

[18] The Sage Developers, SageMath, the Sage Mathematics Software System (Version 7.4), 206. https://www.sagemath.org.

https://www.amazon.fr/dp/B08C97TD9G/
https://oeis.org/
https://www.sagemath.org

12 P. LESCANNE

Subscribe to Open (S20)

A fair and sustainable open access model

This journal is currently published in open access under a Subscribe-to-Open model (S20). S20 is a transformative
model that aims to move subscription journals to open access. Open access is the free, immediate, online availability
of research articles combined with the rights to use these articles fully in the digital environment. We are thankful to
our subscribers and sponsors for making it possible to publish this journal in open access, free of charge for authors.

Please help to maintain this journal in open access!

Check that your library subscribes to the journal, or make a personal donation to the S20 programme, by contacting
subscribers@edpsciences.org

More information, including a list of sponsors and a financial transparency report, available at:
https://www.edpsciences.org/en/maths-s20-programme

mailto:subscribers@edpsciences.org
https://www.edpsciences.org/en/maths-s2o-programme

	Almost all classical theorems are intuitionistic
	1 Introduction
	2 Intuitionistic vs classical theorems
	3 The model of canonical expressions
	4 Random canonical expressions
	4.1 Random binary trees
	4.2 Random restricted growth string

	5 Selecting intuitionistic theorems
	5.1 Simple intuitionistic theorems
	5.2 MP intuitionistic theorems
	5.3 Easy intuitionistic theorems
	5.4 Removing easy premises
	5.5 Minor intuitionistic theorems
	5.6 Cheap intuitionistic theorems

	6 Classical tautologies
	6.1 Simple antilogies
	6.2 Expressions with too many variables

	7 Results
	7.1 Ratio cheap vs classical
	7.2 Simple intuitionistic theorems vs not simple non tautologies
	7.3 Simple intuitionistic theorems

	8 Conclusion

	References

