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ON THE COMPLEXITY OF THE GENERALIZED FIBONACCI
WORDS

JULIEN CASSAIGNE! AND IDRISSA KABORE?>™

Abstract. In this paper we undertake a general study of the complexity function of the generalized
Fibonacci words which are generated by the morphism defined by o7,..(a) = a'b™ and oy, (a) = a.
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1. INTRODUCTION

The complexity function p, which counts the number of factors of given length in an infinite word, is a central
notion in the field of combinatorics on words. It was introduced in 1975 by Ehrenfeucht et al. [8]. It allows one
to measure diversity of patterns in an infinite word. It is often used in characterization of some words or families
of words; for example eventually periodic words are the only words with bounded complexity function. For more
details on this notion we refer the reader to [4, 7].

Let o be the morphism of the free monoid {a, b}" defined by o(a) = ab and o(b) = a. By iterat-
ing infinitely many times the morphism o from a we obtain an infinite word called the Fibonacci word
F = abaababaabaababaab - - - . This word was widely studied [2, 9, 11, 12] and it is currently very famous for its
numerous remarkable properties. The reader may consult [3] for more details on it. Its complexity function is
well-known: for any n it admits exactly n + 1 factors of length n.

The generalized Fibonacci morphisms of the free monoid {a, b}" are the morphisms o;_, defined by oy ,,(a) =
a'd™ and oy, () = a, for [ > 1 and m > 2. By iterating infinitely many times the morphism oy, ,, from a we
obtain an infinite word Fj ,, called a generalized Fibonacci word (see [1], p. 336). In this paper we are interested
in the complexity function of these words.

Precisely, we recall in Section 2 some basic definitions and notations. In Section 3 we describe weak and
strong bispecial factors of Fj ,,,. These are specific factors which play an important role in the study of the
complexity function of an infinite word. Section 4 is devoted to the complexity function of Fj ,,. Then, we study
asymptotic behavior of # (Sect. 5). We conclude the paper with some remarks and problems for further work.
Note that a preliminary version of this paper was presented at CARI’2012 [6].
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2 J. CASSAIGNE AND I. KABORE

2. PRELIMINARIES

We recall here basic notions on words (see for instance [1, 10] for more details).

Let A = {a, b} be a fixed alphabet. A*, the set of finite words on A, is the free monoid generated by A; € the
empty word being the neutral element. For any u € A*, |u| is called the length of v and represents the number
of letters of u (|e] = 0); and for each = € A, |ul, is the number of occurrences of the letter = in u. A word u of
length n written with a repeated single letter z is simply denoted u = 2", by extension 2° = «.

An infinite word is a sequence of letters of A. The set of infinite words over A is denoted A*°. A finite word v
is a factor of a word w if there exist two words u; and us on A such that u = uyvus; we say also that u contains
v. The factor v is a prefix (resp. suffix) if uy (resp. ug) is the empty word. We denote by pref(w) (resp. suf(w))
the set of prefixes (resp. suffixes) of w.

Let u be an infinite word on A, w a factor of u and z a letter of A. The set of factors of u of length n is
denoted L, (u) and the set of all factors of u, L(u). The set L(u) is usually called the language of u. A letter
is a left (resp. right) extension of w in u if zw (resp. wz) is in L(u). The factor w is a left (resp. right) special
factor of u if aw and bw (respectively wa and wb) appear in u. A factor of u which is both left special and right
special in w is a bispecial factor.

The complexity function of an infinite word w is the map from N to N* defined by p,(n) = #L,(u), where
#L,(u) designates the cardinality of the set of factors of w with length n. In all the sequel, the complexity
function p, of a word u will be simply denoted p.

We call the function denoted s, and defined by s(n) = p(n+ 1) — p(n), the first difference of the complexity
function of a word u. So, we have the following formula

n—1

p(n) = p(ko) + > s(k).

k=ko

On a binary alphabet the function s counts the number of right special factors of a given length in u. It happens
that enumeration of some specific bispecial factors allows one to determine the function s (see [7]). We will come
back to this in Sections 3 and 4.

A morphism f is a map from A* to itself such that f(uv) = f(u)f(v) for all u, v € A*.

It is said that an infinite word w is generated by a morphism f if there exists a letter € A such that the
words x, f(z), f2(z), ..., f*(z), ... are longer and longer prefixes of u. Then we denote u = f*(x).

Let u be an infinite word on A and v a factor of u. The Parikh vector of v is x(v) = (|v|, , |v[,). We call the
following matrix

@l le®).
M@<|¢<a>|b |¢<b>|b)’

the incidence matrix of a morphism ¢. Observe that x (¢ (v)) = Myx (v).

3. NON-ORDINARY BISPECIAL FACTORS OF £} ,,

Definition 3.1. Let u be an infinite word on A and v a bispecial factor of w.

— v is called strong bispecial if ava, avb, bva, bvb are factors of u.
— v is called weak bispecial if uniquely ava and bvb, or avb and bva, are factors of u.
— v is called ordinary bispecial if v is neither strong nor weak.

Definition 3.2. A factor of Fj ,, is said to be short if it does not contain any of the three words at, b™ and
ba. A factor of Fj ,,, which is not short will be called long.
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Lemma 3.3. Let w be a long factor of Fi ,,. Then, there exists a unique triple of words (p, s, v) verifying
p € pref(alb™=1), s € suf(a!=tb™) and v € L(F}, ) such that w = sy, (v)p and (v € A*b = |p| > 1).

Proof. Existence. Let w be a long factor of Fj ,,. Then, either w is factor of oy ,,(z) where x € A or w =
507, m (v)p where s is a proper suffix of 0 ., (), p is a proper prefix of o ,,(y) with , y € A and zvy € L(F} ).
More precisely, p € pref(a't™ 1), s € suf(a'~'b™) if v = a and s = ¢ if z = b. If v ¢ A*b it is finished. Suppose
v €E€ A*b and |p| <. So, p= al?!. In this case one changes v and p as follows:

v+—vb"t, p— ap.

We still have w = s0;_,,(v)p with p € pref(a'b™~1) and |p| has increased. We repeat this process until to get
v ¢ A*bor |p| > 1.
Uniqueness. Let w be a long factor of F ,,. Suppose w = s0y, n,(v)p = s'0y, m (v')p" where

1. p, p' € pref(alb™1)
2. s, 8 € suf(a=1o™)

3. (s,v,p) # 5,0, p)

and verifying:
vEAb=|p|>land v € A'b=|p|>1. (k)

e Suppose (v, p) = (v, p’). Then, we have s = s’. That is impossible.
e Suppose p =p’ and v # v'. Then, we have soy, ,,(v) = s'oy, (V).

e If v and v" are not empty then v and v’ must end with the same letter. Then we change v to prefj,|—1(v)
and v’ to prefj,—1(v"). We repeat the process while v # ¢ and v’ # e.

o If v # ¢ and v/ = ¢ (or conversely) then we have so; ,(v) = s’. Now, we have |s'| <[+ m. It follows that
0 < |07, m(v)| <1+ m. Thus, we have v = b* and sa* = s’. But s’ ends with b. That is impossible.

e Suppose p # p’. Without loss generality let us assume that [p| > [p’|. Then p can be written p = p”p’ with
p’ # €. So, it follows that soy ., (v)p” = 8’0y, m (V).
e If v/ is empty then soy ,,(v)p” = s’. Now, we have |s'| <+ m. So, v takes the form v = b* and we have
saFp” = s'. Since p” # € then s’ # ¢ and ends with b. Therefore, p” also ends with b. So, we can write
p" = a'b’, i > 1. Thus, s’ contains a'. That is impossible since s’ € suf(a'~'b™).
o If v’ # ¢, let = be the last letter of p” and of oy ,, (V).
o If z = a, then the last letter of v/ is b and by (%) we have |p’| > I. So, we have p’ = a'z and p” = ya.
That implies p”p’ = ya'T!z. That is impossible.
o If x = b, then the last letter of v/ is @ and p” = a'b® (0 < i < m). Now, the suffix of ;,,,(v') of length
m is b™. So, the word s'o; m(v') = 50, m(v)p” admits the two words b™ and ab’ as suffix. That is

impossible.
O
Let us note that if a factor w is short then it is a factor of al~1pm—1,

Lemma 3.4. 1. Fy  admits exactly one short and weak bispecial factor: b™ 1.
2. Fi,m admits exactly one short and strong bispecial factor: ¢.

Lemma 3.5. Let w be a factor of Fy . The following assertions are equivalent:

1. w is a long bispecial factor of Fy ,,.
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2. There exists a bispecial factor v of Fj ,, such that w = 6, (v) where 61 m(v) = o1, m(v)al.
Furthermore, v and w have the same type and |v| < |w|.

Proof. Let w be a long bispecial factor. Then wa, wb, aw, bw appear in Fj . Futhermore with the
synchronization Lemma there exists a unique triple of words (p, s, v) verifying p € pref(a'b™™ 1), s €
suf(a=1™) and v € L(F},,,) such that w = so; ,(v)p and (v € A*b = |p| > I). So, the words
501, m(v)pa, soy, m(v)pb, asalym(v)p,‘ bsoy m (v)p appear in Fj . _

Suppose o7, (V)p =€, i.e w = s = a’b™ with ¢ < [. Then, bw = ba’b™ appears in Fj ,,. That is impossible.
Suppose o7, m(v)p # €, 01, m(v)p begin with a. Then, asa and bsa appear in F ,,,. If s = b/ with 0 < j < m,
then ab/a appears in F_,,, which is impossible. If s = a’d’ with 0 < i < [, then ba’b™ appears in F}, ,,, which is
also impossible. Thus s = ¢ and we have w = gy, (v)p.

Let us now show that p = a’.

Suppose |p| > . Then, p = a'b® with 0 < i < m. So, ab’a appears in Fj ,,, which is impossible.

Suppose |p| < I. Then p = a*, with 0 < i < I. So, v ¢ A*b. If v = ¢ then w = p = a* and so w is short in
F} m. This is impossible because w is assumed long. Otherwise if v # ¢ then v ends with a. So, the factor
wb = 0y, (v)pb of Fy_,, ends with a'b™a’b. Thus, ba'b appears in Fy, o with 0 <4 < [, which is again impossible.
It follows that p = a!, so w = 67, (v).

The inequality |v| < |w]| is obvious.

Conversely, assume that v is a bispecial factor of Fj ., and that w = &; ,,(v). As the words av, bv, va and
vb occur in Fj ., it follows that a'b™w, aw, wb™a' and wa occur in F} ;. So, w is a bispecial factor of Fj ,,,
which is long since it contains a'.
Finally, if w = 6y, ,,,(v), then

#{(z,y) € A2 zwy € L(Fm)}=#{@y)e A% 2y € L(Fi,m)}-
So, v and w have the same type. O

As a consequence, we have:

1. The weak bispecial factors of F ,, are given by the sequence (y,) defined by y; = b™~! and y,11 =
G1,m (Yn), for n > 1.

2. The strong bispecial factors of F ,, are given by the sequence (z,,) defined by ¢ = € and z,41 = 61, (@0),
for n > 0.

4. COMPLEXITY OF Fj ,,

In order to understand the complexity function of F_,,, we begin this section with a review of some properties
of sequences of weak bispecial and strong bispecial factors of Fj ,,.

Definition 4.1. Let v, w € A* and x (v), x (w) be their Parikh vectors. One says that x (v) is less than x (w)
and one writes x (v) < x (w) when |v|, < |w|, for all z € A. Moreover, if x(v) # x(w), one writes x(v) < x(w).

Note that this define a partial order on words.

Proposition 4.2. Let v, w, v', w’ be four finite words such that v' = &, m(v) and w' = &y, m(w). Then,
X (v) < x(w) = x (v') < x(w)

Proof. On the one hand, we have [v'|, = l|v|, + |v], + ! and ||, =1 |w]|, + |w]|, +; so [v'|, < |w’|,.
On the other hand, we have [v'|, = m |v|, and |[w'[, = m |w],; so [v'|, < |w'],. O
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Proposition 4.3. For alll > 1 and m > 2 one has:

Vn >0, x(n) <X Unt1) < X (Tng2)

— bm—l

Proof. Since xg = ¢, 11 and Ty = (albm)l al we have x (z0) < x (y1) < X (x2). Suppose these inequalities

stay valid until rank n, i.e.,

X (Zn) < X (Yn+1) < X (Tnt2)-

By Proposition 4.2, we obtain x (n41) < X (Una2) < X (Trr3)- O
The following Lemma describes the function s.
Lemma 4.4. Let n € N. One has:

e s(n)=1 forn=0.
e if n € N*, take k the largest integer such that n > |xy|.
if 1 <n <mi _
1. If k=0, one has: s(n) = 2 if 1 <n <min(l, m —1)

1 ifm<n<l’
3 if okl <n < ykl
2. Otherwise, one has: s(n) =< 2 if ykl <n <|yrt1] -

Uif |ygesa] <n < apgq]

Proof. The function s is given by the following formula
s(n) = 1 + # {w strong bispecial : |w| < n} — # {w weak bispecial : |w| < n}.

Now s(0) = 1. Also, let us observe that s(n) =2 if 1 <n <min(l, m —1) and s(n) =1if m <n <.
Suppose n > |x1|. Take k the largest integer such that n > |xg|. Then, it follows:

k—1 if |z <n <yl
s(n)=1+(k+1)—< k if lyk| < n < |yr+1| -
k+1 if [yea| <n < [op4a]

The proof is complete. O

Theorem 4.5. The complexity function of Fy ,, satisfies the following inequalities:
n+1<p(n)<3n+1.

Proof. By Lemma 4.4, we have
Yn >0, 1 <s(n) <3.

It follows that:

n—1 n—1
1+Y 1<pn) <1+ 3.
k=0 k=0

Lemma 4.6. We have the following equivalences.
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1. me [2, 212 +1] <= Tko € N:Vk > ko, |zi| — |yx| > 0.
2. mée [212—&—2, oo[(z)ﬂk’oeN:szk'o, |zk| — lyx| < 0.
Proof. Consider the sequence (V), -, defined by Vi, = x (zx) — x (yx). We have:
Vi = ! d Vg1 = AV,
where A = M, = ( Tln (1) ) is the incidence matrix of o7, ,,,. The eigenvalues of the matrix A, being the roots
of X2 —1X —m, are

L+ VI2+4m I —VI2+4m
Alzfand Az:f

Observe that Ay > 1> 1 and —A; < A2 < 0. Moreover we have
VkZI, |:L‘k‘f|yk|:(1 I)Vk.
Thus,
ol =l = (1 1)t (]
—-m—+1
:Ozl)\lf_l + 042)\’5_1

with a; and ag verifying the following system of equations

a1 + g = l-m+1
041>\1+Ck2)\2 = l2—|—lm—m+1
We have
a_j%Hm—m+1—MU—m+n
1 — /\1—)\2 ’
P+im-—m+1-X\({I-—m+1)
Qo = .

Ay — A\
Since || < A1, then |zk| — |yx| has the same sign as «; for k sufficiently large.
Case 1. | —m + 1 > 0. Then, we have —Ay (I —m + 1) > 0 since Ay < 0. So, a3 > 0 since A\; — Ay > 0 and
Pt+im—-—m+1=02+I(m—-1)+1>0.
Case 2. | —m+1 < 0. We have:
P+im—m+1
[l—m+1

I—V2+4m P+lm—-—m+1
s >
2 l—m+1

ay > 0= X\ >
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(—12 = 3lm + 1 +2m — 2)°
(I —m+1)°

=P +4am<

since =12 —3lm+1+2m—2=m(2-3l) —I(l—1)—2 < 0 and [ —m + 1 < 0. The last inequality can
be turned into the following one:

Pi(m)=m?+m? (—22 +1-3) +m (-2 + 31> =20+ 3) + * - > +1 -1 <0.
If I = 1 then P,(m) = m(m? — 4m + 2). So,
P(m) <0< m e {2, 3}.
Suppose from now on that [ > 2. The derivative
P/ (m)=3m*+2m (—21> +1—3) — 21> + 31> — 21 + 3
admits two roots of opposite signs

2% — 1+ 3 — VAt + 213 + 412
<0

61: 3 )

202 — 1+ 34+ V44 + 203 + 42
B2 = 3 >0

and is negative between these two roots. So, P, is decreasing on [f1, B2] which contains 0, and is
increasing on |—o0, 1] U[B2, +ool. Furthermore, one verifies that P;(0) > 0, P,(1) < 0, P,(21*+1) <0
and Pl(212 + 2) > 0. It results that P, admits two positive roots my, ms and one negative root ms
with 0 < mq <1, 212+ 1 < mg < 2? + 2 and m; < 3 < mg. Thus, P, is negative on Jmy, mz[ and
positive on Jma, +o00[. Then, oy > 0 if m € [2, 21> + 1] and a1 < 0 if m > 2% + 2.

So, we have:

1. me [2, 2124+ 1] < Tk € N:Vk > ko, |z — |yx| > 0.
2. m € (212 +2, co[ < Tko € N:Vk > ko, |zi| — |yx| <O0.

O

Theorem 4.7. 1. If m e [2, 212 + 1}, then there exists a constant 0 and an integer ng such that for all
n > no

n+1<p(n) <2n+4.
2. If m e [2[2 + 2, +oo[, then there exists a constant 0 and an integer ng such that for all n > ng
2n+0 <p(n) <3n+1.
Proof. Suppose m € [2, 21?2 + 1]. Then, there exists ko such that for all k& > ko, |zx| — |yx| > 0. In this case, for

n € ||zk|, |Tr+1]] we have by Lemma 4.4

_J 2 iyl <n < ykga
s(n) = { Uit fykgs] <n <2y
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as the case || < n < |yx| is empty. Thus,
Vn > |zg,l, 1 <s(n) <2.
By summation, it follows that
n—1 n—1 n—1
S e ¥ e X2
k=l | k=g | k=l |

Therefore

P (|Zko|) + 1 — |2k | < P(R) <P (|ko]) +2 (0 — [Tk [) -
It follows that
n+1<pn) <2n+4, with 6 € Z.

Suppose m > 212 + 2. Then, by Lemma 4.6, there exists ko such that for all k > ko, x| — |yx| < 0.
In this case, for n € |||, |zr4+1]] we have

- 3 if |$k| <n< |yk‘
s(n) = { 2 if |yk| <n <lopga|

It follows that,
Vn > |z, 2 <s(n) <3.
Thus, in the similar way as previously, we get

2n+6 <p(n) <3n+1, with § € Z.

n
5. ASYMPTOTIC BEHAVIOR OF M
n

Before the statement of the main result we need some technical lemmas.

Lemma 5.1. Let (ry), (sg) be two strictly increasing sequences of integers and l be a real number such that:

. Sk+1 — Sk . Sk
lim 7R Then, lim — =1.
k—oo T'py1 — Tk k—oo Tk

Proof. Let (ry), (sx) be two strictly increasing sequences of integers and ! be a real number such that

s — s s — s
lim A" %F 7 Write my = ZhHL Pk Tet & > 0. There exists ko € N such that:
k—00 Tp41 — Tk Tk4+1 — Tk

Vk >k, l—e<mp <l+e. (5.1)
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So, for all k£ > kg we have

k-1

Sk =Sk + Y (8541 — ) (5.2)
j=ko
k—1
= sk, + ) my(rjen — 1)
Jj=ko

k—1 k—1
= ko + D Ui =)+ 3 (my =D =)

j=ko j=ko
= Sk, T l(’l“k — Tko) + Ry,

— lrko Rk

where Ry = Z?;io(mj — U)(rj4+1 — r;). Thereby LA B + —. From (5.1) and since (rg) is
Tk Tk Tk
increasing, it follows that |Rg| < e(ry — rx,) and so Ry < ery.
Thus, lim 2% =1, O
k—o00 T'f

Lemma 5.2. For all k > 1, |x3| = BiAF + BoAs + B3 and |yx| = 1A} + 725 + v3 where Ay and \o are the
eigenvalues of matriz A, and (81, B2, B3), (71, Y2, ¥3) are some triples of real numbers.

wl,
Proof. Let w, w’ be two words such that w' = 6, (w) = 0y, (w)a'. Put W = | |w|, |. Observe that
1
I 11
|w| = ( 110 ) W and W = BW where B= [ m 0 0 |.With these relations we are able to determine
0 0 1

the two sequences (zx)r>0, (Yx)r>1, and the length of zj, and yy, for all k.
0 0
0 5 Yl = m—1 s
1 1
Xi41 = BX} and Y41 = BY}, and so X = BfX, and Y, = BF1Y;. The eigenvalues of the matrix B are A1,
Ao and 1. Then, it follows that

Namely, since x+1 = 61,k (zk), Yk+1 = 01,k (Yx), o = € and y; = b™ ! we have X =

lzel=(1 1 0)B*X, (5.3)
= 1A} + B2A5 + fBs

where (81, B2, 83) is the solution of the following system of equations

B1+ P2+ 3 =0
Bidi+ Bora+ 083 =
B1A2 + Ba)d + B3 P+im+1

and

lyel=(1 1 0)B*'vy
= MAY + 7225 + 73
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where (71, Y2, v3) is given by the following system of equations

MAL YA +y3 = m—1
NAT+ A3+ = m—1+I
NA 02X+ = (m+DP-m
Theorem 5.3. 1. Ifme [1, 212 4 1], we have
.. .p(n) 1A — B : p(n) 1A — b1
liminf —* =14+ ————, and limsup—— =14 ———.
n 51 ()\1 — 1) P n Y1 ()\1 — 1)
2. If m > 21% + 2 we have
. . .p(n) 7 — P . p(n) A (1= Br)
liminf —= =24+ ————— and limsu =2+ .
n B1 (A —1) P 7 (A1 —1)

Proof. Case 1. m € [1, 202 + 1]. From Lemma 4.6, there exists kg such that for all & > kg,

lye| < |zk| < lyrs1] < |zr4al-
In this case, we have

2 i |zl <n< Yk

|k |+1)

So, liminf B = lim inf B{lelt p(lyel+1)

and limsup # = limsup PAES)

[#k41]

Z s(n)

n=|zg|+1
= 2(lyk+1| = |zkl) + (Zrs1| = [yr+al)

P (|zxra] +1) = p (Jor| +1)

=2 (AT = BIAE) + (BT — AT o (AF)

= AT BT = 28000 o (AT) -

Moreover
|rp1| = |2k = BT = BiAT + 0 (AT) .

So

Pzen|+ D) —p(uel+1) _,  mh—F

E Bion—1 oW

. Furthermore, with Lemma 5.2 we have

(5.7)
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By Lemma 5.1 it follows that limg_ o %‘lﬂl) =1+ gll(’\/\l 1) In a similar way, we have
[Yrt1]
p(lyeril + 1) —p(usl+1) = > s(n) (5.8)
n=|yg|+1

= |zl = ly]) + 2 (1yrr1] — |zxl)
= 27 AT — A = BAY o (M)

and

Yki1] = [yl = AT = Af o0 (A])

: p(lyel+1) Y11
So, limy, 00 BT = 14+ 28T 1)

Case 2. m > 212 + 1. From Lemma 4.6, there exists ko such that for all k& > ko,

lzk| < |ykl < |kl < |yg+al.
In this case, we have

3 if |zk] <n < |yg
el ol st = { 5l <2 S

So, lim inf pgl ") — lim inf p(‘l%ff) and limsup # = lim sup % Furthermore

By

pors| +1) —p(lzl+1) = Y s(n) (5.9)

n=|zy|+1

3(lyx] — |zx]) + 2 (|zrs1| — lyxl)
= 28\ — 388 + A 4+ 0 (AF)

and
|.7Jk+1| — |.7Jk| = 51A1f+1 — BlAlf +o0 ()\’f) .
So
P (|zks1] +1) —p(Jze] + 1) M — B
=2+ +o(1
2] = [o Bov—n W

By Lemma 5.1 again it follows that

. Pzl +1) 1A — B
lim —— =14+ —v——
k—oo |$k| + 1 51 ()\1 — 1)
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In a similar way, we have

[Yr+1]

Pyrsa|+ 1) =p(ul+1) = > s(n) (5.10)
n=|yx|+1

= 2(|zks1| = lyxl) + 3 ([ye+1] — |Tr41])
=3y AT = 29 AF = BT 40 (M)

and
Wrs1] = lyel = MATTH = 7AF + 0 (M)

So, 1m0 p(lyel+l) _ 9 + A (y1—B1)

ly|+1 y1(A1—1) -

k 1 1 D

6. CONCLUDING REMARKS AND FURTHER WORK

It results from Theorem 4.7 that:
if m € [2, 21 + 1], then 1 < liminf p(n) < lim sup p(n) < 2; (6.1)
n n
if m> 2241, then 2 < liminf p(n) < lim sup M < 3. (6.2)
n n

By Theorem 5.3 one observes that for Fj ,,, the values of lim inf @ and lim sup % are strictly dependent

with those of the parameters [ and m. Indeed, we check that (6.1) and (6.2) become

itme (2 22+ 1], then 1< liminf 2% < limeup PO <o, (6.3)
n n
if m > 20* + 1, then 2 < liminf p(n) < limsup p(n) < 3. (6.4)
n n

For I > 1, m > 2, let us write oy, p, = liminf # and 3, p, = limsup @. In (6.1) the value 1 is reached when
m = 1. In this case Fj ,, is Sturmian and we have excluded it by taking m > 2. The values 2 and 3 are never
reached, but we can prove that they are accumulation points for oy, ., and §; .

In further work, it will be interesting to describe the region covered by the cloud of points (o, m, Bi,m) in
the first quadrant of the plane.

Another problem is to undertake a similar study in the case of S-adic words where morphisms are all

generalized Fibonacci morphisms.
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