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1. Introduction

The complexity function p, which counts the number of factors of given length in an infinite word, is a central
notion in the field of combinatorics on words. It was introduced in 1975 by Ehrenfeucht et al. [8]. It allows one
to measure diversity of patterns in an infinite word. It is often used in characterization of some words or families
of words; for example eventually periodic words are the only words with bounded complexity function. For more
details on this notion we refer the reader to [4, 7].

Let σ be the morphism of the free monoid {a, b}∗ defined by σ(a) = ab and σ(b) = a. By iterat-
ing infinitely many times the morphism σ from a we obtain an infinite word called the Fibonacci word
F = abaababaabaababaab · · · . This word was widely studied [2, 9, 11, 12] and it is currently very famous for its
numerous remarkable properties. The reader may consult [3] for more details on it. Its complexity function is
well-known: for any n it admits exactly n+ 1 factors of length n.

The generalized Fibonacci morphisms of the free monoid {a, b}∗ are the morphisms σl,m defined by σl,m(a) =
albm and σl,m(b) = a, for l ≥ 1 and m ≥ 2. By iterating infinitely many times the morphism σl,m from a we
obtain an infinite word Fl,m called a generalized Fibonacci word (see [1], p. 336). In this paper we are interested
in the complexity function of these words.

Precisely, we recall in Section 2 some basic definitions and notations. In Section 3 we describe weak and
strong bispecial factors of Fl,m. These are specific factors which play an important role in the study of the
complexity function of an infinite word. Section 4 is devoted to the complexity function of Fl,m. Then, we study

asymptotic behavior of p(n)
n (Sect. 5). We conclude the paper with some remarks and problems for further work.

Note that a preliminary version of this paper was presented at CARI’2012 [6].
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2. Preliminaries

We recall here basic notions on words (see for instance [1, 10] for more details).
Let A = {a, b} be a fixed alphabet. A∗, the set of finite words on A, is the free monoid generated by A; ε the

empty word being the neutral element. For any u ∈ A∗, |u| is called the length of u and represents the number
of letters of u (|ε| = 0); and for each x ∈ A, |u|x is the number of occurrences of the letter x in u. A word u of
length n written with a repeated single letter x is simply denoted u = xn, by extension x0 = ε.

An infinite word is a sequence of letters of A. The set of infinite words over A is denoted A∞. A finite word v
is a factor of a word u if there exist two words u1 and u2 on A such that u = u1vu2; we say also that u contains
v. The factor v is a prefix (resp. suffix) if u1 (resp. u2) is the empty word. We denote by pref(w) (resp. suf(w))
the set of prefixes (resp. suffixes) of w.

Let u be an infinite word on A, w a factor of u and x a letter of A. The set of factors of u of length n is
denoted Ln(u) and the set of all factors of u, L(u). The set L(u) is usually called the language of u. A letter x
is a left (resp. right) extension of w in u if xw (resp. wx) is in L(u). The factor w is a left (resp. right) special
factor of u if aw and bw (respectively wa and wb) appear in u. A factor of u which is both left special and right
special in u is a bispecial factor.

The complexity function of an infinite word u is the map from N to N∗ defined by pu(n) = #Ln(u), where
#Ln(u) designates the cardinality of the set of factors of u with length n. In all the sequel, the complexity
function pu of a word u will be simply denoted p.

We call the function denoted s, and defined by s(n) = p(n+ 1)− p(n), the first difference of the complexity
function of a word u. So, we have the following formula

p(n) = p(k0) +

n−1∑
k=k0

s (k) .

On a binary alphabet the function s counts the number of right special factors of a given length in u. It happens
that enumeration of some specific bispecial factors allows one to determine the function s (see [7]). We will come
back to this in Sections 3 and 4.

A morphism f is a map from A∗ to itself such that f(uv) = f(u)f(v) for all u, v ∈ A∗.
It is said that an infinite word u is generated by a morphism f if there exists a letter x ∈ A such that the

words x, f(x), f2(x), . . ., fn(x), . . . are longer and longer prefixes of u. Then we denote u = fω(x).
Let u be an infinite word on A and v a factor of u. The Parikh vector of v is χ(v) = t (|v|a , |v|b). We call the

following matrix

Mϕ =

(
|ϕ (a)|a |ϕ (b)|a
|ϕ (a)|b |ϕ (b)|b

)
,

the incidence matrix of a morphism ϕ. Observe that χ (ϕ (v)) = Mϕχ (v).

3. Non-ordinary bispecial factors of Fl,m

Definition 3.1. Let u be an infinite word on A and v a bispecial factor of u.

– v is called strong bispecial if ava, avb, bva, bvb are factors of u.
– v is called weak bispecial if uniquely ava and bvb, or avb and bva, are factors of u.
– v is called ordinary bispecial if v is neither strong nor weak.

Definition 3.2. A factor of Fl,m is said to be short if it does not contain any of the three words al, bm and
ba. A factor of Fl,m which is not short will be called long.
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Lemma 3.3. Let w be a long factor of Fl,m. Then, there exists a unique triple of words (p, s, v) verifying
p ∈ pref(albm−1), s ∈ suf(al−1bm) and v ∈ L(Fl,m) such that w = sσl,m(v)p and (v ∈ A∗b =⇒ |p| ≥ l).

Proof. Existence. Let w be a long factor of Fl,m. Then, either w is factor of σl,m(x) where x ∈ A or w =
sσl,m(v)p where s is a proper suffix of σl,m(x), p is a proper prefix of σl,m(y) with x, y ∈ A and xvy ∈ L(Fl,m).
More precisely, p ∈ pref(albm−1), s ∈ suf(al−1bm) if x = a and s = ε if x = b. If v /∈ A∗b it is finished. Suppose
v ∈ A∗b and |p| < l. So, p = a|p|. In this case one changes v and p as follows:

v ←− vb−1, p←− ap.

We still have w = sσl,m(v)p with p ∈ pref(albm−1) and |p| has increased. We repeat this process until to get
v /∈ A∗b or |p| ≥ l.

Uniqueness. Let w be a long factor of Fl,m. Suppose w = sσl,m(v)p = s′σl,m(v′)p′ where

1. p, p′ ∈ pref(albm−1)
2. s, s′ ∈ suf(al−1bm)
3. (s, v, p) 6= s′, v′, p′)

and verifying:

v ∈ A∗b⇒ |p| ≥ l and v′ ∈ A∗b⇒ |p′| ≥ l. (F)

• Suppose (v, p) = (v′, p′). Then, we have s = s′. That is impossible.
• Suppose p = p′ and v 6= v′. Then, we have sσl,m(v) = s′σl,m(v′).

• If v and v′ are not empty then v and v′ must end with the same letter. Then we change v to pref|v|−1(v)
and v′ to pref|v′|−1(v′). We repeat the process while v 6= ε and v′ 6= ε.

• If v 6= ε and v′ = ε (or conversely) then we have sσl,m(v) = s′. Now, we have |s′| < l +m. It follows that
0 < |σl,m(v)| < l +m. Thus, we have v = bk and sak = s′. But s′ ends with b. That is impossible.

• Suppose p 6= p′. Without loss generality let us assume that |p| > |p′|. Then p can be written p = p′′p′ with
p′′ 6= ε. So, it follows that sσl,m(v)p′′ = s′σl,m(v′).

• If v′ is empty then sσl,m(v)p′′ = s′. Now, we have |s′| < l +m. So, v takes the form v = bk and we have
sakp′′ = s′. Since p′′ 6= ε then s′ 6= ε and ends with b. Therefore, p′′ also ends with b. So, we can write
p′′ = albi, i ≥ 1. Thus, s′ contains al. That is impossible since s′ ∈ suf(al−1bm).

• If v′ 6= ε, let x be the last letter of p′′ and of σl,m(v′).
◦ If x = a, then the last letter of v′ is b and by (F) we have |p′| ≥ l. So, we have p′ = alz and p′′ = ya.

That implies p′′p′ = yal+1z. That is impossible.
◦ If x = b, then the last letter of v′ is a and p′′ = albi (0 < i < m). Now, the suffix of σl,m(v′) of length
m is bm. So, the word s′σl,m(v′) = sσl,m(v)p′′ admits the two words bm and abi as suffix. That is
impossible.

Let us note that if a factor w is short then it is a factor of al−1bm−1.

Lemma 3.4. 1. Fl,m admits exactly one short and weak bispecial factor: bm−1.
2. Fl,m admits exactly one short and strong bispecial factor: ε.

Lemma 3.5. Let w be a factor of Fl,m. The following assertions are equivalent:

1. w is a long bispecial factor of Fl,m.
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2. There exists a bispecial factor v of Fl,m such that w = σ̂l,m(v) where σ̂l,m(v) = σl,m(v)al.
Furthermore, v and w have the same type and |v| < |w|.

Proof. Let w be a long bispecial factor. Then wa, wb, aw, bw appear in Fl,m. Futhermore with the
synchronization Lemma there exists a unique triple of words (p, s, v) verifying p ∈ pref(albm−1), s ∈
suf(al−1bm) and v ∈ L(Fl,m) such that w = sσl,m(v)p and (v ∈ A∗b =⇒ |p| ≥ l). So, the words
sσl,m(v)pa, sσl,m(v)pb, asσl,m(v)p, bsσl,m(v)p appear in Fl,m.
Suppose σl,m(v)p = ε, i.e w = s = aibm with i < l. Then, bw = baibm appears in Fl,m. That is impossible.
Suppose σl,m(v)p 6= ε, σl,m(v)p begin with a. Then, asa and bsa appear in Fl,m. If s = bj with 0 < j < m,
then abja appears in Fl,m, which is impossible. If s = aibj with 0 < i < l, then baibm appears in Fl,m, which is
also impossible. Thus s = ε and we have w = σl,m(v)p.
Let us now show that p = al.
Suppose |p| > l. Then, p = albi with 0 < i < m. So, abia appears in Fl,m, which is impossible.
Suppose |p| < l. Then p = ai, with 0 ≤ i < l. So, v /∈ A∗b. If v = ε then w = p = ai and so w is short in
Fl,m. This is impossible because w is assumed long. Otherwise if v 6= ε then v ends with a. So, the factor
wb = σl,m(v)pb of Fl,m ends with albmaib. Thus, baib appears in Fl,m with 0 ≤ i < l, which is again impossible.
It follows that p = al, so w = σ̂l,m(v).

The inequality |v| < |w| is obvious.
Conversely, assume that v is a bispecial factor of Fl,m and that w = σ̂l,m(v). As the words av, bv, va and

vb occur in Fl,m, it follows that albmw, aw, wbmal and wa occur in Fl,m. So, w is a bispecial factor of Fl,m,
which is long since it contains al.
Finally, if w = σ̂l,m(v), then

#
{

(x, y) ∈ A2 : xwy ∈ L(Fl,m)
}

= #
{

(x′, y′) ∈ A2 : x′vy′ ∈ L(Fl,m)
}
.

So, v and w have the same type.

As a consequence, we have:

1. The weak bispecial factors of Fl,m are given by the sequence (yn) defined by y1 = bm−1 and yn+1 =
σ̂l,m (yn), for n ≥ 1.

2. The strong bispecial factors of Fl,m are given by the sequence (xn) defined by x0 = ε and xn+1 = σ̂l,m (xn),
for n ≥ 0.

4. Complexity of Fl,m

In order to understand the complexity function of Fl,m, we begin this section with a review of some properties
of sequences of weak bispecial and strong bispecial factors of Fl,m.

Definition 4.1. Let v, w ∈ A∗ and χ (v) , χ (w) be their Parikh vectors. One says that χ (v) is less than χ (w)
and one writes χ (v) ≤ χ (w) when |v|x ≤ |w|x for all x ∈ A. Moreover, if χ(v) 6= χ(w), one writes χ(v) < χ(w).

Note that this define a partial order on words.

Proposition 4.2. Let v, w, v′, w′ be four finite words such that v′ = σ̂l,m(v) and w′ = σ̂l,m(w). Then,

χ (v) < χ (w) =⇒ χ (v′) < χ (w′)

Proof. On the one hand, we have |v′|a = l |v|a + |v|b + l and |w′|a = l |w|a + |w|b + l; so |v′|a < |w′|a.
On the other hand, we have |v′|b = m |v|a and |w′|b = m |w|a; so |v′|b ≤ |w′|b.
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Proposition 4.3. For all l ≥ 1 and m ≥ 2 one has:

∀n ≥ 0, χ (xn) < χ (yn+1) < χ (xn+2)

Proof. Since x0 = ε, y1 = bm−1 and x2 =
(
albm

)l
al we have χ (x0) < χ (y1) < χ (x2). Suppose these inequalities

stay valid until rank n, i.e.,

χ (xn) < χ (yn+1) < χ (xn+2) .

By Proposition 4.2, we obtain χ (xn+1) < χ (yn+2) < χ (xn+3).

The following Lemma describes the function s.

Lemma 4.4. Let n ∈ N. One has:

• s(n) = 1 for n = 0.
• if n ∈ N∗, take k the largest integer such that n > |xk|.

1. If k = 0, one has: s(n) =

{
2 if 1 ≤ n ≤ min(l, m− 1)
1 if m ≤ n ≤ l .

2. Otherwise, one has: s(n) =

 3 if |xk| < n ≤ |yk|
2 if |yk| < n ≤ |yk+1|
1 if |yk+1| < n ≤ |xk+1|

.

Proof. The function s is given by the following formula

s(n) = 1 + # {w strong bispecial : |w| < n} −# {w weak bispecial : |w| < n} .

Now s(0) = 1. Also, let us observe that s(n) = 2 if 1 ≤ n ≤ min(l, m− 1) and s(n) = 1 if m ≤ n ≤ l.
Suppose n ≥ |x1|. Take k the largest integer such that n > |xk|. Then, it follows:

s(n) = 1 + (k + 1)−

 k − 1 if |xk| < n ≤ |yk|
k if |yk| < n ≤ |yk+1|
k + 1 if |yk+1| < n ≤ |xk+1|

.

The proof is complete.

Theorem 4.5. The complexity function of Fl,m satisfies the following inequalities:

n+ 1 ≤ p(n) ≤ 3n+ 1.

Proof. By Lemma 4.4, we have

∀n ≥ 0, 1 ≤ s(n) ≤ 3.

It follows that:

1 +

n−1∑
k=0

1 ≤ p(n) ≤ 1 +

n−1∑
k=0

3.

Lemma 4.6. We have the following equivalences.
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1. m ∈
[
2, 2l2 + 1

]
⇐⇒ ∃k0 ∈ N : ∀k ≥ k0, |xk| − |yk| > 0.

2. m ∈
[
2l2 + 2, ∞

[
⇐⇒ ∃k0 ∈ N : ∀k ≥ k0, |xk| − |yk| < 0.

Proof. Consider the sequence (Vk)k≥1 defined by Vk = χ (xk)− χ (yk). We have:

V1 =

(
l

−m+ 1

)
and Vk+1 = AVk

where A = Mσ =

(
l 1
m 0

)
is the incidence matrix of σl,m. The eigenvalues of the matrix A, being the roots

of X2 − lX −m, are

λ1 =
l +
√
l2 + 4m

2
and λ2 =

l −
√
l2 + 4m

2
.

Observe that λ1 > l ≥ 1 and −λ1 < λ2 < 0. Moreover we have

∀k ≥ 1, |xk| − |yk| =
(

1 1
)
Vk.

Thus,

|xk| − |yk| =
(

1 1
)
Ak−1

(
l

−m+ 1

)
=α1λ

k−1
1 + α2λ

k−1
2

with α1 and α2 verifying the following system of equations{
α1 + α2 = l −m+ 1
α1λ1 + α2λ2 = l2 + lm−m+ 1

.

We have

α1 =
l2 + lm−m+ 1− λ2 (l −m+ 1)

λ1 − λ2
,

α2 =
l2 + lm−m+ 1− λ1 (l −m+ 1)

λ2 − λ1
.

Since |λ2| < λ1, then |xk| − |yk| has the same sign as α1 for k sufficiently large.

Case 1. l −m + 1 ≥ 0. Then, we have −λ2 (l −m+ 1) ≥ 0 since λ2 < 0. So, α1 > 0 since λ1 − λ2 > 0 and
l2 + lm−m+ 1 = l2 + l(m− 1) + 1 > 0.

Case 2. l −m+ 1 < 0. We have:

α1 > 0⇐⇒ λ2 >
l2 + lm−m+ 1

l −m+ 1

⇐⇒ l −
√
l2 + 4m

2
>
l2 + lm−m+ 1

l −m+ 1
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⇐⇒ l2 + 4m <

(
−l2 − 3lm+ l + 2m− 2

)2
(l −m+ 1)

2

since −l2 − 3lm+ l+ 2m− 2 = m(2− 3l)− l(l− 1)− 2 < 0 and l−m+ 1 < 0. The last inequality can
be turned into the following one:

Pl (m) = m3 +m2
(
−2l2 + l − 3

)
+m

(
−2l3 + 3l2 − 2l + 3

)
+ l3 − l2 + l − 1 < 0.

If l = 1 then Pl(m) = m(m2 − 4m+ 2). So,

Pl(m) < 0⇐⇒ m ∈ {2, 3} .

Suppose from now on that l ≥ 2. The derivative

P ′l (m) = 3m2 + 2m
(
−2l2 + l − 3

)
− 2l3 + 3l2 − 2l + 3

admits two roots of opposite signs

β1 =
2l2 − l + 3−

√
4l4 + 2l3 + 4l2

3
< 0,

β2 =
2l2 − l + 3 +

√
4l4 + 2l3 + 4l2

3
> 0

and is negative between these two roots. So, Pl is decreasing on [β1, β2] which contains 0, and is
increasing on ]−∞, β1]∪ [β2, +∞[. Furthermore, one verifies that Pl(0) > 0, Pl(1) < 0, Pl(2l

2 + 1) < 0
and Pl(2l

2 + 2) > 0. It results that Pl admits two positive roots m1, m2 and one negative root m3

with 0 < m1 < 1, 2l2 + 1 < m2 < 2l2 + 2 and m1 ≤ β2 ≤ m2. Thus, Pl is negative on ]m1, m2[ and
positive on ]m2, +∞[. Then, α1 > 0 if m ∈ [2, 2l2 + 1] and α1 < 0 if m ≥ 2l2 + 2.

So, we have:

1. m ∈
[
2, 2l2 + 1

]
⇐⇒ ∃k0 ∈ N : ∀k ≥ k0, |xk| − |yk| > 0.

2. m ∈
[
2l2 + 2, ∞

[
⇐⇒ ∃k0 ∈ N : ∀k ≥ k0, |xk| − |yk| < 0.

Theorem 4.7. 1. If m ∈
[
2, 2l2 + 1

]
, then there exists a constant δ and an integer n0 such that for all

n > n0

n+ 1 ≤ p(n) ≤ 2n+ δ.

2. If m ∈
[
2l2 + 2, +∞

[
, then there exists a constant δ and an integer n0 such that for all n > n0

2n+ δ ≤ p(n) ≤ 3n+ 1.

Proof. Suppose m ∈ [2, 2l2 + 1]. Then, there exists k0 such that for all k ≥ k0, |xk| − |yk| > 0. In this case, for
n ∈ ]|xk| , |xk+1|] we have by Lemma 4.4

s(n) =

{
2 if |yk| < n ≤ |yk+1|
1 if |yk+1| < n ≤ |xk+1|
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as the case |xk| < n ≤ |yk| is empty. Thus,

∀n ≥ |xk0 |, 1 ≤ s (n) ≤ 2.

By summation, it follows that

n−1∑
k=|xk0

|

1 ≤
n−1∑

k=|xk0
|

s (k) ≤
n−1∑

k=|xk0
|

2.

Therefore

p (|xk0 |) + n− |xk0 | ≤ p(n) ≤ p (|xk0 |) + 2 (n− |xk0 |) .

It follows that

n+ 1 ≤ p(n) ≤ 2n+ δ, with δ ∈ Z.

Suppose m ≥ 2l2 + 2. Then, by Lemma 4.6, there exists k0 such that for all k ≥ k0, |xk| − |yk| < 0.
In this case, for n ∈ ]|xk| , |xk+1|] we have

s(n) =

{
3 if |xk| < n ≤ |yk|
2 if |yk| < n ≤ |xk+1|

.

It follows that,

∀n ≥ |xk0 |, 2 ≤ s (n) ≤ 3.

Thus, in the similar way as previously, we get

2n+ δ ≤ p(n) ≤ 3n+ 1, with δ ∈ Z.

5. Asymptotic behavior of
p (n)

n
Before the statement of the main result we need some technical lemmas.

Lemma 5.1. Let (rk), (sk) be two strictly increasing sequences of integers and l be a real number such that:

lim
k→∞

sk+1 − sk
rk+1 − rk

= l. Then, lim
k→∞

sk
rk

= l.

Proof. Let (rk), (sk) be two strictly increasing sequences of integers and l be a real number such that

lim
k→∞

sk+1 − sk
rk+1 − rk

= l. Write mk =
sk+1 − sk
rk+1 − rk

. Let ε > 0. There exists k0 ∈ N such that:

∀k ≥ k0, l − ε ≤ mk ≤ l + ε. (5.1)
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So, for all k > k0 we have

sk = sk0 +

k−1∑
j=k0

(sj+1 − sj) (5.2)

= sk0 +

k−1∑
j=k0

mj(rj+1 − rj)

= sk0 +

k−1∑
j=k0

l(rj+1 − rj) +

k−1∑
j=k0

(mj − l)(rj+1 − rj)

= sk0 + l(rk − rk0) +Rk

where Rk =
∑k−1
j=k0

(mj − l)(rj+1 − rj). Thereby
sk
rk

= l +
sk0 − lrk0

rk
+
Rk
rk

. From (5.1) and since (rk) is

increasing, it follows that |Rk| ≤ ε(rk − rk0) and so Rk ≤ εrk.

Thus, lim
k→∞

sk
rk

= l.

Lemma 5.2. For all k ≥ 1, |xk| = β1λ
k
1 + β2λ

k
2 + β3 and |yk| = γ1λ

k
1 + γ2λ

k
2 + γ3 where λ1 and λ2 are the

eigenvalues of matrix A, and (β1, β2, β3), (γ1, γ2, γ3) are some triples of real numbers.

Proof. Let w, w′ be two words such that w′ = σ̂l,m (w) = σl,m (w) al. Put W =

 |w|a|w|b
1

. Observe that

|w| =
(

1 1 0
)
W and W ′ = BW where B =

 l 1 l
m 0 0
0 0 1

. With these relations we are able to determine

the two sequences (xk)k≥0, (yk)k≥1, and the length of xk and yk for all k.

Namely, since xk+1 = σ̂l, k(xk), yk+1 = σ̂l, k(yk), x0 = ε and y1 = bm−1 we haveX0 =

 0
0
1

, Y1 =

 0
m− 1

1

,

Xk+1 = BXk and Yk+1 = BYk, and so Xk = BkX0 and Yk = Bk−1Y1. The eigenvalues of the matrix B are λ1,
λ2 and 1. Then, it follows that

|xk| =
(

1 1 0
)
BkX0 (5.3)

= β1λ
k
1 + β2λ

k
2 + β3 (5.4)

where (β1, β2, β3) is the solution of the following system of equations β1 + β2 + β3 = 0
β1λ1 + β2λ2 + β3 = l
β1λ

2
1 + β2λ

2
2 + β3 = l2 + lm+ l

and

|yk| =
(

1 1 0
)
Bk−1Y1 (5.5)

= γ1λ
k
1 + γ2λ

k
2 + γ3 (5.6)
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where (γ1, γ2, γ3) is given by the following system of equations γ1λ1 + γ2λ2 + γ3 = m− 1
γ1λ

2
1 + γ2λ

2
2 + γ3 = m− 1 + l

γ1λ
3
1 + γ2λ

3
2 + γ3 = (m+ l)2 −m

.

Theorem 5.3. 1. If m ∈
[
1, 2l2 + 1

]
, we have

lim inf
p (n)

n
= 1 +

γ1λ1 − β1

β1 (λ1 − 1)
, and lim sup

p (n)

n
= 1 +

γ1λ1 − β1

γ1 (λ1 − 1)
.

2. If m ≥ 2l2 + 2 we have

lim inf
p (n)

n
= 2 +

γ1 − β1

β1 (λ1 − 1)
and lim sup

p (n)

n
= 2 +

λ1 (γ1 − β1)

γ1 (λ1 − 1)
.

Proof. Case 1. m ∈
[
1, 2l2 + 1

]
. From Lemma 4.6, there exists k0 such that for all k ≥ k0,

|yk| < |xk| < |yk+1| < |xk+1|.

In this case, we have

∀n ∈ ]|xk| , |xk+1|] , s(n) =

{
2 if |xk| < n ≤ |yk+1|
1 if |yk+1| < n ≤ |xk+1|

.

So, lim inf p(n)
n = lim inf p(|xk|+1)

|xk|+1 and lim sup p(n)
n = lim sup p(|yk|+1)

|yk|+1 . Furthermore, with Lemma 5.2 we have

p (|xk+1|+ 1)− p (|xk|+ 1) =

|xk+1|∑
n=|xk|+1

s (n) (5.7)

= 2 (|yk+1| − |xk|) + (|xk+1| − |yk+1|)
= 2

(
γ1λ

k+1
1 − β1λ

k
1

)
+
(
β1λ

k+1
1 − γ1λ

k+1
1

)
+ o

(
λk1
)

= γ1λ
k+1
1 + β1λ

k+1
1 − 2β1λ

k
1 + o

(
λk1
)
.

Moreover

|xk+1| − |xk| = β1λ
k+1
1 − β1λ

k
1 + o

(
λk1
)
.

So

p (|xk+1|+ 1)− p (|xk|+ 1)

|xk+1| − |xk|
= 1 +

γ1λ1 − β1

β1 (λ1 − 1)
+ o(1).
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By Lemma 5.1 it follows that limk→∞
p(|xk|+1)
|xk|+1 = 1 + γ1λ1−β1

β1(λ1−1) . In a similar way, we have

p (|yk+1|+ 1)− p (|yk|+ 1) =

|yk+1|∑
n=|yk|+1

s (n) (5.8)

= (|xk| − |yk|) + 2 (|yk+1| − |xk|)
= 2γ1λ

k+1
1 − γ1λ

k
1 − β1λ

k
1 + o

(
λk1
)

and

|yk+1| − |yk| = γ1λ
k+1
1 − γ1λ

k
1 + o

(
λk1
)
.

So, limk→∞
p(|yk|+1)
|yk+1| = 1 + γ1λ1−β1

γ1(λ1−1) .

Case 2. m > 2l2 + 1. From Lemma 4.6, there exists k0 such that for all k ≥ k0,

|xk| < |yk| < |xk+1| < |yk+1|.

In this case, we have

∀n ∈ ]|xk| , |xk+1|] , s(n) =

{
3 if |xk| < n ≤ |yk|
2 if |yk| < n ≤ |xk+1|

.

So, lim inf p(n)
n = lim inf p(|xk|+1)

|xk|+1 and lim sup p(n)
n = lim sup p(|yk|+1)

|yk|+1 . Furthermore

p (|xk+1|+ 1)− p (|xk|+ 1) =

|xk+1|∑
n=|xk|+1

s (n) (5.9)

= 3 (|yk| − |xk|) + 2 (|xk+1| − |yk|)
= 2β1λ

k+1
1 − 3β1λ

k
1 + γ1λ

k
1 + o

(
λk1
)

and

|xk+1| − |xk| = β1λ
k+1
1 − β1λ

k
1 + o

(
λk1
)
.

So

p (|xk+1|+ 1)− p (|xk|+ 1)

|xk+1| − |xk|
= 2 +

γ1 − β1

β1 (λ1 − 1)
+ o(1).

By Lemma 5.1 again it follows that

lim
k→∞

p (|xk|+ 1)

|xk|+ 1
= 1 +

γ1λ1 − β1

β1 (λ1 − 1)
.
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In a similar way, we have

p (|yk+1|+ 1)− p (|yk|+ 1) =

|yk+1|∑
n=|yk|+1

s (n) (5.10)

= 2 (|xk+1| − |yk|) + 3 (|yk+1| − |xk+1|)
= 3γ1λ

k+1
1 − 2γ1λ

k
1 − β1λ

k+1
1 + o

(
λk1
)

and

|yk+1| − |yk| = γ1λ
k+1
1 − γ1λ

k
1 + o

(
λk1
)

So, limk→∞
p(|yk|+1)
|yk|+1 = 2 + λ1(γ1−β1)

γ1(λ1−1) .

6. Concluding remarks and further work

It results from Theorem 4.7 that:

if m ∈ [2, 2l2 + 1], then 1 ≤ lim inf
p (n)

n
≤ lim sup

p (n)

n
≤ 2; (6.1)

if m > 2l2 + 1, then 2 ≤ lim inf
p (n)

n
≤ lim sup

p (n)

n
≤ 3. (6.2)

By Theorem 5.3 one observes that for Fl,m, the values of lim inf p(n)
n and lim sup p(n)

n are strictly dependent
with those of the parameters l and m. Indeed, we check that (6.1) and (6.2) become

if m ∈ [2, 2l2 + 1], then 1 < lim inf
p (n)

n
< lim sup

p (n)

n
< 2; (6.3)

if m > 2l2 + 1, then 2 < lim inf
p (n)

n
< lim sup

p (n)

n
< 3. (6.4)

For l ≥ 1, m ≥ 2, let us write αl,m = lim inf p(n)
n and βl,m = lim sup p(n)

n . In (6.1) the value 1 is reached when
m = 1. In this case Fl,m is Sturmian and we have excluded it by taking m ≥ 2. The values 2 and 3 are never
reached, but we can prove that they are accumulation points for αl,m and βl,m.

In further work, it will be interesting to describe the region covered by the cloud of points (αl,m, βl,m) in
the first quadrant of the plane.

Another problem is to undertake a similar study in the case of S-adic words where morphisms are all
generalized Fibonacci morphisms.
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