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AUTOMATIC SEQUENCES OF RANK TWO∗

Jason P. Bell1,** and Jeffrey Shallit2

Abstract. Given a right-infinite word x over a finite alphabet A, the rank of x is the size of the
smallest set S of words over A such that x can be realized as an infinite concatenation of words in S.
We show that the property of having rank two is decidable for the class of k-automatic words for each
integer k ≥ 2.
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1. Introduction

Let k ≥ 2 be an integer. In this paper we study k-automatic sequences, which are those sequences (or infinite
words) (an)n≥0 over a finite alphabet, generated by a deterministic finite automaton with output (DFAO)
taking, as input, the base-k representation of n and outputting an. (We call such a DFAO a k-DFAO.) Many
interesting classical examples of sequences, including the Thue-Morse sequence, the Rudin-Shapiro sequence,
and the paper-folding sequence are in this class. For more information about this well-studied class of sequences,
see, for example, [1]. We mention that there is another well-known characterization of k-automatic sequences as
the image, under a coding, of the fixed point of a k-uniform morphism [9]. Here a morphism is called k-uniform
if the length of the image of every letter is k, and a coding is a 1-uniform morphism.

Let x be a finite nonempty word. We define xω to be the one-sided infinite word xxx · · · . We say that an
infinite word z is ultimately periodic if there exist finite words y, x, with x nonempty, such that z = yxω. Honkala
proved [16] that the following problem is decidable: given a DFAO generating a k-automatic sequence x, is x
ultimately periodic? In fact, later results showed that this is actually efficiently decidable; see Leroux [25] and
Marsault and Sakarovitch [28]. For other related work, see [3, 6, 11, 15, 24, 26, 31].

Let L be a language. We define Lω to be the set of infinite words

{x1x2 · · · : xi ∈ L \ {ε}}.

If x ∈ Lω for some finite language L consisting of t nonempty words, then we say that x is of rank t. In particular,
deciding the ultimate periodicity of x is the same as deciding if some suffix of x is of rank one. Words of rank
one are periodic and this class of words is generally regarded as being well-behaved. For example, the subword
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complexity functions of periodic and more generally of ultimately periodic words are uniformly bounded. Thus
rank can be seen as providing a measurement of how far a word is from being periodic, and in this sense we
view the rank as giving some measure of the complexity of a word.

While the rank gives some insight into the structure of the word and how it can be constructed from subwords,
it can nevertheless be difficult to determine its precise value. A large part of this difficulty lies in the fact that
there is some relationship with undecidable “tiling” problems, in the sense that if L is a finite set of words then
we can view these words as “tiles” and the question of whether a right-infinite word is in Lω is then asking
whether there exists a tiling of the word from L. For example, the Post correspondence problem [32], which is
undecidable, asks whether, given two finite sets of words of the same size, {a1, . . . , am} and {b1, . . . , bm}, over a
common alphabet, there exist k ≥ 1 and i1, . . . , ik ≤ m such that ai1 · · · aik = bi1 · · · bik . Thus it is possible that
a right-infinite word w has rank m but one can have difficulties identifying the language L of size m for which
w ∈ Lω by looking at prefixes.

In general, it is the fact that words cannot always be tiled unambiguously that complicates decision procedures
involving tilings, and such problems typically become more complex as the number of tiles involved increases.
For example, it is known that the Post correspondence problem is solvable if the lists consist only of one or
two words [12], while it is undecidable for lists of seven words or more [29]. Similarly, for Wang tiles, there has
been some interest in finding the smallest number N such that the tiling problem using N tiles is undecidable
[10, 18, 19].

Our main result is to show that the property of being of rank two is decidable for automatic words.

Theorem 1.1. Let k ≥ 2 be an integer and let x be a k-automatic sequence. Then there is an algorithm to
decide whether x is of rank two.

This algorithm is considerably more involved than the corresponding algorithm used for determining whether
a word has rank one; moreover, we do not currently know how to extend our method to arbitrary suffixes of x,
nor to sequences of higher rank.

A key component in the procedure given in Theorem 1.1 is the following result, which shows that there is a
striking dichotomy in the possible powers of words that can appear in a k-automatic sequence. Recall that we
say that a finite word x is a factor of a (possibly infinite) word y if x appears as a contiguous block inside y.

Theorem 1.2. Let k ≥ 2 be an integer and let x be a k-automatic sequence. Then there is a computable bound
B such that, for each finite word y, if yB occurs as a factor of x then y occurs with unbounded exponent in x.

The outline of this paper is as follows. In Section 2 we give the notation that will be used throughout the
paper. In Section 3, we provide the necessary background on repetitive words. In Section 4, we recall a key
result in first-order logic and use it to deduce Theorem 1.2 along with a key technical result that will be used
in the proof of Theorem 1.1. Then in Section 5, we prove the key combinatorial lemmas that will be used in
giving the decision procedure in Theorem 1.1. Finally, in Section 6, we give the proof of Theorem 1.1.

2. Notation and definitions

Throughout this paper we will make use of the following notation and definitions.
If w = xyz for words w, x, y, z with w and z possibly infinite, we say that y is a factor of w, x is a prefix of

w, and z is a suffix of w.
Let x = a0a1a2 · · · be an infinite word. By x[i..i+n− 1] we mean the length-n word ai · · · ai+n−1. By Fac(x)

we mean {x[i..i+ n− 1] : i, n ≥ 0}, the set of all finite factors of x.
Given a finite word w = a1a2 · · · an we say that w is of period p if ai = ai+p for 1 ≤ i ≤ n− p. A word can

have multiple periods; for example, the French word entente has periods 3, 6, and 7. We refer to the smallest
positive period as the period of w, and denote it by per(w). The exponent of a finite word w is defined to be
exp(w) = |w|/per(w).
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A finite nonempty word w is primitive if it is a non-power, that is, if it cannot be written as w = xe for some
e ≥ 2. If w appears in x to arbitrarily large powers, we say that w is of unbounded exponent in x. If x has only
finitely many primitive factors of unbounded exponent, we say it is discrete.

We assume the reader has a basic background in formal languages and finite automata theory. For the needed
concepts, see, for example, [17].

3. Repetitive words

An infinite word x is called repetitive if for all n there exists a finite nonempty word w such that wn ∈ Fac(x).
It is called strongly repetitive if there exists a finite nonempty word w such that wn ∈ Fac(x) for all n.

Suppose h is a morphism and a is a letter such that h(a) = az for some z for which hi(z) 6= ε for all i. Then
we say that h is prolongable on a. In this case hω(a) := a z h(z) . . . is an infinite word that is a fixed point of h,
and we say that hω(a) is a pure morphic word. If x is the image, under a coding, of a pure morphic word, we
say that x is morphic.

Several writers have investigated the repetitive and strongly repetitive properties of pure morphic words.
Ehrenfeucht and Rozenberg [13] showed that a pure morphic word is repetitive if and only if it is strongly
repetitive, and also showed that these conditions are decidable. Mignosi and Séébold [30] proved that for every
morphic word x there exists a constant M such that wM ∈ Fac(x) if and only if wn ∈ Fac(x) for all n; also see
[21]. Kobayashi and Otto [23] gave an efficient algorithm to test the repetitivity of a pure morphic word. Klouda
and Starosta [20] showed further that every pure morphic word x is discrete, while the authors [4] proved that
words of linear factor complexity are discrete.

Only the last of these results applies to the case that concerns us in this paper (where x is k-automatic)
because automatic words need not be pure morphic. For example, it is not hard to show that the Rudin-Shapiro
sequence is not pure morphic.

Recently, in a thus-far unpublished manuscript, Klouda and Starosta [22] showed that morphic words (and
hence k-automatic words) are discrete.

4. First-order logic

Let x be an infinite word. We will work with first-order logic (see, for example, [2]). Recall that 〈N,+, n→
x[n]〉 is the set of all first-order logical formulas consisting of variables (with domain N = {0, 1, 2, . . .}, the
natural numbers), quantifiers ∃ and ∀, addition, logical operations, comparisons of integers, and indexing into
x. If a variable is associated with a quantifier, it is said to be bound; otherwise it is unbound.

Certain key parts of the decision procedure in Theorem 1.1 rely on the following result, which is essentially
a consequence of the results of Bruyère et al. [5]; also see [7].

Theorem 4.1. Let k ≥ 2 be an integer, let x be a k-automatic sequence, and let ϕ be a logical formula,
expressible in the first-order structure 〈N,+, n→ x[n]〉. Then

(a) If ϕ has no unbound variables, then the truth of ϕ is decidable.
(b) If ϕ has unbound variables, we can computably determine a DFA that recognizes precisely the base-k

representations of those natural number values of the unbound variables that make ϕ true.

As an illustration of these ideas, we consider four basic properties of factors of sequences.

– FactorEq(i, j, n) asserts that x[i..i+ n− 1] = x[j..j + n− 1];
– Pref(i, j,m, n) asserts that x[i..i+ j − 1] is a prefix of x[m..m+ n− 1];
– Suff(i, j,m, n) asserts that x[i..i+ j − 1] is a suffix of x[m..m+ n− 1];
– Per(i, n, p) asserts that x[i..i+ n− 1] has period p;
– Match(i, j, n, p) asserts that x[j..j + n− 1] has period p and furthermore that

x[i..i+ p− 1] = x[j..j + p− 1].
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All four can be expressed in first-order logic, as follows:

– FactorEq(i, j, n): ∀t (t < n) =⇒ x[i+ t] = x[j + t].
– Pref(i, j,m, n): (j ≤ n) ∧ FactorEq(i,m, j).
– Suff(i, j,m, n): (j ≤ n) ∧ FactorEq(i,m+ n− j, j).
– Per(i, n, p): (p ≥ 1) ∧ (p ≤ n) ∧ FactorEq(i, i+ p, n− p).
– Match(i, j, n, p): Per(j, n, p) ∧ FactorEq(i, j, p).

We use these as building blocks in what follows.
For automatic sequences, we can now get easy proofs of the decidability of the repetitive and strongly

repetitive properties.

Theorem 4.2. Let k ≥ 2 be an integer, let x be a k-automatic sequence, and let z be a given nonempty word.
Then the following problems are decidable:

(a) Do arbitrarily large powers of z appear in x?
(b) If the answer to (a) is no, what is the largest exponent e such that ze appears in x?

Proof.

(a) Let z = a1a2 · · · ar. We can write a first-order statement asserting that z is a factor of x as follows:

∃i x[i] = a1 ∧ x[i+ 1] = a2 ∧ · · · ∧ x[i+ r − 1] = ar, (4.1)

and so it is decidable if this is the case. If z does indeed appear in x, by creating the automaton for the
expression

x[i] = a1 ∧ x[i+ 1] = a2 ∧ · · · ∧ x[i+ r − 1] = ar

and using breadth-first search to identify an accepting path we can find a specific i = i0 for which
equation (4.1) holds. Then arbitrarily large powers of z appear in x if and only if

∀m ∃n > m ∃j Match(i0, j, n, r).

We emphasize that here i0 and r are constants depending on z, and not unbound variables.
(b) If z occurs in x, but not with arbitrarily large powers, then we can determine the largest (fractional)

power ze occurring in x as follows: create the DFA corresponding to the logical formula

∃m (∃j Match(i0, j,m, r) ∧ ¬∃j′ Match(i0, j
′,m− 1, r)).

Again, i0 and r are constants and not unbound variables. This DFA will accept the base-k representation
of exactly one m, and then e = m/r.

As a consequence we can prove Theorem 1.2.

Proof of Theorem 1.2. Let M be a k-DFAO generating the sequence x. As is well-known ([14], Thm. 14) for
every automatic sequence x there is a computable constant C such that if y appears as a factor of x, it must
appear starting at a position that is ≤ C|y|.

Now consider the following first-order formula:

ϕ(i, n, p) : ∃jMatch(i, j, n, p).
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Theorem 4.1 implies that from a DFA for x we can computably determine a DFA M ′ accepting those triples
(i, n, p)k in parallel for which ϕ(i, n, p) is true. Suppose M ′ has r states. We now claim that M ′ accepts some
word (i, n, p)k with n/p > krC if and only if x contains arbitrarily large powers of x[i..i+ n− 1].

One direction is trivial. For the other direction, note that if there exists at least one i for which ϕ(i, n, p) is
true, then by the discussion above, there must be an i′ ≤ Cp for which ϕ(i′, n, p) is true. Consider the base-k
representation of the triple (i′, n, p). Since n > krCp we have n > kri′, and hence the base-k representation of
(i′, n, p) starts with at least r zeros in the components corresponding to both i′ and p, and a nonzero digit in
the n component. We may now apply the pumping lemma to z = (i′, n, p)k to get longer and longer strings with
the same value of i′ and p, but arbitrarily large n. From the definition of M ′ this means that there is an infinite
sequence of increasing n for which there exists a j with x[j..j + n− 1] = x[i′..i′ + p− 1]n/p.

We may now take B = krC to prove the result.

We can also prove that k-automatic words are discrete, and even something more general. The following
result appears in earlier work of the authors ([4], Thm. 1.2) but we give a simpler and more self-contained proof
here. We note, however, that the following proof does not recover the upper bound on the number of primitive
factors that can occur with unbounded exponent (up to cyclic equivalence), which was given in [4].

Theorem 4.3. Let x be an infinite word with linear subword complexity. Then x is discrete.

Proof. Suppose that the subword complexity of x is bounded by cn for some constant c and n ≥ 1. Further
suppose, contrary to what we want to prove, that x has infinitely many primitive factors x1, x2, . . . , x2c+1, . . .
for which arbitrarily large powers appear in x.

Choose 2c+ 1 of them that are strictly increasing in size, 1 ≤ |x1| < |x2| < · · · < |x2c+1|. We will use these
factors to derive a contradiction by showing that x must have more than cn words of length n for some c.
Replace each xi by yi, an appropriate power of the xi so that all the yi are the same length d > c. (The yi are
no longer primitive, but it doesn’t matter.)

Pick n = 3d + 1. For each word yi find an occurrence of the third power of yi in x. Note that x cannot be
eventually periodic since by assumption it has infinitely many distinct primitive factors, and so x has a factor
of the form y3i y with |y| ≤ d and y not a prefix of yi. We let z denote the largest common prefix of y and yi.
Then yi = zzi and so we see x has a factor of the form (zzi)

3za in which a is a letter that is different from the
first letter of zi. Thus after replacing yi by ziz, we may assume that x has an occurrence of y3i that is followed
by a letter a that is different from the first letter of yi.

For each i, we take a suffix xi of x that has y3i ai as a prefix for some letter ai that is not the first letter of yi.
Now consider the list Li of the 2d+ 1 length-n factors of x that start at position p of xi for p = 0, . . . , 2d. For
each i ∈ {1, . . . , 2c+ 1} there are 2d+ 1 such words. We first claim for i = 1, . . . , 2c+ 1} these 2d+ 1 words are
pairwise distinct. To see this, since ai is not the first letter of yi and since p ≤ 2d we that the length-n factor
of x that starts at the p-th position of xi has a prefix of the form (y′i)

3−p/dai for some cyclic shift y′i of yi;
moreover, (y′i)

3−p/dai 6= (y′i)
3−(p+1)/d since ai is not the first letter of yi. Since p ≤ 2, we then see that we can

recover y′i and p from the length-n prefix xi that begins at position i.
Similarly, if we compare a word z of Li and a word z′ of Lj for i 6= j, then since n = 3d+ 1, z and z′ share

a common length-d prefix. By construction, this prefix is a cyclic shift of both yi and yj , which is impossible
since the original xi were distinct primitive words.

So we have constructed at least (2d+ 1)(2c+ 1) distinct length-n subwords of x. But by assumption, x has
at most cn = c(3d+ 1) words of length n, and since c(3d+ 1) < (2d+ 1)(2c+ 1), we obtain a contradiction.

Corollary 4.4. If x is k-automatic, we can explicitly determine the (finitely many) primitive factors w such
that w is of unbounded exponent in x.

Proof. We can easily write down a first-order formula asserting that w = x[i..i+ p− 1] is primitive, that it is
the first occurrence of this factor in x, and that unboundedly large powers of w appear in x, as follows:

∀m ∃j, n (n > m) ∧ Primitive(i, p) ∧ EarliestFac(i, j, p) ∧ Per(j, n, p),
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where

EarliestFac(i, j, n) = FactorEq(i, j, n) ∧ (∀t FactorEq(t, j, n) =⇒ t ≥ i);
Primitive(i, n) := ¬(∃j (j > 0) ∧ (j < n) ∧ FactorEq(i, i+ j, n− j) ∧

FactorEq(i, (i+ n)− j, j)).

So by Theorem 4.1 we can compute an automaton recognizing the finitely many pairs i, p.

Finally, we prove two technical results, which together will play a key role in the proof of Theorem 1.1.

Proposition 4.5. Given a k-automatic sequence x, and a nonempty factor u, and fixed natural numbers L,N ,
one can decide if there exist a word v of length ≥ N , such that u is neither a prefix or suffix of v, and natural
numbers p1, p2, . . . , pL such that vup1vup2v · · · vupL is a prefix of x.

Proof. Fix i and d such that u = x[i..i+ d− 1]. Consider the logical formula ρ defined below:

ρ(r) : r ≥ N ∧ ¬Pref(i, d, 0, r) ∧ ¬Suff(i, d, 0, r) ∧ ∃p1, p2, . . . , pL
FactorEq(0, r + p1d, r) ∧ FactorEq(0, 2r + (p1 + p2)d, r) ∧ · · · ∧

FactorEq(0, (L− 1)r, (p1 + p2 + · · ·+ pL−1)d)∧
Per(r, p1d, d) ∧ Per(2r + p1d, p2d, d) ∧ · · · ∧ Per(Lr + (p1 + p2 + · · ·+ pL−1)d, pLd, d).

The formula γ : ∃r ρ(r) is true if and only if the desired v = x[0..r − 1] and the p1, p2, . . . , pL exist. If γ is true,
then from the automaton for ρ we can easily find the smallest r for which ρ(r) evaluates to true, just as we did
above in the proof of Corollary 4.4.

Proposition 4.6. Let k,m ≥ 2 be integers. Given a k-automatic sequence x, and a binary word i0 · · · im−1 ∈
{0, 1}m, we can decide whether there exist nonempty factors u0 and u1 of x such that u0 is neither a prefix nor
suffix of u1; u1 is neither a prefix nor suffix of u0; and such that ui0 · · ·uim−1

is a prefix of x.

Proof. We can construct a first-order formula encoding these assertions. The idea is that u0 = x[i..i + r − 1]
and u1 = x[j..j + s − 1] for some i, j, r, s. If ui0 · · ·uim−1 is a prefix of x, then there exist starting positions
p0 = 0, p1, . . . , pm−1 and lengths q0, q1, . . . , qm−1 corresponding to each of the occurrences of the uit . We then
assert that the starting positions obey the rule that pt+1 = pt + qt for 0 ≤ t < m− 1, and that each occurrence
uit matches x[i..i + r − 1] or x[j..i + s − 1], according to whether it = 0 or it = 1, respectively. This gives us
the following first-order formula:

∃i, j, r, s, p0, p1, . . . , pm−1, q0, q1, . . . , qm−1 r > 0 ∧ s > 0 ∧
¬Pref(i, r, j, s) ∧ ¬Suff(i, r, j, s) ∧ ¬Pref(j, s, i, r) ∧ ¬Suff(j, s, i, r) ∧
(∀t < m ((it = 0) =⇒ qt = r ∧ FactorEq(i, pt, qt)) ∧
((it = 1) =⇒ qt = s ∧ FactorEq(j, pt, qt))) ∧
p0 = 0 ∧ (∀t < m− 1 pt+1 = pt + qt).

5. Combinatorial lemmas

In this section, we prove results about semigroup equations, which will again play a key role in our decision
procedure for testing rank two.
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Given a finite alphabet Σ, we write a ≤ b for a, b ∈ Σ∗ if a is a prefix of b. We note that if a and b have the
property that a 6≤ b and b 6≤ a then a and b generate a free semigroup and every word in Σ∗ has a unique largest
prefix in {a, b}∗.

Lemma 5.1. Let Σ be a finite alphabet and let r and s be elements in Σ∗ that do not commute. Then there
exist a, b ∈ Σ∗ such that a 6≤ b and b 6≤ a and such that r, s ∈ {a, b}∗.

Proof. Suppose towards a contradiction that the conclusion to the statement of the lemma does not hold. Then
among all counterexamples (r, s) ∈ (Σ∗)2, we pick (r, s) with |r| + |s| minimal. Then either r ≤ s or s ≤ r,
or else we can take a = r and b = s and we obtain a contradiction. Thus we may assume without loss of
generality that r ≤ s and so we write s = ry. Then r, s ∈ {r, y}∗. Then either |r|+ |y| < |r|+ |s| or r = ε. But
we cannot have r = ε since r and s do not commute. Since s and r do not commute, r and y do not commute
and by minimality of |r|+ |s|, we have {r, y}∗ ⊆ {a, b}∗ with a 6≤ b and b 6≤ a. But this is a contradiction, since
r, s ∈ {r, y}∗ ⊆ {a, b}∗. The result follows.

Lemma 5.2. Let Σ be a finite alphabet, let u, v ∈ Σ+ be words in Σ∗ such that there do not exist a, b ∈ Σ∗

with |a|+ |b| < |u|+ |v| and with u, v ∈ {a, b}∗. Let x, y be single letters, and suppose that σ : {x, y}∗ → {u, v}∗
is a morphism defined by σ(x) = u and σ(y) = v. Suppose further that there exist words d, d′ ∈ Σ∗, and words
w,w′ ∈ {x, y}∗ such that the following hold:

1. dσ(w) = σ(w′)d′;
2. w,w′ both have x as a prefix and at least one occurrence of y;
3. d does not contain u as a suffix and |d| < max(|u|, |v|).

Then d = ε.

Proof. Let z = dσ(w) = σ(w′)d′. By considering the prefix of z of length |du|, we see du = uc for some c and
hence by the Lyndon-Schützenberger theorem [27] there exist words r, s such that u = (rs)αr, d = rs, c = sr.
Notice that if r and s commute, then again by the Lyndon-Schützenberger theorem, they are powers of some
word t, which then gives u = ti and d = tj . But now {u, v} ⊆ {t, v}∗ and so |t|+ |v| = |u|+ |v| by hypothesis
and so u = t. But then since u is not a suffix of d, we must have d = ε. Hence we may assume that r and s do
not commute. Now by Lemma 5.1, there are words a and b such that a 6≤ b and b 6≤ a such that r and s are
in the free monoid generated by a and b. Then d, u ∈ {a, b}∗. We claim that v 6∈ {a, b}∗. To see this, suppose
that this is not the case. Then u, v ∈ {a, b}∗ and so by assumption, we must then have u = a and v = b after
relabelling. But now d is such that |d| < max(|a|, |b|) and since d ∈ {a, b}∗, we see that d is either a power of a
or a power of b. But d cannot be ai with i ≥ 1 since d does not have u = a as a suffix and hence d must be bj .
But now the equation du = uc gives bja = ac, which is impossible since b 6≤ a and a 6≤ b. Thus v 6∈ {a, b}∗.

We write v = γv′ such that γ ∈ {a, b}∗ and v′ does not have a or b as a prefix. Then v′ is nonempty since
v 6∈ {a, b}∗.

By assumption there is some i ≥ 1 such that xiy is a prefix of w. Then duiv is a prefix of z and so the longest
prefix of z in {a, b}∗ is duiγ. On the other hand, there is some j ≥ 1 such that w′ has xjy as a prefix and so the
longest prefix of z in {a, b}∗ is ujγ. Then we must have duiγ = ujγ. It follows that j ≥ i since u is nonempty.
Cancelling uiγ on the right gives d = uj−i. Since d does not have u as a suffix, we then see that j = i and so
d = ε, as required.

Notation 5.1. For the remainder of this section, we adopt the following notation and assumptions:

– u and v are words with the property there do not exist a, b ∈ Σ∗ with |a|+ |b| < |u|+ |v| and with u, v ∈
{a, b}∗;

– we take x and y to be symbols and we let σ : {x, y}∗ → {u, v}∗ denote the homomorphism from the free
monoid on the set {x, y} to the monoid generated by u and v given by σ(x) = u and σ(y) = v.
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Proposition 5.1. Let w ∈ {x, y}∗ be a word that contains at least five occurrences of xy and let z be a word
in Σ∗ with |z| = max(|u|, |v|) and such that z does not contains u or v as a prefix. Then σ(w)z is not a factor
of a word in {u, v}ω.

Proof. Since w has at least five occurrences of xy, we can write w in the form w0xyw1 with w0 and w1 both
having at least two occurrences of xy.

Suppose towards a contradiction that σ(w)z is a factor of a word in {u, v}. Then there is some word
w′ = ξ1 · · · ξs ∈ {x, y}∗, with ξi ∈ {x, y} for i = 1, . . . , s, such that σ(w)z is a factor of σ(w′), and so we
can write σ(w′) = aσ(w0)uvσ(w1)zb for some words a and b. Then there must be some largest i such that
w′′ := σ(ξ1) · · ·σ(ξi) is a prefix of aσ(w0)u. We now argue via cases.

Case I: ξi+1 = y.

In this case, w′′v is not a prefix of aσ(w0)u, but it is a prefix of aσ(w0)uv. In particular, we can factor u = u0d
such that σ(w′′) = aσ(w0)u0 and we have

dvσ(w1)zb = vσ(ξi+2) · · ·σ(ξs).

Notice |d| ≤ |u| ≤ max(|u|, |v|), and we cannot have |d| = |u|, or else u and v would share a prefix, which cannot
happen by hypothesis. Thus |d| < max(|u|, |v|) and d cannot have v as a suffix, since otherwise v would be a
suffix of u and so we could write u = av and then u, v ∈ {c, v}∗ with |c|+ |v| < |u|+ |v|, which is a contradiction.
Also, we cannot have d = ε, since v 6≤ u and u 6≤ v, and this would imply that w1 is a prefix of ξi+2 · · · ξs, and
so zb would have to be a prefix of some word of the form σ(ξj) · · ·σ(ξs). But this would then say that either u
or v is a prefix of z, since |z| = max(|u|, |v|) and this is a contradiction.

Now there is some smallest j such that w′′ := vσ(ξi+2) · · ·σ(ξj) contains dv as a prefix. Then if ξi+2 = · · · =
ξj = y, then v is a factor of σ(ξj−1)σ(ξj) = vv and since v is primitive, this forces dv = vσ(ξi+2) · · ·σ(ξj) (see,
e.g., [8, p. 336]). In particular, this means d would be a power of v, contradicting the fact that it cannot contain
v as a suffix.

By assumption w1 has at least one occurrence of xy and so we may write w1 = yqxw2 for some q ≥ 0 and
w2 containing at least one copy of x and y. Then there is some smallest k such that vσ(ξi+2) · · ·σ(ξk) contains
dvq+1u as a prefix, and since w2 contains a copy of at least one x and y, we see that vσ(ξi+2) · · ·σ(ξk) is a prefix
of dvq+1uσ(w2). Hence we can write

dvq+1uσ(w2) = vσ(ξi+2) · · ·σ(ξk)d′.

Since j ≤ k, we see that ξ` = x for some ` ∈ {i + 2, . . . , k}. Then Lemma 5.2 now gives that d = ε, which we
have ruled out. Thus we have completed the proof in this case.

Case II: ξi+1 = x.

In this case there is some word d with |d| ≤ |u| such that σ(ξ1) · · ·σ(ξi)ud = aσ(w0)u. Arguing as in Case
I, we can show that some letter in w0 is equal to y and that some ξj with j ≤ i is equal to y. Then applying
Lemma 5.2 in the opposite monoid now gives d = ε. But we obtain a contradiction in this case as in Case I.
This completes the proof.

Definition 5.3. Let p be a positive integer. We say that a word in {u, v}ω is p-syndetic if it has no factors of
the form uvju or vujv with j ≥ p.

Lemma 5.4. Let k ≥ 2 be an integer and let x be a k-automatic word. Then there is a positive integer D such
that whenever u, v ∈ Σ∗ are such that

1. the assumptions of Notation 5.1 hold,
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2. Fac(uω) 6⊆ Fac(x),
3. Fac(vω) 6⊆ Fac(x), and
4. x has a prefix in {u, v}D,

we necessarily have x is in {u, v}ω.

Proof. By Theorem 1.2, there is some computable p = p(x) such that up and vp are not factors of x. By a result
of Cobham [9], there is a computable number κ = κ(x) such that every factor of x of length L occurs in the
prefix of x of length κL. We now take D = 10p2κ + p and suppose that x has a prefix in {u, v}D but that it
is not in {u, v}ω. Then there is some largest d ≥ D such that x has a prefix in {u, v}d. Then x has a prefix of
the form az with a ∈ {u, v}d and |z| = max(|u|, |v|) and z does not have u or v as a prefix. Now a is necessarily
p-syndetic since up and vp are not factors of w. It follows that every factor of w in {u, v}2p−1 must have at least
one occurrence of uv, and so we can write a = bc where b ∈ {u, v}d−5(2p−1) and c ∈ {u, v}10p−5. Then c has at
least five occurrences of uv and so cz is not a factor of an element of {u, v}ω by Proposition 5.1. In particular,
cz is not a factor of a. Since cz is a factor of w of length at most

(10p− 5) max(|u|, |v|) + |z| ≤ 10pmax(|u|, |v|),

we see that cz must occur in a prefix of w of length 10pκmax(|u|, |v|). Thus since cz is not a factor of a, we
must have that

|a| < 10pκmax(|u|, |v|).

But a ∈ {u, v}d has no occurrences of up or vp, and hence each factor of length d of a (when viewed as a word
over {u, v}) must contain at least one occurrence of u and at least one occurrence of v. Then a has a prefix of
the form a1 · · · abd/pc with each ai ∈ {u, v}p and so a must have at least bd/pc copies of u and at least bd/pc
copies of v. Hence

|a| ≥ (d/p− 1) max(|u|, |v|) ≥ (D − p) max(|u|, |v|)/p.

In particular, 10pκmax(|u|, |v|) > (D − p) max(|u|, |v|)/p, and so D < 10p2κ+ p, a contradiction.

6. Proof of Theorem 1.1

We now give the decision procedure that makes up the content of Theorem 1.1; namely, we show how to
decide whether there exist finite words u and v such that x ∈ {u, v}ω, when x is a k-automatic sequence. The
procedure is divided into two cases, which depend upon whether one of the words u or v has arbitrarily large
powers occurring as factors of x. The former case is dealt with via using the following lemma and proposition.

Lemma 6.1. Let k ≥ 2 be an integer and let x be a k-automatic sequence. Then there is a computable number
L such that whenever u is a nontrivial factor of x with the property that there exists a prefix v of x with |v| ≥ |u|
such that

1. u is not a prefix nor suffix of v,
2. v does not occur in x with unbounded exponent,
3. v is not a factor of uω,
4. there exist p1, . . . , pL ≥ 0 with the property that vup1vup2v · · · vupL is a prefix of x,

we necessarily have x ∈ {u, v}ω.

Proof. We recall that by a result of Cobham [9] there is a computable number κ = κ(x) such that every factor
of x of length N occurs in the prefix of x of length κN . Theorem 1.2 gives that there is a computable number
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p = p(x) such that every factor of x has the property that it either occurs in x with exponent at most p or it
occurs with unbounded exponent.

We take L = (15p+ 4)κ and we claim that if there exist factors u and v of x with |v| ≥ |u| such that v is a
prefix of x and hypotheses 1–4 hold then x ∈ {u, v}ω.

To see this, suppose towards a contradiction that x 6∈ {u, v}ω. Then after possibly enlarging L, we may
assume that vup1vup2v · · · vupL is a prefix of x but neither vup1vup2v · · · vupL+1 nor vup1vup2v · · · vupLv are
prefixes of x. Then there is some word z with |z| = |v| such that vup1vup2v · · · vupLz is a prefix of x and neither
u nor v is a prefix of z.

To complete the proof, we now look at cases.

Case I. For each i ∈ {L− 5p, . . . , L}, we have |pi| · |u| ≤ |2v|.

In this case, by hypothesis 2, vp is not a factor of x. It follows that for j = 1, . . . , 5 there is at least one
i ∈ {L− jp, . . . , L− (j − 1)p+ 1} such that pi 6= 0 since otherwise

vupL−5pv · · · vupL

would have vp as a factor. In particular,

vupL−5pv · · · vupL

has at least five occurrences of vu, and so by Proposition 5.1, vupL−5pv · · · vupLz is not a factor of a word in
{u, v}ω. Notice that the length of

y := vupL−5pv · · · vupLz

is at most |v|(15p+ 4), since each upj factor has length at most 2|v| and |z| = |v|. Then by Cobham’s result [9]
this word y must occur in a prefix of x of length κ|v|(15p+ 4). But since vup1vup2v · · · vupL has length at least
L|v| = κ|v|(15p+ 4), we see that this cannot be the case.

Case II. There is some i ∈ {L− 5p, . . . , L} such that |pi| · |u| > |2v|.

In this case, there is some maximal i in this interval with this property, and we let j denote this index. Then
there is some q ≤ pj such that q|u| > 2|v| ≥ (q−1)|u|, and so |u|q ≤ 2|v|+ |u| ≤ 3|v|. Then we consider the suffix
y′ := uqvupj+1v · · · vupLz of vup1vup2v · · · vupLz. Notice that |y′| ≤ 3|v|(1 + L − j) + |v| ≤ 3|v|(5p + 1). Since
vup1vup2v · · · vupL has length at least L|v| > κ|v|(15p+ 3), we see by Cobham’s theorem [9] that y′ must be a
factor of vup1vup2v · · · vupL+1. That is, there are words a and b such that ay′b = ξ1 · · · ξt with each ξi ∈ {u, v}.
Since u 6≤ v and v 6≤ u, we may assume that neither a nor b is trivial, neither u nor v is a prefix of a, and neither
u nor v is a suffix of b and we may assume that a is shorter than the length of ξ1 and that b is shorter than
the length of ξt. Then since |u|q > 2|v| ≥ 2|u|, we must have that ξ2 is a factor of uq. By assumption v is not a
factor of uω and so ξ2 must be u. But now ξ2 = u and so u is in fact a factor of u2. Since u is primitive, we know
(see, e.g., [8, p. 336]) that if a′ub′ = u2, then either a′ = ε or b′ = ε, and so we see that ξ1 = aui for some i ≥ 0.
But now if ξ1 = v, then u is a prefix of v, which is not allowed, and if ξ1 = u either a = ε or a = u, neither of
which is allowed.

This completes the proof.

Lemma 6.2. The following problem is decidable: given an integer k ≥ 2, a k-automatic word x, and two finite
words r, s ∈ Σ+, determine whether x ∈ {r, s}ω.
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Proof. Given words r, s we can easily find a finite automaton A = (Q,Σ, q0, δ, F ) recognizing the language
{r, s}∗. We now regard A as a (uniform) finite-state transducer T where each transition δ(p, a) = q has the
output q associated with it. Hence on input a1a2 · · · at the transducer T outputs the sequence of states

δ(q0, a1)δ(q0, a1a2) · · · δ(q0, a1a2 · · · at).

By a theorem of Cobham ([9] or [1], Thm. 6.9.2), automatic sequences are (computably) closed under uniform
transductions, so we can compute a k-DFAO M ′ that computes the k-automatic sequence y := T (x). Then
x ∈ {r, s}∗ if and only if y contains infinitely many occurrences of states of F . This is first-order expressible,
and hence decidable.

Proposition 6.1. Let k ≥ 2 be an integer, let x be a k-automatic word, and let u be a primitive factor of x
with the property that Fac(uω) ⊆ Fac(x). Then there is a decision procedure that determines whether there is a
word v such that x ∈ {u, v}ω.

Proof. We recall that by Corollary 4.4 there is a finite set {w1, . . . , wr} of primitive factors of x that occur with
unbounded exponents, which we can explicitly determine. Then by assumption u ∈ {w1, . . . , wr}.

By Lemma 6.2, we may decide in the case that v = wj for some j and when |v| ≤ |u|.
Hence it suffices to deal with the case when v 6∈ {w1, . . . , wr} and |v| > |u|. Moreover, by removing a prefix

of x of the form ui, we may assume without loss of generality that u is not a prefix of x; and we may assume
without loss of generality that u is neither a prefix nor a suffix of v and that v is primitive.

Since v is a prefix of x and since there is a unique longest prefix of x that is in Fac(uω), we can decide
whether there exists v ∈ Fac(uω) such that x ∈ {u, v}ω.

Thus we may assume, in addition to the other assumptions given, that v is not a factor of uω. It follows from
Lemma 6.1 that there is a computable number L = L(x) such that if there exist p1, . . . , pL ≥ 0 with the property
that vup1vup2 · · · vupL is a prefix of x, then x ∈ {u, v}ω. By Proposition 4.5, it is decidable whether x has a
prefix of the form vup1vup2 · · · vupL for some v having the desired constraints and some choice of p1, . . . , pL,
and so we are done.

Proof of Theorem 1.1. We give the steps in the algorithm, which determines whether the rank of x is two. Since
the property of being periodic is decidable, we may assume that the rank of x is at least two. We note that if x
is of rank two, then there exist words u and v such that x ∈ {u, v}ω; then by picking such (u, v) with |u|+ |v|
minimal, we may assume without loss of generality that the assumptions from Notation 5.1 hold.

Step 1. Using Theorem 1.2, compute p = p(x) such that for every u with the property that up is a factor of
x we have Fac(uω) ⊆ Fac(x).

Step 2. By Corollary 4.4, there is a finite computable set of primitive words {w1, . . . , wr} such that Fac(wωi ) ⊆
Fac(x) for i = 1, . . . , r.

Step 3. Use the decision procedure from Proposition 6.1 to decide whether there exists a word u such that
x ∈ {wi, u}ω for some u and some i ∈ {1, . . . , r}. If such a u exists, the algorithm halts and returns that
x has rank two; if no such u exists, we go to the next step.

Step 4. It now suffices to decide whether there exist words u, v such that x is in {u, v}ω and the assumptions
of Notation 5.1 apply to u and v. By Step 3, we can also assume that u, v 6∈ {w1, . . . , wr}, where w1, . . . , wr
are as in Step 3. Thus up and vp are not factors of x. Then compute the integer D given in the statement
of Lemma 5.4.

Step 5. For each of the 2D binary words y of length D, use Proposition 4.6 to determine whether there exist
u and v such that y(u, v) is a prefix of x, where y(u, v) is the word in {u, v}∗, obtained by applying the
coding sending 0 to u and 1 to v, to the binary word y; if there is some binary word for which this holds
then x has rank two by Lemma 5.4 and we stop; if this does not hold for these words, then x has rank at
least three and we stop.
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