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SYNTHESIZING FUZZY TREE AUTOMATA

Somaye Moghari*

Abstract. Fuzzy tree automata are mathematical devices for modeling and analyzing vaguely defined
tree structures. The behavior of a fuzzy tree automaton generates a fuzzy tree language by mapping
a set of regular trees on a ranked alphabet to fuzzy membership values. It calculates the membership
grade of trees using a set of rules that process their structural characteristics. This paper deals with
constructing fuzzy tree automata models that their behavior satisfies a set of given logical propositions
(called properties) on the structure of trees. Our goal is uncertainty modeling by synthesizing fuzzy
tree automata whose behavior is described by fuzzy linguistic variables. In this regard, we first provide
several patterns and heuristic tricks and techniques for constructing fuzzy tree automata that satisfy
simple properties. Then, we develop a method for modeling complex propositional formulas based on
the conversion of a logical formula into a computation tree, as well as a step-by-step combination of
models.
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1. Introduction

Studies in the behavior of complex systems led to the development of various computational models. Different
types of modeling tools make available different kinds of analysis. One of the powerful computational models is
automaton [12, 20, 38] which is an abstract machine with a set of transition rules. The transition rules enable
automaton to move through a series of configurations. Each configuration is specified using a set of symbols
called states. Some states are called final states, and if the automaton enters these states after processing, the
input is accepted, and otherwise, it is rejected.

Modeling the uncertainty leads to the development of fuzzy automata [36] which is a class of automata with
fuzzy transition rules and fuzzy configurations. A fuzzy automaton calculates a fuzzy grade of acceptance for each
input term. As well, Fuzzy Tree Automata (FTA) [9, 13, 14, 31] deal with the logic of computation by processing
tree structures and calculating the grade of acceptance for each input tree based on its structural characteristics.
A Fuzzy Tree Language (FTL) is a fuzzy set of trees in which an FTA recognize them [4, 9, 32, 33, 36].

An FTA calculates the membership grade of trees to its language by a nonlinear mapping which is known as
the behavior of the automaton [31]. The analysis of the behavior of automata [3, 32, 33] involves the analysis of
states of automata and how these states change. On the other hand, modeling an FTL is the task of reasoning
states and transition rules of an FTA which accepts it. In this paper, we refer to this task as the synthesis of
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FTA. The modeling FTL could be expressed explicitly by formal terms [4] or implicitly by some specifications
[23, 47]. Here, we consider the languages expressed by implicit descriptions through logical propositions.

The process of realizing implementation from specification (constructing model from specified properties) is
a complicated task, especially when the properties are expressed vaguely and imprecisely. This paper provides
a series of practical techniques in the form of patterns that can be used in approximating an FTA to model an
FTL expressed by linguistic variables [49, 50]. Here, we deal with this problem in three main steps. The first
step is modeling atomic propositions, which are simple statements or assertions on trees. We provide several
patterns for modeling atomic propositions that are true or false (nonfuzzy atomic propositions), as well as
those that are not precisely defined and have a degree of truth (fuzzy atomic propositions). The second step
includes modeling the combination of two atomic propositions by logical connectives ∨, ∧, and ¬. In this step,
we improve the model by defining multi-indices states, refactoring transition rules, and developing final state
membership functions by logical connectives to show how combining two models can support the combination
of the corresponding properties. The final step is modeling a set of more complex properties that express an
FTL. To construct an FTA corresponding to all of these properties, we first organize them into an expression
tree [42] and then employ a bottom-up construction method.

The modeling patterns and techniques presented in this article are useful for modeling in three ways. First,
each pattern is related to a family of properties and can be used in similar modeling. Second, the proposed multi-
indexing techniques for FTA integration can generally be used for automata combinations. Third, a systematic
approach to the development of complex models is provided.

This paper is organized as follows. Section 2 addresses some of the works related to this research, and Section 3
includes the basic concepts about fuzzy sets, ranked alphabets, and FTA. The proposed methods and techniques
for modeling some patterns of FTL are presented in Section 4. Finally, Section 5 summarizes the achievements
of this research.

2. Related work

Usually, synthesis and analysis of systems by computational models is associated with uncertainty modeling,
and approximate reasoning [2, 10]. Fuzzy logic is capable of overcoming the vagueness, imprecision and absence
of concrete data for generating robust models to drive decisions from uncertainties [41].

Researchers in various fields have defined and developed different fuzzy models to perform computation and
analysis. Fuzzy automata are computational models that can describe practical processes [27]. Ying and Lin
in [46] have used fuzzy automata as the model of fuzzy discrete event systems and developed online learning
algorithms to adjust its parameters. They applied stochastic gradient descent for optimizing the transition
matrix. Also, Du and Zhu’s researches on the analysis of social networks by fuzzy automata led to defining
fuzzy relational structure and deducing knowledge by computing lower and upper approximations based on
bisimulation [8]. The bisimulation relation models equivalence between states of nondeterministic automata
[45]. The equivalence relation between states of an automaton is done to minimize the automaton, and the
equivalence relation between states of two automata is usually done for comparing their behaviors [13, 14, 32].

The challenge of modeling hybrid automata is addressed in [28]. Their idea is to construct the model by
processing the set of unlabeled data belonging to the language of the model. They clustered the data to obtain
language subclasses, each labeled with a state symbol, and then modeled the transition rules by searching for
binary classification boundaries. Soto et al. [40] focused on creating models from experimental data, as well. They
synthesized linear hybrid automata and developed an adaptive method for optimizing the model to minimize
the number of modes. Also, they developed another adaptive algorithm to optimize the model by increasing its
precision. There exist some other works on the training of hybrid automata by analysis of input/output traces
and machine learning techniques (see [25, 29]).

Cellular automata (CA) is a computational model for systems that changes occur at any point (cell) based on
the status or history of its neighboring points [6, 30]. A CA consists of a collection of cells arranged in a multi-
dimensional space and a dynamical rule (transition function) that updates their configuration synchronously.
The transition function calculates the state of each cell based on the state of its neighbors, where these simple
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local interactions and computations between cells, form a complex global behavior [30]. The set of transition
rules of a CA is a type of knowledge that Li and Yeh [26] applied data mining technique for reconstructing it.
They constructed a CA model for geographical phenomena by processing a series of spatial data, including the
layers of urban development, proximity variables, neighborhood conditions, and physical attributes. Also, He
et al. [18] used deep learning techniques to extract transition rules of CA and constructed a prediction model
of urban expansion pattern. They trained a convolution neural network using geographical data of the study
area. Roodposhti et al. [39] provided a dictionary of trusted rules (called DoTRules) to calculate transition
potential in CA models of land-use/cover change. DoTRules supports generating transparent transition rules
and quantifies uncertainty by estimating the frequency and entropy of major land-use transitions.

The works mentioned above can be categorized in the area of active learning of automata models [21] which
is inferring models from observations. This paper aims to provide some synthesis patterns for FTA models
corresponding to FTL that are not described by formal terms but fuzzy linguistic variables. Fuzzy linguistic
variables are powerful tools for the approximate characterization of concepts that are not well-defined to be
described in quantitative terms [22, 49, 50]. It can be used in fuzzy modeling of requirements to present a method
for fuzzy intelligent requirement engineering from natural language to computer-aided design models [11]. Also,
linguistic variables are employed to develop analytical tools for data mining and time series prediction [15]. Of
course, linguistic variables and fuzzy membership functions require systematic methods to define and evaluate
[37].

3. Preliminaries

3.1. Fuzzy sets

Basic concepts will be used as Zadeh’s fuzzy logic and fuzzy set theory [16, 48, 51]. Throughout the article,
we use ` as the unit interval [0, 1] ∈ R.

Definition 3.1. Let X be a collection of elements or objects. A fuzzy set A in X is a set of ordered pairs

A = {(x, µA (x)) | x ∈ X} ,

where µA (x) is called the membership function or grade of membership of x in A and (generally) lie in `. We

denote by X̃ the set of all fuzzy sets on X. Also, a fuzzy number refers to the fuzzy set representing the possible
values for a number.

3.2. Ranked alphabet and fuzzy tree Automata

Our definitions in this section, are borrowed from [7, 32, 33].
The set of natural numbers (including zero) is denoted by N. A Σ-alphabet is a finite and nonempty set

of symbols. A ranked alphabet is a couple (Σ, Arity), which is the disjoint union of sets of n-ary symbols
Σn = {σ | Arity(σ) = n} for all n ∈ N. The set of symbols of arity 0 are called constants.

Let Q be a set of constants called variables. The set TΣ(Q) of Σ− trees indexed by Q is inductively defined
to be the smallest set such that Q ⊆ TΣ(Q) and σ(t1, . . . , tn) ⊆ TΣ(Q) for every σ ∈ Σn and t1, . . . , tn ∈ TΣ(Q).
We write TΣ for TΣ(φ). The size and the height of a tree t ∈ TΣ(Q) denoted by S(t) and H(t) respectively, are
inductively defined by

– S(t) = 0 and H(t) = 0 for t ∈ Q,
– S(t) = 1 and H(t) = 1 for t ∈ Σ0,
– S(t) = 1 + S(t1) + . . . + S(tn) and H(t) = 1 + max{S(t1), . . . S(tn)} for n ≥ 1, t = σ(t1, . . . , tn) and
t1, . . . , tn ∈ TΣ(Q).

Definition 3.2. A fuzzy tree automaton is a system M = (Σ, Q,Γ, δ, `, ρ, β), where:

1. Σ is a finite set of ranked alphabets called input symbols.



4 S. MOGHARI

2. Q is a finite set of symbols called states.
3. Γ : Q→ ` is a fuzzy set on Q and called the set of final states.
4. δ = {δσ : Qn ×Q× Σn → ` | σ ∈ Σn, n ∈ N} is a finite set called transition rules.
5. ρ : TΣ(Q)×Q→ ` is called the run map of FTA M , and defined by induction on structure of t ∈ TΣ(Q):
(a) If t = σ ∈ Σ0, then ρ(t)(q) = δ(q, σ), for all q ∈ Q,
(b) If t = σ(t1, . . . , tn) for some σ ∈ Σn and t1, . . . , tn ∈ TΣ, then

ρ(t)(q) =
∨

q1,...,qn ∈Q

(
δ(q1, . . . , qn, q, σ) ∧

n∧
i=1

ρ(ti)(qi)

)
.

6. β : TΣ → ` is a fuzzy set on the set of trees t ∈ TΣ, called behavior of FTA M , and defined by:

β(t) =
∨
q∈Q

(
ρ(t)(q) ∧ Γ(q)

)
.

An FTA M = (Σ, Q,Γ, δ, `, ρ, β) accepts(recognizes) a tree t ∈ TΣ if and only if β(t) > 0. Also, the set of all
trees accepted by M is known as FTL L(M), where µL(M)(t) = β(t).

Example 3.3. Let FTA M = (Σ, Q,Γ, δ, `, ρ, β)be defined as follows.

– Σ = {a, f} ; a ∈ Σ0 , f ∈ Σ2.
– Q = {q1, q2}.
– Γ(q1) = 0.8 , Γ(q2) = 1.
– δ(q1, a) = 0.9 , δ(q1, q1, q1, f) = 0.5 , δ(q1, q2, q1, f) = 0.6 ,
δ(q2, a) = 0.6 , δ(q2, q1, q2, f) = 0.3 , δ(q2, q2, q2, f) = 0.4 .

Now, there exists two run maps for tree t1 = a:

ρ(t1)(q1) = δ(q1, a) = 0.9

ρ(t1)(q2) = δ(q2, a) = 0.6

Also, the behavior of FTA M on tree t1 = a is calculated by:

β(t1) =

(
ρ(t1)(q1) ∧ Γ(q1)

)
∨
(
ρ(t1)(q2) ∧ Γ(q2)

)
= 0.8 ∨ 0.6 = 0.8.

So, t1 blongs to FTL L(M) with membership degree 0.8.
As well, there exists two run maps for tree t2 = f(a, a):

ρ(t2)(q1) =

(
δ(q1, q1, q1, f) ∧ ρ(a)(q1) ∧ ρ(a)(q1)

)
∨(

δ(q1, q2, q1, f) ∧ ρ(a)(q1) ∧ ρ(a)(q2)

)
=
(

0.5 ∧ 0.9 ∧ 0.9
)
∨
(

0.6 ∧ 0.9 ∧ 0.6
)

= 0.6
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ρ(t2)(q2) =

(
δ(q2, q1, q2, f) ∧ ρ(a)(q2) ∧ ρ(a)(q1)

)
∨(

δ(q2, q2, q2, f) ∧ ρ(a)(q2) ∧ ρ(a)(q2)

)
=
(

0.3 ∧ 0.6 ∧ 0.9
)
∨
(

0.4 ∧ 0.6 ∧ 0.6
)

= 0.4

So, the behavior of FTA M on tree t2 = f(a, a) is calculated by:

β(t2) =

(
ρ(t2)(q1) ∧ Γ(q1)

)
∨
(
ρ(t2)(q2) ∧ Γ(q2)

)
= 0.6 ∨ 0.4 = 0.6.

Therefore, t2 blongs to FTL L(M) with membership degree 0.6.

4. Synthesizing FTA corresponding to a linguistically described
FTL

Let an FTL be described by a set of logical statements, some of which may be ambiguous. It is notable
that the logical statement is called property in general, and is called atomic proposition when it is simple and
uncomposed [5]. Our goal is to define an FTA that recognizes this language as accurately as possible. In this
regard, we have provided a number of patterns, each of which includes three main parts; a generic title, a
property (FTL) and the corresponding model (FTA). The patterns presented in this section are defined based
on some structural patterns on XML data [1, 17, 19, 24, 34, 35, 43, 44].

Throughout this section, the constructing FTA is M = (Σ, Q,Γ, δ, `, ρ, β) where the properties are defined on
Σ = {a, b, g, f}, a, b ∈ Σ0, g ∈ Σ1, f ∈ Σ2, and we have to define Q, Γ and δ to complete the model.

4.1. Modeling atomic propositions

An atomic proposition is a sentence that has a truth value and cannot be decomposed into simpler sentences.
In this section, we present some patterns of atomic propositions and the required tricks for modeling them by
FTA. The patterns include some fuzzy/nonfuzzy restrictions on height and size of trees, fuzzy/nonfuzzy symbol
counting, symbol detection, and tree structure pattern recognition.

Pattern 4.1. Threshold on the height of trees

Property: “The height of the tree is less than H”.

Model: Q = {q1, . . . , qH}, Γ(qH) = 0 and Γ(qh) = 1 for h < H.
δ(q1, a) = 1, δ(q1, b) = 1, δ(qi, qmin{i+1,H}, g) = 1 and
δ(qi, qj , qmin{max{i,j}+1,H}, f) = 1 for i, j ≤ H.

In Model 4.1, the processing of constant symbols results in state q1 and for nodes that have children, given
that i is the largest state index of the children, if i < H then processing will result in qi+1 and otherwise it will
be qH . The processing of each tree is bottom-up (from leaves to root), and whenever a node has no children or
all of its children have been processed, it can be processed. Here, qh represents the state of nodes at the root
of trees whose height is h. Of course, for trees whose height is greater than or equal to H the desired condition
is violated and for all of them we consider state qH with Γ(qH) = 0. Figure 1 shows an example of step-by-step
running of two different FTA derived from Model 4.1 to process the same tree structure. In Figure 1(a), states q1

to q4 are generated in steps 1 to 4, respectively, but in Figure 1(b), after entering state q2, the desired condition
is violated and no new states are generated at parent nodes and this state is repeated until the root of the tree.
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Figure 1. Steps of running two different FTA corresponding to Model 4.1 on tree
f(a, g(f(b, a))).

Pattern 4.2. Fuzzy threshold on the height of trees

Property: “The height of the tree is approximately H”.

Model: Let Ĥ is the fuzzy number denoting approximately H and U ∈ N is the smallest number
that for any x ∈ N it holds x ≥ U ⇒ µĤ(x) = 0.
Q = {q1, . . . , qU} and Γ(qh) is compatible with µĤ(h) for 1 ≤ h ≤ U .
δ(q1, a) = 1, δ(q1, b) = 1, δ(qi, qmin{i+1,U}, g) = 1 and
δ(qi, qj , qmin{max{i,j}+1,U}, f) = 1 for i, j ≤ U .

Model 4.2 is similar to Model 4.1 except the final states Γ. Here the value of approximately H is considered

as the fuzzy number Ĥ and state symbol qh is intended for the root of trees of height h. So, the membership
value Γ(qh) is set proportional to the membership value µĤ(h). For example, let H = 7 and M be an FTA

constructed based on Model 4.2, where “approximately 7” is defined by triangular fuzzy number 7̂ = T (3, 7, 11).
Now, for tree t = f(a, g(f(b, a))) shown in Figure 1, we have LM (t) = 0.25 because processing of t with FTA
M leads to state q4 and µ7̂(4) = 0.25.

Pattern 4.3. Threshold on the size of trees
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Figure 2. Steps of running two different FTA corresponding to Model 4.3 on tree
f(a, g(f(b, a))).

Property: “The size of the tree is greater than S”.

Model: Q = {q1, . . . , qS+1}, Γ(qS+1) = 1 and Γ(qi) = 0 for i ≤ S.
δ(q1, a) = 1, δ(q1, b) = 1, δ(qi, qmin{i,S}+1, g) = 1 and
δ(qi, qj , qmin{i+j,S}+1, f) = 1 for 1 ≤ i, j ≤ S + 1.

In Model 4.3, qi is the state symbol for the root of trees with size i, where i ≤ S. Also, for trees which their
sizes are greater than S the desired condition is reached and we consider state qS+1 with Γ(qS+1) = 1 for them.
Figure 2 shows an example of step by step running of two different FTA derived from Model 4.3 to process the
same tree structure. In Figure 2(a), S ≥ 5 which implies {q1, q2, . . . , q6} ⊆ Q. So, states q1, q3, q4 and q6 are
generated in steps 1 to 4, respectively. In Figure 2(b), Q = {q1, q2, q3} and after entering state q3, the desired
condition is satisfied and no new state is generated at parent nodes and this state is repeated until the root of
the tree.

Pattern 4.4. Constraint with iterative pattern on height
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Property: “The height of the tree is a multiple of M”.

Model: Q = {q0, . . . , qM−1}, Γ(q0) = 1 and Γ(qi) = 0 for i > 0.
δ(q1, a) = 1, δ(q1, b) = 1, δ(qi, q(i+1) mod M , g) = 1 and
δ(qi, qj , q(max{i,j}+1) mod M , f) = 1 for i, j < M .

In Model 4.4, indices of state symbols represent the remainder after division of the height of trees by M .
Since the trees are processed bottom-up, at each step, the index of reached states is increased by 1 until state
qM−1 is reached; then the index value is reset.

Pattern 4.5. Restriction that leads to a non-regular tree language

Property: “The size of the tree is a prime number”.

Model: The mapping between the size (or height) of trees and the set of prime numbers is not a
regular tree language and can not be recognized by an FTA (Example 1.2.2 in [7]).

According to the Pumping Lemma for recognizable tree languages [7] it can be shown that Model 4.5 is not
corresponding to a recognizable FTL. Understanding the patterns that lead to unrecognizable tree languages in
combination with the closure properties of recognizable tree languages enables us to deduce whether the language
is recognizable or not. Detecting the class of tree language of an atomic proposition is useful, especially when
we are modeling a language described by more complex properties, because it can prevent a large number of
calculations resulting from modeling and combining them. However, a modeling tool can have separate libraries
for patterns related to different language classes.

Pattern 4.6. Semi-atomic constraint with iterative pattern on the size of trees

Property: “The size of the tree is a multiple of M and N”.

Model: Let K is the least common multiple of M and N .
Q = {q0, . . . , qK−1}, Γ(q0) = 1 and Γ(qi) = 0 for i > 0.
δ(q1, a) = 1, δ(q1, b) = 1, δ(qi, q(i+1) mod K , g) = 1 and
δ(qi, qj , q(max{i,j}+1) mod K , f) = 1 for i, j < K.

The modeling property in Pattern 4.6 is not atomic because it can be broken down into properties “The size
of the tree is a multiple of M” and “The size of the tree is a multiple of N”. However, it is equivalent to the
atomic property “The size of the tree is a multiple of K” where K is the least common multiple of M and N .
So, we call it a “semi-atomic property”. Note that detecting and optimizing semi-atomic properties can reduce
modeling costs by reducing time complexity and memory requirements.

Pattern 4.7. Symbol detection

Property: “The tree has a node labeled g”.

Model: Q = {q0, q1}, Γ(q0) = 0 and Γ(q1) = 1.
δ(q0, a) = 1, δ(q0, b) = 1, δ(qi, q1, g) = 1 and δ(qi, qj , qmax{i,j}, f) = 1
for i, j ∈ {0, 1}.

In Pattern 4.7, two state symbols q0 and q1 indicate the absence and presence of the desired symbol in the
processing tree structure. Therefore, state symbol q0 is labeled on nodes until g ∈ Σ is scanned, and then, all
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remaining nodes will result in state q1. Note that the existence of one symbol can be extended to the existence
of multiple symbols, and the same pattern can be used for modeling.

Pattern 4.8. Symbol counting

Property: “The tree has at least M nodes labeled b”.

Model: Q = {q0, . . . , qM}, Γ(qM ) = 1 and Γ(qi) = 0 for 0 ≤ i < M .
δ(q0, a) = 1, δ(q1, b) = 1, δ(qi, qi, g) = 1 and
δ(qi, qj , qmin{i+j,M}, f) = 1 for i, j ≤M .

Pattern 4.8 is a generalization of Pattern 4.7 such that the desired symbol is counted, and if at least M
samples are met, the processing tree structure is accepted. It is clear that if M = 1, these two patterns are
equivalent. In other words, the symbol detection pattern is a special case of the symbol counting pattern, where
the threshold of counting symbols is 1. Note that counting one symbol can be extended to counting several
symbols simultaneously, and the same pattern can be used for modeling.

Pattern 4.9. Pattern recognition

Property: “The tree contains sub-structure t=f(b,f(g(-),a))”

Model: Q = {q1, . . . , q6}, Γ(q5) = 1 and Γ(qi) = 0 for i 6= 5.
δ(q1, a) = 1, δ(q2, b) = 1, δ(qk, q3, g) = 1, δ(q5, q5, g) = 1, δ(q3, q1, q4, f) = 1,
δ(q2, q4, q5, f) = 1, δ(qi, qj , q6, f) = 1, δ(qm, q5, q5, f) = 1 and δ(q5, qm, q5, f) = 1
for i, j, k 6= 5, (i, j) /∈ {(3, 1), (2, 4)} and m ≤ 6.

In Model 4.9, the input pattern has 5 nodes, and the FTA uses state symbols {q1, . . . , q5} for step by step
labeling of the input tree during the pattern recognition. Also, state symbol q6 is corresponding to situation
that a node violates all sub-structures of the pattern while pattern t is not met. Figure 3 shows the steps of
running the FTA derived from Model 4.9 on tree structure t = f(b, f(g(t′), a)) where t′ ∈ TΣ. Here, we used a
set of labels to describe the meaning of states:

– A : The current node is a.
– B : The current node is b.
– G : The current node is g and pattern t has not been found yet.
– F : The current pattern is f(g(−), a) and pattern t is not found yet.
– T : Pattern t is found.

According to Figure 3, if pattern t is found in the processed tree, the model remains in state q5, and the
processing continues in the same way until the root of the tree. Also, if pattern t is not found, it is detected
step by step according to all subtree decompositions.

Pattern 4.10. Comparing the number of symbols

Property: “The number of a and b is equal in all subtrees with root f”.

Model: Q = {q0, . . . , q3}, Γ(q3) = 0, Γ(qi) = 1 for i ≤ 2.
δ(q1, a) = 1, δ(q2, b) = 1, δ(q, q, g) = 1, δ(qi, qj , q0, f) = 1, δ(qm, qn, q3, f) = 1
for every q ∈ Q, (i, j) ∈ {(0, 0), (1, 2), (2, 1)} and (m,n) /∈ {(0, 0), (1, 2), (2, 1)}.

State symbol q3 in modeling part of Pattern 4.10 is a trap state; because if the condition is violated at a node,
it leads to q3 and this state symbol will be propagated to all parent nodes, and it causes the tree to be rejected.
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Figure 3. Steps of detecting pattern t = f(b, f(g(−), a)) by Model 4.9.

Figure 4. There is no FTA that can compare the number of a in subtree tL with the number
of b in subtree tR.

When the pattern of the processing tree is a, g(a) and g(g(. . . g(a))), it leads to q1 and for patterns b, g(b) and
g(g(. . . g(b))), it leads to q2. So, if a tree (subtree) leads to q1/q2, it has only one a/b, respectively. Consequently,
for each node f that its children are processed, there are only three acceptable cases f(q0, q0), f(q1, q2) and
f(q2, q1), which all leads to q0. Symbol state q0 means that the number of symbols a and b are equal in the
corresponding tree (subtree). Other cases (e.g., f(q0, q1), f(q0, q2) and f(q1, q1)) are not acceptable because
they are the result of trees (e.g., f(f(a, b), a), f(f(b, a), g(g(b))) and f(g(a), a)) that violate the condition.

The FTL presented in Pattern 4.10 is not expandable to support adding a new alphabet of rank 2 or more
into Σ. For example, if new symbol c ∈ Σ2 is added to Σ, the pattern will be a context free tree language and
can not be presented by a finite tree automaton (Fig. 4). Context free tree languages can be recognized by
pushdown tree automata [7].

Pattern 4.11. Special context-free symbol pattern
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Property: “The number of a and b is equal if the root of the tree is f”.

Model: This property could not be modeled with a finite FTA. Pushdown tree automata and tree
automata with infinite number of states are two classes of tree automata that can recognize it.

Proposition 4.12. Pattern 4.11 is not a recognizable tree language.

Proof. The corresponding tree language is
L = {gi(a) | i ≥ 0} ∪ {gi(b) | i ≥ 0} ∪ {f(t1, t2) | na(t1) + na(t2) = nb(t1) + nb(t2)}.
Suppose that L is recognizable by FTA M having k state symbols. Now, let t = f(t1, t2) with t1 =

f(f(. . . f︸ ︷︷ ︸
k+1

(a, a) . . . , a), a) and t2 = f(f(. . . f︸ ︷︷ ︸
k+1

(b, b) . . . , b), b). Since t ∈ L, there is a successful run of M on t.

As k is the cardinality of the state set of M , there are two distinct nodes f along t1 labeled with the same
state. Therefore, one could cut the first branch between these two positions leading to a tree t′ = f(t′1, t2) with
t′1 = f(f(. . . f︸ ︷︷ ︸

j

(a, a) . . . , a), a), where j < k + 1 and a successful run of M exists for t′. This is a contradiction

with L(M) = L.

Pattern 4.13. Fuzzy comparison of the symbols

Property: “The number of a and b is almost equal in all subtrees with root f”.

Model: Let Ẑ is a symmetric fuzzy number corresponding to “almost zero”, and L,R ∈ Z are bounds of Ẑ
such that for every x ∈ Z it holds µẐ(x) > 0⇔ x ∈ (L,R). Also, consider mapping γ : Z→ [L,R] defined by

γ(x) =


L x ≤ L
x L < x < R

R x ≥ R

Now, the corresponding model is:
Q = {qL, . . . , qR} and Γ(qi) = µẐ(i) for L ≤ i ≤ R.
δ(q1, a) = 1, δ(q−1, b) = 1, δ(qk, qk, g) = 1, δ(qi, qj , qγ(i+j), f) = 1,
δ(qL, qk, qL, f) = 1, δ(qk, qL, qL, f) = 1, δ(qk, qR, qR, f) = 1 and
δ(qR, qk, qR, f) = 1, where k ∈ [L,R] and i, j ∈ (L,R).

In the modeling presented in Pattern 4.13, for i ∈ (L,R), each state symbol qi specifies the state of the nodes
where the number of a’s minus the number of b’s in the corresponding subtree is i. Also, qL and qR are two trap
state symbols indicating that the condition is violated in the current subtree or at least one of its subtrees.

4.2. Modeling properties with logical connectives

In this section, we first provide three sample patterns that use multiple indexing of state symbols and more
advanced membership functions for final states to model the fuzzy properties that are the combination of some
atomic propositions by logical connectives ∨, ∧, and ¬. Then, we present a general method for combining
different FTA to model more complex properties.

Pattern 4.14. (Threshold on the size of trees) ∧ (Fuzzy threshold on the height of trees)
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Property: “The size of the tree is less than S and its height is about H”.

Model: Let Ĥ is the fuzzy number corresponding to the term about H, and U ∈ Z is the upper
bound of Ĥ such that for every x ∈ Z it holds x ≥ U ⇒ µĤ(x) = 0.
Q = {q(i,j) | 1 ≤ i ≤ S, 1 ≤ j ≤ U},
Γ(q(S,j)) = 0 and Γ(q(i,j)) = µĤ(j) for i < S and j ≤ U .
Note that this definition of final states is resulted from Γ(qi) ∧ Γ(qj) where Γ(qi) and Γ(qj) correspond to
atomic propositions threshold for size and fuzzy threshold for height, respectively.
δ(q(1,1), a) = 1, δ(q(1,1), b) = 1, δ(q(i,j), q(min{i+1,S},min{j+1,U}), g) = 1 and
δ(q(i,i′), q(j,j′), q(min{i+i′+1,S},min{max{i,j}+1,U}), f) = 1 for i, i′ ≤ S and
j, j′ ≤ U .

Pattern 4.15. (Threshold on the size of trees) ∨ (Fuzzy threshold on the height of trees)

Property: “The size of tree must be less than S or its height must be about H”.

Model: It is sufficient that the set of final states in the modeling of Pattern 4.14 be redefined as
follows
Γ(q(S,U)) = 0 and Γ(q(i,j)) = µĤ(j) for (i, j) 6= (S,U).
This definition of final states, is resulted from Γ(qi) ∨ Γ(qj) where Γ(qi) and Γ(qj) correspond to atomic
propositions threshold for size and fuzzy threshold for height, respectively.

The set of transition rules of modelings in Patterns 4.14 and 4.15 are the same, where both two FTA assign
the state symbol q(i,j) to each tree so that i presents its size (or violation of the related property) and j presents
its height (or violation of the related property).

Pattern 4.16. Fuzzy symbol counting pattern associated with ¬

Property: “The number of nodes labeled b in the tree is not significant”.

Model: Consider Ŝ is the fuzzy number corresponding to significant and U ∈ N is a natural number
that µŜ(i) = 1 for every i ≥ U .

Q = {q0, . . . , qU}, and Γ(qi) = µŜ(i) for i ≤ U .
δ(q0, a) = 1, δ(q1, b) = 1, δ(qi, qi, g) = 1 and
δ(qi, qj , qmain{i+j,U}, f) = 1 for i, j ≤ U .

In modeling of Pattern 4.16, each tree with i nodes labeled b will lead to state qi. Furthermore, Ŝ is a fuzzy
set that indicates significant numbers. So, Γ(qi) = µŜ(i) means that the fuzzy final states Γ interprets each state
symbol qi according to “significance of index i”.

Let P = {p1, . . . , pk} is a set of properties and AP = {ap1, . . . , apm} is the set of atomic propositions used
in P . Now, we intend to define an FTA M = (Σ, Q,Γ, δ, `, ρ, β) that meets all of the properties in P , which
means that β |= p1 ∧ . . . ∧ pk. In this regard, we prove that the modeling of the combination of properties can
be achieved by combining their models. Then, we provide an algorithm for combining the models M1, . . . ,Mm,
where L(M1) |= ap1, . . . , L(Mm) |= apm, to achieve the model M .

Theorem 4.17. Let M1 = (Σ, Q1,Γ1, δ1, `, ρ1, β1) and M2 = (Σ, Q2,Γ2, δ2, `, ρ2, β2) are two FTA that accept
fuzzy tree languages L(M1) and L(M2) corresponding to atomic propositions ap1 and ap2, respectively. Then,

I : There exists an FTA M3 = (Σ, Q3,Γ3, δ3, `, ρ3, β3) such that L(M3) is corresponding to ap1 ∧ ap2,
II : There exists an FTA M4 = (Σ, Q4,Γ4, δ4, `, ρ4, β4) such that L(M4) is corresponding to ap1 ∨ ap2,
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III : There exists an FTA M5 = (Σ, Q5,Γ5, δ5, `, ρ5, β5) such that L(M5) is corresponding to ¬ap1.

Proof. According to the theorem, L(M3) = L(M1) ∩ L(M2), L(M4) = L(M1) ∪ L(M2) and L(M5) = L(M1).
Since the class of fuzzy tree languages is closed under intersection, union and complement [4, 9], fuzzy tree
languages L(M3), L(M4) and L(M5) are recognizable and FTA M3, M4 and M5 are realizable. Now, we use
tricks of modeling presented in Pattern 4.14 for constructingM3. Also, we constructM4 with the assumption that
M1 and M2 are complete. Then, we construct M5 with the assumption that M1 is complete and deterministic
and the membership grade of all its transition rules is 1.

I : Q3 =
{
q(i,j) | qi ∈ Q1, qj ∈ Q2

}
, ∀q(i,j) ∈ Q3; Γ3(q(i,j)) = Γ1(qi)∧Γ2(qj) and ∀σ ∈ Σn;

(
δ1(q1, . . . , qn, qi, σ) =

x1, δ2(q1′ , . . . , qn′ , qj , σ) = x2

)
⇔ δ3(q(1,1′), . . . , q(n,n′), q(i,j), σ) = x1 ∧ x2.

This settings implies that

β3(t) =
∨

q(i,j)∈Q3

ρ3(t)(q(i,j)) ∧ Γ3(q(i,j))

=
∨

qi∈Q1
qj∈Q2

(
ρ1(t)(qi) ∧ ρ2(t)(qj)

)
∧
(

Γ1(qi) ∧ Γ2(qj)
)

=
∨

qi∈Q1
qj∈Q2

(
ρ1(t)(qi) ∧ Γ1(qi)

)
∧
(
ρ2(t)(qj) ∧ Γ2(qj)

)

=
∨

qi∈Q1

ρ1(t)(qi) ∧ Γ1(qi) ∧
∨

qj∈Q2

ρ2(t)(qj) ∧ Γ2(qj)

= β1(t) ∧ β2(t).

So, L(M3) = L(M1) ∩ L(M2).

II : Q4 =
{
q(i,j) | qi ∈ Q1, qj ∈ Q2

}
, ∀q(i,j) ∈ Q4; Γ4(q(i,j)) = Γ1(qi)∨Γ2(qj) and ∀σ ∈ Σn;

(
δ1(q1, . . . , qn, qi, σ) =

x1, δ2(q1′ , . . . , qn′ , qj , σ) = x2

)
⇔ δ3(q(1,1′), . . . , q(n,n′), q(i,j), σ) = x1 ∨ x2.

This settings implies that

β4(t) =
∨

q(i,j)∈Q4

ρ4(t)(q(i,j)) ∧ Γ4(q(i,j))

=
∨

qi∈Q1
qj∈Q2

(
ρ1(t)(qi) ∨ ρ2(t)(qj)

)
∧
(

Γ1(qi) ∨ Γ2(qj)
)

=
∨

qi∈Q1
qj∈Q2

(
ρ1(t)(qi) ∧ Γ1(qi)

)
∨
(
ρ2(t)(qj) ∧ Γ2(qj)

)

=
∨

qi∈Q1

ρ1(t)(qi) ∧ Γ1(qi) ∨
∨

qj∈Q2

ρ2(t)(qj) ∧ Γ2(qj)

= β1(t) ∨ β2(t).

So, L(M4) = L(M1) ∪ L(M2).
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III : Q5 = Q1, Γ5 = Γ1 and δ5 = δ1.
This settings implies that

β5(t) =
∨
q∈Q5

ρ5(t)(q) ∧ Γ5(q)

= ρ5(t)(q′) ∧ Γ5(q′) = 1 ∧ Γ5(q′) = Γ5(q′)

= Γ1(q′) = 1 ∧ Γ1(q′) = ρ1(t)(q′) ∧ Γ1(q′)

=
∨
q∈Q1

ρ1(t)(q) ∧ Γ1(q) = β1(t).

So, L(M5) = L(M1).

Corollary 4.18. Assume that AP is a set of atomic propositions such that each a ∈ AP is equivalent to a
recognizable FTL. Then, any property which is a combination of the atomic propositions by ∨, ∧, and ¬ can be
modeled by an FTA.

Proof. Assume that T is the binary expression tree of the modeling property, where its leaves are the atomic
propositions, and its inner nodes are logical operations ∨, ∧, and ¬. Algorithm 1 povides a systematic method for
modeling T . In lines 2 and 3, each a ∈ AP is modeled by FTA Ma, which means all leaves of T are modeled. Now,
using an iterative loop (lines 4 to 6), the algorithm models each node whose children are modeled (Thm. 4.17)
until all nodes of the tree are modeled. Clearly, the FTA corresponding to the root of T is the desired model of
the property.

Algorithm 1: The modeling of a cpmplex property by an FTA.

input : P // the input formula (a complex property)

output: M // the FTA model of the input formula

1 T ← expression tree(P ) // construct the expression tree

2 forall node ∈ T.leaves do // modeling the atomic propositions

3 node.model← modeling(node.property)

4 while T.root.model = ∅ do // bottom-up modeling of T

5 node← T.get next() // select a node that is not modeled but its children are

modeled

6 node.model← modeling(node.property) // construct the model

Corollary 4.19. Assume that there exist a set of properties, each one equivalent to a recognizable FTL. Then,
there exists an FTA satisfying all of these properties.

Proof. Let P = {p1, . . . , pn} is the set of modeling properties, where n ∈ N. Now, set Pall = p1 ∧ . . . ∧ pn and
construct its FTA by Corollary 4.18.
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5. Conclusion

In this paper, we aimed to model a family of fuzzy tree languages in which some features of trees are described
using linguistic variables. In this regard, we provided some heuristic tricks and techniques to employ fuzzy tree
automata for modeling vaguely defined sets of regular trees on a ranked alphabet. Also, a general method
of combining these models for constructing a synthetic fuzzy tree automaton is developed. This combination
is based on the multiple indexing of states and the generalization of transition rules of fuzzy tree automata.
It provides a systematic method for modeling a fuzzy tree language described by multiple properties. We also
introduced a set of modeling patterns that encodes some crisp and fuzzy atomic propositions (simple properties)
into fuzzy tree automata by defining the set of states, final states, and the set of transition rules of the desired
automata. These modelings include some patterns such as symbol existence /counting, sub-structure detecting,
the threshold on height and size, fuzzy numbers, as well as imprecision and vagueness handling, which are used
in the linguistical description of fuzzy tree languages. In addition, we provided some examples that use multiple
indexing of state symbols for combining the models, and then we proved that if two properties are satisfiable
by some fuzzy tree languages, their combination with logical modalities such as ∨, ∧, and ¬ can be modeled
by some fuzzy tree automata (Thm. 4.17). As a result of the theorem, every complex property or even a set of
properties can be organized into a binary expression tree to construct a fuzzy tree automaton model recognizing
the corresponding fuzzy tree language.
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