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A POLYNOMIAL TIME ALGORITHM FOR GEODETIC HULL
NUMBER FOR COMPLEMENTARY PRISMS*

ERikA M.M. CoeLHO!, HEBERT COELHO!, JULLIANO R. NASCIMENTO**
AND JAYME L. SZWARCFITER??

Abstract. Let G be a finite, simple, and undirected graph and let S C V(G). In the geodetic convexity,
S is conver if all vertices belonging to any shortest path between two vertices of S lie in S. The
convez hull H(S) of S is the smallest convex set containing S. The hull number h(G) is the minimum
cardinality of a set S C V(G) such that H(S) = V(G). The complementary prism GG of a graph G
arises from the disjoint union of the graph G' and G by adding the edges of a perfect matching between
the corresponding vertices of G and G. Previous works have determined h(GG) when both G and G
are connected and partially when G is disconnected. In this paper, we characterize convex sets in GG
and we present equalities and tight lower and upper bounds for h(GG). This fills a gap in the literature
and allows us to show that h(GG) can be determined in polynomial time, for any graph G.

Mathematics Subject Classification. 05C69, 05C76, 05C85.

Received August 3, 2021. Accepted January 4, 2022.

1. INTRODUCTION

In this paper we consider finite, simple, and undirected graphs. For a graph G with vertex set V(G), a graph
convezity on V(G) is a collection C of subsets of V(G) such that §, V(G) € C and C is closed under intersections.
The sets in C are called conver sets and the convexr hull H(S) of a set S C V(G) is the smallest set in C
containing S.

In recent decades, the concepts of graph convexity have received attention due their versatility for mod-
elling problems in contexts that requires some disseminating process, such as contamination [6], marketing
strategies [14], spread of opinion [17], and distributed computing [26].

In this paper, we are concerned with the convexity related to shortest paths in graphs, the geodetic convexity
C. Given a graph G, the closed interval I[u,v] of a pair u,v € V(G) consists of u,v, and all vertices lying in
any shortest path between u and v in G. For a set S C V(G), the closed interval I[S] is the union of all sets
Ifu,v] for u,v € S. If I[S] = S, then S is a convex set. If H(S) = V(G) we say that S is a (geodetic) hull set of
G. The cardinality h(G) of a minimum hull set of G is called the (geodetic) hull number of G.
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Given a graph G and an integer k, the problem of deciding whether h(G) < k is NP-complete for a general
graph G, even if G is bipartite [3], partial cube [2], chordal [5], or Py-free [16]. On the other hand, such a
parameter can be determined in polynomial time for unit interval graphs, cographs, split graphs [15], (¢,q — 4)-
graphs [3], {paw, Ps}-free graphs [4, 16], and distance-hereditary graphs [24]. Coelho et al. [12] provide additional
references concerning the hull number, also in other graph convexities.

Let G be a graph and G its complement. For a vertex v € V(G) we denote v € V(G) as its corresponding
vertez. For a set X C V(G), we call X = { € V(G) : 7 is corresponding to v € X} the corresponding set of
X in V(G). The complementary prism GG of G arises from the disjoint union of G' and its complement G by
adding the edges of a perfect matching joining corresponding vertices of G and G [23]. We say that a graph G
is autoconnected if both G and G are connected.

It is known that the hull number for complementary prisms GG can be determined in polynomial time in
the Ps-convexity [18]. In fact, such parameter is equal to ¢ + 1 when G has ¢t > 2 connected components [18]
and it is limited to 3 when G is autoconnected [7]. Related to the geodetic convexity, in 2018, a preliminary
work on the hull number for complementary prisms GG showed bounds when G is a tree, a disconnected graph
or a cograph [11]. Later, Castonguay et al. [9] study the hull number for complementary prisms GG providing
results for any autoconnected graph G.

A well-known subclass of autoconnected graphs is the class of selfcomplementary graphs, i.e., graphs that are
isomorphic to their complements [20]. Moreover, there is a series of papers by Akiyama and Harary surveying the
structure of graphs G such that both G’ and G possess some property. The first of them [1] exploit conditions to
a graph to be autoconnected. Furthermore, some graph parameters has been studied for autoconnected graphs
such as connected domination number [25] and Nordhaus-Gaddum problems for diameter, girth, circumference
and edge covering number [27].

A split graph G is one whose vertex set admits a partition V(G) = C' U I into a clique C' and an independent
set I. Particularly, when dealing with split graphs, Castonguay et al. [9] use the following definitions.

Definition 1.1 (Castonguay et al. [9]). Let G = (C U I, E) be a split graph. We define the component graph
G’ of G as

c(G")
G'=G\E@C) = | G

in which ¢(G’) denotes the number of connected components of G’.

Notice that in Definition 1.1, the graphs G;, for every i € {1,...,¢(G’)}, are the connected components of
G'.

Definition 1.2 (Castonguay et al. [9]). Let G = (C' U I, E) be a split autoconnected graph. We define the set
L(G;) of a component G; of G’ as

L(Gy) = V(Gy) U (V(Gi) N D),

for every i € {1,...,¢(G")}.

In this work, we show that Definition 1.2 can be easily adapted for disconnected split graphs. This allows us
to prove the equality for the case that was not completely settled by [11], which is the case G is a disconnected
graph with exactly one nontrivial component H. Particularly, the bounds presented in [11] for h(GG) in terms
of h(H) can be far from sharpness (see a comparison in Rem. 3.14). The bounds obtained in this paper are tight
and the equalities generalize those in [11].

Furthermore, we answer an open question left by [11] regarding the complexity of the hull number decision
problem for complementary prisms. By putting together the results presented in this paper and the ones by
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Castonguay et al. [9], we show how to determine the hull number of any complementary prism GG in O(n®)
time, for n = |V(GG)|.

This paper is organized in more three sections. In Section 2 we define the fundamental concepts. In Section 3
we present our results. We close with some further remarks in Section 4.

2. PRELIMINARIES

Let G be a graph. We denote by Ng(v)(Ng(U)) the open neighborhood of a vertex v € V(G) (aset U C V(G)),
and by N¢[v] the closed neighborhood of v € V(G). A clique of a graph G is a subset of pairwise adjacent vertices
in G. We say that v is a simplicial vertex of G if Ng[v] induces a clique. We denote by o(G) the set of all
simplicial vertices of a graph G. The set of positive integers {1,...,k} is denoted by [k].

We denote by dg(u,v) the distance between u,v € V(G), by diam(G) the diameter of a graph G and by
dega(u) the degree of a vertex u € V(G). A graph G is called connected if any two of its vertices are linked by
a path in G. Otherwise, G is called disconnected. A maximal connected subgraph of G is called a (connected)
component of G. A connected component G’ of a graph G is trivial, if |V (G’)| = 1, and nontrivial otherwise.

Two graphs G = (V, E) and G’ = (V', E’) are isomorphic if and only if there is a bijection ¢ : V' — V’ such
that wv € E if and only if p(u)p(v) € E’, for every u,v € V. We denote by G ~ G, if G and G’ are isomorphic,
and by G # G, otherwise.

Throughout this paper, if G is a split graph, we consider the partition of V(G) = C' U I such that C is a
maximum clique.

3. COMPUTING THE HULL NUMBER

We begin by enunciating three useful lemmas.
Lemma 3.1 (Everett and Seidman [19]). For every hull set S of a graph G, S contains o(G).

Lemma 3.2 (Dourado et al. [15]). Let G be a graph and S a proper and nonempty subset of V(G). If V(G)\ S
s convex then every hull set of G contains at least one vertex of S.

Lemma 3.3. Let GG be a complementary prism, for some graph G. If u € 0(G) and @ € o(G), then every hull
set S of GG intersects {u,u}.

Proof. Suppose, by contradiction, that there exists a hull set S of GG such that S N {u,u} = (.

Since S is a hull set of GG, we have that u,u € H(S). Let u € I[x,y], for x,y € V(G) \ {u}. Since u is
simplicial in G, we have that any (x,y)-path P which passes through u contain w,w’ € Ng(u). Since u € o(G),
ww’ € E(G), then P is not a shortest path, a contradiction. Similarly, it is possible to show that @ ¢ I[Z, 7], for
every 7,7 € V(GQ) \ {ti}. Then, we assume that u,u € I[x,7], for z € V(G) \ {u} and 7 € V(G) \ {u}.

By definition of complementary prism, for every x,y € V(GG) \ {u,u}, a (z,y)-path P containing u,u has
length at least 3. Clearly, since dz(z,y) = 2, P is not a shortest path, a contradiction. O

An alternative proof of Lemma 3.3 appears in [11].

Clearly, Lemma 3.3 provides a lower bound for h(GG) that is the number of simplicial vertices u € V(G)
such that its corresponding vertex @ is simplicial in G. Before we discuss our lower and upper bounds, we show
two auxiliary propositions.

Proposition 3.4 (Castonguay et al. [9]). Let G be a graph, S C V(GG), and vy ... vy, be a path in G, for k > 2.
If {v1,7a,...,0x} C H(S), then v, € H(S).

Proposition 3.5. Let G be a graph and uxyv an induced Py in G. If u,v C H(S), then {u,z,y,v,4,Z, 5,0} C
H(S).
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Proof. By definition of complementary prism and by hypothesis, respectively, uvv and uzyv are shortest paths
between u and v. Then w, z,y,v,u, v € I[u,v]. Since uy,ve ¢ E(G), we have that 4y, vz € E(G). Consequently
T € I[z,7], ¥ € 1]y, 1], and the conclusion follows. O

Similarly as done in [9] for autoconnected graphs G, our results are divided considering G a split graph or
not. But here we are concerned with disconnected graphs G. Since either G or G is connected, we assume from
now that G is a disconnected graph.

3.1. Nonsplit graphs

We show in this section our results for nonsplit disconnected graphs.
Theorem 3.6. Let G be a nonsplit graph with t > 2 connected components. Then t +1 < h(GG) <t + 2.

Proof. Let G be a nonsplit graph with connected components G, ..., Gy, for some t > 2, and S a hull set of GG.
Since G is disconnected, then, for every pair @, v € V(G), d;z(t,v) < 2. This implies that, for every shortest
(@,v)-path P, PNV (G) = 0. Thus, if SNV(G;) =0, for some i € [t], then H(S) NV (G;) = 0, which implies
that h(GG) > t. We show that h(GG) >t + 1.

Let S be a hull set of GG such that [SNV(G;)| = 1, for every i € [t]. Since G % K, there exists i € [t] such
that |[V(G;)| > 2. It is clear that H(S) = SUS, then S is not a hull set of GG. Hence, h(GG) >t + 1.

For the upper bound, we show hull sets of GG of order t + 1 and t + 2. Since G is a nonsplit graph, we
consider that G has a Cy4,Cs or a 2K5 as an induced subgraph [21].

For every i € [t], we denote V(G;) = {vi,... ’UliV(G,;)\}' Let F € {C4,C5,2K3} be an induced subgraph of
G. Tt is clear that, if F € {Cy4,Cs}, then F C G, for some i € [t]. Otherwise, F' ~ 2K, implies two cases,
either FF C G; or (V(F)NV(G;) # 0 and V(F) NV (G;) # 0), for some 4,5 € [t|. Thus, w.l.o.g., we assume
that FF C G1 U G, and we distinguish two cases: FF C Gy and (V(F)NV(G1) # 0 and V(F) NV (Gs) # 0).
Let z,y,z € V(F) such that zy € E(F) and yz ¢ E(F). We define S; = {x,y,2,v7,...,v}} for the former and
Sy = {z,y,2z =v?,v3,... vt} for the latter. Notice that |S;| =t +2 and | S| = t + 1. We show that S € {5, S2}
is a hull set of GG, by proving first that V/(F) UV (F) C H(S).

Since, @, % lie in a shortest (u, v})-path, for every v € S\ {vt}, we have that S C I[S]. If V(F) = {x,y, z, w}
induces a Cy (resp. {z,y,z, w1, w2} induces a C5) in G, then w € I[{z,y,z}] (resp. wi,ws € I[{z,y,z}]).
Consequently, w € Ifw,v}] (resp. w1, ws € I[{wy,ws,v}]). Otherwise, if V(F) = {z,y,2,w} induces a 2K>
in G, let wz € E(F). Recall that wz,wy ¢ E(F), then @ € I[z,gy]. This implies that w € I[w,z]. Hence
V(F)UV(F)C H(S).

Since 7,7 € H(S)NV(G1), and 5 ¢ E(G), we have that | J!_, V(G;) C Iz, 7]. Next, we show that V(G;) C
H(S). If F ~2K,, as defined w, 2z € V(G3) it is clear that V(G;) C I[w, z]. Otherw1se F CGy,welet AUB
be a partition of V(G1) \ V(F), defined as follows.

Let A={a € V(G1)\V(F):3v,v" € Np(a) with vv’ ¢ E(F)} and B =V(Gy) \ (V(F)U A). Trivially, it
follows from the definition that A C I[V(F)]. Consequently A C I[A U {v!}]. Remains to show that BU B C
H(S).

By definitions of B and F, every b € B is such that Ng(b) induces a Ks, K1 or Np(b) = ).
there exist two non-adjacent vertices @, % € N(b). Then b € I[u, '] and consequently B C H(S). Since Gy is
connected and V(Gy) N H(S) # 0, Proposition 3.4 implies that B C H(S). Hence V(GG) C H(S). Recall that
t+1<|S| <t+2, as desired. O

This implies that

We remark that the bounds t + 1 < h(GG) < t + 2 of Theorem 3.6 are tight. For instance, if G has at
least two non-trivial components, then h(GG) =t + 1; and if G has exactly one non-trivial component Gy
that is a butterfly graph (i.e., V(G1) = {v1,...,v5}, and E(G1) = {v1v2,v304} U{v;v5 : 1 <4 < 4}), we have
h(GG) =t + 2. See examples of graphs satisfylng those three bounds on Figure 1. The black vertices represent
a hull set of each complementary prism.
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_ G G
G G

(a) h(GG) =t+1=5. (b) h(GG) =t +2=5.

FI1GURE 1. Graphs for the bounds of Theorem 3.6.

3.2. Split graphs

We show in this section our results for split disconnected graphs. For a graph G it is known that GG is
isomporphic to GG. Then, the next result implies the the hull number for complementary prisms of complete
graphs.

Proposition 3.7. Let G be a split graph with t > 2 connected components. If G ~ K, then h(GG) = t.

Proof. Since V(G) = o(GG), Lemma 3.1 implies that h(GG) > t. Clearly, I[V(G)] = H(V(G)) = V(GG) and
the conclusion follows. O

Let G be a disconnected split graph, such that G % K,. Since G is a split graph, we know that 2K, is not
an induced subgraph of GG. Then, we assume in this section that G has exactly one nontrivial component and
at least one trivial component.

We proceed similarly as done in the work by Castonguay et al. [9] using the following definition and auxiliary
result to characterize some convex sets in complementary prisms. For the next, recall Definition 1.1 which
expresses how to obtain the component graph.

Definition 3.8. Let G = (C U I, E) be a split disconnected graph with exactly one nontrivial component H.
We define the set L(H;) of a component H; of H' as

L(HZ) = V(HZ) U (V(ﬁl) M C),

for every i € [c¢(H")].

Lemma 3.9. Let G = (CULE) be a split disconnected graph with ezactly one nontrivial component H. It
holds that V(GG) \ L(H;) is convez in GG, for every i € [c(H')].

Proof. Let G be a split disconnected graph obtained from the disjoint union of a nontrivial split connected
graph H and a graph U =~ tK;. Let i € [c(H')]. To show that V(GG)\ L(H;) is convex in GG, we show
that Ifu,v] N L(H;) = 0, for every u,v € V(GG) \ L(H;). We divide the proof in four cases, considering the
possibilities of u,v € V(UU) and u,v € V(HH):

(1) u,veV({U)orueV({U),veV(H)\ L(H,);

) uwe V(G)\ L(H;),v € V(G)\ L(H);

(2
(3) u,v € V(G) \ L(H,);
(4) u,v e V(H).

Trivially, if uv € E(GG), then I[u,v] = {u,v}. Given that u,v ¢ L(H;), clearly I[u,v] = {u,v} N L(H;) = 0.
So, we assume that uv ¢ E(GG).
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Case 1. Let u,v € V(U) or u € V(U) and v € V(H) \ L(H;).

Since uuvv is the only shortest path between u and v, we have that [ [ ,v] = {u,v,u,v}. Notice that w €

U,
V(H;)NC if and only if w € V(H;) N C. Then, glventhatuvgéV( )NC, (V(H;)N 6)0][&1}]:@.

Case 2. Let u € V(G) \ L(H;) and v € V(G) \ L(H;

Notice that I[u,v] = {u,v}, if v =@, or I[u,v] = {u v, U}, otherwise. Since u ¢ L(H;), then @ ¢ L(H;), which
implies that {u,v,u} N L(H;) = 0.

Case 3. Let 4,0 € V(G) \ L(H;).

Since uv ¢ E(G), we have that @,v € V(H) and Ng(u) N Ng(v) C I[u, v]. We show that (Ng(@) N Ng(v)) N
(V(H)NC) = 0.

Let w € V(H;) N C. Recall that H is split and uv € E(H), then [{u,v} N C| > 1. Since w € C, we have that
@ is not adjacent to both @ and o, then w ¢ I[a,v]. Consequently, (Nz(@) N Ng(v)) N (V(H;)NC) =0 and
Iu,v] N L(H;) = 0.

Case 4. Let u,v € V(H).

First, if dg(u,v) = 2, then Iu,v] = Ng(u) N Ng(v). We show that (Ng(u) N Ng(v)) NV (H;) = 0. By
contradiction, suppose that there exists w € (Ng(u) N Ng(v)) NV (H;). We know that w € C' and w has a
neighbor = € {u,v} such that € I. Since w € V(H;) N C, by Definition 3.8, we have that = € V(H;), a
contradiction.

Now, consider dg(u,v) = 3. Then I[u,v] = {u,v, 4,5} U (Ng(u) U Ng(v)). Since u,v € I and u,v ¢ L(H;),
we know that {@, v} N L(H;) = 0. Finally, with a similar argument to the one presented in previous paragraph,
we conclude that (Ng(u) U Ng(v)) NV (H;) = 0. O

Lemma 3.9 provides a lower bound for h(GG), presented in Theorem 3.10.

Theorem 3.10. Let G be a split graph with exactly one nontrivial component H and ¢t > 1 trivial components.
Then h(GG) > ¢(H') 4 t.

Proof. By Lemma 3.9, V(GG) \ L(H;), for every i € [¢(G")], is a convex set. Thus, Lemma 3.2 implies that every
hull set of GG must contain at least one vertex from L(H;), for every i € [¢(G')]. Since V(H;) NV (H;) =0, for
all i, € [e(G")], i # j, each vertex v € V(H) intersects exactly one L(H;). This implies that h(GG) > ¢(G’).
We know that each vertex u € V(G) \ V(H) is simplicial in GG. Then Lemma 3.1 implies that a hull
set of GG contains u, for every u € V(G) \ V(H). Since (V(G)\ V(H))NV(H) = (), this yields the bound
h(GG) > c(H') + t. O

For the upper bounds, we present next our results. For a split graph H, we let ¢, (H') and ¢,(H') denote,
respectively, the number of nontrivial and trivial components of its component graph H'.

Theorem 3.11. Let G = (CUI,E) be a split graph with exactly one nontrivial component H and t > 1 trivial
components. If max{ca(H'),ct(H")} > 2, then h(GG) < ¢(H') + t.

Proof. Let G be a split disconnected graph obtained from the disjoint union of a nontrivial split connected graph
H and a graph U ~ tK;, with V(U) = {u1,...,ut}. Let I3y = {i € [e(H")] : |V (H;)| = 1}, Tt = [e(H')] \ T, and
S={v; e V(H;)NC :j €T }U{v; € V(Hk)ﬂl k € I} UV(U). Notice that | S| = |T¢| + |Tnt| +t = ¢(H') + .
We show that H(S) = V(GG).

Firstly, since 4; and ; lie in a shortest (u;,v;)-path, for every i € [t], j € [¢(H')], we have that S C I[S].
Next, we show that I C H(S), considering either |Jn| > 2 or |J¢| > 2, separately.

If |Tne| > 2, we let 4,5 € Tne, @ # j. Since v;xyv; induces a Py in H, for every o € Ng(v;),y € Nu(v;), by
applying Proposition 3.5 we have that Ng[{v;,v;}] U Ng[{v;,v;}] € H(S). Since Ng[v;] N (V(Hg)NI) =0, for
every k € Jn \ {7}, we have that V(Hy) NI C I[Ng[v;]]. Similarly, since Ng[v;] N (V(H,) NI) =0, for every
0 € TJn \ {j}, we have that V(Hy) N I C I[Ng[v;]]. So, it follows that I C H(S).
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Otherwise, if [Jne| = 0, then H ~ K,y and trivially I[S] = V(GG). So, we assume that |Jn| = 1, which
implies, by hypothesis, |J;| > 2. W.lo.g. let T = {1} and J; = {2,...,¢(H’)}. Since vizvs is a shortest (v1, v2)-
path, for every x € Ny(vi), we have that Ny (vi) C I[v1,vs]. Recall that |J:] > 2 and v2,03 € H(S). Then
I=V(H,)NICI[vg,v3] C H(S).

Remains to show that Ny[w] C H(S), for every w € I\ {v; : i € Jnc} and C € H(S).

Claim 1. For every w € I\ {v; : i € Jne}, Nylw] C H(S).

Let i € Jo and © € Ny (v;). We use induction on dgy/(w,z), for w € I\ {v;}, to show that Ngy[w] C
Let dg/(w,z) = 1. Since w lies in a shortest (x, w)-path, we have w € Iz, w]. Consequently, Ng(w) C I|
for j & [e(H))\ {i}.

Now, let dy/(w,x) = k. By induction hypothesis, Ng[w'] C H(S), for w’ € T\ {v;} such that dy (v, z) =
k — 2. So, there exists &’ € Ngy(w') (and then dg/(2’',2) = k — 1) such that 2’ € Ngy(w). Thus, w lies in a
shortest («/, w)-path and w € I[z’,w]. Finally, Ny (w) C Iw,v;], for j € [c(H")] \ {3}

H(S).
w, v;],

By Claim 1, we conclude that V(H;) € H(S), for every i € Jn;. This implies that C' C I[C U {u;}], which
completes the proof. O

Corollary 3.12 follows immediately from Theorems 3.10 and 3.11.

Corollary 3.12. Let G = (CUI, E) be a split graph with exactly one nontrivial component H and t > 1 trivial
components. If max{cy(H'),c.(H')} > 2, then h(GG) = c(H') + t.

Now, let max{cn(H'),ct(H')} < 1. The case ¢;(H') =1 and ¢ (H') = 0 (resp. ¢i(H') = 0 and ¢t (H') = 0)
is not under consideration, since H ~ K; (resp. V(H) = 0)) implies that G has only trivial components. So, we
consider ¢i(H') = e¢ne(H') =1 or ¢i(H') =0 and ¢t (H') = 1.

Theorem 3.13. Let G = (CUI, E) be a split graph with exactly one nontrivial component H and t > 1 trivial
components. Let d = max{degy(v):v €I} and D ={v € I : degu(y) = d}. If max{en(H'),c:(H')} < 1, then

WGT) = |ID|+t+1,ifd=|C| - 1; (3.1)
N t+ 2, otherwise. (3.2)

Proof. Let G be a split disconnected graph obtained from the disjoint union of a nontrivial split connected
graph H and a graph U ~ tK;, with V(U) = {uq, ..., u}.

(1) Let d = |C| — 1. Recall that we consider a partition V(G) = C' U1, in which C is a maximum clique of
G. Then ¢,(H') = 0 and ¢, (H') = 1 is not considered, since d = |C| — 1 implies that C' U {y} is a maximum
clique in H, for some y € D. So, consider ¢;(H') = ¢o(H') = 1. Let H; and H,: be the trivial and the nontrivial
components of H', respectively, and V(H;) = {x}.

Suppose that d = |C| — 1, i.e., Ng(D) = C \ {x}. We show that, for every y € D, y € 0(G) and § € o(G).
Recall that ¢;(H') = e(H') = 1. Since Nylz] = C, it is clear that z € o(G). Also, © ¢ Ny (I) implies that
T € Ny(I). Since Ng(Z) = Ny (I) UV (U), which is a clique, it follows that € o(G). Further, since Ng(y) =
C\ {z}, for every y € D, we have that Ng(y) = Ng(z). This implies that y € 0(G) and § € o(G), by similar
argumentation presented for x.

Let S be a hull set of GG. We know that V(U) = o(G) and, for every v € DU {z}, v € ¢(G) and v € o(G).
Then, Lemma 3.1 implies that V(U) C S and Lemma 3.3 implies that S N {v,v} # (). This yields the bound
h(GG) > |V(U)| + |[Du{z}| = |D|+t+1. Let S=V(U)UD U {z}. Since S C I[S], C C I[D U {z}], and
C C I[C U {u1}], we conclude that V(GG) = H(S) and h(GG) < |D| +t+ 1.

(2) Let d < |C| -2 and y € D. First, notice that h(GG) >t + 2 is clear, since H(S) = SUS # V(GG),
when S contains exactly one vertex from each connected component of G. So, we prove that h(GG) < t + 2.
If co(H') = ee(H') = 1, let Hy and H, be the trivial and the nontrivial components of H’, respectively, and
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FIGURE 2. Example of graph GG for Case 2 of Theorem 3.13.

V (H,) = {z}. Otherwise, let x € C'\ Ny (y). We show that S = {z,y} UV (U) is a hull set of GG. See in Figure 2
an example of graph GG with ¢;(H') = 0, where z = vg, y = v3, and V(U) = {uy }.

Trivially, we have that S C I[S], Ny (y) C I[z,y], and Ny (y) C I[Nu(y) U {u1}].

For every w € I'\ D, since degy(w) < degp(y), there exists ' € Ny (y) \ Ny (w). Consequently, @ lies in a
shortest (&', §)-path, then w € I[z’,g] and I \ D C H(S). Since H,; is connected, there is a path between w and
a vertex in Ny (y) C H(S), for every w € I\ D. Then, by similar argumentation to Claim 1 of Theorem 3.11,
we conclude that Ny [I'\ D] C H(S). Consequently Ny [I\ D] C I[Ng[I\ D]U {v1}].

Consider first C'\ {z} C Ny ((I\ D)U{y})). By hypothesis, d < |C| — 2, then there exists z, 2’ € CU{z} such
that z, 2" ¢ N(y'), for every y' € D. Then, §’ € Iz, Z']. Since Hy is connected, there exists z” € Ny (y') C H(S),
then y € I[2”,§']. Hence H(S) = V(GG).

Now, consider C'\ {z} € Ng((I\ D) U {y})). Let v € C'\ {z} such that v ¢ Ny((I \ D) U {y})). Observe
that we do not know yet whether v € H(S). Since Hy is connected, ¢;(H') < 1 and v # z, we have that
Nu(v)N(D\{y}) # 0. Let y' € Ng(v) N (D \ {y}). Since degn (y') = degu(y) = d and v € Nu(y') \ Nu(y), we
have that [Ny (y) NNy (y')| < d—1. Then, there exists z € Ny (y) \ Ng(y’). This implies that §’ € I[g, Z]. Again,
since Hy is connected, there is a path between 3’ and a vertex in Ny ((I'\ D)U {y}) C H(S). Consequently
Nly'] € H(S) and finally H(S) = V(GG). O

Remark 3.14. Let G = (CUI, E) be a split graph with exactly one nontrivial component H and ¢ > 1 trivial
components. In our preliminary work [11], we show that if diam(H) < 3, then h(GG) < h(H) + t, which is not
tight. Let, for instance, H be the graph arising from a path Py : v1vs...vk, for some odd k > 5, by adding
vv; € E(H), for all even i,j € {1,...,k}. Theorem 3.5 in [11] establish that h(GG) < h(H) +t = [5] +¢
whereas h(GG) =t + 2 (Case 2 of Thm. 3.13). See an example of graph G with k = 7 in Figure 2. A hull set
of GG is represented by the vertices in black. It is easy to see that h(H) +t = |{v1,v3,v5,v7}| +1 =5 and
hGG) = 3.

3.3. Further results

We end Section 3 with some further corollaries. We remark that the recognition of complementary prisms
can be done in O(n®) time [8]. So, for GG, input graph for Corollary 3.15, we may assume that G is known.
In addition, for a graph G with n vertices and m edges and a set S C V(G), computing H(S) can be done in
O(nm) time [15]. Clearly, given that |V (GG)| = n, we know that |E(GG)| = w + 4 = % + 2 =0(n?).
Then, for S C V(GG), H(S) can be computed in O(n?) time.

Corollary 3.15. Given a complementary prism GG, for some graph G, one can compute the geodetic hull
number of GG in O(n®) time.
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Proof. Let GG be a complementary prism, for some graph G, |V (GG)| = n, and |E(GG)| = m = ©(n?). First,
consider that G is a nonsplit graph. We remark that recognizing a split graph can be done in linear time [22]. We
have that 2 < h(GG) < 3 [9], if G and G are both connected, or t + 1 < h(GG) < t + 2 (Thm. 3.6), otherwise.
In the former, it is obvious that, by choosing every 2-element and 3-element subset of V(GG is possible to find
a minimum hull set of GG in time ((3) + (3)) - O(n®) = O(n").

For the latter, we need to compute ¢qt(G) and ¢:(G). By performing a depth first search (DFS) we can find
the connected components of G to compute their orders, spending O(|V (G)| + |E(G)|) = O(% + (%)?) = O(n?)
time. If c,t(G) > 2, then in O(1) we return h(GG) =t + 1 (Thm. 3.6). Otherwise, as we know that c(G) = 1
and ¢;(G) > 1, we let S formed by the vertices of every trivial component of G and for the nontrivial component
H, we choose every 2-element and 3-element subset of V(H). With this, it is possible to find a minimum hull
set of GG in time ((IV{DN) + (VIDN)) . 0(n?) = O(n®) - O(n?) = O(nf).

Now, let G be a split graph. First, we discuss on computing component graphs. We consider the partition of
V(G) = CUI such that C' is a maximum clique. Such a partition can be found in linear time [10]. As done in [9],
and also in this paper, we need to compute the component graph G’ of G, or H' of the nontrivial component H
of G. So, let F' € {G’, H'}. We obtain the component graph F’ by simply removing the edges between vertices
in C, which runs in O(|C|?) = O(n?) time. Then, computing c(F"), cot(F'), and c;(F’) run in O(n?) time. The
values ¢(F"), ¢t (F"), and ¢ (F") are required for the next steps.

Consider that G and G are connected. Castonguay et al. [9] show that if max{cne(G’), ce(G"), cnt(G ), ce(G)} >
2, then h(GG) = max{c(G),c(G)} and 2 < h(GG) < 3, otherwise. Clearly, computing if some value in
{ent(G"), et (G), cnt (él), ct(é/)} is greater than 2 and computing the maximum between ¢(G’) and c(é/) can be
done in linear time. Furthermore, again by choosing every 2-element and 3-element subset of V (GG), is possible
to find a minimum hull set of GG in O(n®) time.

Now, let G be a disconnected graph with one nontrivial component H and ¢ > 1 trivial components. Such
components of H' and t can be found in O(n?). By Corollary 3.12, h(GG) = c¢(H') + t if max{cn(H'), ce(H')} >
2. Such a condition can be checked in O(cyi(H') 4 ci(H')) = O(n) time. Otherwise, h(GG) = |D| +t + 1, if
d=|C|—1or h(GG) =t+2,ifd < |C| -1 (recall Thm. 3.13). So, we need to compute d = max{degy (v) : v € I}
and D = {v € I : degy(y) = d}, which can be obtained in O(n) by the degree sequence of G [22]. For the rest,
checking whether d = |C| — 1 runs in constant time.

It is easy to observe that the overall running time for determining h(GG), for any graph G, is of order O(n®)
and the conclusion holds. O

Next, we have the following Corollary 3.16 on h(GG) when G is a tree. It has been first proved by [11], and
here we leave an alternative proof. A star S, is the complete bipartite graph K ,,.

Corollary 3.16. [11] Let T be a tree on n vertices. It holds that h(TT) = n if T is a star, or h(TT) = 2,
otherwise.

Proof. If T is a star, we have that T ~ K; UK,,_1. Since ¢;(K,,_1) = n — 1, Corollary 3.12 implies that h(TT) =
n. Otherwise, we have that n > 4 and both T'and T are connected. If T is split, cq(T") = 2, then Corollary 3.16
of [9] implies that h(TT) = 2. If T is not split, then 2K is an induced subgraph of T' and the result h(TT) = 2
holds by Theorem 3.8 of [9]. O

A cograph is a graph with no induced Pj. Since a nontrivial cograph G is connected if and only if G is
disconnected [13], we can update Theorem 3.9 of [11] to obtain the following.

Corollary 3.17. Let G be a connected cograph. Then:

ci(G), if cnr(G) = 0;
< WGG) < D] + (@) + 1, if en(G) = 1;
o(G) + 1, if cne(G) > 2.

(i) h(GG)
(ii) c(G) +
(iii) h(GG)

o Il
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Proof. The proof of (i), (ii) and (iii) follows, respectively, by Proposition 3.7, Theorem 3.13, and Theorem 3.6.

O

4. CONCLUDING REMARKS

Whereas computing the hull number in geodetic convextiy is NP-hard for arbitrary graphs, we have shown
that the problem is polynomial time solvable for complementary prisms. In such a class of graphs, determining
the parameter is also polynomial time solvable in Ps-convexity [18]. This raises the possibility of finding other
graph convexities in which hull number is hard for general graphs, but can be computed in polynomial time
when restricted to complementary prisms.
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