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COMPLEXITY ISSUES OF PERFECT SECURE DOMINATION

IN GRAPHS

P. Chakradhar1,* and P. Venkata Subba Reddy2

Abstract. Let G = (V, E) be a simple, undirected and connected graph. A dominating set S is
called a secure dominating set if for each u ∈ V \ S, there exists v ∈ S such that (u, v) ∈ E and
(S \ {v}) ∪ {u} is a dominating set of G. If further the vertex v ∈ S is unique, then S is called a
perfect secure dominating set (PSDS). The perfect secure domination number γps(G) is the minimum
cardinality of a perfect secure dominating set of G. Given a graph G and a positive integer k, the
perfect secure domination (PSDOM) problem is to check whether G has a PSDS of size at most k.
In this paper, we prove that PSDOM problem is NP-complete for split graphs, star convex bipartite
graphs, comb convex bipartite graphs, planar graphs and dually chordal graphs. We propose a linear
time algorithm to solve the PSDOM problem in caterpillar trees and also show that this problem is
linear time solvable for bounded tree-width graphs and threshold graphs, a subclass of split graphs.
Finally, we show that the domination and perfect secure domination problems are not equivalent in
computational complexity aspects.
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1. Introduction

Throughout this paper all graphs G = (V,E) should be finite, simple (i.e., without self-loops and multiple
edges), undirected and connected with vertex set V and edge set E. The open neighbourhood of v in G is NG(v)
= {u ∈ V |(u, v) ∈ E(G)} and the closed neighbourhood of v is defined as NG[v] = NG(v) ∪ {v}. The degree
deg(v) of a vertex v is |NG(v)|. An induced subgraph is a graph formed from a subset D of vertices of G and all
of the edges in G connecting pairs of vertices in that subset, denoted by 〈D〉. A clique is a subset of vertices of G
such that every two distinct vertices in the subset are adjacent. An independent set is a set of vertices in which
no two vertices are adjacent. A vertex v of G is said to be a pendant vertex if deg(v) = 1. A vertex v is called
support vertex if it is adjacent to at least one pendant vertex. A vertex v is called isolated vertex if deg(v) = 0.
An edge of G is said to be a pendant edge if one of its vertices is a pendant vertex. A graph is planar if it can
be drawn on the plane such that no two edges cross each other. A star is a tree on n vertices with one vertex
having degree n− 1 and the other n− 1 vertices having degree 1. A Comb is a tree obtained by joining a single
pendant edge to each vertex of a path. A split graph is a graph in which vertex set can be partitioned into an
independent set and a clique. A vertex u ∈ NG[v] is a maximum neighbour of v in G if NG[w] ⊆ NG[u] holds
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for each w ∈ NG[v]. A vertex ordering v1, v2, . . . , vn is a maximum neighbourhood ordering if for each i < n, vi
has a maximum neighbour in 〈{vi, vi+1, . . . , vn}〉. A graph is dually chordal if it has a maximum neighbourhood
ordering. A bipartite graph G = (X,Y,E) is called tree convex if there exists a tree T = (X,F ) such that, for
each y in Y , the neighbours of y induce a subtree in T . When T is a star (comb), G is called star (comb) convex
bipartite graph [10]. For undefined terminology and notations refer to [18].

A vertex v in G dominates the vertices of its closed neighborhood. A set of vertices S ⊆ V is a dominating
set (DS) of G if for every vertex u ∈ V \ S, there exists at least one vertex v ∈ S such that (u, v) ∈ E, i.e.,
NG[S] = V . A vertex u ∈ V \ S is said to be undominated if NG(u)∩ S = ∅. The concept of perfect domination
(PD) has been introduced by P.M. Weichsel et al. in [17]. A dominating set S of G is called a perfect dominating
set (PDS) of G if every vertex in V \ S is adjacent to exactly one vertex in S.

The concept of secure domination has been introduced by E.J. Cockayne et al. in [2] and is studied, for
example, in [2, 12, 13]. A set of vertices S ⊆ V is a secure dominating set (SDS) of G, if S is a dominating set
of G and for each u ∈ V \ S, there exists v ∈ S such that (u, v) ∈ E and (S \ {v}) ∪ {u} is a dominating set of
G. In this case, we say that u is S-defended by v or v S-defends u.

The concept of perfect secure domination has been introduced by Rashmi et al. in [16]. A set S ⊆ V is
said to be a perfect secure dominating set (PSDS) of G, if S is a dominating set of G and for every vertex
u ∈ V \ S, there exists a unique vertex v ∈ S such that (u, v) ∈ E and (S \ {v}) ∪ {u} is a dominating set in
G. In this case, we say that u is perfectly secure dominated by v or v perfectly secure dominates u.
In other words S is not a PSDS of G if any vertex in V \ S is S-defended by more than one vertex in S. The
minimum cardinality of a DS, PDS, SDS and PSDS respectively are called domination number γ(G), perfect
domination number γp(G), secure domination number γs(G) and perfect secure domination number γps(G) of
G. The MINIMUM PERFECT SECURE DOMINATING SET (MPSDS) problem is to find a perfect secure
dominating set of minimum cardinality. The computational complexity of perfect secure domination problem
has not been studied in the liturature.

The following results are proved in [16].

Theorem 1.1. ([16]) For any path Pn with n ≥ 2, we have γps(Pn) = d 3n7 e.

Theorem 1.2. ([16]) For any cycle Cn with n ≥ 4,

γps(Cn) =

{
d 3n7 e+ 1, if n ≡ 2(mod 7)

d 3n7 e, otherwise

Theorem 1.3. ([16]) For the complete bipartite graph G = Kr,s with r ≤ s we have,

γps(G) =


s, if r = 1

2, if r = s = 2

r + s, otherwise
The following observation regarding perfect secure dominating set of a graph will be used throughout this paper.

Observation 1.4. If Q is a support vertices set and S is a minimum PSDS of G with S ∩Q 6= Q then there
exists a minimim PSDS S′ of G with |S′| = |S| such that S′ ∩Q = Q.

Proof. Let S be a minimum PSDS of G such that which does not contain a support vertex. Let u be a pendant
vertex and v be a support vertex in graph G such that (u, v) ∈ E. Clearly, for the domination property has to
be satisfied either u ∈ S or v ∈ S. If v /∈ S then u ∈ S i.e., v is S-defended by only u. From all such pairs, we
can define a minimum PSDS S′ such that S′ = (S \ {u}) ∪ {v}.

2. Complexity results

In this section, we show that the perfect secure domination problem remains NP-complete even when
restricted to split, star convex bipartite, comb convex bipartite, planar and dually chordal graphs.
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Figure 1. Construction of a split graph from an instance of X3C.

The decision version of perfect secure domination problem is defined as follows.
Perfect Secure Domination (PSDOM)
INSTANCE : A simple, undirected graph G and a positive integer q.
QUESTION : Does G have a perfect secure dominating set of size at most q?

2.1. Perfect secure domination in split, star convex and comb convex bipartite graphs

To show that the PSDOM for split, star convex bipartite and comb convex bipartite graphs is NP-complete,
we use a well known NP-complete problem, called Exact Cover by 3-Sets (X3C) [6], which is defined as follows.
Exact Cover by 3 Sets (X3C)
INSTANCE : A finite set X with |X| = 3k and a collection C of 3-element subsets of X.
QUESTION : Is there a subcollection C ′ of C such that every element of X appears in exactly one member
of C ′?

A variant of X3C in which each element appears in at least two subsets has also been proved as NP-complete
[7]. Through out this subsection, we use this variant of X3C problem.

Theorem 2.1. PSDOM is NP-complete for split graphs.

Proof. Given a split graph G, a positive integer p and an arbitrary set S ⊆ V , we can check in polynomial time
whether S is a PSDS of G of size at most p. Hence PSDOM is in NP.

Let X = {x1, x2, . . ., x3k} and C = {c1, c2, . . ., ct} be an arbitrary instance of X3C, where |X| = 3k, |C| = t
and t ≥ 2k. We now construct an instance of PSDOM for split graph from the given instance of X3C as follows.
Construct a graph G(V, E) by creating vertices xi for each xi ∈ X, ci and c′i for each ci ∈ C. Add edges
(ci, c

′
i) for each ci ∈ C, (cj , xi) if xi ∈ cj and (ci, cj) ∀ci, cj ∈ C where i 6= j. Let A = {ci : 1 ≤ i ≤ t} and

B = {xi : 1 ≤ i ≤ 3k} ∪ {c′i : 1 ≤ i ≤ t}. It is clear by construction that the graph shown in Figure 1 is a split
graph since B forms an independent set and A forms a clique. Clearly |V | = 2t+ 3k and |E| = 4t+

(
t
2

)
. Next

we show that, X3C has a solution if and only if G has PSDS of size at most k + t.
Suppose C ′ is a solution for X3C with |C ′| = k. Then S = {ci, c′i : ci ∈ C ′} ∪ {ci : ci /∈ C ′}. Clearly |S|

≤ k + t. From the solution of X3C, it follows that S dominates all xi’s and each c′i /∈ S is dominated by ci.
Hence, S is a dominating set and it is a SDS since each xi ∈ X is S-defended by cj where (xi, cj) ∈ E and
(cj , c

′
j) ∈ S, each c′i /∈ S is S-defended by ci. It is also PSDS since each element in V \S is S-defended by exactly

one element of S.
Conversely, suppose that S is a PSDS of G such that |S| ≤ k+ t. From Observation 1.4, we can assume that

S ∩ C = C. We have the following lemma.

Lemma 2.2. |S ∩X| = 0.
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Figure 2. (a) Star Graph. (b) Construction of a star convex bipartite graph from an instance
of X3C.

Proof. (Proof by contradiction) Let |S ∩X| = m. Remaining 3k−m vertices of X need at least d 3k−m3 e number
of c’s to S-defend them. But these c’s can not S-defend their corresponding c′’s. Hence that many c′’s must also
be part of S then |S| > t+ k, a contradiction. Therefore |S ∩X| = 0.

Therefore C ′ = {ci : ci, c
′
i ∈ S} is a solution for X3C, where |C ′| = k.

Since split graphs form a proper subclass of chordal graphs, the following corollary is immediate from
Theorem 2.1.

Corollary 2.3. PSDOM is NP-complete for chordal graphs.

Theorem 2.4. PSDOM is NP-complete for star convex bipartite graphs.

Proof. Clearly, PSDOM is a member of NP. Let X = {x1, x2, . . ., x3k} and C = {c1, c2, . . . , ct} be an arbitrary
instance of X3C, where |X| = 3k, |C| = t and t ≥ 2k. We now construct an instance of PSDOM for star convex
bipartite graph from the given instance of X3C as follows. Construct a graph G(V, E) by creating vertices xi
for each xi ∈ X, ci for each ci ∈ C and also create vertices a, b, c, d and e. Add edges (xi, a) for each xi ∈ X,
(a, b), (a, c), (a, d) and (d, e). Next add edges (ci, c), (ci, d) for each ci ∈ C and (cj , xi) if xi ∈ cj . Assume
A = {a, e} ∪ {ci : 1 ≤ i ≤ t}, B = {xi : 1 ≤ i ≤ 3k} ∪ {b, c, d}. The set A induces an independent set, but can
be associated with a star with vertex a as central vertex and the neighbors of each element in B induce a subtree
of star. Therefore G is a star convex bipartite graph and can be constructed from the given instance of X3C in
polynomial time. The graph constructed and its associated star is shown in Figure 2. Next we show that, X3C
has a solution if and only if G has PSDS of size at most k + 3.

Suppose C ′ is a solution for X3C with |C ′| = k. Then S = {ci : ci ∈ C ′} ∪ {a, c, d}. Clearly |S| ≤ k + 3.
Clearly, S is a dominating set and it is a SDS since each xi ∈ X is S-defended by cj where (xi, cj) ∈ E, each
ci /∈ S is S-defended by c, e is S-defended by d and b is S-defended by a. It is also PSDS since each element in
V \ S is S-defended by exactly one element of S.

Conversely, suppose that S is a PSDS of G such that |S| ≤ k + 3 and we have the following lemmas.

Lemma 2.5. |S ∩ {a, b}| = 1.

Proof. (Proof by contradiction) Assume S is a PSDS with |S| ≤ k + 3 and |S ∩ {a, b}| = 2. If c ∈ S then there
exist at least three vertices of X which can not be S-defended. Otherwise, there exist t− k vertices of C which
can not be S-defended, a contradiction. Therefore S ∩ {a, b} = 1.

Lemma 2.6. |S ∩ {d, e}| = 1.

Proof. The proof is obtained with the similar arguments as in Lemma 2.5.
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Figure 3. (a) Comb Graph. (b) Construction of a comb convex bipartite graph from an instance
of X3C.

From Observation 1.4, we can assume that a, d ∈ S. It is clear that c ∈ S since d can not S-defend the
elements of C.

Lemma 2.7. |S ∩X| = 0.

Proof. The proof is same as in Lemma 2.2.

Therefore C ′ = {ci : ci ∈ S} is a solution for X3C, where |C ′| = k.

Theorem 2.8. PSDOM is NP-complete for comb convex bipartite graphs.

Proof. Clearly, PSDOM is a member of NP. Let X = {x1, x2, . . ., x3k} and C = {c1, c2, . . ., ct} be an arbitrary
instance of X3C, where |X| = 3k, |C| = t and t ≥ 2k. We now construct an instance of PSDOM for comb
convex bipartite graph from the given instance of X3C as follows. Construct a graph G(V, E) by creating
vertices xi for each xi ∈ X, ci, c

′
i, c
′′
i and c′′′i for each ci ∈ C. Create four more vertices ca, c′a, c′′a and cb if t

is odd. Add edges (ci, c
′′′
i ), (c′i, c

′′
i ) for each ci ∈ C and (cj , xi) if xi ∈ cj . Next add edges by joining each c′j to

every xi and also add (c′i, c
′′
j ), (c′′i , c′j), where 1 ≤ i < t, i mod 2 = 1 and j = i+ 1. If t is odd then add edges

(c′a, c
′′
t ), (c′a, c

′′
a), (c′a, cb), (c′′a, c

′
t), (c′′a, ca) and (ca, cb).

Assume A = {ci, c′i : 1 ≤ i ≤ t} ∪ {ca, c′a}, B = V \ A. The set A induces a comb with elements {c′i : 1 ≤
i ≤ t} ∪ {c′a} as backbone and {ci : 1 ≤ i ≤ t} ∪ {ca} as teeth and the neighbors of each element in B induce
a subtree of the comb. Therefore G is a comb convex bipartite graph and can be constructed from the given
instance of X3C in polynomial time. The graph constructed and its associated comb is shown in Figure 3. Next
we show that, X3C has a solution if and only if G has PSDS of size at most 2t+ k + 2(t− 2b t2c).

Suppose C ′ is a solution for X3C with |C ′| = k. Then S = {ci : ci ∈ C ′}∪{c′′′i : 1 ≤ i ≤ t}∪{c′i, c′′i : 1 ≤ i ≤ t,
i mod 2 = 1} ∪ {ca}. Clearly, |S| ≤ 2t + k + 2(t − 2b t2c). Clearly, S is a dominating set and it is a SDS since
each xi ∈ X is S-defended by cj where (xi, cj) ∈ E, each ci ∈ C \ S is S-defended by c′′′i , each c′j ∈ A \ S is
S-defended by c′′j−1, if j = 0 mod 2, each c′′i ∈ B \ S is S-defended by c′i−1 and if t is odd then c′a is S-defended
by c′′t , c′′a is S-defended by c′t and cb is S-defended by ca. The set S is also PSDS since each element in V \ S is
S-defended by exactly one element of S.

Conversely, suppose that S is a PSDS of G such that |S| ≤ 2t+ k + 2(t− 2b t2c). From Observation 1.4, each
ci ∈ S. These make at least t vertices. Let Si = {c′i, c′′i−1, c′i−1, c′′i } where 1 ≤ i ≤ t and i mod 2 = 0. Clearly,
each 〈Si〉 is a cycle graph C4. If S contains more than two vertices from a C4 then each xi is S-defended by more
than one vertex of the C4. By Theorem 1.2, S contains atleast two vertices from each C4. If t is odd then by
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contradiction it can be easily verified that |S ∩ {c′t, c′′t , c′a, c′′a, ca, cb}| = 3. The total are at least 2t+ 2(t− 2b t2c)
vertices and the following lemmas holds.

Lemma 2.9. |S ∩X| = 0.

Proof. The proof is same as in Lemma 2.2.

Therefore C ′ = {ci : ci ∈ S, c′′i ∈ S} is a solution for X3C, where |C ′| = k.

The following result is immediate from Theorems 2.4 and 2.8.

Theorem 2.10. PSDOM is NP-complete for bipartite graphs.

2.2. Perfect secure domination in planar graphs

To show that the PSDOM is NP-complete for planar graphs, we use a well known NP-complete problem,
called Planar Exact Cover by 3-Sets (Planar X3C) [14], which is defined as follows.
Planar Exact Cover by 3 Sets (Planar X3C)
INSTANCE : A finite set X with |X| = 3k and a collection C of 3-element subsets of X such that (i) every
element of X occurs in at most three subsets and such that (ii) the induced graph is planar. (This induced
graph H is formed by creating vertices xi for each xi ∈ X, ci for each ci ∈ C and by adding edges (cj , xi) if
xi ∈ cj .)
QUESTION : Is there a subcollection C ′ of C such that every element of X appears in exactly one member
of C ′?

Theorem 2.11. PSDOM is NP-complete for planar graphs.

Proof. The proof is same as in Theorem 2.1, in which the vertices of C does not form a clique.

2.3. Perfect secure domination in dually chordal graphs

To prove the NP-completeness of the PSDOM for dually chordal graphs, we consider the following perfect
domination decision problem which has been proved as NP-complete [3].

Perfect Domination (PDOM)
INSTANCE : A simple, undirected graph G and a positive integer p.
QUESTION : Does G have a perfect dominating set of size at most p?

Theorem 2.12. PSDOM is NP-complete for dually chordal graphs.

Proof. Clearly, PSDOM is a member of NP. We now construct an instance of PSDOM for dually chordal
graph from the given instance of PDOM as follows. Given an instance G = (V,E) of PDOM, where V =
{v1, v2, . . . , vn}, we construct an instance G′ = (V ′, E′) of PSDOM such that V ′ = V ∪ {x1, x2, x3} and E′ =
E ∪ {(vi, x1) : 1 ≤ i ≤ n} ∪ {(x1, x2), (x1, x3), (x2, x3)}. Since G′ admits a maximum neighbourhood ordering
{v1, v2, . . . , vn, x1, x2, x3}, it is a dually chordal graph and the construction of G′ can be accomplished in
polynomial time.

Next we show that G has a perfect dominating set of size at most k if and only if G′ has a PSDS of size
k + 1. Suppose D be a perfect dominating set in G of size at most k. Then the set D ∪ {x1} is a PSDS of G′ of
size at most k + 1 since x1 cannot S-defend the vertices of V (G).

On the other hand, let S be a PSDS of G′ with |S| ≤ k + 1. We have the following lemma.

Lemma 2.13. S ∩ {x1, x2, x3} = {x1}.

Proof. (Proof by contradiction) Let S ∩ {x1, x2, x3} 6= {x1}. The following cases are possible.
Case 1 : If |S ∩ {x1, x2, x3}| = 3 then |S \ {x1, x2, x3}| ≤ k − 2 and clearly, S is not a PSDS.
Case 2 : If |S ∩ {x1, x2, x3}| = 2 then S is not a PSDS of G′ since the xi /∈ S is S-defended by more than one



COMPLEXITY ISSUES OF PERFECT SECURE DOMINATION IN GRAPHS 7

element of S.
Case 3 : If S ∩ {x1, x2, x3} = {x2} or S ∩ {x1, x2, x3} = {x3} then S is not a PSDS of G′ since x1 would be
S-defended by more than one vertex.
Therefore, our assumption leads to contradiction. Hence the lemma.

Therefore, S ∩ V is a perfect dominating set of G of size at most k.

3. Caterpillar tree

A caterpillar is a tree with the property that the removal of its pendant vertices and incident edges results
in a path, which we call the central path. In this section we propose a linear algorithm to compute perfect
secure domination number of a caterpillar graph. Let P be the set of pendant vertices and Q be the set of
support vertices. Let Np(u) = {v : (u, v) ∈ T and v ∈ P} be the pendant neighbors of a support vertex u. Also
let Np[u] = Np(u) ∩ {u}. Our algorithm is given in Algorithm 1.

Lemma 3.1. Let T be a caterpillar with support vertex set Q and a pendant vertex set P . Also let T ′ = T \Q
be a forest with k trees labelled T1, T2, . . . , Tk. If R is an arbitrary PSDS of T such that R ∩Q = Q, then

|R| ≥
∑

u∈Q |Np(u)|+
∑k

i=1 γps(Ti).

Proof. For each support vertex u ∈ Q, G[Np(u)] is a complete bipartite graph. Hence, from Theorem 1.3
and Observation 1.4, it is clear that u ∈ R and |R ∩ Np[u]| ≥ |Np[u]|. Clearly, no vertex in the set V (T ′) =
V (T ) \ ∪u∈QNp[u] is securely dominated by the vertices of ∪u∈QNp[u]. From the fact that each component of

T ′ is a path and γps(G) ≥ γs(G), it also follows that |R| ≥
∑k

i=1 γps(Ti). Since the sets ∪u∈QNp[u] and V (T ′)
are mutually-disjoint the result follows.

Algorithm 1 Perfect secure domination number of a caterpillar.

Input: A caterpillar G(V,E).
Output: Perfect secure domination number of G.

1: if G ≈ Pn then
2: return d 3n7 e.
3: else
4: Let S = ∅.
5: for each vertex u ∈ Q do
6: Let S′ = |NG(u) ∩ P | − 1 size subset of NG(u) ∩ P .
7: S = S ∪ S′ ∪ {u}.
8: Let graph G′(V ′, E′) = 〈V \ (P ∪Q)〉.
9: Let R = {v : v ∈ V ′, |NG′(v)| = 0}.

10: for each component with k (≥ 2) number of vertices in the graph G′ do
11: select d 3k7 e vertices as in Theorem 1.1 and include into the set S.
12: S = S ∪R.
13: Return |S|.

Correctness of the Algorithm 1 : It is easy to verify that, the vertices selected in steps 5 to 7 perfectly secure
dominate all the vertices in

∑
u∈QN

p[u] and the vertices selected in steps 9 to 11 perfectly secure dominate the
remaining vertices of T i.e., V (T ) \ ∪u∈QNp[u]. Hence the set S returned in step 12 of Algorithm 1 is a PSDS
of T . From Lemma 3.1, it also follows that |S| = γps(T ) i.e., S is a minimum PSDS of T .

4. Threshold graphs

Threshold graphs have been studied with the following definition [11].
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Definition 4.1. A graph G = (V,E) is called a threshold graph if there is a real number T and a real number
w(v) for every v ∈ V such that a set S ⊆ V is independent if and only if

∑
v∈S w(S) ≤ T .

Although several characterizations defined for threshold graphs, we use the following characterization of
threshold graphs given in [11] in solving the PSDOM problem.

A graph G is a threshold graph if and only if it is a split graph and, for split partition (C, I) of V where
C is a clique and I is an independent set, there is an ordering {c1, c2, . . . , cn} of vertices of C such that
NG[c1] ⊆ NG[c2] ⊆ NG[c3] ⊆ . . . ⊆ NG[cn], and there is an ordering {i1, i2, . . . , im} of the vertices of I such that
NG(i1) ⊇ NG(i2) ⊇ NG(i3) ⊇ . . . ⊇ NG(im). Let T = NG(cn) ∩ I \NG(cn−1) ∩ I, P = {cn, cn−1} and T ′ is a
subset of T of size |T | − 1.

Theorem 4.2. Let G(V,E) be a threshold graph with split partition (C, I). Then

γps(G) =


p, if G ∼= K1,p

|P ∪ T ′|, if n > 1,m ≥ 1 and NG[cn] 6= NG[cn−1]

|V |, otherwise

Proof. If G ∼= K1 then γps(G) = 1. Otherwise, let S be a minimum PSDS of G. If |C| = 1 i.e., the graph G is
in the form K1,p then, by Observation 1.4 and Theorem 1.3, S contains p vertices of G. The following lemmas
are used to complete the proof when |C| > 1.

Lemma 4.3. If NG[cn] 6= NG[cn−1] then S = P ∪ T ′.

Proof. (Proof by contradiction) Assume NG[cn] 6= NG[cn−1] and S 6= P ∪ T ′, where T ′ is |T | − 1 size subset of
T . We have the following cases :
Case 1 : If |S ∩ P | = 0 then each element of P is S-defended by all the elements of S.
Case 2 : If |S ∩ P | = 1 then the following cases are possible
Case 2.1 : If S ∩ P = {cn−1} then clearly S is not a dominating set since the vertex in (NG(cn) ∩ I) \ S is not
dominated by any element in S.
Case 2.2 : If S ∩ P = {cn} then S is not a PSDS since each vertex in NG(cn−1) ∩ I and cn−1 can not be
S-defended.
Case 3 : If S does not contain |T |− 1 elements from T then (S \ {xn}) ∪ {ia}, where ia ∈ T makes all vertices
in (T \ {ia}) \ S undominated.
Case 4 : If S ∩ T = T then S is not a PSDS since both cn and cn−1 S-defends all the vertices of G.
Our assumption leads to contradiction. Hence the lemma.

Lemma 4.4. If NG[cn] = NG[cn−1] then S = V .

Proof. (Proof by contradiction) Assume NG[cn] = NG[cn−1] and S 6= V i.e., |S| < n+m. The following cases
are possible:
Case 1 : If |S ∩ P | 6= 2 then the same condition holds as in first two cases of Lemma 4.3.
Case 2 : If |S ∩ P | = 2 then each element in V \ S is S-defended by both the elements of P .
Our assumption leads to contradiction. Hence |S| ≥ n+m. Therefore |S| = n+m.

If the threshold graph G is disconnected with k connected components G1, G2, . . . , Gk then it is easy to
verify that γps(G) =

∑k
i=1 γps(Gi). Now, the following result is immediate from Theorem 4.2.

Theorem 4.5. PSDOM problem can be solvable in linear time for threshold graphs.

Proof. Since the split partition can be obtained in linear time [11], the result follows.
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5. Bounded tree-width graphs

Let G be a graph, T be a tree and v be a family of vertex sets Vt ⊆ V (G) indexed by the vertices t
of T . The pair (T, v ) is called a tree-decomposition of G if it satisfies the following three conditions: (i)
V (G) =

⋃
t∈V (T ) Vt, (ii) for every edge e ∈ E(G) there exists a t ∈ V (T ) such that both ends of e lie in Vt, (iii)

Vt1 ∩ Vt3 ⊆ Vt2 whenever t1, t2, t3 ∈ V (T ) and t2 is on the path in T from t1 to t3. The width of (T, v ) is the
number max{|Vt| − 1 : t ∈ T}, and the tree-width tw(G) of G is the minimum width of any tree-decomposition
of G. By Courcelle’s Thoerem, it is well known that every graph problem that can be described by counting
monadic second-order logic (CMSOL) can be solved in linear-time in graphs of bounded tree-width, given a tree
decomposition as input [4]. We show that PSDOM problem can be expressed in CMSOL.

Theorem 5.1 (Courcelle’s Theorem). ([4]) Let P be a graph property expressible in CMSOL and k be a constant.
Then, for any graph G of tree-width at most k, it can be checked in linear-time whether G has property P .

Theorem 5.2. Given a graph G and a positive integer k, PSDOM can be expressed in CMSOL.

Proof. First, we present the CMSOL formula which expresses that the graph G has a dominating set S of size
at most k.

Dominating(S) = (∀p)((∃q)(q ∈ S ∧ adj(p, q))) ∨ (p ∈ S),

where adj(p, q) is the binary adjacency relation which holds if and only if, p, q are two adjacent vertices of G.
Dominating(S) ensures that for every vertex p ∈ V , either p ∈ S or p is adjacent to a vertex in S and the
cardinality of S is at most k.
Now, by using the above CMSOL formula we can express PSDOM in CMSOL formula as follows.

PSDOM(S) = (|S| ≤ k) ∧ Dominating(S) ∧ (∀x)((x ∈ S) ∨ ((∀y)(∀z)(y ∈ S, z ∈ S ∧ adj(x, y) ∧ adj(x, z) ∧
Dominating((S \ {y}) ∪ {x})→ ¬Dominating((S \ {z}) ∪ {x}))))

The above statement states that if an element x /∈ S is adjacent to two or more elements of S then it should
be S-defended by exactly any one adjacent element of S.

Therefore, PSDOM can be expressed in CMSOL.

Now, the following result is immediate from Theorems 5.1 and 5.2.

Theorem 5.3. PSDOM problem can be solvable in linear time for bounded tree-width graphs.

6. Complexity difference in domination and perfect secure
domination

Although perfect secure domination is one of the several variants of domination problem, these two differ
in computational complexity. In particular, there exist graph classes for which the decision version of the first
problem is polynomial-time solvable whereas the decision version of the second problem is NP-complete and
vice versa. Similar study has been made between domination and other domination parameters in [8, 15].

The DOMINATION problem is polynomial-time solvable for dually chordal graphs [1, 5], but the PSDOM
problem is NP-complete for this class of graphs which is proved in Section 2.3. Now, we construct a new class of
graphs in which the MINIMUM PERFECT SECURE DOMINATION problem can be solved trivially, whereas
the decision version of the DOMINATION problem is NP-complete, which is defined as follows.
DOMINATION DECISION PROBLEM (DOM)
INSTANCE : A simple, undirected graph G and a positive integer k.
QUESTION : Does there exist a dominating set of size at most k in G?

Definition 6.1. (GP graph). A graph is GP graph if it can be constructed from a connected graph G = (V,E)
where |V | = n and V = {v1, v2, . . . , vn}, in the following way:

1. Create n path graphs each with 3 vertices such that ith path graph contains vertices {ai, bi, ci}.



10 P. CHAKRADHAR AND P. VENKATA SUBBA REDDY

Figure 4. An illustration to the construction of GP from G.

2. Add edges {(vi, ai) : vi ∈ V }.

General GP graph construction is shown in Figure 4.

Theorem 6.2. If G′ is a GP graph obtained from a graph G = (V,E) (|V | = n), then γps(G
′) = 2n.

Proof. Let G = (V,E), where V = {v1, v2, . . . , vn} be a graph. The construction of G′ = (V ′, E′) from G is
as follows. Create n copies of P3, where ai, bi and ci are the vertices of ith copy of P3. Create the edges
{(vi, ai) : 1 ≤ i ≤ n}. It is clear that G′ is GP graph. Let S = V ∪ {bi : 1 ≤ i ≤ n}. It can be observed that S is
a PSDS of G′ of size 2n and hence γps(G

′) ≤ 2n.
Let S be any PSDS of G′. Clearly, |S ∩ {bi, ci : 1 ≤ i ≤ n}| ≥ n and these vertices can not S-defend any other

vertex in V . Therefore, either vi or ai, for each i, where 1 ≤ i ≤ n must be included in every PSDS of G′. Hence
γps(G

′) ≥ 2n. This completes the proof of the theorem.

Lemma 6.3. Let G′ be a GP graph constructed from a graph G = (V,E). Then G has a dominating set of size
at most k if and only if G′ has a dominating set of size at most k + n, where n = |V |.

Proof. Suppose D be dominating set of G of size at most k, then it is clear that D ∪ {bi : 1 ≤ i ≤ n} is a
dominating set of G′ of size at most n+ k.

Conversely, suppose D′ is a dominating set of G′ of size at most n+ k. Then at least one vertex from each
of the vertices bi and ci must be included in D′. These are at least n vertices. Let A∗ = {vi : ai ∈ D′}. Clearly,
V ∩ (A∗ ∪D′) is a dominating set of G of size at most k. Hence the lemma.

The following result is well known for the DOMINATION DECISION problem.

Theorem 6.4. ([6]) The DOMINATION DECISION problem is NP-complete for general graphs.

From Theorem 6.4 and Lemma 6.3, it follows that DOMINATION DECISION problem is NP-hard. Hence
the following theorem.

Theorem 6.5. The DOMINATION DECISION problem is NP-complete for GP graphs.

7. Conclusion

In this paper, we have shown that PSDOM problem is NP-complete for split graphs, star convex bipartite
graphs, comb convex bipartite graphs, planar graphs and dually chordal graphs. We also proved that this
problem is linear time solvable for threshold graphs, caterpillar trees and bounded tree-width graphs. Further,
it is interesting to investigate the algorithmatic complexity of PSDOM for other subclasses of chordal graphs
namely, strongly chordal graphs, doubly chordal graphs, block graphs, etc. We remark, however, that the two
problems, domination and perfect secure domination are not equivalent in computational complexity aspects.
A good example is when the input graph is a GP graph, the domination problem is known to be NP-complete
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whereas the PSDOM problem is trivially solvable. Thus, there is a scope to study each of these problems on its
own for particular graph classes.
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