
RAIRO-Theor. Inf. Appl. 55 (2021) 10 RAIRO - Theoretical Informatics and Applications
https://doi.org/10.1051/ita/2021010 www.rairo-ita.org

A NOVEL NIEDERREITER-LIKE CRYPTOSYSTEM BASED ON THE

(u|u+ v)-CONSTRUCTION CODES
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Abstract. In this paper, we present a new variant of the Niederreiter Public Key Encryption (PKE)
scheme which is resistant against recent attacks. The security is based on the hardness of the Rank
Syndrome Decoding (RSD) problem and it presents a (u|u+ v)-construction code using two different
types of codes: Ideal Low Rank Parity Check (ILRPC) codes and λ-Gabidulin codes. The proposed
encryption scheme benefits are a larger minimum distance, a new efficient decoding algorithm and a
smaller ciphertext and public key size compared to the Loidreau’s variants and to its IND-CCA secure
version.
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1. Introduction

In 1978, McEliece introduced the first public key encryption (PKE) scheme based on coding theory using as
a private key a generator matrix of a binary Goppa code [26]. Later, Niederreiter proposed another PKE scheme
using linear codes wherein the private key is the parity-check matrix of the code instead of its generator matrix
[27]. Both of these schemes are based on equivalent NP-complete problems [7] and they have an equivalent
security levels for the same set of parameters.

The first PKE scheme based on rank metric codes was proposed in 1995 by Gabidulin, Paramonov and
Tretjakov (GPT-PKE). Its security is based on the Rank Syndrome Decoding (RSD) problem which is proved
to be NP-hard by a probabilistic reduction from the Syndrome Decoding problem [13].

In [14, 15, 30, 31], two structural attacks were given by Gibson and Overbeck on the GPT-PKE scheme.
Further, Ayoub et al. [28] using these attacks have proven the vulnerability of any variant of the GPT-PKE
scheme. Loidreau [23] proposed a set of parameters of reduced public key size with the aim to avoid those
attacks. Gaborit et al. proposed in [9] a PKE scheme based on Low Rank Parity Check (LRPC) codes. They
proved that their scheme is resistant to message attack and structural attacks on the key. It is worthy to
note that the Niederreiter-PKE scheme based on reducible rank codes proposed by Khan et al. [19] can resist
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to Overbeck’s attack for chosen length n ≤ 30. However, Horlemann-Trautmann et al. proposed in [18] an
extension of Overbeck’s attack which breaks most of the proposed variants. Recently, Bardet et al. [5] proposed
an algebraic attack which breaks all LRPC approaches and eliminated NIST’s candidates from its third round
like ROLLO [3] and RQC [1].

One of the properties that are required for encryption schemes is the indistinguishability under (non-
adaptive) chosen ciphertext attack (IND-CCA). It is more advantageous than the indistinguishability under
chosen-plaintext attack (IND-CPA) which is equivalent to the property of semantic security. Al Shehhi et al.
was proposed in [2] an IND-CCA secure version of Loidreau’s PKE scheme with an overhead of 23% in the
computational cost for encryption algorithm.

1.1. Motivation and contribution

In this paper, we propose a new variant of the Niederreiter-PKE scheme based on the RSD problem. We
present a new family of (u|u+ v) codes constructed by two different types: ILRPC codes and λ-Gabidulin codes.
We also provide its decoding algorithm. The proposed scheme is based on the same typical idea of Gabidulin
et al. in [10] and we can express its benefits in:

– Reduced key sizes using properties of ILRPC codes compared to key sizes given in [22].
– Increasing the security to attacks by concatenating the generator matrix with a random chosen distortion

matrix of full rank t1 and using the shared decoding algorithm of both of ILRPC and λ-Gabidulin codes.
– Given larger minimum rank distance d expressed by d1 and d2 which are minimum rank distances of the

ILRPC code and λ-Gabidulin code, respectively.

The proposed scheme is secure against the extended version of Overbeck’s attack by using a scrambler matrix
in the extension field, and against the recent attack [5] by choosing a proper set of parameters. We obtain a
new decoding algorithm with complexity O(n3). We also prove that the scheme is IND-CCA secure against
any probabilistic polynomial time adversary. We then provide an optimal set of parameters for which we obtain
smaller public key and ciphertext sizes when we compared it to Loidreau’s variants.

1.2. Organization

This paper is organized as follows: In Section 2, we give preliminaries on the rank-metric codes, ILRPC codes,
the λ-Gabidulin codes, the RSD problem and the Niederreiter-PKC. In Section 3, we define the new (u|u+ v)
construction code in rank-metric and give its decoding algorithm, then we provide a cryptographic application
of the codes in the Niederreiter-like PKE scheme based on the RSD problem. The security analysis is studied
in Section 4 with some examples and comparison. Finally, we conclude the paper in Section 5.

2. Preliminaries

In this section, we provide some basic definitions in the rank metric.

2.1. Rank metric codes

Let n,m ∈ N, Fq be a finite field of q elements and let Fqm be an extension field of degree m. If x =
(x1, . . . , xn) ∈ Fnqm and (a1, . . . , am) is a basis of Fqm over Fq then its associated m× n matrix is

X =

 x11 . . . x1n
...

. . .
...

xm1 . . . xmn

 ,
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where each column vector xj of x can be represented as a sum xj =
m∑
i=1

xi,jai for j ∈ {1, . . . , n}

The rank of the matrix X is the maximal number of vectors column xj that are linearly independent over Fq
and it defines the rank of x over Fq. We denote it by rank(x|Fq) = rank(X|Fq). The rank distance between two
vectors x and y in Fnqm is defined by dist(x, y) = rank(x− y|Fq) = rank(X − Y |Fq), where Y is the associated
matrix of y.

For any code C of length n and dimension k over Fqm , the minimum rank distance is defined by

d = min {dist(c1, c2) ∀ c1, c2 ∈ C, c1 6= c2}
= min{rank(c|Fq) | c ∈ C, c 6= 0}.

This distance verifies the Singleton bound d ≤ n− k + 1 for m ≥ n. When this inequality is achieved, the code
will be a Maximal Rank Distance code (MRD). The rank error correcting capacity is then t = bd−12 c = bn−k2 c.

A Gabidulin code C(g) defines a class of MRD codes for n ≤ m. Its k × n generator matrix G is defined for
any set of elements g1, . . . , gn from Fqm those are linearly independent over Fq as follows:

G =


g1 g2 . . . gn

g
[1]
1 g

[1]
2 . . . g

[1]
n

...
...

. . .
...

g
[k−1]
1 g

[k−1]
2 . . . g

[k−1]
n

 , (2.1)

where g[i] = gq
i

means the i-th Frobenius power of g.
The (n− k)×n parity check matrix H of a Gabidulin code verifies GH> = 0 and it can be written as follows:

H =


h1 h2 . . . hn

h
[1]
1 h

[1]
2 . . . h

[1]
n

...
...

. . .
...

h
[d−2]
1 h

[d−2]
2 . . . h

[d−2]
n


where hi ∈ Fqm for i = {1, . . . , n} are linearly independent over Fq.

The main property on Gabidulin codes is the evaluation in a linearized polynomial F (z) ∈ Fmq of degree lower
than k on the generator vector g

C(g) = {(F (g1), . . . , F (gn)), F (z) =

k−1∑
i=0

fiz
[i]}

where fi ∈ Fqm for 0 ≤ i ≤ k − 1 and fk−1 6= 0.
We define the support of a vector in Fnqm as follows:

Definition 2.1. The support E of g = (g1, . . . , gn) ∈ Fnqm of dimension d is the Fq subvector space of Fqm
generated by the coordinates of g with rank(g|Fq) = d and g1, . . . , gn are linearly independent.

Definition 2.2. (Gilbert-Varshamov Bound) LetBR =
{
M ∈ Fnqm/rank(M) ≤ t

}
be the ball of radius t centred

around 0 for the rank metric. The Gilbert-Varshamov bound for rank metric codes is given by the smallest t
for which |BRt | ≥ qm(n−k). When |BRt | ≈ qm(n−k) the Gilbert-Varshamov bound dGV is given by
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dGV = n(1−
√

k
n ), if m = n

≈ 1

2
(m+ n−

√
(m+ n)2 − 4m(n− k)), if else.

To ensure the uniqueness of the error decoding in rank metric codes, it is necessary that the minimum rank
weight of the code d be smaller or equal to the Gilbert Varshamov bound. While for the error and erasure
decoding algorithm, the case when d is beyond the Gilbert Varshamov bound can be considered.

2.2. Ideal low rank parity check codes

In this section, we recall the definition of the ideal LRPC (ILRPC) code [3].
Let C be an Fqm linear rank metric code and given by the following definition.

Definition 2.3. Let F be a Fq subspace of dimension d of Fqm , (h1, h2) two vectors of Fnqm of support F and
P ∈ Fq[X] a polynomial of degree n. Let H1 and H2 be two matrices given as follows:

H1 =


h1

Xh1 mod P
. . .

Xn−1h1 mod P


>

and H2 =


h2

Xh2 mod P
. . .

Xn−1h2 mod P


>

.

The code C with parity check matrix H = (H1, H2) is an ideal LRPC code of type [2n, n]qm .

This codes can counter the folding attack [16] for which we discuss more on it in Section 4. We recall its
decoding algorithm in Algorithm 1 given in [11].

Algorithm 1 Rank Support Recover (RSR) algorithm [3]

Input : F =< f1, . . . , fd >, s = (s1, . . . , sn) and r (the dimension of E).
Output : A candidate for the vector space E.

1: Compute S =< s1, . . . , sn >
2: Precompute every Si for i = 1 to d
3: Precompute every Si,i+1 for i = 1 to d− 1
4: for i from 1 to d− 2 do
5: tmp← S =< F · (Si,i+1 + Si+1,i+2 + Si,i+2) >
6: if dim(tmp) ≤ rd then
7: S ← tmp
8: end if
9: end for

10: E ← f−11 · S ∩ · · · ∩ f−1d · S
11: return E.

2.3. λ-Gabidulin codes

The λ-Gabidulin is similar to the generalized Reed Solomon codes in Hamming metric [20]. It has similar
construction of the generalized Reed Solomon codes in polynomial settings. We recall its definition as follows:

Definition 2.4. (λ-Gabidulin codes [20]) Let g = (g1, . . . , gn) ∈ Fnqm be linearly independent over Fq and
λ = (λ1, . . . , λn) ∈ Fnqm . The λ-Gabidulin code over Fqm of dimension k associated with vector g and λ is the
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code generated by a matrix Gλ of the form

Gλ =


λ1g1 λ2g2 . . . λngn

λ1g
[1]
1 λ2g

[1]
2 . . . λng

[1]
n

...
...

. . .
...

λ1g
[k−1]
1 λ2g

[k−1]
2 . . . λng

[k−1]
n

 (2.2)

and its parity check matrix is given by

Hλ =


λ−11 h1 λ−12 h2 . . . λ−1n hn

λ−11 h
[1]
1 λ−12 h

[1]
2 . . . λ−1n h

[1]
n

...
...

. . .
...

λ−11 h
[n−k−1]
1 λ−12 h

[n−k−1]
2 . . . λ−1n h

[n−k−1]
n

 (2.3)

Any codeword c can be written as follows:

c = (f0, . . . , fk−1)Gλ = (λ1

k−1∑
i=0

fig
[i]
1 , . . . , λn

k−1∑
i=0

fig
[i]
n ) = (λ1F (g1), . . . , λnF (gn)).

Such codes have been selected for application in cryptography; the McEliece like cryptosystem and proved
out that it can be resistant for the rank syndrome decoding problem (RSD) to known attacks for well chosen
parameters.

These codes are not MRD and have minimum distance d ≤ n−k+1. Further, they do not have weak structure
as in the case of Gabidulin codes which have huge vector space invariant under the Frobenius automorphism.
We recall its decoding algorithm in Algorithm 2.

Algorithm 2 Decoding algorithm for λ-Gabidulin code [20]

1: A received word y = c+ e with c = fGλ , rank(e) ≤ r
u for u = rank(λ), r = bn−k2 c.

2: Recompute y = fGλ + e = (λ1F (g1), . . . , λnF (gn)) + (e1, . . . , en)
3: Multiplying y by λ−1i for i = 0, . . . , n we get:
ŷ = (F (g1), . . . , F (gn)) + ê

4: Apply the decoding algorithm for Gabidulin codes on ŷ for rank(ê) ≤ r
5: Recover c

2.4. Rank-based cryptography

In this section, we recall the Rank Syndrome Decoding (RSD) problem.
Problem: For a given (n− k)× n matrix H ( k ≤ n), a vector s ∈ Fn−kqm and an integer w. Find a codeword x
which satisfies two conditions {

rank(x|Fq) = w,

Hx> = s>.

Gaborit et al. [13] have provided a probabilistic reduction to the NP-complete Syndrome Decoding problem
in the Hamming metric by proving Theorem 2.5.

Theorem 2.5 ([13]). If the Rank Syndrome Decoding Problem is in ZPP, then we must have NP = ZPP.
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Figure 1. The Niederreiter PKE type of GPT-PKE scheme [19].

This problem can strengthen any scheme in the rank metric, that is because all the proposed algorithms to
solve it are exponential.

2.5. Niederreiter PKE type of GPT-PKE

Niederreiter-PKE is the dual version of McEliece-PKE. They are based on equivalent problems for a given
code in Hamming metric [6]. In the rank-metric, the Niederreiter-PKE type of GPT-PKE was proposed by Khan
et al. [19] based on the RSD problem for rank reducible codes (RRC) defined by Gabidulin et al. in [10]. It used
the parity check matrix of Gabidulin code and concealed its structure by the row/column scrambler and even
distortion matrices; the distortion matrix will not appear after the decryption step. The fast decoding algorithm
described in [32] is considered up to the rank error correcting capacity t. In Figure 1, we recall the description
of Niederreiter-PKE type of GPT-PKE with a given (RRC) [n = rN, k = rM ] which is defined by r chosen
[N,N − d+ 1, d] -MRD codes of rank distance d for M = N − d+ 1. Its generator matrix G is a concatenation
of the r canonical generator matrices. Also for the distortion matrix

X =
[
X1, X2, . . . , Xr

]
=


X11 X12 . . . X1r

0 X22 . . . X2r

...
...

. . .
...

0 0 . . . Xrr

 , (2.4)

where X1, X2, . . . , Xr are r distortion sub-matrices of column rank t1 over Fq (t1 ≤ t) which is the design
parameter.

3. The proposed scheme

In this section, we define the new PKE scheme using (u|u + v)-construction code and we give its decoding
algorithm.
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3.1. The (u|u+ v)-construction codes

In this section, we start by giving the general definition of the (u|u+ v)-construction code in the rank metric.

Definition 3.1 (The (u|u+ v)-construction). Given two rank codes; an [n1, k1, d1] code C1, an [n2, k2, d2] code

C2 with n1 = n2 = n
2 and a binary matrix A =

[
1 1
0 1

]
.

We denote by C3 = [C1|C2]A the rank code which consists of all vectors (u|u+ v), with u ∈ C1 and v ∈ C2.

The length of C3 is n, its dimension is k = k1 + k2 and its n× k generator matrix G over Fqm is defined by

G =

[
G1 G1

0 G2

]
, (3.1)

where G1 and G2 are generator matrices of C1 and C2, respectively.

Therefore, the (n− k)× n parity check matrix of the code over Fqm is defined by:

H =

[
H1 0
−H2 H2

]
.

In Hamming metric the minimum distance of (u|u + v)-construction code is defined by d = min{2d1, d2},
while it is not known in the rank-metric.

Proposition 3.2. Let C3 be the [n, k, d] code given in Definition 3.1. Let C1 be the ILRPC code and C2 be the
λ-Gabidulin code. The minimum distance is upper bounded by

d = d1 + d2 − α,

where α = dim(R1 ∩R2) for R1 (resp. R2) is the set of rows of any element c1 in C1 (resp.c2 in C2) which has
the minimum rank distance d1 (resp. d2).

Proof. We start by the general definition of the code C3 given in Definition 3.1

C = {xG | x ∈ Fkqm},

with G is the generator matrix of C3 of the form 3.1. Then, for any element c in C3, it can be written as follows

c = (x1, x2)G =

[
x1G1 x1G1

0 x2G2

]
,

with x1 ∈ Fk1qm and Fk2qm . Similarly by the general definition of the code C1 (respectively C2) we denote by
c1 = x1G1 (respectively c1 = x1G2). Hence, we can write the codeword c as follows

c =

[
c1 c1
0 c2

]
.

Therefore, getting the minimum rank of C3 is related to get the minimum rank of every non nul c ∈ C3. i.e.

d = min{rank(c|Fq) | c ∈ C3, c 6= 0}

We may simplify the rank weight of the expression of c and suppose A = [c1 c1] the matrix of size k1 × n and
B = [0 c2] the matrix of size k2 × n. Without loss of generality, we assume k∗ = max{k1, k2} and we propose
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that the matrix of the minimum dimension will be appended with rows of zeros until it achieves k∗ rows in
total. For that we get A and B of same size k∗ × n and we can write the following property as well as given in
[25]

rank

(
A
B

)
= rank(A) + rank(B)− dim(RA ∩RB),

where CA and CB are the row spaces of the matrices A and B respectively.
Clearly we have rank(A) = rank(c1) and rank(B) = rank(c2). Then we have

rank(c) =

(
A
B

)
= rank(c1) + rank(c2)− dim(R1 ∩R2)

= rank(c1) + rank(c2)− α,

with α = dim(R1 ∩R2). Therefore, the minimum distance may be written as follows

d = min{rank(c|Fq) | c ∈ C3, c 6= 0}
= min{rank(c1) + rank(c2)− α | ci ∈ Ci, ci 6= 0, i ∈ {1, 2}}
= d1 + d2 − α.

where α = dim(R1 ∩ R2) for R1 (resp. R2) is the set of rows of any element c1 in C1 (resp.c2 in C2) which has
the minimum rank distance d1 (resp. d2). Hence, we conclude the result.

3.2. Decoding algorithm

In this section, we propose to use the (u|u + v)- construction with codes in the rank-metric to reach the
robustness of Niederreiter-PKE scheme against several attacks, the ILRPC and λ−Gabidulin codes. The advan-
tage of this construction is to get an encryption scheme with shorter ciphertext size. Furthermore, it has a better
error correcting capacity [24].

The two codes used in our scheme have decoding algorithms up to the error correcting capacity t of the code,
which implies that the algorithm output is a list of one or two codewords containing the sent word [17].

We denote by D1 a decoding Algorithm 1 for the LRPC code C1 which decodes up to t(1) errors and by D2

the error-erasure decoding Algorithm 2 of λ-Gabidulin code C2 which decodes up to t(2) errors. Therefore, the
error correcting capacity of C is: t = bd−12 c

Let y = xG+ e be a received word, with :

– The word x ∈ C is equal to (x1, x1 + x2), with x1 ∈ C1 and x2 ∈ C2.
– The matrix G is the generator matrix of the form equation (3.1).
– The error vector e = (e1, e2) ∈ Fnqm verifies rank(e|Fq) ≤ t.

Namely, the received word y is:

y = xG+ e = (y1, y2) = (x1G1 + e1, x1G1 + x2G2 + e2).

First, we can decode y1 without loss of generality and recover x1 since rank(e1|Fq) ≤ t(1). Then, if we compute
y2 − y1 = x2G2 + (e2 − e1) then we may decode y2 − y1 using the decoding algorithm D2 to obtain x2, since
x2 ∈ C2 and we have to obtain the bound t2 for the D2 rank(e2 − e1|Fq) ≤ t(2). However, we will be able to
detect it by checking that we corrected t errors in total. Hence, the algorithm outputs the whole codeword of
the (u|u+ v)-construction code.
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Figure 2. Description of the Niederreiter-like encryption scheme.

Algorithm 3 Decoding algorithm for (u|u+ v)- construction code.

• Input:
◦ A received word y = xG+ e = (y1, y2) with x = (x1, x1 + x2) ∈ C (x1 ∈ C1 and x2 ∈ C2) and e = (e1, e2)

of rank less than t (rank(e1|Fq) ≤ t(1), rank(e2 − e1|Fq) ≤ t(2)) and G the generator matrix of C.
◦ The decoding algorithm for LRPC codes D1 by Algorithm 1 and for λ-Gabidulin codes D2 by

Algorithm 2.
• Output x ∈ Fnqm of rank weight rank(x|Fq) ≤ t.

1: Decode y1 with rank(e1|Fq) ≤ t(1) by D1 and recover x1.
2: Decode y2 − y1 by D2 with rank(e2 − e1|Fq) ≤ t(2) and recover x2.
3: Return x = (x1, x2).

Remark 3.3. The PUM convolutional code [33] is not suitable for such a construction since it has semi infinite
generator and parity check matrix which will not much well in the generator or the parity check matrix of the
construction (u|u+ v).

3.3. Niederreiter-PKE based on (u|u+ v)-construction codes

In this section, we provide a description for the proposed scheme and we present it in Figure 2. The scheme
is a new variant of the Niederreiter-PKE scheme which we recall it in Section 2.5. We respect here the generator
matrix of the (u|u+ v)−construction code and we use the technique of adding random column scrambler in the
parity check matrix of the code [21].

Key generation: For chosen security level (1δ) we can fix n, k,m and the design parameter t1. The public
key is an (n− k)× (n+ t1) parity check matrix of the public code

Hpub = SHXP,
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where:

– HX = [H|0] is a concatenated matrix of H is a (n − k) × n parity check matrix code of a product-
matrix proposed in Section 3.1, equation (3.1) and (n − k) × t1 zeros matrix. which is formulated as in
Section 2.5. The matrix HX is the dual of GX = [G|X], where G generates a [n = n1 + n2, k = k1 + k2, d]
(u|u+ v)-constructed code from [n1, k1]ILRPC code and [n2, k2] λ−Gabidulin code.

– The matrix S is a (n− k)× (n− k) non singular row scrambling matrix over Fqm .
– The matrix P is a (n+ t1)× (n+ t1) column scramble matrix over Fqm as defined in [9].
– X is a k × t1 distortion matrix over Fqm of full rank t1 ≥ n− k, of the form:

X =

[
X11 0
X21 X22

]
. (3.2)

In other words, the dual matrix of HX has the form GX =

[
G1 G1 X11 0
0 G2 X21 X22

]
.

The private key is the matrix (X,P, S,G) and the decoding algorithm suggested in Section 3.2.

Encryption: For sending a message x = (x1, x2, . . . , xn) of rank w to the legitimate receiver, we randomly
choose a vector γ = (γ1, . . . , γt1) and compute

c = (x1, x2, . . . , xn, γ1, . . . , γt1)H>pub = yH>pub

such that xi, γj ∈ Fqm for i = 1, . . . , n, j = 1, . . . , t1 and w ≤ t with t1 independent to t and w.

Decryption: To decrypt the message, we use the decoding algorithm proposed in Section (3.2), the legitimate
receiver computes:

c(S>)−1 = yP>
[
H>

0

]
.

We suppose that we have P> = [P1 P2] where P1 of size (n+ t1)× n and P2 of size (n+ t1)× t1. We denote by
c′ = c(S>)−1 and by x′ = x(P1), such that
c′ = x′H>.
Since the rank weight of x′ is less than t, we apply the decoding algorithm presented in Section (3.2) on c′

and we get x′ then we multiply x′ by (P1)−1.

Encryption correctness. This is related directly to the error correcting capacity t of the code C and the
error should be less than or equal to t. In the decryption step, for P> = [P1 P2], we compute

c′ = xP> = [P1 P2]

[
H>

0

]
= yP1H

> = x′H>,

where c′ = c(S>)−1 and x′ = xP1. If we have rank(x′|Fq) ≤ t, then we can decode with Algorithm 3. Therefore,
we can recover correctly x(P1) and extract x = x(P1)(P1)−1. The information rate is equal to k

n , the decoding
complexity is O(n3) and the public key size is (n− k)(n+ t1)mlog2(q).

4. Security analysis

In this section, we show that our encryption scheme is secure against all known attacks which are classified
into combinatorial and algebraic attacks. We also prove IND-CCA2 security which is the most considerable
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type among IND-CPA and IND-CCA, since the adversary can not submit the ciphertext to the challenger. The
codes ILRPC and λ-Gabidulin are with large minimum distance to avoid attacks that try to recover the code
structure by looking for low weight codewords either on the code or on its dual. Since we have a larger minimum
distance d, such a property leads to avoid leakage information of the public key as it is shown in [24].

4.1. Combinatorial attacks

Usually, these attacks are the most efficient when q, n and k are small enough. The first such attack is given by
Chabaud and Stern [8], their attack has a complexity O((nw+m)3q(m−w)(w−1)). Then, Ourivski and Johanson
[29] improved this attack to solve the problem of decoding an [n, k] linear code C over Fqm with minimal rank
distance d, it can be used after computing the generator matrix of the public key. The problem is formulated
as follows:
Problem: Given G ∈ Mk×n(Fqm) and c ∈ Fnqm , find u ∈ Fkqm such that; e = c − uG has the smallest rank
w = rank(e|Fq).

The modeling of this problem leads the authors to solve a system of a set of quadratic equations by two
strategies:

– Basis enumeration: this method requires O((k + w)3q(w−1)(m−w)+2) binary operations.
– Coordinates enumeration: the complexity of this approach is O((k+w)3w3q(w−1)(k+1)) binary operations.

In [12], Gaborit et al. generalized the aforementioned attacks. Their idea is to use the notion of the support of
a word in rank-metric in

O(w3k3q(w−1)b
(k+1)m

n c).

Recently, it was improved in [4] the complexity of solving the RSD problem to

O((n− k)3m3qwd
(k+1)m

n e−m). (4.1)

In our case the error correcting capacity is better due to the large minimum rank distance, so this attack is not
applicable.
– Hauteville and Tillich’s attack (2015) [16]
Hauteville and Tillich introduced a key recovery attack on the LRPC-PKE encryption (in general, the quasi-
cyclic codes). This attack is based on a folding and projecting technique. The point of this attack is to find a
codeword of low weight d in a projected code over the ring Fq[X]/(Xn − 1). It depends on the factorization
of the polynomial (Xk − 1) by steps described in [16]. In [3], they proposed the ILRPC code to withstand
that attack when this codes are indistinguishable with random codes. We claim that the resulted code is also
indistinguishable code.

Lemma 4.1. The proposed (u|u + v)-construction code C3 given in Definition 3.1 is indistinguishable from a
random code.

Proof. The property of indistiguishability is inherent from the problem of distinguishing an ILRPC code [3].
Hence, it is hard to distinguish for a given codeword if it is from a random code or from the (u|u+v)-construction
code.

4.2. Algebraic attacks

Several algebraic attacks have been carried against the GPT-PKE scheme variants and can be considered
against the Niederreiter-PKE scheme. Among these attacks we consider the following ones:
– Gibson’s attack (1995) [14]
The purpose of Gibson’s attack is to solve the next problem:



12 R. MAHDJOUBI ET AL.

Problem: Given (Gpub, t1) the public key of the GPT-PKE scheme find a triple (G̃, S̃, X̃) such that Gpub =

S̃G̃+ X̃.
We can give a solution of this problem in O((n− k)k3qmt1) binary operation. The Gibson’s attack can not

be applied in our approach due to the existence of the full rank distortion matrix in the private key as it has
been proven in [23].

– Overbeck’s attack (2008) [31]
To realize Overbeck’s attack, we construct a matrix G

′
defined as:

G̃
′

=


S 0 . . . 0

0 S[1]
...

...
. . . 0

0 . . . 0 S[n−k−1]




X G
X [1] G[1]

...
...

X [n−k−1] G[n−k−1]

P = S
′
(X

′
|G

′
)P,

where S[i] is the matrix obtained by applying the ith power of the Frobenius automorphism θi : x→ xq
i

to all
coefficients of S.

In [23], Loidreau has shown that Overbeck’s attack is not successful if rank(X
′ |G′

) = n + t1 − 1. In the
proposed scheme we choose the rank t1 ≥ n− k to avoid this attack. This property withstands also the recent
extension of Overbeck’s attack proposed in [18]. When the distortion matrix is not of full rank, it applies the
extension of this matrix and searches elements of rank one to recover the encrypted message in polynomial time.
Besides this, we choose the column scrambler P in the extension field to avoid the attack [19, 22], which means
that the Frobenius automorphism of P will not be the same matrix P (i.e. θ(P ) 6= P ).

G̃
′

= S̃
′


X G
X [1] G[1]

...
...

X [n−k−1] G[n−k−1]




P
P [1]

...
P [n−k−1]

 .

– Bardet et al.’s attack (2020) [5]

The authors in [5] provided an improvement of algebraic attacks for solving MinRank and Rank Decoding
problems without using Gröbner basis and breaks rank based parameters proposed to the NIST Standarization
Process approaches like ROLLO and RQC [1, 3] .

Two modeling were proposed to solve these problems in two cases: “overdetermined case” when there are
enough linear equations i.e.

m

(
n− k − 1

w

)
≥
(
n

w

)
− 1. (4.2)

The complexity of the (m,n, k, w)-decoding algorithm in that case (Algorithm 1, [5]) is given as follows:

O

(
m

(
n− k − 1

w

)(
n

w

)ω−1)
, (4.3)

operations over Fq, with ω is the constant of linear algebra. The “underdetermined case” when (4.2) is not
fulfilled. However, authors proposed to look for a reduction to the overdetermined case by:
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– A hybrid attack and look for the smallest integer a such that m
(
n−k−1
w

)
≥
(
n−a
w

)
− 1 holds and the

complexity becomes O
(
qa·wm

(
n−k−1
w

)(
n−a
w

)ω−1)
operations over Fq.

– The super overdetermined case using the punctured code on the last p coordinates instead of the whole
of the code. Taking the maximal number of p such that m

(
n−p−k−1

w

)
≥
(
n−p
w

)
− 1 holds, will reduce the

complexity into O
(
m
(
n−p−k−1

w

)(
n−p
w

)ω−1)
operations over Fq.

Otherwise, they solve the underdetermined case using direct linearization or by Support Minors Modeling in
conjunction with the maximal minors of the code for which the best complexity will be set to Widemann’s
algorithm or Strassen’s algorithm.

Some approaches could avoid it by changing their parameters to be larger but reasonable. Hence, we set
similarly larger value for the set of parameters of the proposed scheme.

4.3. Indistinguishability security

In this section, we study the most required security proof, the indistinguishability under chosen ciphertext
attack IND-CCA. Let A be a probabilistic polynomial time algorithm adversary on the proposed scheme pro-
posed in this paper and let C be the challenger for which the game hopping is between A and C. It generates
the pair of keys (pk, sk) based on the secret parameter and he sends pk to A who will perform a number of
operations of the encryption calls to send it to the decryption oracle O which outputs plaintexts. Then A
chooses randomly two distinct plaintexts m0 and m1 in order to send them to C. Then, C selects at random
b ∈ {0, 1} and computes the ciphertext Encrypt(pk,mb) in order to send it to A.

E = ExpIND−CCA2,b
PKE,A (δ)

(pk, sk)←− KeyGen(δ)
(m0,m1)←− A(Find : pk)
y ←− Encrypt(pk,mb)
b′ ←− A(Guess : y)
Return b′.

Then, three types of indistinguishability appear

– IND-CPA : A guesses the value of b and performs a call to O.
– IND-CCA : A may not make further calls to O before guessing the

value of b.
– IND-CCA2 : A may make further calls to O but may not submit

the challenge ciphertext c, and it should guess the value of b.

The proposed PKE scheme is indistinguishable when the adversary A could not guess b and has a negligible
advantage, i.e. AdvINDPKE,A(δ) ≤ negl where δ is the chosen security level. We will give the proof of the last type
of indistinguishability the (IND-CCA2) considering an experiment E.

Theorem 4.2. The Niederreiter-like PKE scheme based on the hardness the RSD is secure under IND-CCA2.

Proof. To prove this theorem, we perform a sequence of games on the PKE scheme parameters on the
experiment E.

– G0: We proceed the scheme naturally with its parameters, pk and the matrices S, P and the matrix X
of full rank t1. The adversary A has to recover the ciphertext for a given public key pk and a security
parameter δ.

– G1: We transform in the game G0 its pk into a random one, in this time the probability that the adversary
has to find the ciphertext using that public key is the same probability of solving an instance of the RSD
problem. Hence, the advantage is given as follows:

AdvG1

E,A(δ) ≤ AdvRSDE,A (δ)
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Table 1. Different set of parameters for (u|u+ v) construction.

m ILRPC λ-Gabidulin (U |U + V ) |pk| |ct| a Security
[n1, k1, w1] [n2, k2, w2] [n, k, w] KB bits level

47 (32,16,8) (32,9,6) (64,25,10) 5.7 1833 11 128
59 (42,21,9) (42,12,8) (84,33,14) 12.4 3009 22 192
67 (48,24,11) (48,20,13) (96,44,23) 19.1 3484 38 256

– G2: We provide the same as in game G1 and transform it for random value of y in Fnqm . The adversary
tries to guess b for that random y. He cannot distinguish the result of the encryption and the random
value of y due to the indistinguishability of the (u|u+ v)-construction code

AdvG2

A,E(δ) ≤ AdvG1

E,A(δ) +Adv
(U |U+V )
E,A (δ)

Hence, we conclude that it is IND-CCA2 secure.

Beside to this, we claim that the randomness of the matrices S, P and X, chosen in the scheme, makes hard
to find the exact matrices for each performance of such attacks.

4.4. Set of parameters

In this section, we give the set of parameters with its security levels, using the (u|u + v)-construction code
with [n1 = 2k1, k1, d1] ILRPC and [n2, k2, d2] λ-Gabidulin codes means that the degree of the extension field
becomes lower than the length, with larger minimum distance d which is good to avoid leakage information of
the public key.

For the parameters, we choose the matrix X of full rank t1 to avoid Gibson’s attack and this t1 should be
greater than n− k to avoid Overbeck’s attack. We also choose the matrix P with entries in Fqm as proposed in
[22]. Hence, we compute the sizes of the public key, secret key and ciphertext by using the following expressions:

– The public key size in systematic form: k(n− k)m log2(q) bits.
– The ciphertext size: (n− k)m log2

For the secret key size one can recover the set of parameters with a random vector. This reduces the secret key
size. We give in Table 1 some different set of parameters with sizes; public key |pk| in KiloByte (KB) and the
ciphertext |ct| in bits with the best complexity of Bardet el al. [5].The column “a” indicates the smaller chosen
integer for the hybrid attack since inequality (4.2) is not fulfilled with ω = 2.81.

4.5. Comparison

In this section, we provide a comparison with the parameters given in [2, 22] with their security level upper
than 128 for which they do not satisfy security level of the recent attack [5]. In the set of parameters of [22], σ
design the dimension of the vector space over Fqm which has entries of the matrix P . We benefit a reduction
from the ciphertext and the public key sizes and we set security level used in the item of comparison (4.1).

In Table 2, we set the [n1 = 20, k1 = 10, w1 = 5] ILRPC code and for the λ-Gabidulin code we set [n2 =
20, k2 = 6, w2 = 4] with m = 37.

Hence, the error-correcting capacity is t = bn−k2 c = 12. We choose the design parameter t1 such that t1 ≥ n−k
to withstand Overbeck’s attack, in this example t1 = 25. The rank weight of the ciphertext w should be less
or equal to t. Therefore, the (u|u+ v)−construction code in this case has the set of parameters [40, 16, 10] and
then we can obtain the public key size as 1.7 KB.
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Table 2. Comparison of public key size and cipher text size between (u|u + v)-construction
code, Al Shehhi et al. [2] and Loidreau [22] for different security levels.

PKC-(parameters) Set of parameters |pk| |ct| Security level

Loidreau [22]
(n,m, k, σ, t) (90, 128, 24, 3, 11) 21.5 1.44 ≈ 140

Al Shehhi et al. [2]
(m,n, k, σ, t) (64, 58, 28, 3, 5) 6.56 0.46 128

(u|u+ v)−construction-
(n,m, k1, k2, t1, w) (40, 37, 10, 6, 25, 9) 1.7 0.11 128

5. Conclusion

We present in this paper a variant of the Niederreiter cryptosystem based on the RSD problem using a simple
type of codes. The (u|u+ v)-construction code between the less structured ILRPC and λ-Gabidulin codes. We
provide an efficient decoding algorithm due to the sharing properties of the two codes. This makes our PKE more
secure against known attacks as we provide in its security analysis with combinatorial and algebraic attacks.
Even with the recent attack [5], the scheme is secure for larger set of parameters and has a reasonable sizes
of the public key and ciphertext. The constructed code is indistinguishable from random codes and has larger
minimum distance d. Moreover, our PKE is secure under IND-CCA2 with much reduced public key size and
ciphertext size for the adopted security level compared to Loidreau’s [22] and to its IND-CCA secure version
proposed by Al Shehhi et al. [2].
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