
RAIRO-Theor. Inf. Appl. 55 (2021) 4 RAIRO - Theoretical Informatics and Applications
https://doi.org/10.1051/ita/2021008 www.rairo-ita.org

BOTTOM-UP DERIVATIVES OF TREE EXPRESSIONS

Samira Attou1,* , Ludovic Mignot2,3 and Djelloul Ziadi2,3

Abstract. In this paper, we extend the notion of (word) derivatives and partial derivatives due to
(respectively) Brzozowski and Antimirov to tree derivatives using already known inductive formulae
of quotients. We define a new family of extended regular tree expressions (using negation or intersec-
tion operators), and we show how to compute a Brzozowski-like inductive tree automaton; the fixed
point of this construction, when it exists, is the derivative tree automaton. Such a deterministic tree
automaton can be used to solve the membership test efficiently: the whole structure is not necessarily
computed, and the derivative computations can be performed in parallel. We also show how to solve
the membership test using our (Bottom-Up) partial derivatives, without computing an automaton.

Mathematics Subject Classification. 68Q45.

Received December 17, 2019. Accepted May 26, 2021.

1. Introduction

In 1956, Kleene [8] gave a fundamental theorem in automata theory. He showed that every regular expression
E can be converted into a finite state machine that recognizes the same language as E, and vice versa. A lot of
methods have been proposed to provide the conversion of a given regular expression to a finite word automaton.
One of these approaches which appeared in 1964 was Brzozowski’s [3] construction; the idea is to use the notion
of derivation to compute a deterministic automaton: the derivative of a regular expression E w.r.t. a word w is
a regular expression that denotes the set of words w′ such that ww′ is denoted by E. This construction is not
necessarily finite: the derivatives of a given regular expression may form an infinite set. However, considering
three equivalence rules (associativity, commutativity and idempotence of the sum), he proved that the set of
(so called) similar derivatives is finite.

Antimirov [1], in 1996 introduced the partial derivation which is a similar operation to the one defined by
Brzozowski; a partial derivative of a regular expression is no longer a regular expression but a set of regular
expressions, that leads to the construction of a non-deterministic automaton, with at most (n+ 1) states where n
is the number of letters of the regular expression. However, this operation is not defined for extended expressions
(i.e. regular expressions with negation or intersection operators).1

Keywords and phrases: Regular tree expressions, derivatives tree automata, partial derivatives, bottom-Up derivatives.

1 USTHB, Faculty of Mathematics, RECITS Laboratory, BP 32, El Alia, 16111 Bab Ezzouar, Algiers, Algeria.
2 Groupe de Recherche Rouennais en Informatique Fondamentale, Université de Rouen Normandie, Avenue de l’Université,
76801 Saint-Étienne-du-Rouvray, France.
3 Associated Member of RECITS Laboratory, CATI Team, USTHB, Algiers, Algeria.

* Corresponding author: sattou@usthb.dz
1This was achieved by Caron et al. using clausal forms instead of sets [5].

c© The authors. Published by EDP Sciences, 2021

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0),

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

https://doi.org/10.1051/ita/2021008
https://www.rairo-ita.org
https://orcid.org/0000-0001-8463-0840
mailto:sattou@usthb.dz
https://creativecommons.org/licenses/by/4.0

2 S. ATTOU ET AL.

Some of these constructions have been extended to tree automata [12]. Kuske and Meinecke [9] in 2011, intro-
duced an algorithm to convert a regular tree expression into a non-deterministic tree automaton in a Top-Down
interpretation. This construction was inspired by Antimirov’s construction. In 2017, Champarnaud et al. [6]
have extended the inductive formulas of quotients to tree languages, following a Bottom-Up interpretation.
These notions of derivatives and quotients have practical and theoretical aspects. From a practical point of
view, this Bottom-Up interpretation can be related to the notion of contexts of trees, that have been studied
in functional programming (e.g. zippers [7]). From a theoretical point of view, this study belongs to a large
project that aims to study the algorithmic similarities between word automata and tree automata in order to
generalize these notions over other algebraic structures [10].

In this paper, we define a new construction of tree automata based on the notion of derivation of an extended
tree expression. We also show how to extend the notion of partial derivation in a Bottom-Up way and that the
previous construction cannot be applied directly with partial derivatives. Notice that we leave the (technical)
study of the finiteness of the set of derivatives and partial derivatives for a future work.

This paper, which is an extended version of [2], is structured as follows: Section 2 defines preliminaries
and notations considered throughout this paper. In Section 3, we recall the Bottom-Up quotient formulas for
trees and for languages defined in [6]. We explain in Section 4 how we can deal with the Boolean operations.
In Section 5, we define the derivative formulas for an extended tree expression. Using the sets of derivatives,
in Section 6, we show how to compute a deterministic tree automaton from an extended tree expression that
recognizes the same language. We then extend the computation formulae to deal with sets of expressions instead
of a single expression and show their validity in Section 7. In Section 8, we present a web application allowing
the computation of Bottom-Up derivatives, partial derivatives, and both the derivative tree automaton and a
classical non-deterministic inductive construction, where the complement is performed via determinization.

2. Preliminaries

Let us first introduce some notations and preliminary definitions. For any pattern matching, we denote by
the wildcard.

In the following of this paper, we consider a ranked alphabet Σ =
⋃
k∈N Σk, i.e. a finite graded set of distinct

symbols. A symbol f in Σk is said to be k-ary.
A tree t over Σ is inductively defined by t = εj (an empty tree with no symbols) or t = f(t1, . . . , tn), where

j is a positive integer, f is a symbol in Σn, and t1, . . . , tn are n trees over Σ. Moreover, we assume that for
any integer j, the symbol εj appears at most once in a tree. We denote by Indε(t) the (naturally ordered) set
of integers j such that εj appears in the tree t. The tree t is k-ary if k is the cardinal of Indε(t); Precisely, t
is nullary if Indε(t) is empty. Given an integer z, we denote by Incε(z, t) the substitution of all symbols εx by
εx+z in t. A tree language (a set of trees) L is k-homogeneous if it only contains k-ary trees t with the same
ε-index (ordered) set, denoted by Indε(L) in this case. The language L is homogeneous if it is k-homogeneous
for some k. We denote by T (Σ) the set of the trees over Σ, and T (Σ)k the set of k-ary trees over Σ.

Example 2.1. Let us consider a ranked alphabets Σ = Σ2 ∪ Σ1 ∪ Σ0 where f ∈ Σ2, g ∈ Σ1 and a ∈ Σ0. Let
t = f(f(t′, ε3), ε1) and t′ = g(a) be two trees over Σ. Then, t is 2-ary because |Indε(t)| = |{1, 3}| = 2 and t′ is
0-ary because |Indε(t′)| = |∅| = 0.

Moreover, let us consider the languages L1 = {f(a, a), a}, L2 = {f(a, ε1), ε1} and L3 = {f(ε1, ε2)}. Then,
L1 contains only 0-ary trees than it is 0-homogeneous, L2 contains only 1-ary trees then it is 1-homogeneous
and last L3 contains only 2-ary trees then it is 2-homogeneous.

Given a tree t over an alphabet Σ with Indε(t) = {e1, . . . , ek} and k trees t1, . . . , tk over Σ, we denote by
t ◦ (t1, . . . , tk) the tree obtained by substituting each εei by ti in t. Given a k-homogeneous language L over Σ
and k languages (L1, . . . , Lk) over Σ, we denote by ◦ the operation defined by

L ◦ (L1, . . . , Lk) = {t ◦ (t1, . . . , tk) | (t, t1, . . . , tk) ∈ L× L1 × · · · × Lk}. (2.1)

BOTTOM-UP DERIVATIVES OF TREE EXPRESSIONS 3

Let L be a 1-homogeneous language with Indε(L) = {j}. We denote by Ln the language inductively defined by
L0 = {εj}, Ln = L ◦ Ln−1, for any integer n > 0, and we set

L~ =
⋃
n∈N

Ln.

Given a tree t, a symbol a in Σ0 and a 0-homogeneous language L′, we denote by t ·a L′ the tree language
inductively defined by

b ·a L′ =

{
L′ if a = b,

{b} otherwise,
εj ·a L′ = {εj},

f(t1, . . . , tn) ·a L′ = f(t1 ·a L′, . . . , tn ·a L′),

with b a tree in Σ0, f a symbol in Σn, f(L1, . . . , Ln) = {f(t1, . . . , tn) | (t1, . . . , tn) ∈ L1 × · · · × Ln} and n trees
t1, . . . , tn over Σ. Moreover, given a homogeneous language L, we set

L ·a L′ =
⋃
t∈L

t ·a L′.

Finally, let us denote by La,n the language inductively defined by La,0 = {a} and La,n = La,n−1 ∪L ·a Ln−1 for
any integer n > 0, and we set

L∗a =
⋃
n∈N

La,n.

Example 2.2. Let us consider the 1-homogeneous languages L = {f(a, ε1)} and L1 = {g(ε1), ε1} over Σ =
Σ2 ∪ Σ1 ∪ Σ0 where f ∈ Σ2, g ∈ Σ1 and a ∈ Σ0.

L ◦ (L1) = {f(a, g(ε1)), f(a, ε1)}, La,0 = {a},
La,1 = La,0 ∪ {f(a, ε1)} ·a La,0 La,2 = La,1 ∪ f(a, ε1) ·a La,1

= {a} ∪ {f(a, ε1)} ·a {a} = {a, f(a, ε1)} ∪ {f(a, ε1), f(f(a, ε1), ε1}
= {a, f(a, ε1)}, = {a, f(a, ε1), f(f(a, ε1), ε1))},

L∗a = {a, f(a, ε1), f(f(a, ε1), ε1)), . . .}.

L0 = {ε1}, L1 = L ◦ L0

L2 = L ◦ L1 = {f(a, ε1)} ◦ {ε1}
= {f(a, ε1)} ◦ {f(a, ε1)} = {f(a, ε1)},
= {f(a, f(a, ε1))},

L~ = {ε1, f(a, ε1), f(a, f(a, ε1)), . . .}.

A tree automaton over Σ is a 4-tuple A = (Σ, Q, F, δ) where Q is a set of states, F ⊆ Q is the set of final
states, and δ ⊆

⋃
k≥0(Qk × Σk ×Q) is the set of transitions, which can be seen as the function from Qk × Σk

4 S. ATTOU ET AL.

to 2Q defined by

(q1, . . . , qk, f, q) ∈ δ ⇔ q ∈ δ(q1, . . . , qk, f).

It can be linearly extended as the function from (2Q)
k × Σk to 2Q defined by

δ(Q1, . . . , Qk, f) =
⋃

(q1,...,qk)∈Q1×···Qk

δ(q1, . . . , qk, f). (2.2)

Finally, we also consider the function ∆ from T (Σ) to 2Q defined by

∆(f(t1, . . . , tn)) = δ(∆(t1), . . . ,∆(tn), f). (2.3)

Using these definitions, the language L(A) recognized by the tree automaton A is the language {t ∈ T (Σ) |
∆(t) ∩ F 6= ∅}.

A tree automaton A = (Σ, Q, F, δ) is deterministic if for any symbol f in Σm, for any m states q1, . . . , qm in
Q, |δ(q1, . . . , qm, f)| ≤ 1.

3. Tree language quotients

In this section, we recall the inductive definition of the computation of tree quotients defined in [6].
Let (t, t′) be two trees in T (Σ)k × T (Σ)k′ such that =Indε(t) ⊆ Indε(t

′). Let R = Indε(t), R
′ = Indε(t

′), and
{(xz)1≤z≤k′−k} = R′ \R. The quotient of t′ w.r.t. t is the (k′ − k + 1)-homogeneous tree language t−1(t′) that
contains all the trees t′′ satisfying the two following conditions:

t′ = t′′ ◦ (t, (εxz
)1≤z≤k′−k), Indε(t

′′) = {1, (xz + 1)1≤z≤k′−k} (3.1)

As a direct consequence,

ε−1
j (εl) =

{
ε1 if j = l,

∅ otherwise.
(3.2) t−1(t′) = {ε1} ⇔ t = t′. (3.3)

Definition 3.1. The Bottom-Up quotient t−1(L) of a tree language L w.r.t. a tree t is the tree language⋃
t′∈L t

−1(t′).

Example 3.2. Let us consider the graded alphabet defined by Σ2 = {f}, Σ1 = {g} and Σ0 = {a}. Let t = g(a)
and t′ = f(f(g(a), ε1)), g(a)) be two trees over Σ = Σ0 ∪ Σ1 ∪ Σ2. Then

t−1(t′) = f(f(ε1, ε2), g(a)), f(f(g(a), ε2), ε1)}.

Notice that for any tree t′′ from the set t−1(t′), t′′ ◦ (g(a), ε1) = f(f(g(a), ε1)), g(a)).

As a direct consequence of equation (3.3), the membership of a tree in a tree language can be restated in
terms of a quotient:

Proposition 3.3 ([6]). A tree t is in a language L if and only if ε1 is in t−1(L).

Let us now make explicit the inductive computation formulae for this quotient operation. The base cases are
the three following ones.

BOTTOM-UP DERIVATIVES OF TREE EXPRESSIONS 5

Proposition 3.4 (Prop. 7 of [6]). Let Σ be a ranked alphabet, k be an integer, and α be in Σk:

α−1(εx) = ∅, α−1(α(ε1, . . . , εn)) = {ε1},

α−1(f(t1, . . . , tn)) =
⋃

1≤j≤n

f({t′1}, . . . , {t′j−1}, α−1({tj}), {t′j+1}, . . . , {t′n}),

where x is an integer in N, f is a symbol in Σn, t1, . . . , tn are n trees in TΣ distinct from (ε1, . . . , εn) and for
all integer 1 ≤ z ≤ n, t′z is the tree Incε(1, tz).

By equation (3.1) and Definition 3.1, quotienting by an indexed ε is reindexing all the indexed ε in the
language.

Proposition 3.5 (Prop. 9 of [6]). Let L be homogeneous with Indε(L) = {j1, . . . , jk} and j be an integer:

ε−1
j (L) =

{
L ◦ (εj1+1, . . . , εjz−1+1, ε1, εjz+1+1, . . . , εjk+1) if j = jz ∈ Indε(L),

∅ otherwise.
(3.4)

Example 3.6. Let us consider a tree t = f(ε2, f(a, a)) with f ∈ Σ2 and a ∈ Σ0. Let us calculate t−1(t). Then

a−1(t) = {f(ε3, f(ε1, a)), f(ε3, f(a, ε1))}
a−1(a−1(t)) = {f(ε4, f(ε2, ε1)), f(ε4, f(ε1, ε2)) ◦ (ε1, ε2)}
f(a, a)−1(t) = {f(ε5, ε1) ◦ (ε1, ε2)}

= {f(ε2, ε1)}
f(ε2, f(a, a))−1(t) = {ε1}.

As a direct consequence of Definition 3.1, the Bottom-Up quotient for the union of languages can be computed
as follows:

Lemma 3.7 (Lem. 13 of [6]). Let t be a tree in T (Σ), L1 and L2 be two languages over Σ. Then:

t−1(L1 ∪ L2) = t−1(L1) ∪ t−1(L2). (3.5)

Corollary 3.8 (Cor. 14 of [6]). Let t = f(t1, . . . , tk) be an l-ary tree such that f is in Σk and (t1, . . . , tk)
is a k-tuple of trees in T (Σ) different from (ε1, . . . , εk). Let L be a n-homogeneous tree language over Σ with
Indε(L) = {x1, . . . , xn}. Let {y1, . . . , yn−l} = Indε(L) \ Indε(t) and ∀1 ≤ j ≤ k, t′j = Incε(k − j, tj). Then:

t−1(L) = (f−1(t′1
−1

(· · · (t′k
−1

(L)) · · ·)) ◦ (ε1, (εyz+1)1≤z≤n−l). (3.6)

The Bottom-Up quotient for the b-product of languages can be computed as follows:

Proposition 3.9 (Prop. 17 of [6]). Let Σ be an alphabet. Let L1 be a k-homogeneous language, L2 be a
0-homogeneous language, α be a symbol in Σ and b be a symbol in Σ0. Then:

α−1(L1 ·b L2) =


(b−1(L1) ·b L2) ◦1 b−1(L2) if α = b,

α−1(L1) ·b L2 ∪ (b−1(L1) ·b L2) ◦1 α−1(L2) if α ∈ Σ0 \ {b},
α−1(L1) ·b L2 otherwise,

6 S. ATTOU ET AL.

where ◦1 is the partial composition defined by L ◦1 L′ = L ◦ (L′, (εl)j2≤l≤jk) with Indε(L) = {j1, . . . , jk}.

The Bottom-Up quotient for the composition of languages can be computed as follows:

Proposition 3.10 (Prop. 20 of [6]). Let Σ be an alphabet. Let L be a k-homogeneous language with Indε(L) =
{j1, . . . , jk}, L1, . . . , Lk be k tree languages and α be in Σn. Then:

α−1(L ◦ (L1, . . . , Lk)) =
⋃

1≤j≤k

L ◦ ((Incε(1, Ll))1≤l≤j , α
−1(Lj), (Incε(1, Ll))j+1≤l≤k)

∪


α((εjpl)1≤l≤n)

−1
(L) ◦ (ε1, (Incε(1, Ll))1≤l≤k|∀z,l 6=pz))

if ∀1 ≤ l ≤ n, ∃1 ≤ pl ≤ k, εl ∈ Lpl
∅ otherwise.

(3.7)

Let us explain the above formula, in order to explain the quotient of the composition of the set of k-ary trees
L with k-homogeneous languages L1, . . . , Lk w.r.t. a symbol α we first explain α−1(t ◦ (t1, . . . , tk)).

The composition of a k-ary tree t such that Indε(t) = {x1, . . . , xk}, with k trees t1, . . . , tk is the action of
grafting these trees to t at the positions where the symbols εx1

, . . . , εxk
appear. Thus, the obtained tree t′

can be seen as a tree with an upper part containing t and lower parts containing exactly the trees t1, . . . , tk.
Therefore, if α appears in a lower tree tj , this tree must be quotiented w.r.t. α and the other parts are ε-
incremented. Moreover, if some n trees in t1, . . . , tk are equal to ε1, . . . , εn, for example tp1 , . . . , tpn , and if
t′ = α(εxp1

, . . . , εxpn
) appears in t, then t′ must be substituted by ε1 and the other lower trees tj with j 6= pm,

m ∈ {1, . . . , n} ε-incremented, since the inverse operation produces t. Therefore, by Definition 2.1 we can extend
this operation to the case of languages and we find the above formula.

The Bottom-Up quotient for the composition closure of a language can be computed as follows:

Proposition 3.11 (Prop. 22 of [6]). Let L be a 1-homogeneous language. Let α be a symbol in Σ0 ∪ Σ1.
Then:

α−1(L~) =

{
(L~ ◦ (α−1(L))) ◦ (ε1, Incε(1, L

~)) if α ∈ Σ0,

(L~ ◦ (α−1(L))) otherwise.

The Bottom-Up quotient for the iterated composition of a language can be computed as follows:

Proposition 3.12 (Prop. 24 of [6]). Let L be a 0-homogeneous language. Let α and b be two symbols in Σ0.
Then:

α−1(L∗b) =

{
(b−1(L))

~ ·b L∗b if α = b,

((b−1(L))
~ ◦ (α−1(L))) ·b L∗b otherwise.

4. Boolean (homogeneous) operations

In the following, we consider that Boolean operations (such as union, intersection, complement, etc.) are not
necessarily defined for all combinations of languages. Instead, we will consider particular restrictions of these
operations, based on the combination of homogeneous languages with the same ε-indices.

As an example, given a k-homogeneous language L, we denote by ¬L the set

{t ∈ T (Σ)k | t /∈ L, Indε(t) = Indε(L)}. (4.1)

BOTTOM-UP DERIVATIVES OF TREE EXPRESSIONS 7

By similarly restricting the classical union to pairs of languages with the same ε-indices, one can redefine any
Boolean operator as a classical combination of union and complementation (e.g. symmetrical difference, set
difference, etc.). Let us show how to compute the Bottom-Up quotient of a complemented language.

Proposition 4.1. Let L be an homogeneous language over Σ and t ∈ T (Σ). Then

t−1(¬L) = ¬(t−1(L)).

Proof. Let t′′ be a tree in T (Σ) such that

Indε(t
′′) = {1, (xz + 1)1≤z≤k′−k}.

Then

t′′ ∈ t−1(¬L)⇔ t′′ ◦ (t, (εxz
)1≤z≤k−k′) ∈ ¬L

⇔ t′′ ◦ (t, (εxz
)1≤z≤k−k′) /∈ L

⇔ t′′ /∈ t−1(L)

⇔ t′′ ∈ ¬(t−1(L)).

As a direct consequence, following equation (3.5), we get the following result.

Corollary 4.2. Let (L1, . . . , Lk) be k-homogeneous languages with the same ε-indices and let op be a Boolean
operation. Then for any tree t in T (Σ)

t−1(op(L1, . . . , Lk)) = op(t−1(L1), . . . , t−1(Lk)).

The restriction to homogeneous languages needs a small modification in terms of computation. Indeed, let us
consider equation (3.7). It is necessary to determine whether εj belongs to a given language: how can we decide
whether it belongs to ¬∅? There are two alternatives of this barred notation, because the complementation
function needs to know the ε-index set of the language it complements. Either we can specify the restriction
by parameterizing the operators, or we specify only the occurrences of the empty set symbol, leading to the
consideration of expressions instead of languages. This is the approach that we will consider in the following:
the languages and the expressions will be subtyped w.r.t. the sets of ε-indices.

5. Extended tree expressions

An extended tree expression (tree expression for short) E over Σ is inductively defined by

E = f(E1, . . . , En), E = εj , E = ∅I ,
E = op(E1, . . . , En), E = E′ ◦ (E1, . . . , En), E = E~

1 ,

E = E1 ·a E2, E = E∗a1 ,

(5.1)

where f is a symbol in Σn, (E′, E1, . . . , En) are (n + 1) tree expressions over Σ, j is a positive integer, I is a
set of integers, op is an n-ary Boolean operator and a is a symbol in Σ0. We denote the expression ∅∅ by ∅.

8 S. ATTOU ET AL.

The set of ε-indices Indε(E) of a tree expression E, that we use to distinguish tree expressions (e.g. distinct
occurrences of ∅), is inductively defined, following equation (5.1), by

Indε(εj) = {j}, Indε(∅I) = I,
Indε(E1 ·a E2) = Indε(E1) ∪ Indε(E2), Indε(E

~
1) = Indε(E

∗a
1) = Indε(E1).

Indε(f(E1, . . . , En)) = Indε(op(E1, . . . , En))

= Indε(E
′ ◦ (E1, . . . , En))

=
⋃

1≤k≤n

Indε(Ek),

In the following, we restrict the set of tree expressions that we deal with in order to simplify the different
computations. More formally, we define the notion of valid tree expression, that rejects (for instance) non-
homogeneous tree expressions: A tree expression E is valid if it satisfies the predicate V (E) inductively defined,
following equation (5.1), by

V (εj) = V (∅I) = True,

V (f(E1, . . . , En)) = (
∧

1≤k≤n

V (Ek)) ∧ (
∧

1≤k<k′≤n

(Indε(Ek) ∩ Indε(Ek′) = ∅)),

V (op(E1, . . . , En)) = (
∧

1≤k≤n

V (Ek)) ∧ (
∧

1≤k<n

(Indε(Ek) = Indε(Ek+1))),

V (E′ ◦ (E1, . . . , En)) = V (E′) ∧ (
∧

1≤k≤n

V (Ek)) ∧ (Card(Indε(E
′)) = n)

∧ (
∧

1≤k<k′≤n

(Indε(Ek) ∩ Indε(Ek′) = ∅)),

V (E~
1) = V (E1) ∧ (Card(Indε(E1)) = 1),

V (E1 ·a E2) = V (E1) ∧ V (E2) ∧ (Indε(E2) = ∅),
V (E∗a1) = V (E1) ∧ (Indε(E1) = ∅).

The language L(E) denoted by a valid tree expression E with an ε-index set I is inductively defined by

L(f(E1, . . . , En)) = f(L(E1), . . . , L(En)), L(εj) = {εj},
L(op(E1, . . . , En)) = op′(L(E1), . . . , L(En)), L(∅I) = ∅,

L(E′ ◦ (E1, . . . , En)) = L(E′) ◦ (L(E1), . . . L(En)), L(E~
1) = (L(E1))

~
,

L(E1 ·a E2) = L(E1) ·a L(E2), L(E∗a1) = (L(E1))
∗a ,

where f is a symbol in Σn, (E′, E1, . . . , En) are (n + 1) tree expressions over Σ, j is a positive integer, op is
an n-ary Boolean operator, op′ is an n-ary Boolean operation over homogeneous languages with I as ε-index
set (e.g. Eq. (4.1)) and a is a symbol in Σ0. From these definitions, we can define the derivation formulae for
valid tree expressions w.r.t. symbols and trees as a syntactical transcription of the quotient formulae.

Definition 5.1. Let E be a valid tree expression and j be an ε-index of E. Then dεj (E) is obtained by
incrementing all the ε-indices of E by 1 except εj which is replaced by ε1.

BOTTOM-UP DERIVATIVES OF TREE EXPRESSIONS 9

Definition 5.2. Let α be a symbol in Σn and F be a valid tree expression over Σ containing {1, . . . , n} as
ε-indices. The derivative of F w.r.t. to α is the expression inductively defined by

dα(∅I) = ∅{1}∪{i+1|i>n,i∈I},

dα(ε1) = ∅{1},
dα(α(ε1, . . . , εn)) = ε1,

dα(f(E1, . . . , Em)) =
∑

1≤j≤n

f(E1, . . . , Ej−1, dα(tj), Ej+1, . . . , Em),

+ ε1 if α = f ∧ ∀i ≤ m, εi ∈ L(Ei),

dα(op(E1, . . . , Ek)) = op(dα(E1), . . . , dα(Ek)),

dα(E1 ·b E2) =


(db(E1) ·b E2) ◦1 db(E2) if α = b,

dα(E1) ·b E2 + (db(E1) ·b E2) ◦1 dα(E2) if α ∈ Σ0 \ {b},
dα(E1) ·b E2 otherwise,

dα(E ◦ (E1, . . . , Ek)) =
∑

1≤j≤k

E ◦ ((El)1≤l≤j , dα(Ej), (El)j+1≤l≤k)

+


dα((εjpl

)
1≤l≤n

)(E) ◦ (ε1, (El)1≤l≤k|∀z,l 6=pz
)

if ∀1 ≤ l ≤ n, ∃1 ≤ pl ≤ k, εl ∈ L(Epl)

∅Indε(E◦(E1,...,Ek))\{1,...,n} otherwise,

dα(E~) =

{
(E~ ◦ (dα(E))) ◦ (ε1, Incε(1, E

~)) if α ∈ Σ0,

(E~ ◦ (dα(E))) otherwise,

dα(E∗b) =

{
(db(E))

~ ·b E∗b if α = b,

((db(E))
~ ◦ (dα(E))) ·b E∗b otherwise,

where dα(εj1 ,...,εjn)(E) = dα(dεj1+n−1
(· · · dεjn−1+1

(dεjn (E)) · · ·)), where for all integers i the expression Ei equals

Incε(1, Ei) and where ◦1 is the partial composition defined by E ◦1 E′ = E ◦ (E′, (εl)l∈{j2,...,jk}) with Indε(E) =

{j1, . . . , jk}.

Definition 5.3. Let t = f(t1, . . . , tn) be a tree in T (Σ) and E a valid tree expression over Σ such that Indε(t) ⊆
Indε(E). The derivative of E w.r.t. t is the tree expression defined by

dt(E) = (df (dt′1(· · · (dt′k(E)) · · ·)) ◦ (ε1, (εyz+1)1≤z≤n−l)),

where {y1, . . . , yn−l} = Indε(E) \ Indε(t) and ∀1 ≤ j ≤ k, t′j = Incε(k − j, tj).

Notice that the base cases include the one of the derivation of the empty set. In this case, the only modification
that occurs is the index simulating the ε-index set of the denoted language. This is necessary in order to validate
equation (3.1). As an example, consider the expression E = ¬∅∅. When deriving E w.r.t. a nullary tree a, one
must obtain an expression denoting all the trees that belong to T (Σ) in which one a was removed, that is the
set of all the trees with only ε1 as an ε-index. Applying the previously defined formulae:

da(E) = ¬∅{1}.

When deriving one more time w.r.t. a, one must obtain an expression denoting all the trees with only ε1 and ε2

as ε-indices (obtained from a tree in T (Σ) by removing two occurrences of a). Applying the previously defined

10 S. ATTOU ET AL.

formulae:

da(da(E)) = ¬∅{1,2}.

Finally, when deriving by a binary symbol f , one must obtain an expression denoting all the trees that belong
to T (Σ) in which one occurrence of f(a, a) was removed, that is the set of all the trees with only ε1 as ε-index.
Applying the previously defined formulae:

df (da(da(E))) = ¬∅{1}.

As a direct consequence of the inductive formulae of Section 3 and of Corollary 4.2, we get the following
theorem.

Theorem 5.4. The derivative of a valid tree expression E w.r.t. to a tree t denotes t−1(L(E)).

Proof. Let us proceed in three steps.

1. Following equation (3.4) and Definition 5.1, it holds that

L(dεj (E)) = ε−1
j (L(E)).

2. Notice that the derivation formulae of Definition 5.2 are syntactical equivalents of the quotient formulae
of Section 3 and of Corollary 4.2 and therefore it can be proved by induction over the structure of E that

L(dα(E)) = α−1(L(E)).

This reasoning is valid except for the case with indexed occurrence of the empty set and with the case of the
substitution product. As discussed before, the occurrences of the empty set are “typed” w.r.t. the ε-indices
set of the language they denote. Therefore, these indices should be modified using equation (3.1). In the
product case, the derivation of an expression by the tree α(εj1 , . . . , εjn) has to be considered. However,
by considering this particular case in the induction, one can check that

L(dα(εj1 ,...,εjn)(E)) = L(dα(dεj1+n−1
(· · · dεjn−1+1

(dεjn (E)) · · ·)))

= α−1(L(dεj1+n−1
(· · · dεjn−1+1

(dεjn (E)) · · ·))),

this last equality obtained by applying the induction step. From item 1, it holds that

α−1(dεj1+n−1(· · · dεjn−1+1(dεjn (E)) · · ·)) = α−1(εj1+n−1
−1(· · · εjn−1+1

−1(L(E)) · · ·))

that equals α(εj1 , . . . , εjn)
−1

(L(E)) from equation (3.6). We can conclude following equation (3.7).
3. Finally, according to equation (3.6) and item 2, Definition 5.3 implies that

L(dt(E)) = t−1(L(E)).

Example 5.5. Let us consider the graded alphabet defined by Σ2 = {f}, Σ1 = {g} and Σ0 = {a, b, c} and let
E be the extended tree expression defined by

E = E1 ·a E2,

BOTTOM-UP DERIVATIVES OF TREE EXPRESSIONS 11

with E1 = ¬(g(a)
∗a) and E2 = f(f(a, a), a). Let us show how to calculate the derivative of E w.r.t. t =

f(f(a, a), a). First, let us compute the derivative of E2 w.r.t. t:

da(E2) = f(f(ε1, a) + f(a, ε1), a) + f(f(a, a), ε1),

da(da(E2)) = f(f(ε2, ε1) + f(ε1, ε2), a) + f(f(ε2, a) + f(a, ε2), ε1)

+ f(f(ε1, a) + f(a, ε1), ε2),

da(da(da(E2))) = f(f(ε3, ε2) + f(ε2, ε3), ε1) + f(f(ε3, ε1) + f(ε1, ε3), ε2)

+ f(f(ε2, ε1) + f(ε1, ε2), ε3),

df(a,a)(da(E2)) = df(ε1,ε2)(da(da(da(E2)))) ◦ (ε1, ε2)

= (∅{1,4} + ∅{1,4} + f(∅1 + ε1, ε4)) ◦ (ε1, ε2)

= f(ε1, ε4) ◦ (ε1, ε2) = f(ε1, ε2),

dt(E2) = df(ε1,ε2)(df(a,a)(da(E2))) = ε1.

Then, in order to reduce the size of the computed tree expressions, let us set

E′ = ¬(g(ε1)
~

) ·a E2, E′′ = ¬(∅{1,2}) ·a E2.

Then:

da(E) = E′ ◦ da(E2),

df(a,a)(da(E)) = E′′ ◦ (f(ε1, a), ε4) ◦ (ε1, Incε(1, da(E2))) + E′ ◦ df(a,a)(da(E2)),

dt(E) = E′.

6. Tree automaton construction

In this section, we explain how we can compute a tree automaton from a valid tree expression E with
Indε(E) = ∅ from an iterated process using the previously defined derivation.

Given a tree expression E over an alphabet Σ, we first compute the set

D0(E) = {da(E) | a ∈ Σ0}.

From this set, we compute the tree automaton A0 = (Σ, D0(E), F0, δ0) where

F0 = {E′ ∈ D0(E) | ε1 ∈ L(E′)}, δ0 = {(a, da(E)) | a ∈ Σ0}.

From this step, one can choose a total function tree0 associating any tree expression E′ in D0(E) with a tree t
such that

tree0(E′) = t⇒ dt(E) = E′,

by choosing for any tree expression E′ in D0(E) a symbol a ∈ Σ0 such that (a,E′) ∈ δ0. From this induction
basis, let us consider the transition set δn inductively defined by

δn = {((E′1, . . . , E′m), f, dt(E)) |t = f(treen−1(E′1), . . . , treen−1(E′m)),

f ∈ Σm,

E′1, . . . , E
′
m ∈ Dn−1(E)}.

(6.1)

12 S. ATTOU ET AL.

Let us consider the set Dn(E) = Dn−1(E)∪ π3(δn), where π3 is the classical projection defined by π3(X) = {z |
(, , z) ∈ X}. Obviously, one can once again choose a total function treen associating any tree expression E′ in
Dn(E) with a tree t such that

treen(E′) = t⇒ dt(E) = E′,

by choosing a transition ((E′1, . . . , E
′
m), f, E′) in δn for any tree expression E′ in Dn(E)\ (Dn−1(E)) and defining

t as f(treen−1(E′1), . . . , treen−1(E′k)). Finally, by considering the set

Fn = {E′ ∈ Dn(E) | ε1 ∈ L(E′)}, (6.2)

we can define the tree automaton An = (Σ, Dn(E), Fn, δn).
Let A(E) be the fixed point, if it exists, of this process (up to the choice of the tree∗ functions), called the

Bottom-Up derivative tree automaton of E.
First, notice that the construction leads to a deterministic tree automaton. Let us then state that the validity

of the construction does not depend on the choice of the treen functions. By a direct induction over the structure
of t, considering the definition of δ in equation (7.1), we get the following proposition.

Proposition 6.1. Let E be a valid tree expression over an alphabet Σ, t be a nullary tree in T (Σ) and A(E) =
(Σ, Q, F, δ) be a Bottom-Up derivative tree automaton of E. Let ∆(t) = {E′}. Then L(E′) = t−1(L(E)).

In order to prove this result, let us first show how derivatives behave w.r.t. permutations.

Lemma 6.2. Let t1, . . . , tk be k nullary trees. Let L be a nullary language. Let π be a permutation over
{1, . . . , k}. Then

t−1
1 (t−1

2 (· · · tk−1(L) · · ·)) = t−1
π(1)(t

−1
π(2)(· · · tπ(k)

−1(L) · · ·)) ◦ (επ(1), . . . , επ(k)).

Proof. Let t be a tree. Then, considering equation (3.1),

t ∈ t−1
1 (t−1

2 (· · · tk−1(L) · · ·))
⇔ ∃t′ ∈ L, t′ = t ◦ (t1, . . . , tk)

⇔ ∃t′ ∈ L, t′ = t ◦ (επ−1(1), . . . , επ−1(k)) ◦ (tπ(1), . . . , tπ(k))

⇔ t ◦ (επ−1(1), . . . , επ−1(k)) ∈ t−1
π(1)(t

−1
π(2)(· · · tπ(k)

−1(L) · · ·))

⇔ t ∈ t−1
π(1)(t

−1
π(2)(· · · tπ(k)

−1(L) · · ·)) ◦ (επ(1), . . . , επ(k))

Let us now show that if two trees act similarly via the quotient operation, then their action can be
interchanged.

Lemma 6.3. Let t1, . . . , tk be k nullary trees. Let L be a nullary language. Let 1 ≤ j ≤ k be an integer and let
t′j be a nullary tree such that tj

−1(L) = t′j
−1

(L). Then

t−1
1 (· · · t−1

j (· · · tk−1(L) · · ·) · · ·) = t−1
1 (· · · t′j

−1
(· · · tk−1(L) · · ·) · · ·).

Proof. Let us consider the permutation π′ that only permutes j with k and acts like the identity for the other
integers. From Lemma 6.2, one can check the following equivalences:

BOTTOM-UP DERIVATIVES OF TREE EXPRESSIONS 13

t−1
1 (· · · t−1

j (· · · tk−1(L) · · ·) · · ·)
= tπ′(1)

−1(· · · tπ′(j)−1(· · · tπ′(k)
−1(L) · · ·) · · ·) ◦ (επ′(1), . . . , επ′(j), . . . , επ′(k))

= t1
−1(· · · tk−1(· · · tj−1(L) · · ·) · · ·) ◦ (ε1, . . . , εj−1, εk, εj+1, . . . , εk−1, εj)

= t1
−1(· · · tk−1(· · · t′j

−1
(L) · · ·) · · ·) ◦ (ε1, . . . , εj−1, εk, εj+1, . . . , εk−1, εj)

= tπ′(1)
−1(· · · tπ′(j)−1(· · · t′π′(k)

−1
(L) · · ·) · · ·) ◦ (επ′(1), . . . , επ′(j), . . . , επ′(k))

= t−1
1 (· · · t′j

−1
(· · · tk−1(L) · · ·) · · ·)

The repeated application of this lemma trivially leads to the following corollary.

Corollary 6.4. Let t1, . . . , tk be k nullary trees. Let L be a nullary language. Let t′1, . . . , t
′
k be k nullary trees

such that for any integer 1 ≤ j ≤ k, tj
−1(L) = t′j

−1
(L). Then

t−1
1 (· · · tk−1(L) · · ·) = t′1

−1
(· · · t′k

−1
(L) · · ·)

Finally, we can prove our proposition.

Proof. (of Prop. 6.1) It is sufficient, by definition of the Bottom-Up derivative tree automaton, to prove by
recurrence over an integer n that for any tree t of height at most n+ 1, it holds that for ∆n(t) = {E′},

L(E′) = t−1(L(E)).

1. By definition of δ0, the equality holds for any tree of height 1.
2. Let us consider that the hypothesis holds at the rank n− 1. Let f(t1, . . . , tk) be a tree of height (n+ 1).

Obviously, for an integer 1 ≤ j ≤ k, the height of the tree tj is smaller than n and therefore, by application
of the induction hypothesis, assuming that ∆n−1(tj) = {Ej},

L(Ej) = tj
−1(L(E)).

Moreover, by definition, δn contains the transition ((E1, . . . , Ek), f, dt(E)) where t = f(treen−1(E1), . . . ,
treen−1(Ek)).

Let us set, for any integer 1 ≤ j ≤ k, treen−1(Ej) = t′j , and therefore t = f(t′1, . . . , t
′
k).

It is easy to check, from the construction of the function treen−1 and by a trivial recurrence, that for
any state S in An−1,

∆n−1(treen−1(S)) = {S}.

Hence, for any integer 1 ≤ j ≤ k,

∆n−1(t′j) = {Ej}

and by induction hypothesis, since the height of t′j is at most n, it holds

L(dt′j (E)) = L(Ej).

14 S. ATTOU ET AL.

Consequently,

tj
−1(L(E)) = t′j

−1
(L(E)).

Notice that from Definition 5.3,

dt(E) = df (dt′1(· · · dt′k(E) · · ·)).

Hence, from Corollary 6.4 and Theorem 5.4,

L(dt(E)) = L(df (dt′1(· · · dt′k(E) · · ·)))

= f−1(t′1
−1

(· · · t′k
−1

(L(E)) · · ·))
= f−1(t1

−1(· · · tk−1(L(E)) · · ·))
= L(df(t1,...,tk)(E))

As a direct consequence of Proposition 6.1, Proposition 3.3 and equation (7.2), the following theorem holds.

Theorem 6.5. A Bottom-Up derivative tree automaton of a tree expression E is deterministic and recognizes
L(E).

Proof. Let A = (Σ, , F, δ) be the Bottom-Up derivative tree automaton of E. By construction, A is deterministic.
Let t be a tree over Σ. Then:

t ∈ L(E)⇔ ε1 ∈ t−1(L(E))

⇔ ε1 ∈ L(E′) with ∆(t) = {E′}
⇔ E′ ∈ F with ∆(t) = {E′}
⇔ t ∈ L(A).

Notice that when Σn = ∅ for n ≥ 2, the three ACI rules (associativity, commutativity and idempotence of
the sum) are sufficient to obtain a finite tree automaton, isomorphic to the classical Brzozowski automaton
(for words). More generally, one can wonder if these three rules are sufficient in order to obtain a finite set of
(similar) derivatives. This (technical) study is the next step of our study.

Example 6.6. Let us consider the tree expressions defined in Example 5.5, i.e.

E = E1 ·a E2, E1 = ¬(g(a)
∗a), E2 = f(f(a, a), a), E′ = ¬(g(ε1)

~
) ·a E2.

Let us show how to compute a derivative tree automaton of E. First, let us compute A0 = (Σ, D0(E), F0, δ0):
by definition, D0(E) = {da(E), db(E), dc(E)}. Hence,

da(E) = E′ ◦ da(E2), db(E) = dc(E) = ¬(∅{1}) ·a E2,

D0(E) = {da(E), db(E)}, F0 = {db(E)}, δ0 = {(a, da(E)), (b, db(E)), (c, db(E))}.

The tree automaton A0 is represented in Figure 1, where the state ∅1, a sink-state, and its transitions are
omitted.

BOTTOM-UP DERIVATIVES OF TREE EXPRESSIONS 15

Figure 1. The Tree Automaton A0.

Figure 2. The Tree Automaton A1.

Figure 3. The Tree Automaton A2.

We choose a function to define tree0: tree0(da(E)) = a, tree0(db(E)) = b. Let us now show how to compute
A1 = (Σ, D1(E), F1, δ1). According to equation (7.1), it is sufficient to compute the derivatives of E w.r.t. the
trees in the set {f(a, a), f(a, b), f(b, a), f(b, b), g(a), g(b)}:

df(a,a)(E) = E′ ◦ f(ε1, a), df(b,b)(E) = dg(b)(E) = db(E),

df(a,b)(E) = df(b,a)(E) = dg(a)(E) = ∅{1}.

There is a new non-final state, E′ ◦ f(ε1, a), which is associated with f(a, a) by the function tree1, and three
new transitions:

δ1 = δ0 ∪ {(da(E), da(E), f, df(a,a)(E)), (db(E), db(E), f, db(E)), (db(E), g, db(E))}.

The tree automaton A1 is represented in Figure 2.
The tree automaton A2 can be computed through the derivatives w.r.t. the trees in the set

{f(f(a, a), f(a, a)), f(f(a, a), a), f(f(a, a), b), f(a, f(a, a)), f(b, f(a, a)), g(f(a, a))} :

df(f(a,a),b)(E) = df(a,f(a,a))(E) = df(b,f(a,a))(E) = df(b,f(a,a))(E) = ∅{1}, df(f(a,a),a)(E) = E′. There is a new
non-final state, E′, which is associated with t = f(f(a, a), a) by the function tree2, and one new transition:
δ2 = δ1 ∪ {(df(a,a)(E), da(E), f, dt(E))}. The tree automaton A2 is represented in Figure 3.

The tree automaton A3 is obtained by computing the derivatives w.r.t. the trees in the set
{f(t, t), f(t, a), f(t, b), . . .}. There are only four computations that do not return a derivative equal to ∅{1}:
df(t,t)(E) = df(t,b)(E) = df(b,t)(E) = db(E) and dg(t)(E) = dt(E). There are four new transitions:

δ3 = δ2 ∪ {(dt(E), dt(E), f, db(E)), (dt(E), db(E), f, db(E)), (db(E), dt(E), f, db(E)),

(dt(E), g, dt(E))},

but these computations does not introduce new states. Therefore the computation halts and the derivative tree
automaton of E is A3, represented in Figure 4.

16 S. ATTOU ET AL.

Figure 4. The Bottom-Up derivative Tree Automaton of E.

7. Partial derivatives and derived terms

The partial derivation, due to Antimirov [1], is an operation based on the same operation as the derivation.
Indeed, they both implement the computation of the quotient at the expression (and then syntactical) level. The
main difference is that instead of computing an expression from an expression, the partial derivation produces
an expression set from an expression. Computing a sum from this set produces an expression equivalent to the
one obtained via derivation. It was already extended to tree expressions by Kuske and Meinecke [9] in order to
compute a Top-Down automaton. Therefore, let us then show how to extend it in a Bottom-Up way.

As in the case of (Bottom-Up) derivation, let us first explicit the derivation w.r.t. an empty tree. Let E
be a valid tree expression and j be an ε-index of E. Then ∂εj (E) is obtained, as in the case of derivation, by
incrementing all the ε-indices of E by 1 except εj which is replaced by ε1 i.e.

∂εj (E) = {dεj (E)}.

Its application to an expression set can be easily defined as follows:

∂εj (E) =
⋃
E∈E

∂εj (E).

The computation of the derived terms, that are the expressions in the set obtained by the partial derivation, can
be defined w.r.t. the symbols as follows. Notice that we only deal with the sum as Boolean operator. Classically,
the partial derivation is defined for (so-called) simple expressions; however, it can be easily extended to all
Boolean operators [4].

Definition 7.1. Let α be a symbol in Σn and F be a valid tree expression over Σ containing {1, . . . , n} as
ε-indices. The partial derivative of F w.r.t. to α is the expression inductively defined by

∂α(∅I) = ∅,
∂α(ε1) = ∅,

∂α(α(ε1, . . . , εn)) = {ε1},

∂α(f(E1, . . . , Em)) =
⋃

1≤j≤m

{f(E1, . . . , Ej−1, E
′
j , Ej+1, . . . , Em) | E′j ∈ ∂α(Ej)},

∪ {ε1 | α = f ∧ ∀i ≤ m, εi ∈ L(Ei)}
∂α(E1 + E2) = ∂α(E1) ∪ ∂α(E2),

BOTTOM-UP DERIVATIVES OF TREE EXPRESSIONS 17

∂α(E1 ·b E2) =


(∂b(E1) ·b E2) ◦1 ∂b(E2) if α = b,

∂α(E1) ·b E2 ∪ (∂b(E1) ·b E2) ◦1 ∂α(E2) if α ∈ Σ0 \ {b},
∂α(E1) ·b E2 otherwise,

∂α(E ◦ (E1, . . . , Ek)) =
⋃

1≤j≤k

{E ◦ ((El)1≤l≤j , E
′
j , (El)j+1≤l≤k)

| E′j ∈ ∂α(Ej)}

∪


∂α((εjpl

)
1≤l≤n

)(E) ◦ (ε1, ((El)1≤l≤k|∀z,l 6=pz
),

if ∀1 ≤ l ≤ n, ∃1 ≤ pl ≤ k, εl ∈ L(Epl),

∅ otherwise,

∂α(E~) =

{
(E~ ◦ (∂α(E))) ◦ (ε1, Incε(1, E

~)) if α ∈ Σ0,

(E~ ◦ (∂α(E))) otherwise,

∂α(E∗b) =

{
(∂b(E))

~ ·b E∗b if α = b,

((∂b(E))
~ ◦1 (∂α(E))) ·b E∗b otherwise,

where

– ∂α(εj1 ,...,εjn)(E) = ∂α(∂εj1+n−1
(· · · ∂εjn−1+1

(∂εjn (E)) · · ·)),
– for all integers i the expression Ei equals Incε(1, Ei),
– E ◦1 E ′ = {E ◦1 E′ | (E,E′) ∈ E × E ′},
– E ◦ (E1, . . . , Em) = {E ◦ (E1, . . . , Em) | E ∈ E},
– E ◦1 E = {E ◦1 E′ | E′ ∈ E},
– E ·b E = {E′ ·b E | E′ ∈ E},
– E~ = {(

∑
E∈E E)

~}.

The extension of the partial derivation to the operation of negation can be achieved in a similar way to the
composition closure: ∂(¬E) = {¬(

∑
E′∈∂(E)E

′)}.
Another method is to define another partial derivation returning sets of sets of expressions, interpreted as

clausal disjunctive forms (an union of intersection of languages) [4, 5].

To well define the operation ~, an order over the expressions has to be considered. This order is important
in order to distinguish between semantic and syntax. As an example, let us consider the set {a, b}~; considering
a < b or b < a leads to two distinct (but equivalent) expressions, (a + b)~ and (b + a)~. Moreover, we set
∅~ = {ε1}. Furthermore, the partial derivative of an expression set E is defined by

∂α(E) =
⋃
E∈E

∂α(E).

Finally, the partial derivative w.r.t. a tree can be defined as follows.

Definition 7.2. Let t = f(t1, . . . , tn) be a tree in T (Σ) and E a valid tree expression over Σ such that Indε(t) ⊆
Indε(E). The partial derivative of E w.r.t. t is the set of tree expressions defined by

∂t(E) = (∂f (∂t′1(· · · (∂t′k(E)) · · ·)) ◦ (ε1, (εyz+1)1≤z≤n−l)),

where {y1, . . . , yn−l} = Indε(E) \ Indε(t) and ∀1 ≤ j ≤ k, t′j = Incε(k − j, tj).

As a direct consequence of the inductive formulae of Section 3, we get the following theorem.

18 S. ATTOU ET AL.

Theorem 7.3. Let t be a tree in T (Σ) and E a valid tree expression over Σ. Then:⋃
E′∈∂t(E)

L(E′) = t−1(L(E)).

Proof. The proof is similar to the one of Theorem 5.4, by first considering that union distributes over composition
(as a direct consequence of Eq. (2.1))

L ◦ (L1, . . . , Li−1, Li ∪ Li′ , Li+1, . . . , Ln)

= L ◦ (L1, . . . , Li−1, Li, Li+1, . . . , Ln) ∪ L ◦ (L1, . . . , Li−1, Li′ , Li+1, . . . , Ln)

Example 7.4. Let us consider the graded alphabet defined by Σ2 = {f}, Σ1 = {g} and Σ0 = {a, b} and let E
be the tree expression defined by

E = E1 + E2,

with E1 = f(a, a+ b) and E2 = g(a)∗a ·a f(b, a).
Let us show how to calculate the derivative of E w.r.t. t = g(f(b, a)).

∂a(E) = ∂a(E1) ∪ ∂a(E2)

= { f(a, ε1), f(ε1, a+ b) } ∪ { g(ε1)~ ◦ (f(b, ε1)) }
= {f(a, ε1), f(ε1, a+ b), g(ε1)~ ◦ (f(b, ε1))}

∂b(∂a(E)) =
⋃

E′∈∂a(E)

∂b(E
′)

= { f(ε2, ε1), g(ε1)~ ◦ (f(ε1, ε2)) }
∂f(b,a)(E) = ∂f(ε1,ε2)(∂b(∂a(E))

= { g(ε1)~ }
∂g(f(b,a))(E) = ∂g(ε1)(∂f(b,a)(E))

= { g(ε1)~ }.

Example 7.5. Let us consider the graded alphabet defined by Σ2 = {f}, Σ1 = {g} and Σ0 = {a} and let E be
the tree expression defined by

E = (g(a)
∗a) ·a f(f(a, a), a).

Let us show how to calculate the derivative of E w.r.t. t = f(f(a, a), a).

∂a(E) = { g(ε1)~ ◦ (f(f(a, ε1), a)), g(ε1)~ ◦ (f(f(a, a), ε1),

g(ε1)~ ◦ (f(f(ε1, a), a)) }

∂a(∂a(E)) =
⋃

E′∈∂a(E)

∂a(E′)

= { g(ε1)~ ◦ (f(f(ε1, ε2), a)), g(ε1)~ ◦ (f(f(a, ε2), ε1)),

g(ε1)~ ◦ (f(f(ε1, a), ε2)), g(ε1)~ ◦ (f(f(a, ε1), ε2)),

BOTTOM-UP DERIVATIVES OF TREE EXPRESSIONS 19

g(ε1)~ ◦ (f(f(ε2, ε1), a), g(ε1)~ ◦ (f(f(ε2, a), ε1) }

∂a(∂a(∂a(E))) =
⋃

E′′∈∂a(∂a(E))

∂a(E′′)

= { g(ε1)~ ◦ (f(f(ε2, ε3), ε1)), g(ε1)~ ◦ (f(f(ε1, ε3), ε2)),

g(ε1)~ ◦ (f(f(ε2, ε1), ε3)), g(ε1)~ ◦ (f(f(ε1, ε2), ε3)),

g(ε1)~ ◦ (f(f(ε3, ε2), ε1)), g(ε1)~ ◦ (f(f(ε3, ε1), ε2)) }
∂f(a,a)(∂a(E)) = ∂f(ε1,ε2)(∂a(∂a(∂a(E)))) ◦ (ε1, ε2)

= { g(ε1)~ ◦ (f(ε1, ε4)) ◦ (ε1, ε2) }
∂f(f(a,a),a) = ∂f(ε1,ε2)(∂f(a,a)(∂a(E)))

= { g(ε1)~ }.

Let us now show that the computation of an automaton from the partial derivation cannot be achieved via
the same algorithm as the case of derivation. Let us first try to extend the previous algorithm. Given a tree
expression E over an alphabet Σ, we first compute the set

D0(E) =
⋃
a∈Σ0

∂a(E).

From this set, we compute the tree automaton A0 = (Σ, D0(E), F0, δ0) where

F0 = {E′ ∈ D0(E) | ε1 ∈ L(E′)}, δ0 = {(a,E′) | a ∈ Σ0, E
′ ∈ ∂a(E)}.

From this step, one can choose a total function tree0 associating any tree expression E′ in D0(E) with a tree t
such that

tree0(E′) = t⇒ E′ ∈ ∂t(E).

Notice that one can consider a greedy choice, that is a choice that minimizes the number of trees in the codomain
of the function tree0.

From this induction basis, let us consider the transition set δn inductively defined by

δn = {((E′1, . . . , E′m), f, E′) |E′ ∈ ∂f(t1,...,tm)(E), ti = treen−1(E′i),

f ∈ Σm, E
′
1, . . . , E

′
m ∈ Dn−1(E)}.

(7.1)

Let us consider the set Dn(E) = Dn−1(E)∪ π3(δn), where π3 is the classical projection defined by π3(X) = {z |
(, , z) ∈ X}. Obviously, one can once again choose a total function treen associating any tree expression E′ in
Dn(E) with a tree t such that

treen(E′) = t⇒ E′ ∈ ∂t(E),

by choosing a transition ((E′1, . . . , E
′
m), f, E′) in δn for any tree expression E′ in Dn(E)\ (Dn−1(E)) and defining

t as f(treen−1(E′1), . . . , treen−1(E′k)). Finally, by considering the set

Fn = {E′ ∈ Dn(E) | ε1 ∈ L(E′)}, (7.2)

we can define the tree automaton An = (Σ, Dn(E), Fn, δn).

20 S. ATTOU ET AL.

Let us consider the expression E = f(a, a) + f(a, b) + f(b, a). Then

δa(E) = {f(ε1, a), f(a, ε1), f(ε1, b), f(b, ε1)},
δb(E) = {f(ε1, a), f(a, ε1)},
D0 = {f(ε1, a), f(a, ε1), f(ε1, b), f(b, ε1)}.

Let us choose tree0(E′) = a for any expression E′ in D0. By construction, the set δ1 contains the transition
((f(ε1, a), f(a, ε1)), f, ε1), since tree0(f(ε1, a)) = tree0(f(a, ε1)) = a and since ∂f(a,a)(E) = {ε1}. In this case,
since there also exist the transitions (b, f(ε1, a)) and (b, f(a, ε1)), the tree f(b, b) is recognized by the automaton,
that exhibits a witness of the difference with L(E).

8. Web application

The computation of a derivative and partial derivative, and both the construction of a derivative tree automa-
ton and the classical non deterministic inductive construction have been implemented in Haskell (made in
Haskell, compiled in Javascript using the reflex platform, represented with viz.js) in order to help the reader
to manipulate the notions. This web application can be found here [11]. As an example, the tree expression
¬(g(a)

∗a) ·a f(f(a, a), a) of the examples can be defined from the literal input ¬(g[a]*a).af[f[a,a],a].

9. Conclusion and perspectives

We have shown how to compute a derivative tree automaton as a fixed point of an inductive construction
when it exists. Even when it does not exist, the process can be used in order to solve the membership test (i.e.
does a tree belong to the language denoted by a tree expression?): it is easy to see that, for a tree t of height h,
the tree automaton Ah is sufficient, since t ∈ L(Ah) if and only if t ∈ L(A). As an example, consider the tree
automaton A1 of Example 6.6. This tree automaton is sufficient to determine that the trees in T ({f, g, b, c})
belong to L(E). And even the subautomaton of Ah restricted to the transitions used in order to compute ∆(t)
is enough. Moreover, due to the independence of the computations of derivatives, this process can be performed
in a parallel/concurrent way.

Furthermore, we can wonder whether the choices of the tree∗ functions during the computation of the
derivative automaton impact the produced automaton. We conjecture that all of these choices lead to a unique
automaton, and the statement of Proposition 6.1 could be replaced by ∆(t) = {dt(E)}.

Let us notice that this fixed point computation cannot be extended directly to deal with partial derivatives
but the partial derivation can be used to solve the membership test syntactically. This is not the only loss of
the extension of partial derivation from words to trees. It also seems that partial derivation tends to produce
more expressions than derivation. It could be the consequence of the distributions that occur when the product
and the composition are applied to sets of expressions in conjunction with the composition closure of sets of
expressions, that seems to cancel the reduction power of this process.

Finally, the ACI rules of the sum used here are the same as used in the case of words, the difficulties that
we have found reside on the sufficiency of these rules to prove that the set of derivatives is finite. Seen that we
deal with symbols of rank ≥ 1 and with operations like the composition (◦), the a-product (·a), the iterated
composition (~) which are somehow “complicated”. However, all the examples that we have made (taking into
account these rules) halt. So for now, this is only an hypothesis to justify. The study of the finiteness of the set
of (similar) derivatives is the next step of our study: are the three ACI rules sufficient to obtain a finite set of
derivatives? Moreover, the same question arises as far as partial derivatives are concerned: unlike the word case,
does the partial derivation need reduction rules to produce a finite set of derived terms from an expression?

References
[1] V.M. Antimirov, Partial derivatives of regular expressions and finite automaton constructions. Theor. Comput. Sci. 155 (1996)

291–319.

https://github.com/reflex-frp/reflex-platform
https://github.com/mdaines/viz.js
http://ludovicmignot.free.fr/programmes/BottomUpPartialDerivatives/index.html

BOTTOM-UP DERIVATIVES OF TREE EXPRESSIONS 21

[2] S. Attou, L. Mignot and D. Ziadi, Extended tree expressions and their derivatives, in NCMA, Valencia, Spain, July 2–3, 2019
(2019) 47–62.

[3] J.A. Brzozowski, Derivatives of regular expressions. J. ACM 11 (1964) 481–494.

[4] P. Caron, J. Champarnaud and L. Mignot, Partial derivatives of an extended regular expression, in LATA, vol. 6638 of Lecture
Notes in Computer Science. Springer (2011) 179–191.

[5] P. Caron, J. Champarnaud and L. Mignot, A general framework for the derivation of regular expressions. RAIRO - Theor.
Inf. Appl. 48 (2014) 281–305.

[6] J.-M. Champarnaud, L. Mignot, N.O. Sebti and D. Ziadi, Bottom-up quotients for tree languages. J. Autom. Lang. Combinat.
22 (2017) 243–269.

[7] G.P. Huet, The zipper. J. Funct. Program. 7 (1997) 549–554.

[8] S. Kleene, Representation of events in nerve nets and finite automata. Automata Studies, Ann. Math. Stud. 34 (1956) 3–41.
[9] D. Kuske and I. Meinecke, Construction of tree automata from regular expressions. RAIRO – Theor. Inf. Appl. 45 (2011)

347–370.
[10] É. Laugerotte, J.-G. Luque, L. Mignot and F. Nicart, Multilinear representations of free pros. Linear Multilinear Algeb. (2019)

1–45.
[11] L. Mignot, Application: Bottom up derivatives. http://ludovicmignot.free.fr/programmes/BottomUpPartialDerivatives/index.

html. Accessed: 2019-12-08.
[12] J.W. Thatcher and J.B. Wright, Generalized finite automata theory with an application to a decision problem of second-order

logic. Math. Syst. Theory 2 (1968) 57–81.

http://ludovicmignot.free.fr/programmes/BottomUpPartialDerivatives/index.html
http://ludovicmignot.free.fr/programmes/BottomUpPartialDerivatives/index.html

	Bottom-Up derivatives of tree expressions
	1 Introduction
	2 Preliminaries
	3 Tree language quotients
	4 Boolean (homogeneous) operations
	5 Extended tree expressions
	6 Tree automaton construction
	7 Partial derivatives and derived terms
	8 Web application
	9 Conclusion and perspectives

	References

