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ON DETERMINISTIC 1-LIMITED 5′ → 3′ SENSING

WATSON–CRICK FINITE-STATE TRANSDUCERS

Benedek Nagy1 and Zita Kovács2,*

Abstract. Finite automata and finite state transducers belong to the bases of (theoretical) computer
science with many applications. On the other hand, DNA computing and related bio-inspired paradigms
are relatively new fields of computing. Watson–Crick automata are in the intersection of the above
fields. These finite automata have two reading heads as they read the upper and lower strands of the
input DNA molecule, respectively. In 5′ → 3′ Watson–Crick automata the two reading heads move in
the same biochemical direction, that is, from the 5′ end of the strand to the direction of the 3′ end.
However, in the double-stranded DNA, the DNA strands are directed in opposite way to each other,
therefore 5′ → 3′ Watson–Crick automata read the input from the two extremes. In sensing 5′ → 3′

automata the automata sense if the two heads are at the same position, moreover, the computing
process is finished at that time. Based on this class of automata, we define WK transducers such
that, at each transition, exactly one input letter is being processed, and exactly one output letter is
written on a normal output tape. Some special cases are defined and analyzed, e.g., when only one of
the reading heads is being used and when the transducer has only one state. We also show that the
minimal transducer is uniquely defined if the transducer is deterministic and it has marked output,
i.e., the output letter written in a step identifies the reading head that is used in that transition. We
have also used the functions ‘processing order’ and ‘reading heads’ to analyze these transducers.
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1. Introduction

Finite automata and finite state transducers are very basic concepts of theoretical computer science [6, 27].
The Mealy and Moore automata are widely known old models of finite state transducers (see, e.g., [11]).

On the other hand, Watson–Crick automata (WK automata for short) are introduced in [4] as a specific new
computing model connected to DNA computing [23]. The DNA molecules are build up from nucleotides; there
are four types of them: Adenine, Cytosine, Guanine, Thymine. A single-stranded DNA can be considered as
a string over the alphabet {A,C,G, T}. The single-stranded DNA molecule has a direction: there is a 5′ and
a 3′ end. Among the nucleotides the Watson–Crick complementarity relation defines pairs (A, T ) and (C,G)
such that two single-stranded DNA can form double-stranded DNA molecule if the Watson–Crick pairs are

Keywords and phrases: Watson–Crick transducers, 5′ → 3′ WK automata, Sensing WK automata, Finite state transducers.

1 Department of Mathematics, Faculty of Arts and Sciences, Eastern Mediterranean University, Famagusta, North Cyprus, via
Mersin-10, Turkey.
2 Department of Computer Science, Faculty of Informatics, University of Debrecen, 4032 Debrecen, Egyetem tér 1., Hungary.

* Corresponding author: kovacs.zitu@gmail.com

c© The authors. Published by EDP Sciences, 2021

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0),

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

https://doi.org/10.1051/ita/2021007
https://www.rairo-ita.org
https://orcid.org/0000-0002-9494-6440
mailto:kovacs.zitu@gmail.com
https://creativecommons.org/licenses/by/4.0


2 B. NAGY AND Z. KOVÁCS

in the respective positions of the strands when their 5′ to 3′ direction is opposite. Consequently, finite state
WK automata, which are working on DNA molecules, have two reading heads. The first head is reading the
upper strand, while the second head is reading the lower strand. Therefore, the names first/upper head and
second/lower head can be used to identify them. There are several variants of WK automata analyzed in [23].
We recall here the most important ones. From biological point of view there are good reasons to consider special
WK automata with restrictions on their sets of states: A WK automaton is called all-final if each of its states
is an accepting state. A more specific variant of WK automata is the stateless WK automaton. A stateless WK
automaton has exactly one state. Based on the reading process, in arbitrary WK automata the heads may read
strings in a transition, in simple WK automata in each transition at most one of the heads can read, while the
1-limited variants are further restricted, in these models, in each transition exactly one input letter is being
read (by either head). One may also consider mixed constraints, i.e., one for the set of states and other for the
reading process. Deterministic and nondeterministic variants were also studied. In a double-stranded DNA, as
we have mentioned, the 5′ to 3′ direction of the two strands are opposite. The sensing 5′ → 3′ WK automata
are introduced in [12]. In these automata, the two reading heads move in the same biochemical direction, that
is, from the 5′ end of the strand to the direction of the 3′ end, respectively; this means that the heads read the
input from the two extremes and they are moving in opposite mathematical/physical/computational direction.
Moreover, the processing of the input is finished when the heads meet. It can be done, since by the Watson–Crick
complementarity relation, at that time, every place of the input was read by one of the heads: the first part
till the meeting point of the heads was read by the first head while the second part from this position to the
end of the input was read by the second head. This model has a straight connection with the class Lin of linear
languages: sensing 5′ → 3′ WK automata accept exactly this class of the Chomsky hierarchy, and, in fact, it is
equivalent to linear automata [10, 14]. Several variations were investigated and analyzed in [8, 9, 13, 15, 21, 22].
The above listed all-final, stateless, simple and 1-limited restrictions have also been studied for 5′ → 3′ WK
automata. Moreover, the determinism is a feature that is independent of the previously mentioned constraints.
Deterministic sensing 5′ → 3′ WK automata accept the language class 2detLin that is strictly included in Lin,
it strictly includes the class Reg of regular languages, and it is incomparable with detLin, i.e., the class accepted
by one-turn pushdown automata. The features of 5′ → 3′ WK automata are mixed with jumping automata,
with automata with translucent letters and with pushdown automata in [7], in [18, 19], and in [16], respectively.
In this paper, we go in another direction: we connect the idea of 5′ → 3′ WK automata to the concept of
transducers. We use the input tape as a Watson–Crick tape, i.e., the input is a DNA molecule, while the output
is a normal tape, as Watson–Crick transducers are considered in this form in [23]. However, in our transducers
the reading heads move in the way as they move in a sensing 5′ → 3′ WK automaton. Several variants of
sensing 5′ → 3′ WK transducers can be investigated; we start our analysis by relatively simple ones. We will
study 1-limited WK transducers such that they read and write exactly one letter in every transition. Moreover,
our transducers are completely defined: every input can be processed by them. We mainly focus on deterministic
variants. (We note here that, in our previous study [17], we have used the term ‘simple’ for our WK transducers,
however, in fact, they were more restricted, since the process went by reading the input letter by letter and also
to build the output letter by letter, thus, we feel that the term ‘1-limited’ also fits, and, therefore, in this paper
we use this better-fit term.) Since transducers are not about accepting languages, the all-final restriction has
no meaning. In contrast, using no states, i.e., having a WK transducer with only one state, makes sense, and
indeed we also study these stateless variants of deterministic sensing 1-limited 5′ → 3′ WK transducers.

In the next section, we give our definitions: Mealy and Moore-type WK transducers and we prove their
equivalences. Then, we show some properties of the mappings they could realize and also we define two functions,
the ‘reading heads’ and the ‘processing order’ which will be helpful for further studies. In Section 3 we investigate
special variants (such as the traditional finite state transducers, the stateless model or the transducers with
marked output). In Section 4 we detail some more properties of our WK transducers and we also relate our
transducers to computing by observing. Then, concentrating on some special variants of WK transducers, in
Section 5 we define equivalent classes among the states of marked-output transducers, and this relation is used
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Figure 1. 1-limited 5′ → 3′ sensing WK transducer.

in Section 6 to show that the minimal transducers are uniquely defined analogously to the normal, usual (Mealy
and Moore) finite state transducers. Some conclusions and thoughts about future work closes the paper.

2. 5′ → 3′ WK transducers

We assume that the reader is familiar with the basic concepts of automata theory, otherwise she/he is referred
to [5, 6, 24]. Let V be an alphabet, e.g., V = {A,C,G, T}. The Watson–Crick complementarity relation assigns
A and T to each other, and C and G to each other. We describe a double-stranded DNA molecule over V by

[
w
w′

]
where w,w′ ∈ V ∗, |w| = |w′| such that

[
w
w′

]
∈ {
[
A
T

]
,
[
T
A

]
,
[
G
C

]
,
[
C
G

]
}∗, i.e., the two strands are Watson–Crick

complements of each other. For two substrands that are not necessarily Watson–Crick complements of each other
we use the notation

(
u
v

)
, where u, v ∈ V ∗. The relation % on V generalizes the Watson–Crick complementarity

relation, and it defines DNA strings used in the next two definitions and later on. We use λ to denote the
empty word.

Further in this section we define new types of finite state transducers. A sketch of a 5′ → 3′ WK transducer
is shown in Figure 1.

Definition 2.1. A (nondeterministic) 5′ → 3′ sensing finite Mealy-type Watson–Crick transducer (MeWK
transducer) A is a sextuple (V, %, T,Q, s0, δ) where V is the input (tape) alphabet, % ⊆ V × V is a symmetric
relation, T is the output alphabet, Q is the finite set of states, s0 ∈ Q is the initial state and δ is the transition
mapping Q ×

(
V ∗

V ∗

)
→ 2Q×T

∗
, such that δ(q,

(
u
v

)
) is non-empty only for finitely many triplets (q, u, v) ∈ Q ×

V ∗ × V ∗. The interpretation of (p, z) ∈ δ(q,
(
u
v

)
) is as follows: in state q, the upper head of the transducer

reads the word u and the lower head of the transducer reads the word v, the transducer produces output z
and it enters into the state p. A MeWK transducer is 1-limited if δ(q,

(
u
v

)
) is non-empty implies |u| + |v| = 1

and |z| = 1. Let w ∈
[
V ∗

V ∗

]
be an input DNA string and A is a 1-limited MeWK transducer. A configuration

of A is a triplet (u, q, z) ∈
[
V ∗

V ∗

]
× Q × T ∗ including the remaining part of the input u, the current state q

and the output z generated so far. The computation on w starts with the initial configuration (w, s0, λ). The

configuration (
[
a
a′

]
u
[
b′

b

]
, q, z) can be followed by the configuration (u, q′, zx) if (q′, x) ∈ δ(q,

(
a
b

)
) where |ab| = 1.

It is denoted by (
[
a
a′

]
u
[
b′

b

]
, q, z) ⇒ (u, q′, zx). The reflexive and transitive closure of this relation is denoted

by ⇒∗. The 1-limited MeWK transducer is sensing if it finishes the process when its heads meet. Consequently,

the final configuration on input w is (
[
λ
λ

]
, q, z) such that (w, s0, λ) ⇒∗ (

[
λ
λ

]
, q, z) for some state q ∈ Q. The

word z ∈ T ∗ is called an output of A on w.

Analogously we extend the definition of Moore-automata.

Definition 2.2. A (nondeterministic) 5′ → 3′ sensing finite Moore-type Watson–Crick transducer (MoWK
transducer) A is a septuple (V, %, T,Q, s0, δ, µ) where the first five components are the same as in Definition 2.1,
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moreover δ is the transition mapping Q ×
(
V ∗

V ∗

)
→ 2Q, such that δ(q,

(
u
v

)
) is non-empty only for finitely many

triplets (q, u, v) ∈ Q × V ∗ × V ∗ and µ is the output mapping Q → T ∗. The interpretation p ∈ δ(q,
(
u
v

)
) is the

following: in the state q the upper head of the transducer reads the word u and the lower head of the transducer
reads the word v, the transducer enters into the state p, and right after a transition it produces output z,
where z = µ(p). A MoWK transducer is 1-limited if δ(q,

(
u
v

)
) is non-empty implies |u|+ |v| = 1 and |µ(p)| = 1

for every p ∈ Q. For an input DNA string w ∈
[
V ∗

V ∗

]
a configuration of A is the same as in Definition 2.1

and the computation on w starts with the initial configuration (w, s0, λ). If A is 1-limited, the configuration

(
[
a
a′

]
u
[
b′

b

]
, q, z) can be followed by the configuration (u, q′, zx) if q′ ∈ δ(q,

(
a
b

)
) and µ(q′) = x where |ab| = 1.

The notations (
[
a
a′

]
u
[
b′

b

]
, q, z)⇒ (u, q′, zx), and ⇒∗ are used subsequently. The 1-limited MoWK transducer

is sensing if it finishes the process when its heads meet: the final configuration on input w is (
[
λ
λ

]
, q, z) such

that (w, s0, λ)⇒∗ (
[
λ
λ

]
, q, z) for some state q ∈ Q. The word z ∈ T ∗ is called an output of A on w.

When a MeWK transducer (MoWK transducer) A processes an input w ∈
[
V ∗

V ∗

]
, it generates an output

z ∈ T ∗, then a mapping can be defined γ :
[
V ∗

V ∗

]
→ 2T

∗
: (w, z) ∈ γ if (w, s0, λ) ⇒∗ (

[
λ
λ

]
, q, z) by the MeWK

transducer (MoWK transducer) A. Although the two types of transducers work in a slightly different way,
the mapping from the set of possible inputs to the possible outputs are of the same nature. Let A1 be a
MeWK transducer or a MoWK transducer, and A2 be a MeWK transducer or a MoWK transducer. Let γ1 be
the mapping defined by A1 and γ2 be defined similarly by A2. We say that A1 is equivalent with A2 if the
mappings γ1, γ2 are the same.

In [3] there are various ways to define deterministic WK automata playing with the complementary relation
as well. However, at sensing 5′ → 3′ WK automata, since exactly one of the strands is read at every pair when
the input is fully processed, there is only one usual concept of determinism [20, 22]. Based on this fact, we are
using the following definition for our WK transducers.

Definition 2.3. A MeWK transducer (MoWK transducer) with non-empty input is deterministic if at each
possible configuration exactly one transition is possible.

Lemma 2.4. For each 1-limited MeWK transducer A1 there is a 1-limited MoWK transducer A2 such that A1

and A2 are equivalent. Moreover, for each deterministic 1-limited MeWK transducer A1 there is a deterministic
1-limited MoWK transducer A2 such that A1 and A2 are equivalent.

Proof. Let A1 = (V, %, T,Q, s0, δ) be a MeWK transducer. Then we construct the MoWK transducer A2 =
(V, %, T,Q′, s′0, δ

′, µ), where Q′, s′0, δ
′, µ are defined in the following way. Let Q′ = Q × T . If q′ = (q, x) ∈ Q′,

then µ(q′) = x. Let us fix s′0 = (s0, x) for a fixed letter x ∈ T (any letter x can be chosen). If (p, y) ∈ δ(q,
(
a
b

)
),

then for every x′ ∈ T let δ′((q, x′),
(
a
b

)
) 3 (p, y), where (p, y) ∈ Q′. By this construction it is easy to check that

A2 generates the same mapping as A1. Considering a deterministic MeWK transducer A1 = (V, %, T,Q, s0, δ),
let A2 = (V, %, T,Q′, s′0, δ

′, µ) be defined as follows. Q′, µ and s′0 as above. If (p, y) = δ(q,
(
a
b

)
), then for every

x′ ∈ T let (p, y) = δ′((q, x′),
(
a
b

)
), where (p, y) ∈ Q′. Consequently A2 is also deterministic and equivalent to

A1.

Lemma 2.5. For each 1-limited MoWK transducer A1 there is a 1-limited MeWK transducer A2 such that A1

and A2 are equivalent. Moreover, if the MoWK-transducer A1 is deterministic, then there is a deterministic
1-limited MeWK-transducer A2 such that they are equivalent.

Proof. Let A1 = (V, %, T,Q, s0, δ, µ) be a MoWK transducer. Then we construct the MeWK transducer A2 =
(V, %, T,Q, s0, δ

′), where δ′ is defined in the following way. For every transition p ∈ δ(q,
(
a
b

)
) and output µ(p) of

A1, let (p, µ(p)) ∈ δ′(q,
(
a
b

)
) be a transition in A2. By this construction it is easy to check that A2 generates

the same mapping as A1. Considering a deterministic MoWK transducer A1 = (V, %, T,Q, s0, δ, µ), let A2 =



DETERMINISTIC 5′ → 3′ WK TRANSDUCERS 5

(V, %, T,Q, s0, δ
′) be defined as follows. For every transition p = δ(q,

(
a
b

)
) and output µ(p) let (p, µ(p)) = δ′(q,

(
a
b

)
)

is the transition mapping of A2. Consequently A2 is also deterministic and equivalent to A1.

By the above lemmas, the family of 1-limited and sensing MeWK transducers are equivalent to the family of
1-limited and sensing MoWK transducers. Further we will use the notation WK transducers for 1-limited and
sensing MeWK transducers but our results hold for 1-limited and sensing MoWK transducers also.

As we have already mentioned, in sensing 5′ → 3′ WK transducers exactly one of the heads read an input
letter of a pair

[
a
a′

]
in every position of the input and the other letter of this pair is not read by any of the

heads. Assuming that % is a bijection on V , as it is on the set of nucleotides {A,C,G, T}, the transducer has all
information about the processed input double string. Unless otherwise mentioned, in the following, by a WK
transducer we always mean a completely defined deterministic WK transducer with the identity relation % = ι
(for simplicity). Since we will read only one component of each pair on any position of the double-stranded DNA
string in the deterministic case we can use the identity relation ι as the complementarity relation % without loss
of generality.

One important advantage of the identity relation in role of % is that we can simplify our notation. Since the
complement of any word w is itself, the input DNA string is

[
w
w

]
, and can simply be written as w. According to

this, the notation of δ and the configurations are also simplified. Furthermore, the mapping of a WK transducer
is considered of the form γ : V ∗ → T ∗.

We have an analogous result to [22] where it is proven for 1-limited deterministic WK automata that in each
state only one of the reading heads can move. In fact, the next lemma formally describes what determinism
means for 1-limited WK transducers.

Lemma 2.6. Let A be a deterministic WK transducer. Then Q = Q1 ∪Q2 with Q1 ∩Q2 = ∅ with the following
properties. For every pair q ∈ Q1, a ∈ V : there is a pair p ∈ Q, z ∈ T such that δ(q,

(
a
λ

)
) = (p, z) and δ(q,

(
λ
a

)
) =

∅. Furthermore, for every pair q ∈ Q2, a ∈ V : δ(q,
(
a
λ

)
) = ∅ and there is a pair p ∈ Q, z ∈ T such that δ(q,

(
λ
a

)
) =

(p, z).

Proof. The proof goes by contradiction. Let us assume that A is deterministic and Q = Q′1 ∪Q′2 such that for
each state q ∈ Q′1 there is a ∈ V such that δ

(
q,
(
a
λ

))
6= ∅ and for each state p ∈ Q′2 there is b ∈ V such that

δ
(
p,
(
λ
b

))
6= ∅. Contrary to the statement of the lemma, assume thatQ′1 ∩Q′2 6= ∅. Then there exists q ∈ Q′1∩Q′2,

i.e., δ(q,
(
a
λ

)
) = (pa, xa) and δ(q,

(
λ
b

)
) = (pb, xb). In this case for the configuration (aub, q, z) ∈ V ∗×Q×T ∗ there

are at least two possible transitions: (δ(q,
(
a
λ

)
) = (pa, xa) or δ(q,

(
λ
b

)
) = (pb, xb)), so that the transducer is not

deterministic.

We continue this section by results about the possible mappings that WK transducers can do.

Theorem 2.7. Let A = (V, ι, T,Q, s0, δ, µ) be a WK transducer and the mapping γ : V ∗ → T ∗: (w, z) ∈ γ if
(w, s0, λ)⇒∗ (λ, q, z) be given by the WK transducer A. Then |w| = |γ(w)| = |z|, i.e., γ is “keeping the length”.

Proof. The proof goes by induction. Let w ∈ V ∗ be the input string and (w, s0, λ)⇒∗ (λ, q, z) be the configu-
ration of A as in the theorem. Then the output of A on w is z. First, as the base case, we assume that |w| = 0
so w = λ and therefore z = λ. Now, let |w| = 1. Since A is 1-limited, only one of the following transitions
is allowed at state s0 ∈ Q: either δ(s0,

(
w
λ

)
) or δ(s0,

(
λ
w

)
), and furthermore the output |z| = 1. Now, as the

induction hypothesis, let us assume that |w| = |γ(w)| ≤ n holds for every possible w ∈ V ∗ up to this length.
Let us compute |γ(w)| when |w| = n+ 1. Let w = w1aw2 where (w1aw2, s0, λ)⇒∗ (a, q′, z′)⇒ (λ, q, z), i.e., A
processes first the n letters of w1w2 by producing z′ which has length n by the hypothesis. Since A is 1-limited,
only one of the following transitions is allowed at state q′ ∈ Q: either δ(q′,

(
a
λ

)
) or δ(q′,

(
λ
a

)
), let (q, x) be the

pair assigned to the allowed transition. Hence (w1aw2, s0, λ)⇒∗ (λ, q, z) with z = z′x and |x| = 1. The output
of A on w is z such that |z| = |z′x| = n+ 1. Thus, by induction on the length n, the statement of the theorem
is proven.
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The mapping γ that can be defined by a sensing 5′ → 3′ WK transducer has the property that the prefix of
the output depends only on the prefix and the suffix of the input, more formally we have the following theorem.

Theorem 2.8. Let A = (V, ι, T,Q, s0, δ) be a WK transducer and γ be the mapping V ∗ → T ∗ defined by A.
Let w ∈ V ∗ be an input word and let z = γ(w). Then for any z1, z2 ∈ T ∗ with z = z1z2, w can be written of
the form w1w2w3 such that γ(w1w3) = z1 (moreover by the previous theorem: |w1w3| = |z1| and consequently
|w2| = |z2|).

Proof. We will prove a stronger statement by induction on the length. So let w ∈ V ∗ be an arbitrary input
string. Then z is defined by the WK transducer A: γ(w) = z. Let the length of z1 be zero, i.e., z1 = λ, and
thus, w1 = w3 = λ, z2 = z, w2 = w. In this case clearly γ(λ) = λ and it makes our statement true.

As the induction hypothesis, let us assume that for any prefix z1 of z (z1 6= z), there is a decomposition
w1w2w3 of w such that γ(w1w3) = z1. Let the length of z1 be n (clearly, n < |z|). Then we are proving the
statement for the prefix z′1 with length |z′1| = n+ 1. Then, let q be the state of A when it finishes the process of
w1w3 and let w2 = aw′2b where a ∈ V, b = λ if q ∈ Q1 (i.e., the upper head reads in state q) and a = λ, b ∈ V if
q ∈ Q2 (i.e., the lower head reads in state q). Then |w1abw2| = n+1 and γ(w1abw2) = z1x since the deterministic
process first proceeds the prefix w1 and the suffix w2 of the input and in state q the letter ab is being read (since
one of a and b is λ, ab denotes a string of a sole letter). In this way, z2 = xz′2 and therefore the statement is
proven. Moreover, it is also true that the process goes letter by letter in a deterministic manner, and therefore,
if γ(w1w3) = z1 such that w1 is processed by the upper head and w3 is processed by the lower head, then for
any w2 ∈ V ∗, γ(w1w2w3) = z1z2 for an appropriate word z2 ∈ T ∗.

Based on the previous result we see that WK transducers are a kind of “border-prefix” transducers, i.e., they
map the prefix/suffix (or their combination) to the prefix of the output.

Furthermore, we define two functions for WK transducers. The function reading heads (denoted by r) gives
information about the working order of the heads of the transducer on any given input: it tells at every step
which head was reading in the process. Formally:

Definition 2.9. Let A be a deterministic 5′ → 3′ sensing WK transducer. The function associated to A of the
form r : V ∗ → {u, l}∗ is called reading heads if for every w ∈ V ∗ : r(w) = r1r2...rn, where ri = u if the upper
head was reading at i-th step and ri = l if the lower head was reading at i-th step, for every i ∈ {1, 2, ..., n}.

Actually, function r also exhibits the strong relation established between linear grammars and languages with
Watson–Crick automata, see, e.g., [12, 21, 25, 26]. The function processing order (denoted by p) can be used to
know for each letter of the input word in which step it was read. Its formal definition can be found below.

Definition 2.10. Let A be a deterministic 5′ → 3′ sensing WK transducer. The function called processing
order is of the form p : V ∗ → N∗ and for each word w ∈ V ∗ (where |w| is n) p takes each of the values of
N ∩ [1, n] exactly once: let w = w1...wn where w1, ..., wn ∈ V , then p(w) is the concatenation of the processing
orders of the letters of w, i.e., it is p1, ..., pn, where pj = i if the i-th step of the computation on w is either

(wjv, q, z) ⇒ (v, q′, zx) with (q′, x) = δ(q,
(
wj

λ

)
) or (vwj , q, z) ⇒ (v, q′, zx) with (q′, x) = δ(q,

(
λ
wj

)
) for some

q ∈ Q with |z|+ 1 = i.

Remark 2.11. For every WK transducer, for any input word w ∈ V ∗ : |w| = |r(w)| = |p(w)|.

In the next section we show 1-limited 5′ → 3′ sensing Watson–Crick finite-state transducers with some special
properties.

3. Special WK transducers

Since the model is still very general, in this paper, we start to analyze some more specific variants. In this
section, we list these variants with some examples to highlight their power.

First let us analyze the variant with marked-output. In the following definition we still refer to the notation
Q1 and Q2 defined in Lemma 2.6.
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Figure 2. Transition δ of A.

Figure 3. WK transducer with marked-output.

Definition 3.1. Let T1 = {a1, ..., aj} and T2 = {a1, ..., ak} be two disjoint alphabets. Let A be a WK transducer

and T = T1 ∪ T2 with T1 ∩ T2 = ∅. Let q ∈ Q1, then δ(q,
(
a
λ

)
) = (p, x) with x ∈ T1. Let q ∈ Q2, then δ(q,

(
λ
a

)
) =

(p, x) with x ∈ T2. A transducer A with this property is called WK transducer with marked-output.

Notice that in every transition when the first reading head is used, then a letter from T1 is written to the
output, and when the second reading head is used, then a letter from T2 is written to the output.

Example 3.2. Let A = ({0, 1}, ι, {0, 2, 1, 2}, {q0, q1, q2}, q0, δ) be a WK transducer where the table shown in
Figure 2 gives the transition function δ. In states q0, q2, the upper head reads an input letter and the output of the
WK transducer is an overlined letter, furthermore, in state q1, the lower head reads an input letter and the output
of the WK transducer is an underlined letter. (Using the notations as before we have: q0, q2 ∈ Q1, q1 ∈ Q2.) If
for an input DNA string w ∈ V ∗ the mapping γ(w) = z has only letters 0 and 1, then w is in the form of 0n1n

or 0n+11n. This means the string w started with some 0’s and then followed by the same number or one less of
1’s. The upper head reads the 0’s and the lower head reads the 1’s. If x = 2 or x = 2 for some letter x ∈ z, then
w is not in the mentioned form. The graph of this WK transducer is shown in Figure 3.

For example, if the input string is w1 = 000111, then γ(w1) = 010101 and if the input string is w2 = 00111,
then γ(w2) = 01012.

Therefore, one can identify which of the reading heads read a letter in a transition by the letter written to
the output: for w1 the first, second, first, second, first, second order and for w2 the first, second, first, second,
first order.

It is obvious that there is not any traditional Mealy/Moore transducer that is able to count arbitrarily large
number of 0’s and 1’s, and thus the mapping γ of the previous example cannot be computed by these traditional
models.

Theorem 3.3. For any mapping γ : V ∗ → T ∗ defined by a WK transducer A, there is a WK transducer A′

with marked output, defining γ′ : V ∗ → (T ′)∗, and the homomorphism h : T ′ → T such that γ(w) = h(γ′(w))
for every w ∈ V ∗.

Proof. Let A = (V, ι, T,Q, s0, δ) be a WK transducer defining γ. Further, let T ′ = T1 ∪ T2 where T1 = {x | x ∈
T} and T2 = {x | x ∈ T}, and A′ = (V, ι, T ′, Q, s0, δ

′), where δ′ is defined as follows. For each transition

(p, x) ∈ δ
(
q,
(
a
λ

))
, let (p, x) ∈ δ′

(
q,
(
a
λ

))
and for each transition (p, x) ∈ δ

(
q,
(
λ
a

))
let (p, x) ∈ δ

(
q,
(
λ
a

))
. Clearly,

A′ is a WK transducer with marked output. Now, by letting h a homomorphism that assigns x ∈ T to each
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x ∈ T1 and assigns x ∈ T to each x ∈ T2, for any input w ∈ V ∗, γ(w), i.e., the output word for w by the WK
transducer A is the same as h(γ′(w)), i.e., the homomorphic map of the output word of A′.

Based on the previous result we can say that WK transducers with marked output are almost (with resp. of
a homomorphism) as powerful as our general WK transducers.

On the other hand, knowing the image γ(w) of a word w (but not the WK transducer behind), generally, it
is not straightforward to see in which transition which of the heads is moving. Since h is not injective, it could
be a hard task to discover how the mapping is provided. However, knowing the output γ(w) and also the value
of the associated reading heads function, r(w), we can state the following.

Proposition 3.4. Let w ∈ V ∗ be an input word. If the output γ(w) and also r(w) are given for a specific WK
transducer A, then one can construct also the marked output of A on w.

Proof. Let us analyze the computation of A on the input w where |w| = n. Let γ(w) = γ1...γn and r(w) = r1...rn.
We will use the notation γ′(w) = γ′1...γ

′
n for the marked output of w. If at step i we have ri = u then γ′i = γi

and if ri = l then γ′i = γi.

Example 3.5. Let A be a WK transducer such that after processing the input word w = abaab we have
γ(w) = xyxyx and the output of the reading heads function r(w) = uulul. Based on Proposition 3.4 we can
construct the marked output: γ′(w) = xyxyx.

3.1. Using only the upper head

If the transition function δ(q,
(
a
b

)
) is non-empty only when |a| = 1, i.e., b = λ in every possible transition,

then the transducer using only the upper head to read the input. It is easy to see that transducers with this
property are equivalent to the classical (Mealy) transducers.

Note that WK transducers using only the upper reading head can also be seen as special cases of WK
transducers with marked output choosing T1 = T and T2 = ∅.

This together with Example 3.2 shows that WK transducers and WK transducers with marked output are
more powerful than traditional finite state transducers (Mealy and Moore automata).

Moreover, we can see that there are special properties when we use only the upper head. First, we can see
that the result stated in Theorem 2.8 is also specialized. In this case, we map the prefix of the input to the
prefix of the output and the suffix, in fact, is not used.

Proposition 3.6. Let A = (V, ι, T,Q, s0, δ) be a special WK transducer where only the upper head reads the
input and γ be the mapping V ∗ → T ∗ defined by A. Let w ∈ V ∗ be an input word and let z = γ(w). Then
for any z1, z2 ∈ T ∗ with z = z1z2, w can be written of the form w1w2 such that γ(w1) = z1 (moreover by the
Theorem 2.7: |w1| = |z1| and consequently |w2| = |z2|).

Furthermore, the functions reading heads r and processing order p also show the speciality of transducers
having this special form.

Proposition 3.7. Let A = (V, ι, T,Q, s0, δ) be a special WK transducer where only the upper head reads the
input and γ be the mapping V ∗ → T ∗ defined by A. Let w ∈ V ∗ be an input word such that |w| = n and let
z = γ(w). Then r(w) contains only the letter u and p(w) has the numbers from 1 to n in increasing order, i.e.,
r(w) = un and p(w) = 1, 2, ..., n.

3.2. Using only the lower head

If the transition function δ(q,
(
a
b

)
) is non-empty only when |b| = 1, i.e., a = λ in every possible transition,

then the transducer using only the lower head to read the input. The next example shows the power of such
WK transducers.

Alur and Cerný defined the streaming transducers in [1]. They argued that reversing a string is a hard task
by finite state transducers. They solved this problem by introducing a single data variable and a single data



DETERMINISTIC 5′ → 3′ WK TRANSDUCERS 9

Figure 4. A 1-limited example for WK transducer, where only the lower head is used.

string variable and they highlighted the power of the streaming string transducer by this example. In our model
the string reversing can be solved in the way presented in the next example.

Example 3.8. Let A = ({a, b}, ι, {a, b}, {q0}, q0, δ) be a WK transducer such that δ(q0,
(
λ
a

)
) = (q0, a),

δ(q0,
(
λ
b

)
) = (q0, b). See Figure 4.

We also need only one state to do reversing the input strings, just like Alur and Cerný but we do not need
any sophisticated data structure (variables).

We note here that the class of WK transducers mentioned in this subsection also belongs to the class of WK
transducers with marked output by choosing T1 = ∅ and T2 = T .

Similarly to the previous special case when we used only the upper head, we can see that there are special
properties when we use only the lower head also.

First, one can see that the statement of Theorem 2.8 can be strengthened. In fact, these transducers map
the suffix of the input to the prefix of the output and the prefix of the input is not used. Formally, we can state
the following.

Proposition 3.9. Let A = (V, ι, T,Q, s0, δ) be a special WK transducer where only the lower head reads the
input and γ be the mapping V ∗ → T ∗ defined by A. Let w ∈ V ∗ be an input word and let z = γ(w). Then
for any z1, z2 ∈ T ∗ with z = z1z2, w can be written of the form w1w2 such that γ(w2) = z1 (moreover by the
Theorem 2.7: |w2| = |z1| and consequently |w1| = |z2|).

(Note: Since the lower head reads the input with the direction from the last letter to the first, then z has a
more special property: the first letter of z1 belongs to the last letter of w2 etc.)

Moreover, the functions reading heads r and processing order p also shows the speciality of these transducers
by having special forms.

Proposition 3.10. Let A = (V, ι, T,Q, s0, δ) be a special WK transducer where only the lower head reads the
input and γ be the mapping V ∗ → T ∗ defined by A. Let w ∈ V ∗ be an input word such that |w| = n and let
z = γ(w). Then r(w) contains only the letter l and p(w) has the numbers from 1 to n in decreasing order, i.e.,
r(w) = ln and p(w) = n, n− 1, ..., 1.

3.3. Stateless WK transducers

In this subsection we consider deterministic WK transducers with the set of states as a singleton set (i.e.
Q = {q}). In fact, these transducers are the counterpart of the no-state (or stateless) 1-limited 5′ → 3′ WK
automata. In these transducers there is no state memory, i.e., they cannot store any information in their states.

By analysing these transducers, first of all, by Lemma 2.6, one can see that either only the upper, or only
the lower head can be used in all transitions. In this sense, each no-state WK transducer belongs to one of the
previously described classes, i.e., it uses only its upper or only its lower head. On the other hand, since there is
no state memory, we can state a more concrete result about them. As we will see, in this case, Moore-type WK
transducers are more restricted than the Mealy-type WK transducers.

Theorem 3.11. Let A = (V, ι, T, {q}, q, δ) be a stateless Mealy-type WK transducer. Then there are the
following two possibilities:
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Figure 5. An example for WK transducer, where the heads reads alternately.

1. If A uses only its upper head, then the mapping γ realizes just an alphabetic morphism (similar to the
mappings of stateless Mealy automata), that is, for each a ∈ V , there is exactly one γ(a) ∈ T , and for
each word w = w1w2...wn with w1, w2, ..., wn ∈ V , A maps γ(w1)γ(w2)...γ(wn) to w.

2. If A uses only its lower head, then γ is a reversed alphabetic morphism, i.e., it is an alphabetic morphism
of the reversal of the input word, that is, for each a ∈ V , there is exactly one γ(a) ∈ T , and for each word
w = w1w2...wn with w1, ..., wn ∈ V , A maps γ(wn)...γ(w2)γ(w1) to w.

Proof. Since A is a deterministic 1-limited transducer, at each step for every input letter a we have exactly one
transition δ(q, a) = (q, x). Hence the output mapping γ(a) = x. A assigns γ(wi) to every wi for i = 1, ..., n and
in the first case the upper head reads w letter by letter from the first letter till the last one so after reading w
we have γ(w) = γ(w1)...γ(wn). If only the lower head was used, then it reads w from the last letter till the first
letter, hence γ(w) = γ(wn)...γ(w1).

We underline here that Example 3.8 shows a stateless MeWK transducer.
In contrast to Mealy-type transducers, the stateless constraint is much stronger for Moore-type transducers:

Theorem 3.12. Let A = (V, ι, T, {q}, q, δ, µ) be a stateless Moore-type WK transducer. Then, independently of
the fact if A uses only its upper head or its lower head, there is a letter b ∈ T such that the mapping γ just give
the length of the input in unary code, i.e., for any w ∈ V ∗, γ(w) = b|w|.

Proof. Since there is only one state q, the output in each step of the computation is µ(q) ∈ T . Let b = µ(q).
Then, A is just counting the length of the input word and puts as many b’s to the output as the length of the
input.

Since, in fact, each of our stateless WK transducers is either using only its upper head or only its lower head,
about the functions r and p Proposition 3.7 and 3.10 can be applied, respectively.

3.4. Using the heads alternately

The following example is connected to the well-known problem of words: one has to decide whether a word
is the same as its reverse, i.e., it is a palindrome or not.

Example 3.13. Let A = ({a, b}, ι, {0, 1}, {q0, qa, qb}, q0, δ) be a WK transducer such that δ(q0,
(
a
λ

)
) = (qa, 1),

δ(q0,
(
b
λ

)
) = (qb, 1), δ(qa,

(
λ
a

)
) = (q0, 1), δ(qb,

(
λ
b

)
) = (q0, 1), δ(qa,

(
λ
b

)
) = (q0, 0) and δ(qb,

(
λ
a

)
) = (q0, 0). See

Figure 5. In state q0 the upper head reads an input letter and the output of the WK transducer is in this
transition the letter x = 1, furthermore in state qa, qb the lower head reads an input letter and the output of the
WK transducer in these transitions is the letter y: if the lower head reads the same letter which just read by
the upper head in the previous transition, then the output letter is y = 1, in the other cases the output letter
is y = 0. (Using the notations as before we have: q0 ∈ Q1, qa, qb ∈ Q2.) If for an input DNA string w ∈ V ∗ the
mapping γ(w) = z has only letters 1’s, then w is a palindrome. If 0 is a letter of the output z, then w is not a
palindrome.
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For example, if the input string is w1 = abaaaba, then γ(w1) = 1111111 and if the input string is w2 = abbaba,
then γ(w2) = 111110. This means w1 is a palindrome and w2 is not a palindrome.

In fact, by measuring the longest even prefix of the output built up by only 1’s, i.e., the maximal value of n
such that (11)n is a prefix of the output, one gets the measure of how long palindrome border the input word
has. Formally, for an input w it is the maximal length of v such that w = vuv−1, where v−1 is the reversal of

v. If w is a palindrome, then n =
⌊
|w|
2

⌋
, i.e., the integer part of the halflength of w.

Proposition 3.14. Let A = (V, ι, T,Q, q0, δ) be a WK transducer which uses its reading heads alternately. Then
A has a bipartite graph.

Proof. The set of states is partitioned to Q1 and Q2 (as defined in Lem. 2.6). Moreover, in these transducers,
if δ(q, a) = p, then either q ∈ Q1, p ∈ Q2 or p ∈ Q1, q ∈ Q2.

Although the WK transducers of this subsection are not WK transducers with marked output by default,
since it is clearly known that the even/odd positions of the output are written by transitions using one and the
other reading head respectively. We can write this fact more formally in the following way. Remember, that Q1

is the subset of states Q where the first reading head is allowed to move.

Proposition 3.15. Let γ be a mapping defined by the WK transducer A = (V, ι, T,Q, q0, δ) that uses its reading
heads alternately. Further, let T ′, the mapping γ′ and the homomorphism h be defined as in Theorem 3.3.
Although h is not injective, γ′(w) can be determined from γ(w) based on the fact whether q0 ∈ Q1 or not
(without actually computing the WK transducer A′ with marked output).

Proof. If q0 ∈ Q1, then the first letter of the output h(w) is written in a transition by the first head, and thus,
the corresponding first letter of γ′(w) is in T1 (overlined). Then based on the bipartite graph of the transducer,
each even position of γ′(w) is underlined and all odd positions are overlined.

In the case q0 6∈ Q1, i.e., q0 ∈ Q2, every odd position of γ′(w) is written by a letter from the underlined
output alphabet T2 and each even position with an overlined letter.

In fact, by partitioning the positions of the output letters, as odd and even positions, by using the alphabetical
morphisms ho : T1 → T and he : T2 → T if q0 ∈ Q1 (ho : T2 → T and he : T1 → T if q0 ∈ Q2, respectively), they
are bijections.

In the case of alternately reading heads, Theorem 2.8 can be applied and, in this special case, we can give
the algorithm of how the prefix of the output can be constructed from the prefix and suffix of the input.

There are two versions of this transducer depending on which head starts reading the input. If the upper
head starts reading, we say it is the case UL; and if the lower head stars reading, we say it is the LU case. Let
w = w1w2...wn ∈ V ∗ be an input word and let the output be z = γ(w) with z = z1z2 for some z1, z2 ∈ T ∗. In
the UL case the z1 = γ(w1)γ(wn)γ(w2)γ(wn−1).... Thus, basically, the prefix of the output corresponds to the
prefix and the suffix of the input letter by letter alternately: first one letter from the prefix, then one letter from
the suffix, etc. In the LU case the difference is that the lower head starts the reading so z1 is created in the way
z1 = γ(wn)γ(w1)γ(wn−1)γ(w2)....

When the heads are reading alternately we can see that the reading heads function r(w) can be either in the
form ulululul... or in the form lulululu.... In the UL case the p(w) will have the following structure: first we
can see the odd numbers in increasing order from 1 to d|w|/2e and then the even numbers in decreasing order
from b|w|/2c to 2. In the LU case we can see the even numbers from 2 to b|w|/2c and then the odd numbers in
decreasing order from d|w|/2e to 1.

4. Further properties of WK transducers

In this section, first, we further analyze the functions p and r associated to a WK transducer. We start this
section by an example.

Example 4.1. Let w = abbaa be an input of a WK transducer A.
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1. When only the upper head reads: r(w) = uuuuu and p(w) = 1, 2, 3, 4, 5.
2. When only the lower head reads: r(w) = lllll and p(w) = 5, 4, 3, 2, 1.
3. In case of alternately reading heads: r1(w) = ululu and p1(w) = 1, 3, 5, 4, 2 or r2(w) = lulul and p2(w) =

2, 4, 5, 3, 1.
4. An arbitrary WK transducer could have the functions r and p such that they assign the following values

to w: r(w) = uulul and p(w) = 1, 2, 4, 5, 3.

One may ask what are the possible values of the functions r and p that can occur for our WK transducers.
Let us answer this question.

Theorem 4.2. Let m ∈ {u, l}∗ be an arbitrary word. There exists a WK transducer A = (V, ι, T,Q, q0, δ) and
an input word w ∈ V ∗ such that the associated function, reading heads r assigns m to w, i.e., r(w) = m.

Proof. We prove the statement by construction. Let m = m1...mn with m1, ...,mn ∈ {u, l} be given, where the
length of m is |m| = n. Let A = ({a}, ι, {b}, {q0, q1, ..., qn}, q0, δ) and w = an such that there is only 1 transition
from each state: from qi only to qi+1 (i < n) and from qn only to qn itself. Further by Lemma 2.6, we know
that Q = Q1 ∪Q2 where all transitions in states of Q1 are defined only for the upper head and for all states in
Q2 transitions are defined only for the lower head. Now, set Q1 = {qj | mj+1 = u}, and Q2 = Q \Q1. Clearly,
when w is processed by A, in the first step the upper head is used if and only if q0 ∈ Q1 that is if and only if
m1 = u, etc. Consequently, it is easy to see that r(w) = m.

The function processing order is onto and one-to-one, i.e., every value of the target {1, 2, ..., n} is used exactly
once for the given input word w = w1w2...wn (with |w| = n). In fact, it is a permutation of these values (i.e.
p(w) ∈ Sn where Sn is a symmetric group, the set of all permutations with n element), but not every permutation
can occur for WK transducers. For being a processing order function output p(w) for an input word w, the
permutation should be in a special form according to the next theorem. We use si,j to denote the sequence of
numbers from position i till position j of a permutation s (where i < j). Further, we use smini,j to denote the
smallest number in the sequence of numbers si, ..., sj . (Furthermore smini,i = si that is when we have only one
element si.)

Theorem 4.3. Let s = s1...sn ∈ Sn be an arbitrary permutation. There exists a WK transducer A and an
input word w = w1...wn, where the remaining subword of the input w is denoted by w′ with |w′| = l+1 and
w′ = wk...wk+l. The processing order function may assign s to w, i.e. p(w) = s if and only if for every remaining
subword w′ either sk = smink,k+l or sk+l = smink,k+l.

Proof. First let A = (V, ι, T,Q, q0, δ) be a WK transducer and w = w1...wn ∈ V ∗ such that the assigned pro-
cessing order function p(w) = s. It means that for every i = 1, ..., n we have pi = si. Since the transducer is
1-limited and deterministic we know that at first step either the upper head reads the first letter of w hence
the configuration (w, q0, λ) will be followed by (w2....wn, q, x) where (q, x) = δ(q0,

(
w1

λ

)
) and p1 = 1; or the lower

head reads the last letter of w hence the configuration (w, q0, λ) will be followed by (w1....wn−1, q, x) where
(q, x) = δ(q0,

(
λ
wn

)
) and pn = 1 for some state q ∈ Q and output letter x ∈ T . The minimum of the numbers

1, ..., n denoted by smin1,n is 1 and if the upper head starts the readings then s1 = p1 = 1 = smin1,n and if the
lower head starts the reading then sn = pn = 1 = smin1,n. At step i (where i = 2, ..., n) we have a remaining
word w′ = wk...wk+l with the length |w′| = n− i+ 1 and in the computation, the configuration (w′, q′, z) can
be followed by either (wk+1...wk+l, q

′′, zy) where (q′′, y) = δ(q′,
(
wk

λ

)
) by reading with the upper head the first

letter of w′ or (wk...wk+l−1, q
′′, zy) where (q′′, y) = δ(q′,

(
λ

wk+l

)
) by reading the last letter of w′ with the lower

head, for some states q′, q′′ ∈ Q and output letter y ∈ T . If the upper head reads wk then pk = i and if the lower
head reads wk+l then pk+l = i. Therefore sk = pk = i or sk+l = pk+l = i and since smink,k+l = i we proved the
first direction of the statement.

Second, we prove the existence of A by construction. Let A = (V, ι, T,Q, q0, δ) be a WK transducer and w =
w1...wn ∈ V ∗ be an input word of A where the transition δ can be constructed based on s in the following way.
We assume based on the second part of the theorem that either s1 = smin1,n (first case) or sn = smin1,n (second
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case). Hence at step 1, if s1 = smin1,n then the configuration (w, q0, λ) will be followed by (w2....wn, q, x) where
(q, x) = δ(q0,

(
w1

λ

)
) and if sn = smin1,n then the configuration (w, q0, λ) will be followed by (w1....wn−1, q, x)

where (q, x) = δ(q0,
(
λ
wn

)
) for some state q ∈ Q and output letter x ∈ T . In the first case we have p1 = 1 and in

the second case we have pn = 1. At the i-th step (where i = 2, ..., n) we have a remaining word w′ = wk....wk+l

with length l = n − i + 1 moreover smink,k+l = i and we know from the theorem that either sk = smink,k+l

(first case) or sk+l = smink,k+l. In the computation, the configuration (w′, q′′, z′) will be followed by either
(in the first case) (wk+1...wk+l, q

′′, z′y) where (q′′, y) = δ(q′,
(
wk

λ

)
) or (in the second case) (wk...wk+l−1, q

′′, z′y)

where (q′′, y) = δ(q′,
(

λ
wk+l

)
) for some states q′, q′′ ∈ Q and output letter y ∈ T . In the first case we have pk = i

and in the second case we have pk+l = i.

Further, we see how the functions processing order and reading heads relates to each other.

4.1. Producing p(w) from r(w)

Algorithm 1 gives the formal description of the process of producing the string value of the processing order
function from the given string value of the reading heads function on an input word w for a given WK transducer.

Algorithm 1. Computing the processing order from reading heads.
input: r /*the string value of the reading heads function on w for a given WK transducer A*/
output: p /*the string value of the processing order function on w for the WK transducer A*/

let n = |w|
let first = 1
let last = n
for i = 1..n do

if (ri = u)
then

let pfirst = i
let first = first + 1

else /* in case (ri = l) */
let plast = i
let last = last− 1

4.2. Producing r(w) from p(w)

Algorithm 2 gives the formal description of the method of producing the string value of the reading heads
function from the given string value of the processing order function on an input word w for a given WK
transducer.

If p(w) is known for an input word w for a given WK transducer, then we can create two r(w) string values
because it is undecidable using only these data which head read the last letter. Since Algorithm 2 at first checks
if the certain pi value is equal to u, it means the output r will contain a u at the position of the last letter hence
it gives the solution when it was read by the upper head.

Algorithm 2. Computing the reading heads from processing order.
input: p /*the string value of the processing order function on w for a given WK transducer A*/
output: r /*the string value of the reading heads function on w for the WK transducer A*/

let n = |w|
let first = 1
let last = n
for i = 1..n do

if (pfirst = i)
then

let ri = u
let first = first + 1

if (plast = i)
then

let ri = l
let last = last− 1
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If an arbitrary r(w) is given then we can always create p(w) without any restrictions. The order of the heads
can be changed at any moment of the process depending on the given WK transducer and on its input as
we shown in Theorem 4.2. However, the other case requires a little investigation since processing an input by
reading it from the extremes implies that the numbers cannot be in an arbitrary order, as we have shown in
Theorem 4.3.

4.3. Control word of the computation

An important language associated to a Watson–Crick automaton was defined in [23]: taking into account
the transitions, not the recognized string. They considered a labeling on the edges of the graph of a Watson–
Crick finite automaton M, i.e., to every transition of the automaton a label is assigned. Then the control word
of a computation was given by the sequence of labels of transitions of the computation. The languages and
language classes of control words of accepting computations were defined and analyzed based on this definition
for variants of the automata. While these control word languages were extensively studied in [23] for traditional
WK automata, so far they have not been studied for 5′ → 3′ WK automata. Here, we define and use the control
word language of the computations by deterministic sensing 5′ → 3′ WK automata. In fact, deterministic 1-
limited 5′ → 3′ sensing WK automata and our WK transducers are in a close correspondence based on control
words as we formalize below.

Definition 4.4. Let A be a deterministic 5′ → 3′ sensing WK automaton or a WK transducer. Let Lab be the
alphabet (set) of labels and let us assign a label to each transition of A, i.e., let the graph of the automaton
be edge labelled. Let w be an input, then the sequence of labels of the transitions of the computation on w is
called the control word of the computation, it is in fact, a word in Lab∗.

Proposition 4.5. Let A = (V, ι, T,Q, q0, δ) be a 5′ → 3′ WK transducer in the following way: let the set of
labels on the transitions be T such that on transition (p, x) ∈ δ

(
q,
(
a
b

))
the label is exactly x. In this way the

control word of a computation of A from the configuration (w, q0, λ) to the configuration (λ, q, z) is exactly the
output word z.

Considering deterministic 1-limited all-final 5′ → 3′ sensing WK automata M = (V, ι,Q, q0, δ, Q) and the
label set Lab such that there is a unique label x ∈ Lab assigned for each transition p ∈ δ

(
q,
(
a
b

))
. The control

words of the computations on any input word w can be observed as the words over Lab which are exactly the
same as the output words of the 5′ → 3′ Mealy WK transducer A = (V, ι, Lab,Q, q0, δ

′) working on input w
where δ′ is defined as follows: (p, x) ∈ δ′(

(
q,
(
a
b

))
if and only if p ∈ δ

(
q,
(
a
b

))
and x ∈ Lab is assigned to this

transition.

Proof. The first statement of the proposition is obvious, while the second statement, the connection between
the control words and control word language of deterministic 1-limited all-final 5′ → 3′ WK automata and
deterministic 1-limited 5′ → 3′ WK transducers follow from the first statement and the construction shown in
the proposition.

Based on the previous proposition, WK transducers can also be connected to the concept of computing by
observing ([2]) as the transition sequence in a bio-inspired system can be connected to a sequence of observations
that can be done outside of the system during the process it computes. Actually, the WK transducers can make
explicit the observation as the output of the computation.

Special subtypes of WK transducers are also presented: at WK transducers with marked-output it is explicitly
given which of the heads moved in which transition. In some other cases one also can identify which of the reading
heads are used in which transition. Here we can see another approach related to this issue. By using unique
labels for every transition it is clear again that the output letter (label) identifies the reading head that moves
during this transition.

In the next section we analyze transducers in which we can infer from the output which of the heads was
moving in each transition.
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5. Equivalence relation among the states of
WK transducers

In this section we investigate equivalence relation among the states of a WK transducer and among the states
of two WK transducers (with marked-output).

Definition 5.1. Let A1 = (V, ι, T,Q, p0, δ) and A2 = (V, ι, T,Q′, q0, δ
′) be two not necessarily different WK

transducers with common input and output alphabets. We say that p ∈ Q and q ∈ Q′ are distinguishable with
word w ∈ V ∗, if we consider the configurations (w, p, λ)⇒∗ (λ, p′, z1) and (w, q, λ)⇒∗ (λ, q′, z2), then z1 6= z2

holds.

If two states are distinguishable, intuitively, we may distinguish them by input words which are processed
without state repetition, this fact can be formalised as follows.

Theorem 5.2. Let A = (V, ι, T,Q, p0, δ) be a WK transducer with marked-output. Let n = |Q| and p, q ∈ Q. If
p and q are distinguishable, then there is a word w of length at most n− 1 such that it distinguishes p and q.

Proof. The proof goes by induction. For every non-negative integer k we define a relation ηk on the set of states
Q of the given WK transducer as follows: (p, q) ∈ ηk if and only if p and q cannot be distinguished by any words
of length at most k. Denote ck the number of ηk-classes. Naturally, (p, q) ∈ η0 for every p, q ∈ Q, thus c0 = 1,
there is only one class.

Let us assume that ηk is known. Let us compute ηk+1. If (p, q) /∈ ηk, then (p, q) /∈ ηk+1. If (p, q) ∈ ηk, then
(p, q) ∈ ηk+1 if the following condition holds for every w ∈ V ∗ with |w| = k. Consider w′ = w1abw2 ∈ V ∗ where
w = w1w2 such that w1 is read by the first head and w2 is read by the second head, furthermore |a|+ |b| = 1
(thus |w′| = k+ 1). Then the computation on w′ from the states p and q go: (w′, p, λ)⇒∗ (ab, p′, z)⇒ (λ, p′′, zx)
and (w′, q, λ)⇒∗ (ab, q′, z)⇒ (λ, q′′, zx).

In this way it is clear that ηk+1 is a refinement of the classification ηk (allowing longer input there can be
more classes of states).

There is a value m ∈ N such that m ≤ n − 1 and ηm = ηm+1 = ηm+i for every i ∈ N, because the set Q is
finite. (If there would be no such value m, then in each step of the refinement we obtain more and more classes,
and after n steps some classes with only one state would be divided which is clearly impossible.) Denote η = ηm
this final equivalence relation among the states.

The method to get this final classification also confirms the proof.

The next theorem allows us to compare the states of two transducers.

Theorem 5.3. Let A1 = (V, ι, T,Q, p0, δ) and A2 = (V, ι, T,Q′, q0, δ
′) be two different WK transducers with

marked-output, with common input and output alphabets. Let A = (V, ι, T,Q ∪ Q′, p0, δ
′′), where δ′′ is defined

in the following way: δ′′(q, a) = δ(q, a) if q ∈ Q and δ′′(q, a) = δ′(q′, a) if q ∈ Q′. Let p ∈ Q and q ∈ Q′. If p and
q are distinguishable, then there is a word w of length at most |Q|+ |Q′| − 1 such that it distinguishes p and q.

Proof. The proof is a direct consequence of the definition of WK transducer A and Theorem 5.2.

Definition 5.4. Let A1 = (V, ι, T,Q, p0, δ) and A2 = (V, ι, T,Q′, q0, δ
′) be two not necessarily different WK

transducers with common input and output alphabets. We say that p ∈ Q and q ∈ Q′ are equivalent if they are
not distinguishable with any word w ∈ V ∗.

By Theorems 5.2 and 5.3 if one wants to know whether two states are equivalent, then it is enough to check
their behavior for input words with at most a certain length.

Theorem 5.5. Let A1 = (V, ι, T,Q, p0, δ) and A2 = (V, ι, T,Q′, q0, δ
′) be two WK transducers with marked-

output, with common input and output alphabets. A1 is equivalent to A2 if and only if p0 and q0 are equivalent.
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Proof. Let γ1 be the mapping defined by A1 and γ2 be defined similarly by A2. By definition, A1 and A2

are equivalent if γ1 identical to γ2. If p0 is not distinguishable from q0, then for every word w ∈ V ∗ γ1(w) =
γ2(w).

6. Canonical WK transducers

Canonical, i.e., minimal WK transducers will be defined for WK transducers with marked-output. In this
section we deal with WK transducers such that every of their state is reachable from the initial states. (For
each state q′ there exists an input string w such that (w, q0, λ)⇒∗ (λ, q′, z) where q0 is the initial state and z
is the output of the computation on w.)

Lemma 6.1. Let A1 = (V, ι, T,Q, p0, δ) and A2 = (V, ι, T,Q′, q0, δ
′) be two WK transducers with marked-

output and the same input and output alphabets, such that every of their state is reachable from the initial
states, respectively. The WK transducers A1 and A2 are equivalent if and only if p0 and q0 are equivalent,
moreover for every state in Q there is an equivalent state in Q′ and for every state in Q′ there is an equivalent
state in Q.

Proof. By Theorem 5.5 it is clear that A1 and A2 are equivalent if their initial states are equivalent. Let
us prove the other part of the statement by contradiction. Without loss of generality, let us assume that
there is a state p′ ∈ Q such that there is no equivalent state in Q′ with p′; but A1 and A2 are equivalent.
By the assumption that p′ can be reached from p0, there is an input word w ∈ V ∗ such that: (w, p0, λ) ⇒∗
(λ, p′, z) and (w, q0, λ) ⇒∗ (λ, q′, z) for a state q′ ∈ Q′. Since q′ and p′ are not equivalent, there is a word
u such that (u, p′, λ) ⇒∗ (λ, p′′, z1), (u, q′, λ) ⇒∗ (λ, q′′, z2) and z1 6= z2. Then (w1uw2, p0, λ) ⇒∗ (λ, p′′, zz1),
(w1uw2, q0, λ)⇒∗ (λ, q′′, zz2) with some w1, w2 ∈ V ∗ such that w = w1w2. This contradicts to the fact that A1

and A2 are equivalent.

Definition 6.2. Let A = (V, ι, T,Q, p0, δ) be a WK transducer and γ be the mapping defined by A. If we
consider all the WK transducers which induce mapping γ and A has the minimal number of states among
them, then we say that A is minimal (or canonical).

In the following theorem we will use the notation η which we have defined in the proof of Theorem 5.2.

Theorem 6.3. Let A1 = (V, ι, T,Q1, p0, δ) be a WK transducer with marked output, γ1 be the mapping defined
by A1. Let A2 = (V, ι, T,Q2, p

′
0, δ
′). If A2 is a minimal WK transducer and equivalent with A1, then the number

of states of A2 is the same as the number of classes in η for A1.

Proof. The proof consists of two parts. First we show that there is a WK transducer A2 that is equivalent with
A1 and has the same number of states as the number of classes in η for A1.

Denote p̂ the equivalence class of η containing p, i.e., p̂ = {q|(p, q) ∈ η}. Let Q2 = {p̂|p ∈ Q1}.
Let A2 = (V, ι, T,Q2, p̂0, δ

′) be a WK transducer such that δ′ is defined in the following way: δ′(p̂, a) = (q̂, x)
if δ(p, a) = (q′, x) where q′ ∈ q̂. (Note that |Q2| = |Q1| when A1 is minimal.)

It is clear by the construction and the equivalence relation among the states that A2 defines the same
mapping γ as A1. Moreover in A2 every class is represented by a unique state.

The second part of the proof goes by contradiction. We prove that A2 is minimal. Let us assume that
A3 = (V, ι, T,Q3, p0, δ) is a minimal WK transducer and equivalent with A1, but |Q3| > |Q2|. Then it is a
contradiction, since A2 is also equivalent with A1 and has smaller number of states.

Consider now the case when A3 has less states than A2, i.e., |Q3| < |Q2|. This means that there is at least
one state in q2 ∈ Q2 such that there is no equivalent state to q2 in Q3. Then A3 cannot be equivalent to A2

and to A1 by Lemma 6.1. Thus any minimal WK transducer that is equivalent to A1 has the same number of
states that is the number identical to the number of classes of η for A1.
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7. Conclusions

Deterministic one-limited 5′ → 3′ Mealy and Moore type Watson–Crick transducers were investigated. We
have shown that for each Moore type WK transducer, there is an equivalent Mealy type WK transducer in the
sense that the same mapping is realized by them and vice versa. Based on that, we mostly detailed only the
Mealy type variants. In contrast, when the number of states is limited to one, i.e., considering the stateless
variants, it is shown that the Moore type transducers are more restricted than the Mealy type transducers.
In fact, stateless Moore type WK transducers cannot do more than stateless Moore automata (with only one
reading head). On the other hand, stateless Mealy type WK transducers can do everything that stateless Mealy
automata (with one reading head) can do, moreover, they can also realize some other mappings. In fact, they
can already do reversing the input word (that is defined as a hard task in [1] with – finite state – transducers).
We have restricted our study to 1-limited and deterministic WK transducers, i.e., in every configuration with
nonempty input they read exactly one letter (by one of the two heads) and write exactly one letter on the
output tape. Consequently, it is shown that at every state exactly one head can read (and move), i.e., in all
possible transitions from that state the same head can read a letter. It was shown that the mappings realized
by this model has length preserving property and also a kind of border-to-prefix property in the sense that the
prefix of the output depends only on a combination of the prefix and the suffix of the input.

By releasing the 1-limited condition, i.e., allowing to read and/or to write longer strings or the empty word
in a transition a generalization of the studied models can be understood which generalize also the streaming
transducers (because of the two reading heads). Non-deterministic variants can also be interesting. While variants
with non-injective WK-complementarity relation can also be analyzed, especially in the case when both reading
heads must read their strands entirely.

We have also presented canonical 5′ → 3′ WK transducers for variants with marked output. In these trans-
ducers, the output symbol does identify the reading head used in that transition. We have used the functions
processing order and reading head to analyze WK transducers. Extension of the study of a larger class of WK
transducers is also a task of a future research. We believe that a much larger class of mapping can be defined
and analyzed by automata using our approach, as Lin and 2detLin are classes including much more interesting
languages than Reg.
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