RAIRO-Theor. Inf. Appl. 55 (2021) 6 RAIRO - Theoretical Informatics and Applications
https://doi.org/10.1051/ita/2021006 Www.rairo-ita.org

DIGGING INPUT-DRIVEN PUSHDOWN AUTOMATA

MARTIN KUTRIB*® AND ANDREAS MALCHER

Abstract. Input-driven pushdown automata (IDPDA) are pushdown automata where the next action
on the pushdown store (push, pop, nothing) is solely governed by the input symbol. Nowadays such
devices are usually defined such that popping from the empty pushdown does not block the computation
but continues it with empty pushdown. Here, we consider IDPDAs that have a more balanced behavior
concerning pushing and popping. Digging input-driven pushdown automata (DIDPDA) are basically
IDPDAs that, when forced to pop from the empty pushdown, dig a hole of the shape of the popped
symbol in the bottom of the pushdown. Popping further symbols from a pushdown having a hole at
the bottom deepens the current hole furthermore. The hole can only be filled up by pushing symbols
previously popped. We study the impact of the new behavior of DIDPDAs on their power and compare
their capacities with the capacities of ordinary IDPDAs and tinput-driven pushdown automata which
are basically IDPDAs whose input may be preprocessed by length-preserving finite state transducers.
It turns out that the capabilities are incomparable. We address the determinization of DIDPDAs and
their descriptional complexity, closure properties, and decidability questions.

Mathematics Subject Classification. 68Q45, 68Q15.

Received December 6, 2019. Accepted March 25, 2021.

1. INTRODUCTION

In connection with an upper bound for the space needed for the recognition of deterministic context-free
languages, a subclass of pushdown automata has been introduced in [20]. These so-called input-driven pushdown
automata (IDPDA) work in real time and, more importantly, in an input-driven way. That is, no moves on empty
input are allowed, and the actions on the pushdown store are dictated by the input symbols. To this end, the
input alphabet is partitioned into three subsets, where one subset contains symbols on which the automaton
pushes a symbol onto the pushdown store, one subset contains symbols on which the automaton pops a symbol,
and one subset contains symbols on which the automaton leaves the pushdown unchanged and makes a state
change only. The results in [20] and the follow-up papers [7, 24] comprise the equivalence of nondeterministic
and deterministic models and the proof that the membership problem is solvable in logarithmic space.

The investigation of input-driven pushdown automata has been revisited in [1, 2], where such devices
are called visibly pushdown automata or nested word automata. Some of the results are descriptional com-
plexity aspects for the determinization as well as closure properties and decidability questions which turned
out to be similar to those of finite automata. Further aspects such as the minimization of IDPDAs and a

Keywords and phrases: Input-driven pushdown automata, empty pushdown behavior, computational capacity, determinization,
descriptional complexity, closure properties, decidability problems.

Institut fiir Informatik, Universitdt Giessen, Arndtstr. 2, 356392 Giessen, Germany.

* Corresponding author: kutrib@informatik.uni-giessen.de

© The authors. Published by EDP Sciences, 2021

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

https://doi.org/10.1051/ita/2021006
https://www.rairo-ita.org
https://orcid.org/ 0000-0002-9564-2625
https://orcid.org/0000-0002-9589-5833
mailto:kutrib@informatik.uni-giessen.de
https://creativecommons.org/licenses/by/4.0

2 M. KUTRIB AND A. MALCHER

comparison with other subfamilies of deterministic context-free languages have been studied in [5, 6]. A recent
survey with many valuable references on complexity aspects of input-driven pushdown automata may be found
in [22].

The properties and features of IDPDAs revived the research on input-driven pushdown languages and
triggered the study of further input-driven automata types, such as input-driven variants of, for example,
multi-pushdown automata or more general auxiliary storages [14, 18], (ordered) multi-pushdown automata [4],
scope-bounded multi-pushdown automata [16], stack automata [3], queue automata [12], etc. In particular,
input-driven ordered pushdown automata obey the limitation that a pushdown can be popped only if all the
lower indexed pushdowns are empty. Nevertheless, even the variant with two pushdowns accepts non-context-free
languages as crossing dependencies and cannot be determinized [15].

However, the questions asked in connection with IDPDAs have widened since the early papers from the
eighties. Additionally, the definition of input-driven to visibly pushdown automata has changed at a certain
point. In the early papers, IDPDAs are defined as ordinary real-time pushdown automata whose behavior on
the pushdown is solely driven by the input symbols. The problem that an IDPDA could be forced to pop from
the empty stack has not been addressed. So, following a common sense one could say that in such a situation the
computation blocks. Later [1], popping from the empty pushdown was simply allowed by defining that popping
from the empty pushdown results in an empty pushdown and the computation may continue. While it seems to
be natural to overcome the problem by defining some action in such situations and to continue the computation,
it is somehow unbalanced and, thus, artificial simple to say that the pushdown remains empty. In this way, in
fact, on every input symbol that requires a push operation some additional symbol is pushed, but not for every
input symbol that requires a pop operation some symbol is popped. So, an interesting question is to what extent
the definition gives additional power to the devices or whether it restricts the capacity.

Here, we consider input-driven pushdown automata that behave differently when they have to pop from the
empty pushdown. In order to implement a more balanced behavior, one can imagine that popping a specific
symbol from the empty pushdown digs a hole in the bottom of the pushdown, where the hole has the shape
of the symbol. This means that the hole can only be filled up by pushing that symbol again. Popping further
symbols from a pushdown having a hole at the bottom deepens the current hole furthermore. As usual, for a
transition the digging input-driven pushdown automaton looks at the pushdown from above. If the pushdown
has a hole, the automaton ‘sees’ the bottom of the hole, that is, the (shape of the) symbol which was popped
as last. These devices are called digging input-driven pushdown automata (DIDPDA) and are studied in the
sequel. In particular, the basic and formal definition is given and clarified by an introductory example in the next
section. In Section 3, the computational capacity of DIDPDAs is studied. Of particular interest is the impact of
the new behavior of DIDPDAS on their power. So, among others the capacities are compared with the capacities
of ordinary IDPDAs and so-called tinput-driven pushdown automata which are basically IDPDAs whose input
may be preprocessed by length-preserving finite state transducers [13]. It turns out that the family of languages
accepted by DIDPDAs is incomparable with the other devices. So, digging may give power to the machines and,
on the other hand, allowing to pop from the empty pushdown without getting stuck can be utilized to perform
computations that are impossible for machines that actually have to perform the action required by the input
symbol. Section 4 considers the determinization of DIDPDAs and its descriptional complexity, where upper
and lower bounds on the size are given that match in the order of magnitude of the second exponent. Closure
properties and decidability questions for digging pushdown automata are studied in Section 5. We distinguish
here in particular the important special case that all automata involved share the same partition of the input
alphabet [1] from the general one. Finally, in Section 6 we consider the family of all languages that are either
accepted by DIDPDAs or by IDPDAs and we study again the closure properties and decidability questions
for this new family. We would like to note that a preliminary version of this work was presented at the 11th
Workshop on Non-Classical Models of Automata and Applications (NCMA 2019), Valencia, Spain, July 2-3,
2019, and it is published in [11].

DIGGING INPUT-DRIVEN PUSHDOWN AUTOMATA 3

2. PRELIMINARIES

We denote the non-negative integers {0,1,2,...} by N. Let X* denote the set of all words over the finite
alphabet Y. The empty word is denoted by A, and 2T = ¥* \ {\}. The set of words of length at most n > 0 is
denoted by X=". The reversal of a word w is denoted by w?. For the length of w we write |w|. For the number
of occurrences of a symbol a in w the notation |w|, is used. We use C for inclusions and C for strict inclusions.
We write 2° for the power set and |S| for the cardinality of a set S. We say that two language families .%; and
%5 are incomparable if %) is not a subset of % and vice versa.

A classical deterministic pushdown automaton (DPDA) is called real-time, if no moves on empty input
are allowed. A DPDA is called input-driven (IDPDA) if the next input symbol defines the next action on the
pushdown store, that is, pushing a symbol onto the pushdown store, popping a symbol from the pushdown store,
or changing the state without modifying the pushdown store. To this end, the input alphabet X is partitioned
into the sets Y p, X g, and X, that control the actions push (D), pop (R), and state change only (N). However,
if the next input symbol forces the IDPDA to pop a symbol from the empty pushdown then the computation
does not get stuck but continues with an empty pushdown. At this point, a digging input-driven pushdown
automaton has the different behavior mentioned above. In order to implement this behavior, a copy of the
pushdown alphabet is used to represent the symbols below the surface. Moreover, when the transition function
pops from the pushdown, it explicitly gives the symbol to be popped. A formal definition is:

Definition 2.1. A deterministic digging input-driven pushdown automaton, abbreviated as DIDPDA, is a
SyStem M = <Qa 27 Fa q0, Fa J—v 5D7 5Ra 6N>7 where

@ is the finite set of internal states,

3’ is the finite set of input symbols partitioned into the disjoint sets Xp, X, and Xy,

T is the finite set of pushdown symbols, where ' = {X | X €T} is acopyof I,

qo € Q is the initial state,

F C Q@ is the set of accepting states,

L ¢ T is the empty pushdown symbol,)

6p: QxSp x (PU{L}UT) = Q x {push(z) | = € T'} is a partial transition function, where for §j € I

there are no transitions dp(p, a, §) = (¢, push(h)) with h # g,

8. 0rp: Q@ xLrx (TU{L}UT) - @ x {pop(z) | z € I'} is a partial transition function, where for g € T
there are no transitions dr(p,a,g) = (¢, pop(h)) with h # g,

9. 6n: Q@ xEn x (TU{L}UT) — @ is a partial transition function.

N otE W

A configuration of a DIDPDA M = (Q,%,T,qo, F, L,0p,0r,dn) is a triple (g,w,s), where ¢ € Q is the
current state, w € X* is the unread part of the input, and s € I'* U™ denotes the current pushdown content.
If s € I'" then we have an ordinary pushdown content, where the leftmost symbol of s is at the top of the
pushdown store. If s € I'* then we have a pushdown content below the surface, where the rightmost symbol of
s at the bottom of the pushdown store is seen by M.

The initial configuration for an input string w is set to (go,w,A). During the course of its computation,
M runs through a sequence of configurations. One step from a configuration to its successor configuration is
denoted by F.)

Let a € 3, w € ¥* and s € ' UT™*. We set

(q,aw,zs) F (¢’ w,2'zs),if a € ¥p, z €T, and (¢, push(z’)) = dp(q, a, 2),
(¢, aw,\) F (¢',w,?"), if a € Xp and (¢, push(z’)) = dp(q,a, L),
(¢,aw,s2) F (¢',w,s),ifa € Xp, 2 € I, and (¢’,push(2)) = dp(q,a, 2),
(¢,aw,zs) F (¢',w,s), if a € Xg, z €T, and (¢, pop(2)) = 0r(q, a, 2),
(q,aw, \) = (¢',w, 2), if a € Xg and (¢',pop(2)) = dr(q, a, 1),
(¢,aw,s2) F (¢’ ,w,s22"),if a € g, 2 €T, and (¢, pop(z’)) = dr(q, a, 2),
(¢,aw,zs) F (¢’ w,zs),if a € ¥, z €T, and ¢ = dn(q, a, 2),

(g, aw,\) F (¢',w,\),ifa € Xy and ¢’ = dn(q,a,L).

PN O WD

4 M. KUTRIB AND A. MALCHER

b, 7

v
a, 1 b, L Por()

b7 Y a, f/
pop(Y) push(Y)

o X bX
push(X) pop(X)

a,”Z
push(Y")

FIGURE 1. A deterministic digging input-driven pushdown automaton accepting the lan-
guage {w € {a,b}* | |w|a = |w|p }. Edges corresponding to transitions (p, a,g) = (g,0p(h)) are
labeled a, g on the first line and op(h) on the second line of the label. Symbol Z may be X
orY.

9. (q,aw,s2) F (¢, w,s2),ifa € Xy, z € I, and ¢/ = on(q,a,z).

So, whenever the pushdown store is empty, the successor configuration is computed by the transition functions
with the special empty pushdown symbol L. Note that s € I'* U f‘*, that is, if one symbol of s belongs to I
then all symbols of s belong to I' and, similarly for I". As usual, we define the reflexive and transitive closure
of by F*. The language accepted by the DIDPDA M is the set L(M) of words for which there exists some
computation beginning in the initial configuration and ending in a configuration in which the whole input is
read and an accepting state is entered. Formally:

L(M) ={weX*| (g, w,\) F* (¢, \,s) with g € F,s e T*UT* }.
In general, the family of all languages accepted by an automaton of some type X will be denoted by Z(X).

In order to clarify this notion, we continue with an example.

Example 2.2. The language L = {w € {a,b}* | |w|, = |w|p} is accepted by the DIDPDA M =
(@Q,%,T,q0,F, L,6p,0r,dn) with the state set Q@ = {qo,q1 }, Xp = {a}, g = {b}, Ty = 0, the set of pushdown
symbols I' = {X, Y}, the set of final states F' = {qo}, and the transition functions specified as:

(1) ¢ép(go,a, L) = (qi,push(X)) (6) Jr(qo,b,L) = (q1,pop(X))
(2) dp(q,a,X) = (qi,push(Y)) (7) Or(q1,b,X) = (qo,pop(X))
(3) dpla,a,Y) = (q,push(Y)) (8) 6r(q,b,Y) = (q1,pop(Y))
(4) dp(q,a,X) = (qo,push(X)) (9) Or(q1,0,X) = (g1,pop(Y))
(5) dp(q,a,Y) = (q,push(Y)) (10) 6r(q:,d,Y) (q1,pop(Y))

The DIDPDA M is depicted in Figure 1.

The basic idea of the construction is as follows. State qg is entered whenever the pushdown gets empty. In
order to detect that this will happen after the next step, the first symbol pushed onto the pushdown is X while
further symbols on top of X are Y’s (Transitions (1), (2), (3)). Similarly, if the pushdown content falls below
the surface, the first symbol popped is an X, while further symbols below X are Y’s (Transitions (6), (9), (10)).
In this way, after popping an X from above the surface or pushing an X under the surface, the pushdown gets
empty and M enters state gy (Transitions (4), (7)). Since there is a push operation for any input symbol a and
a pop operation for any input symbol b, the input string belongs to L, if and only if after its processing the
pushdown is empty, that is, M enters state qq.

DIGGING INPUT-DRIVEN PUSHDOWN AUTOMATA 5

We note that the language of the previous example can be accepted by finite state models with unconventional
reading order as well. For example, it can be accepted by finite automata with translucent letters [21] or by
jumping finite automata [19].

3. COMPUTATIONAL CAPACITY

Any language accepted by some deterministic or nondeterministic IDPDA is accepted by a real-time deter-
ministic pushdown automaton as well. On the other hand, for example, the language {a"$a™ | n > 0} is not
accepted by any IDPDA. This immediately implies the fact that the language family accepted by IDPDAs is a
proper subset of the real-time deterministic context-free languages. Here, we start to explore the relationships
between DIDPDA and other types of devices by presenting a result that yields a construction that effectively
converts any given DIDPDA into an equivalent real-time deterministic pushdown automaton.

Theorem 3.1. The family £ (DIDPDA) is included in the family of real-time deterministic context-free
languages.

Proof. Let M = (Q,%,T,qo, F,L,0p,dr,0n) be an arbitrary DIDPDA. We will construct an equivalent real-
time DPDA M' = (Q',3,T, ¢, F', L,§") as follows.

Basically, M’ simulates M where it remembers in its states whether the pushdown of M’ is above or below
the surface. Since M’ can freely push or pop symbols not depending on the current input symbol, a pushdown
below the surface is simulated by pushing onto instead of popping from the empty pushdown. To implement
this behavior, we define @' = @ x {1,1}, ¢4, = (q0, 1), and F' = F x {1, l}.

The transition function ¢’ is defined as follows for ¢,¢' € Q,a € ¥, z € TU{L}, and 2’ € T". Let 1 =1, then

&'((q,1),a,2) = ((¢';1), push(z"))) if dp(q,a, 2) = (¢',push(z’)) and a € ¥p,
'((q,1),a,2) = ((¢'s 1), pop(2))) if Or(q,a,2) = (¢',pop(2)), a € Xg and z # L,
&'((q,1),a, L) = ((¢' 1), push(z"))) if 6r(g, a, L) = (¢',pop(2')) and a € T,
'((q,4),a,2) = ((¢'; 1), pop(2))) if dp(g,a,2) = (¢, push(z)), a € ¥p and 2 # L,
&'((q,4),a, 1) = (¢, 1), push(z"))) if dp(q,a, L) = (¢, push(2)) and a € ¥p,
8'((q,4),a,2) = ((¢', 1), push(z"))) if Or(q, a, 2) = (¢, pop(2)) and a € X,
§'((q,1),a,2) = (¢',1) if On(g,0,2) = ¢’ and a € Ty,

§'((q,4),a,2) = (¢, 1) if On(g,0,2) = ¢’ and a € Ty.

By construction, a word w is accepted by M if and only if w is accepted by M’. Inspecting ¢’ shows that M’ is
indeed a deterministic pushdown automaton working in real time. O

Since also DIDPDAs either always have to push or always have to pop when reading the a’s, the language
{a"$a™ | n > 0} from above is clearly not accepted by any DIDPDA. So, the inclusion of Theorem 3.1 is strict.

Corollary 3.2. The family £ (DIDPDA) is a proper subset of the family of real-time deterministic context-free
languages.

n [13], input-driven automata are extended in such a way that the input is preprocessed by a deterministic
injective and length-preserving finite state transducer. The corresponding devices are called tinput-driven push-
down automata (TDPDA). In this way, for example, language { a"$a™ | n > 0} is accepted by such a device. In
general, it turned out that TDPDAs are strictly more powerful than IDPDAs but still not as powerful as real-
time deterministic pushdown automata. It is shown that, for example, the language { a"b"*™a™ | n,m > 1} is
not accepted by any TDPDA. In order to compare the computational capacities of IDPDAs and TDPDAs with

6 M. KUTRIB AND A. MALCHER

DIDPDASs, we next show that this language is accepted by some deterministic digging input-driven pushdown
automaton.

Lemma 3.3. There is a language accepted by some DIDPDA that cannot be accepted by any TDPDA and,
thus, cannot be accepted by any IDPDA.

Proof. We use L = {a™b"*™a™ | n,m > 1} as a witness language. It is known [13] that L does not belong to
Z(TDPDA). Since Z(IDPDA) C .Z(TDPDA), L cannot be accepted by any IDPDA.

On the other hand, by Example 2.2, there is some DIDPDA accepting the language L' = {w € {a,b}* |
|w|e = |wlp }. By simulating a deterministic finite automaton in parallel to the actual computation, it can
immediately be seen that the family . (DIDPDA) is closed under intersection with regular languages. Therefore,
L=LNna"bta™ belongs to .Z(DIDPDA) as well. O

So, compared with IDPDAs that may arbitrarily pop from the empty pushdown, digging may give power
to the machines. On the other hand, allowing to pop from the empty pushdown without getting stuck can be
utilized to perform computations that are impossible for machines that actually have to perform the action
required by the input symbol.

Lemma 3.4. There is a language accepted by some IDPDA and, thus, by some TDPDA, that cannot be accepted
by any DIDPDA.

Proof. We use the language L = { a*ba™b" |1 <k <fand 1 <m < n} as a witness language.

An IDPDA accepting the language L pushes upon reading a’s and pops upon reading b’s. Then, it has to
check whether the input format is correct, and whether it pops at least once from the empty pushdown while
reading the sequences of b’s. So, L belongs to the family .Z(IDPDA). Since .Z(IDPDA) C .Z(TDPDA), L is
accepted by some TDPDA as well.

Now, we assume that some DIDPDA M = (Q,{a,b},T,qo, F, L,0p,0r,dn) is accepting language L. If at
least one of Xp and X is empty, M accepts a regular language. Since L is non-regular, we have to consider
the two cases Xy = 0 and either Xp = {a}, Xg = {b}, or Xp = {b}, Xr = {a}.

So,let ¥p = {a}, X = {b}, and ¥y = (). First we choose some arbitrary k > 1. Let (qo, a®b*, \) F2* (g1, \,)
be the computation of M on input a*b*. Continuing the computation on factor b* with i > |Q| - |T'| large enough
will drive M into a cycle of length ¢ > 1, possibly after an initial part of length 0 < ¢y < |Q| - |T'| as follows. For
all jl Z 1:

(g1, 0°, A) F (g2, 0 iz -+ Jog—1%1) FO (2,07 g -+ feg—15122 - -+ £ef1)
FOTC (g, bITOTIVE Gy g1 21 (B2 Eer)T).
Next, we set j1 = (¢+1)-|Ql, £ =k+co+j1-¢, m =c-|Q|, and consider the accepting computation of M on
input aFbla™bmt1:
(q07akbéambm+1’)\) |_2k (qhbco—&-]’ycambm—&-l’)\)

FC0 (g2, 67 a™ b i - - fleg—1£1)

F (go, ™0™ g - - eg—151 (22 -+ 2e21) 7).
Since for the continuation of the computation on the following factor a™ there are at most c-|Q| different
possibilities for being in a state and seeing a pushdown symbol, and m = ¢ - |Q|, such a situation appears at
least twice while processing a™, say with state g3 and pushdown symbol Z,., for some 1 < r < ¢. In general, in

this phase M runs again through a cycle, say of length ¢ > 1, possibly after an initial part of length ¢y, where
where 0 < ¢y < éy + ¢ < ¢+ |Q| = m. That is, for some 0 < 51 < 52 < |Q|, ¢y € F, and g4 € @ the computation

DIGGING INPUT-DRIVEN PUSHDOWN AUTOMATA 7

continues as

mim—+1 o o ° o ° o o i
(q2,a™b™ " 102 - Yeo—121(Z2 - - - Ze21)7Y)
é —¢ +1 o o o o /o o o o
o (Q37am copm aylyQ"'yco—lzl(ZQ"'Zczl) zr)
¢ m—céo—érm—+1 o o o o (2o o o c+1)- — S5 o o
F (g3, ™ O™ o feg—151(Ba - Be) (TN 5y 5

meéofé c-|Q|)

(C+1)"Q*51§2

(qa, 0" nGn - Geg—171(F2 -+ £c21)

1 o o o o /o o o veo o o o
(g A idie o121 (R0 - - 2etn) S 1@l E Eg -).

Now, we consider the computation of M on input aFbla™ e epm+1:

(q07 akbfal'm—i-c‘éb7n-|-17)\)

k+¢ .G 1 o o o ° ° o o 1

R (go, a™ O™ G Geg—151 (B2 - EeFr)TY)

Eo--¢é E—ég—¢ 1 o o o o /o o o 1)-1Q|—s9 ¢ °
|-eote (QSaamHC Co=epmt ;ylyQ"'yCO—lzl(ZQ"'Zczl)(CJr rlel 5222"'27’)

(e+1):|Q[—s2—¢ ¢

cé m—ég—érm—+1 o o o o /o o o o
FC (g3, a™ O T Y2 Yeg—171(22 - ZeZ1) Zo e Zp)

Fm 08 (qa, b g - e 11 (B2 - Z5)191).

Since é < ¢-|Q], the computation ends accepting:

(q4a berla ﬂl:g? e f/co—151 (22 T écél)c.‘Q‘ié)

1 0 o o o /o 0o o e lOl—éo o o
(g A idi - Geg—151 (B2 - - 2021) 198 R g -).

So, the input afbla™+e¢p™*1 is accepted, but does not belong to L, since m + ¢ - é ¢ m + 1, a contradiction.
Finally, the case Xp = {b}, X g = {a}, and Xy = () has to be considered. The contradiction in this case
follows almost literally as in the first case, with the roles played by pushing and popping and symbols from r
and T' interchanged. O

By the previous lemmas we obtain the following incomparabilities.

Theorem 3.5. The family £ (DIDPDA) is incomparable with the family £ (IDPDA) and the family
Z(TDPDA).

4. DETERMINIZATION

It is well known that nondeterministic IDPDAs can be determinized. Okhotin and Salomaa [22] traced
this result back to [24]. They give a clear proof that shows that 2° states are sufficient to simulate an n-
state nondeterministic IDPDA by a deterministic one. However, in [22] and [1] IDPDAs are considered in a
certain normal form. That is, neither the push nor the state change only operations depend on the topmost
pushdown symbol. Since any deterministic pushdown automaton and any deterministic input-driven pushdown
automaton can be converted to this normal form, the general computational capacity does not change. But by
this conversion the number of states changes since the topmost pushdown symbol has to be remembered in the
states. Thus, when we compare such automata with the original definition of IDPDAs in [24], that is based
on the usual definition of pushdown automata and does not require a normal form, we obtain that the state
complexity bound of 27" achieved for the determinization of IDPDAs in normal form is lower than in general.
Moreover, results in [8, 9] show that states can be traded for pushdown symbols and vice versa. Hence, the size
of a pushdown automaton is affected by the size of its state set as well as by the number of pushdown symbols.
Since here we are closer to the original definition, the size of a digging input-driven pushdown automaton is

8 M. KUTRIB AND A. MALCHER

measured not only by its states but as the product of the number of states and the number of pushdown symbols.
Accordingly, we define the function size that maps a digging input-driven pushdown automaton to its size.

Definition 4.1. A nondeterministic digging input-driven pushdown automaton, abbreviated as NDIDPDA, is a
system M = (Q,%, T, qo, F, L,0p,dr,0n), where @, &, T, qo, and F are defined as for DIDPDAs. The transition
functions are now nondeterministic, that is,

5p: Q@ xXp x (TU{L}UTD) — 2@ {push(@)ecl'}
Sr: Q x Sg x (TU{L}UT) — 2@x{pop@)e€l'} " 5nq
Sn:Q xSy x (DU{L}UT) — 29,

where the restrictions from the definition of DIDPDAs are adapted. As usual, an input is accepted if there is
an accepting computation on it.

The next theorem shows the determinization of NDIDPDAs. Basically, the idea of the proof is along the lines
of [22].

Theorem 4.2. Let n > 1 and M be an n-state nondeterministic digging input-driven pushdown automaton
with inpzut alphabet ¥ = Xp E‘J YrUXN and set of pushdown symbols I'. Then, an equivalent DIDPDA with at
most 2" T+ states and 27 WHD(|Sp| 4 |Sg|) pushdown symbols can effectively be constructed.

Proof. Let M =(Q,%,T,q0, F, L,0p,0r,dn) be a nondeterministic digging input-driven pushdown automaton.
Then we can construct an equivalent DIDPDA M’ = (Q', X,1", ¢, F', L, 6}, 0%, %) as follows. We set

Q' = QX Qx(TU{L})

40 = {(q0,90, L)}, and
F'={Peq@| thereis (¢,r,z) € P wherer € F }.

The states of M’ have the following interpretation. Each triple (p, g, z) says either that if M enters state p
on pushing z on a pushdown whose content is above the surface then state q is reachable when M sees this z on
top of the pushdown again, or that if M enters state p on popping z from a pushdown whose content is below
the surface then state ¢ is reachable when M sees this z on the bottom of the pushdown again.

Since M is nondeterministic, the states of M’ are subsets of such triples. So, the initial state of M’ consists
of the triple (qo, go, L), where state g is reached from state gy with empty pushdown simply by doing nothing.

During the computation, M’ pushes its current state together with the current input symbol whenever the
current input symbol enforces a push (of M as well as of M’) to a pushdown whose content is above the surface.
Similarly, M’ pops its current state together with the current input symbol whenever the current input symbol
enforces a pop (of M as well as of M’) from a pushdown whose content is below the surface. So, we will define
the set of pushdown symbols as TV = 2@x@*TU{LH » (%, U SR).

Next, the transition functions have to be defined in order to enable this behavior.

Let a € ¥p be the current input symbol, P be the current state of M’, and (Z,z) € I". Then we define
0 (P,a,(Z,x)) = (P',push((P,a)), where

P ={(d,q,72")| thereis (q,r, z) € P such that (¢,2") € dp(r,a,z)}.
If (Z,:z:) € I" then we define &, (P,a, (Z,x)) = (P',push((Z,x))), where

P'={(q,q",2) | thereis (q,r,2) € Z and (¢',7’,2") € P such that
(¢',pop(z")) € 0r(r,z,z) and (¢",push(z’)) € op(r',a,2’) }.

DIGGING INPUT-DRIVEN PUSHDOWN AUTOMATA 9

So, in the first case, M’ pushes the current context of the simulation together with the current input symbol,
and starts to compute the reachable states with the new top of pushdown symbol of M. In the second case, the
context of the simulation popped from the pushdown at last (which is seen by M’ now) is combined with the
simulation that started after that popping (which is given by the state of M’). If both computation paths fit
together they are used to define the new triples of the new state of M’.

Now let a € ¥y be the current input symbol, P be the current state of M, and (Z,z) € I". Then we define
(P, a,(Z,x)) = P’, where

P ={(q,q,2)| thereis (q,r,z) € P such that ¢’ € Sx(r,a,z2) }.
The definition for (Z,x) e I is almost identical: o (P, a, (Z,x)) = P’, where
P ={(q,q,z)| thereis (¢q,r,2) € P such that ¢’ € dn(r,a,2) }.

So, M’ directly simulates one step of M in all currently traced computation paths.

Finally, let a € ¥ be the current input symbol, P be the current state of M’, and (Z, z) € I". The definition
of ¢, is similar to the definition of ¢/,. Here the roles played by pushing and popping and pushdown contents
above and below the surface are interchanged. We define 6% (P, a, (Z,z)) = (P',pop((Z, x))), where

P’ ={(q,q",2)| thereis (¢,r,2) € Z and (¢',r’,2’) € P such that
(¢',push(z’)) € dp(r,z, z) and (¢”,pop(2’)) € 6r(r',a,z") }.

If (Z,x) € I then we define O0r(P,a, (ch)) = (P',pop((P,a))), where
P ={(d,q,2")| thereis (¢,r,2) € P such that (¢, 2") € dr(r,a, 2) }.

By the constructions and the set of accepting states, when M’ reaches an accepting state then this state
contains a triple that says that M can reach an accepting state. Conversely, if some computation path of M
ends accepting, it is simulated by M’ and, thus, M’ accepts as well. O

Given some nondeterministic digging input-driven pushdown automaton, an upper bound for the size of an
equivalent DIDPDA can immediately be derived from Theorem 4.2. In order to obtain lower bounds, for £ > 1,
we consider witness languages

Ly = { (${a,b}")"$u(${a, b}*) #u | u € {a,b}" }.

Lemma 4.3. For k > 1, the language Ly, is accepted by some NDIDPDA with 2k + 4 states and 2% pushdown
symbols.

Proof. The following NDIDPDA M =(Q,%,T",qo, F, L,0p,0r,dn) accepts L.

10 M. KUTRIB AND A. MALCHER

We set Q = {QO7qla < s qk+1,P0,P1y - - - apk)-‘rl}7 ZD = {$}a ZR = ®7 Z]\/' = {a7ba#}a I'= {aab}k7 F= {pk-‘rl}a

and we specify the transition functions for x,vi,ve,...,v; € {a,b} as:

(1) 6p(qo;$,L) = {(qo,push(v)), (q1,push(v)) | v € {a,b}* }
(2) 6p(q0,$,v) = {(qo.push(v)),(q1,push(v))} if v # L
(3) 0p(qk+1,$,v) = {(po,push(v))}
(4) 5p(po;$,v) = {(po,push(v))}
(5) inlane.) = o)
(6) On(gi,xz,v1v9---vr) = {gr1}lorl1 <i<kifz=u;
(7) on(qr+1,#,v) = {p1}
(8) on(po,x,v) = {po}
(9) 5N(po7# v) = {m}

(10) on(pi,z,v102--vg) = {piprpfor 1 <i<kifz=u;

The basic idea of the construction is as follows. In the initial step (uniquely determined by state go and empty
pushdown), M guesses a factor v € {a, b}* and pushes it (Transition (1)). Moreover, state gy with a non-empty
pushdown is used to read the prefix of the input and on some $ to guess whether the next input factor is w
(Transitions (1), (2), (5)). Whenever in this phase a $ enforces a push operation, the guessed v at the top of
the pushdown is pushed again (Transition (2)).

When the guess is that u comes next, the state ¢; is entered. Then, states qi1,¢qo, ..., qr are used to match
the input factor u read with the factor v on top of the pushdown (Transition (6)). If and only if the first &k
symbols of u match v, then M is in state gi+1. Afterwards the computation continues, if and only if the next
input symbol is $ or #, that is, if and only if w = v. If the symbol is #, state p; is entered (Transition (7). If the
symbol is $, state pg is used to read the remaining input up to the symbol #, where M behaves similarly as for
state go (Transitions (4), (8)). When M reaches the # in state po, it changes to state p; (Transition (9)).

Finally, states pi1,po,...,pr are used to match the remaining input suffix read with the factor v on top of
the pushdown (Transition (10)). If and only if the first k& symbols of the suffix match v then M is in state
DPk+1. Since p41 is the sole accepting state and the transition functions are undefined for pyy1, M halts. So, it
accepts, if and only if it has read the input entirely, that is, if and only if the suffix equals v and, thus equals
u, and therefore the input belongs to Ly. O

Applying the determinization of Theorem 4.2 to the NDIDPDA constructed in the proof of Lemma 4.3 gives
an equivalent DIDPDA M accepting Ly with at most 219" (T states and 2@ (IPHD (|55 | + [2z|) pushdown
symbols.

So, the size of M is

2lQP(TIHY 9l RFITHD (15 | + |Sg|) < 221QFITIHD x|

_ 22(2k+4)2(2k+1) e 2O(k2)~0(2k) _ 20(22log(k)),o(2k) _ 20(2210g(k)+k) c 220(k)'

The next lemma shows that this upper bound derived from the determinization is tight in the order of the
second exponent. We recall that the size of a digging IDPDA is defined as the product of the number of states
and the number of pushdown symbols.

Lemma 4.4. For k > 1, let M be some DIDPDA accepting language Ly. Then, size(M) > 22"

Proof. Let M = (Q,%,T',q0, F, L,0p,0r,0n) be a DIDPDA that accepts L.
We consider subsets of {a, b}* and for any such S = {v1,va,...,v,,} € 2{“’b}k, let the ordering of the elements
be arbitrarily fixed. Then, a word wg is defined as $v1$vs - - - $v,,, 8.

DIGGING INPUT-DRIVEN PUSHDOWN AUTOMATA 11

Assume now that for two different such subsets R and S, automaton M is in the same state and sees the
same symbol at the pushdown after processing the words wgr and wg. Since R and S are different, there is a
word u belonging to one set but not to the other, say u € R\ S.

Next, we distinguish three cases dependent on the pushdown symbol that M sees after processing wgr and
ws.

If this symbol is L, the words wr and wg are extended by #u. So, wr#u is accepted, if and only if wg#u is
accepted. This is a contradiction since u € R\ S and, thus, wr#u € Ly and we#u ¢ Ly,

In the next case, M sees a symbol from I' at the pushdown after processing wr and wg. This implies that
Y p is not empty and contains at least one of the symbols a, b, or $. We denote one of these symbols from ¥p
by 2 and extend wr and wg by z*+1#u. The computations on both words are

(qo,wak“#uJ_) B (ql,xk“#u,zs) F* (qo, #u, s'zs)
and
(qo, wsx" T tu, L) F* (g1, 2" Hu, 28) H* (o, #u, ' 28)

where s’ € TF*1 ¢, € Q, z € T, and s,5 € I'*. Since |u| = k, we conclude that the continuations of the
computations do not depend on s or § at the pushdown. So, wrz*t1#u is accepted, if and only if wga* T #u is
accepted. As before, this is a contradiction since v € R\ S and, thus, wra*+t'#u € Ly and wgx"+#u ¢ Ly.

In the last case, M sees a symbol from I at the pushdown after processing wgr and wg. This implies that
YR is not empty and contains at least one symbol from the set {a,b,$}. As in the case before, we denote one
of these symbols from Yz by = and extend wr and wg by z*+1#u. The computations on both words are now

(qo, wra® 1 #u, L) F* (g1, 2" #u, s2) F* (qo, #u, s2s')
and
(qo, wsx" T tu, L) F* (qr, 2 Hu, 32) H* (o, #u, 825)

where s’ € TF+1, q1,q2 € Q, z € I, and s,3 € I'*. Since |u| = k, we conclude that the continuations of the
computations do not depend on s or § at the pushdown. So, wrz*t#u is accepted, if and only if wga* T #u is
accepted. As before, this is a contradiction since v € R\ S and, thus, wra*+t'#u € Ly and wgx"+#u ¢ Ly.
These contradictions show that the assumption that M is in the same state and sees the same symbol at
the pushdown for two different subsets R and S is wrong. Since there are 22" different subsets, we conclude
Q| - |T| > 22", Therefore, the size of M is at least 22" O

5. CLOSURE PROPERTIES AND DECIDABILITY QUESTIONS

For input-driven pushdown automata, strong closure properties are shown in [1] provided that all automata
involved share the same partition of the input alphabet. Here, we distinguish this important special case from
the general one. For easier writing, we call the partition of an input alphabet a signature, and say that two
signatures ¥ = 3Xp UXprUXy and ¥’ = X, U XL UXY, are compatible, if and only if

U E\S)ns' =0 and U Ehs)ns=0.

j€{D,R,N} j€{D,R,N}

Before we start to investigate the closure properties in detail, we state the following preparatory lemma which
ensures that the input is completely read in every computation.

12 M. KUTRIB AND A. MALCHER

Lemma 5.1. Any DIDPDA can effectively be converted to an equivalent DIDPDA that accepts or rejects its
input after having read the input entirely.

Proof. Let M be a DIDPDA. By definition an input is accepted by M only after having read it entirely. An input
is rejected by M if the computation of M ends in a non-accepting state after having read the input entirely, or if
the computation of M blocks since the transition function is undefined for the current situation. In the latter case,
we have to ensure that the remaining input is processed. So, for the construction of an equivalent DIDPDA M’
it is sufficient to add transitions to a new non-accepting state s_ whenever a transition is undefined. Once in
state s_, M’ still has to obey the signature: For any input symbol from X, M’ stays in state s_. For any input
symbol a € ¥p, we define 0, (s—,a,g) = (s—,push(g)) for g € T, 6'5(s—,a, L) = (s—,push(g)) for some g € T,
and 0, (s—,a,g) = (s—,push(g)) for g € I. For any input symbol a € ¥, we define 0p(s—,a,g9) = (s—,pop(9))
forg €T, 0% (s—,a, L) = (s—,pop(g)) for some g € T, and 0% (s_,a,g) = (s—, pop(g)) for g € I'. In this way, now
all non-accepting computations of M end in a non-accepting state of M’ after having read the input entirely. [

Now, we will first turn to the closure under the Boolean operations.

Lemma 5.2. Let M and M’ be two DIDPDAs with compatible signatures. Then DIDPDAs accepting the
intersection L(M)N L(M'), the union L(M)U L(M'), and the complement L(M) can effectively be constructed.

Proof. First of all we apply Lemma 5.1 and assume that all DIDPDAs considered read their input entirely
before accepting or rejecting. For the closure under intersection we can use the cross-product construction that
is known for the closure under intersection for IDPDAs. Basically, both DIDPDAS can be simulated in two tracks
of a new DIDPDA having as state set pairs of states and as pushdown symbols pairs of pushdown symbols.
Since the signatures are compatible, the push and pop operations of each DIDPDA take place at the same time.
Hence, both pushdown stores can be simulated and maintained by one pushdown store. Finally, the input is
accepted if both computations simulated are accepting.

For the closure under complementation, we first notice that in every accepting or rejecting computation the
input is completely read. Thus, we can construct a new DIDPDA for the complement by interchanging accepting
and rejecting states. The closure under complementation also implies the closure under union by applying De
Morgan’s laws. O

Next, we turn to non-closure results.

Lemma 5.3. The family £ (DIDPDA) is not closed under concatenation (even with compatible signatures),
inverse homomorphism, and length-preserving homomorphism. It is not closed under intersection and union in
case of incompatible signatures.

Proof. The languages L1 = {a"$a™ | n > 1} and Ly = { a"$b*" | n > 1} are each not accepted by any DIDPDA.
On the other hand, L} = {a"$b" | n > 1} and L} = {a®"$b>" | n > 1} are each accepted by some DIDPDA.
Now, consider the length-preserving homomorphisms h; : {a,b,$} — {a,$}" mapping both a and b to a and $
to $, and hy : {a,b,$} — {a,b,$}" mapping a to aa, b to b, and $ to $. Then, hi(L}) = Ly and hy ' (L}) = Ly
which implies that Z(DIDPDA) is neither closed under length-preserving homomorphism nor under inverse
homomorphism.

For the non-closure under intersection consider Ly = {a"b"c¢™ | n,m > 1} and Ly = {a™b™c™ | n,m > 1}.
Both languages can be accepted by DIDPDAs with incompatible signatures. However, L3 N L4 is a non-
context-free language which gives the non-closure under intersection. Since .Z(DIDPDA) is closed under
complementation by Lemma 5.2, the non-closure under union can be derived as well.

To obtain the the non-closure under concatenation we consider the language Ls = { a™b™ | n,m > 1 and n <
m } that is accepted by some DIDPDA. Tt is known from the proof of Lemma 3.4 that Ls - L5 is not accepted by
any DIDPDA which gives that .2 (DIDPDA) is not closed under concatenation even with compatible signatures.

O

DIGGING INPUT-DRIVEN PUSHDOWN AUTOMATA 13

We continue with studying the unary operations Kleene star and reversal. It is known that the family
Z(IDPDA) is closed under both operations. However, for the reversal the construction for IDPDAs works by
considering the inverted signature ¥~ where ¥ p and Xy are interchanged. This means, that symbols from ¥
then imply push operations, whereas symbols from Y imply pop operations. If we require that the IDPDA for
the reversal has to have the identical signature, then . (IDPDA) is no longer closed under reversal. This can
be seen using the language {a™b"” | n > 1} that is accepted by some IDPDA with ¥p = {a} and g = {b}.
Any IDPDA with the same signature is clearly unable to accept the reversal {b"a™ | n > 1}. Thus, the family
Z(IDPDA) is closed under reversal with arbitrary signatures, but not under reversal with identical signatures.

Lemma 5.4. The family £ (DIDPDA) is neither closed under Kleene star nor under reversal.

Proof. We consider again the language L used in the proof of Lemma 3.4, which is the concatenation of the
language Ls = {a™b™ | n,m > 1 and n < m } with itself, where L5 itself can be accepted by some DIDPDA.
Let us assume that .2 (DIDPDA) is closed under Kleene star. Then, language L Na™bTaTh" is accepted by
some DIDPDA, since the intersection with the regular set a™bTatbt can be checked in the state set. However,
L:NatbTatb™ = L which gives a contradiction, since L is not accepted by any DIDPDA.
For the non-closure under reversal, we consider the language

LB ={b"a™a* |1<k<fland1<m<n},

that can be accepted by a DIDPDA M with the signature Xp = {a}, Xg = {b}, and X =) as follows. The
correct format of the input can be checked using the state set of M. While reading the first b-block, a b-hole
is dug. The following a-block fills this b-hole. As soon as the b-hole is completely filled, the input has to be
rejected and a blocking non-accepting state is entered. If the b-hole has a depth of at least one, the computation
continues and the following b-block digs a c-hole, where the first dug symbol is ¢’. Then, the final a-block fills
this c-hole. The input is accepted if the symbol ¢’ is not filled. As soon as the symbol ¢’ is filled, a blocking
non-accepting state is entered. Thus, M accepts if the first a-block is strictly shorter than the first b-block as
well as the second a-block is strictly shorter than the second b-block.

Assume the family . (DIDPDA) is closed under reversal. Then, (L?)f = L is accepted by some DIDPDA.
However, Lemma 3.4 shows that L is not accepted by any DIDPDA. This gives a contradiction and the desired
non-closure result. O

Next, we will discuss some decidability questions for DIDPDAs. Let us recall that a decidability problem is
undecidable whenever the set of all instances for which the answer is “yes” is not recursive, whereas a decidability
problem is semidecidable whenever the set of all instances for which the answer is “yes” is recursively enumerable.
The family Z(DIDPDA) is a subset of the deterministic context-free languages. Thus, all decidability questions
that are decidable for DPDAs are decidable for DIDPDAs as well.

Theorem 5.5. The problems of emptiness, universality, finiteness, infiniteness, equivalence, and reqularity are
decidable for DIDPDAs.

It is known that the inclusion problem for deterministic context-free languages is undecidable. However, for
DIDPDAs with compatible signatures it is decidable.

Theorem 5.6. Let M and M’ be two DIDPDAs with compatible signatures. Then, the question whether L(M) C
L(M') is decidable.

Proof. The test of inclusion L(M) C L(M’) is equivalent to test L(M) N L(M’) for emptiness. We know that
the family .Z(DIDPDA) is effectively closed under complementation by Lemma 5.2 and its proof shows that the
signature of the constructed automaton for the complement is not changed. Moreover, the family .Z(DIDPDA)
is effectively closed under intersection with compatible signatures as well by Lemma 5.2. Since emptiness is
decidable by Theorem 5.5, we obtain that the inclusion problem is decidable as well. O

14 M. KUTRIB AND A. MALCHER

The inclusion problem becomes undecidable and, moreover, not even semidecidable if the signatures are no
longer compatible.

Theorem 5.7. Let M and M’ be two DIDPDAs. Then, the question whether L(M)C L(M') is not
semidecidable.

Proof. Tt is shown in [13] that the inclusion problem is not semidecidable for two IDPDAs with not necessarily
compatible signatures. Moreover, it can be assumed that the pushdown store of the two IDPDAs is in fact
used as a counter only. The basic idea of the proof in [13] is to construct two IDPDAs M and M’ such that
the intersection L(M) N L(M’) represents the suitably encoded version of the valid computations of a counter
machine. Then, the inclusion problem can be related with the emptiness problem of a counter machine which
is known to be not semidecidable.

In principle, this approach can be chosen here again: taking a close look at the construction of M and M’,
one can observe that in case of acceptance M and M’ never pop from an empty pushdown store. Hence, M
and M’ can be considered as DIDPDAs in this case as well. In case of rejection, we can modify M and M’
analogously to the construction in the proof of Lemma 5.1 to enter a permanent non-accepting state s_ in case
of situations with undefined transition function and situations where a pop operation from an empty pushdown
store takes place. Hence, M and M’ are DIDPDAs in the rejecting case as well. Altogether, we can construct
DIDPDAs M and M’ such that L(M) N L(M') represents the valid computations of a counter machine. This
shows again that the inclusion problem is not semidecidable. O

Finally, we look at the computational complexity of the decidable questions.

Theorem 5.8. The emptiness problem for DIDPDAs and NDIDPDAs is P-complete. The universality, equiv-
alence, and inclusion problems for DIDPDAs are P-complete. The universality, equivalence, and inclusion
problems for NDIDPDAs are EXPTIME-complete.

Proof. The emptiness problem for general (nondeterministic) pushdown automata is in P. This implies that the
emptiness problem for DIDPDAs and NDIDPDAs is in P as well. Since the inclusion problem can be reduced
to the emptiness problem due to the proof of Theorem 5.6 and the constructions involved are intersection and
complementation which cause a polynomial blow-up only, the inclusion problem for DIDPDAs belongs to P.
Hence, the universality and equivalence problems for DIDPDAs belong to P as well. The P-hardness of the
emptiness problem for deterministic and nondeterministic IDPDAs is shown in [17] and is a reduction from the
alternating graph reachability problem. A different proof is given in [22] which is a reduction from the monotone
circuit value problem. The basic idea is to construct a deterministic IDPDA that accepts a unique string if and
only if the given circuit evaluates to 1. Since the accepted string is well-nested with respect to the signature
of the IDPDA, in the accepting computation there is no situation in which a pop operation on the empty
pushdown takes place. Thus, the deterministic IDPDA is in fact a DIDPDA for the accepting computation.
For the rejecting computations, we use the transitions of the given deterministic IDPDA, but enter, similar
to the construction in the proof of Lemma 5.1, a new rejecting state that is never left, if a situation occurs
in which a pop operation on the empty pushdown takes place. Hence, the emptiness problem for DIDPDAs
and NDIDPDAs is P-hard as well. This gives also the P-hardness of the equivalence and inclusion problems for
DIDPDAS, since for all problems one can choose to test the equivalence with the empty set and inclusion in the
empty set, respectively. The P-hardness of the universality problem can be obtained similarly by taking into
account that DIDPDAs are closed under complementation by Lemma 5.2.

The universality, equivalence, and inclusion problems for NDIDPDAs are in EXPTIME, since by Theorem 4.2
every NDIDPDA can be converted into an equivalent DIDPDA with exponential blow-up and then the problems
considered can be solved for DIDPDAs as described above. The EXPTIME-hardness of universality is shown
in [1] (see also [22]) for nondeterministic IDPDAs by a reduction from the membership problem for alternating
linear-space Turing machines. The basic idea is to construct a nondeterministic IDPDA M’ for a given Turing
machine M and an input w such that L(M') = ¥* if and only if w ¢ L(M). In detail, the automaton M’
accepts every input but valid encodings of accepting computation trees of M on w. This is realized by guessing

DIGGING INPUT-DRIVEN PUSHDOWN AUTOMATA 15

a position while reading the input string and to check whether an error really occurs that makes the encoding
invalid. Only in this case, the input is accepted. The pushdown store of the IDPDA is basically used to check
whether a part of the input string is not of the form zyz® for non-empty strings = and y. Now, we have to
ensure that this behavior can also be realized by an NDIDPDA M". The guessing and checking of an error
can be realized in the same way as in the IDPDA M’. However, we have to ensure that the signature of the
input is obeyed before and after the guessing and checking phase and that the guessing and checking phase
does not start with a hole on the pushdown store. The first property is obtained by applying again a similar
construction as in the proof of Lemma 5.1. We observe that a valid encoding of an accepting computation tree
is a well-nested string. This means that as soon as M” pops from the empty pushdown store, we can enter an
accepting state s; which is never left until the complete input is read. This ensures also the second property:
if the guessing and checking phase starts, then we know that there is no hole on the pushdown store and we
can proceed as in M’. Whenever in the following computation an error is detected or M” pops from the empty
pushdown store, we enter the accepting state s,. Thus, we obtain the EXPTIME-hardness of universality for
NDIDPDAS in a similar way as for nondeterministic IDPDAs. This gives also the EXPTIME-hardness of the
equivalence and inclusion problem, since we can test the equivalence with ¥* or the inclusion of X*. O

6. ON THE UNION OF THE FAMILIES ACCEPTED BY DIDPDAS AND
IDPDAS

The preceding sections showed that DIDPDAs as well as IDPDAS are interesting special cases of deterministic
pushdown automata, since both classes have strong closure properties as well as the decidability of inclusion in
case of compatible signatures which is in contrast to general deterministic pushdown automata. Furthermore,
it has been shown in Theorem 3.5 that the language families .Z(DIDPDA) and .Z(IDPDA) are incomparable.
Thus, it is natural to consider the union of both language families, that is, the family of languages which are
accepted by DIDPDAs or IDPDASs, and to ask whether the new language family shares the closure properties as
well as the decidability of inclusion with its subfamilies. In this section, we will investigate these questions and
it turns out that the new family is no longer closed under union and intersection with compatible signatures.
Moreover, the inclusion problem for two automata becomes non-semidecidable even if both automata have the
same signature. This is in strong contrast to the results known for DIDPDAs as well as for IDPDAs.

Let us denote by .Z the family of languages which are accepted by DIDPDAs or IDPDAs. Formally, we
define .¥ = .Z(DIDPDA) U .Z(IDPDA). Since the families .2 (DIDPDA) and .Z(IDPDA) are incomparable, it
is clear that both families are proper subsets of .Z. Moreover, .Z is properly included in the family of real-time
deterministic context-free languages. A witness is again language { a"$a™ | n > 0} that is neither accepted by
any DIDPDA nor by any IDPDA.

Considering the closure properties of .Z we have the following positive closure results.

Lemma 6.1. The language family £ is closed under complementation and under union and intersection with
reqular languages.

Proof. Any language from % is either accepted by a DIDPDA or an IDPDA, say M. For the closure under union
and intersection with regular languages it suffices to extend the state set of M by another component in which
the deterministic finite automaton representing the regular language given is simulated. The closure under com-
plementation follows from the fact that both .Z(DIDPDA) and .Z(IDPDA) are closed under complementation
(see Lem. 5.2 and [1]). O

Next, we turn to non-closure results.

Lemma 6.2. The family £ is not closed under union, intersection, and concatenation even with compatible
signatures. It is neither closed closed under Kleene star, reversal, inverse homomorphism nor under length-
preserving homomorphism.

16 M. KUTRIB AND A. MALCHER

Proof. We consider Lz = {a™b"c™ | n,m > 1} and Ly = {a™b™c™ | n,m > 1} that have already been used in
the proof of Lemma 5.3. Language L4 can be accepted by an IDPDA with the signature ¥ p = {b}, ¥r = {a, ¢},
and Xy = (), while L3 is accepted by a DIDPDA with the same signature. Thus, L3 N Ly belongs to .Z, if .Z is
closed under intersection with compatible signatures. Since L3 N Ly is a non-context-free language, we obtain
the non-closure under intersection with compatible signatures. Since . is closed under complementation by
Lemma 6.1, the non-closure under union with compatible signatures can be derived as well. Next, we consider
language Ly = {a™b™ | n,m > 1 and n < m } that is accepted by some IDPDA with the signature Xp = {a},
Ygr = {b}, and X = () as well as the language Lg = {w € {a,b}" | |w|, < |w|p } that is accepted by some
DIDPDA with the same signature. Now, assume that . is closed under concatenation. Then, L5 - Lg belongs
to Z. If Ls - Lg is accepted by some DIDPDA, then the intersection (Ls - Lg) NatbTatb™ is accepted by a
DIDPDA as well. However, this intersection gives the language L = {a*b‘a™b" |1 <k <fand 1 <m <n}
used in the proof of Lemma 3.4 and it is known that L is not accepted by any DIDPDA. Thus, Ls - Lg has to be
accepted by an IDPDA. However, a straightforward proof shows that Ls - Lg cannot be accepted by any IDPDA
as well. This gives the contradiction and the non-closure under concatenation with compatible signatures.

Next, we assume that £ is closed under Kleene star. We define the language L; = L5 U cLg and observe
that L7 is accepted by some DIDPDA and, hence, belongs to .Z. Since .Z is closed under Kleene star, language
L% belongs to £ as well and is accepted by some DIDPDA or IDPDA. If L% is accepted by some DIDPDA,
then L Na*bTcatb* is accepted by some DIDPDA as well. However, L Na*btcatb™ = { a*bfca™b™ | 1 < k <
¢ and 1 <m < n} = L' which is basically the language L used in the proof of Lemma 3.4. Then, a proof almost
identical to the proof of Lemma 3.4 shows that L’ is not accepted by any DIDPDA which is a contradiction.
Thus, L* is accepted by some IDPDA. Hence, the language L% N c{a,b}t = cLg is accepted by an IDPDA
as well. Again, a straightforward proof shows that cLg cannot be accepted by any IDPDA which gives the
contradiction and the non-closure under Kleene star.

Now, we assume that .# is closed under reversal. We define the language Lg = (LscLs)™ U cLg and note that
Lg is accepted by some DIDPDA, since (LscLs) can be accepted by some DIDPDA similar to the construction
given in the proof of Lemma 5.4. Hence, Lg belongs to .£. Since .# is closed under reversal, language L%
belongs to . as well and is accepted by some DIDPDA or IDPDA. If L% is accepted by some DIDPDA, then
we consider L Natbtcatbt and obtain again language L’ which is not accepted by any DIDPDA. Thus, L{
is accepted by an IDPDA which implies that L N {a,b}*c = Lgc is accepted by an IDPDA as well. Again, a
straightforward proof shows that Lgc cannot be accepted by any IDPDA which gives the contradiction and the
non-closure under reversal.

The proofs for the non-closure under length-preserving homomorphism and inverse homomorphism are iden-
tical to the proofs given for Lemma 5.3: The languages L1 = {a"$a" | n > 1} and Ly = { a™$0*" | n > 1} that
are each not accepted by any DIDPDA or IDPDA are obtained as length-preserving homomorphic image and
inverse homomorphic image of the languages L} = {a"$b" | n > 1} and L) = {a®"$b°" | n > 1}, respectively,
which in turn are each accepted by some DIDPDA or IDPDA. O

All results on the closure properties of Section 5 and Section 6 are summarized in Table 1.

The inclusion problem is known to be solvable in polynomial time if both automata have compatible signatures
and, moreover, are both DIDPDAs or are both IDPDAs. Our next results shows that this situation changes
drastically if we consider the inclusion problem for two automata with the same signature, but one automaton
being a DIDPDA and the other one being an IDPDA. In this situation, it turns out that the inclusion problem
becomes undecidable and, moreover, not even semidecidable.

The non-semidecidability of the inclusion problem for automata from £ that even have identical signatures
is shown by reduction of the emptiness problem for deterministic linearly space bounded one-tape, one-head
Turing machines, so-called linear bounded automata (LBA). We remark that the non-semidecidability of the
latter problem may be obtained by applying the result shown in [23] that every recursively enumerable language
L accepted by some Turing machine can be represented as the homomorphic image h(L’) of a context-sensitive
language L’ accepted by some LBA. Since L = h(L') is empty if and only L’ is empty, the emptiness problem
for Turing machines, which is known to be not semidecidable, is reduced to the emptiness problem for LBAs.

DIGGING INPUT-DRIVEN PUSHDOWN AUTOMATA 17

TABLE 1. Closure properties of the language families discussed. Symbols U., N, and -. denote
union, intersection, and concatenation with compatible signatures. Such operations are not
defined for DFAs and DPDAs and they are marked with ‘—’. The abbreviations h; , and ht
denote length-preserving homomorphism and inverse homomorphism.

UlN [Ue|Ne| = | e | *]|y |[BH]R

DFA I — | — || — | v v v
IDPDA XX V| /XS X X v
DIDPDA | vV | X | X |V | V/ | X | X | X X X X
A VXX X | X | X X | X X X X
DPDA X X — | — | X]|—1|X X v X

For the reduction of the emptiness problem for LBAs to the inclusion problem for automata from . with
identical signatures we encode histories of LBA computations in single words that are called valid computations
(see, for example, [10]). We may assume that LBAs get their input in between two endmarkers, make no
stationary moves, accept by halting in some unique state f on the leftmost input symbol after an even number
of steps, and are sweeping, that is, the read-write head changes its direction at endmarkers only. Let ¢ be the
transition function of some LBA M and Q) be its state set, where qq is the initial state, T with TN Q =) is the
tape alphabet containing the endmarkers > and <1, and ¥ C T is the input alphabet. Since M is sweeping, the
set of states can be partitioned into Qg and @, of states appearing in right-to-left and in left-to-right moves. A
configuration of M can be written as a string of the form >T*QT™*< such that, >tity-- - t;sti41 - - L, << is used
to express that M is in state s, >t1ts - - - t, < is the tape inscription, for s € Qi tape symbol ¢; 1 is scanned, and
for s € Q1 tape symbol t; is scanned. Now, we consider words of the form wowfws - - w&, _wa,, where w; €
{>}T*QT*{<} are configurations of M, wy is an initial configuration of the form >qoX*<, wa,, € {>f}T*{<}
is a halting, that is, accepting configuration, and w;4; is the successor configuration of w;. These words are
encoded so that every state symbol is merged together with its both adjacent symbols into a metasymbol. To
this end, we assume that the LBA input is nonempty, and rewrite every substring of wowfws - wl _jway,
having the form tqt’ to [t,q,t'], where ¢ € Q and t,# € T. Additionally, we consider copies @ and T of the
encoding alphabet and use for every reversed configuration the overlined alphabet. The set of these encodings
is defined to be the set of valid computations of M. We denote it by VALC(M).

Example 6.3. We consider the following computation of an LBA on input xyx5x3 where each configuration
consists of the current tape inscription, the current state, and the current position of the read-write head,
qos---,q3, J € Qr and po,p1,p2,p3 € QL.

1: (>xix923<,go, 1) 4: (y1y2y3<, g3, 4) T (>y12923<, p1, 1)

2: (>y17273, q1,2) 5: (>y1y2y3<, 3, 3) 8: (212223, po, 0)

3: (by1y223<, g2, 3) 6: (>y1y223<, p2,2) 9: (212223, f, 1)

The corresponding valid computation is:

(>, qo, 1|23 <A<T3[Y1, Gy, T2)>D>Y1[Y2, @2, 23] <3, T35 <) T2 U1 >>Y1Y2 (Y3, D3, <]

Yo, Py, 2371 B> Y1, P11, 22)23<1<Z3%22 >, Do, Z1][>, f, 21]2223<

Lemma 6.4. Let M be an LBA. Then an IDPDA My and a DIDPDA My both having the same signature can
effectively be constructed such that L(My) N L(My) = VALC(M).

18 M. KUTRIB AND A. MALCHER

Proof. Let us first describe an IDPDA M; with signature ¥p = QUTU(Tx Q xT),Xg = QUTU(T xQ x T),
and Xy =): First of all, the state set of M; is used to check the correct format of the input. This means that the
first configuration is an initial configuration, the last configuration is an accepting configuration, the alphabet
for the configurations alternates between non-overlined and overlined symbols, and that every configuration
itself is of a correct format. It should be noted that due to the definition of VALC(M) every configuration
has the same length and any two adjacent configurations differ on two adjacent positions only disregarding the
overlining of symbols and the merging into metasymbols. Now, the main task for M; is to check starting with
the third configuration whether every non-overlined configuration is the successor configuration of its preceding
overlined configuration. To this end, M; reads and ignores the first configuration while its pushdown store
remains empty. Then, every next configuration (with overlined symbols) is read and every symbol is pushed
onto the pushdown store. Then, the following configuration (with non-overlined symbols) is read and checked
against the pushdown store. If a metasymbol of the form [¢, g, '] is popped off or read in the input, M; checks
within the next two transitions by using its state set whether the two input symbols encode a correct part of
the successor configuration based on the two symbols popped off the pushdown store. If the check is positive,
the computation continues. Otherwise, the computation ends non-accepting. If neither the popped symbol nor
the input symbol read is a metasymbol and both symbols are equal, the computation continues. In case of non-
equivalence, the computation ends non-accepting. Since all configurations have to have the same length, any
pop operation on the empty pushdown store after the first configuration leads to a non-accepting computation
end as well. Otherwise, the check of the next two configurations is started. In this way, the input is accepted
if it is correctly formatted and every non-overlined configuration is the successor configuration of its preceding
overlined configuration.

The construction of a DIDPDA M, with the same signature is similar, since it has to be checked whether
every overlined configuration is the successor configuration of its preceding non-overlined configuration. To this
end, the first configuration is read which digs a hole of the shape of the configuration read. The next overlined
configuration is read and checked against the hole on the pushdown store as follows: If a metasymbol of the
form [t, q,t'] is seen at the bottom of the hole in the pushdown store or read in the input, My checks within the
next two transitions by using its state set whether the two input symbols encode a correct part of the successor
configuration based on the two symbols which are pushed into the hole in the pushdown store. If the check
is positive, the computation continues. Otherwise, the computation ends non-accepting. If neither the symbol
seen at the bottom of the hole in the pushdown store nor the input symbol read is a metasymbol and both
symbols are equal, the computation continues by pushing the adequate symbol into the hole in the pushdown
store. In case of non-equivalence, the computation ends non-accepting. Since all configurations have to have the
same length, any push operation on the empty pushdown store leads to a non-accepting computation end as
well. Otherwise, the check of the next two configurations is started. In this way, the input is accepted if every
overlined configuration is the successor configuration of its preceding non-overlined configuration.

Altogether, the inputs that are accepted by M; and M are those strings which are correctly formatted and
where every non-overlined configuration is the successor configuration of its preceding overlined configuration as
well as every overlined configuration is the successor configuration of its preceding non-overlined configuration,
hence a valid computation of the given LBA. O

Theorem 6.5. Let M be an IDPDA and M’ be a DIDPDA with the same signature. Then, the inclusion
L(M) C L(M’) is not semidecidable.

Proof. Due to Lemma 6.4 we know how to construct an IDPDA M; as well as a DIDPDA My with the same
signature such that the intersection L(M;) N L(Mz) represents the valid computations of an arbitrary LBA. Due
to Lemma 5.2 a DIDPDA M’ with the same signature as My can be constructed that accepts the complement
L(M,). Now, assume that the inclusion problem is semidecidable. Then, L(M;) C L(M’) is semidecidable
which is equivalent to semidecide whether L(M;) N L(M') = L(M;) N L(Mz) = (). Hence, the emptiness of the
valid computations of an LBA as well as the emptiness problem for LBAs would be semidecidable which is a
contradiction. O

(1]

(2]
(3]

(4]
(5]
[6]
[7]
(8]
(9]
(10]
(11]
(12]
(13]
(14]
(15]
[16]
[17]
(18]

(19]
20]

(21]
(22]

(23]
(24]

DIGGING INPUT-DRIVEN PUSHDOWN AUTOMATA 19

REFERENCES

R. Alur and P. Madhusudan, Visibly pushdown languages, in Symposium on Theory of Computing (STOC 2004). ACM (2004)
202-211.

R. Alur and P. Madhusudan, Adding nesting structure to words. J. ACM 56 (2009).

S. Bensch, M. Holzer, M. Kutrib and A. Malcher. Input-driven stack automata. In Theoretical Computer Science (TCS 2012),
volume 7604 of LNCS. Springer (2012) 28-42.

D. Carotenuto, A. Murano and A. Peron, Ordered multi-stack visibly pushdown automata. Theoret. Comput. Sci. 656 (2016)
1-26.

P. Chervet and I. Walukiewicz, Minimizing variants of visibly pushdown automata. In Mathematical Foundations of Computer
Science (MFCS 2007), volume 4708 of LNCS. Springer (2007) 135-146.

S. Crespi-Reghizzi and D. Mandrioli, Operator precedence and the visibly pushdown property. J. Comput. System Sci. T8
(2012) 1837-1867.

P.W. Dymond, Input-driven languages are in logn depth. Inform. Process. Lett. 26 (1988) 247-250.

J. Goldstine, J.K. Price and D. Wotschke, On reducing the number of states in a PDA. Math. Syst. Theory 15 (1982) 315-321.
J. Goldstine, J.K. Price and D. Wotschke, On reducing the number of stack symbols in a PDA. Math. Syst. Theory 26 (1993)
313-326.

J.E. Hopcroft and J.D. Ullman, Introduction to Automata Theory, Languages, and Computation. Addison-Wesley (1979).
M. Kutrib and A. Malcher, Digging input-driven pushdown automata. In Eleventh Workshop on Non-Classical Models of
Automata and Applications, NCMA 2019, Valencia, Spain, July 2-3, 2019. Osterreichische Computer Gesellschaft (2019)
109-124.

M. Kutrib, A. Malcher, C. Mereghetti, B. Palano and M. Wendlandt, Deterministic input-driven queue automata: finite turns,
decidability, and closure properties. Theoret. Comput. Sci. 578 (2015) 58-T71.

M. Kutrib, A. Malcher and M. Wendlandt, Tinput-driven pushdown, counter, and stack automata. Fund. Inf. 155 (2017)
59-88.

S. La Torre, P. Madhusudan and G. Parlato, A robust class of context-sensitive languages. In Logic in Computer Science
(LICS 2007). IEEE Computer Society (2007) 161-170.

S. La Torre, M. Napoli and G. Parlato, On multi-stack visibly pushdown languages. Preprint (2013). http://eprints.soton.ac.
uk/id/eprint/351914.

S. La Torre, M. Napoli and G. Parlato, Scope-bounded pushdown languages. Int. J. Found. Comput. Sci. 27 (2016) 215-234.
M. Lange, P-hardness of the emptiness problem for visibly pushdown languages. Inform. Process. Lett. 111 (2011) 338-341.
P. Madhusudan and G. Parlato, The tree width of auxiliary storage. In Principles of Programming Languages, (POPL 2011).
ACM (2011) 283-294.

A. Meduna and P. Zemek, Jumping finite automata. Int. J. Found. Comput. Sci. 23 (2012) 1555-1578.

K. Mehlhorn, Pebbling moutain ranges and its application of DCFL-recognition. In International Colloquium on Automata,
Languages and Programming (ICALP 1980). Volume 85 of LNCS. Springer (1980) 422-435.

B. Nagy and F. Otto, Finite-state acceptors with translucent letters. In International Workshop on AI Methods for
Interdisciplinary Research in Language and Biology (ICAART 2011). INSTICC, SciTePress (2011) 3-13.

A. Okhotin and K. Salomaa, Complexity of input-driven pushdown automata. SIGACT News 45 (2014) 47-67.

A. Salomaa, Formal Languages. Academic Press (1973).

B. von Braunmiihl and R. Verbeek, Input-driven languages are recognized in logn space. In Topics in the Theory of
Computation. Volume 102 of Mathematics Studies. North-Holland, Amsterdam (1985) 1-19.

http://eprints.soton.ac.uk/id/eprint/351914
http://eprints.soton.ac.uk/id/eprint/351914

	Digging input-driven pushdown automata
	1 Introduction
	2 Preliminaries
	3 Computational capacity
	4 Determinization
	5 Closure properties and decidability questions
	6 On the union of the families accepted by DIDPDAs and IDPDAs

	References

